WO2014006995A1 - ガスクラスター照射機構およびそれを用いた基板処理装置、ならびにガスクラスター照射方法 - Google Patents
ガスクラスター照射機構およびそれを用いた基板処理装置、ならびにガスクラスター照射方法 Download PDFInfo
- Publication number
- WO2014006995A1 WO2014006995A1 PCT/JP2013/064248 JP2013064248W WO2014006995A1 WO 2014006995 A1 WO2014006995 A1 WO 2014006995A1 JP 2013064248 W JP2013064248 W JP 2013064248W WO 2014006995 A1 WO2014006995 A1 WO 2014006995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- substrate
- cluster
- gas cluster
- nozzle
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
- B08B7/0035—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
- B08B7/005—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by infrared radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
- H01J37/32449—Gas control, e.g. control of the gas flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32733—Means for moving the material to be treated
- H01J37/32743—Means for moving the material to be treated for introducing the material into processing chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02046—Dry cleaning only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
Definitions
- the present invention relates to a gas cluster irradiation mechanism, a substrate processing apparatus using the same, and a gas cluster irradiation method.
- gas cluster technology that processes and cleans a sample surface by irradiating the sample surface with a gas cluster has attracted attention as a technology that enables highly selective processing and cleaning.
- a method of irradiating a sample with a gas cluster for example, a method using a gas cluster ion beam is known in which a gas cluster is ionized and accelerated by an electric field or a magnetic field to collide with the sample surface (for example, patents). Reference 1).
- the cluster ion is electrically neutralized using a neutralizer or the like to collide with the sample.
- a neutralizer or the like to collide with the sample.
- Patent Document 2 a technique of irradiating a neutral gas cluster using adiabatic expansion of gas has been proposed.
- Patent Document 2 a gas mixture of ClF 3 gas, which is a reaction gas, and Ar gas, which has a lower boiling point, is jetted into a vacuum processing chamber while adiabatically expanding from a jet part at a pressure that does not liquefy. Then, a reactive cluster is generated, and the reactive cluster is sprayed onto the sample in the vacuum processing chamber to process the sample surface.
- a cluster is basically generated by injecting gas from one injection unit (nozzle).
- an irradiation region of a gas cluster generated from one nozzle is as follows. When it is applied to the processing of a large area substrate such as a semiconductor wafer, throughput becomes a problem.
- Such a throughput problem can be solved by providing a plurality of gas injection nozzles.
- the gas flow rate increases, and the processing performance decreases due to a decrease in the degree of vacuum. Resulting in. That is, since the gas cluster is destroyed when the degree of vacuum is low, if the number of nozzles is increased and the degree of vacuum falls below a predetermined value, the processing performance deteriorates due to destruction of the gas cluster.
- the degree of vacuum may be locally reduced, and in this case, the processing performance is degraded at that portion.
- the present invention has been made in view of such circumstances, and includes a gas cluster irradiation mechanism and a gas cluster irradiation method capable of processing with a gas cluster at a high throughput without destroying the gas cluster, and such a gas cluster irradiation mechanism. It is an object of the present invention to provide a substrate processing apparatus including:
- a substrate to be processed is disposed in a processing container by injecting gas into a processing container held in a vacuum to generate a gas cluster by adiabatic expansion.
- the nozzle unit is configured such that the pressure in the processing container reached when the gas is supplied from the gas injection nozzle at a necessary flow rate is a pressure that does not destroy the gas cluster.
- the number of the gas injection nozzles is set in the nozzle unit, and in the nozzle unit, adjacent ones of the plurality of gas injection nozzles are connected to each other. Providing gas cluster irradiation mechanism range of extension of the residual gas that did not contribute to the formation of the gas cluster of injected gas are arranged so as not to overlap with each other from.
- the pressure in the processing vessel is preferably 0.3 kPa or less when the supply pressure of the gas supplied to the nozzle unit is 1 MPa or less, and 3 kPa or less when the supply pressure exceeds 1 MPa and 5 MPa or less.
- the distance between adjacent ones of the plurality of gas injection nozzles is preferably 20 mm or more. Further, the nozzle unit and the substrate to be processed can be moved relative to each other, and the gas cluster can be irradiated to the entire surface of the substrate to be processed while relatively moving them.
- the gas cluster irradiation mechanism may include a plurality of the nozzle units, injecting gas from one of the plurality of nozzle units, and sequentially injecting gas by changing the nozzle unit.
- the position of the gas injection nozzle in the nozzle units adjacent to each other among the plurality of nozzle units is shifted.
- the distance by which the gas injection nozzles in the nozzle units adjacent to each other are shifted is equal to or smaller than the gas cluster irradiation range from one gas injection nozzle, and the number of the nozzle units is set in the diameter direction of the substrate to be processed. In the above, it is preferable that the number of portions where the gas cluster is not irradiated from the gas injection nozzle is not formed.
- the gas cluster irradiation mechanism is provided in a vacuum transfer chamber or a load lock chamber for transferring the substrate to be processed to the processing container, and the substrate to be processed is placed on a transfer arm for transferring the substrate to be processed. Irradiation of a gas cluster can be performed.
- a processing container held in a vacuum a substrate support for supporting a substrate to be processed in the processing container, and a gas cluster formed by adiabatic expansion by injecting gas into the processing container.
- a gas cluster irradiation mechanism that irradiates the target substrate with a gas cluster, and performs a predetermined process on the target substrate with the gas cluster, wherein the gas cluster irradiation mechanism includes: A nozzle unit having a plurality of gas injection nozzles for injecting gas into the processing container; and a gas supply unit for supplying gas for generating gas clusters to the nozzle unit, wherein the nozzle unit includes the gas injection
- the pressure in the processing vessel that is reached when the gas is supplied from the nozzle at a required flow rate is a pressure that does not destroy the gas cluster.
- the number of the gas injection nozzles is set in the nozzle unit, and in the nozzle unit, the adjacent ones of the plurality of gas injection nozzles are replaced with the residual gas that has not contributed to the formation of the gas cluster.
- a substrate processing apparatus which is arranged so that the expanding ranges do not overlap each other.
- a gas is generated by injecting gas into a processing container held in a vacuum to generate a gas cluster by adiabatic expansion, and irradiating the target substrate disposed in the processing container with the gas cluster.
- the cluster irradiation method when injecting gas from a plurality of gas injection nozzles into the processing container, the pressure in the processing container reached when the gas is supplied from the gas injection nozzle at a necessary flow rate
- the number of the gas injection nozzles is set so that the pressure does not destroy the gas cluster, and adjacent ones of the plurality of gas injection nozzles are formed to form a gas cluster out of the gas injected therefrom.
- a gas cluster irradiation method that is arranged so that the extents of residual gases that have not contributed to do not overlap each other.
- the number of gas injection nozzles is set so that the pressure in the processing container reached when the gas is supplied from the gas injection nozzle at a necessary flow rate is a pressure that does not destroy the gas cluster.
- the plurality of gas injection nozzles are arranged so that adjacent ones do not overlap with each other in a range where residual gases that have not contributed to the formation of the gas cluster among the gases injected from these nozzles are not overlapped.
- FIG. 1 It is sectional drawing which shows the substrate processing apparatus provided with the gas cluster irradiation mechanism which concerns on the 1st Embodiment of this invention. It is a top view which shows the gas cluster irradiation mechanism which concerns on the 1st Embodiment of this invention. It is a schematic diagram which shows the state with which the residual gas which did not contribute to formation of the gas cluster of an adjacent gas injection nozzle overlapped. It is a figure which shows the result of having actually simulated the flow of the gas from a gas injection nozzle, and having confirmed to which range residual gas spreads. It is a figure which shows the result of having calculated
- FIG. 1 is a sectional view showing a substrate processing apparatus provided with a gas cluster irradiation mechanism according to the first embodiment of the present invention
- FIG. 2 is a plan view showing the gas cluster irradiation mechanism according to the first embodiment.
- the substrate processing apparatus 100 is for processing a substrate by a gas cluster.
- substrate processing include substrate cleaning processing, substrate residue processing after etching, etching processing, and the like.
- the substrate processing apparatus 100 includes a processing container 1 that partitions a processing chamber for performing substrate processing.
- a substrate mounting table 2 is provided in the processing container 1, and a substrate to be processed S is mounted thereon.
- Examples of the substrate S to be processed include, but are not particularly limited to, a semiconductor wafer, a glass substrate for a flat panel display, and the like.
- the substrate mounting table 2 can be freely moved in one plane by a driving mechanism 3 composed of, for example, an XY table, and the substrate to be processed S thereon can also be moved in a plane.
- the exhaust port 4 is provided in the lower part of the side wall of the processing container 1, and the exhaust pipe 5 is connected to the exhaust port 4.
- the exhaust pipe 5 is provided with an exhaust mechanism 6 equipped with a vacuum pump or the like, and the inside of the processing container 1 is evacuated by the exhaust mechanism 6.
- the degree of vacuum at this time can be controlled by a pressure control valve 7 provided in the exhaust pipe 5.
- a gas cluster irradiation mechanism 10 that irradiates the target substrate S with gas clusters is disposed above the substrate mounting table 2.
- the gas cluster irradiation mechanism 10 includes a nozzle unit 11 provided to face the substrate mounting table 2, a gas supply unit 12 that supplies gas for generating clusters to the nozzle unit 11, and a gas from the gas supply unit 12. And a gas supply pipe 13 for guiding the gas to the nozzle unit 11.
- the gas supply pipe 13 is provided with an opening / closing valve 14 and a flow rate controller 15.
- the nozzle unit 11 includes a header 16 and a plurality (four in the figure) of gas injection nozzles 17 provided on the header 16.
- the gas injection nozzle 17 is configured as a conical nozzle having a shape in which the tip is expanded, but the shape is not limited thereto, and may be a small hole (orifice) formed in the header 16.
- the gas injected from the gas injection nozzle 17 adiabatically expands in the processing container 1 (processing chamber) evacuated by the exhaust mechanism 6, and some or several of the gas atoms or molecules are generated by van der Waals force. Tens of thousands aggregate to form a gas cluster.
- the gas cluster has a straight traveling property, and the straight traveling gas cluster is irradiated onto the surface of the substrate S to be processed, and a desired process, for example, a cleaning process of the surface of the substrate S to be processed is performed. In the case where the cleaning process is performed with the gas cluster, the deposits that cannot be removed with a normal gas can be effectively removed.
- the gas for forming the gas cluster is not particularly limited, and examples thereof include Ar gas, N 2 gas, CO 2 gas, ClF 3 gas, and HF gas. Further, liquid vapor such as H 2 O may be used. These may be used alone or in combination, and He gas may be used as the mixed gas.
- the degree of vacuum in the processing container 1 is higher (that is, the pressure is lower), and the gas supplied to the nozzle unit 11 is better.
- the supply pressure is 1 MPa or less, it is preferably 0.3 kPa or less, and when the supply pressure exceeds 1 MPa and 5 MPa or less, it is preferably 3 kPa or less.
- a plurality of gas injection nozzles 17 are provided to increase the throughput.
- the number of gas injection nozzles 17 increases, the gas flow rate increases and the degree of vacuum decreases, which may lead to the destruction of the gas cluster.
- the number of gas injection nozzles 17 is such that when the gas is supplied from the gas injection nozzle 17 at a necessary flow rate, the pressure in the processing container 1 that reaches the pressure is such that the gas cluster is not destroyed. Is set.
- adjacent ones of the plurality of gas injection nozzles 17 are configured such that the ranges of the residual gases that have not contributed to the formation of the gas cluster among the gases injected from these nozzles do not overlap each other. Deploy.
- a loading / unloading port 18 for loading / unloading the substrate S to be processed is provided on the side surface of the processing container 1.
- the loading / unloading port 18 can be opened and closed by a gate valve 19.
- the substrate processing apparatus 100 has a transfer device for transferring a substrate, and the inside thereof is connected to a vacuum transfer chamber or a load lock chamber in which a vacuum is maintained.
- the drive mechanism 3 moves the substrate mounting table 2 in one plane, and causes relative movement between the nozzle unit 11 and the substrate S to be processed.
- the drive mechanism 3 moves the substrate mounting table 2 so that the gas cluster injected from the gas injection nozzle 17 is irradiated on the entire surface of the substrate S to be processed on the substrate mounting table 2.
- the nozzle unit 11 may be moved instead of moving the substrate mounting table 2.
- the substrate processing apparatus 100 has a control unit 20.
- the control unit 20 controls gas supply (open / close valve 14 and flow rate controller 15), gas exhaust (pressure control valve 7), driving of the substrate mounting table 2 by the driving mechanism 3, and the like of the substrate processing apparatus 100.
- It has a controller with a processor (computer). Connected to the controller are a keyboard on which an operator inputs commands to manage the substrate processing apparatus 100, a display for visualizing and displaying the operating status of the substrate processing apparatus 100, and the like.
- the controller includes a control program for realizing the processing in the substrate processing apparatus 100 under the control of the controller and a control program for causing each component of the substrate processing apparatus 100 to execute a predetermined process according to the processing conditions.
- a storage unit in which a certain processing recipe and various databases are stored is connected.
- the recipe is stored in an appropriate storage medium in the storage unit.
- an arbitrary recipe is called from the storage unit and is executed by the controller, whereby a desired process in the substrate processing apparatus 100 is performed under the control of the controller.
- the gate valve 19 is opened, the substrate S to be processed is loaded via the loading / unloading port 18, and placed on the substrate platform 2.
- the substrate mounting table 2 is set to an initial position by the drive mechanism 3, and the inside of the processing container 1 is evacuated by the exhaust mechanism 6, and a predetermined gas is injected from the plurality of gas injection nozzles 17 of the nozzle unit 11 at a predetermined flow rate.
- the inside of the processing container 1 is brought into a vacuum state of 0.3 kPa or less when the supply pressure of the gas supplied to the nozzle unit 11 is 1 MPa or less, and 3 kPa or less when the supply pressure exceeds 1 MPa and 5 MPa or less.
- the substrate to be processed S is moved by the drive mechanism 3 so that the gas clusters are evenly irradiated on the surface of the substrate to be processed S.
- the gas injection nozzle 17 is provided with two or more. However, if the number of gas injection nozzles 17 increases, the gas flow rate increases and the degree of vacuum decreases, which may lead to the destruction of the gas cluster.
- the pressure in the processing container 1 that is reached when the gas is supplied at a necessary flow rate is set to a number that does not destroy the gas cluster.
- the degree of vacuum in the processing container 1 is destroyed.
- 15 gas injection nozzles are arranged.
- the average degree of vacuum in the entire processing container 1 is appropriate, it is found that when a region with a low degree of vacuum is formed locally, the cluster is destroyed in that region and the processing performance is lowered. It was. Further, it has been found that such a local decrease in the degree of vacuum is caused by the adjacent gas injection nozzles 17 being arranged close to each other. That is, as shown in FIG. 3, the gas is injected from the gas injection nozzle 17 to form the gas cluster C, and the residual gas that has not contributed to the formation of the gas cluster spreads around like a region R indicated by a broken line. If the range of the region R where the residual gas spreads overlaps between the adjacent gas injection nozzles 17, the degree of vacuum locally decreases (pressure increases) at that portion, the gas cluster is destroyed, and the processing performance decreases. There is a risk that.
- adjacent ones of the plurality of gas injection nozzles 17 are arranged so that the remaining gas spreading ranges that do not contribute to the formation of the gas cluster among the gases injected from these nozzles 17 do not overlap each other. To do.
- FIG. 4 shows the gas pressure distribution when CO 2 gas is injected from the nozzle under each condition. Moreover, the result of having calculated
- the horizontal axis in FIG. 5 represents the distance from the nozzle center.
- the adjacent gas injection nozzles 17 are preferably separated by 20 mm or more.
- the substrate processing is performed with 15 gas injection nozzles each having a vacuum degree (pressure) in the processing container 1 of 1 Pa and the pressure in the processing container being 15 Pa as in the above example
- 15 gas injection nozzles can be arranged in a line corresponding to the diameter of the 300 mm wafer.
- FIG. 6 is a plan view showing a gas cluster irradiation mechanism according to the second embodiment of the present invention.
- the gas cluster irradiation mechanism 10 ′ of this embodiment includes three nozzle units 11 a, 11 b, 11 c provided to face the substrate mounting table 2 (not shown in FIG. 6),
- the nozzle units 11a, 11b, and 11c have a gas supply unit 12 ′ that supplies gas for generating clusters, and a gas supply pipe that guides the gas from the gas supply unit 12 ′ to the nozzle units 11a, 11b, and 11c. is doing.
- the gas supply pipe has a common pipe 13 'extending from the gas supply section 12' and branch pipes 13a, 13b, 13c branched from the common pipe 13 'and connected to the nozzle units 11a, 11b, 11c.
- the branch pipes 13a, 13b, and 13c are provided with opening / closing valves 14a, 14b, and 14c and flow rate controllers 15a, 15b, and 15c, respectively.
- the nozzle units 11 a, 11 b, and 11 c have a header 16 and a plurality (four in the figure) of gas injection nozzles 17 provided on the header 16, as with the nozzle unit 11. And the gas for producing
- the nozzle units 11a, 11b, and 11c are integrally provided.
- the nozzle units 11a, 11b, and 11c are processing containers that are reached when the number of gas injection nozzles 17 is supplied from the gas injection nozzles 17 at a necessary flow rate, similarly to the nozzle unit 11 of the first embodiment.
- the pressure in 1 is set to a number that does not destroy the gas cluster. Further, regarding the arrangement of the plurality of gas injection nozzles 17 of the nozzle units 11a, 11b, and 11c, as in the nozzle unit 11, adjacent ones did not contribute to the formation of gas clusters among the gas injected from these. Arrange so that the remaining gas spread areas do not overlap each other.
- control unit 20 controls the opening / closing valves 14a, 14b, 14c of the nozzle units 11a, 11b, 11c to be opened sequentially, thereby irradiating the gas clusters in the order of the nozzle units 11a, 11b, 11c. Therefore, it is possible to obtain a higher throughput while suppressing a decrease in processing performance due to a decrease in the overall and local vacuum in the processing container 1.
- the gas injection nozzles 17 are arranged so as to be shifted by the adjacent nozzle units, whereby the nozzle units 11a, 11b, and 11c by the drive mechanism 3 (not shown in FIG. 6) are arranged.
- Directional movement can be reduced, and throughput can be further increased.
- the distance by which the gas injection nozzles 17 in adjacent nozzle units are shifted is the same as or smaller than the cluster irradiation range from one gas injection nozzle, and the number of nozzle units is set in the diameter direction of the substrate S to be processed. It is preferable that the number of portions where the gas cluster is not irradiated from the gas injection nozzle is not formed. In the example of FIG.
- the gas injection nozzle 17 of the nozzle unit 11a, the gas injection nozzle 17 of the nozzle unit 11b, and the gas injection nozzle 17 of the nozzle unit 11c are not irradiated with gas clusters in the diameter direction of the substrate S to be processed.
- the portions are slightly shifted so as not to be formed.
- the present invention can be variously modified without being limited to the above embodiment.
- the nozzle unit is shown in which the gas injection nozzles are arranged in a line, but the present invention is not limited to this.
- the gas cluster irradiation mechanism of the present invention is used in a dedicated apparatus for performing a substrate cleaning process or the like.
- the present invention is not limited to this.
- a vacuum transfer chamber to which a processing chamber such as an etching chamber or an ashing chamber is connected, or an etching chamber or ashing in a vacuum state with respect to a substrate present in an atmospheric atmosphere.
- the gas cluster irradiation mechanism of the present invention is provided in the load lock chamber for transporting to the chamber, and after the etching process and the ashing process are completed, the substrate residue processing by the gas cluster is performed in these chambers during the transport of the substrate. it can. In this case, it is possible to irradiate the gas cluster while moving the substrate to be processed in a state where the substrate to be processed is mounted on the transfer arm mounted on the system without providing a special substrate mounting table and a driving mechanism. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Optics & Photonics (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Drying Of Semiconductors (AREA)
- Cleaning In General (AREA)
Abstract
Description
<第1の実施形態>
まず、第1の実施形態について説明する。
図1は本発明の第1の実施形態に係るガスクラスター照射機構を備えた基板処理装置を示す断面図、図2は第1の実施形態に係るガスクラスター照射機構を示す平面図である。
まず、ゲートバルブ19を開けて搬入出口18を介して被処理基板Sを搬入し、基板載置台2上に載置する。
次に、第2の実施形態について説明する。
図6は、本発明の第2の実施形態に係るガスクラスター照射機構を示す平面図である。
図6に示すように、本実施形態のガスクラスター照射機構10′は、基板載置台2(図6には図示せず)に対向して設けられた3つのノズルユニット11a、11b、11cと、これらノズルユニット11a、11b、11cにクラスターを生成するためのガスを供給するガス供給部12′と、ガス供給部12′からのガスをノズルユニット11a、11b、11cへ導くガス供給配管とを有している。ガス供給配管は、ガス供給部12′から延びる共通配管13′と共通配管13′から分岐してノズルユニット11a、11b、11cに接続された分岐配管13a、13b、13cを有している。分岐配管13a、13b、13cには、それぞれ、開閉バルブ14a、14b、14cおよび流量制御器15a、15b、15cが設けられている。ノズルユニット11a、11b、11cは、上記ノズルユニット11と同様、ヘッダ16とヘッダ16に設けられた複数(図では4個)のガス噴射ノズル17とを有している。そして、ガスクラスターを生成するためのガスは、ノズルユニット11a、11b、11cのヘッダ16を経て複数のガス噴射ノズル17から噴出される。ノズルユニット11a、11b、11cは一体的に設けられている。
なお、本発明は、上記実施の形態に限定されることなく種々変形可能である。例えば、上記実施の形態においては、ノズルユニットとしてガス噴射ノズルを一列に配置したものを示したが、これに限るものではない。
Claims (17)
- 真空に保持された処理容器内にガスを噴射して断熱膨張によりガスクラスターを生成し、前記処理容器内に配置された被処理基板にガスクラスターを照射するガスクラスター照射機構であって、
前記処理容器内にガスを噴射する複数のガス噴射ノズルを有するノズルユニットと、
前記ノズルユニットにガスクラスターを生成するためのガスを供給するガス供給部と
を具備し、
前記ノズルユニットは、前記ガス噴射ノズルから前記ガスが必要な流量で供給された際に到達する前記処理容器内の圧力が、ガスクラスターを破壊しない程度の圧力となるように前記ガス噴射ノズルの本数が設定され、
前記ノズルユニットにおいて、前記複数のガス噴射ノズルのうち隣接するものどうしを、これらから噴射されたガスのうちガスクラスターの形成に寄与しなかった残留ガスの広がる範囲が互いに重ならないように配置しているガスクラスター照射機構。 - 前記処理容器内の圧力は、前記ノズルユニットに供給するガスの供給圧力が1MPa以下では0.3kPa以下、前記供給圧力が1MPaを超え5MPa以下では3kPa以下である請求項1に記載のガスクラスター照射機構。
- 前記複数のガス噴射ノズルのうち隣接するものどうしの距離が20mm以上である請求項1に記載のガスクラスター照射機構。
- 前記ノズルユニットと前記被処理基板とは相対的に移動可能に設けられ、これらを相対移動させながら前記被処理基板全面にガスクラスターを照射する請求項1に記載のガスクラスター照射機構。
- 前記ノズルユニットを複数有し、前記複数のノズルユニットのうち一つからガスを噴射するとともに、順次ノズルユニットを変えてガスを噴射する請求項1に記載のガスクラスター照射機構。
- 前記複数のノズルユニットのうち互いに隣接するノズルユニットにおける前記ガス噴射ノズルの位置がずれている請求項5に記載のガスクラスター照射機構。
- 前記互いに隣接するノズルユニットにおける前記ガス噴射ノズルのずらす距離を、一つのガス噴射ノズルからのガスクラスター照射範囲と同じかそれよりも小さくし、
前記ノズルユニットの数を、前記被処理基板の直径方向において、前記ガス噴射ノズルからガスクラスターが照射されない部分が形成されない数とする請求項6に記載のガスクラスター照射機構。 - 前記ガスクラスター照射機構は、前記処理容器に前記被処理基板を搬送するための真空トランスファチャンバまたはロードロックチャンバに設けられ、前記被処理基板を搬送する搬送アームに前記被処理基板を載せた状態でガスクラスターの照射を行う請求項1に記載のガスクラスター照射機構。
- 真空に保持される処理容器と、
前記処理容器内で被処理基板を支持する基板支持部と、
前記処理容器内にガスを噴射して断熱膨張によりガスクラスターを生成し、前記被処理基板にガスクラスターを照射するガスクラスター照射機構と
を具備し、ガスクラスターにより前記被処理基板に所定の処理を施す基板処理装置であって、
前記ガスクラスター照射機構は、
前記処理容器内にガスを噴射する複数のガス噴射ノズルを有するノズルユニットと、
前記ノズルユニットにガスクラスターを生成するためのガスを供給するガス供給部と
を有し、
前記ノズルユニットは、前記ガス噴射ノズルから前記ガスが必要な流量で供給された際に到達する前記処理容器内の圧力が、ガスクラスターを破壊しない程度の圧力となるように前記ガス噴射ノズルの本数が設定され、
前記ノズルユニットにおいて、前記複数のガス噴射ノズルのうち隣接するものどうしを、これらから噴射されたガスのうちガスクラスターの形成に寄与しなかった残留ガスの広がる範囲が互いに重ならないように配置する基板処理装置。 - 前記処理容器内の圧力は、前記ノズルユニットに供給するガスの供給圧力が1MPa以下では0.3kPa以下、前記供給圧力が1MPaを超え5MPa以下では3kPa以下である請求項9に記載の基板処理装置。
- 前記複数のガス噴射ノズルのうち隣接するものどうしの距離が20mm以上である請求項9に記載の基板処理装置。
- 前記ノズルユニットと前記被処理基板とを相対的に移動させる駆動機構をさらに具備し、前記ガスクラスター照射機構は、これらを相対移動させながら前記被処理基板全面にガスクラスターを照射する請求項9に記載の基板処理装置。
- 前記ガスクラスター照射機構は、前記ノズルユニットを複数有し、前記複数のノズルユニットのうち一つからガスを噴射して処理を行うとともに、順次ノズルユニットを変えてガスを噴射する請求項9に記載の基板処理装置。
- 前記複数のノズルユニットのうち互いに隣接するノズルユニットにおける前記ガス噴射ノズルの位置がずれている請求項13に記載の基板処理装置。
- 前記互いに隣接するノズルユニットにおける前記ガス噴射ノズルのずらす距離を、一つのガス噴射ノズルからのガスクラスター照射範囲と同じかそれよりも小さくし、
前記ノズルユニットの数を、前記被処理基板の直径方向において、前記ガス噴射ノズルからガスクラスターが照射されない部分が形成されない数とする請求項14に記載の基板処理装置。 - 前記処理容器は、前記処理容器に前記被処理基板を搬送するための真空トランスファチャンバまたはロードロックチャンバであり、前記被処理基板を搬送する搬送アームに前記被処理基板を載せた状態で前記ガスクラスター照射機構からガスクラスターの照射を行う請求項9に記載の基板処理装置。
- 真空に保持された処理容器内にガスを噴射して断熱膨張によりガスクラスターを生成し、前記処理容器内に配置された被処理基板にガスクラスターを照射するガスクラスター照射方法であって、
前記処理容器内に複数のガス噴射ノズルからガスを噴射する際に、前記ガス噴射ノズルから前記ガスが必要な流量で供給された際に到達する前記処理容器内の圧力が、ガスクラスターを破壊しない程度の圧力となるように前記ガス噴射ノズルの本数を設定し、
前記複数のガス噴射ノズルのうち隣接するものどうしを、これらから噴射されたガスのうちガスクラスターの形成に寄与しなかった残留ガスの広がる範囲が互いに重ならないように配置するガスクラスター照射方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380035374.0A CN104428875B (zh) | 2012-07-04 | 2013-05-22 | 气体团簇照射机构和使用了该气体团簇照射机构的基板处理装置、以及气体团簇照射方法 |
KR1020157002885A KR101695110B1 (ko) | 2012-07-04 | 2013-05-22 | 가스 클러스터 조사 기구 및 그것을 이용한 기판 처리 장치, 및 가스 클러스터 조사 방법 |
US14/412,661 US20150144595A1 (en) | 2012-07-04 | 2013-05-22 | Gas cluster irradiation mechanism, substrate processing apparatus using same, and gas cluster irradiation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-150695 | 2012-07-04 | ||
JP2012150695A JP5945178B2 (ja) | 2012-07-04 | 2012-07-04 | ガスクラスター照射機構およびそれを用いた基板処理装置、ならびにガスクラスター照射方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014006995A1 true WO2014006995A1 (ja) | 2014-01-09 |
Family
ID=49881756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/064248 WO2014006995A1 (ja) | 2012-07-04 | 2013-05-22 | ガスクラスター照射機構およびそれを用いた基板処理装置、ならびにガスクラスター照射方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150144595A1 (ja) |
JP (1) | JP5945178B2 (ja) |
KR (1) | KR101695110B1 (ja) |
CN (1) | CN104428875B (ja) |
WO (1) | WO2014006995A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101989255B1 (ko) * | 2013-06-04 | 2019-06-13 | 쇼와 덴코 가부시키가이샤 | 에피택셜 탄화규소 웨이퍼용 탄화규소 단결정 기판의 제조 방법 |
JP6196920B2 (ja) * | 2014-03-06 | 2017-09-13 | 東京エレクトロン株式会社 | グラフェン加工方法 |
CN105914167B (zh) | 2015-02-25 | 2018-09-04 | 株式会社思可林集团 | 基板处理装置 |
CN106269719A (zh) * | 2016-09-30 | 2017-01-04 | 京东方科技集团股份有限公司 | 一种清洁设备 |
JP6998664B2 (ja) * | 2017-03-23 | 2022-01-18 | 東京エレクトロン株式会社 | ガスクラスター処理装置およびガスクラスター処理方法 |
JP7334259B2 (ja) * | 2019-11-01 | 2023-08-28 | 東京エレクトロン株式会社 | 基板洗浄装置および基板洗浄方法 |
US11515131B2 (en) * | 2019-12-06 | 2022-11-29 | The Charles Stark Draper Laboratory Inc. | System for focused deposition of atomic vapors |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000188273A (ja) * | 1998-10-12 | 2000-07-04 | Toshiba Corp | 半導体基板の洗浄装置及び洗浄方法 |
JP2000349059A (ja) * | 1999-06-02 | 2000-12-15 | Kanegafuchi Chem Ind Co Ltd | 半導体装置の製造方法及び製造装置 |
JP2010287881A (ja) * | 2009-05-14 | 2010-12-24 | Yonezawa Dia Electronics Kk | 基板材の表面処理装置 |
JP2011171584A (ja) * | 2010-02-19 | 2011-09-01 | Tokyo Electron Ltd | 基板洗浄方法及び基板洗浄装置 |
JP2011198934A (ja) * | 2010-03-18 | 2011-10-06 | Tokyo Electron Ltd | 基板洗浄装置及び基板洗浄方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100349948B1 (ko) * | 1999-11-17 | 2002-08-22 | 주식회사 다산 씨.앤드.아이 | 클러스터를 이용한 건식 세정 장치 및 방법 |
US7601223B2 (en) * | 2003-04-29 | 2009-10-13 | Asm International N.V. | Showerhead assembly and ALD methods |
TW200742506A (en) * | 2006-02-17 | 2007-11-01 | Noritsu Koki Co Ltd | Plasma generation apparatus and work process apparatus |
US8097860B2 (en) * | 2009-02-04 | 2012-01-17 | Tel Epion Inc. | Multiple nozzle gas cluster ion beam processing system and method of operating |
-
2012
- 2012-07-04 JP JP2012150695A patent/JP5945178B2/ja active Active
-
2013
- 2013-05-22 WO PCT/JP2013/064248 patent/WO2014006995A1/ja active Application Filing
- 2013-05-22 US US14/412,661 patent/US20150144595A1/en not_active Abandoned
- 2013-05-22 CN CN201380035374.0A patent/CN104428875B/zh active Active
- 2013-05-22 KR KR1020157002885A patent/KR101695110B1/ko active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000188273A (ja) * | 1998-10-12 | 2000-07-04 | Toshiba Corp | 半導体基板の洗浄装置及び洗浄方法 |
JP2000349059A (ja) * | 1999-06-02 | 2000-12-15 | Kanegafuchi Chem Ind Co Ltd | 半導体装置の製造方法及び製造装置 |
JP2010287881A (ja) * | 2009-05-14 | 2010-12-24 | Yonezawa Dia Electronics Kk | 基板材の表面処理装置 |
JP2011171584A (ja) * | 2010-02-19 | 2011-09-01 | Tokyo Electron Ltd | 基板洗浄方法及び基板洗浄装置 |
JP2011198934A (ja) * | 2010-03-18 | 2011-10-06 | Tokyo Electron Ltd | 基板洗浄装置及び基板洗浄方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101695110B1 (ko) | 2017-01-10 |
JP5945178B2 (ja) | 2016-07-05 |
KR20150023933A (ko) | 2015-03-05 |
CN104428875A (zh) | 2015-03-18 |
JP2014013834A (ja) | 2014-01-23 |
CN104428875B (zh) | 2017-03-08 |
US20150144595A1 (en) | 2015-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5945178B2 (ja) | ガスクラスター照射機構およびそれを用いた基板処理装置、ならびにガスクラスター照射方法 | |
US9837260B2 (en) | Cleaning method, processing apparatus, and storage medium | |
US9960056B2 (en) | Substrate cleaning method, substrate cleaning apparatus and vacuum processing system | |
JP5815967B2 (ja) | 基板洗浄装置及び真空処理システム | |
JP5623104B2 (ja) | 基板洗浄装置及び基板洗浄方法 | |
JP6566683B2 (ja) | 基板洗浄方法および基板洗浄装置 | |
KR20150013036A (ko) | 기판 세정 방법 및 기판 세정 장치 | |
US10786837B2 (en) | Method for cleaning chamber of substrate processing apparatus | |
JP7097777B2 (ja) | 成膜装置および成膜方法 | |
TW201709304A (zh) | 處理裝置及處理方法、以及氣體簇產生裝置及產生方法 | |
KR102071817B1 (ko) | 기판 세정 방법 및 기판 세정 장치, 및 클러스터 생성 가스의 선정 방법 | |
WO2016158054A1 (ja) | 処理装置および処理方法、ならびにガスクラスター発生装置および発生方法 | |
US20170316949A1 (en) | Method of etching atomic layer | |
JP4682946B2 (ja) | プラズマ処理方法及び装置 | |
JP4946339B2 (ja) | 大気圧プラズマ発生装置とプラズマ処理方法及び装置 | |
JP5429124B2 (ja) | プラズマ処理方法及び装置 | |
JP2008086985A (ja) | プラズマ工程装備及びこれを用いる基板加工方法 | |
JP6471845B2 (ja) | クラスターイオンビームを用いた常温接合方法および装置 | |
CN118692883A (zh) | 形成接合组件的方法以及用于形成接合组件的装置 | |
KR20150073427A (ko) | 원자층 증착 공정 방법 및 원자층 증착 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13813957 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14412661 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157002885 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13813957 Country of ref document: EP Kind code of ref document: A1 |