WO2014002963A1 - 超音波診断装置及び画像処理方法 - Google Patents

超音波診断装置及び画像処理方法 Download PDF

Info

Publication number
WO2014002963A1
WO2014002963A1 PCT/JP2013/067282 JP2013067282W WO2014002963A1 WO 2014002963 A1 WO2014002963 A1 WO 2014002963A1 JP 2013067282 W JP2013067282 W JP 2013067282W WO 2014002963 A1 WO2014002963 A1 WO 2014002963A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
ultrasonic
scan
unit
image
Prior art date
Application number
PCT/JP2013/067282
Other languages
English (en)
French (fr)
Inventor
啓之 大内
佐々木 琢也
嶺 喜隆
時子 三戸部
Original Assignee
株式会社東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社東芝
Priority to CN201380001065.1A priority Critical patent/CN103732152B/zh
Publication of WO2014002963A1 publication Critical patent/WO2014002963A1/ja
Priority to US14/566,446 priority patent/US9833216B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • A61B8/145Echo-tomography characterised by scanning multiple planes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device

Definitions

  • Embodiments described herein relate generally to an ultrasonic diagnostic apparatus and an image processing method.
  • an ultrasonic diagnostic apparatus can display an ultrasonic image directly under an ultrasonic probe in real time
  • puncture using a puncture needle such as biological tissue examination or radiofrequency ablation (RFA) is possible. Used frequently when performed.
  • the puncture guide is attached to the ultrasonic probe and the puncture is performed, the angle at which the puncture needle is inserted is limited. Often performed by hand.
  • the puncture needle may be difficult to see due to the influence of the lesion position and the penetration angle of the puncture needle. .
  • an ultrasound beam is irradiated with an ultrasonic beam so as to be perpendicular to the puncture needle, and the puncture needle is depicted with high brightness.
  • a technique for generating an image is known. In addition to generating a needle image, a normal ultrasonic scan is performed without performing an oblique scan to generate an ultrasonic image (biological image) depicting a living tissue, and a composite image of the needle image and the biological image is generated. There is also known a technique for displaying the image.
  • the object whose luminance is increased by the oblique scan includes biological tissue perpendicular to the ultrasonic transmission direction in addition to the puncture needle. Further, when oblique scanning is performed, grating lobes are generated due to the beam shape and the like, and artifacts are generated in the image. Furthermore, the brightness of the puncture needle decreases as the puncture needle deviates from directly below the ultrasonic probe. In particular, when puncturing with a freehand, the angle of the puncture needle is not constant.
  • the problem to be solved by the present invention is to provide an ultrasonic diagnostic apparatus and an image processing method capable of improving the visibility of a puncture needle regardless of the angle of the puncture needle.
  • the ultrasonic diagnostic apparatus includes a scan control unit, an image generation unit, a detection unit, an image generation control unit, an image composition unit, and a display control unit.
  • the scan control unit performs ultrasonic transmission in a first direction with respect to the transducer surface for the purpose of imaging the tissue of the subject when the subject into which the puncture needle is inserted is ultrasonically scanned.
  • the second scan that performs ultrasonic transmission in each of a plurality of directions with respect to the transducer surface.
  • the image generation unit generates first ultrasonic image data using the reflected wave received by the ultrasonic probe by the first scan, and the reflected wave received by the ultrasonic probe by the second scan.
  • the second ultrasonic image data group composed of the ultrasonic image data for each of the plurality of directions is generated.
  • the detection unit detects a line segment based on the second ultrasonic image data group.
  • the image generation control unit controls the image generation unit to generate needle image data in which the puncture needle is drawn based on information about the line segment detected by the detection unit.
  • the image synthesizing unit generates synthesized image data of the first ultrasonic image data and the needle image data.
  • the display control unit controls the composite image data to be displayed on a predetermined display unit.
  • FIG. 1 is a diagram illustrating a configuration example of an ultrasonic diagnostic apparatus according to the first embodiment.
  • FIG. 2 is a diagram for explaining the scan control unit according to the first embodiment.
  • FIG. 3 is a diagram showing an outline of the image generation control process performed in the first embodiment.
  • FIG. 4 is a diagram for explaining the detection unit illustrated in FIG. 1.
  • FIG. 5A is a diagram (1) illustrating an example of a second scan condition change process by the scan control unit according to the first embodiment.
  • FIG. 5B is a diagram (2) illustrating an example of a second scan condition change process by the scan control unit according to the first embodiment.
  • FIG. 6 is a flowchart for explaining a processing example of the ultrasonic diagnostic apparatus according to the first embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of an ultrasonic diagnostic apparatus according to the first embodiment.
  • FIG. 2 is a diagram for explaining the scan control unit according to the first embodiment.
  • FIG. 3 is a diagram showing an outline of the image generation control
  • FIG. 7 is a diagram showing an outline of the image generation control process performed in the second embodiment.
  • FIG. 8 is a flowchart for explaining a processing example of the ultrasonic diagnostic apparatus according to the second embodiment.
  • FIG. 9 is a diagram showing an outline of the image generation control process performed in the third embodiment.
  • FIG. 10 is a diagram showing an outline of the image generation control process performed in the fourth embodiment.
  • FIG. 11 is a diagram (1) for explaining the fifth embodiment.
  • FIG. 12 is a diagram (2) for explaining the fifth embodiment.
  • FIG. 13 is a diagram (3) for explaining the fifth embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of an ultrasonic diagnostic apparatus according to the first embodiment.
  • the ultrasonic diagnostic apparatus according to the first embodiment includes an ultrasonic probe 1, a monitor 2, an input device 3, and an apparatus main body 10.
  • the ultrasonic probe 1 is detachably connected to the apparatus main body 10.
  • the ultrasonic probe 1 includes a plurality of piezoelectric vibrators, and the plurality of piezoelectric vibrators generate ultrasonic waves based on a drive signal supplied from a transmission / reception unit 11 included in the apparatus main body 10 described later.
  • the ultrasonic probe 1 receives a reflected wave from the subject P and converts it into an electrical signal.
  • the ultrasonic probe 1 includes a matching layer provided on the piezoelectric vibrator, a backing material that prevents propagation of ultrasonic waves from the piezoelectric vibrator to the rear, and the like.
  • the transmitted ultrasonic waves are transmitted from the ultrasonic probe 1 to the subject P
  • the transmitted ultrasonic waves are reflected one after another at the discontinuous surface of the acoustic impedance in the body tissue of the subject P
  • the ultrasonic probe is used as a reflected wave signal. 1 is received by a plurality of piezoelectric vibrators.
  • the amplitude of the received reflected wave signal depends on the difference in acoustic impedance at the discontinuous surface where the ultrasonic wave is reflected.
  • the reflected wave signal when the transmitted ultrasonic pulse is reflected by the moving blood flow or the surface of the heart wall depends on the velocity component of the moving object in the ultrasonic transmission direction due to the Doppler effect. And undergoes a frequency shift.
  • the ultrasonic probe 1 shown in FIG. 1 is a one-dimensional ultrasonic probe in which a plurality of piezoelectric vibrators are arranged in a line, or a plurality of piezoelectric vibrators arranged in a line. Is a mechanically oscillating one-dimensional ultrasonic probe, and can be applied to any of the two-dimensional ultrasonic probes in which a plurality of piezoelectric vibrators are arranged two-dimensionally in a lattice shape. .
  • a doctor referring to ultrasonic image data displayed on the monitor 2 by ultrasonic transmission / reception performed by the ultrasonic probe 1 in order to perform biological tissue examination or radiofrequency ablation treatment,
  • the puncture needle 1a is inserted from the vicinity of the body surface with which the ultrasonic probe 1 is in contact to the target site of the subject P.
  • puncturing with the puncture needle 1a is performed freehand.
  • the first embodiment can be applied even when puncture is performed by attaching the puncture needle 1 a to the puncture adapter attached to the ultrasonic probe 1.
  • the input device 3 includes a mouse, a keyboard, a button, a panel switch, a touch command screen, a foot switch, a trackball, and the like, accepts various setting requests from an operator of the ultrasonic diagnostic apparatus, and accepts it to the apparatus body 10. Transfer various setting requests. For example, when the operator presses an end button or a freeze button included in the input device 3, transmission / reception of ultrasonic waves is terminated, and the ultrasonic diagnostic apparatus according to the first embodiment is in a pause state. The operator can also perform an initial setting of an oblique angle of ultrasonic transmission for performing a second scan (oblique scan) described later via the input device 3.
  • a second scan oblique scan
  • the monitor 2 displays a GUI (Graphical User Interface) for the operator of the ultrasonic diagnostic apparatus to input various setting requests using the input device 3 or displays an ultrasonic image generated in the apparatus main body 10.
  • GUI Graphic User Interface
  • the apparatus main body 10 is an apparatus that generates ultrasonic image data based on the reflected wave received by the ultrasonic probe 1, and as shown in FIG. 1, a transmission / reception unit 11, a B-mode processing unit 12, and a Doppler processing unit. 13, an image generation unit 14, an image memory 15, an image composition unit 16, an internal storage unit 17, and a control unit 18.
  • the transmission / reception unit 11 includes a trigger generation circuit, a delay circuit, a pulser circuit, and the like, and supplies a drive signal to the ultrasonic probe 1.
  • the pulsar circuit repeatedly generates rate pulses for forming transmission ultrasonic waves at a predetermined rate frequency.
  • the delay circuit also sets the delay time for each piezoelectric vibrator necessary for determining the transmission directivity by focusing the ultrasonic wave generated from the ultrasonic probe 1 into a beam shape, and for each rate pulse generated by the pulser circuit.
  • the trigger generation circuit applies a drive signal (drive pulse) to the ultrasonic probe 1 at a timing based on the rate pulse.
  • the delay circuit arbitrarily adjusts the transmission direction from the piezoelectric vibrator surface by changing the delay time given to each rate pulse.
  • the drive pulse is transmitted from the pulsar circuit to the piezoelectric vibrator in the ultrasonic probe 1 via the cable, and then converted from an electric signal to mechanical vibration in the piezoelectric vibrator.
  • This mechanical vibration is transmitted as an ultrasonic wave inside the living body.
  • the ultrasonic waves having different transmission delay times for each piezoelectric vibrator are converged and propagated in a predetermined direction. That is, the delay circuit arbitrarily adjusts the transmission direction from the piezoelectric vibrator surface by changing the transmission delay time given to each rate pulse.
  • the transmission / reception unit 11 has a function capable of instantaneously changing a transmission frequency, a transmission drive voltage, and the like in order to execute a predetermined scan sequence based on an instruction from the control unit 18 described later.
  • the change of the transmission drive voltage is realized by a linear amplifier type transmission circuit capable of instantaneously switching the value or a mechanism for electrically switching a plurality of power supply units.
  • the transmission / reception unit 11 includes an amplifier circuit, an A / D converter, an adder, and the like, and performs various processes on the reflected wave signal received by the ultrasonic probe 1 to generate reflected wave data.
  • the amplifier circuit amplifies the reflected wave signal for each channel and performs gain correction processing.
  • the A / D converter performs A / D conversion on the gain-corrected reflected wave signal and provides a delay time necessary for determining the reception directivity.
  • the adder performs reflected wave signal addition processing based on the given delay time to generate reflected wave data. By the addition processing of the adder, the reflection component from the direction corresponding to the reception directivity of the reflected wave signal is emphasized.
  • the transmission / reception unit 11 controls transmission directivity and reception directivity in transmission / reception of ultrasonic waves.
  • the transmission / reception unit 11 has a function capable of instantaneously changing delay information, transmission frequency, transmission drive voltage, number of aperture elements, and the like under the control of the control unit 18 described later.
  • the transmission / reception unit 11 can also transmit and receive different waveforms for each frame or rate.
  • the B-mode processing unit 12 receives the reflected wave data from the transmission / reception unit 11 and performs logarithmic amplification, envelope detection processing, etc. on the received reflected wave data, and data in which the signal intensity is expressed by brightness. (B-mode data) is generated.
  • the Doppler processing unit 13 receives the reflected wave data from the transmission / reception unit 11, performs frequency analysis on velocity information from the received reflected wave data, extracts blood flow, tissue, and contrast agent echo components due to the Doppler effect, and average velocity, variance Then, data (Doppler data) obtained by extracting moving body information such as power with respect to multiple points is generated. Note that data generated by the B-mode processing unit 12 and the Doppler processing unit 13 is also referred to as raw data.
  • the B-mode processing unit 12 can change the frequency band to be visualized by changing the detection frequency.
  • contrast harmonic imaging (CHI) can be executed. That is, the B-mode processing unit 12 generates reflected wave data (harmonic data or frequency-divided data) using a contrast medium (microbubbles, bubbles) as a reflection source from the reflected wave data of the subject P into which the contrast medium has been injected.
  • the reflected wave data (fundamental wave data) using the tissue in the subject P as a reflection source can be separated.
  • the B mode processing unit 12 can generate B mode data for generating contrast image data.
  • the B-mode processing unit 12 uses the signal processing method based on the phase modulation method (PM), the amplitude modulation method (AM), and the phase amplitude modulation method (AMPM) in CHI and THI to produce a contrast image. It is also possible to generate B-mode data for generating data and B-mode data for generating tissue image data.
  • PM phase modulation method
  • AM amplitude modulation method
  • AMPM phase amplitude modulation method
  • the image generation unit 14 generates ultrasonic image data from the data generated by the B mode processing unit 12 and the Doppler processing unit 13. That is, the image generation unit 14 generates B-mode image data in which the intensity of the reflected wave is expressed by luminance from the B-mode data generated by the B-mode processing unit 12.
  • the image generation unit 14 generates average speed image data representing moving body information, distributed image data, power image data, or color Doppler image data as a combination image thereof from the Doppler data generated by the Doppler processing unit 13. To do.
  • the image generation unit 14 converts (scan converts) the scanning line signal sequence of the ultrasonic scanning into a scanning line signal sequence of a video format represented by a television or the like, and converts the ultrasonic image data as the display image. Generate.
  • the image generation unit 14 performs various image processing, such as image processing (smoothing processing) for regenerating an average luminance image using a plurality of image frames after scan conversion, Image processing (edge enhancement processing) using a differential filter is performed in the image.
  • the image generation unit 14 is equipped with a storage memory for storing image data, and can perform reconstruction processing of a three-dimensional image. Further, for example, an operator can call up an image recorded during an examination after diagnosis from a storage memory mounted on the image generation unit 14.
  • the image synthesis unit 16 synthesizes the ultrasonic image generated by the image generation unit 14 with character information of various parameters, scales, body marks, and the like, and outputs them to the monitor 2 as a video signal.
  • the image composition unit 16 generates composite image data in which a plurality of image data is superimposed. The combined image data generated by the image combining unit 16 according to the first embodiment will be described in detail later.
  • the image memory 15 is a memory that stores ultrasonic image data generated by the image generation unit 14 and synthesized image data synthesized by the image synthesis unit 16. For example, the image memory 15 stores ultrasonic images corresponding to a plurality of frames immediately before the FREEZE button is pressed.
  • the ultrasonic diagnostic apparatus can also display an ultrasonic moving image by continuously displaying (cine display) the images stored in the image memory 15.
  • the internal storage unit 17 stores a control program for performing ultrasonic transmission / reception, image processing, and display processing, diagnostic information (for example, patient ID, doctor's findings, etc.), various data such as a diagnostic protocol and various body marks. To do.
  • the internal storage unit 17 is also used for storing image data stored in the image memory 15 as necessary.
  • the data stored in the internal storage unit 17 can be transferred to an external peripheral device via an interface circuit (not shown).
  • the control unit 18 controls the entire processing in the ultrasonic diagnostic apparatus. Specifically, the control unit 18 is based on various setting requests input from the operator via the input device 3 and various control programs and various data read from the internal storage unit 17. Controls the processing of the processing unit 12, Doppler processing unit 13, image generation unit 14, and image composition unit 16. For example, the scan control unit 181 illustrated in FIG. 1 controls ultrasonic scanning by the ultrasonic probe 1 via the transmission / reception unit 11. Further, the display control unit 184 shown in FIG. 1 performs control so that the ultrasonic image data and the composite image data stored in the image memory 15 are displayed on the monitor 2.
  • control unit 18 includes a detection unit 182 and an image generation control unit 183 as shown in FIG.
  • image generation control unit 183 includes a selection unit 183a and an extraction unit 183b.
  • the overall configuration of the ultrasonic diagnostic apparatus according to the first embodiment has been described above. With this configuration, the ultrasonic diagnostic apparatus according to the first embodiment generates ultrasonic image data obtained by imaging the living tissue of the subject P into which the puncture needle 1a is inserted.
  • the ultrasonic diagnostic apparatus according to the first embodiment is a composite image in which the visibility of the puncture needle 1a is improved regardless of the angle of the puncture needle 1a by the control process of the control unit 18 described in detail below. Generate data.
  • the ultrasonic diagnostic apparatus when the operator presses the puncture mode start button of the input device 3, the ultrasonic diagnostic apparatus according to the first embodiment starts the process described below.
  • the ultrasonic diagnostic apparatus according to the first embodiment ends the process described below.
  • the scan control unit 181 causes the ultrasonic probe 1 to execute the first scan and the second scan when performing ultrasonic scan of the subject P into which the puncture needle 1a is inserted.
  • the first scan is a scan in which ultrasonic transmission is performed in the first direction with respect to the transducer surface for the purpose of imaging the tissue of the subject P. That is, the first scan is an ultrasonic scan in which ultrasonic transmission in the first direction that is optimal for imaging the living tissue of the subject P is performed along the arrangement direction of the transducers.
  • the first direction is a direction perpendicular to the transducer surface of the ultrasonic probe 1.
  • the first direction is a direction perpendicular to the azimuth direction.
  • the first direction may be a direction other than the direction perpendicular to the transducer surface as long as it is an ultrasonic transmission direction that is optimal for imaging the tissue of the subject P.
  • the ultrasonic transmission / reception conditions set in the first scan the above-described conditions for the THI mode are set in order to obtain image data in which a living tissue is well depicted.
  • a normal B mode condition may be set.
  • the second scan is a scan in which ultrasonic transmission is performed in each of a plurality of directions with respect to the transducer surface. That is, the second scan is an ultrasonic that transmits ultrasonic waves in each of a plurality of directions for the purpose of searching for an optimal ultrasonic transmission direction for imaging the puncture needle 1a inserted into the subject P. It is a sonic scan (oblique scan).
  • ultrasonic transmission is performed along the arrangement direction of the transducers in each of a plurality of directions.
  • each direction of the plurality of directions is a direction other than perpendicular to the transducer surface of the ultrasonic probe 1.
  • each direction of the plurality of directions is a direction other than perpendicular to the azimuth direction.
  • the ultrasonic transmission / reception conditions for the second scan may be the same as those for the first scan, but the occurrence of artifacts due to grating lobes or the like is suppressed as much as possible, and from the puncture needle 1a. It is desirable to set to increase the received signal. Therefore, for example, in the second scan, a transmission waveform having a relatively low frequency is transmitted from the ultrasonic probe 1, and in the processing of the reception signal, an ultrasonic transmission / reception condition using the fundamental wave component of the transmission ultrasonic wave is set. .
  • FIG. 2 is a diagram for explaining the scan control unit according to the first embodiment.
  • the puncture needle 1a is inserted toward the target site (T).
  • the scan control unit 181 performs the first scan in a direction perpendicular to the azimuth direction as shown in FIG. 2, similarly to the scan performed to generate B-mode image data and THI image data.
  • the scan control unit 181 performs an oblique scan as the second scan, for example, at three different angles “ ⁇ 1, ⁇ 2, ⁇ 3”.
  • the value and number of oblique angles may be initially set or may be set by an operator before puncturing.
  • the image generation unit 14 generates a second ultrasonic image data group composed of ultrasonic image data for each of a plurality of directions using a reflected wave received by the ultrasonic probe 1 by the second scan.
  • the second ultrasonic image data group is a plurality of ultrasonic image data having different oblique angles.
  • the image generation unit 14 sets the ultrasonic image data of “oblique angle: ⁇ 1”, the ultrasonic image data of “oblique angle: ⁇ 2”, and the “oblique angle: ⁇ 3” as the second ultrasonic image data group.
  • Ultrasonic image data is generated.
  • the ultrasound image data generated by the second scan may be described as oblique image data.
  • the image generation control process of the image generation control unit 183 using the processing result by the detection unit 182 is performed.
  • the detection unit 182 has a function of detecting a line segment drawn in the image data. Furthermore, in the first embodiment, the detection unit 182 has a function of calculating the angle of the detected line segment.
  • the detection unit 182 detects a line segment based on the second ultrasonic image data group. Furthermore, in the first embodiment, the detection unit 182 calculates the angle of the detected line segment.
  • the detection unit 182 calculates the angle of the detected line segment as the angle of the puncture needle 1a.
  • the image generation control unit 183 controls the image generation unit 14 to generate needle image data in which the puncture needle 1a is drawn based on the information regarding the line segment detected by the detection unit 182.
  • the image generation control unit 183 controls the image generation unit 14 to generate needle image data in which the puncture needle 1a is drawn based on the angle calculated by the detection unit 182.
  • the needle image data is image data in which the puncture needle 1a is depicted with high luminance.
  • the detection unit 182 detects a line segment from the second ultrasonic image data group, and calculates the angle of the detected line segment.
  • the image generation control unit 183 is configured such that the puncture needle 1a has high luminance based on the angle calculated by the detection unit 182 with respect to each image data constituting the second ultrasonic image data group.
  • the image generator 14 is controlled to generate the drawn needle image data.
  • FIG. 3 is a diagram showing an outline of the image generation control process performed in the first embodiment
  • FIG. 4 is a diagram for explaining the detection unit shown in FIG.
  • the detection unit 182 includes the “Oblique angle: ⁇ 1” ultrasound image data, the “Oblique angle: ⁇ 2” ultrasound image data, and the “Oblique angle”, which are the second ultrasound image data group.
  • the angle ( ⁇ ) of the puncture needle 1a is calculated using “ultrasonic image data of angle: ⁇ 3” (see (1) in FIG. 3).
  • the detection unit 182 performs line segment detection processing such as Hough conversion on the oblique image data.
  • the detection unit 182 detects the line segment L in the oblique image data as shown in FIG. Then, as illustrated in FIG. 4, the detection unit 182 calculates an angle ( ⁇ ) formed by the “straight line L1 in the azimuth direction (lateral direction of the image data)” and the “straight line including the line segment L”. As shown in FIG. 4, this angle ( ⁇ ) is also an angle formed by “a straight line L2 perpendicular to the line segment L” and “a straight line L3 perpendicular to the azimuth direction”. That is, the angle ( ⁇ ) is an oblique angle for performing ultrasonic transmission perpendicularly to the linear reflection source corresponding to the line segment L.
  • the linear reflection source corresponding to the line segment L is likely to be the puncture needle 1a. Therefore, the angle ( ⁇ ) is an oblique angle for performing ultrasonic transmission in a direction perpendicular to the puncture needle 1a. That is, the angle ( ⁇ ) is an oblique angle for performing an ultrasonic transmission direction optimal for imaging the puncture needle 1a.
  • the line segment detection process and the angle calculation process are not limited to the Hough transform, and any generally known technique may be used as a technique for calculating the angle of the line segment from the image.
  • the detection unit 182 calculates, as the angle ( ⁇ ), a statistical value such as an average value or a median value of angles calculated from each image data constituting the second ultrasonic image data group. In addition, the detection unit 182 does not perform angle calculation processing on image data in which no line segment is detected or image data in which a line segment having a length equal to or longer than a predetermined length is not detected.
  • the selection unit 183a included in the image generation control unit 183 illustrated in FIG. 1 is based on the angle calculated by the detection unit 182 with respect to each piece of image data constituting the second ultrasonic image data group.
  • the sound image data is selected from the second ultrasonic image data group.
  • the third ultrasonic image data is image data generated by ultrasonic transmission performed in a direction suitable for imaging the puncture needle 1a.
  • the selection unit 183a generates an image generated by ultrasonic transmission performed in a direction that is closest to the puncture needle 1a based on the angle ( ⁇ ) calculated by the detection unit 182.
  • Data (third ultrasonic image data) is selected (see (2) in FIG. 3).
  • the extraction part 183b which the image generation control part 183 shown in FIG. 1 has extracts the high-intensity area
  • the extraction unit 183b searches for a high brightness area near the line segment detected in the third ultrasonic image data.
  • the extraction unit 183b searches for a region having a luminance value equal to or higher than a threshold for high-luminance region extraction as a high-luminance region in pixels near the line segment detected in the third ultrasonic image data.
  • the image generation unit 14 generates needle image data by setting the luminance value of the region other than the high luminance region searched by the extraction unit 183b to “0”.
  • the luminance value of the high-intensity region caused by the artifact or the high-intensity region corresponding to the biological tissue having a strong reflection intensity is set to “0”, Needle image data in which only the needle 1a is depicted can be generated.
  • the image synthesis unit 16 generates synthesized image data of the first ultrasonic image data and the needle image data by the synthesis process (see (4) in FIG. 3). For example, the image synthesizing unit 16 compares the luminance values of the first ultrasonic image data in which the living tissue is well drawn and the needle image data in which the puncture needle 1a is well drawn in pixel units. Then, the image composition unit 16 sets the pixel having the brightness value of the needle image data “0” as the brightness value of the first ultrasonic image data, and the pixel having the brightness value of the needle image data larger than “0” Composite image data is created as the luminance value of the data.
  • the method of generating the composite image data is not limited to the above luminance value comparison.
  • the composite image data may be generated by simple addition or weighted addition.
  • the display control unit 184 controls to display the composite image data on the monitor 2.
  • this embodiment may be a case where the brightness value of the needle image data is adjusted by performing gain adjustment or dynamic range adjustment before the generation of the composite image data. By such brightness adjustment, the puncture needle 1a depicted in the needle image data can be highlighted.
  • the scan control unit 181 changes the second scan condition based on the angle calculated by the detection unit 182.
  • the scan control unit 181 changes the direction of ultrasonic transmission performed in the second scan based on the angle calculated by the detection unit 182. In addition, the scan control unit 181 changes the number of directions of ultrasonic transmission performed in the second scan based on the amount of time change of the angle calculated by the detection unit 182.
  • the present embodiment is a case where only the direction of ultrasonic transmission is changed. There may be a case where only the number of ultrasonic transmission directions is changed.
  • FIGS. 5A and 5B are diagrams illustrating an example of second scan condition change processing by the scan control unit according to the first embodiment.
  • the scan control unit 181 performs the second scan in which the oblique angle corresponding to the angle calculated by the detection unit 182 when one frame of the composite image data is generated is generated in order to generate the composite image data of the next frame. Control is performed so as to be included in a plurality of oblique angles. In addition to this, the scan control unit 181 generates composite image data of the next frame based on a plurality of oblique angle intervals performed in the second scan when the composite image data of one frame is generated. For this purpose, control may be performed so that the second scan is narrowed.
  • the angle at which the puncture needle 1a enters is not always constant and often varies. Further, the puncture may be performed in a situation where the puncture needle 1a is entered while avoiding the blood vessel, and in such a case, the angle at which the puncture needle 1a enters varies. The same thing occurs even when a puncture adapter is used.
  • the scan control unit 181 calculates the time variation “d ⁇ / dt” of the angle ( ⁇ ).
  • the time change amount of the angle ( ⁇ ) may be performed by the detection unit 182. Then, the scan control unit 181 compares “d ⁇ / dt” with the angle change amount threshold “TH ( ⁇ )”, and when “d ⁇ / dt ⁇ TH ( ⁇ )”, the ultrasonic transmission direction of the oblique scan. Increase the number.
  • the scan control unit 181 changes the ultrasonic transmission / reception condition of the second scan after the change based on the change of the second scan condition. For example, as shown in FIG. 5B, when the number of oblique directions is changed from 3 directions to 5 directions, the transmission / reception beam density for generating one frame of oblique image data is set to the current “3/5”. . Thereby, in this embodiment, the frame rate of a synthesized image can be maintained.
  • FIG. 6 is a flowchart for explaining a processing example of the ultrasonic diagnostic apparatus according to the first embodiment.
  • the ultrasonic diagnostic apparatus determines whether or not the puncture mode is started (step S101). If the puncture mode has not been started (No at Step S101), the ultrasonic diagnostic apparatus according to the first embodiment waits until the puncture mode is started.
  • the scan control unit 181 controls the ultrasonic probe 1 to execute the first scan and the second scan (Step S102).
  • the image generation unit 14 generates the first ultrasonic image data and the second ultrasonic image data group (step S103).
  • the detection unit 182 performs line segment detection processing on the second ultrasonic image data group (step S104), and calculates the angle of the line segment, that is, the angle of the puncture needle 1a (step S105).
  • the selection unit 183a selects the third ultrasonic image data based on the angle (step S106), the extraction unit 183b extracts the high luminance area of the third ultrasonic image data, and the extraction unit 183b. Under the control, the image generation unit 14 generates needle image data (step S107).
  • the image composition unit 16 generates a composite image of the first ultrasonic image data and the needle image data (Step S108), and the display control unit 184 controls to display the composite image data (Step S109). ).
  • the scan control unit 181 determines whether or not the puncture mode has ended (step S110).
  • the scan control unit 181 determines the oblique angle and the number of oblique directions according to the angle and the amount of time change of the angle (Step S111). That is, the scan control unit 181 determines whether to change the oblique angle and whether to change the number of oblique directions based on the angle and the time variation of the angle.
  • the scan control unit 181 determines the changed oblique angle when changing the oblique angle, and determines the changed oblique direction number when changing the number of oblique directions.
  • the scan control unit 181 determines transmission / reception conditions for the second scan based on the determination processing result performed in step S111 (step S112), and returns to step S102 to generate a composite image for the next frame. Control is performed so that the first scan and the second scan are performed.
  • the ultrasonic diagnostic apparatus ends the process.
  • the display control unit 184 may display the first ultrasonic image data, the third ultrasonic image data, the second ultrasonic image group, and the like together with the composite image data.
  • the first embodiment may be a case where the end determination of the puncture mode is executed after the first scan and the second scan in step S102. That is, the first scan and the second scan may be sequentially executed in parallel with the processing from step S103 to step S109.
  • a line segment in the oblique image data is detected, and an angle of the detected line segment is calculated to obtain an optimum oblique angle for imaging the puncture needle 1a.
  • the oblique image data corresponding to the oblique angle closest to the calculated angle is selected as image data including a region where the puncture needle 1a is depicted with high luminance.
  • needle image data is produced
  • the puncture needle 1a In order to depict the puncture needle 1a with the highest luminance, it is necessary to irradiate the puncture needle 1a with an ultrasonic beam perpendicularly.
  • an ultrasonic beam perpendicular to the puncture needle 1a is detected by detecting a line segment corresponding to the puncture needle 1a by image processing.
  • the transmission direction can be obtained directly. Therefore, in the first embodiment, the visibility of the puncture needle can be improved regardless of the angle of the puncture needle.
  • the ultrasonic transmission direction and the number of directions performed in the second scan are changed based on the angle and the time change amount of the angle. Therefore, even if the puncture angle varies, it is possible to ensure that oblique image data is captured in a direction close to the vertical direction with respect to the puncture needle 1a.
  • the frame rate of the composite image data can be maintained.
  • FIG. 7 is a diagram showing an outline of the image generation control process performed in the second embodiment.
  • the ultrasonic diagnostic apparatus is configured similarly to the ultrasonic diagnostic apparatus described in the first embodiment described with reference to FIG. However, the second embodiment is different from the first embodiment in that the processing of the selection unit 183a is performed after the processing of the extraction unit 183b.
  • the processing of the selection unit 183a is performed after the processing of the extraction unit 183b.
  • the image generation control unit 183 calculates the needle image data based on the angle calculated by the detection unit 182 with respect to each image data constituting the image data group based on the second ultrasonic image group.
  • the image generation unit 14 is controlled to generate.
  • the extraction unit 183b performs threshold processing on each image data constituting the second ultrasonic image data group, and candidate image data from which a high-luminance region has been extracted.
  • the image generation unit 14 is controlled to generate a group. Specifically, under the control of the extraction unit 183b, the image generation unit 14 sets the luminance value of a pixel whose luminance value is smaller than the threshold for extracting the high luminance area in the oblique image data to “0”. Thereby, the image generation unit 14 generates candidate image data in which only pixels having a luminance value equal to or higher than the threshold for high-luminance region extraction are extracted with high luminance.
  • the image generation unit 14 generates candidate data of “oblique angle: ⁇ 1” from the ultrasound image data of “oblique angle: ⁇ 1”, and “oblique angle: ⁇ 2” from the ultrasound image data of “oblique angle: ⁇ 2”. Is generated, and candidate data of “oblique angle: ⁇ 3” is generated from the ultrasonic image data of “oblique angle: ⁇ 3” (see (1) in FIG. 7).
  • the detection part 182 which concerns on 2nd Embodiment performs a line segment detection process with respect to each candidate image data, and calculates the angle ((beta)) of a puncture needle (refer (2) of FIG. 7).
  • the selection unit 183a uses image data generated by ultrasonic transmission performed in a direction suitable for imaging the puncture needle 1a based on the angle calculated by the detection unit 182.
  • Image data is selected from a candidate image data group (see (3) in FIG. 7). That is, the selection unit 183a selects candidate image data having an oblique angle closest to the angle ( ⁇ ) as needle image data.
  • the image synthesis unit 16 generates synthesized image data of the first ultrasonic image data and the needle image data by the synthesis process (see (4) in FIG. 7). Then, the display control unit 184 controls to display the composite image data on the monitor 2. Note that the synthesizing process performed in the second embodiment is performed in the same manner as the synthesizing process described in the first embodiment. Also in the second embodiment, the oblique angle and oblique direction number changing process and the ultrasonic transmission / reception condition changing process described in the first embodiment are performed.
  • FIG. 8 is a flowchart for explaining a processing example of the ultrasonic diagnostic apparatus according to the second embodiment.
  • the ultrasonic diagnostic apparatus determines whether or not the puncture mode has been started (step S201). If the puncture mode has not been started (No at Step S201), the ultrasonic diagnostic apparatus according to the second embodiment waits until the puncture mode is started.
  • the scan control unit 181 controls the ultrasonic probe 1 to execute the first scan and the second scan (Step S202).
  • the image generation unit 14 generates the first ultrasonic image data and the second ultrasonic image data group (step S203). Then, under the control of the extraction unit 183b, the image generation unit 14 generates a candidate image data group from which a high luminance area is extracted from the second ultrasonic image data group (step S204). Then, the detection unit 182 performs line segment detection processing on the candidate image data group (step S205), and calculates the angle of the line segment, that is, the angle of the puncture needle 1a (step S206).
  • the selection part 183a selects needle
  • the scan control unit 181 determines whether or not the puncture mode has ended (step S210).
  • the scan control unit 181 determines the oblique angle and the number of oblique directions according to the angle and the amount of time change of the angle (Step S211).
  • the scan control unit 181 determines transmission / reception conditions for the second scan based on the determination processing result performed in step S211 (step S212), and returns to step S202 to generate a composite image for the next frame. Control is performed so that the first scan and the second scan are performed.
  • the ultrasonic diagnostic apparatus ends the process.
  • the display control unit 184 may display the first ultrasonic image data, the second ultrasonic image group, the candidate image data group, and the like together with the composite image data.
  • the first embodiment may be a case where the end determination of the puncture mode is executed after the first scan and the second scan in step S202. That is, the first scan and the second scan may be sequentially executed in parallel with the processing from step S203 to step S209.
  • a candidate image data group that can be selected as needle image data is generated by extracting a high-luminance region in each oblique image data in advance.
  • candidate image data corresponding to the oblique angle closest to the calculated angle is selected as needle image data. Also by this, the visibility of the puncture needle can be improved regardless of the angle of the puncture needle.
  • the luminance value of each pixel constituting the first ultrasonic image data may be used as a threshold for extracting a high luminance area. Further, the second embodiment may be a case where image data obtained by subtracting the first ultrasonic image data from each image data constituting the second ultrasonic image data group is set as candidate image data.
  • FIG. 9 is a diagram showing an outline of the image generation control process performed in the third embodiment.
  • the ultrasonic diagnostic apparatus according to the third embodiment is configured similarly to the ultrasonic diagnostic apparatus described in the first embodiment described with reference to FIG.
  • the contents described in the first embodiment and the like are applied to contents that are not particularly mentioned.
  • the scan control unit 181 according to the third embodiment performs the first scan described in the first and second embodiments. Then, the scan control unit 181 according to the third embodiment causes the ultrasonic probe 1 to perform ultrasonic transmission in each of a plurality of directions including a direction perpendicular to the transducer surface as the second scan.
  • the second scan according to the third embodiment includes a scan with an oblique angle of “0 degree”.
  • the oblique angle “0 degree” is normally the first direction performed in the first scan.
  • the oblique angle is “ ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4” in the case of four directions, and ⁇ 1 is 0 degree. Accordingly, as illustrated in FIG.
  • Image data, ultrasonic image data of “oblique angle: ⁇ 3” and ultrasonic image data of “oblique angle: ⁇ 4” are generated.
  • the ultrasonic transmission / reception conditions of the second scan suppress the occurrence of artifacts due to grating lobes or the like as much as possible as in the first embodiment, and the puncture needle
  • the received signal from 1a is set to be large.
  • the ultrasonic transmission / reception condition of the second scan is set so that a transmission waveform having a relatively low frequency is transmitted from the ultrasonic probe 1 and the fundamental wave component of the transmission ultrasonic wave is used in the processing of the reception signal.
  • the detection unit 182 applies a line segment to each image data generated by ultrasonic transmission / reception performed in a direction other than the vertical direction in the second ultrasonic image data group. Detection processing and angle detection processing are performed. For example, the detection unit 182 sets the angle ( ⁇ ) for ultrasonic image data of “oblique angle: ⁇ 2”, ultrasonic image data of “oblique angle: ⁇ 3”, and ultrasonic image data of “oblique angle: ⁇ 4”. Is calculated (see (1) in FIG. 9).
  • the selection unit 183a has a plurality of other than “oblique angle: 0 degree” in the second ultrasonic image data group based on the angle ( ⁇ ) calculated by the detection unit 182.
  • the third ultrasonic image data is selected from the oblique image data.
  • the extraction unit 183b extracts a high-luminance region (puncture needle region) based on the third ultrasonic image data and “oblique image data with an oblique angle of 0 degrees” (FIG. 9 (3)). Then, the extraction unit 183b controls the image generation unit 14 to generate needle image data using the extracted puncture needle region.
  • a high brightness area (puncture needle area) is extracted from the oblique image data selected as the third ultrasonic image data.
  • the region where the biological tissue of the high reflector is depicted is extracted as the high luminance region, which may become noise in the needle image data.
  • the “oblique image data with an oblique angle of 0 degree” generated under the same transmission / reception conditions as the third ultrasonic image data is unlikely to include a high-luminance region caused by the puncture needle 1a. There is a high possibility that a high-luminance region resulting from the biological tissue of the reflector is included.
  • the extraction unit 183b uses the “oblique image data with an oblique angle of 0 degrees” so that noise is not included in the high luminance region used for generating the needle image data.
  • the extraction process described in the following is performed.
  • the extraction unit 183b compares the luminance values of the third ultrasonic image data and the “oblique image data with an oblique angle of 0 degrees” in units of pixels. Then, the extraction unit 183b sets “0” to a pixel having a larger luminance value in the “oblique image data with an oblique angle of 0 degree”. In addition, the extraction unit 183b uses pixels having a larger luminance value in the third ultrasonic image data as pixels constituting the high luminance region as they are. Then, the extraction unit 183b notifies the image generation unit 14 of the positions of the pixels that constitute the third ultrasonic image data and have a luminance value of “0”. As a result, the image generation unit 14 generates needle image data from which the high-intensity region (puncture needle region) of the third ultrasonic image data is extracted, as shown in FIG.
  • the extraction unit 183b may generate, as needle image data, image data obtained by subtracting the luminance value of “oblique image data with an oblique angle of 0 degrees” from the luminance value of the third ultrasonic image data in units of pixels. . Further, the extracting unit 183b uses the luminance value of the third ultrasonic image data and the luminance value of the “oblique image data with an oblique angle of 0 degrees” as the pixel image unit as the needle image data. It may be generated.
  • the image synthesis unit 16 generates synthesized image data of the first ultrasonic image data and the needle image data by the synthesis process (see (4) in FIG. 9). Then, the display control unit 184 controls to display the composite image data on the monitor 2. Note that the synthesizing process performed in the second embodiment is performed in the same manner as the synthesizing process described in the first embodiment.
  • the extraction part 183b uses the image data which reduced the luminance value of 3rd ultrasonic image data. It is preferable to perform extraction processing of the puncture needle region. For example, the extraction unit 183b lowers the gain of the third ultrasonic image with respect to the “oblique image with an oblique angle of 0 degree”. Thereby, the luminance value of the pixel corresponding to the living tissue in the third ultrasonic image data is reliably “0” by the luminance value comparison, and only the high-luminance puncture needle can be left.
  • the ultrasonic diagnostic apparatus performs the gain adjustment and the dynamic range adjustment to adjust the brightness so that the overall brightness of each oblique image data is substantially the same. Therefore, when comparing the luminance value of the third ultrasonic image data and the luminance value of “oblique image data with an oblique angle of 0 degree” in pixel units, the gain of the third ultrasonic image is intentionally lowered. Thus, the puncture needle region of the third ultrasonic image data can be extracted with high accuracy.
  • the processing for changing the oblique angle and the number of oblique directions and the processing for changing the ultrasonic transmission / reception conditions described in the first embodiment are also performed.
  • the scan control unit 181 changes the transmission / reception beam density for generating one-frame oblique image data to the current “4/6”. To do. Thereby, in this embodiment, the frame rate of a synthesized image can be maintained.
  • the process performed by the ultrasonic diagnostic apparatus according to the third embodiment differs from the process performed by the ultrasonic diagnostic apparatus according to the first embodiment described with reference to FIG. That is, the third embodiment is different from the first embodiment in that the second scan includes an oblique angle “0 degree” in step S102 of FIG. Further, in the third embodiment, the point that the line segment detection process targets the second ultrasonic image data group other than the “oblique image with an oblique angle of 0 degree” in step S104 of FIG. It differs from the embodiment. Further, the process performed by the ultrasonic diagnostic apparatus according to the third embodiment is different from the first embodiment in that an “oblique image with an oblique angle of 0 degrees” is used in the process of step S107 of FIG. And different.
  • a luminance value comparison between pixels using an “oblique image with an oblique angle of 0 degrees” is performed, and thereby a high level extracted from the third ultrasonic image data. It can be avoided that a noise component is included in the luminance region. Thereby, in 3rd Embodiment, the visibility of a puncture needle can further be improved.
  • the puncture needle area can be extracted with certainty.
  • FIG. 10 is a diagram showing an outline of the image generation control process performed in the fourth embodiment.
  • the ultrasonic diagnostic apparatus according to the fourth embodiment is configured similarly to the ultrasonic diagnostic apparatus described in the first embodiment described with reference to FIG. However, the fourth embodiment is different from the third embodiment in that the processing of the selection unit 183a is performed after the processing of the extraction unit 183b.
  • the processing of the selection unit 183a is performed after the processing of the extraction unit 183b.
  • ultrasonic transmission is performed as a second scan in each of a plurality of directions including a direction perpendicular to the transducer surface.
  • Ultrasonic image data, “oblique angle: ⁇ 3” ultrasonic image data, and “oblique angle: ⁇ 4” ultrasonic image data are generated.
  • the image generation control part 183 is a needle
  • the image generation unit 14 is controlled to generate data.
  • the extraction unit 183b uses the second ultrasonic image data group from each image data generated by ultrasonic transmission / reception performed in a direction other than the vertical direction.
  • the image generation unit 14 is controlled so as to generate an image data group obtained by subtracting image data generated by ultrasonic transmission / reception performed in the vertical direction as the second scan as a candidate image data group.
  • the image generation unit 14 determines the luminance value of “oblique image data with an oblique angle of 0 degree” from the luminance value of “oblique image data with an oblique angle other than 0 degree” as a pixel under the control of the extraction unit 183b. By making a difference in units, a candidate image data group (difference image data group) from which a high luminance region is extracted is generated (see (1) in FIG. 10). Note that the image generation unit 14 sets a pixel having a negative difference value to “0”.
  • “Oblique image data with an oblique angle other than 0 degree” is image data that may be successfully imaged of the puncture needle 1a.
  • “Oblique image data with an oblique angle of 0 degree” is image data in which a living tissue is well imaged under the ultrasonic transmission / reception conditions of the second scan. Therefore, the plurality of image data constituting the candidate image data group generated by the above difference processing includes image data obtained by extracting a high luminance area corresponding to the puncture needle area.
  • Such an image data group is an image data group including image data that can be selected as needle image data generated by comparing luminance values in pixel units described in the third embodiment.
  • any candidate image data in the candidate image data group is selected as the needle image data. Therefore, in the fourth embodiment, the luminance value adjustment processing performed on the third ultrasonic image data in the third embodiment is performed as “oblique image data with an oblique angle other than 0 degrees”. It is desirable to do for.
  • the extraction unit 183b reduces the luminance value of each image data generated by ultrasonic transmission / reception performed in a direction other than the vertical direction in the second ultrasonic image data group.
  • the image generation unit 14 is controlled to generate a candidate image data group using the image data. Thereby, it can be avoided reliably that a noise component is included in the high luminance region of the candidate image data.
  • the detection part 182 which concerns on 4th Embodiment performs a line segment detection process with respect to each candidate image data, and calculates the angle ((beta)) of a puncture needle (refer (2) of FIG. 10).
  • the selection unit 183a uses image data generated by ultrasonic transmission performed in a direction suitable for imaging the puncture needle 1a based on the angle calculated by the detection unit 182.
  • Image data is selected from a candidate image data group (see (3) in FIG. 10). That is, the selection unit 183a selects candidate image data having an oblique angle closest to the angle ( ⁇ ) as needle image data.
  • the image synthesis unit 16 generates synthesized image data of the first ultrasonic image data and the needle image data by the synthesis process (see (4) in FIG. 10). Then, the display control unit 184 controls to display the composite image data on the monitor 2. Note that the synthesizing process performed in the fourth embodiment is performed in the same manner as the synthesizing process described in the first embodiment. Also in the fourth embodiment, the oblique angle and oblique direction number changing process and the ultrasonic transmission / reception condition changing process described in the third embodiment are performed.
  • the process performed by the ultrasonic diagnostic apparatus according to the fourth embodiment differs from the process performed by the ultrasonic diagnostic apparatus according to the second embodiment described with reference to FIG. 8 in the following points. That is, the fourth embodiment is different from the second embodiment in that the second scan includes an oblique angle “0 degree” in step S202 of FIG.
  • the process of step S204 in FIG. 8 uses “oblique image data with an oblique angle other than 0 degrees” as the candidate image data group from “oblique image data with an oblique angle other than 0 degrees”. Is different from the second embodiment.
  • “oblique image data with an oblique angle of 0 degrees” is used in advance to extract a high-luminance region in “oblique image data with an oblique angle other than 0 degrees”.
  • a candidate image data group that can be selected as needle image data is generated.
  • candidate image data corresponding to the oblique angle closest to the calculated angle is selected as needle image data. Also by this, the visibility of the puncture needle can be improved regardless of the angle of the puncture needle.
  • the brightness value of “oblique image data with an oblique angle other than 0 degrees” is reduced, and then the high brightness using “oblique image data with an oblique angle of 0 degrees” is used. Since the region is extracted, the puncture needle region can be reliably extracted.
  • needle image data is generated based on an angle calculated from a detected line segment.
  • the needle image data may be generated based on the detected line segment.
  • needle image data in which the puncture needle 1a is depicted is generated using ultrasonic image data. That is, in the first and third embodiments, needle image data is generated using a region corresponding to the puncture needle 1a of the third ultrasonic image data. In the second and fourth embodiments, needle image data is selected from the candidate image data group. However, the needle image data may be generated by drawing an artificial marker corresponding to the puncture needle 1a.
  • the image generation control unit 183 generates, as needle image data, image data in which a marker based on the line segment detected by the detection unit 182 is drawn with respect to the second ultrasonic image data group.
  • the image generation unit 14 is controlled.
  • the second ultrasonic image data group shown in FIG. 11 is the same image data group as the second ultrasonic image data group shown in FIG.
  • the detection unit 182 determines that line segment detection is not possible for ultrasonic image data of “oblique angle: ⁇ 1”. Further, as illustrated in FIG. 11, the detection unit 182 detects the line segment 100 from the ultrasonic image data of “oblique angle: ⁇ 2”. Further, as illustrated in FIG. 11, the detection unit 182 detects the line segment 101 from the ultrasonic image data of “oblique angle: ⁇ 3”.
  • the image generation control unit 183 selects a line segment used for marker creation by using a threshold value (hereinafter, THL) or more for the length of the line segment. It is assumed that the length of the line segment 100 is “THL” or more and the length of the line segment 101 is “THL” or more. In such a case, the image generation control unit 183 controls the image generation unit 14 to draw a marker based on the line segment 100 and the line segment 101. For example, the image generation control unit 183 sets the average value of the length of the line segment 100 and the length of the line segment 101 as the marker length.
  • THL threshold value
  • the image generation control unit 183 compares the average luminance value of the region corresponding to the line segment 100 with the average luminance value of the region corresponding to the line segment 101 and arranges the marker on the line segment having a high value. decide. In the case illustrated in FIG. 11, the image generation control unit 183 determines to place a marker on the line segment 101.
  • the line segment 100 and the line segment 102 based on the line segment 101 are determined.
  • the image generation unit 14 draws a marker at a position corresponding to the line segment 102 as shown in FIG.
  • the image generation unit 14 outputs the image data in which the marker is drawn to the image composition unit 16 as needle image data.
  • the image generation unit 14 uses the image data obtained by superimposing the ultrasonic image data of “oblique angle: ⁇ 2”, the ultrasonic image data of “oblique angle: ⁇ 3”, and the marker as needle image data. 16 may be output.
  • the image generation unit 14 adds the image data of the ultrasonic image data of “oblique angle: ⁇ 2” and the ultrasonic image data of “oblique angle: ⁇ 3” or the addition average image data as the marker superimposition target.
  • weighted addition image data is used. When performing weighted addition, the weight is determined based on, for example, the average luminance value of the area corresponding to the line segment.
  • the length of the line segment 101 is equal to or greater than “THL” and the length of the line segment 100 is shorter than “THL”, a marker based on the line segment 101 is drawn.
  • the image generation control unit 183 generates, as needle image data, image data in which a marker based on the line segment and the angle acquired by the detection unit 182 is drawn with respect to the second ultrasonic image data group. In this manner, the image generation unit 14 is controlled.
  • the second ultrasonic image data group shown in FIG. 12 is the same image data group as the second ultrasonic image data group shown in FIG.
  • the line segment 100 and the line segment 101 shown in FIG. 12 are the same as the line segment 100 and the line segment 101 shown in FIG.
  • the detection unit 12 further calculates an angle “ ⁇ 2” of the line segment 100 and calculates an angle “ ⁇ 3” of the line segment 101.
  • the length of the line segment 100 is “THL” or more and the length of the line segment 101 is “THL” or more.
  • the image generation control unit 183 controls the image generation unit 14 to draw markers based on the line segment 100 and the line segment 101, and the angles “ ⁇ 2” and “ ⁇ 3”.
  • the image generation control unit 183 sets the average value of the length of the line segment 100 and the length of the line segment 101 as the marker length.
  • the image generation control unit 183 sets the average angle of the angle “ ⁇ 2” and the angle “ ⁇ 3” as the angle of the marker.
  • the image generation control unit 183 sets the end point of the deep part in the marker, for example, as the end point of the deep part in the line segment 101 having a high average luminance value.
  • the line segment 103 based on the line segment 100 and the line segment 101, the angle “ ⁇ 2”, and the angle “ ⁇ 3” is determined.
  • the image generation unit 14 draws a marker at a position corresponding to the line segment 103 as shown in FIG.
  • the image generation unit 14 outputs the image data in which the marker is drawn to the image composition unit 16 as needle image data.
  • the image generation unit 14 uses the image data obtained by superimposing the ultrasonic image data of “oblique angle: ⁇ 2”, the ultrasonic image data of “oblique angle: ⁇ 3”, and the marker as needle image data. 16 may be output.
  • superimposing processing is performed, processing similar to the above processing is applied.
  • the processing may be performed using only the third ultrasonic image data.
  • a marker based on the line segment 101 detected in the ultrasonic image data of “oblique angle: ⁇ 3” that is the third ultrasonic image data is drawn.
  • the processing for the second ultrasound image data group described with reference to FIGS. 11 and 12 can be applied even when the second scan described in the third embodiment is performed. is there.
  • the image generation control unit 183 draws a marker based on the line segment and the angle acquired by the detection unit 182 on the candidate image data group described in the second embodiment or the third embodiment.
  • the image generation unit 14 is controlled to generate image data as needle image data.
  • the candidate image data group shown in FIG. 13 is the same image data group as the candidate image data group shown in FIG.
  • the detection unit 182 determines that the line segment cannot be detected for the candidate image data of “oblique angle: ⁇ 1”. Further, as illustrated in FIG. 13, the detection unit 182 detects the line segment 200 from the candidate image data of “oblique angle: ⁇ 2”. Further, as illustrated in FIG. 13, the detection unit 182 detects the line segment 201 from the candidate image data of “oblique angle: ⁇ 3”.
  • the detection unit 12 calculates an angle “ ⁇ 20” of the line segment 200 and calculates an angle “ ⁇ 30” of the line segment 201, as shown in FIG. It is assumed that the length of the line segment 200 is “THL” or more and the length of the line segment 201 is “THL” or more. In such a case, the image generation control unit 183 controls the image generation unit 14 to draw a marker based on the line segment 200 and the line segment 201 and the angle “ ⁇ 20” and the angle “ ⁇ 30”. For example, the image generation control unit 183 sets an average value of the length of the line segment 200 and the length of the line segment 201 as the marker length.
  • the image generation control unit 183 sets the average angle of the angle “ ⁇ 20” and the angle “ ⁇ 30” as the angle of the marker. Further, the image generation control unit 183 sets the end point of the deep part in the marker, for example, as the end point of the deep part in the line segment 201 having a high average luminance value.
  • the line segment 203 based on the line segment 200 and the line segment 201 and the angle “ ⁇ 20” and the angle “ ⁇ 30” is determined.
  • the image generation unit 14 draws a marker at a position corresponding to the line segment 203 as shown in FIG.
  • the image generation unit 14 outputs the image data in which the marker is drawn to the image composition unit 16 as needle image data.
  • the image generation unit 14 outputs image data obtained by superimposing the candidate image data of “oblique angle: ⁇ 2”, the candidate image data of “oblique angle: ⁇ 3” and the marker to the image composition unit 16 as needle image data. May be.
  • the process similar to said process is applied.
  • processing shown in FIG. 13 may be performed using only candidate image data selected as needle image data in the second and fourth embodiments.
  • a marker based on the line segment 201 detected from the candidate image data of “oblique angle: ⁇ 3” selected as the needle image data is drawn.
  • each component of each device illustrated in the first to fifth embodiments is functionally conceptual and does not necessarily need to be physically configured as illustrated.
  • the specific form of distribution / integration of each device is not limited to the one shown in the figure, and all or a part of the distribution / integration is functionally or physically distributed in arbitrary units according to various loads or usage conditions. Can be integrated and configured.
  • all or a part of each processing function performed in each device can be realized by a CPU and a program that is analyzed and executed by the CPU, or can be realized as hardware by wired logic.
  • the image processing methods described in the first to fifth embodiments can be realized by executing an image processing program prepared in advance on a computer such as a personal computer or a workstation.
  • This image processing program can be distributed via a network such as the Internet.
  • the image processing program is recorded on a computer-readable non-transitory recording medium such as a hard disk, a flexible disk (FD), a CD-ROM, an MO, a DVD, a flash memory such as a USB memory and an SD card memory. It can also be executed by being read from a non-transitory recording medium by a computer.
  • the visibility of the puncture needle can be improved regardless of the angle of the puncture needle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 実施形態の超音波診断装置は、スキャン制御部(181)、画像生成部(14)、検出部(182)、画像生成制御部(183)、画像合成部(16)及び表示制御部(184)を備える。スキャン制御部(181)は、振動子面に対して第1の方向に超音波送信を行なう第1のスキャンと、振動子面に対して複数の方向それぞれで超音波送信を行なう第2のスキャンとを実行させる。画像生成部(14)は、第1のスキャンから第1の超音波画像データを生成し、第2のスキャンから第2の超音波画像データ群を生成する。検出部(182)は、第2の超音波画像データ群に基づいて線分を検出する。画像生成制御部(183)は、線分に関する情報に基づいて、針画像データを画像生成部(14)に生成させる。表示制御部(184)は、画像合成部(16)が生成した第1の超音波画像データと針画像データとの合成画像データを表示するように制御する。

Description

超音波診断装置及び画像処理方法
 本発明の実施形態は、超音波診断装置及び画像処理方法に関する。
 従来、超音波診断装置は、超音波プローブ直下の超音波画像をリアルタイムで表示可能であることから、生体組織検査やラジオ波焼灼治療(RFA:Radio Frequency Ablation)等の穿刺針を用いた穿刺が行なわれる場合に頻繁に使用されている。また、穿刺ガイドを超音波プローブに取り付けて穿刺を行なうと、穿刺針を挿入する角度が限定されるので、病変部と血管との位置関係等から、穿刺は、穿刺ガイドを用いずに、フリーハンドで行われる場合も多い。しかし、病変の位置や穿刺針の侵入角度の影響で、穿刺針が見えにくくなることがあり、そのような場合は、穿刺針を動かした際の組織の動き等を見ながら穿刺を行っていた。
 そこで、近年、穿刺中に穿刺針の視認性を向上させるために、オブリークスキャンを行なって穿刺針に垂直になるように超音波ビームを照射して、穿刺針が高輝度で描出された超音波画像(針画像)を生成する技術が知られている。また、針画像の生成とともに、オブリークスキャンを行なわずに通常の超音波スキャンを行なって生体組織が描出された超音波画像(生体画像)を生成し、針画像と生体画像との合成画像を生成して表示させる技術も知られている。
 しかし、オブリークスキャンによって輝度が上昇する物体は、穿刺針の他に、超音波の送信方向に対して垂直な生体組織も含まれる。また、オブリークスキャンを行なった場合、ビーム形状等により、グレーティングローブが発生し、画像内にアーチファクトが発生してしまう。更に、穿刺針が超音波プローブ直下からずれる程、穿刺針の輝度は低下する。特に、フリーハンドで穿刺を行なう場合、穿刺針の角度は一定とはならない。
特開2006-320378号公報
 本発明が解決しようとする課題は、穿刺針の角度によらず穿刺針の視認性を向上させることができる超音波診断装置及び画像処理方法を提供することである。
 実施形態の超音波診断装置は、スキャン制御部と、画像生成部と、検出部と、画像生成制御部と、画像合成部と、表示制御部とを備える。スキャン制御部は、穿刺針が挿入された被検体を超音波スキャンする際に、前記被検体の組織の映像化を目的として振動子面に対して第1の方向に超音波送信を行なう第1のスキャンと、振動子面に対して複数の方向それぞれで超音波送信を行なう第2のスキャンとを超音波プローブに実行させる。画像生成部は、前記第1のスキャンにより前記超音波プローブが受信した反射波を用いて第1の超音波画像データを生成し、前記第2のスキャンにより前記超音波プローブが受信した反射波を用いて前記複数の方向ごとの超音波画像データで構成される第2の超音波画像データ群を生成する。検出部は、前記第2の超音波画像データ群に基づいて線分を検出する。画像生成制御部は、前記検出部が検出した線分に関する情報に基づいて、前記穿刺針が描出された針画像データを生成するように前記画像生成部を制御する。画像合成部は、前記第1の超音波画像データと前記針画像データとの合成画像データを生成する。表示制御部は、前記合成画像データを所定の表示部に表示するように制御する。
図1は、第1の実施形態に係る超音波診断装置の構成例を示す図である。 図2は、第1の実施形態に係るスキャン制御部を説明するための図である。 図3は、第1の実施形態で行なわれる画像生成制御処理の概略を示す図である。 図4は、図1に示す検出部を説明するための図である。 図5Aは、第1の実施形態に係るスキャン制御部による第2のスキャンの条件変更処理の一例を示す図(1)である。 図5Bは、第1の実施形態に係るスキャン制御部による第2のスキャンの条件変更処理の一例を示す図(2)である。 図6は、第1の実施形態に係る超音波診断装置の処理例を説明するためのフローチャートである。 図7は、第2の実施形態で行なわれる画像生成制御処理の概略を示す図である。 図8は、第2の実施形態に係る超音波診断装置の処理例を説明するためのフローチャートである。 図9は、第3の実施形態で行なわれる画像生成制御処理の概略を示す図である。 図10は、第4の実施形態で行なわれる画像生成制御処理の概略を示す図である。 図11は、第5の実施形態を説明するための図(1)である。 図12は、第5の実施形態を説明するための図(2)である。 図13は、第5の実施形態を説明するための図(3)である。
 以下、添付図面を参照して、超音波診断装置の実施形態を詳細に説明する。
(第1の実施形態)
 まず、第1の実施形態に係る超音波診断装置の構成について説明する。図1は、第1の実施形態に係る超音波診断装置の構成例を示す図である。図1に示すように、第1の実施形態に係る超音波診断装置は、超音波プローブ1と、モニタ2と、入力装置3と、装置本体10とを有する。
 超音波プローブ1は、装置本体10と着脱自在に接続される。超音波プローブ1は、複数の圧電振動子を有し、これら複数の圧電振動子は、後述する装置本体10が有する送受信部11から供給される駆動信号に基づき超音波を発生する。また、超音波プローブ1は、被検体Pからの反射波を受信して電気信号に変換する。また、超音波プローブ1は、圧電振動子に設けられる整合層や、圧電振動子から後方への超音波の伝播を防止するバッキング材等を有する。
 超音波プローブ1から被検体Pに超音波が送信されると、送信された超音波は、被検体Pの体内組織における音響インピーダンスの不連続面で次々と反射され、反射波信号として超音波プローブ1が有する複数の圧電振動子にて受信される。受信される反射波信号の振幅は、超音波が反射される不連続面における音響インピーダンスの差に依存する。なお、送信された超音波パルスが、移動している血流や心臓壁等の表面で反射された場合の反射波信号は、ドプラ効果により、移動体の超音波送信方向に対する速度成分に依存して、周波数偏移を受ける。
 なお、第1の実施形態は、図1に示す超音波プローブ1が、複数の圧電振動子が一列で配置された1次元超音波プローブである場合や、一列に配置された複数の圧電振動子が機械的に揺動される1次元超音波プローブである場合、複数の圧電振動子が格子状に2次元で配置された2次元超音波プローブである場合のいずれであっても適用可能である。
 なお、第1の実施形態では、生体組織検査やラジオ波焼灼治療等を行なうために、超音波プローブ1が行なった超音波送受信によりモニタ2に表示される超音波画像データを参照する医師により、超音波プローブ1が当接される体表近傍から穿刺針1aが被検体Pのターゲット部位まで挿入される。第1の実施形態では、穿刺針1aによる穿刺がフリーハンドで行われる。ただし、第1の実施形態は、超音波プローブ1に装着された穿刺アダプタに穿刺針1aを取り付けて穿刺が行なわれる場合でも適用可能である。
 入力装置3は、マウス、キーボード、ボタン、パネルスイッチ、タッチコマンドスクリーン、フットスイッチ、トラックボール等を有し、超音波診断装置の操作者からの各種設定要求を受け付け、装置本体10に対して受け付けた各種設定要求を転送する。例えば、入力装置3が有する終了ボタンやフリーズボタンを操作者が押下すると、超音波の送受信が終了し、第1の実施形態に係る超音波診断装置は、一時停止状態となる。また、操作者は、入力装置3を介して後述する第2のスキャン(オブリークスキャン)を行なうための超音波送信のオブリークの角度の初期設定を行なうことも出来る。
 モニタ2は、超音波診断装置の操作者が入力装置3を用いて各種設定要求を入力するためのGUI(Graphical User Interface)を表示したり、装置本体10において生成された超音波画像を表示したりする。
 装置本体10は、超音波プローブ1が受信した反射波に基づいて超音波画像データを生成する装置であり、図1に示すように、送受信部11と、Bモード処理部12と、ドプラ処理部13と、画像生成部14と、画像メモリ15と、画像合成部16と、内部記憶部17と、制御部18とを有する。
 送受信部11は、トリガ発生回路、遅延回路及びパルサ回路等を有し、超音波プローブ1に駆動信号を供給する。パルサ回路は、所定のレート周波数で、送信超音波を形成するためのレートパルスを繰り返し発生する。また、遅延回路は、超音波プローブ1から発生される超音波をビーム状に集束して送信指向性を決定するために必要な圧電振動子ごとの遅延時間を、パルサ回路が発生する各レートパルスに対し与える。また、トリガ発生回路は、レートパルスに基づくタイミングで、超音波プローブ1に駆動信号(駆動パルス)を印加する。すなわち、遅延回路は、各レートパルスに対し与える遅延時間を変化させることで、圧電振動子面からの送信方向を任意に調整する。
 駆動パルスは、パルサ回路からケーブルを介して超音波プローブ1内の圧電振動子まで伝達した後に、圧電振動子において電気信号から機械的振動に変換される。この機械的振動は、生体内部で超音波として送信される。ここで、圧電振動子ごとに異なる送信遅延時間を持った超音波は、収束されて、所定方向に伝搬していく。すなわち、遅延回路は、各レートパルスに対し与える送信遅延時間を変化させることで、圧電振動子面からの送信方向を任意に調整する。
 なお、送受信部11は、後述する制御部18の指示に基づいて、所定のスキャンシーケンスを実行するために、送信周波数、送信駆動電圧等を瞬時に変更可能な機能を有している。特に、送信駆動電圧の変更は、瞬間にその値を切り替え可能なリニアアンプ型の発信回路、又は、複数の電源ユニットを電気的に切り替える機構によって実現される。
 また、送受信部11は、アンプ回路、A/D変換器、加算器等を有し、超音波プローブ1が受信した反射波信号に対して各種処理を行なって反射波データを生成する。アンプ回路は、反射波信号をチャンネルごとに増幅してゲイン補正処理を行なう。A/D変換器は、ゲイン補正された反射波信号をA/D変換し、受信指向性を決定するのに必要な遅延時間を与える。加算器は、与えられた遅延時間に基づき、反射波信号の加算処理を行なって反射波データを生成する。加算器の加算処理により、反射波信号の受信指向性に応じた方向からの反射成分が強調される。
 このように、送受信部11は、超音波の送受信における送信指向性と受信指向性とを制御する。なお、送受信部11は、後述する制御部18の制御により、遅延情報、送信周波数、送信駆動電圧、開口素子数等を瞬時に変更可能な機能を有している。また、送受信部11は、1フレームもしくはレートごとに、異なる波形を送信して受信することも可能である。
 Bモード処理部12は、送受信部11から反射波データを受信し、受信した反射波データに対して対数増幅、包絡線検波処理等を行なって、信号強度が輝度の明るさで表現されるデータ(Bモードデータ)を生成する。
 ドプラ処理部13は、送受信部11から反射波データを受信し、受信した反射波データから速度情報を周波数解析し、ドプラ効果による血流や組織、造影剤エコー成分を抽出し、平均速度、分散、パワー等の移動体情報を多点について抽出したデータ(ドプラデータ)を生成する。なお、Bモード処理部12やドプラ処理部13が生成したデータは、生データ(Raw Data)とも呼ばれる。
 なお、Bモード処理部12は、検波周波数を変化させることで、映像化する周波数帯域を変えることができる。このBモード処理部12の機能を用いることにより、コントラストハーモニックイメージング(CHI:Contrast Harmonic Imaging)を実行可能である。すなわち、Bモード処理部12は、造影剤が注入された被検体Pの反射波データから、造影剤(微小気泡、バブル)を反射源とする反射波データ(高調波データ又は分周波データ)と、被検体P内の組織を反射源とする反射波データ(基本波データ)とを分離することができる。Bモード処理部12は、造影画像データを生成するためのBモードデータを生成することができる。
 また、このBモード処理部12の機能を用いることにより、ティッシュハーモニックイメージング(THI:Tissue Harmonic Imaging)において、被検体Pの反射波データから、高調波データ又は分周波データを分離することで、ノイズ成分を除去した組織画像データを生成するためのBモードデータを生成することができる。また、Bモード処理部12は、CHI及びTHIにおいて、位相変調法(PM:Phase Modulation)や振幅変調法(AM:Amplitude Modulation)、位相振幅変調法(AMPM)に基づく信号処理法により、造影画像データを生成するためのBモードデータ及び組織画像データを生成するためのBモードデータを生成することも可能である。
 画像生成部14は、Bモード処理部12及びドプラ処理部13が生成したデータから超音波画像データを生成する。すなわち、画像生成部14は、Bモード処理部12が生成したBモードデータから反射波の強度を輝度にて表したBモード画像データを生成する。また、画像生成部14は、ドプラ処理部13が生成したドプラデータから移動体情報を表す平均速度画像データ、分散画像データ、パワー画像データ、又は、これらの組み合わせ画像としてのカラードプラ画像データを生成する。
 ここで、画像生成部14は、超音波走査の走査線信号列を、テレビ等に代表されるビデオフォーマットの走査線信号列に変換(スキャンコンバート)し、表示用画像としての超音波画像データを生成する。また、画像生成部14は、スキャンコンバート以外に種々の画像処理として、例えば、スキャンコンバート後の複数の画像フレームを用いて、輝度の平均値画像を再生成する画像処理(平滑化処理)や、画像内で微分フィルタを用いる画像処理(エッジ強調処理)等を行なう。
 また、画像生成部14は、画像データを格納する記憶メモリを搭載しており、3次元画像の再構成処理等を行うことが可能である。また、画像生成部14が搭載する記憶メモリから、例えば、診断の後に操作者が検査中に記録された画像を呼び出すことが可能となっている。
 画像合成部16は、画像生成部14が生成した超音波画像に、種々のパラメータの文字情報、目盛り、ボディマーク等と合成し、ビデオ信号としてモニタ2に出力する。また、画像合成部16は、複数の画像データを重畳した合成画像データを生成する。なお、第1の実施形態に係る画像合成部16が生成する合成画像データについては、後に詳述する。
 画像メモリ15は、画像生成部14が生成した超音波画像データや、画像合成部16が合成した合成画像データを記憶するメモリである。例えば、画像メモリ15は、FREEZEボタンが押下された直前の複数フレームに対応する超音波画像を保存する。超音波診断装置は、この画像メモリ15に記憶されている画像を連続表示(シネ表示)することで、超音波動画像を表示することも可能である。
 内部記憶部17は、超音波送受信、画像処理及び表示処理を行なうための制御プログラムや、診断情報(例えば、患者ID、医師の所見等)や、診断プロトコルや各種ボディマーク等の各種データを記憶する。また、内部記憶部17は、必要に応じて、画像メモリ15が記憶する画像データの保管等にも使用される。なお、内部記憶部17が記憶するデータは、図示しないインターフェース回路を経由して、外部の周辺装置へ転送することができる。
 制御部18は、超音波診断装置における処理全体を制御する。具体的には、制御部18は、入力装置3を介して操作者から入力された各種設定要求や、内部記憶部17から読込んだ各種制御プログラム及び各種データに基づき、送受信部11、Bモード処理部12、ドプラ処理部13、画像生成部14及び画像合成部16の処理を制御する。例えば、図1に示すスキャン制御部181は、送受信部11を介して超音波プローブ1による超音波スキャンを制御する。また、図1に示す表示制御部184は、画像メモリ15が記憶する超音波画像データや合成画像データをモニタ2にて表示するように制御する。
 また、第1の実施形態に係る制御部18は、スキャン制御部181及び表示制御部184の他に、図1に示すように、検出部182及び画像生成制御部183を有する。画像生成制御部183は、図1に示すように、選択部183aと、抽出部183bとを有する。
 なお、第1の実施形態において、スキャン制御部181、検出部182、選択部183a、抽出部183b及び表示制御部184が実行する処理については後に詳述する。
 以上、第1の実施形態に係る超音波診断装置の全体構成について説明した。かかる構成のもと、第1の実施形態に係る超音波診断装置は、穿刺針1aが挿入された被検体Pの生体組織を撮像した超音波画像データを生成する。そして、第1の実施形態に係る超音波診断装置は、以下、詳細に説明する制御部18の制御処理により、穿刺針1aの角度によらず穿刺針1aの視認性が向上している合成画像データを生成する。
 例えば、入力装置3が有する穿刺モード開始ボタンを操作者が押下すると、第1の実施形態に係る超音波診断装置は、以下に説明する処理を開始する。また、例えば、入力装置3が有する穿刺モード終了ボタンを操作者が押下すると、第1の実施形態に係る超音波診断装置は、以下に説明する処理を終了する。
 まず、スキャン制御部181は、穿刺針1aが挿入された被検体Pを超音波スキャンする際に、第1のスキャンと第2のスキャンとを超音波プローブ1に実行させる。
 第1のスキャンは、被検体Pの組織の映像化を目的として振動子面に対して第1の方向に超音波送信を行なうスキャンである。すなわち、第1のスキャンは、被検体Pの生体組織を映像化するために最適となる第1の方向の超音波送信を、振動子の配列方向に沿って行なう超音波スキャンである。具体的には、第1の方向は、超音波プローブ1の振動子面に対して垂直な方向である。例えば、第1の方向は、方位方向に対して垂直な方向である。なお、第1の方向は、被検体Pの組織を映像化するために最適となる超音波送信方向であるならば、振動子面に対して垂直な方向以外の方向であっても良い。
 ここで、第1のスキャンで設定される超音波送受信条件としては、生体組織を良好に描出される画像データを得るために、上述したTHIモード用の条件が設定される。ただし、生体組織を良好に描出される画像データが得られるのであれば、例えば、通常のBモード用の条件が設定される場合であっても良い。
 また、第2のスキャンは、振動子面に対して複数の方向それぞれで超音波送信を行なうスキャンである。すなわち、第2のスキャンは、被検体Pに挿入された穿刺針1aを映像化するために最適となる超音波送信方向を探索することを目的として、複数の方向それぞれで超音波送信を行なう超音波スキャン(オブリークスキャン)である。第2のスキャンでは、複数の方向それぞれで、超音波送信が振動子の配列方向に沿って行なわれる。第1の実施形態では、上記の複数の方向の各方向は、超音波プローブ1の振動子面に対して垂直以外の方向である。例えば、複数の方向の各方向は、方位方向に対して垂直以外の方向である。
 ここで、第2のスキャンの超音波送受信条件は、第1のスキャンと同じ場合であっても良いが、グレーティングローブ等によるアーチファクトが発生することを可能な限り抑制し、かつ、穿刺針1aからの受信信号が大きくなる設定にすることが望ましい。このため、例えば、第2のスキャンでは、比較的低い周波数の送信波形を超音波プローブ1から送信し、受信信号の処理では、送信超音波の基本波成分を用いる超音波送受信条件が設定される。
 図2は、第1の実施形態に係るスキャン制御部を説明するための図である。図2に示す一例では、ターゲット部位(T)に向かって穿刺針1aが挿入されている。かかる状態で、スキャン制御部181は、Bモード画像データやTHI画像データを生成するために行なわれるスキャンと同様に、第1のスキャンとして、図2に示すように、方位方向に対して垂直方向に超音波送信を実行させる。更に、スキャン制御部181は、図2に示すように、第2のスキャンとして、例えば、3つの異なる角度「α1、α2、α3」にてオブリークスキャンを実行させる。なお、オブリーク角度の値や数は、初期設定されている場合であっても良いし、穿刺を行なう前に操作者により設定される場合であっても良い。
 そして、図1に示す画像生成部14は、第1のスキャンにより超音波プローブ1が受信した反射波を用いて第1の超音波画像データを生成する。本実施形態では、第1の超音波画像データは、高調波成分を用いたTHI画像データである。また、画像生成部14は、第2のスキャンにより超音波プローブ1が受信した反射波を用いて複数の方向ごとの超音波画像データで構成される第2の超音波画像データ群を生成する。第2の超音波画像データ群は、オブリーク角度が異なる複数の超音波画像データである。
 上記の一例では、画像生成部14は、第2の超音波画像データ群として「オブリーク角度:α1」の超音波画像データ、「オブリーク角度:α2」の超音波画像データ及び「オブリーク角度:α3」の超音波画像データを生成する。以下では、第2のスキャンにより生成される超音波画像データを、オブリーク画像データと記載する場合がある。
 そして、第1の実施形態では、検出部182による処理結果を用いた画像生成制御部183の画像生成制御処理が行なわれる。検出部182は、画像データ内に描出された線分を検出する機能を有する。更に、第1の実施形態では、検出部182は、検出した線分の角度を算出する機能を有する。検出部182は、第2の超音波画像データ群に基づいて線分を検出する。更に、第1の実施形態では、検出部182は、検出した線分の角度を算出する。検出部182は、検出した線分の角度を穿刺針1aの角度として算出する。そして、画像生成制御部183は、検出部182が検出した線分に関する情報に基づいて、穿刺針1aが描出された針画像データを生成するように画像生成部14を制御する。第1の実施形態に係る画像生成制御部183は、検出部182が算出した角度に基づいて、穿刺針1aが描出された針画像データを生成するように画像生成部14を制御する。例えば、針画像データは、穿刺針1aが高輝度で描出された画像データである。第1の実施形態では、検出部182は、第2の超音波画像データ群から線分を検出し、検出した線分の角度を算出する。そして、第1の実施形態に係る画像生成制御部183は、第2の超音波画像データ群を構成する各画像データに対して検出部182が算出した角度に基づいて穿刺針1aが高輝度で描出された針画像データを生成するように画像生成部14を制御する。
 以下、第1の実施形態で行なわれる画像生成制御処理の一例について、図3及び図4を用いて説明する。図3は、第1の実施形態で行なわれる画像生成制御処理の概略を示す図であり、図4は、図1に示す検出部を説明するための図である。
 図3に例示するように、検出部182は、第2の超音波画像データ群である『「オブリーク角度:α1」の超音波画像データ、「オブリーク角度:α2」の超音波画像データ及び「オブリーク角度:α3」の超音波画像データ』を用いて、穿刺針1aの角度(β)を算出する(図3の(1)を参照)。例えば、検出部182は、オブリーク画像データに対して、ハフ(Hough)変換等の線分検出処理を行なう。
 これにより、検出部182は、図4に示すように、オブリーク画像データ内の線分Lを検出する。そして、検出部182は、図4に示すように、「方位方向(画像データの横方向)の直線L1」と「線分Lを含む直線」とがなす角度(β)を算出する。この角度(β)は、図4に示すように、「線分Lに対して垂直方向となる直線L2」と「方位方向に対して垂直方向となる直線L3」とがなす角度でもある。すなわち、角度(β)は、線分Lに対応する直線状の反射源に対して垂直に超音波送信を行なうためのオブリーク角度となる。
 ここで、線分Lに対応する直線状の反射源は、穿刺針1aとなる可能性が高い。このことから、角度(β)は、穿刺針1aに対して垂直方向で超音波送信を行なうためのオブリーク角度となる。すなわち、角度(β)は、穿刺針1aの映像化に最適な超音波送信方向を行なうためのオブリーク角度となる。なお、線分検出処理及び角度算出処理は、ハフ変換に限定されず、画像中から線分の角度を算出する手法として、一般的に知られている手法のいずれを用いても良い。
 ここで、検出部182は、第2の超音波画像データ群を構成する各画像データから算出した角度の平均値や中央値等の統計値を角度(β)として算出する。また、検出部182は、線分が検出されなかった画像データや、所定の長さ以上の長さとなる線分が検出されなかった画像データについては、角度算出処理を行なわないものとする。
 そして、図1に示す画像生成制御部183が有する選択部183aは、第2の超音波画像データ群を構成する各画像データに対して検出部182が算出した角度に基づいて、第3の超音波画像データを第2の超音波画像データ群から選択する。第3の超音波画像データは、穿刺針1aの映像化に適した方向で行なわれた超音波送信により生成された画像データである。具体的には、選択部183aは、検出部182が算出した角度(β)に基づいて、穿刺針1aに対して最も垂直に近い角度となる方向で行なわれた超音波送信により生成された画像データ(第3の超音波画像データ)を選択する(図3の(2)を参照)。より具体的には、選択部183aは、角度(β)に最も近いオブリーク角度のオブリーク画像データを、第3の超音波画像データとして選択する。例えば、第2のスキャンで行なった複数のオブリーク角度が「{α1、α2、α3}={10度、20度、30度}」であり、「β=28度」であった場合、選択部183aは、「オブリーク角度:α3=30度」の超音波画像データを第3の画像データとして選択する。
 そして、図1に示す画像生成制御部183が有する抽出部183bは、第3の超音波画像データの高輝度領域を穿刺針領域として抽出する(図3の(3)を参照)。そして、抽出部183bは、抽出した穿刺針領域を用いて針画像データを生成するように画像生成部14を制御する。
 例えば、抽出部183bは、第3の超音波画像データ内で検出された線分付近で高輝度領域を探索する。一例として、抽出部183bは、第3の超音波画像データ内で検出された線分付近の画素で、高輝度領域抽出用の閾値以上の輝度値を有する領域を、高輝度領域として探索する。そして、画像生成部14は、抽出部183bが探索した高輝度領域以外の領域の輝度値を「0」にすることで針画像データを生成する。このように、高輝度領域の探索を線分付近に限定することで、アーチファクトに起因する高輝度領域や、反射強度の強い生体組織に対応する高輝度領域の輝度値を「0」として、穿刺針1aのみが描出された針画像データを生成することができる。
 そして、画像合成部16は、合成処理により、第1の超音波画像データと針画像データとの合成画像データを生成する(図3の(4)を参照)。例えば、画像合成部16は、生体組織が良好に描出された第1の超音波画像データと、穿刺針1aが良好に描出された針画像データの輝度値を画素単位で比較する。そして、画像合成部16は、針画像データの輝度値が「0」の画素を第1の超音波画像データの輝度値とし、針画像データの輝度値が「0」より大きい画素は、針画像データの輝度値とする合成画像データを作成する。これにより、良好な画質の生体組織画像上に高輝度の針画像データだけが重畳された画像データを生成することができる。なお、合成画像データの生成方法は、上記の輝度値比較に限定されない。合成画像データは、単純な加算や、重み付け加算により生成される場合であっても良い。
 そして、表示制御部184は、合成画像データをモニタ2に表示するように制御する。なお、本実施形態は、合成画像データの生成前に、ゲイン調整やダイナミックレンジ調整を行なって、針画像データの輝度値を調整する場合であっても良い。かかる輝度調整により、針画像データに描出された穿刺針1aを強調表示することができる。
 以上が、第1の実施形態で行なわれる画像生成制御処理となる。そして、第1の実施形態では、スキャン制御部181は、検出部182が算出した角度に基づいて、第2のスキャンの条件変更を行なう。
 まず、スキャン制御部181は、検出部182が算出した角度に基づいて、第2のスキャンで行なわれる超音波送信の方向を変更する。また、スキャン制御部181は、スキャン制御部181は、検出部182が算出した角度の時間変化量に基づいて、第2のスキャンで行なわれる超音波送信の方向数を変更する。なお、以下では、超音波送信の方向の変更と、超音波送信の方向数の変更とが行なわれる場合について説明するが、本実施形態は、超音波送信の方向の変更のみが行なわれる場合であっても良いし、超音波送信の方向数の変更のみが行なわれる場合であっても良い。
 以下、上記の第2のスキャンの条件変更処理について、図5A及び図5Bを用いて説明する。図5A及び図5Bは、第1の実施形態に係るスキャン制御部による第2のスキャンの条件変更処理の一例を示す図である。
 まず、超音波送信の方向の変更処理について説明する。スキャン制御部181は、1フレームの合成画像データが生成された際に検出部182が算出した角度に対応するオブリーク角度が、次のフレームの合成画像データを生成するために行なう第2のスキャンの複数のオブリーク角度に含まれるように制御する。また、これに追加して、スキャン制御部181は、1フレームの合成画像データが生成された際に第2のスキャンで行なった複数のオブリーク角度の間隔を、次のフレームの合成画像データを生成するために行なう第2のスキャンで狭めるように制御しても良い。
 例えば、図5Aに示すように、1フレームの合成画像データが生成された際に第2のスキャンで行なった複数のオブリーク角度が「{α1、α2、α3}={10度、20度、30度}」であり、検出部182が算出した角度「β=28度」であったとする。かかる場合、スキャン制御部181は、図5Aに示すように、次のフレームの合成画像データを生成するために行なう第2のスキャンで行なう複数のオブリーク角度を「{α1、α2、α3}={23度、28度、33度}」に変更する。図5Aに示す一例では、スキャン制御部181は、「20度」を中心として10度間隔の3方向で行なった第2のスキャンを、「β=28度」を含み、「β=28度」を中心として5度間隔の3方向で行なう第2のスキャンに変更する。これにより、次のフレームでは、穿刺針1aがより鮮明に表出された合成画像データを生成することができる。
 次に、超音波送信の方向の変更処理について説明する。穿刺をフリーハンドで行なう場合、穿刺針1aが進入する角度は、必ずしも一定とはならず、変動する場合が多い。また、穿刺は、血管を避けながら穿刺針1aを進入する状況で行なわれる場合もあり、かかる場合、穿刺針1aが進入する角度は、変動する。また、穿刺アダプタを用いる場合であっても、同様の事が生じる。
 そこで、例えば、スキャン制御部181は、角度(β)の時間変化量「dβ/dt」を算出する。或いは、角度(β)の時間変化量は、検出部182が行なっても良い。そして、スキャン制御部181は、「dβ/dt」と角度変化量閾値「TH(β)」とを比較し、「dβ/dt≧TH(β)」である場合、オブリークスキャンの超音波送信方向数を増やす。
 例えば、図5Bに示すように、「n」番目のフレームの合成画像データが生成された際に第2のスキャンで行なった複数のオブリーク角度が「{α1、α2、α3}={10度、20度、30度}」であり、検出部182が算出した角度「β=28度」であったとする。更に、「n-1」番目のフレームの合成画像データが生成された時の角度と、「n」番目のフレームの合成画像データが生成された時の角度との間で算出された時間変化量(dβ/dt)が「dβ/dt≧TH(β)」であったとする。かかる場合、スキャン制御部181は、図5Bに示すように、「n+1」番目のフレームの合成画像データを生成するために行なう第2のスキャンで行なう複数のオブリーク角度を「{α1、α2、α3、α4、α5}={18度、23度、28度、33度、38度}」に変更する。
 図5Bに示す一例では、スキャン制御部181は、「20度」を中心として10度間隔の3方向で行なった第2のスキャンを、「β=28度」を含み、「β=28度」を中心として5度間隔の5方向で行なう第2のスキャンに変更する。これにより、穿刺針1aの角度が現状の28度から数度変化しても、5方向のオブリーク画像データのいずれかに穿刺針1aが高輝度で描出されるため、合成画像データにおける穿刺針1aの視認性を確保することができる。
 ただし、スキャン制御部181は、第2のスキャンの条件変更に基づいて、変更後の第2のスキャンの超音波送受信条件を変更する。例えば、図5Bに示すように、オブリーク方向数が3方向から5方向に変更された場合、1フレームのオブリーク画像データを生成するための送受信ビームの密度を、現状の「3/5」にする。これにより、本実施形態では、合成画像のフレームレートを維持することができる。
 次に、図6を用いて、第1の実施形態に係る超音波診断装置の処理の一例について説明する。図6は、第1の実施形態に係る超音波診断装置の処理例を説明するためのフローチャートである。
 図6に示すように、第1の実施形態に係る超音波診断装置は、穿刺モードが開始されたか否かを判定する(ステップS101)。ここで、穿刺モードが開始されていない場合(ステップS101否定)、第1の実施形態に係る超音波診断装置は、穿刺モードが開始されるまで待機する。
 一方、穿刺モードが開始された場合(ステップS101肯定)、スキャン制御部181は、第1のスキャン及び第2のスキャンを実行するように超音波プローブ1を制御する(ステップS102)。
 そして、画像生成部14は、第1の超音波画像データ及び第2の超音波画像データ群を生成する(ステップS103)。そして、検出部182は、第2の超音波画像データ群に対して、線分検出処理を行ない(ステップS104)、線分の角度、すなわち、穿刺針1aの角度を算出する(ステップS105)。
 そして、選択部183aは、角度に基づいて、第3の超音波画像データを選択し(ステップS106)、抽出部183bは、第3の超音波画像データの高輝度領域を抽出し、抽出部183bの制御により、画像生成部14は、針画像データを生成する(ステップS107)。
 そして、画像合成部16は、第1の超音波画像データと針画像データとの合成画像を生成し(ステップS108)、表示制御部184は、合成画像データを表示するように制御する(ステップS109)。
 そして、スキャン制御部181は、穿刺モードが終了したか否かを判定する(ステップS110)。ここで、穿刺モードが終了していない場合(ステップS110否定)、スキャン制御部181は、角度及び角度の時間変化量に応じて、オブリーク角度及びオブリーク方向数を決定する(ステップS111)。すなわち、スキャン制御部181は、角度及び角度の時間変化量に基づいて、オブリーク角度の変更を行なうか否か、オブリーク方向数の変更を行なうか否かを決定する。そして、スキャン制御部181は、オブリーク角度の変更を行なう場合は、変更後のオブリーク角度を決定し、オブリーク方向数の変更を行なう場合は、変更後のオブリーク方向数を決定する。
 そして、スキャン制御部181は、ステップS111で行なった決定処理結果に基づいて、第2のスキャンの送受信条件を決定し(ステップS112)、ステップS102に戻って、次のフレーム分の合成画像を生成するための第1のスキャン及び第2のスキャンが実行されるように制御する。
 一方、穿刺モードが終了した場合(ステップS110肯定)、超音波診断装置は、処理を終了する。なお、表示制御部184は、合成画像データとともに、第1の超音波画像データや第3の超音波画像データ、第2の超音波画像群等を並列表示させても良い。また、上記では、穿刺モードの終了判定がステップS109の合成画像表示後に実行される場合について説明した。しかし、第1の実施形態は、穿刺モードの終了判定がステップS102の第1のスキャン及び第2のスキャンが行なわれた後に実行される場合であっても良い。すなわち、第1のスキャン及び第2のスキャンは、ステップS103からステップS109の処理と並行して、順次実行される場合であっても良い。
 上述してきたように、第1の実施形態では、オブリーク画像データ内の線分を検出し、検出した線分の角度を算出することで、穿刺針1aの映像化に最適なオブリーク角度を求める。そして、第1の実施形態では、算出した角度に最も近いオブリーク角度に対応するオブリーク画像データを、穿刺針1aが高輝度で描出された領域が含まれる画像データとして選択する。そして、第1の実施形態では、選択したオブリーク画像データの高輝度領域を抽出することで、針画像データを生成し、第1の超音波画像データに合成する。
 例えば、針画像データを生成するために、オブリーク角度が異なる複数のオブリーク画像データデータの輝度値の分布から、穿刺針1aが高輝度で描出された領域が含まれる画像データを選択ことも考えられる。しかし、かかる方法では、穿刺角度が不明な穿刺針1aを高輝度で描出するために、複数のオブリーク角度で超音波を照射する必要がある。また、かかる方法では、必ずしも穿刺針1aが高輝度で描出されている画像データを選択できるとは限らず、穿刺針1aの輝度が低く、かつ、骨やアーチファクトが高輝度で描出されている画像データが選択されてしまう可能性がある。また、穿刺針1aに位置センサを取り付けることで穿刺針1aの位置及び角度を検出し、その角度に基づいて、オブリーク角度を決定することも考えられる。しかし、位置センサは、高額であり、全ての穿刺針1aに位置センサを取り付けることは実用的ではない。また、操作者が、オブリーク角度を設定及び変更する仕組みを設け、画像データ中の穿刺針1aが高輝度で描出されるオブリーク角度を設定することも考えられる。しかし、かかる操作は、穿刺手技中の操作としては煩雑であり、逆に、検査効率を下げる場合がある。また、穿刺手技中、操作者は、滅菌した手袋を装着していることが多い。このため、穿刺手技中に、装置の操作を行うことは現実的ではない。
 穿刺針1aを最も高輝度で描出するためには、穿刺針1aに対して垂直に超音波ビームを照射することが必要である。第1の実施形態では、穿刺針1aが如何なる角度で挿入されていても、穿刺針1aに対応する線分を画像処理により検出することで、穿刺針1aに対して垂直となる超音波ビームの送信方向を直接求めることができる。従って、第1の実施形態では、穿刺針の角度によらず穿刺針の視認性を向上させることができる。
 また、第1の実施形態では、角度や角度の時間変化量に基づいて、第2のスキャンで行なう超音波送信方向や、方向数を変更する。これにより、穿刺角度が変動する場合であっても、穿刺針1aに対して垂直方向に近い方向でのオブリーク画像データが撮像されることを保証することができる。また、第1の実施形態では、送信方向数の変更にともなって、走査線密度を変更することから、合成画像データのフレームレートを維持することができる。
(第2の実施形態)
 第2の実施形態では、第1の実施形態で説明した第1のスキャン及び第2のスキャンと同様のスキャン制御の後に行なわれる画像生成制御部183の処理の変形例について、図7を用いて説明する。図7は、第2の実施形態で行なわれる画像生成制御処理の概略を示す図である。
 第2の実施形態に係る超音波診断装置は、図1を用いて説明した第1の実施形態で説明した超音波診断装置と同様に構成される。ただし、第2の実施形態では、抽出部183bの処理が行なわれた後に、選択部183aの処理が行なわれる点が第1の実施形態と異なる。以下、第1の実施形態と異なる点を中心に説明する。なお、以下の説明で、特に言及しない内容については、第1の実施形態で説明した内容が適用される。
 第2の実施形態では、画像生成制御部183は、第2の超音波画像群に基づく画像データ群を構成する各画像データに対して検出部182が算出した角度に基づいて、針画像データを生成するように画像生成部14を制御する。
 具体的には、第2の実施形態に係る抽出部183bは、第2の超音波画像データ群を構成する各画像データに対して閾値処理を行なって、高輝度領域が抽出された候補画像データ群を生成するように画像生成部14を制御する。具体的には、抽出部183bの制御により、画像生成部14は、オブリーク画像データ内で、輝度値が高輝度領域抽出用の閾値より小さい画素の輝度値を「0」とする。これにより、画像生成部14は、高輝度領域抽出用の閾値以上の輝度値を有する画素のみが高輝度で抽出された候補画像データを生成する。
 例えば、画像生成部14は、「オブリーク角度:α1」の超音波画像データから「オブリーク角度:α1」の候補データを生成し、「オブリーク角度:α2」の超音波画像データから「オブリーク角度:α2」の候補データを生成し、「オブリーク角度:α3」の超音波画像データから「オブリーク角度:α3」の候補データを生成する(図7の(1)を参照)。
 そして、第2の実施形態に係る検出部182は、各候補画像データに対して線分検出処理を行なって、穿刺針の角度(β)を算出する(図7の(2)を参照)。
 そして、第2の実施形態に係る選択部183aは、検出部182が算出した角度に基づいて、穿刺針1aの映像化に適した方向で行なわれた超音波送信により生成された画像データを針画像データとして候補画像データ群から選択する(図7の(3)を参照)。すなわち、選択部183aは、角度(β)に最も近いオブリーク角度の候補画像データを、針画像データとして選択する。
 そして、画像合成部16は、合成処理により、第1の超音波画像データと針画像データとの合成画像データを生成する(図7の(4)を参照)。そして、表示制御部184は、合成画像データをモニタ2に表示するように制御する。なお、第2の実施形態で行なわれる合成処理は、第1の実施形態で説明した合成処理と同様に行なわれる。また、第2の実施形態でも、第1の実施形態で説明したオブリーク角度及びオブリーク方向数の変更処理及び超音波送受信条件の変更処理が行なわれる。
 次に、図8を用いて、第2の実施形態に係る超音波診断装置の処理の一例について説明する。図8は、第2の実施形態に係る超音波診断装置の処理例を説明するためのフローチャートである。
 図8に示すように、第2の実施形態に係る超音波診断装置は、穿刺モードが開始されたか否かを判定する(ステップS201)。ここで、穿刺モードが開始されていない場合(ステップS201否定)、第2の実施形態に係る超音波診断装置は、穿刺モードが開始されるまで待機する。
 一方、穿刺モードが開始された場合(ステップS201肯定)、スキャン制御部181は、第1のスキャン及び第2のスキャンを実行するように超音波プローブ1を制御する(ステップS202)。
 そして、画像生成部14は、第1の超音波画像データ及び第2の超音波画像データ群を生成する(ステップS203)。そして、抽出部183bの制御により、画像生成部14は、第2の超音波画像データ群から、高輝度領域が抽出された候補画像データ群を生成する(ステップS204)。そして、検出部182は、候補画像データ群に対して、線分検出処理を行ない(ステップS205)、線分の角度、すなわち、穿刺針1aの角度を算出する(ステップS206)。
 そして、選択部183aは、角度に基づいて、候補画像データ群から針画像データを選択する(ステップS207)。そして、画像合成部16は、第1の超音波画像データと針画像データとの合成画像を生成し(ステップS208)、表示制御部184は、合成画像データを表示するように制御する(ステップS209)。
 そして、スキャン制御部181は、穿刺モードが終了したか否かを判定する(ステップS210)。ここで、穿刺モードが終了していない場合(ステップS210否定)、スキャン制御部181は、角度及び角度の時間変化量に応じて、オブリーク角度及びオブリーク方向数を決定する(ステップS211)。そして、スキャン制御部181は、ステップS211で行なった決定処理結果に基づいて、第2のスキャンの送受信条件を決定し(ステップS212)、ステップS202に戻って、次のフレーム分の合成画像を生成するための第1のスキャン及び第2のスキャンが実行されるように制御する。
 一方、穿刺モードが終了した場合(ステップS210肯定)、超音波診断装置は、処理を終了する。なお、表示制御部184は、合成画像データとともに、第1の超音波画像データや第2の超音波画像群、候補画像データ群等を並列表示させても良い。また、上記では、穿刺モードの終了判定がステップS209の合成画像表示後に実行される場合について説明した。しかし、第1の実施形態は、穿刺モードの終了判定がステップS202の第1のスキャン及び第2のスキャンが行なわれた後に実行される場合であっても良い。すなわち、第1のスキャン及び第2のスキャンは、ステップS203からステップS209の処理と並行して、順次実行される場合であっても良い。
 上述してきたように、第2の実施形態では、予め各オブリーク画像データ内の高輝度領域を抽出することで、針画像データとして選択可能な候補画像データ群を生成する。そして、第2の実施形態では、算出された角度に最も近いオブリーク角度に対応する候補画像データを、針画像データとして選択する。これによっても、穿刺針の角度によらず穿刺針の視認性を向上させることができる。
 なお、第2の実施形態では、第1の超音波画像データを構成する各画素の輝度値が、高輝度領域抽出用の閾値として用いられる場合であっても良い。また、第2の実施形態は、第2の超音波画像データ群を構成する各画像データから第1の超音波画像データを差分した画像データを候補画像データとする場合であっても良い。
(第3の実施形態)
 第3の実施形態では、第1及び第2の実施形態で説明した第2のスキャンとは異なる第2のスキャンを行なう場合について、図9等を用いて説明する。図9は、第3の実施形態で行なわれる画像生成制御処理の概略を示す図である。
 第3の実施形態に係る超音波診断装置は、図1を用いて説明した第1の実施形態で説明した超音波診断装置と同様に構成される。なお、以下の説明で、特に言及しない内容については、第1の実施形態等で説明した内容が適用される。
 第3の実施形態に係るスキャン制御部181は、第1及び第2の実施形態で説明した第1のスキャンを行なう。そして、第3の実施形態に係るスキャン制御部181は、第2のスキャンとして、振動子面に対して垂直方向を含む複数の方向それぞれで超音波送信を超音波プローブ1に実行させる。すなわち、第3の実施形態に係る第2のスキャンには、オブリーク角度「0度」のスキャンが含まれる。オブリーク角度「0度」は、通常、第1のスキャンで行なわれる第1の方向となる。例えば、オブリーク角度は、図9に示すように、4方向の場合「α1、α2、α3、α4」とし、α1を0度とする。これにより、画像生成部14は、図9に例示するように、第2の超音波画像データ群として「オブリーク角度:α1=0度」の超音波画像データ、「オブリーク角度:α2」の超音波画像データ、「オブリーク角度:α3」の超音波画像データ及び「オブリーク角度:α4」の超音波画像データを生成する。
 なお、第3の実施形態においても、第2のスキャンの超音波送受信条件は、第1の実施形態と同様に、グレーティングローブ等によるアーチファクトが発生することを可能な限り抑制し、かつ、穿刺針1aからの受信信号が大きくなる設定にする。例えば、第2のスキャンの超音波送受信条件は、比較的低い周波数の送信波形を超音波プローブ1から送信し、受信信号の処理では、送信超音波の基本波成分を用いると設定される。
 そして、第3の実施形態に係る検出部182は、第2の超音波画像データ群の中で垂直方向以外の方向で行なわれた超音波送受信により生成された各画像データに対して、線分検出処理及び角度検出処理を行なう。例えば、検出部182は、「オブリーク角度:α2」の超音波画像データ、「オブリーク角度:α3」の超音波画像データ及び「オブリーク角度:α4」の超音波画像データを対象として、角度(β)を算出する(図9の(1)を参照)。
 そして、第3の実施形態に係る選択部183aは、検出部182が算出した角度(β)に基づいて、第2の超音波画像データ群の中で「オブリーク角度:0度」以外の複数のオブリーク画像データから、第1の実施形態で説明したように、第3の超音波画像データを選択する。
 そして、第3の実施形態に係る抽出部183bは、第3の超音波画像データと「オブリーク角度が0度のオブリーク画像データ」に基づいて、高輝度領域(穿刺針領域)を抽出する(図9の(3)を参照)。そして、抽出部183bは、抽出した穿刺針領域を用いて針画像データを生成するように画像生成部14を制御する。
 第1の実施形態では、第3の超音波画像データとして選択されたオブリーク画像データから高輝度領域(穿刺針領域)を抽出していた。しかし、第1の実施形態では、高反射体の生体組織が描出された領域が高輝度領域として抽出され、針画像データのノイズとなる可能性がある。一方、第3の超音波画像データと同じ送受信条件で生成された「オブリーク角度が0度のオブリーク画像データ」には、穿刺針1aに起因する高輝度領域が含まれる可能性が低いが、高反射体の生体組織に起因する高輝度領域が含まれる可能性が高い。
 そこで、第3の実施形態に係る抽出部183bは、「オブリーク角度が0度のオブリーク画像データ」を用いることで、針画像データの生成に用いる高輝度領域にノイズが含まれないように、以下に説明する抽出処理を行なう。
 抽出部183bは、第3の超音波画像データと「オブリーク角度が0度のオブリーク画像データ」の輝度値を画素単位で比較する。そして、抽出部183bは、「オブリーク角度が0度のオブリーク画像データ」の方が大きい輝度値の画素を「0」とする。また、抽出部183bは、第3の超音波画像データの方が大きい輝度値の画素を、そのまま高輝度領域を構成する画素とする。そして、抽出部183bは、第3の超音波画像データを構成する画素で、輝度値を「0」とする画素の位置を画像生成部14に通知する。これにより、画像生成部14は、図9に示すように、第3の超音波画像データの高輝度領域(穿刺針領域)が抽出された針画像データを生成する。
 なお、抽出部183bは、第3の超音波画像データの輝度値から「オブリーク角度が0度のオブリーク画像データ」の輝度値を画素単位で差分した画像データを針画像データとして生成させても良い。また、抽出部183bは、第3の超音波画像データの輝度値と「オブリーク角度が0度のオブリーク画像データ」の輝度値とを画素単位で、重み付け加減算を行なった画像データを針画像データとして生成させても良い。
 そして、画像合成部16は、合成処理により、第1の超音波画像データと針画像データとの合成画像データを生成する(図9の(4)を参照)。そして、表示制御部184は、合成画像データをモニタ2に表示するように制御する。なお、第2の実施形態で行なわれる合成処理は、第1の実施形態で説明した合成処理と同様に行なわれる。
 なお、画素単位で輝度値を比較して第3の超音波画像データの穿刺針領域を抽出する場合、抽出部183bは、第3の超音波画像データの輝度値を低下した画像データを用いて、穿刺針領域の抽出処理を行なうことが好適である。例えば、抽出部183bは、第3の超音波画像のゲインを「オブリーク角度が0度のオブリーク画像」に対して低めにする。これにより、第3の超音波画像データ中の生体組織に対応する画素の輝度値が、輝度値比較により、確実に「0」になり、高輝度な穿刺針だけを残すことができる。
 オブリークスキャンでは、一般的な設定では、超音波診断装置は、各オブリーク画像データの全体輝度が略同一となるように、ゲイン調整やダイナミックレンジ調整を行なって、輝度調整を行なっている。そこで、第3の超音波画像データの輝度値と「オブリーク角度が0度のオブリーク画像データ」の輝度値とを画素単位で比較する際に、あえて、第3の超音波画像のゲインを下げることで、第3の超音波画像データの穿刺針領域を精度良く抽出することができる。
 なお、第3の実施形態でも、第1の実施形態で説明したオブリーク角度及びオブリーク方向数の変更処理及び超音波送受信条件の変更処理が行なわれる。
 例えば、1フレームの合成画像データが生成された際に第2のスキャンで行なった複数のオブリーク角度が「{α1、α2、α3、α4}={0度、10度、20度、30度}」であり、検出部182が算出した角度「β=28度」であったとする。かかる場合、スキャン制御部181は、次のフレームの合成画像データを生成するために行なう第2のスキャンで行なう複数のオブリーク角度を「{α1、α2、α3、α4}={0度、23度、28度、33度}」に変更する。
 また、例えば、「n」番目のフレームの合成画像データが生成された際に第2のスキャンで行なった複数のオブリーク角度が「{α1、α2、α3、α4}={0度、10度、20度、30度}」であり、検出部182が算出した角度「β=28度」であったとする。更に、「n-1」番目のフレームの合成画像データが生成時の角度と、「n」番目のフレームの合成画像データが生成時の角度との間で算出された時間変化量(dβ/dt)が「dβ/dt≧TH(β)」であったとする。かかる場合、スキャン制御部181は、「n+1」番目のフレームの合成画像データを生成するために行なう第2のスキャンで行なう複数のオブリーク角度を「{α1、α2、α3、α4、α5、α6}={0度、18度、23度、28度、33度、38度}」に変更する。
 かかる場合、スキャン制御部181は、オブリーク方向数が4方向から6方向に変更されたことから、1フレームのオブリーク画像データを生成するための送受信ビームの密度を、現状の「4/6」にする。これにより、本実施形態では、合成画像のフレームレートを維持することができる。
 なお、第3の実施形態に係る超音波診断装置が行なう処理は、図6を用いて説明した第1の実施形態に係る超音波診断装置が行なう処理と比較して、以下の点が異なる。すなわち、第3の実施形態では、図6のステップS102において第2のスキャンがオブリーク角度「0度」を含む点が、第1の実施形態と比較して異なる。また、第3の実施形態では、図6のステップS104において線分検出処理が「オブリーク角度が0度のオブリーク画像」以外の第2の超音波画像データ群を対象とする点が、第1の実施形態と比較して異なる。また、第3の実施形態に係る超音波診断装置が行なう処理は、図6のステップS107の処理に、「オブリーク角度が0度のオブリーク画像」が用いられる点が、第1の実施形態と比較して異なる。
 上述してきたように、第3の実施形態では、「オブリーク角度が0度のオブリーク画像」を用いた画素間での輝度値比較を行なうことで、第3の超音波画像データから抽出される高輝度領域にノイズ成分が含まれてしまうことを回避できる。これにより、第3の実施形態では、穿刺針の視認性を更に向上させることができる。
 また、第3の実施形態では、第3の超音波画像データの輝度値を低下させたうえで、高輝度領域の抽出を行なうので、確実に穿刺針領域を抽出することができる。
(第4の実施形態)
 第4の実施形態では、第3の実施形態で説明した第1のスキャン及び第2のスキャンと同様のスキャン制御の後に行なわれる画像生成制御部183の処理の変形例について、図7を用いて説明する。図10は、第4の実施形態で行なわれる画像生成制御処理の概略を示す図である。
 第4の実施形態に係る超音波診断装置は、図1を用いて説明した第1の実施形態で説明した超音波診断装置と同様に構成される。ただし、第4の実施形態では、抽出部183bの処理が行なわれた後に、選択部183aの処理が行なわれる点が第3の実施形態と異なる。以下、第3の実施形態と異なる点を中心に説明する。なお、以下の説明で、特に言及しない内容については、第1の実施形態等で説明した内容が適用される。
 まず、第4の実施形態でも、第3の実施形態と同様に、第2のスキャンとして、振動子面に対して垂直方向を含む複数の方向それぞれで超音波送信が行なわれる。これにより、画像生成部14は、例えば、図10に示すように、第2の超音波画像データ群として「オブリーク角度:α1=0度」の超音波画像データ、「オブリーク角度:α2」の超音波画像データ、「オブリーク角度:α3」の超音波画像データ及び「オブリーク角度:α4」の超音波画像データを生成する。
 そして、第4の実施形態では、画像生成制御部183は、第2の超音波画像群に基づく画像データ群を構成する各画像データに対して検出部182が算出した角度に基づいて、針画像データを生成するように画像生成部14を制御する。
 具体的には、第4の実施形態に係る抽出部183bは、第2の超音波画像データ群の中で垂直方向以外の方向で行なわれた超音波送受信により生成された各画像データから、第2のスキャンとして垂直方向で行なわれた超音波送受信により生成された画像データを差分した画像データ群を、候補画像データ群として生成するように画像生成部14を制御する。
 すなわち、画像生成部14は、抽出部183bの制御により、「オブリーク角度が0度以外のオブリーク角度のオブリーク画像データ」の輝度値から「オブリーク角度が0度のオブリーク画像データ」の輝度値を画素単位で差分することで、高輝度領域が抽出された候補画像データ群(差分画像データ群)を生成する(図10の(1)を参照)。なお、画像生成部14は、差分値が負となる画素を「0」とする。
 「オブリーク角度が0度以外のオブリーク角度のオブリーク画像データ」は、穿刺針1aが良好に映像化されている可能性のある画像データである。また、「オブリーク角度が0度のオブリーク画像データ」は、第2のスキャンの超音波送受信条件では、生体組織が良好に映像化されている画像データである。従って、上記の差分処理により生成された候補画像データ群を構成する複数の画像データには、穿刺針領域に対応する高輝度領域が抽出された画像データが含まれている。かかる画像データ群は、第3の実施形態で説明した画素単位で輝度値を比較することで生成される針画像データとして選択可能な画像データを含む画像データ群となる。
 従って、第4の実施形態では、候補画像データ群のいずれかの候補画像データが針画像データとして選択される。このことから、第4の実施形態では、第3の実施形態で第3の超音波画像データに対して行なった輝度値調整処理を、「オブリーク角度が0度以外のオブリーク角度のオブリーク画像データ」に対して行なうことが望ましい。
 すなわち、第4の実施形態に係る抽出部183bは、第2の超音波画像データ群の中で垂直方向以外の方向で行なわれた超音波送受信により生成された各画像データの輝度値を低下した画像データを用いて、候補画像データ群を生成するように画像生成部14を制御する。これにより、候補画像データの高輝度領域にノイズ成分が含まれることを確実に回避できる。
 そして、第4の実施形態に係る検出部182は、各候補画像データに対して線分検出処理を行なって、穿刺針の角度(β)を算出する(図10の(2)を参照)。
 そして、第4の実施形態に係る選択部183aは、検出部182が算出した角度に基づいて、穿刺針1aの映像化に適した方向で行なわれた超音波送信により生成された画像データを針画像データとして候補画像データ群から選択する(図10の(3)を参照)。すなわち、選択部183aは、角度(β)に最も近いオブリーク角度の候補画像データを、針画像データとして選択する。
 そして、画像合成部16は、合成処理により、第1の超音波画像データと針画像データとの合成画像データを生成する(図10の(4)を参照)。そして、表示制御部184は、合成画像データをモニタ2に表示するように制御する。なお、第4の実施形態で行なわれる合成処理は、第1の実施形態で説明した合成処理と同様に行なわれる。また、第4の実施形態でも、第3の実施形態で説明したオブリーク角度及びオブリーク方向数の変更処理及び超音波送受信条件の変更処理が行なわれる。
 なお、第4の実施形態に係る超音波診断装置が行なう処理は、図8を用いて説明した第2の実施形態に係る超音波診断装置が行なう処理と比較して、以下の点が異なる。すなわち、第4の実施形態では、図8のステップS202において第2のスキャンがオブリーク角度「0度」を含む点が、第2の実施形態と比較して異なる。また、第4の実施形態では図8のステップS204の処理が「オブリーク角度が0度のオブリーク画像データ」を用いて「オブリーク角度が0度以外のオブリーク角度のオブリーク画像データ」から候補画像データ群が生成される点が、第2の実施形態と比較して異なる。
 上述してきたように、第4の実施形態では、予め「オブリーク角度が0度のオブリーク画像データ」を用いて「オブリーク角度が0度以外のオブリーク角度のオブリーク画像データ」内の高輝度領域を抽出することで、針画像データとして選択可能な候補画像データ群を生成する。そして、第4の実施形態では、算出された角度に最も近いオブリーク角度に対応する候補画像データを、針画像データとして選択する。これによっても、穿刺針の角度によらず穿刺針の視認性を向上させることができる。
 また、第4の実施形態では、「オブリーク角度が0度以外のオブリーク角度のオブリーク画像データ」の輝度値を低下させたうえで、「オブリーク角度が0度のオブリーク画像データ」を用いた高輝度領域の抽出を行なうので、確実に穿刺針領域を抽出することができる。
(第5の実施形態)
 第5の実施形態では、上述した第1の実施形態~第4の実施形態の変形例について、図11~図13を用いて説明する。図11~図13は、第5の実施形態を説明するための図である。
 第1の実施形態~第4の実施形態では、検出された線分から算出された角度に基づいて、針画像データが生成される場合について説明した。しかし、針画像データは、検出された線分に基づいて、生成される場合であっても良い。
 また、第1の実施形態~第4の実施形態では、超音波画像データを用いて穿刺針1aが描出された針画像データを生成する場合について説明した。すなわち、第1の実施形態及び第3の実施形態では、第3の超音波画像データの穿刺針1aに対応する領域を用いて針画像データが生成される。また、第2の実施形態及び第4の実施形態では、候補画像データ群から針画像データが選択される。しかし、針画像データは、穿刺針1aに対応する人工的なマーカを描画することで生成される場合であっても良い。
 以下、第5の実施形態で行なわれる3つの変形例について説明する。第1変形例では、画像生成制御部183は、第2の超音波画像データ群に対して検出部182が検出した線分に基づくマーカを描画した画像データを、針画像データとして生成するように画像生成部14を制御する。図11に示す第2の超音波画像データ群は、図3に示す第2の超音波画像データ群と同じ画像データ群である。検出部182は、図11に示すように、「オブリーク角度:α1」の超音波画像データについては、線分検出が不可と判定する。また、検出部182は、図11に示すように、「オブリーク角度:α2」の超音波画像データから、線分100を検出する。また、検出部182は、図11に示すように、「オブリーク角度:α3」の超音波画像データから、線分101を検出する。
 ここで、画像生成制御部183は、線分の長さに対する閾値(以下、THL)以上を用いて、マーカ作成に用いる線分を選択する。仮に、線分100の長さが「THL」以上であり、線分101の長さが「THL」以上であったとする。かかる場合、画像生成制御部183は、線分100及び線分101に基づくマーカを描画するように画像生成部14を制御する。例えば、画像生成制御部183は、線分100の長さと線分101の長さとの平均値を、マーカの長さとする。また、例えば、画像生成制御部183は、線分100に対応する領域の平均輝度値と、線分101に対応する領域の平均輝度値とを比較し、値が高い線分にマーカを配置すると決定する。図11に例示する場合では、画像生成制御部183は、線分101にマーカを配置すると決定する。
 これにより、図11に示すように、線分100及び線分101に基づく線分102が決定される。そして、画像生成部14は、図11に示すように、線分102に対応する位置にマーカを描画する。そして、画像生成部14は、マーカを描画した画像データを針画像データとして画像合成部16に出力する。或いは、画像生成部14は、「オブリーク角度:α2」の超音波画像データと、「オブリーク角度:α3」の超音波画像データと、マーカとを重畳した画像データを、針画像データとして画像合成部16に出力しても良い。かかる場合、画像生成部14は、マーカの重畳対象として、「オブリーク角度:α2」の超音波画像データと「オブリーク角度:α3」の超音波画像データとの加算画像データ、又は、加算平均画像データ、又は、重み付け加算画像データを用いる。重み付け加算を行なう場合、重みは、例えば、線分に対応する領域の平均輝度値に基づいて決定される。
 なお、線分101の長さが、「THL」以上であり、線分100の長さが、「THL」より短い場合、線分101に基づくマーカが描画される。
 第2変形例では、画像生成制御部183は、第2の超音波画像データ群に対して検出部182が取得した線分及び角度に基づくマーカを描画した画像データを、針画像データとして生成するように画像生成部14を制御する。図12に示す第2の超音波画像データ群は、図11に示す第2の超音波画像データ群と同じ画像データ群である。また、図12に示す線分100及び線分101は、図11に示す線分100及び線分101と同じものである。
 検出部12は、図12に示すように、更に、線分100の角度「β2」を算出し、線分101の角度「β3」を算出する。仮に、線分100の長さが「THL」以上であり、線分101の長さが「THL」以上であったとする。かかる場合、画像生成制御部183は、線分100及び線分101と、角度「β2」及び角度「β3」とに基づくマーカを描画するように画像生成部14を制御する。例えば、画像生成制御部183は、線分100の長さと線分101の長さとの平均値を、マーカの長さとする。また、例えば、画像生成制御部183は、角度「β2」と角度「β3」との平均角度を、マーカの角度とする。また、画像生成制御部183は、マーカにおける深部の端点を、例えば、平均輝度値が高い線分101における深部の端点に設定する。
 これにより、図12に示すように、線分100及び線分101と、角度「β2」及び角度「β3」とに基づく線分103が決定される。そして、画像生成部14は、図11に示すように、線分103に対応する位置にマーカを描画する。そして、画像生成部14は、マーカを描画した画像データを針画像データとして画像合成部16に出力する。或いは、画像生成部14は、「オブリーク角度:α2」の超音波画像データと、「オブリーク角度:α3」の超音波画像データと、マーカとを重畳した画像データを、針画像データとして画像合成部16に出力しても良い。重畳処理を行なう場合は、上記の処理と同様の処理が適用される。
 なお、角度算出を行なう場合、第3の超音波画像データのみを用いて処理が行なわれても良い。かかる場合、第3の超音波画像データである「オブリーク角度:α3」の超音波画像データで検出された線分101に基づくマーカが描画されることになる。また、図11及び図12を用いて説明した第2の超音波画像データ群を対象とする処理は、第3の実施形態で説明した第2のスキャンが行なわれる場合であっても適用可能である。
 第3変形例では、画像生成制御部183は、第2の実施形態や第3の実施形態で説明した候補画像データ群に対して検出部182が取得した線分及び角度に基づくマーカを描画した画像データを、針画像データとして生成するように画像生成部14を制御する。図13に示す候補画像データ群は、図7に示す候補画像データ群と同じ画像データ群である。
 検出部182は、図13に示すように、「オブリーク角度:α1」の候補画像データについては、線分検出が不可と判定する。また、検出部182は、図13に示すように、「オブリーク角度:α2」の候補画像データから、線分200を検出する。また、検出部182は、図13に示すように、「オブリーク角度:α3」の候補画像データから、線分201を検出する。
 そして、検出部12は、図13に示すように、線分200の角度「β20」を算出し、線分201の角度「β30」を算出する。仮に、線分200の長さが「THL」以上であり、線分201の長さが「THL」以上であったとする。かかる場合、画像生成制御部183は、線分200及び線分201と、角度「β20」及び角度「β30」とに基づくマーカを描画するように画像生成部14を制御する。例えば、画像生成制御部183は、線分200の長さと線分201の長さとの平均値を、マーカの長さとする。また、例えば、画像生成制御部183は、角度「β20」と角度「β30」との平均角度を、マーカの角度とする。また、画像生成制御部183は、マーカにおける深部の端点を、例えば、平均輝度値が高い線分201における深部の端点に設定する。
 これにより、図13に示すように、線分200及び線分201と、角度「β20」及び角度「β30」とに基づく線分203が決定される。そして、画像生成部14は、図13に示すように、線分203に対応する位置にマーカを描画する。そして、画像生成部14は、マーカを描画した画像データを針画像データとして画像合成部16に出力する。或いは、画像生成部14は、「オブリーク角度:α2」の候補画像データと「オブリーク角度:α3」の候補画像データとマーカとを重畳した画像データを、針画像データとして画像合成部16に出力しても良い。なお、重畳処理を行なう場合は、上記の処理と同様の処理が適用される。
 なお、図13に示す処理は、第2の実施形態及び第4の実施形態において針画像データとして選択された候補画像データのみを用いて行なわれても良い。かかる場合、例えば、針画像データとして選択された「オブリーク角度:α3」の候補画像データで検出された線分201に基づくマーカが描画されることになる。
 上記のように、穿刺針1aを示す人工的なマーカを描画した針画像データを用いる場合であっても、穿刺針の角度によらず穿刺針の視認性を向上させることができる。
 なお、第1の実施形態~第5の実施形態で説明した図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部又は一部を、各種の負荷や使用状況等に応じて、任意の単位で機能的又は物理的に分散・統合して構成することができる。さらに、各装置にて行なわれる各処理機能は、その全部又は任意の一部が、CPU及び当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
 また、第1の実施形態~第5の実施形態で説明した画像処理方法は、あらかじめ用意された画像処理プログラムをパーソナルコンピュータやワークステーションなどのコンピュータで実行することによって実現することができる。この画像処理プログラムは、インターネットなどのネットワークを介して配布することができる。また、この画像処理プログラムは、ハードディスク、フレキシブルディスク(FD)、CD-ROM、MO、DVD、USBメモリ及びSDカードメモリ等のFlashメモリ等、コンピュータで読み取り可能な非一時的な記録媒体に記録され、コンピュータによって非一時的な記録媒体から読み出されることによって実行することもできる。
 以上、説明したとおり、第1の実施形態~第5の実施形態によれば、穿刺針の角度によらず穿刺針の視認性を向上させることができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (18)

  1.  穿刺針が挿入された被検体を超音波スキャンする際に、前記被検体の組織の映像化を目的として振動子面に対して第1の方向に超音波送信を行なう第1のスキャンと、振動子面に対して複数の方向それぞれで超音波送信を行なう第2のスキャンとを超音波プローブに実行させるスキャン制御部と、
     前記第1のスキャンにより前記超音波プローブが受信した反射波を用いて第1の超音波画像データを生成し、前記第2のスキャンにより前記超音波プローブが受信した反射波を用いて前記複数の方向ごとの超音波画像データで構成される第2の超音波画像データ群を生成する画像生成部と、
     前記第2の超音波画像データ群に基づいて線分を検出する検出部と、
     前記検出部が検出した線分に関する情報に基づいて、前記穿刺針が描出された針画像データを生成するように前記画像生成部を制御する画像生成制御部と、
     前記第1の超音波画像データと前記針画像データとの合成画像データを生成する画像合成部と、
     前記合成画像データを所定の表示部に表示するように制御する表示制御部と、
     を備える、超音波診断装置。
  2.  前記検出部は、更に、前記第2の超音波画像データ群に基づいて算出した線分の角度を算出し、
     前記画像生成制御部は、前記検出部が算出した角度に基づいて、前記針画像データを生成するように前記画像生成部を制御する、請求項1に記載の超音波診断装置。
  3.  前記画像生成制御部は、
     前記第2の超音波画像データ群を構成する各画像データに対して前記検出部が算出した角度に基づいて、前記穿刺針の映像化に適した方向で行なわれた超音波送信により生成された画像データを第3の超音波画像データとして前記第2の超音波画像データ群から選択する選択部と、
     前記第3の超音波画像データの高輝度領域を穿刺針領域として抽出し、抽出した穿刺針領域を用いて前記針画像データを生成するように前記画像生成部を制御する抽出部と、
     を備える、請求項2に記載の超音波診断装置。
  4.  前記スキャン制御部は、前記第2のスキャンとして、振動子面に対して垂直方向を含む複数の方向それぞれで超音波送信を前記超音波プローブに実行させ、
     前記選択部は、前記第2の超音波画像データ群の中で前記垂直方向以外の方向で行なわれた超音波送受信により生成された各画像データに対して前記検出部が算出した角度に基づいて、前記第3の超音波画像データを選択し、
     前記抽出部は、前記第3の超音波画像データと前記第2のスキャンとして前記垂直方向で行なわれた超音波送受信により生成された画像データとに基づいて、前記穿刺針領域を抽出する、請求項3に記載の超音波診断装置。
  5.  前記抽出部は、前記第3の超音波画像データの輝度値を低下した画像データを用いて、前記穿刺針領域の抽出処理を行なう、請求項4に記載の超音波診断装置。
  6.  前記画像生成制御部は、
     前記第2の超音波画像データ群を構成する各画像データに対して閾値処理を行なって、高輝度領域が抽出された候補画像データ群を生成するように前記画像生成部を制御する抽出部と、
     前記候補画像データ群を構成する各画像データに対して前記検出部が算出した角度に基づいて、前記穿刺針の映像化に適した方向で行なわれた超音波送信により生成された画像データを前記針画像データとして前記候補画像データ群から選択する選択部と、
     を備える、請求項2に記載の超音波診断装置。
  7.  前記スキャン制御部は、前記第2のスキャンとして、振動子面に対して垂直方向を含む複数の方向それぞれで超音波送信を前記超音波プローブに実行させ、
     前記抽出部は、前記第2の超音波画像データ群の中で前記垂直方向以外の方向で行なわれた超音波送受信により生成された各画像データから、前記第2のスキャンとして前記垂直方向で行なわれた超音波送受信により生成された画像データを差分した画像データ群を、前記候補画像データ群として生成するように前記画像生成部を制御する、請求項6に記載の超音波診断装置。
  8.  前記抽出部は、前記第2の超音波画像データ群の中で前記垂直方向以外の方向で行なわれた超音波送受信により生成された各画像データの輝度値を低下した画像データを用いて、前記候補画像データ群を生成するように前記画像生成部を制御する、請求項7に記載の超音波診断装置。
  9.  前記選択部は、前記検出部が算出した角度に基づいて、前記穿刺針に対して最も垂直に近い角度となる方向で行なわれた超音波送信により生成された画像データを選択する、請求項3に記載の超音波診断装置。
  10.  前記選択部は、前記検出部が算出した角度に基づいて、前記穿刺針に対して最も垂直に近い角度となる方向で行なわれた超音波送信により生成された画像データを選択する、請求項6に記載の超音波診断装置。
  11.  前記スキャン制御部は、前記検出部が算出した角度に基づいて、前記第2のスキャンで行なわれる超音波送信の方向を変更する、請求項2に記載の超音波診断装置。
  12.  前記スキャン制御部は、前記検出部が算出した角度の時間変化量に基づいて、前記第2のスキャンで行なわれる超音波送信の方向数を変更する、請求項2に記載の超音波診断装置。
  13.  前記スキャン制御部は、前記第2のスキャンの条件変更に基づいて、変更後の第2のスキャンの超音波送受信条件を変更する、請求項11に記載の超音波診断装置。
  14.  前記スキャン制御部は、前記第2のスキャンの条件変更に基づいて、変更後の第2のスキャンの超音波送受信条件を変更する、請求項12に記載の超音波診断装置。
  15.  前記画像生成制御部は、前記第2の超音波画像データ群に対して前記検出部が検出した線分に基づくマーカを描画した画像データを。前記針画像データとして生成するように前記画像生成部を制御する、請求項1に記載の超音波診断装置。
  16.  前記画像生成制御部は、前記第2の超音波画像データ群に対して前記検出部が取得した線分及び角度に基づくマーカを描画した画像データを、前記針画像データとして生成するように前記画像生成部を制御する、請求項2に記載の超音波診断装置。
  17.  前記画像生成制御部は、前記候補画像データ群に対して前記検出部が取得した線分及び角度に基づくマーカを描画した画像データを、前記針画像データとして生成するように前記画像生成部を制御する、請求項6に記載の超音波診断装置。
  18.  スキャン制御部が、穿刺針が挿入された被検体を超音波スキャンする際に、前記被検体の組織の映像化を目的として振動子面に対して第1の方向に超音波送信を行なう第1のスキャンと、振動子面に対して複数の方向それぞれで超音波送信を行なう第2のスキャンとを超音波プローブに実行させ、
     画像生成部が、前記第1のスキャンにより前記超音波プローブが受信した反射波を用いて第1の超音波画像データを生成し、前記第2のスキャンにより前記超音波プローブが受信した反射波を用いて前記複数の方向ごとの超音波画像データで構成される第2の超音波画像データ群を生成し、
     検出部が、前記第2の超音波画像データ群に基づいて線分を検出し、
     画像生成制御部が、前記検出部が検出した線分に関する情報に基づいて、前記穿刺針が描出された針画像データを生成するように前記画像生成部を制御し、
     画像合成部が、前記第1の超音波画像データと前記針画像データとの合成画像データを生成し、
     表示制御部が、前記合成画像データを所定の表示部に表示するように制御する、
     ことを含む、画像処理方法。
PCT/JP2013/067282 2012-06-25 2013-06-24 超音波診断装置及び画像処理方法 WO2014002963A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001065.1A CN103732152B (zh) 2012-06-25 2013-06-24 超声波诊断装置及图像处理方法
US14/566,446 US9833216B2 (en) 2012-06-25 2014-12-10 Ultrasonic diagnosis apparatus and image processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-142340 2012-06-25
JP2012142340 2012-06-25
JP2013131950A JP6176839B2 (ja) 2012-06-25 2013-06-24 超音波診断装置
JP2013-131950 2013-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/566,446 Continuation US9833216B2 (en) 2012-06-25 2014-12-10 Ultrasonic diagnosis apparatus and image processing method

Publications (1)

Publication Number Publication Date
WO2014002963A1 true WO2014002963A1 (ja) 2014-01-03

Family

ID=49783109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067282 WO2014002963A1 (ja) 2012-06-25 2013-06-24 超音波診断装置及び画像処理方法

Country Status (4)

Country Link
US (1) US9833216B2 (ja)
JP (1) JP6176839B2 (ja)
CN (1) CN103732152B (ja)
WO (1) WO2014002963A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3229698A1 (en) * 2014-12-09 2017-10-18 Koninklijke Philips N.V. Single-modality-based visual distinguishing of medical intervention device from tissue
US11123100B2 (en) 2013-03-15 2021-09-21 University Court Of The University Of Dundee Medical apparatus and its visualisation

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103889337B (zh) * 2012-10-23 2016-11-02 东芝医疗系统株式会社 超声波诊断装置以及超声波诊断装置控制方法
WO2015029499A1 (ja) * 2013-08-30 2015-03-05 富士フイルム株式会社 超音波診断装置および超音波画像生成方法
CN107847218B (zh) * 2015-07-09 2020-11-06 奥林巴斯株式会社 超声波观测装置、超声波观测装置的工作方法及存储介质
US10722216B2 (en) 2015-08-20 2020-07-28 Konica Minolta, Inc. Ultrasound image diagnostic apparatus
JP6044749B1 (ja) * 2015-08-20 2016-12-14 コニカミノルタ株式会社 超音波画像診断装置
EP3354203A4 (en) * 2015-09-25 2019-06-12 Olympus Corporation ULTRASOUND OBSERVATION DEVICE
US10366269B2 (en) 2016-05-06 2019-07-30 Qualcomm Incorporated Biometric system with photoacoustic imaging
US10235551B2 (en) 2016-05-06 2019-03-19 Qualcomm Incorporated Biometric system with photoacoustic imaging
WO2018056185A1 (ja) * 2016-09-21 2018-03-29 富士フイルム株式会社 光音響計測装置
US10932749B2 (en) * 2016-11-09 2021-03-02 Fujifilm Sonosite, Inc. Ultrasound system for enhanced instrument visualization
WO2018135188A1 (ja) * 2017-01-18 2018-07-26 古野電気株式会社 超音波撮像システム、超音波撮像装置、超音波撮像方法、及び画像合成プログラム
CN107361793B (zh) * 2017-07-18 2021-03-30 深圳开立生物医疗科技股份有限公司 超声波成像方法、系统及超声成像设备
JP6897416B2 (ja) * 2017-08-16 2021-06-30 コニカミノルタ株式会社 超音波診断装置およびその作動方法
JP7239275B2 (ja) * 2018-04-27 2023-03-14 キヤノンメディカルシステムズ株式会社 超音波診断装置及び穿刺支援プログラム
JP7313902B2 (ja) * 2018-05-22 2023-07-25 キヤノンメディカルシステムズ株式会社 超音波診断装置
JP7059843B2 (ja) * 2018-07-13 2022-04-26 コニカミノルタ株式会社 超音波診断装置、超音波画像表示方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208859A (ja) * 2002-12-27 2004-07-29 Toshiba Corp 超音波診断装置
JP2007301122A (ja) * 2006-05-11 2007-11-22 Aloka Co Ltd 超音波診断装置
JP2008012150A (ja) * 2006-07-07 2008-01-24 Toshiba Corp 超音波診断装置、及び超音波診断装置の制御プログラム
JP2012213606A (ja) * 2011-04-01 2012-11-08 Toshiba Corp 超音波診断装置及び制御プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122067A (ja) * 1995-10-31 1997-05-13 Olympus Optical Co Ltd 超音波内視鏡
JP2000166918A (ja) * 1998-12-07 2000-06-20 Toshiba Corp 超音波画像診断装置
US8123691B2 (en) * 2003-08-19 2012-02-28 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus for fixedly displaying a puncture probe during 2D imaging
JP4381344B2 (ja) * 2005-05-17 2009-12-09 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置
JP4898620B2 (ja) * 2006-10-06 2012-03-21 キヤノン株式会社 現像ローラ、それを用いた現像装置及び画像形成装置
JP5416900B2 (ja) * 2007-11-22 2014-02-12 株式会社東芝 超音波診断装置及び穿刺支援用制御プログラム
CN101467896B (zh) * 2007-12-29 2010-12-01 西门子(中国)有限公司 超声波设备
JP5380121B2 (ja) * 2008-06-09 2014-01-08 株式会社東芝 超音波診断装置
JP5495593B2 (ja) * 2009-03-23 2014-05-21 株式会社東芝 超音波診断装置及び穿刺支援用制御プログラム
US8861822B2 (en) * 2010-04-07 2014-10-14 Fujifilm Sonosite, Inc. Systems and methods for enhanced imaging of objects within an image

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004208859A (ja) * 2002-12-27 2004-07-29 Toshiba Corp 超音波診断装置
JP2007301122A (ja) * 2006-05-11 2007-11-22 Aloka Co Ltd 超音波診断装置
JP2008012150A (ja) * 2006-07-07 2008-01-24 Toshiba Corp 超音波診断装置、及び超音波診断装置の制御プログラム
JP2012213606A (ja) * 2011-04-01 2012-11-08 Toshiba Corp 超音波診断装置及び制御プログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11123100B2 (en) 2013-03-15 2021-09-21 University Court Of The University Of Dundee Medical apparatus and its visualisation
EP3229698A1 (en) * 2014-12-09 2017-10-18 Koninklijke Philips N.V. Single-modality-based visual distinguishing of medical intervention device from tissue
JP2017536903A (ja) * 2014-12-09 2017-12-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 組織からの医療介入デバイスの単一モダリティベースの視覚的識別
EP3229698B1 (en) * 2014-12-09 2023-07-05 Koninklijke Philips N.V. Single-modality-based visual distinguishing of medical intervention device from tissue

Also Published As

Publication number Publication date
US9833216B2 (en) 2017-12-05
US20150094569A1 (en) 2015-04-02
CN103732152B (zh) 2016-04-27
CN103732152A (zh) 2014-04-16
JP2014028128A (ja) 2014-02-13
JP6176839B2 (ja) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6176839B2 (ja) 超音波診断装置
JP6000569B2 (ja) 超音波診断装置及び制御プログラム
US10278670B2 (en) Ultrasound diagnostic apparatus and method of controlling ultrasound diagnostic apparatus
JP5536984B2 (ja) 超音波イメージング装置及び超音波速度最適化プログラム
JP5645628B2 (ja) 超音波診断装置
JP5925438B2 (ja) 超音波診断装置
JP6288996B2 (ja) 超音波診断装置及び超音波イメージングプログラム
JP7461530B2 (ja) 超音波診断装置及び穿刺支援プログラム
JP6139186B2 (ja) 超音波診断装置、画像処理装置及び画像処理プログラム
JP5897674B2 (ja) 超音波診断装置、画像処理装置及び画像処理プログラム
US11337674B2 (en) Ultrasonography apparatus and control method
JP2010178905A (ja) 超音波診断装置及び超音波診断装置の制御プログラム
US20140031687A1 (en) Ultrasonic diagnostic apparatus
JP6305718B2 (ja) 超音波診断装置及び制御プログラム
JP2015173899A (ja) 超音波診断装置、画像処理装置及び画像処理プログラム
JP2018015155A (ja) 医用画像処理装置及び医用画像処理プログラム
JP2006314689A (ja) 超音波診断装置及び超音波診断装置制御プログラム
JP2012245092A (ja) 超音波診断装置
JP2012143389A (ja) 超音波診断装置及びプログラム
JP7171228B2 (ja) 超音波診断装置及び医用情報処理プログラム
JP2012143358A (ja) 超音波診断装置及びプログラム
JP2010259672A (ja) 超音波診断装置
JP6793502B2 (ja) 超音波診断装置
JP2023108765A (ja) 超音波診断装置及び判定方法
JP2020188976A (ja) 超音波診断装置、スキャン制御方法及びスキャン制御プログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380001065.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810297

Country of ref document: EP

Kind code of ref document: A1