JP2004208859A - 超音波診断装置 - Google Patents
超音波診断装置 Download PDFInfo
- Publication number
- JP2004208859A JP2004208859A JP2002380477A JP2002380477A JP2004208859A JP 2004208859 A JP2004208859 A JP 2004208859A JP 2002380477 A JP2002380477 A JP 2002380477A JP 2002380477 A JP2002380477 A JP 2002380477A JP 2004208859 A JP2004208859 A JP 2004208859A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- puncture needle
- image
- ultrasonic beam
- diagnostic apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
【課題】生体内における穿刺針の位置を特定して、その超音波画像を強調して表示する処理を行うことで、映像化された体内組織と穿刺針像とを容易に識別することが可能な超音波診断装置を提供する。
【解決手段】演算・制御回路7は、穿刺アダプタ5に設けられた角度検出器6aにより、穿刺針の刺入角度に関する情報を取得して、その刺入角度に関する情報と、超音波プローブ1において取得される超音波ビームの反射波の受信信号に基づく輝度信号とから生体内における穿刺針の位置を判断し、超音波ビームの反射波の受信信号に含まれる穿刺針からの反射信号を特定して、DSC回路15は、穿刺針からの反射信号のみに、それがモニタ17上において強調して表示される処理を施す。
【選択図】 図1
【解決手段】演算・制御回路7は、穿刺アダプタ5に設けられた角度検出器6aにより、穿刺針の刺入角度に関する情報を取得して、その刺入角度に関する情報と、超音波プローブ1において取得される超音波ビームの反射波の受信信号に基づく輝度信号とから生体内における穿刺針の位置を判断し、超音波ビームの反射波の受信信号に含まれる穿刺針からの反射信号を特定して、DSC回路15は、穿刺針からの反射信号のみに、それがモニタ17上において強調して表示される処理を施す。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、超音波画像の監視下において穿刺術を施すことを可能に構成された超音波診断装置に関するものである。
【0002】
【従来の技術】
従来から、超音波画像の監視下における穿刺術においては、穿刺針の表面粗さや送信された超音波ビームに対する穿刺針の角度に起因して、穿刺針からの反射信号の強度が低下し、アーチファクトが発生するなどして、映像化された穿刺針像と体内組織とを超音波画像上で区別して認識することが困難になるといった問題があった。
【0003】
そこで、超音波診断装置の中には、超音波の送受信を行う超音波プローブに穿刺針の刺入経路を規定する規定具を設け、且つ、この規定具に、穿刺針の生体への進入長さと刺入角度を検出する検出器を設けて、穿刺針の先端位置を演算により求め、その位置を超音波画像上に重ね合わせて表示する機能を有するもの(例えば、特許文献1参照)や、生体内に刺入された穿刺針に対して、超音波が略直交して送信されるように超音波の進行方向を傾け、さらに、生体内に刺入された穿刺針の刺入経路上に超音波ビームの焦点が位置するように、その焦点位置を設定することで、穿刺針からの反射波の強度を高めて、穿刺針像を明瞭にすると共に、穿刺針の刺入経路周辺部の画像を明瞭に表示する機能を有するもの(例えば、特許文献2参照)等が存在している。
【0004】
【特許文献1】
特開平8−229042号公報
(段落〔0011〕−〔0022〕、第1図乃至第5図)
【特許文献2】
特開平9−28708号公報
(段落〔0020〕−〔0028〕、第1図及び第2図)
【0005】
【発明が解決しようとする課題】
しかしながら、例えば、上述の穿刺針の先端位置を演算によって求め、これを超音波画像上に重ね合わせて表示する機能を有する超音波診断装置においては、穿刺針の先端位置を正確に補足するために、穿刺針の進入長さと刺入角度を検出する検出器に高い精度と信頼性が要求されることとなり、また、上述した生体内に刺入された穿刺針に対して、超音波が略直交するように超音波ビームを傾ける手段を設けた超音波診断装置においては、穿刺針像が明瞭となる一方で、生体内の対象物からの反射波の強度は弱まる(生体内に刺入された穿刺針に対して、超音波が略直交して送受信されるように超音波の送受信方向を傾けることで、生体内の対象物に対する超音波の送受信角度は小さくなるため)ことから、生体内の対象物を表す部分の画像の画質が著しく低下するという問題があった。
【0006】
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、生体内における穿刺針の位置を確実に特定し、且つ、超音波画像の体内組織を表示する部分の画質を著しく低下させることなく、穿刺針を表示する部分のみを強調して表示する処理を施すことで、映像化された穿刺針像と体内組織とを容易に識別することを可能にする超音波診断装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、穿刺針の刺入経路を超音波ビームの走査線上に規定し、前記穿刺針の生体に対する刺入角度を検出する角度検出手段を有する穿刺アダプタを備えると共に、超音波を発生する複数の振動子を有し、前記振動子から発生する超音波を前記超音波ビームとして生体内において走査して、その反射波を受信する超音波プローブと、前記超音波プローブにおいて受信される前記超音波ビームの反射波に基づき、前記生体内の超音波画像を作成する超音波画像作成手段と、前記超音波画像作成手段により作成された超音波画像を表示する表示手段と、前記角度検出手段により検出される前記穿刺針の前記生体に対する刺入角度に基づいて、前記超音波ビームを前記穿刺針の刺入経路に対して略直交する方向に偏向させる超音波ビーム偏向手段と、前記超音波ビームを所定回数走査する毎に、前記超音波ビーム偏向手段により前記超音波ビームを前記穿刺針の刺入経路に対して略直交する方向に偏向させる制御を行う超音波ビーム制御手段と、を備えたことを特徴とする。
【0008】
また、請求項2記載の発明は、請求項1に記載の超音波診断装置であって、超音波画像作成手段は、前記超音波ビーム制御手段による超音波ビームの偏向を伴わない第1の超音波ビームの反射波に基づいて第1の超音波断層画像を作成し、また、前記超音波ビーム制御手段による超音波ビームの偏向を伴う第2の超音波ビームの反射波に基づいて第2の超音波断層画像を作成した後、さらに、前記第1の超音波断層画像と前記第2の超音波断層画像を加算処理することで第3の超音波断層画像を作成することを特徴とする。
【0009】
また、請求項3記載の発明は、請求項1又は請求項2に記載の超音波診断装置であって、前記超音波画像作成手段は、前記第2の超音波ビームの反射波に基づく輝度情報と、前記角度検出手段により検出される前記穿刺針の前記生体に対する刺入角度に関する情報とに基づいて、前記第2の超音波ビームの反射波に含まれる前記穿刺針からの反射信号を特定して、その反射信号に基づき作成される画像部分を強調して表示する処理を施すことを特徴とする。
【0010】
また、請求項4記載の発明は、請求項3に記載の超音波診断装置であって、前記強調して表示する処理は、前記穿刺針からの反射信号に基づき作成される画像部分の色、若しくは、輝度を変更する処理であることを特徴とする。
【0011】
また、請求項5記載の発明は、請求項1乃至請求項4の何れか一項に記載の超音波診断装置であって、前記超音波ビーム偏向手段により、前記超音波ビームを前記穿刺針の刺入経路に対して略直交する方向に偏向させる頻度を調整するための偏向頻度調整手段を備えたことを特徴とする。
【0012】
また、請求項6記載の発明は、請求項1乃至請求項5の何れか一項に記載の超音波診断装置であって、前記穿刺アダプタは、前記穿刺針の前記刺入経路上における先端位置を検出する位置検出手段を備え、前記位置検出手段により検出される前記穿刺針の前記刺入経路上における先端位置と、前記角度検出手段により検出される前記穿刺針の前記生体に対する刺入角度に関する情報とに基づいて、前記複数の振動子から送信される超音波ビームの焦点位置を変更する焦点位置制御手段を備えたことを特徴とする。
【0013】
上記課題を解決するために、請求項7記載の発明は、穿刺針の刺入経路を超音波ビームの走査線上に規定する穿刺アダプタを備えると共に、超音波を発生する複数の振動子を有し、前記振動子から発生する超音波を前記超音波ビームとして生体内において走査して、その反射波を受信する超音波プローブと、前記超音波プローブにおいて受信される前記超音波ビームの反射波に基づき、前記生体内の超音波画像を作成する超音波画像作成手段と、前記超音波画像作成手段により作成された超音波画像を表示する表示手段と、を備える超音波診断装置であって、前記超音波プローブにおいて受信される前記超音波ビームの反射波に基づき、前記穿刺針の前記超音波ビームの走査方向に略直交する方向に関する前記刺入経路からの位置ズレ量を算出する位置ズレ量算出手段を備え、前記超音波画像作成手段は、前記位置ズレ量算出手段により算出される前記穿刺針の前記刺入経路からの位置ズレ量に応じて、前記超音波画像として表示される前記穿刺針の像を強調して表示する処理を施すことを特徴とする。
【0014】
また、請求項8記載の発明は、請求項7に記載の超音波診断装置であって、前記複数の振動子は、前記超音波ビームの走査方向及び前記走査方向と略直交する方向に広がりをもつ2次元アレイ構造を有するものであって、前記位置ズレ量算出手段は、前記超音波プローブにおいて受信される前記超音波ビームの前記走査方向及び前記略直交する方向における反射波に基づいて、前記穿刺針の前記走査方向に応じた前記略直交する方向における位置を特定し、前記穿刺針の前記走査方向に応じた前記略直交する方向における前記刺入経路からの位置ズレ量を算出して、前記超音波画像作成手段は、前記穿刺針の前記走査方向に応じた前記略直交する方向における前記刺入経路からの位置ズレ量に応じて、前記超音波画像上に表示される前記穿刺針の像を強調して表示する処理を施すことを特徴とする。
【0015】
また、請求項9記載の発明は、請求項8に記載の超音波診断装置であって、前記強調して表示する処理は、前記穿刺針の像の色、若しくは、輝度を変更する処理であることを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明に係る超音波診断装置の好適な実施の形態の一例について、図面を参照して具体的に説明する。
【0017】
図1に、本実施形態における超音波診断装置の制御回構成を表すブロック図を示す。同図において、超音波プローブ1は、図示省略の複数の振動子セルが集積された超音波振動子を内蔵し、この超音波振動子から発生する超音波を生体内に超音波ビームとして送信し、その反射波を受信する。また、超音波プローブ1には、穿刺針の刺入経路を規定する穿刺用アダプタ5が取り付けられ、穿刺針は、この穿刺用アダプタ5によって規定される刺入経路を辿り、生体内へと穿刺される。この穿刺針の刺入角度は、穿刺アダプタ5に設けられた角度検出器6aにより検出される。この角度検出器6aの具体的構成としては、例えば段階的に設定可能に構成された刺入角度調整機構、及びその刺入角度を検出するスイッチの組み合わせ等が挙げられる。同様に、穿刺針の刺入経路上における先端位置は、穿刺アダプタ5に設けられた位置検出器6bにより検出される。この位置検出器6bの具体的構成としては、例えば穿刺針の先端の通過を検出する光センサ、並びに穿刺針の刺入動作に伴い回転する回転体及びこの回転体の回転角度を検出するエンコーダの組み合わせ等が挙げられる。これら角度検出器6a、位置検出器6bからの検出結果は、当該超音波診断装置本体の演算・制御回路7に入力される。尚、角度検出器6aは、本発明の「角度検出手段」に対応する。また、位置検出器6bは、本発明の「位置検出手段」に対応する。
【0018】
そして、超音波診断装置本体20の演算・制御回路7は、角度検出器6aからの検出結果に基づいて、穿刺針の刺入経路を算出し、その刺入経路に関する情報をDSC回路15に入力する。これを受けて、DSC回路15は、後述するように作成される超音波画像の上に穿刺針の刺入経路を破線や適当な色が施された状態で表現する処理を施し、D/Aコンバータ16を介して、これをモニタ17に表示する。因みに、このような処理は、必要に応じて任意に行われることとして良い。尚、モニタ17は、本発明の「表示手段」に対応する。
【0019】
また、超音波プローブ1には、超音波診断装置本体20のパルサー2が接続され、超音波ビームの送信時には、このパルサー2において高電圧パルスが所定の遅延時間毎に順次発生され、これが超音波プローブ1に内蔵される超音波振動子の各振動子セルに順次印加されることで、各振動子セルにおいて超音波が発生する。一方、超音波ビームの受信時には、超音波振動子の各振動子セルにおいて、超音波ビームの反射波が受信され、その受信信号がプリアンプ8に入力される。
【0020】
(超音波ビームの送信時)
パルサー2には、送信遅延発生回路3が接続され、また、この送信遅延発生回路3には、送信遅延制御回路4が接続され、さらに、この送信遅延制御回路4には、演算・制御回路7が接続されている。送信遅延制御回路4は、超音波プローブ1の超音波振動子の各振動子セルに印加される高電圧パルスの遅延時間を制御し、送信遅延発生回路3は、その遅延時間に基づいて送信遅延信号を発生させる。この送信遅延時間は、穿刺針の刺入経路の超音波振動子に対する相対角度、即ち、穿刺針の刺入角度と、各振動子セルから発生される超音波ビームの焦点位置に基づいて決定される。尚、各振動子セルから発生される超音波ビームの焦点位置は、穿刺針の刺入角度によって一義的に定めることができる。即ち、穿刺針の刺入経路は、穿刺アダプタ5により規定される穿刺針の刺入角度に応じて一義的に決定されることから、各振動子セルから、この穿刺針の刺入経路までの距離、即ち、焦点位置は、演算により一義的に算出することができる。このようにして、各振動子セルからの焦点位置を実現するために、各振動子セルに供給する高電圧パルスの遅延時間が決定される。より詳しくは、演算・制御回路7は、角度検出器6aから穿刺針の刺入角度に関する検出結果を受け取り、穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置を演算により求め、送信遅延制御回路4は、演算・制御回路7から、この穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置に関する情報を受け取り、各振動子セルの基準となるタイミングに対する遅延時間を設定する。そして、送信遅延発生回路3が、その遅延時間に基づく各振動子セルの送信遅延信号を発生して、パルサー2が、その送信遅延信号に従って各振動子セルに順次高電圧パルスを印加していく。
【0021】
また、演算・制御回路7は、穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置に関する情報を、受信遅延制御回路11に対しても送信する。但し、超音波ビームの受信時においては、ダイナミックフォーカス処理(合成受波ビームの焦点位置をダイナミックに連続変化させる処理)を行うことによって、全体にわたって細いビームを形成することが可能であるため、演算・制御回路7から、穿刺針の刺入経路の各振動子セルに対する相対位置に関する情報を必ずしも送信する必要はない。
【0022】
(超音波ビームの受信時)
超音波振動子の各振動子セルにおいて受信された超音波ビームの受信信号は、超音波診断装置本体20のプリアンプ8に入力される。そして、プリアンプ8にて適当に増幅された受信信号は、ゲイン補正回路9に入力され、ゲイン補正回路9において拡散減衰補正された後、受信遅延発生回路10に入力される。受信遅延発生回路10は、受信遅延制御回路11にて設定された各振動子セルの遅延時間に関する情報に基づいて超音波ビームの反射波(以下、受信ビームと称する)を細いビームに合成する。この受信ビームは、超音波プローブ1の各振動子セルに受信されて、受信された信号は、検波回路12へと入力され、Log圧縮回路13においてログ圧縮される。因みに、このLog圧縮回路13におけるログ圧縮処理は、モニタ17に超音波画像を表示する時の表示のダイナミックレンジに限界があるため行われるものである。Log圧縮回路13からの出力は、A/Dコンバータ14にてディジタルデータへ変換され、DSC回路15へ入力される。DSC回路15においては、演算・制御回路7から、前述した穿刺針の刺入経路を超音波画像に重ねて表示するためのデータも入力されて、超音波画像を作成する処理と、穿刺針の刺入経路を超音波画像に重ねて表示する処理等が行われる。また、DSC回路15は、通常走査時の画像と後述する斜め走査時の画像との合成を、その内部に設けられたイメージメモリ上で行う。そして、D/Aコンバータ16にてアナログデータへ変換された超音波画像データは、超音波画像としてモニタ17上に表示される。この際、超音波画像上には、穿刺針の刺入経路が破線や適当な色が施された状態で表示される。尚、DSC回路15は、本発明の「超音波画像作成手段」に対応する。
【0023】
ところで、当該超音波診断装置においては、穿刺術を行う場合、図2(a)、(b)に示すように、超音波ビームを送信する所定回数(例えば、2〜5回)に1回の割合で、超音波ビームが穿刺針の刺入経路に対して通常時よりも大きな角度、具体的には、ほぼ垂直に近い角度で送信されるように、超音波ビームを偏向させる処理を行う。因みに、図2(a)は、従来の超音波診断装置における超音波ビームの送信態様を表すものであり、図2(b)は、当該超音波診断装置における超音波ビームの送信態様を表すものとなっている。より詳細には、当該超音波診断装置においては、まず、穿刺アダプタ5に設けられた角度検出器6aによって、穿刺アダプタ5に規定される穿刺針の刺入角度が検出され、超音波診断装置本体20の演算・制御回路7が、その検出結果を基に、穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置を演算により求める。さらに、送信遅延制御回路4が、演算・制御回路7から、この穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置に関する情報を受け取り、超音波ビームが穿刺針の刺入経路に対して、ほぼ垂直に近い角度で送信されるように、即ち、各振動子セルから発生される超音波パルスの合成波(超音波プローブ1から発生される超音波ビーム)の進行方向が、穿刺針の刺入経路に対して、ほぼ垂直に近い角度となるように、各振動子セルの基準となるタイミングに対する遅延時間を設定する。そして、送信遅延発生回路3が、その遅延時間に基づいて各振動子セルの送信遅延信号を発生し、パルサー2が、その送信遅延信号に従って各振動子セルに順次高電圧パルスを印加し、各振動子セルが超音波パルスを発生させることで、結果として、超音波プローブ1から発生される超音波ビームは、穿刺針の刺入経路に対して、ほぼ垂直に近い角度となるように送信されることとなる。尚、送信遅延発生回路3は、本発明の「超音波ビーム偏向手段」に対応する。また、送信遅延制御回路4は、本発明の「超音波ビーム制御手段」に対応する。
【0024】
即ち、各振動子セルにおいては、パルサー2からの高電圧パルスに従って、前述した通常の超音波ビーム(本発明の「第1の超音波ビーム」に対応する)の送受信が行われると共に、上述した偏向を伴う超音波ビームの送受信(本発明の「第2の超音波ビーム」に対応する)が超音波ビームを送信する所定回数(例えば、2〜5回)に1回の割合で行われる。尚、以下においては、この偏向を伴う超音波ビームの送受信のことを“斜め走査”と称することとする。
【0025】
尚、この斜め走査時の超音波ビームは、穿刺針の刺入経路、即ち、生体内の穿刺針に対して、ほぼ垂直に近い角度で送信されることから、穿刺針からの反射波に基づく受信信号は、通常走査時の場合と比較して著しく強くなる。従って、斜め走査時における穿刺針像は、通常走査時の場合と比較して強い輝度でモニタ17に表示されることとなる。例えば、通常走査時の超音波画像と斜め走査時の超音波画像とを加算表示することで、穿刺針以外の生体内の対象物に関する空間分解能を劣化させることなく、穿刺針像の輝度のみを強くすることができる。
【0026】
また、斜め走査時の穿刺針からの反射波に基づく受信信号は、通常走査時の場合と比較して強くなる、即ち、その振幅は大きくなるため、振幅が大きい信号が発生した超音波ビームの送信開始時からの経過時間を特定することで、各振動子セルから生体内の穿刺針までの距離(穿刺針の位置)を大まかに把握することができる。しかしながら、例えば穿刺針の刺入経路に並行して血管等の体内組織が存在していた場合には、その反射波に基づく受信信号も振幅は大きくなるため、振幅が大きいからといって、その受信信号が穿刺針からの反射波に基づく受信信号であるとは断定できない。
【0027】
そこで、当該超音波診断装置においては、演算・制御回路7が、図3に示すように、斜め走査時の受信信号の内、生体組織からの一般的な受信信号と比較して十分に大きい振幅(図におけるAの幅よりも大きい振幅)の信号(図におけるB、Cの領域にある信号)を特定して、さらに、その振幅の大きい信号が発生した超音波ビームの送信開始時からの経過時間と、実際に刺入経路にある穿刺針からの超音波ビームの反射波に基づく受信信号が発生する超音波ビームの送信開始時からの経過時間(図におけるTの位置)とを照らし合わせることで、その振幅の大きい信号が穿刺針からの反射波に基づく受信信号か否かを判断することとする。この際、例えば数μsecの許容誤差範囲(図におけるDの範囲)が設けられ、本例においては、図におけるBの領域にある信号が穿刺針からの反射波に基づく受信信号であると判断される。尚、このような判断は、その振幅の大きい信号が発生した超音波ビームの送信開始時からの経過時間から、各振動子セルからその振幅の大きい信号を発生させた対象物までの距離を算出し、その距離と実際に刺入経路にある穿刺針までの距離とを照らし合わせることで行われても良い。
【0028】
DSC回路15は、上述の演算・制御回路7による判断に基づき、穿刺針からの反射波に基づく受信信号に対して、それを基に作成された穿刺針像がモニタ17の画面上において強調して表示されるような画像処理を行う。具体的には、他の部分(生体組織)とは、異なる色や輝度でこれを表示する処理等を行う。また、通常走査時の画像と斜め走査時の画像とを合成して表示するための処理を行う。
【0029】
さらに、当該超音波診断装置においては、穿刺針像の空間分解能をより向上させるため、穿刺針の刺入位置に応じて、各振動子からの超音波ビームの焦点位置(以下、送信フォーカス位置と称する)を最適な位置に設定することとする。
【0030】
従来の超音波診断装置においては、このような設定は、ユーザが操作パネルを用いて、送信フォーカス位置を穿刺針の先端付近に設定することで行われているが、穿刺術中においては、術者は穿刺操作に専念する必要があり、このような操作は省かれることが好ましいので、当該超音波診断装置においては、以下に説明するように、これを自動的に行うこととする。
【0031】
演算・制御回路7は、角度検出器6aからの刺入角度に関する情報と、位置検出器6bからの穿刺針の刺入経路上における先端位置に関する情報とに基づいて、生体内における穿刺針の先端位置を演算により求め、その穿刺針の先端位置に関する情報を送信遅延制御回路4に送る。送信遅延制御回路4は、その穿刺針の先端位置に関する情報に基づいて、穿刺針の先端付近に送信フォーカス位置を設定するべく、送信遅延時間を設定する。送信遅延制御回路4は、その送信遅延時間に基づいて各振動子セルの送信遅延信号を発生し、パルサー2が、その送信遅延信号に従って各振動子セルに順次高電圧パルスを印加し、各振動子セルが超音波パルスを発生させることで送信フォーカス位置が穿刺針の先端位置付近に制御される。これにより、ユーザは穿刺術中に装置パネル18を操作して、送信フォーカス位置の設定を行うことなく、最適な超音波画像を得ることができる。尚、演算・制御回路7、角度検出器6a、位置検出器6b及び送信遅延制御回路4で、本発明の「焦点位置制御手段」に対応する。
【0032】
ところで、穿刺針は、生体内に刺入される際に、生体組織の押圧力により刺入経路から外れてしまうことがある。この際、穿刺針が超音波画像の奥行方向(超音波ビームの走査方向と直行する方向)に大きく外れた場合には、穿刺針の先端位置付近は、超音波画像上に捉えられないため、ユーザは穿刺術を正確に行うことができないという問題が生じる。また、穿刺針が超音波画像の奥行方向(超音波ビームの走査方向と直行する方向)に微妙に外れているような場合にも、穿刺針の先端は超音波画像上では見ずらくなるため、ユーザは穿刺術を正確に行うことができないという問題が生じる。従って、このような場合には、改めて穿刺針を穿刺経路に沿って刺入する必要が生じる。
【0033】
そこで、当該超音波診断装置においては、例えば超音波プローブ1の超音波振動子1aを、図5に示すように、超音波ビームの走査方向[長軸(Array)方向]及び超音波ビームの走査方向と略直交する方向[短軸(Lens)方向]に(部分的に、若しくは、全体的に)2次元アレイ化して構成して、短軸(Lens)方向に関しても超音波ビームの送受信を行うことで、穿刺針の先端の短軸(Lens)方向における位置を検出して、上述した送信フォーカス位置を最適な位置に設定する処理を短軸(Lens)方向に関しても行うこととする。より詳細には、短軸(Lens)方向にある超音波振動子1aの1列に関して超音波ビームの送受信を行いつつ、このような超音波ビームの送受信を行う位置を長軸(Array)方向に関して順次移動させていく、即ち、走査していくことで、長軸方向にある超音波振動子1aの間隔毎に、穿刺針の深さに関する位置情報と短軸方向に関する位置情報とを得ることができる。尚、この際、穿刺針像の輝度は問題にならないため、穿刺針からの受信信号の強度は、それが穿刺針からのものと判断することができる程度の強度を有していれば良い。従って、この際には、斜め方向の走査は必ずしも行う必要はない。以上に説明した処理は、具体的には、上述した処理に加えて、演算・制御回路7が、プリアンプ8に入力された超音波ビームの受信信号に基づいて、穿刺針の先端の短軸(Lens)方向における位置を演算により求め、その穿刺針の先端の短軸(Lens)方向における位置に関する情報を送信遅延制御回路4に送り、送信遅延制御回路4が、穿刺針の先端の短軸(Lens)方向における位置にも応じて、その先端付近に送信フォーカス位置を設定するべく、超音波振動子1aの短軸(Lens)方向に関する送信遅延時間を設定することで行われる。これにより、生体内に刺入された穿刺針の先端位置が短軸(Lens)方向に外れた場合であっても、送信フォーカス位置を適切に穿刺針の先端位置付近に設定することができ、改めて穿刺針を穿刺経路に沿って刺入することなく、最適な超音波画像を得ることができる。
【0034】
また、この他にも、同様に超音波プローブ1の超音波振動子1aを、図5に示すように、超音波ビームの走査方向[長軸(Array)方向]及び超音波ビームの走査方向と略直交する方向[短軸(Lens)方向]に(部分的に、若しくは、全体的に)2次元アレイ化して構成して、短軸(Lens)方向に関しても超音波ビームの送受信を行うことで、穿刺針の長軸(Array)方向に応じた短軸(Lens)方向における位置を検出して、超音波画像上において、穿刺針の長軸(Array)方向に応じた短軸(Lens)方向に関する刺入経路からの位置ズレ量を穿刺針像上に強調して表現することとしても良い。このような処理は、具体的には、演算・制御回路7が、角度検出器6aからの穿刺針の刺入角度に関する情報、及びDSC回路15において作成された3次元超音波画像データに基づいて、穿刺針の長軸(Array)方向に応じた短軸(Lens)方向に関する刺入経路からの位置ズレ量を演算により求め、その位置ズレ量に関する情報を、再度、DSC回路15に送り、DSC回路15が、その位置ズレ量に応じて、穿刺針像がモニタ17の画面上において強調して表示されるような画像処理を施すことで行われる。即ち、穿刺針像は、刺入経路からの位置ズレ量に応じて、部分的に色や輝度を変化されて表示されることとなる。これにより、生体内に刺入された穿刺針の先端位置が短軸(Lens)方向に外れた場合であっても、ユーザは、容易にそのことを認識することができ(さらには、その位置ズレ量がどれ程のものかも認識することができる)、穿刺針を改めて穿刺経路に沿って刺入することで、最適な超音波画像を得ることができる。尚、角度検出器6a、演算・制御回路7及びDSC回路15で、本発明の「位置ズレ量算出手段」を構成する。
【0035】
ところで、通常走査に対して斜め走査を行う割合が高くなる程、穿刺針以外の対象物(生体組織)に関する画像は劣化し、また、感度は低下してしまう傾向にあることから、当該超音波診断装置においては、この斜め走査を行う割合をユーザがモニタ17に表示される超音波画像を確認しつつ、任意に調整することを可能にする。
【0036】
具体的には、ユーザは、モニタ17に表示される超音波画像の画質を確認しつつ、操作パネル18を用いて、図示省略の設定画面において、斜め走査を行う割合を最適な値に設定する。その設定内容は、演算・制御回路7へと送信され、演算・制御回路7は、その割合に従って斜め走査を行うべく、送信遅延制御回路4を制御する。因みに、この斜め走査を行うための具体的な処理に関しては上述した通りである。尚、操作パネル18、演算・制御回路7及び送信遅延制御回路4で、本発明の「偏向頻度調整手段」を構成する。
【0037】
以下、当該超音波診断装置の斜め走査に関する処理の流れについて、図4に示すフローチャートを参照しつつ説明する。
【0038】
画像処理動作に入ると、演算・制御回路7は、当該超音波診断装置のモードが穿刺モードにあるのか、通常モードにあるのかを判定する(S01)。尚、此処にいう通常モードとは、穿刺術を行わずに、単に超音波振動子を使用して、生体内の画像をモニタ17に表示する画像処理を行うモードのことである。因みに、当該超音波診断装置のモードが、この通常モードにあるときは(S01、No)、演算・制御回路7は、超音波ビームの偏向角度(=アングル)を0度に設定する(S08)。従って、超音波ビームは、各振動子セルの垂直下方に向って送信される。続いて、送信遅延制御回路4において、予め、操作パネル18を用いて設定された送信フォーカス位置に応じた送信遅延時間が設定され(S09)、この送信遅延時間に基づいて、送信遅延発生回路3が送信遅延信号を発生し、この送信遅延信号に基づいて、パルサー2が高電圧パルスを各振動子セルに印加し、各振動子セルが超音波を発生させる。すると、アングル0度で超音波ビームが送信されることとなる(S10)。一方、受信遅延制御回路11は、超音波ビームの反射波を受信するべく、ダイナミックフォーカスのための受信遅延時間を設定し、その受信遅延時間に関する情報を受信遅延発生回路10に送る。受信遅延発生回路10は、受信遅延制御回路11にて設定された各振動子セルの遅延時間に関する情報に基づいて、受信ビームを、細いビームに合成する。受信遅延制御回路11は、各振動子セルが受波した信号を処理して(S11)、モニタ上に受信画像として表示する。
【0039】
一方、S01において、当該超音波診断装置のモードが穿刺モードにある場合には(S01、Yes)、演算・制御回路7は、角度検出器6a及び位置検出器6bから穿刺針の刺入角度及び穿刺針の刺入経路上での先端位置に関する検出結果を受け取り(S02)、その検出結果に基づいて、穿刺針の先端付近に送信フォーカス位置を設定するべく、生体内における穿刺針の先端位置を演算により求め、その穿刺針の先端位置に関する情報を送信遅延制御回路4に送る。送信遅延制御回路4は、穿刺針の先端位置に応じて、その先端付近に送信フォーカス位置を設定するべく、送信遅延時間を設定する。送信遅延制御回路4は、その送信遅延時間に基づいて各振動子セルの送信遅延信号を発生し、パルサー2が、その送信遅延信号に従って各振動子セルに順次高電圧パルスを印加し、各振動子セルが超音波パルスを発生させることで送信フォーカス位置が穿刺針の先端位置付近に制御される(S03)。この際、当該超音波診断装置においては、超音波ビームを数レートに1回の割合で穿刺針の刺入経路とほぼ直交する方向に送信する斜め走査が行われる。具体的には、穿刺アダプタ5に設けられた角度検出器6aによって、穿刺アダプタ5に規定される穿刺針の刺入角度が検出され、演算・制御回路7は、その検出結果を基に、穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置を演算により求める。さらに、送信遅延制御回路4は、演算・制御回路7から、この穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置に関する情報を受け取り、超音波ビームが穿刺針の刺入経路に対して、ほぼ垂直に近い角度で送信されるように、各振動子セルの基準となるタイミングに対する遅延時間を設定する。そして、送信遅延発生回路3は、その遅延時間に基づいて各振動子セルの送信遅延信号を発生し、パルサー2が、その送信遅延信号に従って各振動子セルに順次高電圧パルスを印加し、各振動子セルが超音波パルスを発生させる(S04)。一方、受信遅延制御回路11は、超音波ビームの反射波を受信するべく、ダイナミックフォーカスのための受信遅延時間を設定し、その受信遅延時間に関する情報を受信遅延発生回路10に送る。この際、当該超音波診断装置においては、斜め走査における超音波ビームを数レートに1回の割合で受信する処理が行われる。具体的には、穿刺アダプタ5に設けられた角度検出器6aによって、穿刺アダプタ5に規定される穿刺針の刺入角度が検出され、演算・制御回路7は、その検出結果を受信遅延制御回路11に送信する。受信遅延制御回路11は、角度検出器6aによる穿刺針の角度の検出結果に基づいて、超音波ビームの反射波を穿刺針の刺入経路とほぼ直角となるように偏向させるべく、各振動子セルの遅延時間を設定し、その受信遅延時間に関する情報を受信遅延発生回路10に送る。受信遅延発生回路10は、受信遅延制御回路11にて設定された各振動子セルの遅延時間に関する情報に基づいて超音波ビームの反射波(以下、受信ビームと称する)を細いビームに合成して、これを穿刺針の刺入経路とほぼ直角となるように偏向させる処理を行う。各振動子セルは、通常走査における超音波ビームを受信しつつ、斜め走査における超音波ビームも受信する(S05)。受信遅延制御回路11は、各振動子セルが受波した信号を処理して、通常走査における超音波ビームの反射波に基づく画像(本発明の「第1の超音波断層画像」に対応)と、斜め走査における超音波ビームの反射波に基づく画像(本発明の「第2の超音波断層画像」に対応)とを加算して、モニタ上に受信画像(本発明の「第3の超音波断層画像」に対応)として表示する(S06)。さらに、DSC15は、斜め走査における超音波ビームの反射波に含まれる穿刺針信号に対して、これを強調して表示(色・輝度変更)する処理を行い、その処理結果をモニタ上に表示する(S07)。この際、穿刺針像は、色、若しくは、輝度を変更されることで強調して表示される。
【0040】
以上に説明したように、本実施形態における超音波診断装置によれば、穿刺針の位置及び角度に関する情報と、超音波ビームの反射波に基づく輝度信号とから生体内における穿刺針の位置を確実に特定することができ、且つ、超音波画像の体内組織を表現する部分の画質を著しく低下させることなく、穿刺針を表現する部分のみが強調して表示されるので、ユーザは、映像化された体内組織と穿刺針像とを容易に識別することができる。
【0041】
【発明の効果】
以上に説明したように、本発明に係る超音波診断装置によれば、穿刺針の位置及び角度に関する情報と、超音波ビームの反射波に基づく輝度信号とから生体内における穿刺針の位置を確実に特定することができ、且つ、超音波画像の体内組織を表現する部分の画質を著しく低下させることなく、穿刺針を表現する部分のみを強調して表示することができるので、映像化された体内組織と穿刺針像とを容易に識別することができる。
【図面の簡単な説明】
【図1】本発明に係る超音波診断装置の制御構成を表すブロック図である。
【図2】図1に示す超音波診断装置において、穿刺術を行う場合に、数レートに1回の割合で超音波ビームを偏向させる処理が行われる過程を説明するための説明図である。
【図3】図1に示す超音波診断装置において、斜め走査時の受信信号の中から、穿刺針からの反射波に基づく信号を抽出する処理が行われる過程を説明するための説明図である。
【図4】図1に示す超音波診断装置の画像処理動作を説明するためのフローチャートである。
【図5】図1に示す超音波診断装置の超音波プローブが2Dアレイ化された振動子を有するものである場合に、穿刺針の刺入経路からの位置ズレ量に応じて穿刺針像を強調して表示する処理が行われる過程を説明するための説明図である。
【符号の説明】
1 超音波プローブ
2 パルサー
3 送信遅延発生回路
4 送信遅延制御回路
5 穿刺アダプタ
6a 角度検出器
6b 位置検出器
7 演算・制御回路
8 プレアンプ
9 ゲイン補正回路
10 受信遅延発生回路
11 受信遅延制御回路
12 検波回路
13 Log圧縮回路
14 A/Dコンバータ
15 DSC回路
16 D/Aコンバータ
17 モニタ
18 操作パネル
【発明の属する技術分野】
本発明は、超音波画像の監視下において穿刺術を施すことを可能に構成された超音波診断装置に関するものである。
【0002】
【従来の技術】
従来から、超音波画像の監視下における穿刺術においては、穿刺針の表面粗さや送信された超音波ビームに対する穿刺針の角度に起因して、穿刺針からの反射信号の強度が低下し、アーチファクトが発生するなどして、映像化された穿刺針像と体内組織とを超音波画像上で区別して認識することが困難になるといった問題があった。
【0003】
そこで、超音波診断装置の中には、超音波の送受信を行う超音波プローブに穿刺針の刺入経路を規定する規定具を設け、且つ、この規定具に、穿刺針の生体への進入長さと刺入角度を検出する検出器を設けて、穿刺針の先端位置を演算により求め、その位置を超音波画像上に重ね合わせて表示する機能を有するもの(例えば、特許文献1参照)や、生体内に刺入された穿刺針に対して、超音波が略直交して送信されるように超音波の進行方向を傾け、さらに、生体内に刺入された穿刺針の刺入経路上に超音波ビームの焦点が位置するように、その焦点位置を設定することで、穿刺針からの反射波の強度を高めて、穿刺針像を明瞭にすると共に、穿刺針の刺入経路周辺部の画像を明瞭に表示する機能を有するもの(例えば、特許文献2参照)等が存在している。
【0004】
【特許文献1】
特開平8−229042号公報
(段落〔0011〕−〔0022〕、第1図乃至第5図)
【特許文献2】
特開平9−28708号公報
(段落〔0020〕−〔0028〕、第1図及び第2図)
【0005】
【発明が解決しようとする課題】
しかしながら、例えば、上述の穿刺針の先端位置を演算によって求め、これを超音波画像上に重ね合わせて表示する機能を有する超音波診断装置においては、穿刺針の先端位置を正確に補足するために、穿刺針の進入長さと刺入角度を検出する検出器に高い精度と信頼性が要求されることとなり、また、上述した生体内に刺入された穿刺針に対して、超音波が略直交するように超音波ビームを傾ける手段を設けた超音波診断装置においては、穿刺針像が明瞭となる一方で、生体内の対象物からの反射波の強度は弱まる(生体内に刺入された穿刺針に対して、超音波が略直交して送受信されるように超音波の送受信方向を傾けることで、生体内の対象物に対する超音波の送受信角度は小さくなるため)ことから、生体内の対象物を表す部分の画像の画質が著しく低下するという問題があった。
【0006】
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、生体内における穿刺針の位置を確実に特定し、且つ、超音波画像の体内組織を表示する部分の画質を著しく低下させることなく、穿刺針を表示する部分のみを強調して表示する処理を施すことで、映像化された穿刺針像と体内組織とを容易に識別することを可能にする超音波診断装置を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、穿刺針の刺入経路を超音波ビームの走査線上に規定し、前記穿刺針の生体に対する刺入角度を検出する角度検出手段を有する穿刺アダプタを備えると共に、超音波を発生する複数の振動子を有し、前記振動子から発生する超音波を前記超音波ビームとして生体内において走査して、その反射波を受信する超音波プローブと、前記超音波プローブにおいて受信される前記超音波ビームの反射波に基づき、前記生体内の超音波画像を作成する超音波画像作成手段と、前記超音波画像作成手段により作成された超音波画像を表示する表示手段と、前記角度検出手段により検出される前記穿刺針の前記生体に対する刺入角度に基づいて、前記超音波ビームを前記穿刺針の刺入経路に対して略直交する方向に偏向させる超音波ビーム偏向手段と、前記超音波ビームを所定回数走査する毎に、前記超音波ビーム偏向手段により前記超音波ビームを前記穿刺針の刺入経路に対して略直交する方向に偏向させる制御を行う超音波ビーム制御手段と、を備えたことを特徴とする。
【0008】
また、請求項2記載の発明は、請求項1に記載の超音波診断装置であって、超音波画像作成手段は、前記超音波ビーム制御手段による超音波ビームの偏向を伴わない第1の超音波ビームの反射波に基づいて第1の超音波断層画像を作成し、また、前記超音波ビーム制御手段による超音波ビームの偏向を伴う第2の超音波ビームの反射波に基づいて第2の超音波断層画像を作成した後、さらに、前記第1の超音波断層画像と前記第2の超音波断層画像を加算処理することで第3の超音波断層画像を作成することを特徴とする。
【0009】
また、請求項3記載の発明は、請求項1又は請求項2に記載の超音波診断装置であって、前記超音波画像作成手段は、前記第2の超音波ビームの反射波に基づく輝度情報と、前記角度検出手段により検出される前記穿刺針の前記生体に対する刺入角度に関する情報とに基づいて、前記第2の超音波ビームの反射波に含まれる前記穿刺針からの反射信号を特定して、その反射信号に基づき作成される画像部分を強調して表示する処理を施すことを特徴とする。
【0010】
また、請求項4記載の発明は、請求項3に記載の超音波診断装置であって、前記強調して表示する処理は、前記穿刺針からの反射信号に基づき作成される画像部分の色、若しくは、輝度を変更する処理であることを特徴とする。
【0011】
また、請求項5記載の発明は、請求項1乃至請求項4の何れか一項に記載の超音波診断装置であって、前記超音波ビーム偏向手段により、前記超音波ビームを前記穿刺針の刺入経路に対して略直交する方向に偏向させる頻度を調整するための偏向頻度調整手段を備えたことを特徴とする。
【0012】
また、請求項6記載の発明は、請求項1乃至請求項5の何れか一項に記載の超音波診断装置であって、前記穿刺アダプタは、前記穿刺針の前記刺入経路上における先端位置を検出する位置検出手段を備え、前記位置検出手段により検出される前記穿刺針の前記刺入経路上における先端位置と、前記角度検出手段により検出される前記穿刺針の前記生体に対する刺入角度に関する情報とに基づいて、前記複数の振動子から送信される超音波ビームの焦点位置を変更する焦点位置制御手段を備えたことを特徴とする。
【0013】
上記課題を解決するために、請求項7記載の発明は、穿刺針の刺入経路を超音波ビームの走査線上に規定する穿刺アダプタを備えると共に、超音波を発生する複数の振動子を有し、前記振動子から発生する超音波を前記超音波ビームとして生体内において走査して、その反射波を受信する超音波プローブと、前記超音波プローブにおいて受信される前記超音波ビームの反射波に基づき、前記生体内の超音波画像を作成する超音波画像作成手段と、前記超音波画像作成手段により作成された超音波画像を表示する表示手段と、を備える超音波診断装置であって、前記超音波プローブにおいて受信される前記超音波ビームの反射波に基づき、前記穿刺針の前記超音波ビームの走査方向に略直交する方向に関する前記刺入経路からの位置ズレ量を算出する位置ズレ量算出手段を備え、前記超音波画像作成手段は、前記位置ズレ量算出手段により算出される前記穿刺針の前記刺入経路からの位置ズレ量に応じて、前記超音波画像として表示される前記穿刺針の像を強調して表示する処理を施すことを特徴とする。
【0014】
また、請求項8記載の発明は、請求項7に記載の超音波診断装置であって、前記複数の振動子は、前記超音波ビームの走査方向及び前記走査方向と略直交する方向に広がりをもつ2次元アレイ構造を有するものであって、前記位置ズレ量算出手段は、前記超音波プローブにおいて受信される前記超音波ビームの前記走査方向及び前記略直交する方向における反射波に基づいて、前記穿刺針の前記走査方向に応じた前記略直交する方向における位置を特定し、前記穿刺針の前記走査方向に応じた前記略直交する方向における前記刺入経路からの位置ズレ量を算出して、前記超音波画像作成手段は、前記穿刺針の前記走査方向に応じた前記略直交する方向における前記刺入経路からの位置ズレ量に応じて、前記超音波画像上に表示される前記穿刺針の像を強調して表示する処理を施すことを特徴とする。
【0015】
また、請求項9記載の発明は、請求項8に記載の超音波診断装置であって、前記強調して表示する処理は、前記穿刺針の像の色、若しくは、輝度を変更する処理であることを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明に係る超音波診断装置の好適な実施の形態の一例について、図面を参照して具体的に説明する。
【0017】
図1に、本実施形態における超音波診断装置の制御回構成を表すブロック図を示す。同図において、超音波プローブ1は、図示省略の複数の振動子セルが集積された超音波振動子を内蔵し、この超音波振動子から発生する超音波を生体内に超音波ビームとして送信し、その反射波を受信する。また、超音波プローブ1には、穿刺針の刺入経路を規定する穿刺用アダプタ5が取り付けられ、穿刺針は、この穿刺用アダプタ5によって規定される刺入経路を辿り、生体内へと穿刺される。この穿刺針の刺入角度は、穿刺アダプタ5に設けられた角度検出器6aにより検出される。この角度検出器6aの具体的構成としては、例えば段階的に設定可能に構成された刺入角度調整機構、及びその刺入角度を検出するスイッチの組み合わせ等が挙げられる。同様に、穿刺針の刺入経路上における先端位置は、穿刺アダプタ5に設けられた位置検出器6bにより検出される。この位置検出器6bの具体的構成としては、例えば穿刺針の先端の通過を検出する光センサ、並びに穿刺針の刺入動作に伴い回転する回転体及びこの回転体の回転角度を検出するエンコーダの組み合わせ等が挙げられる。これら角度検出器6a、位置検出器6bからの検出結果は、当該超音波診断装置本体の演算・制御回路7に入力される。尚、角度検出器6aは、本発明の「角度検出手段」に対応する。また、位置検出器6bは、本発明の「位置検出手段」に対応する。
【0018】
そして、超音波診断装置本体20の演算・制御回路7は、角度検出器6aからの検出結果に基づいて、穿刺針の刺入経路を算出し、その刺入経路に関する情報をDSC回路15に入力する。これを受けて、DSC回路15は、後述するように作成される超音波画像の上に穿刺針の刺入経路を破線や適当な色が施された状態で表現する処理を施し、D/Aコンバータ16を介して、これをモニタ17に表示する。因みに、このような処理は、必要に応じて任意に行われることとして良い。尚、モニタ17は、本発明の「表示手段」に対応する。
【0019】
また、超音波プローブ1には、超音波診断装置本体20のパルサー2が接続され、超音波ビームの送信時には、このパルサー2において高電圧パルスが所定の遅延時間毎に順次発生され、これが超音波プローブ1に内蔵される超音波振動子の各振動子セルに順次印加されることで、各振動子セルにおいて超音波が発生する。一方、超音波ビームの受信時には、超音波振動子の各振動子セルにおいて、超音波ビームの反射波が受信され、その受信信号がプリアンプ8に入力される。
【0020】
(超音波ビームの送信時)
パルサー2には、送信遅延発生回路3が接続され、また、この送信遅延発生回路3には、送信遅延制御回路4が接続され、さらに、この送信遅延制御回路4には、演算・制御回路7が接続されている。送信遅延制御回路4は、超音波プローブ1の超音波振動子の各振動子セルに印加される高電圧パルスの遅延時間を制御し、送信遅延発生回路3は、その遅延時間に基づいて送信遅延信号を発生させる。この送信遅延時間は、穿刺針の刺入経路の超音波振動子に対する相対角度、即ち、穿刺針の刺入角度と、各振動子セルから発生される超音波ビームの焦点位置に基づいて決定される。尚、各振動子セルから発生される超音波ビームの焦点位置は、穿刺針の刺入角度によって一義的に定めることができる。即ち、穿刺針の刺入経路は、穿刺アダプタ5により規定される穿刺針の刺入角度に応じて一義的に決定されることから、各振動子セルから、この穿刺針の刺入経路までの距離、即ち、焦点位置は、演算により一義的に算出することができる。このようにして、各振動子セルからの焦点位置を実現するために、各振動子セルに供給する高電圧パルスの遅延時間が決定される。より詳しくは、演算・制御回路7は、角度検出器6aから穿刺針の刺入角度に関する検出結果を受け取り、穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置を演算により求め、送信遅延制御回路4は、演算・制御回路7から、この穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置に関する情報を受け取り、各振動子セルの基準となるタイミングに対する遅延時間を設定する。そして、送信遅延発生回路3が、その遅延時間に基づく各振動子セルの送信遅延信号を発生して、パルサー2が、その送信遅延信号に従って各振動子セルに順次高電圧パルスを印加していく。
【0021】
また、演算・制御回路7は、穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置に関する情報を、受信遅延制御回路11に対しても送信する。但し、超音波ビームの受信時においては、ダイナミックフォーカス処理(合成受波ビームの焦点位置をダイナミックに連続変化させる処理)を行うことによって、全体にわたって細いビームを形成することが可能であるため、演算・制御回路7から、穿刺針の刺入経路の各振動子セルに対する相対位置に関する情報を必ずしも送信する必要はない。
【0022】
(超音波ビームの受信時)
超音波振動子の各振動子セルにおいて受信された超音波ビームの受信信号は、超音波診断装置本体20のプリアンプ8に入力される。そして、プリアンプ8にて適当に増幅された受信信号は、ゲイン補正回路9に入力され、ゲイン補正回路9において拡散減衰補正された後、受信遅延発生回路10に入力される。受信遅延発生回路10は、受信遅延制御回路11にて設定された各振動子セルの遅延時間に関する情報に基づいて超音波ビームの反射波(以下、受信ビームと称する)を細いビームに合成する。この受信ビームは、超音波プローブ1の各振動子セルに受信されて、受信された信号は、検波回路12へと入力され、Log圧縮回路13においてログ圧縮される。因みに、このLog圧縮回路13におけるログ圧縮処理は、モニタ17に超音波画像を表示する時の表示のダイナミックレンジに限界があるため行われるものである。Log圧縮回路13からの出力は、A/Dコンバータ14にてディジタルデータへ変換され、DSC回路15へ入力される。DSC回路15においては、演算・制御回路7から、前述した穿刺針の刺入経路を超音波画像に重ねて表示するためのデータも入力されて、超音波画像を作成する処理と、穿刺針の刺入経路を超音波画像に重ねて表示する処理等が行われる。また、DSC回路15は、通常走査時の画像と後述する斜め走査時の画像との合成を、その内部に設けられたイメージメモリ上で行う。そして、D/Aコンバータ16にてアナログデータへ変換された超音波画像データは、超音波画像としてモニタ17上に表示される。この際、超音波画像上には、穿刺針の刺入経路が破線や適当な色が施された状態で表示される。尚、DSC回路15は、本発明の「超音波画像作成手段」に対応する。
【0023】
ところで、当該超音波診断装置においては、穿刺術を行う場合、図2(a)、(b)に示すように、超音波ビームを送信する所定回数(例えば、2〜5回)に1回の割合で、超音波ビームが穿刺針の刺入経路に対して通常時よりも大きな角度、具体的には、ほぼ垂直に近い角度で送信されるように、超音波ビームを偏向させる処理を行う。因みに、図2(a)は、従来の超音波診断装置における超音波ビームの送信態様を表すものであり、図2(b)は、当該超音波診断装置における超音波ビームの送信態様を表すものとなっている。より詳細には、当該超音波診断装置においては、まず、穿刺アダプタ5に設けられた角度検出器6aによって、穿刺アダプタ5に規定される穿刺針の刺入角度が検出され、超音波診断装置本体20の演算・制御回路7が、その検出結果を基に、穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置を演算により求める。さらに、送信遅延制御回路4が、演算・制御回路7から、この穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置に関する情報を受け取り、超音波ビームが穿刺針の刺入経路に対して、ほぼ垂直に近い角度で送信されるように、即ち、各振動子セルから発生される超音波パルスの合成波(超音波プローブ1から発生される超音波ビーム)の進行方向が、穿刺針の刺入経路に対して、ほぼ垂直に近い角度となるように、各振動子セルの基準となるタイミングに対する遅延時間を設定する。そして、送信遅延発生回路3が、その遅延時間に基づいて各振動子セルの送信遅延信号を発生し、パルサー2が、その送信遅延信号に従って各振動子セルに順次高電圧パルスを印加し、各振動子セルが超音波パルスを発生させることで、結果として、超音波プローブ1から発生される超音波ビームは、穿刺針の刺入経路に対して、ほぼ垂直に近い角度となるように送信されることとなる。尚、送信遅延発生回路3は、本発明の「超音波ビーム偏向手段」に対応する。また、送信遅延制御回路4は、本発明の「超音波ビーム制御手段」に対応する。
【0024】
即ち、各振動子セルにおいては、パルサー2からの高電圧パルスに従って、前述した通常の超音波ビーム(本発明の「第1の超音波ビーム」に対応する)の送受信が行われると共に、上述した偏向を伴う超音波ビームの送受信(本発明の「第2の超音波ビーム」に対応する)が超音波ビームを送信する所定回数(例えば、2〜5回)に1回の割合で行われる。尚、以下においては、この偏向を伴う超音波ビームの送受信のことを“斜め走査”と称することとする。
【0025】
尚、この斜め走査時の超音波ビームは、穿刺針の刺入経路、即ち、生体内の穿刺針に対して、ほぼ垂直に近い角度で送信されることから、穿刺針からの反射波に基づく受信信号は、通常走査時の場合と比較して著しく強くなる。従って、斜め走査時における穿刺針像は、通常走査時の場合と比較して強い輝度でモニタ17に表示されることとなる。例えば、通常走査時の超音波画像と斜め走査時の超音波画像とを加算表示することで、穿刺針以外の生体内の対象物に関する空間分解能を劣化させることなく、穿刺針像の輝度のみを強くすることができる。
【0026】
また、斜め走査時の穿刺針からの反射波に基づく受信信号は、通常走査時の場合と比較して強くなる、即ち、その振幅は大きくなるため、振幅が大きい信号が発生した超音波ビームの送信開始時からの経過時間を特定することで、各振動子セルから生体内の穿刺針までの距離(穿刺針の位置)を大まかに把握することができる。しかしながら、例えば穿刺針の刺入経路に並行して血管等の体内組織が存在していた場合には、その反射波に基づく受信信号も振幅は大きくなるため、振幅が大きいからといって、その受信信号が穿刺針からの反射波に基づく受信信号であるとは断定できない。
【0027】
そこで、当該超音波診断装置においては、演算・制御回路7が、図3に示すように、斜め走査時の受信信号の内、生体組織からの一般的な受信信号と比較して十分に大きい振幅(図におけるAの幅よりも大きい振幅)の信号(図におけるB、Cの領域にある信号)を特定して、さらに、その振幅の大きい信号が発生した超音波ビームの送信開始時からの経過時間と、実際に刺入経路にある穿刺針からの超音波ビームの反射波に基づく受信信号が発生する超音波ビームの送信開始時からの経過時間(図におけるTの位置)とを照らし合わせることで、その振幅の大きい信号が穿刺針からの反射波に基づく受信信号か否かを判断することとする。この際、例えば数μsecの許容誤差範囲(図におけるDの範囲)が設けられ、本例においては、図におけるBの領域にある信号が穿刺針からの反射波に基づく受信信号であると判断される。尚、このような判断は、その振幅の大きい信号が発生した超音波ビームの送信開始時からの経過時間から、各振動子セルからその振幅の大きい信号を発生させた対象物までの距離を算出し、その距離と実際に刺入経路にある穿刺針までの距離とを照らし合わせることで行われても良い。
【0028】
DSC回路15は、上述の演算・制御回路7による判断に基づき、穿刺針からの反射波に基づく受信信号に対して、それを基に作成された穿刺針像がモニタ17の画面上において強調して表示されるような画像処理を行う。具体的には、他の部分(生体組織)とは、異なる色や輝度でこれを表示する処理等を行う。また、通常走査時の画像と斜め走査時の画像とを合成して表示するための処理を行う。
【0029】
さらに、当該超音波診断装置においては、穿刺針像の空間分解能をより向上させるため、穿刺針の刺入位置に応じて、各振動子からの超音波ビームの焦点位置(以下、送信フォーカス位置と称する)を最適な位置に設定することとする。
【0030】
従来の超音波診断装置においては、このような設定は、ユーザが操作パネルを用いて、送信フォーカス位置を穿刺針の先端付近に設定することで行われているが、穿刺術中においては、術者は穿刺操作に専念する必要があり、このような操作は省かれることが好ましいので、当該超音波診断装置においては、以下に説明するように、これを自動的に行うこととする。
【0031】
演算・制御回路7は、角度検出器6aからの刺入角度に関する情報と、位置検出器6bからの穿刺針の刺入経路上における先端位置に関する情報とに基づいて、生体内における穿刺針の先端位置を演算により求め、その穿刺針の先端位置に関する情報を送信遅延制御回路4に送る。送信遅延制御回路4は、その穿刺針の先端位置に関する情報に基づいて、穿刺針の先端付近に送信フォーカス位置を設定するべく、送信遅延時間を設定する。送信遅延制御回路4は、その送信遅延時間に基づいて各振動子セルの送信遅延信号を発生し、パルサー2が、その送信遅延信号に従って各振動子セルに順次高電圧パルスを印加し、各振動子セルが超音波パルスを発生させることで送信フォーカス位置が穿刺針の先端位置付近に制御される。これにより、ユーザは穿刺術中に装置パネル18を操作して、送信フォーカス位置の設定を行うことなく、最適な超音波画像を得ることができる。尚、演算・制御回路7、角度検出器6a、位置検出器6b及び送信遅延制御回路4で、本発明の「焦点位置制御手段」に対応する。
【0032】
ところで、穿刺針は、生体内に刺入される際に、生体組織の押圧力により刺入経路から外れてしまうことがある。この際、穿刺針が超音波画像の奥行方向(超音波ビームの走査方向と直行する方向)に大きく外れた場合には、穿刺針の先端位置付近は、超音波画像上に捉えられないため、ユーザは穿刺術を正確に行うことができないという問題が生じる。また、穿刺針が超音波画像の奥行方向(超音波ビームの走査方向と直行する方向)に微妙に外れているような場合にも、穿刺針の先端は超音波画像上では見ずらくなるため、ユーザは穿刺術を正確に行うことができないという問題が生じる。従って、このような場合には、改めて穿刺針を穿刺経路に沿って刺入する必要が生じる。
【0033】
そこで、当該超音波診断装置においては、例えば超音波プローブ1の超音波振動子1aを、図5に示すように、超音波ビームの走査方向[長軸(Array)方向]及び超音波ビームの走査方向と略直交する方向[短軸(Lens)方向]に(部分的に、若しくは、全体的に)2次元アレイ化して構成して、短軸(Lens)方向に関しても超音波ビームの送受信を行うことで、穿刺針の先端の短軸(Lens)方向における位置を検出して、上述した送信フォーカス位置を最適な位置に設定する処理を短軸(Lens)方向に関しても行うこととする。より詳細には、短軸(Lens)方向にある超音波振動子1aの1列に関して超音波ビームの送受信を行いつつ、このような超音波ビームの送受信を行う位置を長軸(Array)方向に関して順次移動させていく、即ち、走査していくことで、長軸方向にある超音波振動子1aの間隔毎に、穿刺針の深さに関する位置情報と短軸方向に関する位置情報とを得ることができる。尚、この際、穿刺針像の輝度は問題にならないため、穿刺針からの受信信号の強度は、それが穿刺針からのものと判断することができる程度の強度を有していれば良い。従って、この際には、斜め方向の走査は必ずしも行う必要はない。以上に説明した処理は、具体的には、上述した処理に加えて、演算・制御回路7が、プリアンプ8に入力された超音波ビームの受信信号に基づいて、穿刺針の先端の短軸(Lens)方向における位置を演算により求め、その穿刺針の先端の短軸(Lens)方向における位置に関する情報を送信遅延制御回路4に送り、送信遅延制御回路4が、穿刺針の先端の短軸(Lens)方向における位置にも応じて、その先端付近に送信フォーカス位置を設定するべく、超音波振動子1aの短軸(Lens)方向に関する送信遅延時間を設定することで行われる。これにより、生体内に刺入された穿刺針の先端位置が短軸(Lens)方向に外れた場合であっても、送信フォーカス位置を適切に穿刺針の先端位置付近に設定することができ、改めて穿刺針を穿刺経路に沿って刺入することなく、最適な超音波画像を得ることができる。
【0034】
また、この他にも、同様に超音波プローブ1の超音波振動子1aを、図5に示すように、超音波ビームの走査方向[長軸(Array)方向]及び超音波ビームの走査方向と略直交する方向[短軸(Lens)方向]に(部分的に、若しくは、全体的に)2次元アレイ化して構成して、短軸(Lens)方向に関しても超音波ビームの送受信を行うことで、穿刺針の長軸(Array)方向に応じた短軸(Lens)方向における位置を検出して、超音波画像上において、穿刺針の長軸(Array)方向に応じた短軸(Lens)方向に関する刺入経路からの位置ズレ量を穿刺針像上に強調して表現することとしても良い。このような処理は、具体的には、演算・制御回路7が、角度検出器6aからの穿刺針の刺入角度に関する情報、及びDSC回路15において作成された3次元超音波画像データに基づいて、穿刺針の長軸(Array)方向に応じた短軸(Lens)方向に関する刺入経路からの位置ズレ量を演算により求め、その位置ズレ量に関する情報を、再度、DSC回路15に送り、DSC回路15が、その位置ズレ量に応じて、穿刺針像がモニタ17の画面上において強調して表示されるような画像処理を施すことで行われる。即ち、穿刺針像は、刺入経路からの位置ズレ量に応じて、部分的に色や輝度を変化されて表示されることとなる。これにより、生体内に刺入された穿刺針の先端位置が短軸(Lens)方向に外れた場合であっても、ユーザは、容易にそのことを認識することができ(さらには、その位置ズレ量がどれ程のものかも認識することができる)、穿刺針を改めて穿刺経路に沿って刺入することで、最適な超音波画像を得ることができる。尚、角度検出器6a、演算・制御回路7及びDSC回路15で、本発明の「位置ズレ量算出手段」を構成する。
【0035】
ところで、通常走査に対して斜め走査を行う割合が高くなる程、穿刺針以外の対象物(生体組織)に関する画像は劣化し、また、感度は低下してしまう傾向にあることから、当該超音波診断装置においては、この斜め走査を行う割合をユーザがモニタ17に表示される超音波画像を確認しつつ、任意に調整することを可能にする。
【0036】
具体的には、ユーザは、モニタ17に表示される超音波画像の画質を確認しつつ、操作パネル18を用いて、図示省略の設定画面において、斜め走査を行う割合を最適な値に設定する。その設定内容は、演算・制御回路7へと送信され、演算・制御回路7は、その割合に従って斜め走査を行うべく、送信遅延制御回路4を制御する。因みに、この斜め走査を行うための具体的な処理に関しては上述した通りである。尚、操作パネル18、演算・制御回路7及び送信遅延制御回路4で、本発明の「偏向頻度調整手段」を構成する。
【0037】
以下、当該超音波診断装置の斜め走査に関する処理の流れについて、図4に示すフローチャートを参照しつつ説明する。
【0038】
画像処理動作に入ると、演算・制御回路7は、当該超音波診断装置のモードが穿刺モードにあるのか、通常モードにあるのかを判定する(S01)。尚、此処にいう通常モードとは、穿刺術を行わずに、単に超音波振動子を使用して、生体内の画像をモニタ17に表示する画像処理を行うモードのことである。因みに、当該超音波診断装置のモードが、この通常モードにあるときは(S01、No)、演算・制御回路7は、超音波ビームの偏向角度(=アングル)を0度に設定する(S08)。従って、超音波ビームは、各振動子セルの垂直下方に向って送信される。続いて、送信遅延制御回路4において、予め、操作パネル18を用いて設定された送信フォーカス位置に応じた送信遅延時間が設定され(S09)、この送信遅延時間に基づいて、送信遅延発生回路3が送信遅延信号を発生し、この送信遅延信号に基づいて、パルサー2が高電圧パルスを各振動子セルに印加し、各振動子セルが超音波を発生させる。すると、アングル0度で超音波ビームが送信されることとなる(S10)。一方、受信遅延制御回路11は、超音波ビームの反射波を受信するべく、ダイナミックフォーカスのための受信遅延時間を設定し、その受信遅延時間に関する情報を受信遅延発生回路10に送る。受信遅延発生回路10は、受信遅延制御回路11にて設定された各振動子セルの遅延時間に関する情報に基づいて、受信ビームを、細いビームに合成する。受信遅延制御回路11は、各振動子セルが受波した信号を処理して(S11)、モニタ上に受信画像として表示する。
【0039】
一方、S01において、当該超音波診断装置のモードが穿刺モードにある場合には(S01、Yes)、演算・制御回路7は、角度検出器6a及び位置検出器6bから穿刺針の刺入角度及び穿刺針の刺入経路上での先端位置に関する検出結果を受け取り(S02)、その検出結果に基づいて、穿刺針の先端付近に送信フォーカス位置を設定するべく、生体内における穿刺針の先端位置を演算により求め、その穿刺針の先端位置に関する情報を送信遅延制御回路4に送る。送信遅延制御回路4は、穿刺針の先端位置に応じて、その先端付近に送信フォーカス位置を設定するべく、送信遅延時間を設定する。送信遅延制御回路4は、その送信遅延時間に基づいて各振動子セルの送信遅延信号を発生し、パルサー2が、その送信遅延信号に従って各振動子セルに順次高電圧パルスを印加し、各振動子セルが超音波パルスを発生させることで送信フォーカス位置が穿刺針の先端位置付近に制御される(S03)。この際、当該超音波診断装置においては、超音波ビームを数レートに1回の割合で穿刺針の刺入経路とほぼ直交する方向に送信する斜め走査が行われる。具体的には、穿刺アダプタ5に設けられた角度検出器6aによって、穿刺アダプタ5に規定される穿刺針の刺入角度が検出され、演算・制御回路7は、その検出結果を基に、穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置を演算により求める。さらに、送信遅延制御回路4は、演算・制御回路7から、この穿刺針の刺入角度及び穿刺針の刺入経路の各振動子セルに対する相対位置に関する情報を受け取り、超音波ビームが穿刺針の刺入経路に対して、ほぼ垂直に近い角度で送信されるように、各振動子セルの基準となるタイミングに対する遅延時間を設定する。そして、送信遅延発生回路3は、その遅延時間に基づいて各振動子セルの送信遅延信号を発生し、パルサー2が、その送信遅延信号に従って各振動子セルに順次高電圧パルスを印加し、各振動子セルが超音波パルスを発生させる(S04)。一方、受信遅延制御回路11は、超音波ビームの反射波を受信するべく、ダイナミックフォーカスのための受信遅延時間を設定し、その受信遅延時間に関する情報を受信遅延発生回路10に送る。この際、当該超音波診断装置においては、斜め走査における超音波ビームを数レートに1回の割合で受信する処理が行われる。具体的には、穿刺アダプタ5に設けられた角度検出器6aによって、穿刺アダプタ5に規定される穿刺針の刺入角度が検出され、演算・制御回路7は、その検出結果を受信遅延制御回路11に送信する。受信遅延制御回路11は、角度検出器6aによる穿刺針の角度の検出結果に基づいて、超音波ビームの反射波を穿刺針の刺入経路とほぼ直角となるように偏向させるべく、各振動子セルの遅延時間を設定し、その受信遅延時間に関する情報を受信遅延発生回路10に送る。受信遅延発生回路10は、受信遅延制御回路11にて設定された各振動子セルの遅延時間に関する情報に基づいて超音波ビームの反射波(以下、受信ビームと称する)を細いビームに合成して、これを穿刺針の刺入経路とほぼ直角となるように偏向させる処理を行う。各振動子セルは、通常走査における超音波ビームを受信しつつ、斜め走査における超音波ビームも受信する(S05)。受信遅延制御回路11は、各振動子セルが受波した信号を処理して、通常走査における超音波ビームの反射波に基づく画像(本発明の「第1の超音波断層画像」に対応)と、斜め走査における超音波ビームの反射波に基づく画像(本発明の「第2の超音波断層画像」に対応)とを加算して、モニタ上に受信画像(本発明の「第3の超音波断層画像」に対応)として表示する(S06)。さらに、DSC15は、斜め走査における超音波ビームの反射波に含まれる穿刺針信号に対して、これを強調して表示(色・輝度変更)する処理を行い、その処理結果をモニタ上に表示する(S07)。この際、穿刺針像は、色、若しくは、輝度を変更されることで強調して表示される。
【0040】
以上に説明したように、本実施形態における超音波診断装置によれば、穿刺針の位置及び角度に関する情報と、超音波ビームの反射波に基づく輝度信号とから生体内における穿刺針の位置を確実に特定することができ、且つ、超音波画像の体内組織を表現する部分の画質を著しく低下させることなく、穿刺針を表現する部分のみが強調して表示されるので、ユーザは、映像化された体内組織と穿刺針像とを容易に識別することができる。
【0041】
【発明の効果】
以上に説明したように、本発明に係る超音波診断装置によれば、穿刺針の位置及び角度に関する情報と、超音波ビームの反射波に基づく輝度信号とから生体内における穿刺針の位置を確実に特定することができ、且つ、超音波画像の体内組織を表現する部分の画質を著しく低下させることなく、穿刺針を表現する部分のみを強調して表示することができるので、映像化された体内組織と穿刺針像とを容易に識別することができる。
【図面の簡単な説明】
【図1】本発明に係る超音波診断装置の制御構成を表すブロック図である。
【図2】図1に示す超音波診断装置において、穿刺術を行う場合に、数レートに1回の割合で超音波ビームを偏向させる処理が行われる過程を説明するための説明図である。
【図3】図1に示す超音波診断装置において、斜め走査時の受信信号の中から、穿刺針からの反射波に基づく信号を抽出する処理が行われる過程を説明するための説明図である。
【図4】図1に示す超音波診断装置の画像処理動作を説明するためのフローチャートである。
【図5】図1に示す超音波診断装置の超音波プローブが2Dアレイ化された振動子を有するものである場合に、穿刺針の刺入経路からの位置ズレ量に応じて穿刺針像を強調して表示する処理が行われる過程を説明するための説明図である。
【符号の説明】
1 超音波プローブ
2 パルサー
3 送信遅延発生回路
4 送信遅延制御回路
5 穿刺アダプタ
6a 角度検出器
6b 位置検出器
7 演算・制御回路
8 プレアンプ
9 ゲイン補正回路
10 受信遅延発生回路
11 受信遅延制御回路
12 検波回路
13 Log圧縮回路
14 A/Dコンバータ
15 DSC回路
16 D/Aコンバータ
17 モニタ
18 操作パネル
Claims (9)
- 穿刺針の刺入経路を超音波ビームの走査線上に規定し、前記穿刺針の生体に対する刺入角度を検出する角度検出手段を有する穿刺アダプタを備えると共に、超音波を発生する複数の振動子を有し、前記振動子から発生する超音波を前記超音波ビームとして生体内において走査して、その反射波を受信する超音波プローブと、
前記超音波プローブにおいて受信される前記超音波ビームの反射波に基づき、前記生体内の超音波画像を作成する超音波画像作成手段と、
前記超音波画像作成手段により作成された超音波画像を表示する表示手段と、
前記角度検出手段により検出される前記穿刺針の前記生体に対する刺入角度に基づいて、前記超音波ビームを前記穿刺針の刺入経路に対して略直交する方向に偏向させる超音波ビーム偏向手段と、
前記超音波ビームを所定回数走査する毎に、前記超音波ビーム偏向手段により前記超音波ビームを前記穿刺針の刺入経路に対して略直交する方向に偏向させる制御を行う超音波ビーム制御手段と、を備えたことを特徴とする超音波診断装置。 - 超音波画像作成手段は、前記超音波ビーム制御手段による超音波ビームの偏向を伴わない第1の超音波ビームの反射波に基づいて第1の超音波断層画像を作成し、また、前記超音波ビーム制御手段による超音波ビームの偏向を伴う第2の超音波ビームの反射波に基づいて第2の超音波断層画像を作成した後、さらに、前記第1の超音波断層画像と前記第2の超音波断層画像を加算処理することで第3の超音波断層画像を作成することを特徴とする請求項1に記載の超音波診断装置。
- 前記超音波画像作成手段は、前記第2の超音波ビームの反射波に基づく輝度情報と、前記角度検出手段により検出される前記穿刺針の前記生体に対する刺入角度に関する情報とに基づいて、前記第2の超音波ビームの反射波に含まれる前記穿刺針からの反射信号を特定して、その反射信号に基づき作成される画像部分を強調して表示する処理を施すことを特徴とする請求項1又は請求項2に記載の超音波診断装置。
- 前記強調して表示する処理は、前記穿刺針からの反射信号に基づき作成される画像部分の色、若しくは、輝度を変更する処理であることを特徴とする請求項3に記載の超音波診断装置。
- 前記超音波ビーム偏向手段により、前記超音波ビームを前記穿刺針の刺入経路に対して略直交する方向に偏向させる頻度を調整するための偏向頻度調整手段を備えたことを特徴とする請求項1乃至請求項4の何れか一項に記載の超音波診断装置。
- 前記穿刺アダプタは、前記穿刺針の前記刺入経路上における先端位置を検出する位置検出手段を備え、
前記位置検出手段により検出される前記穿刺針の前記刺入経路上における先端位置と、前記角度検出手段により検出される前記穿刺針の前記生体に対する刺入角度に関する情報とに基づいて、前記複数の振動子から送信される超音波ビームの焦点位置を変更する焦点位置制御手段を備えたことを特徴とする請求項1乃至請求項5の何れか一項に記載の超音波診断装置。 - 穿刺針の刺入経路を超音波ビームの走査線上に規定する穿刺アダプタを備えると共に、超音波を発生する複数の振動子を有し、前記振動子から発生する超音波を前記超音波ビームとして生体内において走査して、その反射波を受信する超音波プローブと、
前記超音波プローブにおいて受信される前記超音波ビームの反射波に基づき、前記生体内の超音波画像を作成する超音波画像作成手段と、
前記超音波画像作成手段により作成された超音波画像を表示する表示手段と、を備える超音波診断装置であって、
前記超音波プローブにおいて受信される前記超音波ビームの反射波に基づき、前記穿刺針の前記超音波ビームの走査方向に略直交する方向に関する前記刺入経路からの位置ズレ量を算出する位置ズレ量算出手段を備え、
前記超音波画像作成手段は、前記位置ズレ量算出手段により算出される前記穿刺針の前記刺入経路からの位置ズレ量に応じて、前記超音波画像として表示される前記穿刺針の像を強調して表示する処理を施すことを特徴とする超音波診断装置。 - 前記複数の振動子は、前記超音波ビームの走査方向及び前記走査方向と略直交する方向に広がりをもつ2次元アレイ構造を有するものであって、
前記位置ズレ量算出手段は、前記超音波プローブにおいて受信される前記超音波ビームの前記走査方向及び前記略直交する方向における反射波に基づいて、前記穿刺針の前記走査方向に応じた前記略直交する方向における位置を特定し、前記穿刺針の前記走査方向に応じた前記略直交する方向における前記刺入経路からの位置ズレ量を算出して、
前記超音波画像作成手段は、前記穿刺針の前記走査方向に応じた前記略直交する方向における前記刺入経路からの位置ズレ量に応じて、前記超音波画像上に表示される前記穿刺針の像を強調して表示する処理を施すことを特徴とする請求項7に記載の超音波診断装置。 - 前記強調して表示する処理は、前記穿刺針の像の色、若しくは、輝度を変更する処理であることを特徴とする請求項8に記載の超音波診断装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002380477A JP2004208859A (ja) | 2002-12-27 | 2002-12-27 | 超音波診断装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002380477A JP2004208859A (ja) | 2002-12-27 | 2002-12-27 | 超音波診断装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004208859A true JP2004208859A (ja) | 2004-07-29 |
Family
ID=32816694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002380477A Pending JP2004208859A (ja) | 2002-12-27 | 2002-12-27 | 超音波診断装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004208859A (ja) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006320378A (ja) * | 2005-05-17 | 2006-11-30 | Ge Medical Systems Global Technology Co Llc | 超音波診断装置、超音波画像生成方法および超音波画像生成プログラム |
JP2007175431A (ja) * | 2005-12-28 | 2007-07-12 | Olympus Medical Systems Corp | 超音波診断装置 |
JP2007215672A (ja) * | 2006-02-15 | 2007-08-30 | Toshiba Corp | 超音波診断装置及び治療支援装置 |
JP2007301122A (ja) * | 2006-05-11 | 2007-11-22 | Aloka Co Ltd | 超音波診断装置 |
JP2010269054A (ja) * | 2009-05-25 | 2010-12-02 | Aloka Co Ltd | 超音波診断装置 |
CN102342850A (zh) * | 2010-08-03 | 2012-02-08 | 富士胶片株式会社 | 超声波图像生成设备 |
JP2012070816A (ja) * | 2010-09-28 | 2012-04-12 | Fujifilm Corp | 超音波画像生成装置および超音波画像生成方法 |
JP2013063256A (ja) * | 2011-08-25 | 2013-04-11 | General Electric Co <Ge> | 医用超音波イメージングにおける針の視覚化を向上させる方法、装置及びシステム |
US8602995B2 (en) | 2008-03-26 | 2013-12-10 | Fujifilm Corporation | Ultrasonic diagnostic apparatus |
WO2014002963A1 (ja) * | 2012-06-25 | 2014-01-03 | 株式会社東芝 | 超音波診断装置及び画像処理方法 |
WO2014124088A1 (en) | 2013-02-06 | 2014-08-14 | Ge Medical Systems Global Technology Company, Llc | Ultrasonic diagnostic apparatus and control program thereof |
WO2015015848A1 (ja) * | 2013-07-30 | 2015-02-05 | 富士フイルム株式会社 | 超音波診断装置、超音波診断方法、及び超音波診断プログラム |
WO2015029499A1 (ja) * | 2013-08-30 | 2015-03-05 | 富士フイルム株式会社 | 超音波診断装置および超音波画像生成方法 |
JP2015091347A (ja) * | 2008-06-18 | 2015-05-14 | キヤノン株式会社 | 超音波探触子、該超音波探触子を備えた光音響・超音波システム並びに検体イメージング装置 |
JP2015519120A (ja) * | 2012-05-11 | 2015-07-09 | コーニンクレッカ フィリップス エヌ ヴェ | 超音波を使用して組織内の鏡面対象及びターゲット解剖構造をイメージングする方法及び超音波イメージング装置 |
WO2015153189A1 (en) * | 2014-03-31 | 2015-10-08 | General Electric Company | Ultrasound imaging system and method for tracking a specular reflector |
JP2016135455A (ja) * | 2016-05-06 | 2016-07-28 | コニカミノルタ株式会社 | 超音波画像診断装置 |
US9693753B2 (en) | 2008-06-18 | 2017-07-04 | Canon Kabushiki Kaisha | Ultrasonic probe, and photoacoustic-ultrasonic system and inspection object imaging apparatus including the ultrasonic probe |
JP2017148407A (ja) * | 2016-02-26 | 2017-08-31 | コニカミノルタ株式会社 | 超音波診断装置、及び制御プログラム |
JP2018065010A (ja) * | 2010-04-07 | 2018-04-26 | ニコラオス パグラトス, | 画像内の物体の向上された撮像のためのシステムおよび方法 |
CN107997783A (zh) * | 2017-11-29 | 2018-05-08 | 声泰特(成都)科技有限公司 | 一种基于超声波方向性的自适应超声波束合成方法和系统 |
KR20190096574A (ko) * | 2018-02-09 | 2019-08-20 | 고려대학교 산학협력단 | 시술도구 위치 추적 시스템 |
JP2019180632A (ja) * | 2018-04-05 | 2019-10-24 | キヤノンメディカルシステムズ株式会社 | 穿刺ガイドアダプタ、超音波プローブ及び超音波画像診断装置 |
CN111956309A (zh) * | 2020-08-28 | 2020-11-20 | 深圳开立生物医疗科技股份有限公司 | 一种图像获取方法、装置、设备和介质 |
JP2021510618A (ja) * | 2018-01-23 | 2021-04-30 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 針挿入誘導を提供する超音波イメージングシステム |
CN114376685A (zh) * | 2021-07-20 | 2022-04-22 | 牡丹江医学院 | 一种椎管内穿刺超声探头 |
CN116531089A (zh) * | 2023-07-06 | 2023-08-04 | 中国人民解放军中部战区总医院 | 基于图像增强的阻滞麻醉超声引导数据处理方法 |
CN118177870A (zh) * | 2024-04-07 | 2024-06-14 | 中国医学科学院肿瘤医院 | 一种基于超声影像神经阻滞的行针可视化及预警方法 |
-
2002
- 2002-12-27 JP JP2002380477A patent/JP2004208859A/ja active Pending
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006320378A (ja) * | 2005-05-17 | 2006-11-30 | Ge Medical Systems Global Technology Co Llc | 超音波診断装置、超音波画像生成方法および超音波画像生成プログラム |
JP2007175431A (ja) * | 2005-12-28 | 2007-07-12 | Olympus Medical Systems Corp | 超音波診断装置 |
JP2007215672A (ja) * | 2006-02-15 | 2007-08-30 | Toshiba Corp | 超音波診断装置及び治療支援装置 |
JP2007301122A (ja) * | 2006-05-11 | 2007-11-22 | Aloka Co Ltd | 超音波診断装置 |
US8602995B2 (en) | 2008-03-26 | 2013-12-10 | Fujifilm Corporation | Ultrasonic diagnostic apparatus |
JP2015091347A (ja) * | 2008-06-18 | 2015-05-14 | キヤノン株式会社 | 超音波探触子、該超音波探触子を備えた光音響・超音波システム並びに検体イメージング装置 |
US9693753B2 (en) | 2008-06-18 | 2017-07-04 | Canon Kabushiki Kaisha | Ultrasonic probe, and photoacoustic-ultrasonic system and inspection object imaging apparatus including the ultrasonic probe |
JP2010269054A (ja) * | 2009-05-25 | 2010-12-02 | Aloka Co Ltd | 超音波診断装置 |
JP2018065010A (ja) * | 2010-04-07 | 2018-04-26 | ニコラオス パグラトス, | 画像内の物体の向上された撮像のためのシステムおよび方法 |
US8764659B2 (en) | 2010-08-03 | 2014-07-01 | Fujifilm Corporation | Ultrasound image generating apparatus |
CN102342850A (zh) * | 2010-08-03 | 2012-02-08 | 富士胶片株式会社 | 超声波图像生成设备 |
JP2012034717A (ja) * | 2010-08-03 | 2012-02-23 | Fujifilm Corp | 超音波画像生成装置 |
JP2012070816A (ja) * | 2010-09-28 | 2012-04-12 | Fujifilm Corp | 超音波画像生成装置および超音波画像生成方法 |
JP2013063256A (ja) * | 2011-08-25 | 2013-04-11 | General Electric Co <Ge> | 医用超音波イメージングにおける針の視覚化を向上させる方法、装置及びシステム |
JP2015519120A (ja) * | 2012-05-11 | 2015-07-09 | コーニンクレッカ フィリップス エヌ ヴェ | 超音波を使用して組織内の鏡面対象及びターゲット解剖構造をイメージングする方法及び超音波イメージング装置 |
CN103732152A (zh) * | 2012-06-25 | 2014-04-16 | 株式会社东芝 | 超声波诊断装置及图像处理方法 |
US9833216B2 (en) | 2012-06-25 | 2017-12-05 | Toshiba Medical Systems Corporation | Ultrasonic diagnosis apparatus and image processing method |
WO2014002963A1 (ja) * | 2012-06-25 | 2014-01-03 | 株式会社東芝 | 超音波診断装置及び画像処理方法 |
US10206656B2 (en) | 2013-02-06 | 2019-02-19 | Ge Medical Systems Global Technology Company, Llc | Ultrasonic diagnostic apparatus and control program thereof |
KR20150117279A (ko) | 2013-02-06 | 2015-10-19 | 지이 메디컬 시스템즈 글로발 테크놀러지 캄파니 엘엘씨 | 초음파 진단 장치 및 이의 제어 프로그램 |
WO2014124088A1 (en) | 2013-02-06 | 2014-08-14 | Ge Medical Systems Global Technology Company, Llc | Ultrasonic diagnostic apparatus and control program thereof |
CN105407806B (zh) * | 2013-07-30 | 2018-07-06 | 富士胶片株式会社 | 超声波诊断装置及其工作方法 |
CN105407806A (zh) * | 2013-07-30 | 2016-03-16 | 富士胶片株式会社 | 超声波诊断装置、超声波诊断方法及超声波诊断程序 |
JP2015027346A (ja) * | 2013-07-30 | 2015-02-12 | 富士フイルム株式会社 | 超音波診断装置、超音波診断方法、及び超音波診断プログラム |
WO2015015848A1 (ja) * | 2013-07-30 | 2015-02-05 | 富士フイルム株式会社 | 超音波診断装置、超音波診断方法、及び超音波診断プログラム |
US20160174932A1 (en) * | 2013-08-30 | 2016-06-23 | Fujifilm Corporation | Ultrasonic diagnostic device and ultrasonic image generation method |
WO2015029499A1 (ja) * | 2013-08-30 | 2015-03-05 | 富士フイルム株式会社 | 超音波診断装置および超音波画像生成方法 |
US20220175343A1 (en) * | 2013-08-30 | 2022-06-09 | Fujifilm Corporation | Ultrasonic diagnostic device and ultrasonic image generation method |
US9622724B2 (en) | 2014-03-31 | 2017-04-18 | General Electric Company | Ultrasound imaging system and method for tracking a specular reflector |
WO2015153189A1 (en) * | 2014-03-31 | 2015-10-08 | General Electric Company | Ultrasound imaging system and method for tracking a specular reflector |
JP2017148407A (ja) * | 2016-02-26 | 2017-08-31 | コニカミノルタ株式会社 | 超音波診断装置、及び制御プログラム |
JP2016135455A (ja) * | 2016-05-06 | 2016-07-28 | コニカミノルタ株式会社 | 超音波画像診断装置 |
CN107997783A (zh) * | 2017-11-29 | 2018-05-08 | 声泰特(成都)科技有限公司 | 一种基于超声波方向性的自适应超声波束合成方法和系统 |
JP2021510618A (ja) * | 2018-01-23 | 2021-04-30 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 針挿入誘導を提供する超音波イメージングシステム |
JP7401459B2 (ja) | 2018-01-23 | 2023-12-19 | コーニンクレッカ フィリップス エヌ ヴェ | 針挿入誘導を提供する超音波イメージングシステム |
JP7550919B2 (ja) | 2018-01-23 | 2024-09-13 | コーニンクレッカ フィリップス エヌ ヴェ | 針挿入誘導を提供する超音波イメージングシステム |
US11918300B2 (en) | 2018-01-23 | 2024-03-05 | Koninklijke Philips N.V. | Ultrasound imaging system providing needle insertion guidance |
KR102085588B1 (ko) * | 2018-02-09 | 2020-03-06 | 고려대학교 산학협력단 | 시술도구 위치 추적 시스템 |
KR20190096574A (ko) * | 2018-02-09 | 2019-08-20 | 고려대학교 산학협력단 | 시술도구 위치 추적 시스템 |
JP2019180632A (ja) * | 2018-04-05 | 2019-10-24 | キヤノンメディカルシステムズ株式会社 | 穿刺ガイドアダプタ、超音波プローブ及び超音波画像診断装置 |
JP7215833B2 (ja) | 2018-04-05 | 2023-01-31 | キヤノンメディカルシステムズ株式会社 | 穿刺ガイドアダプタ、超音波プローブ及び超音波画像診断装置 |
CN111956309A (zh) * | 2020-08-28 | 2020-11-20 | 深圳开立生物医疗科技股份有限公司 | 一种图像获取方法、装置、设备和介质 |
CN114376685A (zh) * | 2021-07-20 | 2022-04-22 | 牡丹江医学院 | 一种椎管内穿刺超声探头 |
CN114376685B (zh) * | 2021-07-20 | 2023-08-22 | 牡丹江医学院 | 一种椎管内穿刺超声探头 |
CN116531089B (zh) * | 2023-07-06 | 2023-10-20 | 中国人民解放军中部战区总医院 | 基于图像增强的阻滞麻醉超声引导数据处理方法 |
CN116531089A (zh) * | 2023-07-06 | 2023-08-04 | 中国人民解放军中部战区总医院 | 基于图像增强的阻滞麻醉超声引导数据处理方法 |
CN118177870A (zh) * | 2024-04-07 | 2024-06-14 | 中国医学科学院肿瘤医院 | 一种基于超声影像神经阻滞的行针可视化及预警方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004208859A (ja) | 超音波診断装置 | |
JP3723663B2 (ja) | 超音波診断装置 | |
US9119558B2 (en) | Ultrasonic diagnostic apparatus and ultrasonic diagnostic method | |
US7972270B2 (en) | Ultrasound imaging apparatus and method having two dimensional focus | |
US8491475B2 (en) | Ultrasonic diagnostic apparatus, ultrasonic diagnostic method, and imaging processing program for ultrasonic diagnostic apparatus | |
US9775584B2 (en) | Ultrasound probe and ultrasound diagnosis apparatus | |
CN104981208A (zh) | 超声波诊断装置及其控制程序 | |
US9427212B2 (en) | Ultrasonic diagnostic apparatus | |
JP2010088486A (ja) | 超音波診断装置 | |
JP4945326B2 (ja) | 超音波診断装置 | |
JP2006314689A (ja) | 超音波診断装置及び超音波診断装置制御プログラム | |
US20100056917A1 (en) | Ultrasonic diagnostic apparatus | |
JP6853372B2 (ja) | 超音波診断装置および超音波診断装置の制御方法 | |
JP2003093389A (ja) | 超音波診断装置 | |
JP3611636B2 (ja) | 超音波診断装置 | |
JP2005324072A (ja) | 超音波診断装置 | |
JP5247330B2 (ja) | 超音波信号処理装置及び超音波信号処理方法 | |
JP2017225645A (ja) | 超音波画像表示装置及び方法、並びにプログラムを格納した記録媒体 | |
JPH1133028A (ja) | 超音波診断装置用穿刺システム | |
JP6484781B1 (ja) | 超音波画像表示装置 | |
JP6379363B1 (ja) | 超音波画像表示装置 | |
JP4347954B2 (ja) | 超音波撮像装置 | |
JP4886291B2 (ja) | 超音波プローブ、超音波診断装置及び超音波診断装置の制御プログラム | |
JP3468431B2 (ja) | 穿刺機構付き超音波診断装置 | |
JP3321401B2 (ja) | 血管探査装置 |