WO2014005347A1 - 一种用于合成气转化的磷化物催化剂和制备方法及其应用 - Google Patents

一种用于合成气转化的磷化物催化剂和制备方法及其应用 Download PDF

Info

Publication number
WO2014005347A1
WO2014005347A1 PCT/CN2012/078544 CN2012078544W WO2014005347A1 WO 2014005347 A1 WO2014005347 A1 WO 2014005347A1 CN 2012078544 W CN2012078544 W CN 2012078544W WO 2014005347 A1 WO2014005347 A1 WO 2014005347A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
active component
carrier
synthesis gas
specific surface
Prior art date
Application number
PCT/CN2012/078544
Other languages
English (en)
French (fr)
Inventor
丁云杰
宋宪根
陈维苗
严丽
吕元
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to JP2014523180A priority Critical patent/JP5788598B2/ja
Priority to EP12846821.2A priority patent/EP2803406A4/en
Priority to US13/988,565 priority patent/US9120719B2/en
Publication of WO2014005347A1 publication Critical patent/WO2014005347A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/20Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxo-reaction
    • C07C27/22Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxo-reaction with the use of catalysts which are specific for this process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/341Apparatus, reactors with stationary catalyst bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a composition of one or more of metallic states of Fe, Co and Ni and their phosphides for conversion of a synthesis gas feedstock to a hydrocarbon and an oxide-containing SiO 2 or A1 2 0 3 supported Mixture catalyst and preparation method and application thereof, in detail, according to a certain temperature and pressure, using CO, H 2 mixed gas as raw material to efficiently prepare two carbon or more oxide-containing Si0 2 or A1 2 0 3
  • a mixed catalyst and preparation method comprising a metal or a mixture of one or more of Fe, Co and M and a phosphide thereof and an application thereof.
  • the homogeneous catalysts for the synthesis of low-carbon mixed alcohols can be roughly classified into noble metals and non-precious metals.
  • the noble metal Rh catalyst can convert the synthesis gas into ethanol and two other carbons and above, however, due to the supply of Rh metal. Limited, high cost. Therefore, the scale of commercial applications is limited.
  • the main non-precious metal catalysts for the synthesis of low-carbon mixed alcohols from syngas have modified methanol synthesis catalysts, modified Fi SC her-Tr 0 p SC h(FT) synthesis catalysts and alkali metal doped Mo catalysts. .
  • representative catalyst systems with industrial application prospects are classified into the following four types:
  • the above four catalyst systems each have their own characteristics.
  • the developed catalyst body has shortcomings in activity, selectivity, stability and economy. It is still difficult to develop catalysts with high activity and high selectivity of two carbons and above. And the key. Although researchers have made great efforts to develop these catalyst systems, there is still much room to increase the catalytic activity and selectivity of higher alcohols.
  • Transition metal phosphide as an important hydrogenation catalyst exhibits precious gold in many hydrogen-related reactions Attribute quality, with the potential to replace precious metal catalysts.
  • Kevin J. Smith et al. (Appl. Catal., A 2010 378, 59-68, Catal. Today 2011, 171, 266-274) investigated the use of molybdenum phosphide catalysts in CO hydrogenation reactions, which showed significant differences in products. With traditional non-precious metal catalysts. The content of the two carbon and more oxide-containing products in the liquid phase product reached 76% (C%). Summary of the invention
  • a mixture catalyst comprising a phosphide composition, a preparation method of the catalyst, and an application in a reaction in which synthesis gas is converted into a hydrocarbon and an oxide.
  • the catalyst of the present invention does not use a noble metal such as Rh, while achieving higher activity and selectivity of two carbons and above.
  • the present invention provides, in one aspect, a supported catalyst for converting a synthesis gas feedstock into a hydrocarbon and an oxide
  • the supported catalyst comprises an active component and a carrier a two-part
  • the active component is a mixture of a transition metal and a phosphide of the transition metal, wherein the transition metal is one or more of Fe, Co, and Ni, wherein the active component
  • the weight percentage is 0.5 to 30.0% by weight of the catalyst, wherein the ratio of the number of moles of the transition metal atom to the number of moles of the phosphorus atom in the active ingredient is in the range of 1 to 10
  • the carrier is Si0 2 or A1 2 0 3 ; wherein Si0 2 has a specific surface area of 100 to 600 m 2 /g, and an average pore diameter of 5 to 90 nm; and A1 2 0 3 has a specific surface area of 100 to 400 m 2 /g, and an average pore diameter of 4 ⁇ 90nm.
  • the active component is present in an amount of from 1.0 to 25.0% by weight based on the weight of the catalyst.
  • the Si0 2 has a specific surface area of from 200 to 400 m 2 /g and an average pore diameter of from 10 to 50 nm.
  • A1 2 0 3 has a specific surface area of 150 to 300 m 2 /g and an average pore diameter of 10 to 50 nm.
  • the supported catalyst consists of the active component and the carrier.
  • the invention provides a process for the preparation of a hydrocarbon and an oxygenate, the process comprising: converting a synthesis gas feedstock to a hydrocarbon and a support in the presence of a catalyst as described above in a reactor Oxide.
  • the reactor is a fixed bed or a slurry bed reactor.
  • the method has a reaction pressure of 1.0 to 10.0 MPa (gauge pressure) at a temperature of 100 to 400 ° C, and a CO/H 2 molar ratio of 0.5 in the synthesis gas. /1 to 10/1 and the airspeed is 100-lOOOOh" 1 condition.
  • the invention provides a process for the preparation of a catalyst as described above, the method comprising: loading the active component onto the support via one or both of a dipping process or a precipitation process, It is then calcined in high temperature air.
  • the method further comprises heating the calcined catalyst was reduced in H 2 program stream.
  • the invention provides a catalyst for converting into a hydrocarbon and an oxide by using synthesis gas as a raw material, which is composed of an active component and a carrier, and the weight percentage of the active component is 0.5 to 30.0%.
  • the active component is a mixture of a transition metal and a phosphide of the transition metal, wherein the transition metal is one or more of Fe, Co, and Ni, wherein the weight percentage of the active component is based on the metal
  • the ratio of the mole of the transition metal atom to the number of moles of the phosphorus atom in the active component is in the range of 1 to 10;
  • the carrier is Si0 2 or A1 2 0 3 ;
  • the Si0 2 has a specific surface area of 100 to 600 m 2 /g and an average pore diameter of 5 to 90 nm; and the specific surface area of the A1 2 0 3 in the carrier is 100 to 400 m 2 /g, and the average pore diameter is 4 to 90 nm.
  • Fe, Ni and Co transition metal phosphides have catalytic properties like noble metals and exhibit noble metal-like properties in CO adsorption and hydrogenation reactions.
  • metallic Fe, Ni and Co catalysts have catalytic properties for hydrogenation of CO to hydrocarbons, and oxides are rarely formed.
  • the metal catalyst CO has a carbon chain growth characteristic in the hydrogenation reaction.
  • the above-mentioned Fe, Ni and Co transition metal phosphides tend to have the property of adsorbing and activating CO. Therefore, it is predicted that such a catalyst will have the possibility of hydrogenating CO to form two carbons and above.
  • the use of a high specific surface oxide support can increase the dispersion of the supported metal, thereby increasing the utilization of Fe, Ni and Co transition metals.
  • highly dispersed metals tend to be susceptible to the formation of the above metal phosphides.
  • A1 2 0 3 and SiO 2 are commonly used carriers for preparing supported catalysts.
  • the catalyst of the invention is used for efficiently preparing two carbons and above oxides by using a mixed gas of CO and H 2 as a raw material under a certain temperature and pressure.
  • the catalyst consists of two parts, the active component and the carrier.
  • the active component is a mixture catalyst composed of one or more of metallic, Fe, Co and Ni and its phosphide.
  • the carrier is selected from Si0 2 or A1 2 0 3 and the like.
  • CO/H 2 is used as the reaction raw material, under the action of the catalyst, The CO hydrogenation reaction takes place and can be converted into two carbons and above oxides with high activity and high selectivity.
  • the oxide may include methanol and two carbons and oxides thereof.
  • Examples of the two carbons and the above oxides may include: ethanol and acetaldehyde, propanol and propionaldehyde, butanol, pentanol and the like.
  • Hydrocarbons may include: alkanes such as methane, ethyl hydrazine, propane, and butane, and olefins such as ethylene, propylene, and butene.
  • the CO, H 2 mixed gas as a raw material for efficiently preparing the main products of the reaction of two carbons and above may include: ethanol and acetaldehyde, propanol and propionaldehyde, butanol and pentanol, etc. .
  • Low carbon as referred to herein means less than five carbon atoms.
  • a low carbon mixed alcohol means a mixed alcohol of five or less carbon atoms.
  • a mixture of one or more of Fe, Co and Ni in a metallic state and a phosphide thereof means that the mixture may be composed of any one of Fe, Co and M and a phosphide thereof.
  • the composition may be composed of any two of Fe, Co and Ni and their phosphides, or may be composed of three of Fe, Co and Ni and their phosphides.
  • examples of the mixture may include: a mixture composed of Fe and its phosphide, a mixture composed of Co and a phosphide thereof. And a mixture of Ni and its phosphide.
  • examples of the mixture may include: a mixture of Fe and Co and their phosphides, Fe and M, and a mixture of phosphide compositions, and a mixture of Co and M and their phosphides.
  • CO/H 2 / can be directly introduced into a fixed bed or slurry bed reactor containing the particulate catalyst of the present invention to carry out a CO hydrogenation reaction.
  • the catalyst of the invention preferably has a transition metal content of 0.5 to 30.0% by weight, an optimum weight content of 1.0 to 25.0%, and a carrier having a specific surface area of SiO 2 of preferably 100 to 600 m 2 /g, and an average pore diameter. 5 ⁇ 90nm, the optimum specific surface area is 200 ⁇ 400m 2 /g, and the average pore diameter is 10 ⁇ 50nm.
  • the carrier can also adopt A1 2 0 3 , and the preferred specific surface area of A1 2 0 3 is 100 ⁇ 400m 2 . /g, the average pore diameter is 4 ⁇ 90nm, the optimum specific surface area is 150 ⁇ 300m 2 /g, and the optimal pore diameter is 10 ⁇ 50nm.
  • the catalyst preparation method of the present invention may comprise the following steps: using SiO 2 or A1 2 3 3 as a carrier, metal nitrate and ammonium hydrogen phosphate as a metal and phosphorus source, preparing an aqueous solution, impregnating on a support by dipping or depositing by precipitation On the surface of the support, drying, drying, and high temperature calcination, the oxidation state precursor of the catalyst is obtained.
  • a catalyst mixture consisting of one or more of metallic states of Fe, Co and M and their phosphides is obtained after temperature programmed reduction in the H 2 stream.
  • metal massager In the present invention, after the oxidation state precursor of the catalyst is subjected to temperature-programmed reduction in the H 2 stream, in a mixture catalyst composed of one or more of metallic Fe Co and Ni and its phosphide, metal massager
  • the ratio of the amount to the amount of phosphide in terms of phosphorus is in the range of 1 to 10.
  • the metal atoms form the smallest structural unit of the triangular prism structure, and the triangular prism units form different lattice types in different combinations, and the P atoms occupy three The void inside the prism.
  • the bulk phase of the parent metal changes due to the insertion of the P atom. This is mainly due to the interaction of the ligand effect and the electronic effect. On the one hand, electrons can be transferred between the metal and the ligand.
  • the number of metal atoms exposed on the surface is reduced, so that the electronic configuration and lattice configuration of the compound are compared with the parent metal. Significant changes have taken place. In the crystals of these different crystal forms, the electronic structure and adsorption properties of the metal are significantly changed by the influence of P, resulting in a difference in catalytic performance.
  • the temperature is raised to 300-400 ° C 0.5 ⁇ 3 ° C / min from 300 ⁇ 400 ° C to 500 ⁇ 700 ° C for 1 ⁇ 6 hours to reduce the temperature in the H 2 stream to the reaction temperature, to obtain the catalyst.
  • the airspeed is about SOOO!T.
  • Ferric nitrate (F e (N0 3 ) 3 _9H 2 0) Tianjin Chemio Chemical Reagent Development Center, analytical grade
  • Cobalt nitrate ( ⁇ ) ( ⁇ 03) 2 ⁇ 6 ⁇ 2 0) Tianjin Chemio Chemical Reagent Development Center, analytical grade
  • Nickel nitrate ( ⁇ ( ⁇ 0 3 ) 2 ⁇ 6 ⁇ 2 0) Tianjin Chemio Chemical Reagent Development Center, analytical grade
  • Diammonium hydrogen phosphate (H 4 ) 2 HP0 3 ) : Shenyang Federal Reagent Factory, analytical grade
  • Example 1 The components in the catalyst prepared in the examples were semi-quantitatively determined by X-ray diffraction fluorescence spectrometry (XRF).
  • XRF X-ray diffraction fluorescence spectrometry
  • Example 5
  • M/P 8 molar ratio
  • M/P 4 molar ratio
  • M/P 2 molar ratio
  • Example 11 The solution was heated and dissolved, and the above A1 2 0 3 carrier was impregnated with the aqueous solution, dried in a water bath at 60 ° C, dried in an oven at 120 ° C for 8 hours, and calcined at 450 ° C for 4 hours, thereby preparing an oxidation state precursor of the catalyst.
  • Example 11 The solution was heated and dissolved, and the above A1 2 0 3 carrier was impregnated with the aqueous solution, dried in a water bath at 60 ° C, dried in an oven at 120 ° C for 8 hours, and calcined at 450 ° C for 4 hours, thereby preparing an oxidation state precursor of the catalyst.
  • Example 11 Example 11
  • the oxidized precursors of the catalysts of the above Examples 1 to 11 were subjected to in situ reductive activation in a stream of H ⁇ GHSV ⁇ OOOOh- 1 in a fixed bed reactor (diameter: 9 mm: catalyst height: 5 cm) before each use.
  • the conditions are: normal pressure, 5 ° C / min from room temperature to 350 ° C, l ° C / min from 350 ° C to 650 ° C for 3 hours in the H 2 stream to cool to the reaction temperature, the resulting Catalyst.
  • the chromatographic instrument is Agilent 3000AMicro GC, molecular sieve, Plot Q, A1 2 0 3 and B OV-1 four capillary columns, TCD detector. Analysis, FFAP capillary column, FID detector. Internal standard method analysis, n-pentanol as internal standard.
  • Example 5 The catalyst in oxidation state prior to the precursor used in the embodiment, in a quartz fixed bed reactor (4cm diameter: height of the catalyst is about 10cm) in situ reductive activation in H ⁇ GHSV ⁇ OOOOh- 1) stream, with the proviso: often Pressurize, 5 ° C / min from room temperature to 350 ° C, l ° C / min from 350 ° C to 650 ° C for 3 hours in 3 ⁇ 4 stream to cool to room temperature, transferred to 1 liter under Ar flow protection In a volumetric slurry bed reactor, the temperature was raised to the reaction temperature in a H 2 stream (GHSV ⁇ OOOOh- 1 ).
  • the CO hydrogenation reaction conditions are: a slurry bed reactor (diameter: 8.2 cm: catalyst loading: 70 g, catalyst content in the slurry liquid: 10 (by weight)%, rotation speed: 900 rpm), 280 ° C , 5.0Mpa, H 2 /CO (molar ratio is 2: 1), gas mixture GHSVz SOOOh- 1 , the reaction tail gas is fully absorbed by the cold trap deionized water, and the gas phase product is analyzed online.
  • the chromatographic instrument is Agilent 3000AMicr O GC, molecular sieve , Plot Q, A1 2 0 3 and OV-1 four capillary columns, TCD detector.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nanotechnology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种用于合成气转化的磷化物催化剂和制备方法及其应用,具体的提供一种用于以合成气为原料合成烃类和含氧化合物的催化剂和制备方法及其应用。催化剂由活性组分和载体两部分组成,活性组分为金属态的Fe、Co和Ni中的一种或多种及其磷化物组成的混合物,载体选用SiO2或Al2O3,该催化剂在固定床或桨态床反应器中,在一定的温度和压力下,可将H2/CO高活性、高选择性地转化为两个碳及其以上的含氧化合物和烃类。

Description

一种用于合成气转化的磷化物催化剂和制备方法及其应用 技术领域
本发明涉及一种用于以合成气原料转化为烃类和含氧化物的 Si02或 A1203负载 的由金属态的 Fe、Co和 Ni中的一种或多种及其磷化物组成的混合物催化剂和制备方 法及其应用, 详细地涉及在一定温度和压力下, 以 CO、 H2混合气为原料高效制取两 个碳及其以上的含氧化物的 Si02或 A1203负载的由金属态的 Fe、 Co和 M中的一种 或多种及其磷化物组成的混合物催化剂和制备方法及其应用。 技术背景
中国作为世界最大的产煤国, 从资源利用和环境保护的角度看, 利用高效洁净煤 炭资源技术, 开发"绿色燃料"具有重要的战略意义和应用前景。
CO催化加氢合成烃类及含氧化物是煤炭资源洁净利用的重要途径之一。近年来, 低碳混合醇在燃料和化工领域的应用价值逐步凸现, 相关研究日益活跃。
用于低碳混合醇合成的均相催化剂大致可分为贵金属和非贵金属两类,其中贵金 属 Rh催化剂可以转化合成气为乙醇和其它两个碳及其以上含氧化物, 然而, 由于 Rh 金属供应有限, 成本高. 因而商业应用上规模有限。 另一方面, 从合成气制低碳混合 醇的主要非贵金属催化剂有改性的甲醇合成催化剂, 改性的 FiSCher-Tr0pSCh(F-T)合成 催化剂和碱金属掺杂的 Mo催化剂。 它们中, 具有工业应用前景的代表性催化剂体系 分为以下 4种:
(1) Dow化学公司开发的 MoS催化剂体系 (Sygmol工艺);
(2)法国石油研究所开发的 Cu-Co催化剂体系 (IFP工艺);
(3) Lurgi公司开发的 Cu-Zn-Al催化剂体系 (Octamix工艺); 禾口
(4) Sham公司开发的 Zn-Cr-K催化体系 (MAS工艺)。
以上 4种催化剂体系各有其特色。但是,总体看来,所开发的催化剂体存在活性、 选择性、稳定性及经济性等方面的不足, 开发高活性和高两个碳及其以上含氧化物选 择性的催化剂依然是研究的难点和关键。尽管研究者对于这些催化剂体系的开发已做 出了很大的努力, 但还有很大空间来提高催化活性和高级醇的选择性。
过渡金属磷化物作为一种重要的加氢催化剂在许多涉氢反应中表现出了类贵金 属性质,具有潜在的代替贵金属催化剂的可能性。 Kevin J. Smith等 (Appl. Catal., A 2010 378, 59-68, Catal. Today 2011, 171, 266-274)研究了磷化钼催化剂在 CO加氢反应的应 用, 其结果表明产物明显不同与传统的非贵金属催化剂。两个碳及其以上含氧化物产 物在液相产物中的含量达到 76%(C%)。 发明内容
本发明的一个目的在于提供一种用于以合成气为原料转化为烃类和含氧化物的 Si02或 A1203负载的由金属态的 Fe、 Co和 M中的一种或多种及其磷化物组成的混合 物催化剂,所述催化剂的制备方法及在合成气为原料转化为烃类和含氧化物的反应中 的应用。 与现有的技术相比, 本发明的催化剂不采用 Rh等贵金属, 同时实现较高的 两个碳及其以上含氧化物的活性和选择性。
为实现上述目的, 本发明在一个方面提供一种负载型催化剂, 所述负载型催化剂 用于将合成气原料转化为烃类和含氧化物, 其中: 所述负载型催化剂包括活性组分和 载体两部分; 所述活性组分为由过渡金属及所述过渡金属的磷化物组成的混合物, 其 中所述过渡金属是 Fe、 Co和 Ni中的一种或多种,其中所述活性组分的重量百分比按 金属计为催化剂重量的 0.5~30.0%, 其中在所述活性成分中, 过渡金属原子的摩尔数 与磷原子的摩尔数之比在 1~10的范围内; 并且所述载体为 Si02或 A1203 ; 其中 Si02 的比表面积为 100~600m2/g, 并且平均孔径为 5~90nm; 并且 A1203的比表面积为 100~400m2/g, 并且平均孔径为 4~90nm。
在本发明的一个优选的实施方案中,所述活性组分重量百分比按金属计为催化剂 重量的 1.0~25.0%。
在本发明的另一个优选的实施方案中, Si02比表面积为 200~400 m2/g, 并且平均 孔径为 10~50nm。
在本发明的另一个优选的实施方案中, A1203的比表面积为 150~300 m2/g, 并且 平均孔径为 10~50nm。
在本发明的另一个特别优选的实施方案中,所述负载型催化剂由活性组分和载体 两部分组成。
本发明在另一个方面提供一种用于制备烃类和含氧化物的方法, 所述方法包括: 在反应器中, 在上面所述的催化剂存在下, 使合成气原料转化为烃类和含氧化物。
在本发明的一个优选的实施方案中, 所述反应器为固定床或浆态床反应器。 在本发明的另一个优选的实施方案中, 所述方法在 100~400°C的温度, 1.0~10.0 MPa(表压)的反应压力, 合成气中的 CO/H2按摩尔比计为 0.5/1 至 10/1 且空速为 100-lOOOOh"1的条件下进行。
本发明在再一个方面提供一种用于制备上面所述催化剂的方法, 所述方法包括: 将所述活性组分经由浸渍法或沉淀法中的一种或两种负载在所述载体上,然后高温空 气中焙烧。
在本发明的一个优选的实施方案中, 所述方法还包括将焙烧后的催化剂在 H2流 中程序升温还原。 具体实施方式
下面详细阐述本发明的内容。
本发明提供一种用于以合成气为原料转化为烃类和含氧化物的催化剂, 由活性组 分和载体两部分组成, 活性组分的重量百分比为 0.5~30.0%。 活性组分为由过渡金属 及所述过渡金属的磷化物组成的混合物,其中所述过渡金属是 Fe、 Co和 Ni中的一种 或多种, 其中所述活性组分的重量百分比按金属计为催化剂重量的 0.5~30.0%, 其中 在所述活性成分中,过渡金属原子的摩尔数与磷原子的摩尔数之比在 1~10的范围内; 载体为 Si02或 A1203 ; 载体中 Si02比表面积为 100~600m2/g, 平均孔径为 5~90nm; 并且载体中 A1203的比表面积为 100~400m2/g, 平均孔径为 4~90nm。
Fe, Ni和 Co过渡金属的磷化物具有类贵金属的催化性质, 在 CO吸附和加氢反 应中表现出类贵金属的性能。 一般来说, 金属态的 Fe, Ni和 Co催化剂具有 CO加氢 生成烃类的催化性能, 很少生成含氧化物。 而且, 该金属态的催化剂 CO加氢反应中 具有碳链增长的特性。 而上述的 Fe, Ni和 Co过渡金属的磷化物往往具有吸附活化 CO的性能。 因此, 可以预测此类催化剂将具有 CO加氢生成两个碳及其以上含氧化 物的可能性。 采用高比表面的氧化物载体可以提高负载金属的分散度, 从而提高 Fe, Ni和 Co过渡金属的利用率。 同时, 高分散的金属往往易于上述金属磷化物的形成。 A1203和 Si02是常用的制备负载型催化剂的载体。
本发明的催化剂是用于在一定温度和压力下, CO、 H2混合气为原料高效制取两 个碳及其以上含氧化物反应。催化剂由活性组分和载体两部分组成。 活性组分为由金 属态的 Fe、 Co和 Ni中的一种或多种及其磷化物组成的混合物催化剂。载体选用 Si02 或 A1203等。 在固定床或浆态床反应器中以 CO/H2为反应原料, 在本催化剂作用下, 发生 CO加氢反应, 可高活性和高选择性地转化为两个碳及其以上含氧化物。
含氧化物可以包括甲醇和两个碳及其以上含氧化物。两个碳及其以上含氧化物的 实例可以包括: 乙醇和乙醛, 丙醇和丙醛, 丁醇和戊醇等。
烃类可以包括: 烷烃如甲烷, 乙焼, 丙焼, 和丁烷, 以及烯烃, 如乙烯, 丙烯和 丁烯等。
在本发明的催化剂存在下, CO、 H2混合气为原料高效制取两个碳及其以上含氧 化物反应的主要产物可以包括: 乙醇和乙醛, 丙醇和丙醛, 丁醇和戊醇等。
本文中所述的低碳是指五个碳原子以下。如低碳混合醇是指五个碳原子以下的混 合醇。
在所述 "由金属态的 Fe、 Co和 Ni中的一种或多种及其磷化物组成的混合物 "是指 所述的混合物可以由 Fe、 Co和 M中的任何一种及其磷化物组成, 可以由 Fe、 Co和 Ni中的任意两种及其磷化物组成, 也可以由 Fe、 Co和 Ni中的三种及其磷化物组成。
在所述的混合物由 Fe、 Co和 M中的任何一种及其磷化物组成的情况下, 混合物 的实例可以包括: 由 Fe及其磷化物组成的混合物、 由 Co及其磷化物组成的混合物、 和由 Ni及其磷化物组成的混合物。
在所述的混合物由 Fe、 Co和 M中的任何两种及其磷化物组成的情况下, 混合物 的实例可以包括: 由 Fe和 Co及它们的磷化物组成的混合物、 由 Fe和 M及它们的磷 化物组成的混合物、 和由 Co和 M及它们的磷化物组成的混合物。
本发明的反应体系中, 可以直接将 CO/H2/通入到装有本发明的颗粒状催化剂的 固定床或浆态床反应器中, 进行 CO加氢反应。
本发明的催化剂, 过渡金属较佳重量百分含量为 0.5~30.0%%, 最佳重量含量为 1.0~25.0%;载体可选用 Si02的比表面积较佳为 100~600m2/g,平均孔径为 5~90nm, 最 佳的比表面积为 200~400m2/g, 平均孔径最佳为 10~50nm; 载体也可以采用 A1203, A1203 的较佳比表面积为 100~400m2/g, 平均孔径为 4~90nm 最佳的比表面积为 150~300m2/g, 最佳孔径为 10~50nm。
本发明的催化剂制备方法可以包括以下步骤: 采用 Si02或 A1203为载体, 金属硝 酸盐和磷酸氢铵为金属和磷源, 配制成水溶液, 采用浸渍法浸渍在载体上或沉淀法沉 积在载体表面上, 干燥, 烘干, 高温焙烧, 即得该催化剂的氧化态前驱物。 在 H2流 中程序升温还原后即得由金属态的 Fe、Co和 M中的一种或多种及其磷化物组成的混 合物催化剂。 在本发明中, 催化剂的氧化态前驱物经由 H2流中程序升温还原后, 在由金属态 的 Fe Co和 Ni中的一种或多种及其磷化物组成的混合物催化剂中, 金属按摩尔计的 量与磷化物按磷的摩尔计的量之比在 1~10的范围内。
在由金属原子 Fe Co和 Ni中的任何一种的磷化物中,金属原子形成三棱柱结构 的最小结构单元, 这些三棱柱单元以不同的结合方式形成不同的晶格类型, 而 P原子 占据三棱柱内部的空隙。 由于 P原子的插入, 母体金属的体相性质发生了变化。 这主 要是由于配体效应和电子效应相互作用的结果。 一方面电子可以在金属与配体间转 移, 另一方面由于配体的插入, 金属原子在表面上暴露的数目减少, 使得与母体金属 相比该类化合物的电子构型和晶格构型都发生了显著的变化。在这些不同晶型的晶体 中, 受 P的影响, 金属的电子结构和吸附性质都发生了显著的变化, 从而导致了催化 性能的差异。
每种催化剂的氧化态前驱物使用前,在固定床反应器中 H2 (GHSV=1000~10000h— ^ 流中进行原位还原活化, 条件为: 常压, l~10°C/min 从室温升温至 300~400°C 0.5~3°C/min从 300~400°C升温至 500~700°C保持 1~6小时在 H2流中降温至反应温度, 得到所述的催化剂。
本发明中 CO H2混合气为原料高效制取两个碳及其以上含氧化物反应的反应温 度为约 280 °C, 反应压力为约 5.0MPa CO/H2 =约 2/1 (摩尔比), 空速为约 SOOO!T 下面通过具体实施例对本发明做进一步说明。 除非另外具体指出, 本申请中所述 的比例、 份数和百分比基于重量。
在实施例中使用的材料如下:
硝酸铁 (Fe(N03)3_9H20) : 天津科密欧化学试剂开发中心, 分析纯
硝酸钴 (Ο)(Ν03)2·6Η20) : 天津科密欧化学试剂开发中心, 分析纯
硝酸镍 (Μ(Ν03)2·6Η20) 天津科密欧化学试剂开发中心, 分析纯
磷酸氢二铵 (( H4)2HP03) : 沈阳联邦试剂厂, 分析纯
氧化硅 (Si02) : 青岛海洋化工, d =0.50 mm, 球形颗粒, S =350m2/g d =15. 1 nm
氧化铝 (A1203) : 山东淄博贝尔化工科技有限公司, d ffi =0.50 mm, 球形颗粒, S =150m2/g d =12. 1mn
采用 X-射线衍射荧光光谱分析方法 (XRF), 对实施例中制备出的催化剂中成分的 进行半定量测定。 实施例 1
实施例 1的催化剂为 FeP/Si02(Fe/P=8摩尔比)。 称取 10.0克 SiO2 (20~40目), 配 置 8ml含 7.21克 CoCN03;>2.6H20和 0.29克 (ΝΗ4;)2ΗΡ04的水溶液,滴加约 2ml浓 HN03, 加热溶解, 用此水溶液浸渍上述 Si02载体, 60°C水浴烘干, 120°C烘箱烘干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 实施例 2
实施例 2的催化剂为 FeP/Si02(Fe/P=4摩尔比)。 称取 10.0克 SiO2 (20~40目), 配 置 8ml含 4.93克 Co(N03)2.6H20和 0.58克 (NH4)2HP04的水溶液,滴加约 2ml浓 HN03, 加热溶解, 用此水溶液浸渍上述 Si02载体, 60°C水浴烘干, 120°C烘箱烘干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 实施例 3
实施例 3的催化剂为 FeP/Si02(Fe/P=2摩尔比)。 称取 10.0克 SiO2 (20~40目), 配 置 8ml含 4.93克 Co(N03)2.6H20和 1.17克 ( H4)2HP04的水溶液,滴加约 2ml浓丽03, 加热溶解, 用此水溶液浸渍上述 Si02载体, 60°C水浴烘干, 120°C烘箱烘干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 实施例 4
实施例 4的催化剂为 CoP/Si02(Co/P=8摩尔比)。称取 10.0克 SiO2 (20~40目), 配 置 8ml含 4.93克 Co(N03)2.6H20和 0.29克 (NH4)2HP04的水溶液,滴加约 2ml浓 HN03, 加热溶解, 用此水溶液浸渍上述 Si02载体, 60°C水浴烘干, 120°C烘箱烘干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 实施例 5
实施例 5的催化剂为 CoP/Si02(Co/P=4摩尔比)。称取 10.0克 SiO2 (20~40目), 配 置 8ml含 4.93克 Co(N03)2.6H20和 0.58克 (NH4)2HP04的水溶液,滴加约 2ml浓 HN03, 加热溶解, 用此水溶液浸渍上述 Si02载体, 60°C水浴烘干, 120°C烘箱烘干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 实施例 6
实施例 6的催化剂为 CoP/Si02(Co/P=2摩尔比)。称取 10.0克 SiO2 (20~40目), 配 置 8ml含 4.93克 Co(N03)2.6H20和 1.17克 ( H4)2HP04的水溶液,滴加约 2ml浓丽03, 加热溶解, 用此水溶液浸渍上述 Si02载体, 60°C水浴烘干, 120°C烘箱烘干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 实施例 7
实施例 7的催化剂为 MP/Si02(M/P=8摩尔比)。 称取 10.0克 SiO2 (20~40目), 配 置 8ml含 4.93克 Co(N03)2.6H20和 0.29克 (NH4)2HP04的水溶液,滴加约 2ml浓 HN03, 加热溶解, 用此水溶液浸渍上述 Si02载体, 60°C水浴烘干, 120°C烘箱烘干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 实施例 8
实施例 8的催化剂为 MP/Si02(M/P=4摩尔比)。 称取 10.0克 SiO2 (20~40目), 配 置 8ml含 4.93克 Co(N03)2.6H20和 0.58克 (NH4)2HP04的水溶液,滴加约 2ml浓 HN03, 加热溶解, 用此水溶液浸渍上述 Si02载体, 60°C水浴烘干, 120°C烘箱烘干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 实施例 9
实施例 9的催化剂为 MP/Si02(M/P=2摩尔比)。 称取 10.0克 SiO2 (20~40目), 配 置 8ml含 4.93克 Co(N03)2.6H20和 1.17克 ( H4)2HP04的水溶液,滴加约 2ml浓丽03, 加热溶解, 用此水溶液浸渍上述 Si02载体, 60°C水浴烘干, 120°C烘箱烘干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 实施例 10
实施例 10的催化剂为 CoP/Al203(Co/P=4摩尔比)。称取 10.0克 A1203 (20-40目), 配置 8ml含 4.93克 Co(N03)2.6H20和 0.58克 (NH4)2HP04的水溶液, 滴加约 2ml浓 HN03, 加热溶解, 用此水溶液浸渍上述 A1203载体, 60°C水浴烘干, 120°C烘箱烘 干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 实施例 11
实施例 11的催化剂为 CoP/Al203(Co/P=4摩尔比)。称取 10.0克 A1203 (20-40目), 配置 15ml含 4.93克 CoCN03)2.6H20的水溶液, 加热溶解倒入上述 A1203载体, 搅拌 下滴加氨水, 沉淀沉积在 A1203载体上, 干燥, 焙烧后, 称取 0.58克 (NH4)2HP04溶 于 8ml水中, 加热溶解, 用此水溶液浸渍上述载有 CoO的 A1203载体, 60°C水浴烘 干, 120°C烘箱烘干 8小时, 450°C焙烧 4h, 由此制备出该催化剂的氧化态前驱物。 上述实施例 1~11中的催化剂的氧化态前驱物每种使用前, 在固定床反应器 (直径 为 9mm: 催化剂高度为 5cm)中 H^GHSV^OOOOh—1)流中进行原位还原活化, 条件为: 常压, 5°C/min从室温升温至 350°C, l°C/min从 350°C升温至 650°C保持 3小时在 H2流中降温至反应温度, 得到所述的催化剂。 CO加氢反应条件为: 固定床反应器 (直 径为 9mm: 催化剂高度为 5cm) 280°C, 5.0Mpa, H2/CO (摩尔比为 2: 1)混合气 GHSV = 5000h"1, 反应尾气经冷阱去离子水充分吸收后, 气相产物进行在线分析, 色谱仪器 为安捷伦 3000AMicro GC, 分子筛, Plot Q, A1203 禾 B OV-1四根毛细管柱, TCD检 测器。 水相产物离线分析, FFAP毛细管色谱柱, FID检测器。 内标法分析, 正戊醇 为内标物。
反应结果总结在表 1中。 实施例 12
实施例 5催化剂使用的氧化态前驱物前, 在石英固定床反应器 (直径为 4cm: 催 化剂高度约为 10cm)中 H^GHSV^OOOOh—1)流中进行原位还原活化, 条件为: 常压, 5°C/min从室温升温至 350°C, l°C/min从 350°C升温至 650°C保持 3小时在 ¾流中 降温至室温, 在 Ar 流保护下转移至 1 立升容积的浆态床反应器中, 在 H2流中 (GHSV^OOOOh—1)升温至反应温度。 CO加氢反应条件为:浆态床反应器 (直径为 8.2cm: 催化剂装量为 70克,浆态液中催化剂含量为: 10(重量)%,转速为 900转 /分), 280°C, 5.0Mpa, H2/CO (摩尔比为 2: 1)混合气 GHSVz SOOOh—1 , 反应尾气经冷阱去离子水充 分吸收后,气相产物进行在线分析,色谱仪器为安捷伦 3000AMicrO GC, 分子筛, Plot Q, A1203 和 OV-1 四根毛细管柱, TCD检测器。 水相产物离线分析, FFAP毛细管 色谱柱, FID检测器。 内标法分析, 正戊醇为内标物。 同时对浆态床反应器中的浆态 液取样分析, 分析结果合并后归一化处理得到反应结果。 反应结果总结在表 1中。 表 1 : 上述实施例催化剂的 CO加氢反应结果
Figure imgf000010_0001
*基于 CO摩尔数计算
**除了甲烷以外的烷烃
***除了甲醇、 乙醇之外的含氧产物, 碳数不超过 5

Claims

权 利 要 求
1、 一种负载型催化剂, 所述负载型催化剂用于将合成气原料转化为烃类和含氧 化物, 其中:
所述负载型催化剂包括活性组分和载体;
所述活性组分为由过渡金属及所述过渡金属的磷化物组成的混合物,其中所述过 渡金属是 Fe、 Co和 Ni中的一种或多种,其中所述活性组分的重量百分比按金属计为 催化剂重量的 0.5~30.0%, 其中在所述活性成分中, 过渡金属原子的摩尔数与磷原子 的摩尔数之比在 1~10的范围内; 并且
所述载体为 Si02或 A1203 ;
其中 Si02的比表面积为 100~600m2/g, 并且平均孔径为 5~90nm; 并且 A1203的 比表面积为 100~400m2/g, 并且平均孔径为 4~90nm。
2、 根据权利要求 1所述的催化剂, 其中, 所述活性组分重量百分比按金属计为 催化剂重量的 1.0~25.0%。
3、根据权利要求 1所述的催化剂, 其中, Si02比表面积为 200~400m2/g, 并且平 均孔径为 10~50nm。
4、 根据权利要求 1所述的催化剂, 其中, A1203的比表面积为 150~300m2/g, 并 且平均孔径为 10~50nm。
5、 根据权利要求 1所述的催化剂, 其中, 所述负载型催化剂由活性组分和载体 两部分组成。
6、 一种用于制备烃类和含氧化物的方法, 所述方法包括: 在反应器中, 在权利 要求 1至 5中任何一项所述的催化剂存在下, 使合成气原料转化为烃类和含氧化物。
7、 权利要求 6所述的方法, 其中, 所述反应器为固定床或浆态床反应器。
8、权利要求 6所述的方法, 其中, 所述方法在 100~400°C的温度, 1.0~10.0 MPa 表压的反应压力,合成气中的 CO/H2按摩尔比计为 0.5/1至 10/1且空速为 lOO lOOOOh—1 的条件下进行。
9、 一种用于制备权利要求 1所述催化剂的方法, 所述方法包括: 将所述活性组 分经由浸渍法或沉淀法中的一种或两种负载在所述载体上, 然后高温空气中焙烧。
10、 根据权利要求 9所述的方法, 所述方法还包括将焙烧后的催化剂在 H2流中 程序升温还原。
PCT/CN2012/078544 2012-07-05 2012-07-12 一种用于合成气转化的磷化物催化剂和制备方法及其应用 WO2014005347A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014523180A JP5788598B2 (ja) 2012-07-05 2012-07-12 合成ガス転化用リン化物触媒、その製造方法及び応用
EP12846821.2A EP2803406A4 (en) 2012-07-05 2012-07-12 PHOSPHIDE CATALYST FOR THE CONVERSION OF SYNTHESEGAS, METHOD OF MANUFACTURING THEREOF AND USE THEREOF
US13/988,565 US9120719B2 (en) 2012-07-05 2012-07-12 Phosphide catalyst for syngas conversion and the production method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210231677.7 2012-07-05
CN201210231677.7A CN103521249B (zh) 2012-07-05 2012-07-05 一种用于合成气转化的磷化物催化剂和制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2014005347A1 true WO2014005347A1 (zh) 2014-01-09

Family

ID=49881275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078544 WO2014005347A1 (zh) 2012-07-05 2012-07-12 一种用于合成气转化的磷化物催化剂和制备方法及其应用

Country Status (5)

Country Link
US (1) US9120719B2 (zh)
EP (1) EP2803406A4 (zh)
JP (1) JP5788598B2 (zh)
CN (1) CN103521249B (zh)
WO (1) WO2014005347A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140018455A1 (en) * 2012-07-05 2014-01-16 Yunjie Ding Phosphide Catalyst for Syngas Conversion and the Production Method and Use thereof
CN113213440A (zh) * 2021-04-28 2021-08-06 浙江工业大学 一种具有玉米棒状的类氮化磷材料及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105582968B (zh) * 2014-10-24 2018-02-13 中国石油化工股份有限公司 耐硫甲烷化催化剂
CN105582970B (zh) * 2014-10-27 2017-10-10 中国科学院大连化学物理研究所 一种合成气为原料的低碳混合醇的催化剂及其制备方法
CN104971749B (zh) * 2015-06-18 2018-01-09 大连理工大学 Ni2P/Al2O3催化剂及其制备方法
CN105152149A (zh) * 2015-07-09 2015-12-16 中国科学技术大学 镍钴磷晶体及其制备方法和应用
EP3130399B1 (de) * 2015-08-12 2021-07-07 Basf Se Verfahren zur hydroformylierung von olefinen und/oder alkinen in der gasphase mit einem gemisch aus wasserstoff und kohlenmonoxid in gegenwart von heterogenem katalysator
WO2017025593A1 (de) * 2015-08-12 2017-02-16 Basf Se Katalysator mit einer phosphidhaltigen aktivkomponente und verfahren zur insertion von kohlenmonoxid in eduktkomponenten
CN109622052B (zh) * 2019-01-14 2021-08-31 中国石油大学(华东) 一种用于费托合成反应的催化剂及其制备方法
JP7421177B2 (ja) * 2019-01-30 2024-01-24 国立大学法人大阪大学 水素化触媒およびこれを用いた水素化有機化合物の製造方法
CN114433148B (zh) * 2020-11-06 2023-08-01 中国科学院理化技术研究所 光热催化一氧化碳加氢制备高碳烃用磷修饰镍基催化剂及其制备方法和应用
CN113181939B (zh) * 2021-05-10 2023-01-31 浙江师范大学 一种草酸二甲酯加氢制备乙醇酸甲酯的催化剂及其合成方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1516685A (zh) * 2001-06-12 2004-07-28 ���ʿ����о����޹�˾ 制备高级直链醇组合物的方法
CN1764501A (zh) * 2003-04-02 2006-04-26 环球油品公司 低焦炭形成催化剂以及重整方法和合成气的生产
CN101168132A (zh) * 2006-10-25 2008-04-30 中国科学院大连化学物理研究所 一种高分散担载型过渡金属磷化物催化剂的制备方法
WO2011049456A1 (en) * 2009-10-23 2011-04-28 Netherlands Organisation For Scientific Research (Advanced Chemical Technologies For Sustainability) Production of lower olefins from synthesis gas

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1062285A (en) * 1974-04-24 1979-09-11 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4454246A (en) * 1977-06-17 1984-06-12 Exxon Research And Engineering Co. Highly dispersed supported group VIII noble metal phosphorus compounds
NO913150L (no) * 1990-08-16 1992-02-17 Sun Refining & Marketing Katalysator.
EP2218502A3 (en) * 1999-09-30 2010-09-22 Ifp Transition metal phosphide catalysts
US7108804B2 (en) * 2002-06-12 2006-09-19 National University Of Singapore Supported nickel catalyst for synthesis gas preparation
CN1511636A (zh) * 2002-12-30 2004-07-14 中国科学院大连化学物理研究所 用于co加氢合成二碳含氧化物的催化剂及制备方法
CN1724151A (zh) * 2004-07-22 2006-01-25 中国科学院大连化学物理研究所 一种用于co加氢合成二碳含氧化合物的催化剂
JP5053098B2 (ja) * 2004-12-28 2012-10-17 中國石油化工股▲フン▼有限公司 炭化水素をクラッキングするための触媒及び方法
US7446075B1 (en) * 2005-08-23 2008-11-04 Uop Llc Transition metal phosphides and hydrotreating process using the same
DE112007002462T5 (de) * 2006-10-18 2009-09-10 BDF IP Holdings Ltd., Vancouver Katalysatorträger für eine Brennstoffzelle
US20080099375A1 (en) * 2006-10-30 2008-05-01 Exxonmobil Research And Engineering Company Process for adsorption of sulfur compounds from hydrocarbon streams
CN101310856B (zh) * 2007-05-24 2010-10-13 中国科学院大连化学物理研究所 一种co加氢直接合成高碳伯醇的催化剂及其制备方法
EP2276718B1 (en) * 2008-04-16 2018-08-29 University of Cape Town Process for the production of hydrocarbons including olefins from synthesis gas
KR100998083B1 (ko) * 2008-09-25 2010-12-16 한국화학연구원 피셔―트롭쉬 합성용 슬러리 반응에 의한 액체 탄화수소 화합물의 제조방법
CN103521249B (zh) * 2012-07-05 2016-08-24 中国科学院大连化学物理研究所 一种用于合成气转化的磷化物催化剂和制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1516685A (zh) * 2001-06-12 2004-07-28 ���ʿ����о����޹�˾ 制备高级直链醇组合物的方法
CN1764501A (zh) * 2003-04-02 2006-04-26 环球油品公司 低焦炭形成催化剂以及重整方法和合成气的生产
CN101168132A (zh) * 2006-10-25 2008-04-30 中国科学院大连化学物理研究所 一种高分散担载型过渡金属磷化物催化剂的制备方法
WO2011049456A1 (en) * 2009-10-23 2011-04-28 Netherlands Organisation For Scientific Research (Advanced Chemical Technologies For Sustainability) Production of lower olefins from synthesis gas

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATAL. TODAY, vol. 171, 2011, pages 266 - 274
CHEN, LIANG ET AL.: "Study on the Technology of Synthsis Dimethyl Ether with Bi-function Catalyst by Phosphorus Modified", JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY, vol. 33, no. 8, August 2011 (2011-08-01), pages 118 - 122, XP008173319 *
KEVIN J. SMITH, APPL. CATAL., A, vol. 378, 2010, pages 59 - 68

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140018455A1 (en) * 2012-07-05 2014-01-16 Yunjie Ding Phosphide Catalyst for Syngas Conversion and the Production Method and Use thereof
US9120719B2 (en) * 2012-07-05 2015-09-01 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Phosphide catalyst for syngas conversion and the production method and use thereof
CN113213440A (zh) * 2021-04-28 2021-08-06 浙江工业大学 一种具有玉米棒状的类氮化磷材料及其制备方法和应用
CN113213440B (zh) * 2021-04-28 2022-03-08 浙江工业大学 一种具有玉米棒状的类氮化磷材料及其制备方法和应用

Also Published As

Publication number Publication date
CN103521249A (zh) 2014-01-22
JP2014525832A (ja) 2014-10-02
CN103521249B (zh) 2016-08-24
EP2803406A1 (en) 2014-11-19
US9120719B2 (en) 2015-09-01
JP5788598B2 (ja) 2015-10-07
EP2803406A4 (en) 2015-01-21
US20140018455A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
WO2014005347A1 (zh) 一种用于合成气转化的磷化物催化剂和制备方法及其应用
Rodriguez-Gomez et al. Cobalt carbide identified as catalytic site for the dehydrogenation of ethanol to acetaldehyde
CN105817222B (zh) 一种烃类费-托合成用催化剂组合物的制备方法及应用
Hu et al. The synergistic effect of CuZnCeOx in controlling the formation of methanol and CO from CO2 hydrogenation
CN105921147B (zh) 一种烃类费-托合成用催化剂组合物及其应用
Hu et al. Selective hydrogenation of phenol to cyclohexanone over Pd@ CN (N-doped porous carbon): role of catalyst reduction method
CN105195169B (zh) 一种费托合成制取低碳烯烃的催化剂及其制备方法与应用
Hanaoka et al. Jet fuel synthesis in hydrocracking of Fischer–Tropsch product over Pt-loaded zeolite catalysts prepared using microemulsions
Ghods et al. CO2 Methanation on Nickel Catalysts Supported on Mesoporous High‐Surface‐Area MgSiO3
Arslan et al. Effect of Al2O3 support on Co-based SiO2 core–shell catalysts for fischer–tropsch synthesis in 3D printed SS microchannel microreactor
CN106975486A (zh) 一种co加氢制低碳混合醇的催化剂及其制备方法
Li et al. Optimizing interfacial interaction between Cu and metal oxides boosts methanol yield in CO2 hydrogenation
CN105170159B (zh) 一种负载型Ni基催化剂及其应用
Zhang et al. Construction of highly stable and efficient Zn-based catalyst via Mg modification for propane dehydrogenation
Li et al. La-enhanced Ni nanoparticles highly dispersed on SiC for low-temperature CO methanation performance
Liang et al. A superior strategy for CO2 methanation under atmospheric pressure: Organic acid-assisted Co nanoparticles assembly on diatomite
Jiang et al. Hydrogenolysis of glycerol aqueous solution to glycols over Ni–Co bimetallic catalyst: Effect of ceria promoting
Sun et al. Producing hydrogen from steam reforming of bio-oil derived oxygenated model compounds by utilizing Ce-modified Ni/attapulgite catalysts
WO2022040318A1 (en) Method for the production of butanol using a titanium-based bimetallic heterogeneous catalyst
Zhang et al. One-Step Preparation of Bimodal Fe–Mn–K/SiO 2 Catalyst and its Catalytic Performance of Slurry Phase Fischer–Tropsch Synthesis
Jabalameli et al. Study of Iron-Based Catalysts Performance in Fischer–Tropsch Synthesis: Temperature and Promoter Effect
Feyzi et al. Preparation and Characterization of Fe–Co/SiO 2 Nanocatalysts for Gasoline Range Hydrocarbons Production from Syngas
WO2001089686A2 (en) Chemicals from synthesis gas
Wang et al. Deactivation origins and stability-enhancing strategies of Sn/SiO2 catalysts for ethane dehydrogenation
WO2023277188A1 (ja) 液化石油ガス合成用触媒および液化石油ガスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012846821

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13988565

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014523180

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013019041

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013019041

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130724