CN103521249A - 一种用于合成气转化的磷化物催化剂和制备方法及其应用 - Google Patents

一种用于合成气转化的磷化物催化剂和制备方法及其应用 Download PDF

Info

Publication number
CN103521249A
CN103521249A CN201210231677.7A CN201210231677A CN103521249A CN 103521249 A CN103521249 A CN 103521249A CN 201210231677 A CN201210231677 A CN 201210231677A CN 103521249 A CN103521249 A CN 103521249A
Authority
CN
China
Prior art keywords
catalyst
active component
carrier
sio
phosphide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210231677.7A
Other languages
English (en)
Other versions
CN103521249B (zh
Inventor
丁云杰
宋宪根
陈维苗
严丽
吕元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Yulin Energy Technology Operation Co ltd
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201210231677.7A priority Critical patent/CN103521249B/zh
Priority to PCT/CN2012/078544 priority patent/WO2014005347A1/zh
Priority to US13/988,565 priority patent/US9120719B2/en
Priority to EP12846821.2A priority patent/EP2803406A4/en
Priority to JP2014523180A priority patent/JP5788598B2/ja
Publication of CN103521249A publication Critical patent/CN103521249A/zh
Application granted granted Critical
Publication of CN103521249B publication Critical patent/CN103521249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/20Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxo-reaction
    • C07C27/22Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxo-reaction with the use of catalysts which are specific for this process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • C07C1/0435Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
    • C07C1/044Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/341Apparatus, reactors with stationary catalyst bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • C07C2521/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/75Cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/74Iron group metals
    • C07C2523/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2527/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • C07C2527/14Phosphorus; Compounds thereof
    • C07C2527/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nanotechnology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明提供一种用于合成气转化的磷化物催化剂和制备方法及其应用,具体地提供一种用于以合成气为原料合成含氧化合物的含有金属态Fe、Co和Ni中的一种或多种及其磷化物的催化剂和制备方法及其应用。根据本发明,提供在一定温度和压力反应条件下,将H2/CO转化为烃类和含氧化物的具有由SiO2或Al2O3负载的Fe、Co和Ni中的一种或多种及其磷化物的催化剂。催化剂由活性组分和载体两部分组成。活性组分为由金属态的Fe、Co和Ni中的一种或多种及其磷化物组成的混合物。载体选用SiO2或者Al2O3。在固定床或浆态床反应器中,在一定的温度和压力以及在本发明催化剂的作用下,H2/CO可高活性、高选择性地转化为两个碳及其以上的含氧化物和烃类。

Description

一种用于合成气转化的磷化物催化剂和制备方法及其应用
技术领域
本发明涉及一种用于以合成气原料转化为烃类和含氧化物的SiO2或Al2O3负载的由金属态的Fe、Co和Ni中的一种或多种及其磷化物组成的混合物催化剂和制备方法及其应用,详细地涉及在一定温度和压力下,以CO、H2混合气为原料高效制取两个碳及其以上的含氧化物的SiO2或Al2O3负载的由金属态的Fe、Co和Ni中的一种或多种及其磷化物组成的混合物催化剂和制备方法及其应用。
技术背景
中国作为世界最大的产煤国,从资源利用和环境保护的角度看,利用高效洁净煤炭资源技术,开发“绿色燃料”具有重要的战略意义和应用前景。
CO催化加氢合成烃类及含氧化物是煤炭资源洁净利用的重要途径之一。近年来,低碳混合醇在燃料和化工领域的应用价值逐步凸现,相关研究日益活跃。
用于低碳混合醇合成的均相催化剂大致可分为贵金属和非贵金属两类,其中贵金属Rh催化剂可以转化合成气为乙醇和其它两个碳及其以上含氧化物,然而,由于Rh金属供应有限,成本高.因而商业应用上规模有限。另一方面,从合成气制低碳混合醇的主要非贵金属催化剂有改性的甲醇合成催化剂,改性的Fischer-Tropsch(F-T)合成催化剂和碱金属掺杂的Mo催化剂。它们中,具有工业应用前景的代表性催化剂体系分为以下4种:
(1)Dow化学公司开发的MoS催化剂体系(Sygmol工艺);
(2)法国石油研究所开发的Cu-Co催化剂体系(IFP工艺);
(3)Lurgi公司开发的Cu-Zn-Al催化剂体系(Octamix工艺);和
(4)Sham公司开发的Zn-Cr-K催化体系(MAS工艺)。
以上4种催化剂体系各有其特色。但是,总体看来,所开发的催化剂体存在活性、选择性、稳定性及经济性等方面的不足,开发高活性和高两个碳及其以上含氧化物选择性的催化剂依然是研究的难点和关键。尽管研究者对于这些催化剂体系的开发已做出了很大的努力,但还有很大空间来提高催化活性和高级醇的选择性。
过渡金属磷化物作为一种重要的加氢催化剂在许多涉氢反应中表现出了类贵金属性质,具有潜在的代替贵金属催化剂的可能性。Kevin J.Smith等(Appl.Catal.,A2010,378,59-68,Catal.Today 2011,171,266-274)研究了磷化钼催化剂在CO加氢反应的应用,其结果表明产物明显不同与传统的非贵金属催化剂。两个碳及其以上含氧化物产物在液相产物中的含量达到76%(C%)。
发明内容
本发明的一个目的在于提供一种用于以合成气为原料转化为烃类和含氧化物的SiO2或Al2O3负载的由金属态的Fe、Co和Ni中的一种或多种及其磷化物组成的混合物催化剂,所述催化剂的制备方法及在合成气为原料转化为烃类和含氧化物的反应中的应用。与现有的技术相比,本发明的催化剂不采用Rh等贵金属,同时实现较高的两个碳及其以上含氧化物的活性和选择性。
为实现上述目的,本发明在一个方面提供一种负载型催化剂,所述负载型催化剂用于将合成气原料转化为烃类和含氧化物,其中:所述负载型催化剂包括活性组分和载体两部分;所述活性组分为由过渡金属及所述过渡金属的磷化物组成的混合物,其中所述过渡金属是Fe、Co和Ni中的一种或多种,其中所述活性组分的重量百分比按金属计为催化剂重量的0.5~30.0%,其中在所述活性成分中,过渡金属原子的摩尔数与磷原子的摩尔数之比在1~10的范围内;并且所述载体为SiO2或Al2O3;其中SiO2的比表面积为100~600m2/g,并且平均孔径为5~90nm;并且Al2O3的比表面积为100~400m2/g,并且平均孔径为4~90nm。
在本发明的一个优选的实施方案中,所述活性组分重量百分比按金属计为催化剂重量的1.0~25.0%。
在本发明的另一个优选的实施方案中,SiO2比表面积为200~400m2/g,并且平均孔径为10~50nm。
在本发明的另一个优选的实施方案中,Al2O3的比表面积为150~300m2/g,并且平均孔径为10~50nm。
在本发明的另一个特别优选的实施方案中,所述负载型催化剂由活性组分和载体两部分组成。
本发明在另一个方面提供一种用于制备烃类和含氧化物的方法,所述方法包括:在反应器中,在上面所述的催化剂存在下,使合成气原料转化为烃类和含氧化物。
在本发明的一个优选的实施方案中,所述反应器为固定床或浆态床反应器。
在本发明的另一个优选的实施方案中,所述方法在100~400℃的温度,1.0~10.0MPa(表压)的反应压力,合成气中的CO/H2按摩尔比计为0.5/1至10/1且空速为100~10000h-1的条件下进行。
本发明在再一个方面提供一种用于制备上面所述催化剂的方法,所述方法包括:将所述活性组分经由浸渍法或沉淀法中的一种或两种负载在所述载体上,然后高温空气中焙烧。
在本发明的一个优选的实施方案中,所述方法还包括将焙烧后的催化剂在H2流中程序升温还原。
具体实施方式
下面详细阐述本发明的内容。
本发明提供一种用于以合成气为原料转化为烃类和含氧化物的催化剂,由活性组分和载体两部分组成,活性组分的重量百分比为0.5~30.0%。活性组分为由过渡金属及所述过渡金属的磷化物组成的混合物,其中所述过渡金属是Fe、Co和Ni中的一种或多种,其中所述活性组分的重量百分比按金属计为催化剂重量的0.5~30.0%,其中在所述活性成分中,过渡金属原子的摩尔数与磷原子的摩尔数之比在1~10的范围内;载体为SiO2或Al2O3;载体中SiO2比表面积为100~600m2/g,平均孔径为5~90nm;并且载体中Al2O3的比表面积为100~400m2/g,平均孔径为4~90nm。
Fe,Ni和Co过渡金属的磷化物具有类贵金属的催化性质,在CO吸附和加氢反应中表现出类贵金属的性能。一般来说,金属态的Fe,Ni和Co催化剂具有CO加氢生成烃类的催化性能,很少生成含氧化物。而且,该金属态的催化剂CO加氢反应中具有碳链增长的特性。而上述的Fe,Ni和Co过渡金属的磷化物往往具有吸附活化CO的性能。因此,可以预测此类催化剂将具有CO加氢生成两个碳及其以上含氧化物的可能性。采用高比表面的氧化物载体可以提高负载金属的分散度,从而提高Fe,Ni和Co过渡金属的利用率。同时,高分散的金属往往易于上述金属磷化物的形成。Al2O3和SiO2是常用的制备负载型催化剂的载体。
本发明的催化剂是用于在一定温度和压力下,CO、H2混合气为原料高效制取两个碳及其以上含氧化物反应。催化剂由活性组分和载体两部分组成。活性组分为由金属态的Fe、Co和Ni中的一种或多种及其磷化物组成的混合物催化剂。载体选用SiO2或Al2O3等。在固定床或浆态床反应器中以CO/H2为反应原料,在本催化剂作用下,发生CO加氢反应,可高活性和高选择性地转化为两个碳及其以上含氧化物。
含氧化物可以包括甲醇和两个碳及其以上含氧化物。两个碳及其以上含氧化物的实例可以包括:乙醇和乙醛,丙醇和丙醛,丁醇和戊醇等。
烃类可以包括:烷烃如甲烷,乙烷,丙烷,和丁烷,以及烯烃,如乙烯,丙烯和丁烯等。
在本发明的催化剂存在下,CO、H2混合气为原料高效制取两个碳及其以上含氧化物反应的主要产物可以包括:乙醇和乙醛,丙醇和丙醛,丁醇和戊醇等。
本文中所述的低碳是指五个碳原子以下。如低碳混合醇是指五个碳原子以下的混合醇。
在所述“由金属态的Fe、Co和Ni中的一种或多种及其磷化物组成的混合物”是指所述的混合物可以由Fe、Co和Ni中的任何一种及其磷化物组成,可以由Fe、Co和Ni中的任意两种及其磷化物组成,也可以由Fe、Co和Ni中的三种及其磷化物组成。
在所述的混合物由Fe、Co和Ni中的任何一种及其磷化物组成的情况下,混合物的实例可以包括:由Fe及其磷化物组成的混合物、由Co及其磷化物组成的混合物、和由Ni及其磷化物组成的混合物。
在所述的混合物由Fe、Co和Ni中的任何两种及其磷化物组成的情况下,混合物的实例可以包括:由Fe和Co及它们的磷化物组成的混合物、由Fe和Ni及它们的磷化物组成的混合物、和由Co和Ni及它们的磷化物组成的混合物。
本发明的反应体系中,可以直接将CO/H2/通入到装有本发明的颗粒状催化剂的固定床或浆态床反应器中,进行CO加氢反应。
本发明的催化剂,过渡金属较佳重量百分含量为0.5~30.0%%,最佳重量含量为1.0~25.0%;载体可选用SiO2的比表面积较佳为100~600m2/g,平均孔径为5~90nm,最佳的比表面积为200~400m2/g,平均孔径最佳为10~50nm;载体也可以采用Al2O3,Al2O3的较佳比表面积为100~400m2/g,平均孔径为4~90nm最佳的比表面积为150~300m2/g,最佳孔径为10~50nm。
本发明的催化剂制备方法可以包括以下步骤:采用SiO2或Al2O3为载体,金属硝酸盐和磷酸氢铵为金属和磷源,配制成水溶液,采用浸渍法浸渍在载体上或沉淀法沉积在载体表面上,干燥,烘干,高温焙烧,即得该催化剂的氧化态前驱物。在H2流中程序升温还原后即得由金属态的Fe、Co和Ni中的一种或多种及其磷化物组成的混合物催化剂。
在本发明中,催化剂的氧化态前驱物经由H2流中程序升温还原后,在由金属态的Fe、Co和Ni中的一种或多种及其磷化物组成的混合物催化剂中,金属按摩尔计的量与磷化物按磷的摩尔计的量之比在1~10的范围内。
在由金属原子Fe、Co和Ni中的任何一种的磷化物中,金属原子形成三棱柱结构的最小结构单元,这些三棱柱单元以不同的结合方式形成不同的晶格类型,而P原子占据三棱柱内部的空隙。由于P原子的插入,母体金属的体相性质发生了变化。这主要是由于配体效应和电子效应相互作用的结果。一方面电子可以在金属与配体间转移,另一方面由于配体的插入,金属原子在表面上暴露的数目减少,使得与母体金属相比该类化合物的电子构型和晶格构型都发生了显著的变化。在这些不同晶型的晶体中,受P的影响,金属的电子结构和吸附性质都发生了显著的变化,从而导致了催化性能的差异。
每种催化剂的氧化态前驱物使用前,在固定床反应器中H2(GHSV=1000~10000h-1)流中进行原位还原活化,条件为:常压,1~10℃/min从室温升温至300~400℃,0.5~3℃/min从300~400℃升温至500~700℃保持1~6小时在H2流中降温至反应温度,得到所述的催化剂。
本发明中CO、H2混合气为原料高效制取两个碳及其以上含氧化物反应的反应温度为约280℃,反应压力为约5.0MPa,CO/H2=约2/1(摩尔比),空速为约5000h-1
下面通过具体实施例对本发明做进一步说明。除非另外具体指出,本申请中所述的比例、份数和百分比基于重量。
在实施例中使用的材料如下:
硝酸铁(Fe(NO3)3·9H2O):天津科密欧化学试剂开发中心,分析纯
硝酸钴(Co(NO3)2·6H2O):天津科密欧化学试剂开发中心,分析纯
硝酸镍(Ni(NO3)2·6H2O)天津科密欧化学试剂开发中心,分析纯
磷酸氢二铵((NH4)2HPO3):沈阳联邦试剂厂,分析纯
氧化硅(SiO2):青岛海洋化工,d粒径=0.50mm,球形颗粒,S比表面积=350m2/g,d孔径=15.1nm
氧化铝(Al2O3):山东淄博贝尔化工科技有限公司,d粒径=0.50mm,球形颗粒,S比表面积=150m2/g,d孔径=12.1nm
采用X-射线衍射荧光光谱分析方法(XRF),对实施例中制备出的催化剂中成分的进行半定量测定。
实施例1
实施例1的催化剂为FeP/SiO2(Fe/P=8摩尔比)。称取10.0克SiO2(20~40目),配置8ml含7.21克Co(NO3)2.6H2O和0.29克(NH4)2HPO4的水溶液,滴加约2ml浓HNO3,加热溶解,用此水溶液浸渍上述SiO2载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
实施例2
实施例2的催化剂为FeP/SiO2(Fe/P=4摩尔比)。称取10.0克SiO2(20~40目),配置8ml含4.93克Co(NO3)2.6H2O和0.58克(NH4)2HPO4的水溶液,滴加约2ml浓HNO3,加热溶解,用此水溶液浸渍上述SiO2载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
实施例3
实施例3的催化剂为FeP/SiO2(Fe/P=2摩尔比)。称取10.0克SiO2(20~40目),配置8ml含4.93克Co(NO3)2.6H2O和1.17克(NH4)2HPO4的水溶液,滴加约2ml浓HNO3,加热溶解,用此水溶液浸渍上述SiO2载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
实施例4
实施例4的催化剂为CoP/SiO2(Co/P=8摩尔比)。称取10.0克SiO2(20~40目),配置8ml含4.93克Co(NO3)2.6H2O和0.29克(NH4)2HPO4的水溶液,滴加约2ml浓HNO3,加热溶解,用此水溶液浸渍上述SiO2载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
实施例5
实施例5的催化剂为CoP/SiO2(Co/P=4摩尔比)。称取10.0克SiO2(20~40目),配置8ml含4.93克Co(NO3)2.6H2O和0.58克(NH4)2HPO4的水溶液,滴加约2ml浓HNO3,加热溶解,用此水溶液浸渍上述SiO2载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
实施例6
实施例6的催化剂为CoP/SiO2(Co/P=2摩尔比)。称取10.0克SiO2(20~40目),配置8ml含4.93克Co(NO3)2.6H2O和1.17克(NH4)2HPO4的水溶液,滴加约2ml浓HNO3,加热溶解,用此水溶液浸渍上述SiO2载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
实施例7
实施例7的催化剂为NiP/SiO2(Ni/P=8摩尔比)。称取10.0克SiO2(20~40目),配置8ml含4.93克Co(NO3)2.6H2O和0.29克(NH4)2HPO4的水溶液,滴加约2ml浓HNO3,加热溶解,用此水溶液浸渍上述SiO2载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
实施例8
实施例8的催化剂为NiP/SiO2(Ni/P=4摩尔比)。称取10.0克SiO2(20~40目),配置8ml含4.93克Co(NO3)2.6H2O和0.58克(NH4)2HPO4的水溶液,滴加约2ml浓HNO3,加热溶解,用此水溶液浸渍上述SiO2载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
实施例9
实施例9的催化剂为NiP/SiO2(Ni/P=2摩尔比)。称取10.0克SiO2(20~40目),配置8ml含4.93克Co(NO3)2.6H2O和1.17克(NH4)2HPO4的水溶液,滴加约2ml浓HNO3,加热溶解,用此水溶液浸渍上述SiO2载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
实施例10
实施例10的催化剂为CoP/Al2O3(Co/P=4摩尔比)。称取10.0克Al2O3(20~40目),配置8ml含4.93克Co(NO3)2.6H2O和0.58克(NH4)2HPO4的水溶液,滴加约2ml浓HNO3,加热溶解,用此水溶液浸渍上述Al2O3载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
实施例11
实施例11的催化剂为CoP/Al2O3(Co/P=4摩尔比)。称取10.0克Al2O3(20~40目),配置15ml含4.93克Co(NO3)2.6H2O的水溶液,加热溶解倒入上述Al2O3载体,搅拌下滴加氨水,沉淀沉积在Al2O3载体上,干燥,焙烧后,称取0.58克(NH4)2HPO4溶于8ml水中,加热溶解,用此水溶液浸渍上述载有CoO的Al2O3载体,60℃水浴烘干,120℃烘箱烘干8小时,450℃焙烧4h,由此制备出该催化剂的氧化态前驱物。
上述实施例1~11中的催化剂的氧化态前驱物每种使用前,在固定床反应器(直径为9mm:催化剂高度为5cm)中H2(GHSV=10000h-1)流中进行原位还原活化,条件为:常压,5℃/min从室温升温至350℃,1℃/min从350℃升温至650℃保持3小时在H2流中降温至反应温度,得到所述的催化剂。CO加氢反应条件为:固定床反应器(直径为9mm:催化剂高度为5cm)280℃,5.0Mpa,H2/CO(摩尔比为2∶1)混合气GHSV=5000h-1,反应尾气经冷阱去离子水充分吸收后,气相产物进行在线分析,色谱仪器为安捷伦3000A Micro GC,分子筛,Plot Q,Al2O3和OV-1四根毛细管柱,TCD检测器。水相产物离线分析,FFAP毛细管色谱柱,FID检测器。内标法分析,正戊醇为内标物。
反应结果总结在表1中。
实施例12
实施例5催化剂使用的氧化态前驱物前,在石英固定床反应器(直径为4cm:催化剂高度约为10cm)中H2(GHSV=10000h-1)流中进行原位还原活化,条件为:常压,5℃/min从室温升温至350℃,1℃/min从350℃升温至650℃保持3小时在H2流中降温至室温,在Ar流保护下转移至1立升容积的浆态床反应器中,在H2流中(GHSV=10000h-1)升温至反应温度。CO加氢反应条件为:浆态床反应器(直径为8.2cm:催化剂装量为70克,浆态液中催化剂含量为:10(重量)%,转速为900转/分),280℃,5.0Mpa,H2/CO(摩尔比为2∶1)混合气GHSV=5000h-1,反应尾气经冷阱去离子水充分吸收后,气相产物进行在线分析,色谱仪器为安捷伦3000A MicroGC,分子筛,Plot Q,Al2O3和OV-1四根毛细管柱,TCD检测器。水相产物离线分析,FFAP毛细管色谱柱,FID检测器。内标法分析,正戊醇为内标物。同时对浆态床反应器中的浆态液取样分析,分析结果合并后归一化处理得到反应结果。
反应结果总结在表1中。
表1:上述实施例催化剂的CO加氢反应结果
Figure BDA00001855259900101
*基于CO摩尔数计算
**除了甲烷以外的烷烃
**除了甲醇、乙醇之外的含氧产物,碳数不超过5。

Claims (10)

1.一种负载型催化剂,所述负载型催化剂用于将合成气原料转化为烃类和含氧化物,其中:
所述负载型催化剂包括活性组分和载体;
所述活性组分为由过渡金属及所述过渡金属的磷化物组成的混合物,其中所述过渡金属是Fe、Co和Ni中的一种或多种,其中所述活性组分的重量百分比按金属计为催化剂重量的0.5~30.0%,其中在所述活性成分中,过渡金属原子的摩尔数与磷原子的摩尔数之比在1~10的范围内;并且
所述载体为SiO2或Al2O3
其中SiO2的比表面积为100~600m2/g,并且平均孔径为5~90nm;并且Al2O3的比表面积为100~400m2/g,并且平均孔径为4~90nm。
2.根据权利要求1所述的催化剂,其中,所述活性组分重量百分比按金属计为催化剂重量的1.0~25.0%。
3.根据权利要求1所述的催化剂,其中,SiO2比表面积为200~400m2/g,并且平均孔径为10~50nm。
4.根据权利要求1所述的催化剂,其中,Al2O3的比表面积为150~300m2/g,并且平均孔径为10~50nm。
5.根据权利要求1所述的催化剂,其中,所述负载型催化剂由活性组分和载体两部分组成。
6.一种用于制备烃类和含氧化物的方法,所述方法包括:在反应器中,在权利要求1至5中任何一项所述的催化剂存在下,使合成气原料转化为烃类和含氧化物。
7.权利要求6所述的方法,其中,所述反应器为固定床或浆态床反应器。
8.权利要求6所述的方法,其中,所述方法在100~400℃的温度,1.0~10.0MPa表压的反应压力,合成气中的CO/H2按摩尔比计为0.5/1至10/1且空速为100~10000h-1的条件下进行。
9.一种用于制备权利要求1所述催化剂的方法,所述方法包括:将所述活性组分经由浸渍法或沉淀法中的一种或两种负载在所述载体上,然后高温空气中焙烧。
10.根据权利要求9所述的方法,所述方法还包括将焙烧后的催化剂在H2流中程序升温还原。
CN201210231677.7A 2012-07-05 2012-07-05 一种用于合成气转化的磷化物催化剂和制备方法及其应用 Active CN103521249B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201210231677.7A CN103521249B (zh) 2012-07-05 2012-07-05 一种用于合成气转化的磷化物催化剂和制备方法及其应用
PCT/CN2012/078544 WO2014005347A1 (zh) 2012-07-05 2012-07-12 一种用于合成气转化的磷化物催化剂和制备方法及其应用
US13/988,565 US9120719B2 (en) 2012-07-05 2012-07-12 Phosphide catalyst for syngas conversion and the production method and use thereof
EP12846821.2A EP2803406A4 (en) 2012-07-05 2012-07-12 PHOSPHIDE CATALYST FOR THE CONVERSION OF SYNTHESEGAS, METHOD OF MANUFACTURING THEREOF AND USE THEREOF
JP2014523180A JP5788598B2 (ja) 2012-07-05 2012-07-12 合成ガス転化用リン化物触媒、その製造方法及び応用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210231677.7A CN103521249B (zh) 2012-07-05 2012-07-05 一种用于合成气转化的磷化物催化剂和制备方法及其应用

Publications (2)

Publication Number Publication Date
CN103521249A true CN103521249A (zh) 2014-01-22
CN103521249B CN103521249B (zh) 2016-08-24

Family

ID=49881275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210231677.7A Active CN103521249B (zh) 2012-07-05 2012-07-05 一种用于合成气转化的磷化物催化剂和制备方法及其应用

Country Status (5)

Country Link
US (1) US9120719B2 (zh)
EP (1) EP2803406A4 (zh)
JP (1) JP5788598B2 (zh)
CN (1) CN103521249B (zh)
WO (1) WO2014005347A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105152149A (zh) * 2015-07-09 2015-12-16 中国科学技术大学 镍钴磷晶体及其制备方法和应用
CN105582970A (zh) * 2014-10-27 2016-05-18 中国科学院大连化学物理研究所 一种合成气为原料的低碳混合醇的催化剂及其制备方法
CN105582968A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 耐硫甲烷化催化剂
CN109622052A (zh) * 2019-01-14 2019-04-16 中国石油大学(华东) 一种用于费托合成反应的催化剂及其制备方法
CN113181939A (zh) * 2021-05-10 2021-07-30 浙江师范大学 一种草酸二甲酯加氢制备乙醇酸甲酯的催化剂及其合成方法和应用
CN114433148A (zh) * 2020-11-06 2022-05-06 中国科学院理化技术研究所 光热催化一氧化碳加氢制备高碳烃用磷修饰镍基催化剂及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103521249B (zh) * 2012-07-05 2016-08-24 中国科学院大连化学物理研究所 一种用于合成气转化的磷化物催化剂和制备方法及其应用
CN104971749B (zh) * 2015-06-18 2018-01-09 大连理工大学 Ni2P/Al2O3催化剂及其制备方法
WO2017025593A1 (de) * 2015-08-12 2017-02-16 Basf Se Katalysator mit einer phosphidhaltigen aktivkomponente und verfahren zur insertion von kohlenmonoxid in eduktkomponenten
EP3130399B1 (de) * 2015-08-12 2021-07-07 Basf Se Verfahren zur hydroformylierung von olefinen und/oder alkinen in der gasphase mit einem gemisch aus wasserstoff und kohlenmonoxid in gegenwart von heterogenem katalysator
JP7421177B2 (ja) 2019-01-30 2024-01-24 国立大学法人大阪大学 水素化触媒およびこれを用いた水素化有機化合物の製造方法
CN113213440B (zh) * 2021-04-28 2022-03-08 浙江工业大学 一种具有玉米棒状的类氮化磷材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1495794A (en) * 1974-04-24 1977-12-21 Mobil Oil Corp Conversion of synthesis gas to hydrocarbon mixtures
CN1511636A (zh) * 2002-12-30 2004-07-14 中国科学院大连化学物理研究所 用于co加氢合成二碳含氧化物的催化剂及制备方法
CN1724151A (zh) * 2004-07-22 2006-01-25 中国科学院大连化学物理研究所 一种用于co加氢合成二碳含氧化合物的催化剂
US7108804B2 (en) * 2002-06-12 2006-09-19 National University Of Singapore Supported nickel catalyst for synthesis gas preparation
CN101310856A (zh) * 2007-05-24 2008-11-26 中国科学院大连化学物理研究所 一种co加氢直接合成高碳伯醇的催化剂及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4454246A (en) * 1977-06-17 1984-06-12 Exxon Research And Engineering Co. Highly dispersed supported group VIII noble metal phosphorus compounds
NO913150L (no) * 1990-08-16 1992-02-17 Sun Refining & Marketing Katalysator.
EP1240276A4 (en) * 1999-09-30 2003-07-02 Shigeo T Oyama NOVEL PHOSPHIDE CATALYSTS OF A TRANSITIONAL METAL
MY128880A (en) 2001-06-12 2007-02-28 Shell Int Research Process for the preparation of a highly liear alcohol composition
CN1764501A (zh) 2003-04-02 2006-04-26 环球油品公司 低焦炭形成催化剂以及重整方法和合成气的生产
JP5053098B2 (ja) * 2004-12-28 2012-10-17 中國石油化工股▲フン▼有限公司 炭化水素をクラッキングするための触媒及び方法
US7446075B1 (en) * 2005-08-23 2008-11-04 Uop Llc Transition metal phosphides and hydrotreating process using the same
DE112007002462T5 (de) * 2006-10-18 2009-09-10 BDF IP Holdings Ltd., Vancouver Katalysatorträger für eine Brennstoffzelle
CN101168132A (zh) 2006-10-25 2008-04-30 中国科学院大连化学物理研究所 一种高分散担载型过渡金属磷化物催化剂的制备方法
US20080099375A1 (en) * 2006-10-30 2008-05-01 Exxonmobil Research And Engineering Company Process for adsorption of sulfur compounds from hydrocarbon streams
WO2009127950A2 (en) * 2008-04-16 2009-10-22 The University Of Cape Town A process for the production of hydrocarbons including olefins from synthesis gas
KR100998083B1 (ko) * 2008-09-25 2010-12-16 한국화학연구원 피셔―트롭쉬 합성용 슬러리 반응에 의한 액체 탄화수소 화합물의 제조방법
EP2314557A1 (en) 2009-10-23 2011-04-27 Netherlands Organisation for Scientific Research (Advanced Chemical Technologies for Sustainability) Production of lower olefins from synthesis gas
CN103521249B (zh) * 2012-07-05 2016-08-24 中国科学院大连化学物理研究所 一种用于合成气转化的磷化物催化剂和制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1495794A (en) * 1974-04-24 1977-12-21 Mobil Oil Corp Conversion of synthesis gas to hydrocarbon mixtures
US7108804B2 (en) * 2002-06-12 2006-09-19 National University Of Singapore Supported nickel catalyst for synthesis gas preparation
CN1511636A (zh) * 2002-12-30 2004-07-14 中国科学院大连化学物理研究所 用于co加氢合成二碳含氧化物的催化剂及制备方法
CN1724151A (zh) * 2004-07-22 2006-01-25 中国科学院大连化学物理研究所 一种用于co加氢合成二碳含氧化合物的催化剂
CN101310856A (zh) * 2007-05-24 2008-11-26 中国科学院大连化学物理研究所 一种co加氢直接合成高碳伯醇的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.TED OYAMA: "Novel catalysts for advanced hydroprocessing: transition metal phosphides", 《JOURNAL OF CATALYSIS》, vol. 216, 31 December 2003 (2003-12-31) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105582968A (zh) * 2014-10-24 2016-05-18 中国石油化工股份有限公司 耐硫甲烷化催化剂
CN105582968B (zh) * 2014-10-24 2018-02-13 中国石油化工股份有限公司 耐硫甲烷化催化剂
CN105582970A (zh) * 2014-10-27 2016-05-18 中国科学院大连化学物理研究所 一种合成气为原料的低碳混合醇的催化剂及其制备方法
CN105582970B (zh) * 2014-10-27 2017-10-10 中国科学院大连化学物理研究所 一种合成气为原料的低碳混合醇的催化剂及其制备方法
CN105152149A (zh) * 2015-07-09 2015-12-16 中国科学技术大学 镍钴磷晶体及其制备方法和应用
CN109622052A (zh) * 2019-01-14 2019-04-16 中国石油大学(华东) 一种用于费托合成反应的催化剂及其制备方法
CN109622052B (zh) * 2019-01-14 2021-08-31 中国石油大学(华东) 一种用于费托合成反应的催化剂及其制备方法
CN114433148A (zh) * 2020-11-06 2022-05-06 中国科学院理化技术研究所 光热催化一氧化碳加氢制备高碳烃用磷修饰镍基催化剂及其制备方法和应用
CN114433148B (zh) * 2020-11-06 2023-08-01 中国科学院理化技术研究所 光热催化一氧化碳加氢制备高碳烃用磷修饰镍基催化剂及其制备方法和应用
CN113181939A (zh) * 2021-05-10 2021-07-30 浙江师范大学 一种草酸二甲酯加氢制备乙醇酸甲酯的催化剂及其合成方法和应用

Also Published As

Publication number Publication date
US20140018455A1 (en) 2014-01-16
CN103521249B (zh) 2016-08-24
US9120719B2 (en) 2015-09-01
EP2803406A4 (en) 2015-01-21
EP2803406A1 (en) 2014-11-19
JP2014525832A (ja) 2014-10-02
JP5788598B2 (ja) 2015-10-07
WO2014005347A1 (zh) 2014-01-09

Similar Documents

Publication Publication Date Title
CN103521249A (zh) 一种用于合成气转化的磷化物催化剂和制备方法及其应用
Jiang et al. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer–Tropsch synthesis: understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation
Li et al. Mechanism of the Mn promoter via CoMn spinel for morphology control: formation of Co2C nanoprisms for Fischer–Tropsch to olefins reaction
Savost’yanov et al. The impact of Al2O3 promoter on an efficiency of C5+ hydrocarbons formation over Co/SiO2 catalysts via Fischer-Tropsch synthesis
Visconti et al. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst
Gu et al. Effects of the promotion with bismuth and lead on direct synthesis of light olefins from syngas over carbon nanotube supported iron catalysts
An et al. Pyrolysis of metal–organic frameworks to Fe3O4@ Fe5C2 core–shell nanoparticles for Fischer–Tropsch synthesis
Sai Prasad et al. Fischer–Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts
Feyzi et al. Effects of promoters and calcination conditions on the catalytic performance of iron–manganese catalysts for Fischer–Tropsch synthesis
Kang et al. Catalytic performance on iron-based Fischer–Tropsch catalyst in fixed-bed and bubbling fluidized-bed reactor
Jung et al. Effect of copper surface area and acidic sites to intrinsic catalytic activity for dimethyl ether synthesis from biomass-derived syngas
Meng et al. Surface Structure and Catalytic Performance of Ni‐Fe Catalyst for Low‐Temperature CO Hydrogenation
CN105195169B (zh) 一种费托合成制取低碳烯烃的催化剂及其制备方法与应用
Wang et al. Ternary copper–cobalt–cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation
Zhang et al. Product distributions including hydrocarbon and oxygenates of Fischer–Tropsch synthesis over mesoporous MnO2-supported Fe catalyst
Ding et al. Preparation of copper-iron bimodal pore catalyst and its performance for higher alcohols synthesis
Temvuttirojn et al. Development of SO42−–ZrO2 acid catalysts admixed with a CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to dimethyl ether
Mai et al. Fe-based Fischer Tropsch synthesis of biomass-derived syngas: Effect of synthesis method
Bae et al. Effect of Cu content on the bifunctional Fischer–Tropsch Fe–Cu–K/ZSM5 catalyst
Pant et al. Synthesis of C5+ hydrocarbons from low H2/CO ratio syngas over silica supported bimetallic Fe-Co catalyst
Xu et al. Effects of Ag promotion for Co/Al2O3 catalyst in Fischer-Tropsch synthesis
Pengnarapat et al. Active Fischer-Tropsch synthesis Fe-Cu-K/SiO2 catalysts prepared by autocombustion method without a reduction step
Zhang et al. High selective methanol synthesis from CO2 hydrogenation over Mo-Co-CN catalyst
Gong et al. Realizing and Revealing Complex Isobutyl Alcohol Production over a Simple Cu–ZrO2 Catalyst
Zhang et al. Carbon modified Fe–Mn–K catalyst for the synthesis of light olefins from CO hydrogenation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210223

Address after: 24 / F, Mingzhu Avenue venture building, Yulin hi tech Industrial Park, Shaanxi 719000

Patentee after: Zhongke Yulin Energy Technology Operation Co.,Ltd.

Address before: 116023 No. 457, Zhongshan Road, Liaoning, Dalian

Patentee before: DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES