WO2015015848A1 - 超音波診断装置、超音波診断方法、及び超音波診断プログラム - Google Patents

超音波診断装置、超音波診断方法、及び超音波診断プログラム Download PDF

Info

Publication number
WO2015015848A1
WO2015015848A1 PCT/JP2014/061198 JP2014061198W WO2015015848A1 WO 2015015848 A1 WO2015015848 A1 WO 2015015848A1 JP 2014061198 W JP2014061198 W JP 2014061198W WO 2015015848 A1 WO2015015848 A1 WO 2015015848A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception focus
ultrasonic
reception
focus
unit
Prior art date
Application number
PCT/JP2014/061198
Other languages
English (en)
French (fr)
Inventor
公人 勝山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201480040259.7A priority Critical patent/CN105407806B/zh
Publication of WO2015015848A1 publication Critical patent/WO2015015848A1/ja
Priority to US14/981,872 priority patent/US10299758B2/en
Priority to US16/374,284 priority patent/US11096665B2/en
Priority to US17/371,439 priority patent/US11622748B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8995Combining images from different aspect angles, e.g. spatial compounding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • G01S7/52026Extracting wanted echo signals
    • G01S7/52028Extracting wanted echo signals using digital techniques

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus, an ultrasonic diagnostic method, and an ultrasonic diagnostic program.
  • FIG. 18A When imaging the needle by transmitting and receiving ultrasonic waves, if the angle of the needle becomes an acute angle, as shown in FIG. 18A, the reflection is removed from the reception opening, and the reflected wave from the needle cannot be received. Therefore, as shown in FIG. 18B, a method is known in which a reflected wave from a needle is received by transmitting the transmission beam while being tilted so as to be perpendicular to the needle.
  • an image generated by tilting the transmission beam deteriorates in image quality due to the influence of side lobes and is not suitable for viewing the tissue.
  • Patent Document 1 Japanese Patent Laid-Open No. 2012-213606
  • ultrasonic transmission is performed in a first direction to generate a first ultrasonic image
  • ultrasonic waves are transmitted in a plurality of directions for the purpose of needle photography.
  • the second ultrasonic image group is generated, the first image and the second image group or the second image group are analyzed for luminance distribution to generate a needle image in which the needle is depicted, It has been proposed to synthesize the image and the needle image.
  • Patent Document 2 Japanese Patent Laid-Open No. 2010-51319 has been proposed as a method for drawing a needle image.
  • Patent Document 2 an ultrasonic beam having an intensity distribution centered in a first direction is transmitted from a first group of ultrasonic transducers, and a received signal in which the second group of ultrasonic transducers receives an ultrasonic echo signal. It has been proposed to generate an ultrasonic image in a second direction different from the first direction based on the above.
  • the present invention has been made in consideration of the above facts, and provides an ultrasonic diagnostic apparatus, an ultrasonic diagnostic method, and an ultrasonic diagnostic that can depict a reflector such as a needle other than tissue without lowering the frame rate. Provide a program.
  • the radiation signal processing apparatus generates and transmits an ultrasonic wave, and also includes a probe including a plurality of elements that receive an ultrasonic wave reflected from an inspection target, and a transmission focal point in a predetermined first direction.
  • a transmitter that transmits ultrasonic waves from a plurality of elements so as to transmit an ultrasonic beam, and each received signal received by each element of the probe is transmitted into the inspection object by the transmitter.
  • a second reception focus unit that performs reception focus in accordance with the reflection on the path in the second direction other than the first direction among the transmitted wave paths of the ultrasonic beam.
  • the probe includes a plurality of elements that generate and transmit ultrasonic waves and receive ultrasonic waves reflected from the inspection target.
  • the transmitting unit transmits ultrasonic waves from a plurality of elements so as to transmit an ultrasonic beam by forming a transmission focus in a predetermined first direction.
  • the second reception focus unit is configured to transmit the ultrasonic beam transmitted in the inspection target by the transmission unit to each reception signal received by each element of the probe except for the first direction.
  • the reception focus is performed in accordance with the reflection on the path in the second direction.
  • the second reception focus unit By performing the reception focus in accordance with the reflection on the path in the direction of 2, it is possible to depict a reflector such as a needle. Further, if the reception focus direction is set to the first direction, tissue can be drawn, so that a reflector such as a needle can be drawn without reducing the frame rate. That is, by further including a first reception focus unit that performs reception focus in accordance with reflection on the path in the first direction, the tissue is drawn and the reflector such as a needle is drawn without lowering the frame rate. be able to. At this time, you may make it further provide the synthetic
  • the transmission unit transmits ultrasonic waves from a plurality of elements so as to form a transmission focal point in the first direction at each of two or more different openings of the probe and transmit an ultrasonic beam.
  • the second reception focus unit may perform reception focus on the reception signal for each aperture in accordance with a common reflection point in the second direction.
  • the second reception focus unit may perform reception focus based on a delay time set on the assumption that the transmission wave converges and diverges in a spherical wave shape in an area shallower and deeper than the transmission focus.
  • the second reception focus unit assumes specular reflection at each point in the second direction, assumes a sound source at a point different from the point, and receives based on a delay time with respect to the assumed sound source. Focusing may be performed.
  • the present invention may further include a determination unit that determines the direction of the needle based on the result of performing the reception focus by the second reception focus unit.
  • a designation unit for designating the second direction may be further provided.
  • the designation unit may designate the second direction based on information on the direction obtained from the fixing unit that fixes the needle.
  • the second direction may be designated based on the result of the previous reception focus performed by the second reception focus unit.
  • the ultrasonic diagnostic method of the present invention generates and transmits an ultrasonic wave, and uses a plurality of elements of a probe including a plurality of elements that receive an ultrasonic wave reflected from an inspection object.
  • An ultrasonic wave is transmitted so as to transmit an ultrasonic beam by forming a transmission focus in one direction, and each received signal received by each element of the probe is transmitted into the inspection object.
  • a plurality of elements of a probe including a plurality of elements that generate and transmit an ultrasonic wave and receive an ultrasonic wave reflected from an inspection object are determined in advance from a plurality of elements.
  • Ultrasonic waves are transmitted so that a transmission focal point is formed in one direction and an ultrasonic beam is transmitted.
  • the present invention further includes performing the first reception focus in accordance with the reflection on the path in the first direction, thereby rendering the tissue without reducing the frame rate and reflecting the reflector such as a needle. Can be drawn. At this time, the reception focus results of the first reception focus and the second reception focus may be combined.
  • ultrasonic waves are transmitted from a plurality of elements so that a transmission focal point is formed in a first direction at each of two or more different apertures of the probe and an ultrasonic beam is transmitted.
  • the reception focus may be performed in accordance with the common reflection point in the second direction with respect to the reception signal for each aperture.
  • the reception focus may be performed based on a delay time set on the assumption that the transmission wave converges and diverges in a spherical wave shape in an area shallower and deeper than the transmission focus. Further, assuming that each point in the second direction is specular reflection at each point, a sound source is assumed at a point different from the point, and reception focus is performed based on a delay time with respect to the assumed sound source. May be.
  • the present invention may further include determining the direction of the needle based on the result of performing the second reception focus.
  • a designation step for designating the second direction may be further provided. In this case, you may make it designate a 2nd direction based on the information regarding the direction obtained from the fixing
  • the ultrasonic diagnostic program of the present invention generates and transmits an ultrasonic wave, and at the same time, determines a predetermined number of elements from a plurality of elements of a probe including a plurality of elements that receive an ultrasonic wave reflected from an inspection object.
  • An ultrasonic wave is transmitted so as to transmit an ultrasonic beam by forming a transmission focus in one direction, and each received signal received by each element of the probe is transmitted into the inspection object.
  • the computer is caused to execute a process including performing the second reception focus in accordance with the reflection on the path in the second direction other than the first direction.
  • a plurality of elements of a probe including a plurality of elements that generate and transmit ultrasonic waves and receive ultrasonic waves reflected from an inspection object Then, an ultrasonic wave is transmitted so that a transmission focal point is formed in a predetermined first direction and an ultrasonic beam is transmitted.
  • the second reception focus is performed in accordance with the reflection on the path.
  • the present invention further includes performing the first reception focus in accordance with the reflection on the path in the first direction, thereby rendering the tissue without reducing the frame rate and reflecting the reflector such as a needle. Can be drawn. At this time, the reception focus results of the first reception focus and the second reception focus may be combined.
  • ultrasonic waves are transmitted from a plurality of elements so that a transmission focal point is formed in a first direction at each of two or more different apertures of the probe and an ultrasonic beam is transmitted. You may make it perform 2nd receiving focus according to the reflective point common to a 2nd direction with respect to the received signal with respect to opening.
  • the reception focus may be performed based on a delay time set on the assumption that the transmission wave converges and diverges in a spherical wave shape in an area shallower and deeper than the transmission focus. Further, assuming that each point in the second direction is specular reflection at each point, a sound source is assumed at a point different from the point, and reception focus is performed based on a delay time with respect to the assumed sound source. May be.
  • the present invention may further comprise determining the direction of the needle based on the result of performing the second reception focus.
  • the second direction may be further provided to specify the second direction.
  • the second direction may be designated based on the result of the previous reception focus of the second reception focus.
  • FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic diagnostic apparatus according to a first embodiment of the present invention. It is a figure for demonstrating the regular reflection by the needle
  • FIG. Reception focus performed by the second reception focus unit in the ultrasonic diagnostic apparatus according to the first embodiment of the present invention (when considering that the sound wave is equivalent to the case where the sound source is located in a symmetrical position with the needle as a specular reflection surface)
  • FIG. Reception focus performed by the second reception focus unit in the ultrasonic diagnostic apparatus according to the first embodiment of the present invention (when considering that the sound wave is equivalent to the case where the sound source is located in a symmetrical position with the needle as a specular reflection surface)
  • Receive focus in the ⁇ direction using element signals of a plurality of scanning lines performed by the second reception focus unit in the ultrasonic diagnostic apparatus according to the second embodiment of the present invention (a sound source is located at a symmetrical position with a needle as a specular reflection surface) It is a figure for demonstrating that it becomes a sound wave equivalent to a certain case).
  • Receive focus in the ⁇ direction using element signals of a plurality of scanning lines performed by the second reception focus unit in the ultrasonic diagnostic apparatus according to the second embodiment of the present invention (a sound source is located at a symmetrical position with a needle as a specular reflection surface) It is a figure for demonstrating that it becomes a sound wave equivalent to a certain case).
  • FIG. 1 It is a flowchart which shows an example of the flow of the process performed by the principal part of the ultrasound diagnosing device 10 which concerns on 2nd Embodiment of this invention. It is a figure for demonstrating the reception focus performed by the 2nd reception focus part in the ultrasonic diagnosing device which concerns on 3rd Embodiment of this invention.
  • Reception focus performed by the second reception focus unit in the ultrasonic diagnostic apparatus according to the third embodiment of the present invention (when considering that the sound wave is equivalent to the case where the sound source is located in a symmetrical position with the needle as a specular reflection surface)
  • FIG. It is a flowchart which shows an example of the flow of the process performed by the principal part of the ultrasonic diagnosing device which concerns on 3rd Embodiment of this invention. It is a flowchart which shows an example of the flow of a process in the case of producing
  • FIG. 5 is a diagram illustrating an example of receiving reflection by a needle by transmitting a transmission beam with an inclination.
  • FIG. 1 is a block diagram showing a schematic configuration of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention.
  • the ultrasonic diagnostic apparatus 10 includes an ultrasonic probe 12, a transmission unit 14 and a reception unit 16 connected to the ultrasonic probe 12, an A / D conversion unit 18, and an element data storage unit 20.
  • the ultrasonic probe 12 has a probe 36 used in a normal ultrasonic diagnostic apparatus.
  • the probe 36 has a plurality of elements arranged in a one-dimensional or two-dimensional array, that is, ultrasonic transducers. These ultrasonic transducers transmit an ultrasonic beam to the subject according to a drive signal supplied from the transmission unit 14 and receive an ultrasonic echo from the subject when imaging an ultrasonic image of the subject. To output a received signal.
  • each of a predetermined number of ultrasonic transducers constituting a set of the plurality of ultrasonic transducers of the probe 36 generates each component of one ultrasonic beam, and a predetermined number of sets.
  • the ultrasonic transducer generates one ultrasonic beam to be transmitted to the subject.
  • Each ultrasonic transducer is, for example, a piezoelectric ceramic represented by PZT (lead zirconate titanate), a polymer piezoelectric element represented by PVDF (polyvinylidene fluoride), or PMN-PT (magnesium niobate / lead titanate). It is constituted by an element (vibrator) in which electrodes are formed on both ends of a piezoelectric body including a piezoelectric single crystal represented by a solid solution). That is, the probe 36 is a transducer array in which a plurality of transducers are arranged in a one-dimensional or two-dimensional array as a plurality of ultrasonic elements.
  • PZT lead zirconate titanate
  • PVDF polymer piezoelectric element represented by PVDF (polyvinylidene fluoride)
  • PMN-PT magnesium niobate / lead titanate
  • the probe 36 is a transducer array in which a plurality of trans
  • each transducer When a pulsed or continuous wave voltage is applied to the electrodes of such a vibrator, the piezoelectric material expands and contracts, and pulse or continuous wave ultrasonic waves are generated from the respective vibrators, and the synthesis of these ultrasonic waves. As a result, an ultrasonic beam is formed.
  • each transducer generates an electric signal by expanding and contracting by receiving propagating ultrasonic waves, and these electric signals are output as ultrasonic reception signals.
  • the transmission unit 14 includes, for example, a plurality of pulsers, and a plurality of ultrasonic transducers (hereinafter referred to as ultrasonic waves) of the probe 36 based on a transmission delay pattern selected according to a control signal from the control unit 30.
  • the delay amount of the drive signal of each of the ultrasonic elements is adjusted so that the ultrasonic beam component transmitted from the element) forms one ultrasonic beam, and the adjusted drive signals are combined into a plurality of sets.
  • Supply to ultrasonic element Accordingly, ultrasonic waves are transmitted from the plurality of ultrasonic elements, transmission focus is performed, and an ultrasonic beam is generated and transmitted.
  • the receiving unit 16 receives, from the subject, an ultrasonic echo generated by the interaction between the ultrasonic beam and the subject by each ultrasonic element of the probe 36 in accordance with a control signal from the control unit 30. Then, the reception signal, that is, the analog element signal for each ultrasonic element is amplified, and the amplified analog element signal is supplied to the A / D converter 18.
  • the A / D conversion unit 18 is connected to the receiving unit 16 and converts the analog element signal supplied from the receiving unit 16 into digital element data.
  • the A / D conversion unit 18 supplies the A / D converted digital element data to the element data storage unit 20.
  • the element data storage unit 20 sequentially stores the digital element data output from the A / D conversion unit 18.
  • the element data storage unit 20 receives information on the frame rate input from the control unit 30 (for example, parameters indicating the depth of the reflection position of the ultrasonic wave, the density of the scanning line, and the field width) from the above-described digital element data (hereinafter referred to as the “element data”). , Simply referred to as element data) and stored.
  • the image generation unit 24 generates a sound ray signal (reception data) from the element data stored in the element data storage unit 20 under the control of the control unit 30, and generates an ultrasonic image from the sound ray signal.
  • the image generation unit 24 includes a phasing addition / detection processing unit 40, a DSC 42, an image creation unit 44, and an image memory 46.
  • the phasing addition / detection processing unit 40 selects one reception delay pattern from a plurality of reception delay patterns stored in advance according to the reception direction set in the control unit 30, and selects the selected reception delay. Based on the pattern, the reception focus process is performed by adding the respective delays to the element data. By this reception focus processing, reception data (sound ray signal) in which the focus of the ultrasonic echo is narrowed is generated.
  • the phasing addition / detection processing unit 40 performs an envelope detection process on the reception data generated by the reception focus process, after performing attenuation correction according to the depth of the reflection position of the ultrasonic wave.
  • B-mode image data that is tomographic image information relating to the tissue in the subject is generated.
  • a DSC (digital scan converter) 42 converts the B-mode image data generated by the detection processing unit 40 into image data according to a normal television signal scanning method (raster conversion).
  • the image creation unit 44 performs various necessary image processing such as gradation processing on the B-mode image data input from the DSC 42 to create B-mode image data for use in inspection and display, and then creates the created inspection. Or display B-mode image data is output to the display control unit 26 for display or stored in the image memory 46.
  • the image memory 46 temporarily stores the inspection B-mode image data created by the image creation unit 44.
  • the inspection B-mode image data stored in the image memory 46 is read to the display control unit 26 for display on the display unit 28 as necessary.
  • the display control unit 26 causes the display unit 28 to display an ultrasonic image based on the inspection B-mode image signal subjected to image processing by the image creation unit 44.
  • the display unit 28 includes a display device such as an LCD, for example, and displays an ultrasonic image under the control of the display control unit 26.
  • the control unit 30 controls each unit of the ultrasonic diagnostic apparatus 10 based on a command input from the operation unit 32 by the operator.
  • control unit 30 When the operator inputs various information via the operation unit 32, in particular, information necessary for delay time calculation used in the phasing addition unit 38 of the image generation unit 24, the control unit 30 operates The above-described various information input from the unit 32 is supplied to each unit such as the transmission unit 14, the reception unit 16, the element data storage unit 20, the image generation unit 24, and the display control unit 26 as necessary.
  • the operation unit 32 is for an operator to perform an input operation, and includes a keyboard, a mouse, a trackball, a touch panel, and the like.
  • the operation unit 32 is used by the operator for various types of information, in particular, a plurality of ultrasonic elements of the probe 36 of the probe 12 used for calculating the delay time described above, the sound speed of the examination target region of the subject, An input device is provided for inputting information on the focal position of the ultrasonic beam, the transmission aperture and the reception aperture of the probe 36, and the like.
  • the storage unit 34 stores various types of information input from the operation unit 32, particularly information related to the probe 12, sound velocity, focal position, transmission aperture, reception aperture, and the like, the transmission unit 14, the reception unit 16, and element data storage. Information necessary for processing and operation of each unit controlled by the control unit 30 such as the unit 20, the image generation unit 24, and the display control unit 26, and an operation program and processing program for executing the processing and operation of each unit To store.
  • a recording medium such as a hard disk, a flexible disk, an MO, an MT, a RAM, a CD-ROM, or a DVD-ROM can be used.
  • the phasing addition / detection processing unit 40, the DSC 42, the image creation unit 44, and the display control unit 26 may be configured by a CPU and an operation program for causing the CPU to perform various processes.
  • a hardware configuration such as a digital circuit may be used.
  • an ultrasonic beam is transmitted by performing transmission focus, and a sound wave (ultrasonic beam) formed by the transmission focus is transmitted from the transmission focus. Propagating in various directions in shallow or deep regions.
  • the regular reflection by the needle in the direction of the transmission beam deviates from the reception aperture, the regular reflection by the acoustic wave needle in a direction other than the direction of the transmission beam is captured by the reception aperture as shown by the dashed line in FIGS. It is done.
  • the reflection of the sound wave formed by the transmission focus by the needle is equivalent to the case where the focal point is formed at the symmetrical position with the needle as a mirror reflection surface with respect to the focal point formed by the transmission focus.
  • the transmission focal point is regarded as a pseudo sound source, as shown in FIGS. 2A and 2C
  • reflection equivalent to a sound wave when a pseudo sound source is located symmetrically to the transmission focal point with respect to the needle is received at the reception aperture. Be captured.
  • FIG. 2B a sound source is actually formed.
  • the reflection spread range is determined by the directivity of the element, the transmission aperture and depth, frequency, etc., and does not spread in all directions, so the reflected wave equivalent to the above-mentioned pseudo sound source or sound source cannot always be captured. Absent.
  • the range of the sound wave spread in a region shallower or deeper than the transmission focus is determined by the transmission aperture, depth, frequency, and the like, and the reflection spreads only in the range sandwiched in the regular reflection direction by the needles in the directions at both ends.
  • the specular reflection in the direction of the transmitted beam can be considered as part of this reflection.
  • each reception signal received by each ultrasonic element of the probe 36 is subjected to reception focusing in accordance with reflection on a path in a direction other than the transmission beam direction, thereby reflecting other than tissue such as a needle. It is a good depiction of the body.
  • reception focus is performed based on a delay time set on the assumption that the transmission wave converges and diverges in a spherical wave shape in a region shallower and deeper than the transmission focus.
  • FIG. 4 is a block diagram showing a schematic configuration of the phasing addition / detection processing unit 40 in the ultrasonic diagnostic apparatus 10 according to the first embodiment of the present invention.
  • the phasing addition / detection processing unit 40 includes a first reception focus unit 40A, a second reception focus unit 40B, a first detection processing unit 40C, and a second detection processing unit 40D. And a synthesis processing unit 40E.
  • the first reception focus unit 40A selects and selects one reception delay pattern from a plurality of reception delay patterns stored in advance with respect to the transmission direction of the ultrasonic beam (vertical direction in the present embodiment). Based on the received delay pattern, each element data is given a delay and added to perform reception focus.
  • the second reception focus unit 40B performs the reception focus by being inclined by the angle ⁇ through the transmission focus with respect to the transmission direction (vertical direction) of the ultrasonic beam.
  • V ⁇ T0 / 2 the depth of the reflection point in the direction inclined by ⁇ .
  • V ⁇ T0 / 2 the depth of the reflection point in the direction inclined by ⁇ .
  • T0 is the reciprocal ultrasonic propagation time in the vertical direction or the direction inclined by ⁇
  • V is the speed of sound.
  • EP is an element interval
  • j is a positive or negative value with the central element being 0.
  • Tr sqrt (X 2 + Y 2 ) / V
  • the reflected wave from this reflection point can be extracted, that is, receive focus by adding the signals of each element according to the following formula.
  • RF (i, T0) ⁇ ELE (i, j, T)
  • i the scan line to which this aperture corresponds
  • ELE (i, j, T) represents the signal at time T of element j of scan line i
  • RF (i, To) is the scan line i after reception focus. Represents an RF signal at time T0 (corresponding to depth) in the ⁇ direction.
  • the reception focus tilted by the angle ⁇ with respect to the transmission direction is performed so as to satisfy the following expression.
  • j is 0 for the element corresponding to the i-th scanning line position, and takes a positive or negative value.
  • Addition related to j
  • Tt Time until the transmitted wave reaches the reflection point
  • Tr Time until the reflected wave reaches the element
  • V Sound velocity
  • EP Element interval
  • FD Depth of transmission focus
  • In the transmission direction
  • the transmission focal depth FD is negative.
  • the first detection processing unit 40C performs the envelope detection process after correcting the attenuation by the distance according to the depth of the reflection position of the ultrasonic wave on the reception data generated by the first reception focus unit 40A.
  • B-mode image data that is tomographic image information relating to the tissue in the subject is generated.
  • the second detection processing unit 40D performs the envelope detection processing after correcting the attenuation by the distance according to the depth of the reflection position of the ultrasonic wave on the reception data generated by the second reception focus unit 40B.
  • B-mode image data that is image information related to a reflector such as a needle is generated.
  • the synthesis processing unit 40E synthesizes the B mode image data (image A) generated by the first detection processing unit 40C and the B mode image data (image B) generated by the second detection processing unit 40D.
  • RF (i, T0) generated by the above equation is inclined by an angle ⁇ with respect to the vertical direction
  • coordinate conversion scan conversion
  • the image A display image is generated by adding A and the image B at a predetermined ratio.
  • gradation conversion is performed so that higher luminance pixels of the image B are emphasized, only high luminance pixels are extracted as needles, pixels only in a predetermined range are extracted, Hough conversion, etc.
  • the process may be performed so that a straight line is detected and only pixels around the detected straight line are extracted. Further, processing for performing color tone, saturation conversion, and the like may be further performed according to the luminance of the image A and the image B.
  • the needle can be drawn as long as the regular reflection direction by the needle in the direction of the reception focus does not deviate from the reception opening.
  • specular reflection from the needle is the result of integrating the reflection from each point on the needle, so unless the integrated result becomes zero (regular reflection deviates from the receiving aperture), it matches the point reflection on the needle.
  • a part of regular reflection by the needle can be captured by the reception focus. This is the same as the reason why the ultrasonic image generated as the vertical direction in both the transmission beam direction and the reception beam direction can be drawn even if the needle is not horizontal.
  • the reception focus directions of the first reception focus unit 40A and the second reception focus unit 40B may be specified by operating the operation unit 32 or the like, or directions obtained from a jig for fixing the needle. You may make it specify by acquiring the information regarding. Alternatively, the current reception focus direction may be designated based on the result of the previous reception focus.
  • FIG. 6 is a flowchart showing an example of the flow of processing performed in the main part of the ultrasonic diagnostic apparatus 10 according to the first embodiment of the present invention.
  • step 104 transmission focus is performed, each element reception signal is acquired, and the process proceeds to step 106. That is, when the operator contacts the surface of the subject with the ultrasonic probe 12 and starts measurement, an ultrasonic beam is transmitted from the probe 36 in accordance with the drive signal supplied from the transmission unit 14. Then, the probe 36 receives the ultrasonic echo generated by the interaction between the transmitted ultrasonic beam and the subject, amplifies the analog element signal by the receiving unit 16, and the amplified analog element signal Is converted into digital element data by the A / D conversion unit 18, and the digital element data is stored and held in the element data storage unit 20.
  • step 106 reception focus is performed on the reception signal of each element in the same direction as the transmission beam, an image A for tissue imaging is generated, and the process proceeds to step 108. That is, the first reception focus unit 40A acquires each element reception signal from the element data storage unit 20, performs reception focus in the vertical direction, generates reception data (sound ray signal), and performs first detection processing. The unit 40C processes the sound ray signal to generate a B-mode image signal of the image A for tissue imaging.
  • step 108 reception focus is performed on the reception signal of each element in a direction inclined at an angle ⁇ with respect to the transmission beam, and an image B for needle imaging is generated, and the process proceeds to step 110. That is, the second reception focus unit 40B acquires each element reception signal from the element data storage unit 20, performs reception focus in a direction inclined by an angle ⁇ with respect to the vertical direction, and receives data (sound ray signal). The second detection processing unit 40D processes the sound ray signal to generate a B-mode image signal of the image B for needle imaging.
  • step 112 the image A and the image B generated as described above are scan-converted and combined to generate a display image of one frame by the combining processing unit 40E, and the series of processing ends.
  • a display image of the next frame is generated.
  • the ultrasonic diagnostic apparatus 10 performs transmission focus, generates an ultrasonic beam, receives an ultrasonic signal, and performs reception focus in the transmission direction, thereby imaging tissue.
  • An image for the purpose of imaging, and an image for imaging a reflector (needle) other than tissue is generated by performing reception focus in a direction different from the transmission direction. Can be drawn.
  • the second reception focus unit 40B performs reception focus in a direction inclined by an angle ⁇ with respect to the vertical direction. Further, as shown in FIGS. 2A to 2C, the reception focus is performed in consideration of the fact that the reflected wave from the needle becomes a sound wave equivalent to the case where the needle is used as a specular reflection surface and the sound source is in the symmetrical position. It may be.
  • the distances X and Y of the sound source from the jth element are given by the following equations.
  • the propagation time of the sound wave returning to the jth element from the sound source is given by the following equation.
  • Tr sqrt (X 2 + Y 2 ) / V
  • the reflected wave from this reflection point can be extracted, that is, reception focus can be performed by adding the signal of each element by the following formula.
  • the difference from the reception focus expression in the second reception focus unit 40B of the first embodiment is that the transmission focus is symmetrical with respect to the needle DX2 assuming a needle passing through the reflection point in the direction perpendicular to the angle ⁇ .
  • the transmission focus is The time until formation is to add FD / V.
  • reception focus can be adjusted in accordance with the regular reflection from the needle, so that the needle can be drawn better than the first embodiment.
  • reception focusing is performed not only on the target reflection but also on the regular reflection, which is the result of integration with the ambient reflection, so that the ambient reflection is also received on focus. Therefore, even if the target reflection deviates from the point on the needle, if the point on the needle is included in the ambient reflection, the needle is drawn. As a result, the drawing performance of the tip of the needle is better than that of the first embodiment. Will be reduced.
  • one element reception signal sharing a transmission focus is used in order to generate an RF signal of one scanning line in a direction inclined by an angle ⁇ .
  • the second embodiment an example will be described in which not only each element reception signal sharing a transmission focus but also a plurality of element reception signals including the surroundings are used to generate an RF signal of one scanning line.
  • the transmission unit 14 forms a transmission focal point in the first direction at each of two or more different openings of the probe 36 and transmits an ultrasonic beam. Ultrasonic waves are transmitted from the acoustic wave element.
  • the second reception focus unit 40B performs reception focus in a direction inclined by an angle ⁇ with respect to the vertical direction using the element data obtained by the element data processing unit 22 to generate reception data (sound ray signal)
  • reception focus is performed using each element reception signal of a plurality of scanning lines.
  • DX2 is expressed as follows.
  • DX2 DX-k ⁇ EP
  • k takes positive and negative values with the i-th scanning line set to 0.
  • Tt2 (FD + sign (DY) ⁇ sqrt (DX2 2 + DY 2 )) / V
  • the propagation time of the sound wave returning from the reflection point to the j-th element of the opening of the scanning line (i + k) (the element corresponding to the position of the scanning line (i + k) takes 0 as a positive value)
  • the propagation time of the sound wave returning from the reflection point to the j-th element of the opening of the scanning line (i + k) (the element corresponding to the position of the scanning line (i + k) takes 0 as a positive value)
  • Tr sqrt (X 2 + Y 2 ) / V
  • the reflected wave from this reflection point can be extracted, that is, received and focused by adding the signals of each element of each scanning line according to the following formula.
  • i + k represents a scanning line
  • j represents an element
  • two ⁇ represent one of k-related integration and the other represents j-related integration.
  • the reception focus in the ⁇ direction using a plurality of scanning line element signals (a method not assuming specular reflection) is performed so as to satisfy the following expression.
  • the reception wave is focused in consideration that the reflected wave from the needle becomes an equivalent sound wave when the needle is a specular reflection surface and there is a sound source at the symmetrical position. explain.
  • DX2 is given by the following equation (where k takes positive and negative values with the i-th scanning line set to 0).
  • the reflected wave from this reflection point can be extracted, that is, receive focused by adding the signals of each element of each scanning line according to the following equation.
  • i + k represents a scanning line
  • j represents an element
  • two ⁇ represent one of k-related integration and the other represents j-related integration.
  • the reception focus in the second reception focus unit 40B is performed so as to satisfy the following expression.
  • FIG. 10 is a flowchart showing an example of the flow of processing performed in the main part of the ultrasonic diagnostic apparatus 10 according to the second embodiment of the present invention.
  • step 204 transmission focus is performed and each element reception signal is acquired, and the process proceeds to step 206. That is, when the operator contacts the surface of the subject with the ultrasonic probe 12 and starts measurement, an ultrasonic beam is transmitted from the probe 36 in accordance with the drive signal supplied from the transmission unit 14. Then, the probe 36 receives the ultrasonic echo generated by the interaction between the transmitted ultrasonic beam and the subject, amplifies the analog element signal by the receiving unit 16, and the amplified analog element signal Is converted into digital element data by the A / D conversion unit 18, and the digital element data is stored and held in the element data storage unit 20.
  • step 212 reception focus is performed on each element reception signal in the same direction as the transmission beam, and an image A for tissue imaging is generated, and the process proceeds to step 214. That is, the first reception focus unit 40A acquires each element reception signal from the element data storage unit 20, performs reception focus in the vertical direction, generates reception data (sound ray signal), and the first detection processing unit 40C processes the sound ray signal to generate a B-mode image signal of the image A for tissue imaging.
  • step 214 reception focus is performed in a direction inclined by an angle ⁇ with respect to the transmission beam with respect to each element reception signal, an image B for needle imaging is generated, and the process proceeds to step 216. That is, the second reception focus unit 40B acquires each element reception signal from the element data storage unit 20, performs reception focus in a direction inclined by an angle ⁇ with respect to the vertical direction, and receives reception data (sound ray signal). ) And the second detection processing unit 40D processes the sound ray signal to generate a B-mode image signal of the image B for needle imaging.
  • step 218 the image A and the image B generated as described above are respectively scan-converted and combined, and a display image of one frame is generated by the combining processing unit 40E, and the series of processing ends.
  • a display image of the next frame is generated.
  • the reflection from the needle is equivalent to the sound wave when the needle is a specular reflection surface and the sound source is in its symmetric position, but the range is determined and limited by the transmission aperture, depth, frequency, etc. In each of the above embodiments, it may not be possible to draw.
  • the transmission beam direction is tilted to be close to the needle and then the reception beam is focused by tilting further from the transmission beam.
  • the reception focus by the second reception focus unit 40B is performed as follows.
  • DX2 is expressed as follows.
  • Tt2 (FD + sign (DY) ⁇ sqrt (DX2 2 + DY 2 )) / V
  • the propagation time of the sound wave returning from the reflection point to the j-th element of the opening of the scanning line (i + k) (the element corresponding to the position of the scanning line (i + k) takes 0 as a positive value)
  • the propagation time of the sound wave returning from the reflection point to the j-th element of the opening of the scanning line (i + k) (the element corresponding to the position of the scanning line (i + k) takes 0 as a positive value)
  • Tr sqrt (X 2 + Y 2 ) / V
  • X DX + FD ⁇ sin ( ⁇ )-(k + j) ⁇
  • EP Y DY + FD ⁇ cos ( ⁇ )
  • the reflected wave from this reflection point can be extracted, that is, receive focused.
  • i + k represents a scanning line
  • j represents an element
  • two ⁇ represent one of k-related integration and the other represents j-related integration.
  • the reception focus by the second reception focus unit 40B is performed so as to satisfy the following expression.
  • DX2 and DY2 are obtained in FIG. 12B. It can be seen that DX2 and DY2 are given by the following equations (where k takes positive and negative values with the i-th scanning line as 0).
  • the reflected wave from this reflection point can be extracted, that is, receive focused by adding the signals of each element of each scanning line according to the following equation.
  • i + k represents a scanning line
  • j represents an element
  • two ⁇ represent one of k-related integration and the other represents j-related integration.
  • the reception focus is performed in the direction further inclined by the angle ⁇ with respect to the transmission beam inclined by the angle ⁇ .
  • the second reception focus unit 40B performs reception focus so as to satisfy the following expression.
  • FIG. 13 is a flowchart showing an example of the flow of processing performed in the main part of the ultrasonic diagnostic apparatus according to the third embodiment of the present invention. Note that the same processing as in the second embodiment will be described with the same reference numerals.
  • step 203 transmission focus is performed without tilting the transmission beam, and each element reception signal is acquired, and the process proceeds to step 205. That is, when the operator contacts the surface of the subject with the ultrasonic probe 12 and starts measurement, an ultrasonic beam is transmitted from the probe 36 in accordance with the drive signal supplied from the transmission unit 14. Then, the probe 36 receives the ultrasonic echo generated by the interaction between the transmitted ultrasonic beam and the subject, amplifies the analog element signal by the receiving unit 16, and the amplified analog element signal Is converted into digital element data by the A / D conversion unit 18, and the digital element data is stored and held in the element data storage unit 20.
  • step 205 the transmission beam is tilted to perform transmission focus, and each element reception signal is acquired. Then, the process proceeds to step 206. That is, an ultrasonic beam is transmitted from the probe 36 in accordance with the drive signal supplied from the transmission unit 14. At this time, unlike step 203, the transmission beam is transmitted with an inclination. Then, the probe 36 receives the ultrasonic echo generated by the interaction between the transmitted ultrasonic beam and the subject, amplifies the analog element signal by the receiving unit 16, and the amplified analog element signal Is converted into digital element data by the A / D conversion unit 18, and the digital element data is stored and held in the element data storage unit 20.
  • step 213 reception focus is performed in the same direction as the transmission beam on each element reception signal acquired without tilting the transmission beam, and an image A for tissue imaging is generated, and the process proceeds to step 215. That is, the first reception focus unit 40A acquires each element reception signal acquired in step 203 from the element data storage unit 20, performs vertical reception focus, and generates reception data (sound ray signal). The first detection processing unit 40C processes the sound ray signal to generate a B-mode image signal of the image A for tissue imaging.
  • step 215 reception focus is performed in a direction inclined by an angle ⁇ with respect to the transmission beam with respect to each element reception signal obtained by tilting the transmission beam, and an image B for needle imaging is generated, and the process proceeds to step 216.
  • the second reception focus unit 40B acquires each element reception signal acquired in step 205 from the element data storage unit 20, and performs reception focus in a direction further inclined by an angle ⁇ with respect to the transmission beam,
  • the reception data (sound ray signal) is generated, and the second detection processing unit 40D processes the sound ray signal to generate a B-mode image signal of the image B for needle imaging.
  • step 218 the image A and the image B generated as described above are scan-converted and combined to generate a display image of one frame by the combining processing unit 40E, and the series of processing ends.
  • a display image of the next frame is generated.
  • FIG. 13 the case where the RF signal of one scanning line is generated using the element reception signals of a plurality of scanning lines has been described. However, in order to generate the RF signal of one scanning line as in the first embodiment. In the case where one element reception signal sharing the transmission focus is used, the processing shown in FIG. 14 may be performed instead of FIG.
  • FIG. 14 shows an example of the flow of processing when an RF signal of one scanning line is generated using one element reception signal sharing a transmission focus in the ultrasonic diagnostic apparatus according to the third embodiment of the present invention. It is a flowchart. Note that the same processes as those in the first embodiment will be described with the same reference numerals.
  • step 103 transmission focus is performed in the vertical direction without tilting the transmission beam, and each element reception signal is acquired, and the process proceeds to step 106. That is, when the operator contacts the surface of the subject with the ultrasonic probe 12 and starts measurement, an ultrasonic beam is transmitted from the probe 36 in accordance with the drive signal supplied from the transmission unit 14. Then, the probe 36 receives the ultrasonic echo generated by the interaction between the transmitted ultrasonic beam and the subject, amplifies the analog element signal by the receiving unit 16, and the amplified analog element signal Is converted into digital element data by the A / D conversion unit 18, and the digital conversion element data is stored and held in the element data storage unit 20.
  • step 106 reception focus is performed on the reception signal of each element in the same direction as the transmission beam, and an image A for tissue imaging is generated, and the process proceeds to step 107. That is, the first reception focus unit 40A acquires each element reception signal from the element data storage unit 20, performs reception focus in the vertical direction, generates reception data (sound ray signal), and performs first detection processing. The unit 40C processes the sound ray signal and generates a B-mode image signal of the image A for tissue imaging.
  • step 107 the transmission beam is tilted to perform transmission focus, and each element reception signal is acquired. Then, the process proceeds to step 108. That is, an ultrasonic beam is transmitted from the probe 36 in accordance with the drive signal supplied from the transmission unit 14. At this time, unlike step 103, the transmission beam is transmitted with an inclination. Then, the probe 36 receives the ultrasonic echo generated by the interaction between the transmitted ultrasonic beam and the subject, amplifies the analog element signal by the receiving unit 16, and the amplified analog element signal It is converted into digital element data by the A / D conversion unit 18 and stored in the element data storage unit 20.
  • step 108 reception focus is performed in a direction inclined by an angle ⁇ with respect to the transmission beam (inclined transmission beam) with respect to the reception signal of each element, and an image B for needle imaging is generated.
  • the second reception focus unit 40B acquires each element reception signal obtained by the tilted transmission beam from the element data storage unit 20, and performs reception focus in a direction further inclined by the angle ⁇ with respect to the transmission beam.
  • the reception data (sound ray signal) is generated, and the second detection processing unit 40D processes the sound ray signal to generate a B-mode image signal of the image B for needle imaging.
  • step 112 the image A and the image B generated as described above are scan-converted and combined to generate a display image of one frame by the combining processing unit 40E, and the series of processing ends.
  • a display image of the next frame is generated.
  • the ultrasonic diagnostic apparatus requires two ultrasonic transmissions unlike the above-described embodiments, but other than tissues such as needles at angles that cannot be depicted in the above-described embodiments. It is possible to reliably depict the reflector. Accordingly, since the reflector such as the needle can be surely depicted, when the reflector other than the tissue such as the needle cannot be detected in each of the above-described embodiments, the mode and the like are switched to perform the disadvantages of the above-described embodiments. Can be supplemented.
  • the reception focus by the second reception focus unit 40B in the case where the convex ultrasonic probe is used in the third embodiment will be described.
  • the reception focus of the second reception focus unit 40B when the transmission beam is transmitted at an angle ⁇ using a convex ultrasonic probe will be described.
  • x i FD ⁇ sin ( ⁇ )
  • y i R + FD ⁇ cos ( ⁇ )
  • R represents the radius of the convex ultrasonic probe.
  • the scanning line (i + k) is inclined by an angle k ⁇ EP with respect to the scanning line i, and therefore the scanning line i is inclined by an angle ⁇ with respect to the y direction, whereas the scanning line (i + k) ) Is tilted by ⁇ + k ⁇ EP with respect to the y direction (where EP is the angle between the scanning lines. K takes positive and negative values with the i-th scanning line being 0). ). Therefore, the x and y coordinates of the transmission focus of the scanning line (i + k) are expressed as follows.
  • the X-direction and Y-direction distances of the transmission focus of the scanning line i with respect to the transmission focus of the scanning line (i + k) are obtained by the following equations, respectively.
  • the X-direction distance DX2 and the Y-direction distance DY2 of the reflection point with respect to the transmission focus of the scanning line (i + k) are obtained by the following equations.
  • DX2 DX + FD ⁇ sin ( ⁇ )-FD ⁇ sin ( ⁇ + k ⁇ EP)-R ⁇ sin (k ⁇ EP)
  • DY2 DY + FD ⁇ cos ( ⁇ )-FD ⁇ cos ( ⁇ + k ⁇ EP) + R-R ⁇ cos (k ⁇ EP)
  • Tt2 (FD + sign (DY) ⁇ sqrt (DX2 2 + DY2 2 )) / V
  • the reflection point returns to the j-th element of the opening of the scanning line (i + k) (the element corresponding to the position of the scanning line (i + k) takes 0 as a positive value). It can be seen that the propagation time of the sound wave is as follows.
  • Tr sqrt (X 2 + Y 2 ) / V
  • X DX + FD ⁇ sin ( ⁇ )-R ⁇ sin ((k + j) ⁇ EP)
  • Y DY + FD ⁇ cos ( ⁇ ) + R-R ⁇ cos ((k + j) ⁇ EP)
  • EP is an angle between scanning lines and an angle between elements.
  • the reflected wave from this reflection point can be extracted, that is, receive focused.
  • i + k is a scanning line
  • j is an element
  • two ⁇ are one for k and the other is for j.
  • FIG. 17A (or FIG. 17B).
  • FIGS. 17A and 17B are diagrams for explaining how to obtain DX2 and DY2
  • FIG. 17B is an enlarged view of a portion surrounded by a dotted line in FIG. 17A.
  • the distance between the transmission focal point of the scanning line i + k and the transmission focal point of the scanning line i is an isosceles triangle having the convex center as an apex, as shown in FIG. 17A. I understand. Assuming that the length of the side is Rb, the cosine theorem gives that
  • DX2 and DY2 are given by the following equations.
  • DX2 2 ⁇ Rb ⁇ sin (k ⁇ EP / 2) ⁇ sin ( ⁇ ) ⁇ sin ( ⁇ + ⁇ ) +
  • DX DY2 2 ⁇ Rb ⁇ sin (k ⁇ EP / 2) ⁇ cos ( ⁇ ) ⁇ sin ( ⁇ + ⁇ ) + DY
  • (k ⁇ EP / 2) + ⁇ + ⁇ - arcsin (sin ( ⁇ ) ⁇ FD / Rb)
  • Rb sqrt (R 2 + FD 2 + 2 ⁇ R ⁇ FD ⁇ cos ( ⁇ ))
  • DX3 and DY3 are doubles of DX2 and DY2, respectively, they are expressed as follows.
  • the scanning line (i + k) is inclined by an angle k ⁇ EP with respect to the scanning line i, and therefore the scanning line i is inclined by an angle ⁇ with respect to the y direction, whereas the scanning line (i + k) ) Is inclined by ⁇ + k ⁇ EP with respect to the y direction (where k takes positive and negative values with the i-th scanning line as 0).
  • the X direction and Y direction distances of the transmission focal point with respect to the starting point (center of the aperture) of the scanning line (i + k) are expressed as follows.
  • the X-direction and Y-direction distances of the starting point (center of the opening) of the scanning line (i + k) with respect to the j-th element of the opening of the scanning line (i + k) are as follows. .
  • Tr sqrt (X 2 + Y 2 ) / V
  • X DX3 + FD ⁇ sin ( ⁇ + k ⁇ EP) + R ⁇ (sin (k ⁇ EP)-sin ((k + j) ⁇ EP))
  • Y DY3 + FD ⁇ cos ( ⁇ + k ⁇ EP) + R ⁇ (cos (k ⁇ EP)-cos ((k + j) ⁇ EP))
  • the reflected wave from this reflection point can be extracted, that is, receive focused by adding the signals of each element of each scanning line according to the following equation.
  • i + k represents a scanning line
  • j represents an element
  • two ⁇ represent one of k-related integration and the other represents j-related integration.
  • the second reception focus unit 40B satisfies the following expression: Perform receive focus.
  • the needle rendering performance can be improved, but the needle tip rendering performance is reduced.
  • the direction of the transmission beam differs for each scanning line. That is, the direction of the transmission beam of the scanning line separated by n elements differs by an angle n ⁇ EP.
  • the ⁇ of each RF i, T0
  • the reception focus is always performed in the same direction regardless of the scanning line in the above formula.
  • may be ⁇ + n ⁇ EP..., ⁇ + EP, ⁇ , ⁇ -EP..., ⁇ -n ⁇ EP, respectively.
  • the direction of the reception focus is ⁇ .
  • ⁇ determined in advance by a fixing jig may be set via the operation unit 32 or the like.
  • an image with the best needle drawing may be selected after generating a needle image by receiving focus in a plurality of directions.
  • a method of judging the image with the best needle drawing it is possible to detect a straight line by an image including the highest luminance or an image having the highest average luminance in the luminance distribution of a predetermined area where the needle is assumed to be included, or by a Hough transform, An image having the maximum luminance on the straight line may be used.
  • the object to be drawn is effective for drawing not only the needle but also any reflector that produces specular reflection.
  • a reflector that generates specular reflection depending on the transmission beam direction, sufficient specular reflection may not return to the reception aperture and the image may be reduced, but as described above, the sound waves formed by the transmission focus may be in various directions. Utilizing the propagation, the reflector can be drawn well without extra transmission.
  • each of the above embodiments is effective for rendering a reflector that does not cause regular reflection.
  • transmission steer transmission in which the transmission beam is tilted
  • the sound wave formed by the transmission focus spreads not only under the probe but also to the reflector. It can be used to render without performing extra steer in various directions.
  • the spreading sound wave since the spreading sound wave is used, the image quality is lowered as compared with the transmission steer, but the image quality can be improved by using a plurality of element data as in the second embodiment.
  • the present invention is effective not only for generating a needle image but also for detecting the direction of the needle.
  • it can be determined that the needle is incident in a direction perpendicular to the direction in which the best image is drawn after receiving focus is generated in a plurality of directions and a needle image is generated.
  • a straight line can be detected by an Hough transform or the like in an image with good needle drawing, and the direction of the straight line can be determined as the direction of the needle.
  • the generation of the B-mode image has been described, but it is effective not only for the B-mode image generation but also for the Doppler image generation.
  • processing performed by each unit in each of the above embodiments may be stored and distributed as various programs in various storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Acoustics & Sound (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

 超音波診断装置は、超音波を発生して送信すると共に、検査対象から反射した超音波を受信する複数の素子を備えた探触子と、予め定めた第1の方向に送信焦点を形成して超音波ビームを送信するように複数の素子から超音波を送信させる送信部と、探触子の各素子によって受信した各々の受信信号に対して、送信部によって検査対象内に送信された超音波ビームの送信波経路のうち、第1の方向以外の第2の方向の経路上の反射に合わせて受信フォーカスを行う第2受信フォーカス部と、を備える。

Description

超音波診断装置、超音波診断方法、及び超音波診断プログラム
 本発明は、超音波診断装置、超音波診断方法、及び超音波診断プログラムに関する
 超音波の送受信によって針を描出する場合、針の角度が鋭角になると、図18Aに示すように、その反射が受信開口から外れてしまい、針による反射波を受信することができない。そこで、図18Bに示すように、送信ビームが針と垂直になるように傾けて送信することにより、針による反射波を受信する方法が知られている。
 しかしながら、送信ビームを傾けて生成した画像は、サイドローブの影響などにより画質が劣化して、組織を見るには適さない。
 そこで、特許文献1(特開2012-213606号公報)では、第1の方向に超音波送信を行って第1の超音波画像を生成し、針撮影を目的として複数の方向に超音波を送信して第2の超音波画像群を生成し、第1の画像と第2の画像群または第2の画像群の輝度分布を解析して針が描出された針画像を生成して、第1の画像と針画像を合成することが提案されている。
 また、針画像を描出する方法としては、特許文献1の他に、特許文献2(特開2010-51379号公報)に記載の技術なども提案されている。
 特許文献2では、第1群の超音波トランスデューサから第1の方向を中心とする強度分布を有する超音波ビームを送信して、第2群の超音波トランスデューサが超音波エコー信号を受信した受信信号に基づいて第1の方向とは異なる第2の方向の超音波画像を生成することが提案されている。
 しかしながら、特許文献1に記載の技術では、1回の組織撮像と、複数回の針撮像が必要であるため、フレームレートが低下してしまう。
 また、特許文献2に記載の技術では、送信フォーカスをしていない平面波を用いるため、針の角度によっては全く反射波を得ることができず、針を描出することができない場合がある。
 本発明は、上記事実を考慮して成されたもので、フレームレートを下げることなく、組織以外の針等の反射体を描出可能にする超音波診断装置、超音波診断方法、及び超音波診断プログラムを提供する。
 本発明の放射線信号処理装置は、超音波を発生して送信すると共に、検査対象から反射した超音波を受信する複数の素子を備えた探触子と、予め定めた第1の方向に送信焦点を形成して超音波ビームを送信するように複数の素子から超音波を送信させる送信部と、探触子の各素子によって受信した各々の受信信号に対して、送信部によって検査対象内に送信された超音波ビームの送信波経路のうち、第1の方向以外の第2の方向の経路上の反射に合わせて受信フォーカスを行う第2受信フォーカス部と、を備えている。
 本発明の放射線信号処理装置によれば、探触子は、超音波を発生して送信すると共に、検査対象から反射した超音波を受信する複数の素子を備えている。
 送信部は、予め定めた第1方向に送信焦点を形成して超音波ビームを送信するように複数の素子から超音波を送信させる。
 そして、第2受信フォーカス部は、探触子の各素子によって受信した各々の受信信号に対して、送信部によって検査対象内に送信された超音波ビームの送信経路のうち、第1の方向以外の第2の方向の経路上の反射に合わせて受信フォーカスを行う。
 このように、送信部によって送信フォーカスが行われることにより、第1の方向以外の反射点からの反射によって発生する超音波エコーも複数の素子で受信されるので、第2受信フォーカス部が、第2の方向の経路上の反射に合わせて受信フォーカスを行うことにより、針等の反射体を描出することが可能となる。また、受信フォーカス方向を第1の方向に対して行えば、組織の描出も可能であるため、フレームレートを下げることなく、針等の反射体を描出することが可能となる。すなわち、第1の方向の経路上の反射に合わせて受信フォーカスを行う第1受信フォーカス部を更に備えることにより、フレームレートを下げることなく、組織を描出すると共に、針等の反射体を描出することができる。このとき、第1受信フォーカス部及び第2受信フォーカス部のそれぞれの受信フォーカス結果を合成する合成部を更に備えるようにしてもよい。
 なお、本発明は、送信部は、探触子の異なる2つ以上の開口の各々で第1の方向に送信焦点を形成して超音波ビームを送信するように複数の素子から超音波を送信させ、第2受信フォーカス部は、各々の開口に対する受信信号に対して、第2の方向の共通する反射点に合わせて受信フォーカスを行うようにしてもよい。
 また、第2受信フォーカス部は、送信焦点より浅い領域及び深い領域において送信波が球面波状に収束・発散することを仮定して設定した遅延時間に基づき受信フォーカスを行うようにしてもよい。第2受信フォーカス部は、第2の方向の各点に対して、各点における鏡面反射を仮定して、該点とは異なる点に音源を仮定して、仮定した音源に対する遅延時間に基づき受信フォーカスを行うようにしてもよい。
 また、本発明は、第2受信フォーカス部による受信フォーカスを行った結果に基づいて、針の方向を判定する判定部を更に備えるようにしてもよい。
 また、第2の方向を指定する指定部を更に備えるようにしてもよい。この場合、指定部は、針を固定する固定部から得られる方向に関する情報に基づいて第2の方向を指定するようにしてもよい。第2受信フォーカス部による前回の受信フォーカスを行った結果に基づいて第2の方向を指定するようにしてもよい。
 一方、本発明の超音波診断方法は、超音波を発生して送信すると共に、検査対象から反射した超音波を受信する複数の素子を備えた探触子の複数の素子から、予め定めた第1の方向に送信焦点を形成して超音波ビームを送信するように超音波を送信することと、探触子の各素子によって受信した各々の受信信号に対して、検査対象物内に送信した超音波ビームの送信波経路のうち、第1の方向以外の第2の方向の経路上の反射に合わせて第2の受信フォーカスを行うことと、を備えている。
 本発明の超音波診断方法によれば、超音波を発生して送信すると共に、検査対象から反射した超音波を受信する複数の素子を備えた探触子の複数の素子から、予め定めた第1の方向に送信焦点を形成して超音波ビームを送信するように超音波を送信する。
 そして、探触子の各素子によって受信した各々の受信信号に対して、検査対象物内に送信した超音波ビームの送信波経路のうち、第1の方向以外の第2の方向の経路上の反射に合わせて第2の受信フォーカスを行う。
 このように、送信フォーカスを行うことにより、第1の方向以外の反射点からの反射によって発生する超音波エコーも複数の素子で受信されるので、第2の方向の経路上の反射に合わせて第2の受信フォーカスを行うことにより、針等の反射体を描出することが可能となる。また、受信フォーカス方向を第1の方向に対して行えば、組織の描出も可能であるため、フレームレートを下げることなく、針等の反射体を描出することが可能となる。すなわち、本発明は、第1の方向の経路上の反射に合わせて第1の受信フォーカスを行うことを更に備えることにより、フレームレートを下げることなく、組織を描出すると共に、針等の反射体を描出することができる。このとき、第1の受信フォーカス及び第2の受信フォーカスのそれぞれの受信フォーカス結果を合成してもよい。
 なお、本発明は、探触子の異なる2つ以上の開口の各々で第1の方向に送信焦点を形成して超音波ビームを送信するように複数の素子から超音波を送信させ、第2の受信フォーカスでは、各々の開口に対する受信信号に対して、第2の方向の共通する反射点に合わせて受信フォーカスを行うようにしてもよい。
 また、第2の受信フォーカスでは、送信焦点より浅い領域及び深い領域において送信波が球面波状に収束・発散することを仮定して設定した遅延時間に基づき受信フォーカスを行うようにしてもよい。また、第2の方向の各点に対して、各点における鏡面反射を仮定して、該点とは異なる点に音源を仮定して、仮定した音源に対する遅延時間に基づき受信フォーカスを行うようにしてもよい。
 また、本発明は、第2の受信フォーカスを行った結果に基づいて、針の方向を判定することを更に備えるようにしてもよい。
 また、第2の方向を指定する指定ステップを更に備えるようにしてもよい。この場合、針を固定する固定部から得られる方向に関する情報に基づいて第2の方向を指定するようにしてもよい。また、第2の受信フォーカスの前回の受信フォーカスを行った結果に基づいて第2の方向を指定するようにしてもよい。
 また、本発明の超音波診断プログラムは、超音波を発生して送信すると共に、検査対象から反射した超音波を受信する複数の素子を備えた探触子の複数の素子から、予め定めた第1の方向に送信焦点を形成して超音波ビームを送信するように超音波を送信することと、探触子の各素子によって受信した各々の受信信号に対して、検査対象物内に送信した超音波ビームの送信波経路のうち、第1の方向以外の第2の方向の経路上の反射に合わせて第2の受信フォーカスを行うことと、を含む処理をコンピュータに実行させる。
 本発明の超音波診断装置の音線信号生成プログラムによれば、超音波を発生して送信すると共に、検査対象から反射した超音波を受信する複数の素子を備えた探触子の複数の素子から、予め定めた第1の方向に送信焦点を形成して超音波ビームを送信するように超音波を送信する。
 そして、探触子の各素子によって受信した各々の受信信号に対して、送信ステップで検査対象物内に送信した超音波ビームの送信波経路のうち、第1の方向以外の第2の方向の経路上の反射に合わせて第2の受信フォーカスを行う。
 このように、送信フォーカスを行うことにより、第1の方向以外の反射点からの反射によって発生する超音波エコーも複数の素子で受信されるので、第2の方向の経路上の反射に合わせて第2の受信フォーカスを行うことにより、針等の反射体を描出することが可能となる。また、受信フォーカス方向を第1の方向に対して行えば、組織の描出も可能であるため、フレームレートを下げることなく、針等の反射体を描出することが可能となる。すなわち、本発明は、第1の方向の経路上の反射に合わせて第1の受信フォーカスを行うことを更に備えることにより、フレームレートを下げることなく、組織を描出すると共に、針等の反射体を描出することができる。このとき、第1の受信フォーカス及び第2の受信フォーカスのそれぞれの受信フォーカス結果を合成してもよい。
 なお、本発明は、探触子の異なる2つ以上の開口の各々で第1の方向に送信焦点を形成して超音波ビームを送信するように複数の素子から超音波を送信させ、各々の開口に対する受信信号に対して、第2の方向の共通する反射点に合わせて第2の受信フォーカスを行うようにしてもよい。
 また、第2受信フォーカスでは、送信焦点より浅い領域及び深い領域において送信波が球面波状に収束・発散することを仮定して設定した遅延時間に基づき受信フォーカスを行うようにしてもよい。また、第2の方向の各点に対して、各点における鏡面反射を仮定して、該点とは異なる点に音源を仮定して、仮定した音源に対する遅延時間に基づき受信フォーカスを行うようにしてもよい。
 また、本発明は、第2受信フォーカスを行った結果に基づいて、針の方向を判定することを更に備えるようにしてもよい。
 また、第2の方向を指定することを更に備えるようにしてもよい。この場合、針を固定する固定部から得られる方向に関する情報に基づいて第2の方向を指定するようにしてもよい。また、第2の受信フォーカスの前回の受信フォーカスを行った結果に基づいて第2の方向を指定するようにしてもよい。
 以上説明した如く本発明では、フレームレートを下げることなく、組織以外の針等の反射体を描出することが可能となる。
本発明の第1実施形態に係る超音波診断装置の概略構成を示すブロック図である。 送信焦点の深さ毎の針による正反射を説明するための図であり、送信焦点が針よりも浅い位置の場合を示す図である。 送信焦点の深さ毎の針による正反射を説明するための図であり、送信焦点が針よりも深い位置の場合を示す図である。 送信焦点の深さ毎の針による正反射を説明するための図であり、送信焦点が開口の後方の場合を示す図である。 送信ビーム方向以外の方向の経路上の反射に合わせた受信フォーカスを行う例を示す図であり、送信焦点が針より浅い位置の場合を示す図である。 送信ビーム方向以外の方向の経路上の反射に合わせた受信フォーカスを行う例を示す図であり、送信焦点が開口の後方の場合を示す図である。 本発明の第1実施形態に係る超音波診断装置における整相加算/検波処理部の概略構成を示すブロック図である。 本発明の第1実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカスを説明するための図である。 本発明の第1実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカスを説明するための図である。 本発明の第1実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカスを説明するための図である。 本発明の第1実施形態に係る超音波診断装置の要部で行われる処理の流れの一例を示すフローチャートである。 本発明の第1実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカス(針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮した場合)を説明するための図である。 本発明の第1実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカス(針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮した場合)を説明するための図である。 本発明の第2実施形態に係る超音波診断装置における第2受信フォーカス部で行われる、複数走査線の素子信号を用いたθ方向の受信フォーカスを説明するための図である。 本発明の第2実施形態に係る超音波診断装置における第2受信フォーカス部で行われる、複数走査線の素子信号を用いたθ方向の受信フォーカス(針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮した場合)を説明するための図である。 本発明の第2実施形態に係る超音波診断装置における第2受信フォーカス部で行われる、複数走査線の素子信号を用いたθ方向の受信フォーカス(針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮した場合)を説明するための図である。 本発明の第2実施形態に係る超音波診断装置10の要部で行われる処理の流れの一例を示すフローチャートである。 本発明の第3実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカスを説明するための図である。 本発明の第3実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカス(針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮した場合)を説明するための図である。 本発明の第3実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカス(針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮した場合)を説明するための図である。 本発明の第3実施形態に係る超音波診断装置の要部で行われる処理の流れの一例を示すフローチャートである。 本発明の第3実施形態に係る超音波診断装置において送信焦点を共有する1つの各素子受信信号を用いて1走査線のRF信号を生成する場合の処理の流れの一例を示すフローチャートである。 発明の第3実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカスを説明するための図である。 発明の第3実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカスを説明するための図である。 発明の第3実施形態に係る超音波診断装置における第2受信フォーカス部で行われる受信フォーカス(針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮した場合)を説明するための図である。 図16におけるDX2、DY2の求め方を説明するための図である。 図16におけるDX2、DY2の求め方を説明するための図である。 針の反射が受信開口から外れる様子を示す図である。 は送信ビームを傾けて送信することにより針による反射を受信する例を示す図である。
 以下、各図面を参照して本発明の実施の形態の一例について説明する。
(第1実施形態)
 図1は、本発明の第1実施形態に係る超音波診断装置の概略構成を示すブロック図である。
 図1に示すように、超音波診断装置10は、超音波プローブ12と、超音波プローブ12に接続される送信部14及び受信部16と、A/D変換部18と、素子データ記憶部20と、画像生成部24と、表示制御部26と、表示部28と、制御部30と、操作部32と、格納部34とを備えている。
 超音波プローブ12は、通常の超音波診断装置に用いられる探触子36を有する。探触子36は、1次元又は2次元アレイ状に配列された複数の素子、すなわち超音波トランスデューサを有している。これらの超音波トランスデューサは、被検体の超音波画像の撮像の際に、それぞれ送信部14から供給される駆動信号に従って超音波ビームを被検体に送信すると共に、被検体からの超音波エコーを受信して受信信号を出力する。本実施の形態では、探触子36の複数の超音波トランスデューサの内の一組を成す所定数の超音波トランスデューサの各々は、1つの超音波ビームの各成分を発生し、一組の所定数の超音波トランスデューサは、被検体に送信する1つの超音波ビームを発生する。
 各超音波トランスデューサは、例えば、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミックや、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電素子、PMN-PT(マグネシウムニオブ酸・チタン酸鉛固溶体)に代表される圧電単結晶等を含む圧電体の両端に電極を形成した素子(振動子)によって構成される。すなわち、探触子36は、複数の超音波素子として複数の振動子が1次元又は2次元アレイ状に配列された振動子アレイとされている。
 このような振動子の電極に、パルス状又は連続波状の電圧を印加すると、圧電体が伸縮し、それぞれの振動子からパルス状又は連続波状の超音波が発生して、それらの超音波の合成により超音波ビームが形成される。また、それぞれの振動子は、伝搬する超音波を受信することにより伸縮して電気信号を発生し、それらの電気信号は、超音波の受信信号として出力される。
 送信部14は、例えば、複数のパルサを含んでおり、制御部30からの制御信号に応じて選択された送信遅延パターンに基づいて、探触子36の複数の超音波トランスデューサ(以下、超音波素子という)から送信される超音波ビーム成分が1つの超音波ビームを形成するように、超音波素子それぞれの駆動信号の遅延量を調節して、調整された駆動信号を、組を成す複数の超音波素子に供給する。これにより複数の超音波素子から超音波が送信されて、送信フォーカスが行われて超音波ビームが発生して送信される。
 受信部16は、制御部30からの制御信号に応じて、探触子36の各超音波素子によって超音波ビームと被検体との間の相互作用によって発生された超音波エコーを被検体から受信して、受信信号、即ち超音波素子毎のアナログ素子信号を増幅して、増幅されたアナログ素子信号をA/D変換部18に供給する。
 A/D変換部18は、受信部16に接続され、受信部16から供給されたアナログ素子信号を、デジタル素子データに変換する。A/D変換部18は、A/D変換されたデジタル素子データを素子データ記憶部20に供給する。
 素子データ記憶部20は、A/D変換部18から出力されるデジタル素子データを順次格納する。また、素子データ記憶部20は、制御部30から入力されるフレームレートに関する情報(例えば、超音波の反射位置の深度、走査線の密度、視野幅を示すパラメータ)を上記のデジタル素子データ(以下、単に素子データという)に関連付けて格納する。
 画像生成部24は、制御部30による制御下で、素子データ記憶部20に記憶された素子データから音線信号(受信データ)を生成し、この音線信号から超音波画像を生成する。具体的には、画像生成部24は、整相加算/検波処理部40、DSC42、画像作成部44、及び、画像メモリ46を有する。
 整相加算/検波処理部40は、制御部30において設定された受信方向に応じて、予め記憶されている複数の受信遅延パターンの中から1つの受信遅延パターンを選択し、選択された受信遅延パターンに基づいて、素子データにそれぞれの遅延を与えて加算することにより、受信フォーカス処理を行う。この受信フォーカス処理により、超音波エコーの焦点が絞り込まれた受信データ(音線信号)が生成される。
 また、整相加算/検波処理部40は、受信フォーカス処理により生成された受信データに対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像データを生成する。
 DSC(digital scan converter)42は、検波処理部40で生成されたBモード画像データを通常のテレビジョン信号の走査方式に従う画像データに変換(ラスター変換)する。
 画像作成部44は、DSC42から入力されるBモード画像データに階調処理等の各種の必要な画像処理を施して検査や表示に供するためのBモード画像データを作成した後、作成された検査用又は表示用Bモード画像データを表示のために表示制御部26に出力する、或いは画像メモリ46に格納する。
 画像メモリ46は、画像作成部44で作成された検査用Bモード画像データを一旦格納する。画像メモリ46に格納された検査用Bモード画像データは、必要に応じて、表示部28で表示するために表示制御部26に読み出される。
 表示制御部26は、画像作成部44によって画像処理が施された検査用Bモード画像信号に基づいて、表示部28に超音波画像を表示させる。
 表示部28は、例えば、LCD等のディスプレイ装置を含んでおり、表示制御部26の制御の下で、超音波画像を表示する。
 制御部30は、操作者により操作部32から入力された指令に基づいて超音波診断装置10の各部の制御を行う。
 制御部30は、操作者によって操作部32を介して種々の情報、特に、画像生成部24の整相加算部38で用いられる遅延時間算出に必要な情報の入力が行われた際に、操作部32から入力された上述の種々の情報を、必要に応じて、送信部14、受信部16、素子データ記憶部20、画像生成部24及び表示制御部26等の各部に供給する。
 操作部32は、操作者が入力操作を行うためのものであり、キーボード、マウス、トラックボール、タッチパネル等を含む。
 また、操作部32は、操作者が必要に応じて各種の情報、特に上述の遅延時間算出に用いられるプローブ12の探触子36の複数の超音波素子、被検体の検査対象領域の音速、超音波ビームの焦点位置、探触子36の送信開口及び受信開口等に関する情報等を入力操作するための入力装置を備えている。
 格納部34は、操作部32から入力された各種の情報、特に、上述のプローブ12、音速、焦点位置、送信開口及び受信開口等に関する情報等や、送信部14、受信部16、素子データ記憶部20、画像生成部24及び表示制御部26等の制御部30で制御される各部の処理や動作に必要な情報、並びに、各部の処理や動作を実行させるための動作プログラムや処理プログラム等を格納するものである。格納部34として、ハードディスク、フレキシブルディスク、MO、MT、RAM、CD-ROM、DVD-ROM等の記録媒体を用いることができる。
 なお、整相加算/検波処理部40、DSC42、画像作成部44、及び表示制御部26は、CPUと、CPUに各種の処理を行わせるための動作プログラムとにより構成するようにしてもよいし、デジタル回路等のハードウエア構成としてもよい。
 ところで、上述のように構成された超音波診断装置10では、送信フォーカスを行うことによって超音波ビームを送信するようにしており、送信フォーカスによって形成される音波(超音波ビーム)は、送信焦点より浅いまたは深い領域において種々の方向に伝搬している。これにより、送信ビーム方向の針による正反射が受信開口から外れる場合でも、図2A~2Cの一点鎖線で示すように、送信ビーム方向以外の方向への音波の針による正反射は受信開口に捉えられる。送信フォーカスにより形成される音波の針による反射は、送信フォーカスにより形成される焦点に対して針を鏡面反射面としてその対称位置に焦点がある場合と等価となる。従って、送信焦点を擬似的に音源と見なすと、図2A、図2Cに示すように、針に対して送信焦点と対称位置に擬似的な音源がある場合の音波と等価の反射が受信開口に捉えられる。なお、図2Bの場合は、実際に音源が形成されることになる。但し、反射が広がる範囲は素子の指向性や、送信開口と深さ、周波数などによって決まり、全方向に広がるわけではないので、上述の擬似音源や音源と等価の反射波を必ず捉えられるわけではない。つまり、送信開口と深さや、周波数などによって送信焦点より浅い又は深い領域における音波の拡がりの範囲が決まり、その両端における方向の針による正反射方向に挟まれる範囲にのみ反射は広がる。送信ビーム方向の正反射はこの反射の一部と見なすことができる。
 そこで、本実施形態に係る超音波診断装置10では、送信フォーカスにより形成される超音波ビームの音波が送信ビーム方向以外の方向にも伝播することに着目して、図3A、図3Bに示すように、探触子36の各超音波素子によって受信した各々の受信信号に対して、送信ビーム方向以外の方向の経路上の反射に合わせて受信フォーカスを行うことにより、針等の組織以外の反射体を良好に描出するものである。本実施形態では、送信焦点より浅い領域及び深い領域において送信波が球面波状に収束・発散することを仮定して設定した遅延時間に基づき受信フォーカスを行う。
 本実施形態では、整相加算/検波処理部40において、送信ビーム方向以外の方向の経路上の反射に合わせて受信フォーカスを行うようになっている。図4は、本発明の第1実施形態に係る超音波診断装置10における整相加算/検波処理部40の概略構成を示すブロック図である。
 具体的には、整相加算/検波処理部40は、図4に示すように、第1受信フォーカス部40A、第2受信フォーカス部40B、第1検波処理部40C、及び第2検波処理部40D、及び合成処理部40Eを備えている。
 第1受信フォーカス部40Aは、超音波ビームの送信方向(本実施形態では垂直方向)に対して、予め記憶されている複数の受信遅延パターンの中から1つの受信遅延パターンを選択し、選択された受信遅延パターンに基づいて、素子データにそれぞれの遅延を与えて加算することにより、受信フォーカスを行う。
 第2受信フォーカス部40Bは、超音波ビームの送信方向(垂直方向)に対して送信焦点を通って角度θだけ傾けて受信フォーカスを行う。
 ここで、送信方向に対して角度θだけ傾けた受信フォーカスについて図5A~図5Cに基づいて説明する。
 図5Aに示すように、送信ビームが垂直の場合、反射点の深さはV×T0/2で与えられる。これをθだけ傾けた方向の反射点の深さもV×T0/2で与えられる。ここで、T0は垂直方向またはθだけ傾けた方向の往復の超音波伝播時間、Vは音速を表す。
 次に、θ方向の反射点の送信焦点からの距離DX、DYは図5Bから以下の式で与えられることが分かる。ここで、FDは送信焦点の深さを表す。
 DX=(V×Tt-FD)×sin(θ)
 DY=(V×Tt-FD)×cos(θ)
 Tt=T0/2
 次に開口の中心からj番目の素子から反射点の距離X、Yは図5Cから以下の式で与えられることが分かる。
 X=DX-j×EP
 Y=DY+FD
 ここで、EPは素子の間隔で、jは中心の素子を0として正負の値を取る。
 従って、反射点からj番目の素子に帰ってくる音波の伝搬時間は以下の式で与えられることが分かる。
 Tr=sqrt(X+Y)/V
 この開口から送信された超音波はTt後に反射点で反射されて、更にTr後にj番目の素子に帰ってくることになる。つまりこの反射点からの反射波は送信されてからT=Tt+Tr後にj番目の素子に帰ってくる。
 従って、以下の式によって各素子の信号を加算することで、この反射点からの反射波を抽出、つまり受信フォーカスすることができる。
 RF(i,T0)=ΣELE(i,j,T)
 ここで、iはこの開口が対応する走査線、ELE(i,j,T)は走査線iの素子jの時間Tにおける信号を表し、RF(i,To)は受信フォーカス後の走査線iのθ方向の時間T0(深さに相当)のRF信号を表す。
 すなわち、送信方向に対して角度θだけ傾けた受信フォーカスは、以下の式を満たすように行う。
 RF(i,T0) = ΣELE(i,j,T)
 T = Tt + Tr
 Tr = sqrt(X2+ Y2) / V 
 X = DX - j×EP
 Y = DY + FD
 DX = (V × Tt - FD)× sin(θ)
 DY = (V × Tt - FD) × cos(θ)
 Tt = T0/2
 ここで、
 RF(i,T0):i番目の走査線の時間T0におけるRF信号。但し、送信の瞬間の時間を0とする。
 ELE(i,j,T):i番目の走査線に対応する送信により取得した素子信号のj番目の素子の時間Tにおけるデータ。但し、jはi番目の走査線位置に相当する素子を0とし、正負の値をとる。
 Σ:jに関する加算
 Tt:送信波が反射点に到達する間での時間
 Tr:反射波が素子に到達するまでの時間
 V:音速
 EP:素子間隔
 FD:送信焦点の深さ
 θ:送信方向に対して傾けた受信フォーカス方向の角度
 なお、図3Bに示すように、送信焦点を送信開口の後方に形成する場合には、送信焦点の深さFDを負とする。
 一方、第1検波処理部40Cは、第1受信フォーカス部40Aによって生成した受信データに対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像データを生成する。
 同様に、第2検波処理部40Dは、第2受信フォーカス部40Bによって生成した受信データに対し、超音波の反射位置の深度に応じて距離による減衰の補正を施した後、包絡線検波処理を施すことにより、針等の反射体に関する画像情報であるBモード画像データを生成する。
 そして、合成処理部40Eは、第1検波処理部40Cによって生成されたBモード画像データ(画像A)と、第2検波処理部40Dによって生成されたBモード画像データ(画像B)とを合成する処理を行う。詳細には、上記式により生成したRF(i,T0)は垂直方向に対して角度θだけ傾いているため、画像Aと画像Bの座標を合わせるように座標変換(スキャンコンバート)すると共に、画像Aと画像Bを所定比率で足し合わせて表示用画像を生成する。なお、このとき、画像Bの高輝度画素ほど強調されるように階調変換を行ったり、高輝度画素のみを針として抽出したり、予め定めた範囲のみの画素を抽出したり、Hough変換等により直線を検出して、検出した直線周辺の画素のみを抽出するように処理を行うようにしてもよい。また、画像Aと画像Bの輝度に応じて色調や彩度変換等を行う処理を更に行うようにしてもよい。
 ここで、第2受信フォーカス部40Bによる受信フォーカスの方向が必ずしも針と垂直でなくても、受信フォーカスの方向の針による正反射方向が受信開口を外れない限りは針を描出することができる。つまり、針からの正反射は針上の各点からの反射を積算した結果であるので、積算した結果がゼロ(正反射が受信開口を外れる)にならない限りは、針上の点反射に合わせた受信フォーカスにより針による正反射の一部を捉えて描出することができる。このことは、送信ビーム方向及び受信ビーム方向共に垂直方向として生成した超音波画像において、針が水平でなくても描出可能な理由と同じである。
 なお、第1受信フォーカス部40A及び第2受信フォーカス部40Bの各々の受信フォーカス方向は、操作部32等を操作することによって指定するようにしてもよいし、針を固定する冶具から得られる方向に関する情報を取得することによって指定するようにしてもよい。或いは、前回の受信フォーカスを行った結果に基づいて、今回の受信フォーカス方向を指定するようにしてもよい。
 続いて、本発明の第1実施形態に係る超音波診断装置10の動作、作用及び超音波画像の作成方法について説明する。
 図6は、本発明の第1実施形態に係る超音波診断装置10の要部で行われる処理の流れの一例を示すフローチャートである。
 ステップ100では、走査線nがリセット(n=0)されて、ステップ102へ移行して、走査線nが1インクリメント(n=n+1)されて、ステップ104へ移行する。
 ステップ104では、送信フォーカスを実施して各素子受信信号が取得されて、ステップ106へ移行する。すなわち、操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って探触子36から超音波ビームが送信される。そして、送信された超音波ビームと被検体との間の相互作用によって発生された超音波エコーを探触子36が受信し、受信部16によってアナログ素子信号を増幅して、増幅したアナログ素子信号をA/D変換部18によってデジタル素子データに変換して、デジタル素子データが素子データ記憶部20に記憶保持される。
 ステップ106では、各素子の受信信号に対して送信ビームと同一方向に受信フォーカスを実施して、組織撮像用の画像Aが生成されて、ステップ108へ移行する。すなわち、第1受信フォーカス部40Aが、各素子受信信号を素子データ記憶部20から取得して、垂直方向の受信フォーカスを実施して、受信データ(音線信号)を生成し、第1検波処理部40Cが、音線信号を処理して、組織撮像用の画像AのBモード画像信号を生成する。
 ステップ108では、各素子の受信信号に対して、送信ビームに対して角度θ傾いた方向に受信フォーカスを実施して、針撮像用の画像Bが生成されて、ステップ110へ移行する。すなわち、第2受信フォーカス部40Bが、各素子受信信号を素子データ記憶部20から取得して、垂直方向に対して角度θ傾いた方向の受信フォーカスを実施して、受信データ(音線信号)を生成し、第2検波処理部40Dが、音線信号を処理して、針撮像用の画像BのBモード画像信号を生成する。
 ステップ110では、n=Nか否か判定される。すなわち、全走査線について上記処理を終了したか否か判定され、該判定が否定された場合にはステップ102へ移行し、上述の処理が繰り返され、判定が肯定されたところでステップ112へ移行する。
 ステップ112では、上述のようにして生成された画像Aと画像Bとを各々スキャンコンバートして合成して、1フレームの表示画像が合成処理部40Eによって生成されて、一連の処理を終了する。ステップ100の処理からの処理を行うことで、次ぎのフレームの表示画像が生成される。
 このように本発明の第1実施形態に係る超音波診断装置10は、送信フォーカスを行って超音波ビームを発生して、超音波信号を受信し、送信方向の受信フォーカスを行うことにより組織撮像用の画像を生成し、送信方向とは異なる方向の受信フォーカスを行うことにより組織以外の反射体(針)撮像用の画像を生成するので、1回の超音波送信で組織以外の反射体を描出することができる。
 上記の第1実施形態では、第2受信フォーカス部40Bが、垂直方向に対して角度θ傾いた方向に受信フォーカスを行うようにした。更に、図2A~図2Cに示すように、針からの反射波が、針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮して、受信フォーカスを行うようにしてもよい。
 ここで、針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮して受信フォーカスを行う場合について、図7A及び図7Bに基づいて説明する。
 まず、図7Aから以下式でDX、DYを求めることは、上記と同様である。
 DX=(V×Tt-FD)×sin(θ)
 DY=(V×Tt-FD)×cos(θ)
 Tt=T0/2
 次に図7Bのように反射点を通る針を仮定して、送信焦点の対称位置に擬似的に音源を仮定する。送信焦点から、この音源までの距離DX2、DY2は以下の式で与えられる。
 DX2=2×DX
 DY2=2×DY
そしてj番目の素子から音源の距離X、Yは以下式で与えられる。
 X = DX2 - j×EP
 Y = DY2 + FD
 音源からj番目の素子に帰ってくる音波の伝播時間は以下式で与えらる。
 Tr = sqrt(X2+ Y2) / V
 この開口から超音波が送信されてから送信焦点を形成するまでの時間がFD/Vであり、その瞬間に擬似的な音源からj番目の素子への伝播がスタートすると考えられ、そのため、この開口から超音波送信されてからT = FD/V + Tr 後に、反射点からの反射波がj番目の素子に帰ってくると考えられる。
 従って以下の式によって各素子の信号を加算することで、この反射点からの反射波を抽出、つまり受信フォーカスをすることができる。
 RF(i,T0) = ΣELE(i,j,T)
 すなわち、針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮して受信フォーカスを行う場合には、以下の式を満たすように行う。
 RF(i,T0) = ΣELE(i,j,T)
 T = FD/V + Tr
 Tr = sqrt(X2+ Y2) / V
 X = DX2 - j×EP
 Y = DY2 + FD
 DX2 = 2×DX
 DY2 = 2×DY
 DX = (V × Tt - FD)× sin(θ)
 DY = (V × Tt - FD) × cos(θ)
 Tt = T0/2
 上記の第1実施形態の第2受信フォーカス部40Bにおける受信フォーカスの式との違いは、反射点を角度θと垂直方向に通る針を仮定して、針に対して送信焦点の対称位置としてDX2、DY2である音源を仮定し、仮定した音源から各素子に伝播する時間を算出することと、その際に送信焦点が形成されると同時に仮定した音源が形成されると見なして、送信焦点が形成されるまでの時間FD/Vを加えることである。
 このように受信フォーカスを行うことにより、針からの正反射に合わせて受信フォーカスすることができるため、第1実施形態よりも良好に針を描出することができる。しかしながら、着目反射のみでなく周囲反射との積算結果である正反射に合わせて受信フォーカスすることにより、周囲反射にも受信フォーカスすることになる。そのため、着目反射が針上の点を外れても、周囲反射に針上の点が含まれると針を描出することになり、その結果、針の先端の描出性能は、第1実施形態よりも低下することになる。
(第2実施形態)
 続いて、本発明の第2実施形態に係る超音波診断装置について説明する。なお、基本的な構成は第1実施形態と同一であるため、詳細な説明を省略し、差異について説明する。
 第1実施形態では、角度θだけ傾けた方向の1走査線のRF信号を生成するために、送信焦点を共有する1つの各素子受信信号を用いた。第2実施形態では、1走査線のRF信号を生成するために送信焦点を共有する各素子受信信号のみでなく、周囲を含んだ複数の各素子受信信号を用いる例を説明する。
 すなわち、第2実施形態では、送信部14が、探触子36の異なる2つ以上の開口の各々で第1の方向に送信焦点を形成して超音波ビームを送信するように、複数の超音波素子から超音波を送信させる。第2受信フォーカス部40Bが、素子データ処理部22によって得られる素子データを用いて、垂直方向に対して角度θ傾いた方向の受信フォーカスを実施して受信データ(音線信号)を生成する際に、複数走査線の各素子受信信号を用いて受信フォーカスを行う。
 ここで、複数走査線の素子信号を用いたθ方向の受信フォーカスについて図8を参照して説明する。
 まず、鏡面反射を仮定しない方法について図8に基づいて説明する。
 走査線iのθ方向の反射点の送信焦点からの距離DX、DYは前述の通り以下式で与えられる。
 DX = (V × Tt - FD) × sin(θ)
 DY = (V × Tt - FD) × cos(θ)
 Tt = T0/2
 次に、この反射点の走査線(i+k)の送信焦点からの距離を求める。
 走査線(i+k)は走査線iに対してk×EPだけ離れているから、DX2は以下のように表される。
 DX2 = DX - k×EP
 ここでkはi番目の走査線を0として正・負の値をとる。
 また、距離は以下で与えられる。
 sign(DY) ×sqrt( DX22 + DY2
 ここでDYが負の場合には、距離も負の値とするためにsign(DY)を掛ける。
 走査線(i+k)の開口から送信した音波が反射点に到着するまでの時間は以下となることが分かる。
 Tt2 = ( FD + sign(DY) ×sqrt( DX22 + DY2) ) / V
 一方、反射点から走査線(i+k)の開口のj番目の素子(走査線(i+k)の位置に相当する素子を0として正負の値をとる)に帰ってくる音波の伝播時間は以下となる事が分かる。
 Tr = sqrt(X2+ Y2) / V
 但し、
 X = DX - ( k + j ) × EP
 Y = DY + FD
となる。
 従って、以下の式によって各走査線の各素子の信号を加算することで、この反射点からの反射波を抽出、つまり受信フォーカスすることができる。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = Tt2 + Tr
 ここで、i+kが走査線、jが素子を表し、二つのΣは一方がkに関する積算、他方がjに関する積算を表す。
 すなわち、複数走査線の素子信号を用いたθ方向の受信フォーカス(鏡面反射を仮定しない方法)は、以下の式を満たすように行う。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = Tt2 + Tr
 Tr = sqrt(X2+ Y2) / V 
 X = DX - ( k + j ) × EP
 Y = DY + FD
 Tt2 = ( FD + sign(DY) ×sqrt( DX22 + DY2) ) / V
 DX2 = DX - k×EP
 DX = (V × Tt - FD) × sin(θ)
 DY = (V × Tt - FD) × cos(θ)
 Tt = T0/2
 このように複数走査線の各素子受信信号を用いて受信フォーカスを行うことによって、第1実施形態と比べて組織以外の針等の反射体の描出を向上することができる。
 次に、針からの反射波が、針を鏡面反射面としてその対称位置に音源があると等価な音波となることを考慮して受信フォーカスを行う場合について、図9A及び図9Bを参照して説明する。
 まず、走査線iのθ方向の反射点の送信焦点からの距離DX、DYは、前述の通り以下式で与えられる(図9A)。
 DX = (V × Tt - FD) × sin(θ)
 DY = (V × Tt - FD) × cos(θ)
 Tt = T0/2
 次に、走査線i+kの送信焦点の針に対する対称位置に擬似的に音源を仮定し、走査線i+kの送信焦点からそこまでの距離DX3、DY3を求める。
 まず、図9BにおいてDX2は以下式で与えられる事が分かる(ここでkはi番目の走査線を0として正・負の値をとる)。
 DX2 = DX - k×EP×sin(θ)×sin(θ)
 またDY2は以下式で与えられる事が分かる。
 DY2 = DY - k×EP×sin(θ)×cos(θ)
 DX3、DY3はそれぞれDX2、DY2を2倍したものなので以下のように表される。
 DX3 = 2 × DX2
 DY3 = 2 × DY2
 DX3、DY3が分かれば、音源から走査線(i+k)の開口のj番目の素子(走査線(i+k)の位置に相当する素子を0として正負の値をとる)に帰ってくる音波の伝播時間は以下となる事が分かる。
 Tr = sqrt(X2+ Y2) / V
 但し、
 X = DX3 - j × EP
 Y = DY3 + FD
 従って、以下の式によって各走査線の各素子の信号を加算することで、この反射点からの反射波を抽出、つまり受信フォーカスすることができる。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = FD/V + Tr
 ここで、i+kが走査線、jが素子を表し、二つのΣは一方がkに関する積算、他方がjに関する積算を表す。
 すなわち、第2受信フォーカス部40Bにおける受信フォーカスは、以下の式を満たすように行う。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = FD/V + Tr
 Tr = sqrt(X2+ Y2) / V
 X = DX3 - j × EP
 Y = DY3 + FD
 DX3 = 2×DX2
 DY3 = 2×DY2
 DX2 = DX - k×EP×sin(θ)×sin(θ)
 DY2 = DY - k×EP×sin(θ)×cos(θ)
 DX = (V × Tt - FD) × sin(θ)
 DY = (V × Tt - FD) × cos(θ)
 Tt = T0/2
 続いて、本発明の第2実施形態に係る超音波診断装置の動作、作用及び超音波画像の作成方法について説明する。
 図10は、本発明の第2実施形態に係る超音波診断装置10の要部で行われる処理の流れの一例を示すフローチャートである。
 ステップ200では、走査線nがリセット(n=0)されて、ステップ202へ移行して、走査線nが1インクリメント(n=n+1)されて、ステップ204へ移行する。
 ステップ204では、送信フォーカスを実施して各素子受信信号が取得されて、ステップ206へ移行する。すなわち、操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って探触子36から超音波ビームが送信される。そして、送信された超音波ビームと被検体との間の相互作用によって発生された超音波エコーを探触子36が受信し、受信部16によってアナログ素子信号を増幅して、増幅したアナログ素子信号をA/D変換部18によってデジタル素子データに変換して、デジタル素子データが素子データ記憶部20に記憶保持される。
 ステップ206では、n=Nか否か判定される。すなわち、全走査線について上記処理を終了したか否か判定され、該判定が否定された場合には、ステップ202に戻って上述の処理が繰り返され、判定が肯定されたところで、ステップ208へ移行する。
 ステップ208では、走査線nがリセット(n=0)されて、ステップ210へ移行して、走査線nが1インクリメント(n=n+1)されて、ステップ212へ移行する。
 ステップ212では、各素子受信信号に対して送信ビームと同一方向に受信フォーカスを実施して、組織撮像用の画像Aが生成されて、ステップ214へ移行する。すなわち、第1受信フォーカス部40Aが、各素子受信信号を素子データ記憶部20から取得して、垂直方向の受信フォーカスを実施して受信データ(音線信号)を生成し、第1検波処理部40Cが、音線信号を処理して、組織撮像用の画像AのBモード画像信号を生成する。
 ステップ214では、各素子受信信号に対して送信ビームと角度θだけ傾いた方向に受信フォーカスを実施して、針撮像用の画像Bが生成されて、ステップ216へ移行する。すなわち、第2受信フォーカス部40Bが、各素子受信信号を素子データ記憶部20から取得して、垂直方向に対して角度θだけ傾いた方向の受信フォーカスを実施して、受信データ(音線信号)を生成し、第2検波処理部40Dが、音線信号を処理して、針撮像用の画像BのBモード画像信号を生成する。
 ステップ216では、n=Nか否か判定される。すなわち、全走査線について上記処理を終了したか否か判定され、該判定が否定された場合には、ステップ210に戻って、上述の処理が繰り返され、判定が肯定されたところで、ステップ218へ移行する。
 ステップ218では、上述のようにして生成された画像Aと画像Bを各々スキャンコンバートして合成して、1フレームの表示画像が合成処理部40Eによって生成されて、一連の処理を終了する。ステップ200の処理からの処理を行うことで、次ぎのフレームの表示画像が生成される。
 このように処理を行うことで、複数走査線の各素子受信信号を用いた受信フォーカスが可能となる。これにより、第1実施形態よりも組織以外の針等の反射体の描出性能を向上することができる。
(第3実施形態)
 続いて、本発明の第3実施形態に係る超音波診断装置について説明する。
 針からの反射は針を鏡面反射面としてその対称位置に音源がある場合の音波と等価となるが、その範囲は送信開口、深さ、周波数などによって決まり限定されるため、針が鋭角だと上記の各実施形態では描出できない場合がある。
 そこで、本実施形態では、送信ビーム方向を傾けて針と垂直に近づけた上で、送信ビームより更に傾けて受信フォーカスを行うようにしたものである。
 基本的な構成は、第1、2実施形態と同一であり、処理が異なるのみであるため、以下では、差異みを説明する。
 第3実施形態に係る超音波診断装置は、送信ビームを傾けるので、第2受信フォーカス部40Bによる受信フォーカスを以下のようにして行う。
 まず、図11を参照して鏡面反射を仮定しない場合について説明する。
 走査線iが角度φだけ傾いているとして、更に角度θだけ傾けた方向の反射点の送信焦点からの距離DX、DYは以下式で与えられる。
 DX=(V×Tt-FD)×sin(φ+θ)
 DY=(V×Tt-FD)×cos(φ+θ)
 Tt=T0/2
 次に、この反射点の走査線(i+k)の送信焦点からの距離を求める。
 走査線(i+k)は走査線iに対してk×EPだけ離れているので、DX2は以下で表される。
 DX2=DX-k×EP
 また、距離は以下で与えられる。
 sign(DY) ×sqrt( DX22 + DY2
 ここでDYが負の場合には、距離も負の値とするためにsign(DY)を掛ける。
 走査線(i+k)の開口から送信した音波が反射点に到着するまでの時間は以下となることが分かる。
 Tt2=(FD + sign(DY)×sqrt(DX22+DY2))/V
 一方、反射点から走査線(i+k)の開口のj番目の素子(走査線(i+k)の位置に相当する素子を0として正負の値をとる)に帰ってくる音波の伝播時間は以下となる事が分かる。
 Tr=sqrt(X2+Y2)/V
 但し、
 X=DX+FD×sin(φ)-(k+j)×EP
 Y=DY+FD×cos(φ)
 従って以下の式によって各走査線の各素子の信号を加算することで、この反射点からの反射波を抽出、つまり受信フォーカスすることができる。
 RF(i,T0)=ΣΣELE(i+k,j,T)
 T=Tt2+Tr
 ここで、i+kが走査線、jが素子を表し、二つのΣは一方がkに関する積算、他方がjに関する積算を表す。
 すなわち、角度φだけ傾けた送信ビームに対して更に角度θだけ傾けた方向に受信フォーカスを行う場合には、第2受信フォーカス部40Bによる受信フォーカスは、以下の式を満たすように行われる。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = Tt2 + Tr
 Tr = sqrt(X2+ Y2) / V 
 X = DX + FD×sin(φ) - ( k + j ) × EP
 Y = DY + FD×cos(φ)
 Tt2 = ( FD + sign(DY) ×sqrt( DX22 + DY2) ) / V
 DX2 = DX - k×EP
 DX = (V × Tt - FD) × sin(φ+θ)
 DY = (V × Tt - FD) × cos(φ+θ)
 Tt = T0/2
 なお、kに関する積算を実施しなければ、送信焦点を共有する一つの各素子受信信号を用いることになる。
 次に、針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮して受信フォーカスを行う場合について、図12A、図12Bを参照して説明する。
 走査線iが角度φだけ傾いているとして、更に角度θだけ傾けた方向の反射点の送信焦点からの距離DX、DYは以下式で与えられる(図12A)。
 DX = (V×Tt-FD)×sin(φ+θ)
 DY = (V×Tt-FD)×cos(φ+θ)
 Tt = T0/2
 次に、走査線i+kの送信焦点の針に対する対称位置に擬似的に音源を仮定し、走査線i+kの送信焦点からそこまでの距離DX3、DY3を求める。
 そのために、まず図12BにおいてDX2、DY2を求める。DX2、DY2は、以下式で与えられる事が分かる(ここでkはi番目の走査線を0として正・負の値をとる)。
 DX2 = DX - k×EP×sin(φ+θ)×sin(φ+θ)
 DY2 = DY - k×EP×sin(φ+θ)×cos(φ+θ)
 DX3、DY3はそれぞれDX2、DY2を2倍したものなので以下のようになる。
 DX3 = 2×DX2
 DY3 = 2×DY2
 DX3、DY3が分かれば、音源から走査線(i+k)の開口のj番目の素子(走査線(i+k)の位置に相当する素子を0として正負の値をとる)に帰ってくる音波の伝播時間は以下となる事が分かる。
 Tr=sqrt(X2+Y2)/V
 但し、
 X = DX3 + FD×sin(φ) - j×EP
 Y = DY3 + FD×cos(φ)
 従って、以下の式によって各走査線の各素子の信号を加算することで、この反射点からの反射波を抽出、つまり受信フォーカスすることができる。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = FD/V + Tr
 ここで、i+kが走査線、jが素子を表し、二つのΣは一方がkに関する積算、他方がjに関する積算を表す。
 すなわち、針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮して、角度φだけ傾けた送信ビームに対して更に角度θだけ傾けた方向に受信フォーカスを行う場合には、第2受信フォーカス部40Bは、以下の式を満たすように受信フォーカスを行う。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = FD/V + Tr
 Tr = sqrt(X2+ Y2) / V
 X = DX3 + FD×sin(φ) - j×EP
 Y = DY3 + FD×cos(φ)
 DX3 = 2×DX2
 DY3 = 2×DY2
 DX2 = DX - k×EP×sin(φ+θ)×sin(φ+θ)
 DY2 = DY - k×EP×sin(φ+θ)×cos(φ+θ)
 DX = (V × Tt - FD) × sin(φ+θ)
 DY = (V × Tt - FD) × cos(φ+θ)
 Tt = T0/2
 なお、kに関する積算を実施しなければ、送信焦点を共有する一つの各素子受信信号を用いることとなる。
 図13は、本発明の第3実施形態に係る超音波診断装置の要部で行われる処理の流れの一例を示すフローチャートである。なお、第2実施形態と同一処理については同一符号を付して説明する。
 ステップ200では、走査線nがリセット(n=0)されて、ステップ202へ移行して、走査線nが1インクリメント(n=n+1)されて、ステップ203へ移行する。
 ステップ203では、送信ビームを傾けずに送信フォーカスを実施して各素子受信信号が取得されて、ステップ205へ移行する。すなわち、操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って探触子36から超音波ビームが送信される。そして、送信された超音波ビームと被検体との間の相互作用によって発生された超音波エコーを探触子36が受信し、受信部16によってアナログ素子信号を増幅して、増幅したアナログ素子信号をA/D変換部18によってデジタル素子データに変換して、デジタル素子データが素子データ記憶部20に記憶保持される。
 ステップ205では、送信ビームを傾けて送信フォーカスを実施して各素子受信信号が取得されて、ステップ206へ移行する。すなわち、送信部14から供給される駆動信号に従って、探触子36から超音波ビームが送信される。このとき、ステップ203とは異なり、送信ビームが傾いて送信される。そして、送信された超音波ビームと被検体との間の相互作用によって発生された超音波エコーを探触子36が受信し、受信部16によってアナログ素子信号を増幅して、増幅したアナログ素子信号をA/D変換部18によってデジタル素子データに変換して、デジタル素子データが素子データ記憶部20に記憶保持される。
 ステップ206では、n=Nか否か判定される。すなわち、全走査線について上記処理を終了したか否か判定され、該判定が否定された場合には、ステップ202に戻って、上述の処理が繰り返され、判定が肯定されたところで、ステップ208へ移行する。
 ステップ208では、走査線nがリセット(n=0)されて、ステップ210へ移行して、走査線nが1インクリメント(n=n+1)されて、ステップ213へ移行する。
 ステップ213では、送信ビームを傾けずに取得した各素子受信信号に対して送信ビームと同一方向に受信フォーカスを実施して、組織撮像用の画像Aが生成されて、ステップ215へ移行する。すなわち、第1受信フォーカス部40Aが、ステップ203で取得した各素子受信信号を素子データ記憶部20から取得して、垂直方向の受信フォーカスを実施して、受信データ(音線信号)を生成し、第1検波処理部40Cが、音線信号を処理して、組織撮像用の画像AのBモード画像信号を生成する。
 ステップ215では、送信ビームを傾けて取得した各素子受信信号に対して送信ビームと角度θだけ傾いた方向に受信フォーカスを実施して、針撮像用の画像Bが生成されて、ステップ216へ移行する。すなわち、第2受信フォーカス部40Bが、ステップ205で取得した各素子受信信号を素子データ記憶部20から取得して、送信ビームに対して更に角度θだけ傾いた方向の受信フォーカスを実施して、受信データ(音線信号)を生成し、第2検波処理部40Dが音線信号を処理して、針撮像用の画像BのBモード画像信号を生成する。
 ステップ216では、n=Nか否か判定される。すなわち、全走査線について上記処理を終了したか否か判定され、該判定が否定された場合には、ステップ210に戻って、上述の処理が繰り返され、判定が肯定されたところで、ステップ218へ移行する。
 ステップ218では、上述のようにして生成された画像Aと画像Bとを各々スキャンコンバートして合成して、1フレームの表示画像が合成処理部40Eによって生成されて、一連の処理を終了する。ステップ200の処理からの処理を行うことで、次ぎのフレームの表示画像が生成される。
 なお、図13では、1走査線のRF信号を複数走査線の各素子受信信号を用いて生成する場合について説明したが、第1実施形態のように、1走査線のRF信号を生成するために送信焦点を共有する1つの各素子受信信号を用いる場合には、図13の代わりに図14に示す処理を行っても良い。
 図14は、本発明の第3実施形態に係る超音波診断装置において送信焦点を共有する1つの各素子受信信号を用いて1走査線のRF信号を生成する場合の処理の流れの一例を示すフローチャートである。なお、第1実施形態と同一処理については同一符号を付して説明する。
 ステップ100では、走査線nがリセット(n=0)されて、ステップ102へ移行して、走査線nが1インクリメント(n=n+1)されて、ステップ103へ移行する。
 ステップ103では、送信ビームを傾けずに垂直方向に送信フォーカスを実施して、各素子受信信号が取得されて、ステップ106へ移行する。すなわち、操作者が、超音波プローブ12を被検体の表面に当接し、測定を開始すると、送信部14から供給される駆動信号に従って探触子36から超音波ビームが送信される。そして、送信された超音波ビームと被検体との間の相互作用によって発生された超音波エコーを探触子36が受信し、受信部16によってアナログ素子信号を増幅して、増幅したアナログ素子信号をA/D変換部18によってデジタル素子データに変換して、デジタル変換素子データが素子データ記憶部20に記憶保持される。
 ステップ106では、各素子の受信信号に対して送信ビームと同一方向に受信フォーカスを実施して、組織撮像用の画像Aが生成されて、ステップ107へ移行する。すなわち、第1受信フォーカス部40Aが、各素子受信信号を素子データ記憶部20から取得して、垂直方向の受信フォーカスを実施して、受信データ(音線信号)を生成し、第1検波処理部40Cが音線信号を処理して、組織撮像用の画像AのBモード画像信号を生成する。
 ステップ107では、送信ビームを傾けて送信フォーカスを実施して、各素子受信信号が取得されて、ステップ108へ移行する。すなわち、送信部14から供給される駆動信号に従って、探触子36から超音波ビームが送信される。このとき、ステップ103とは異なり、送信ビームが傾いて送信される。そして、送信された超音波ビームと被検体との間の相互作用によって発生された超音波エコーを探触子36が受信し、受信部16によってアナログ素子信号を増幅して、増幅したアナログ素子信号A/D変換部18によってデジタル素子データに変換して素子データ記憶部20に記憶保持される。
 ステップ108では、各素子の受信信号に対して送信ビーム(傾いた送信ビーム)に対して角度θ傾いた方向に受信フォーカスを実施して、針撮像用の画像Bが生成されて、ステップ110へ移行する。すなわち、第2受信フォーカス部40Bが、傾いた送信ビームによって得られる各素子受信信号を素子データ記憶部20から取得して、送信ビームに対して更に角度θ傾いた方向の受信フォーカスを実施して、受信データ(音線信号)を生成し、第2検波処理部40Dが音線信号を処理して、針撮像用の画像BのBモード画像信号を生成する。
 ステップ110では、n=Nか否か判定される。すなわち、全走査線について上記処理を終了したか否か判定され、該判定が否定された場合には、ステップ102へ移行し、上述の処理が繰り返され、判定が肯定されたところで、ステップ112へ移行する。
 ステップ112では、上述のようにして生成された画像Aと画像Bを各々スキャンコンバートして合成して、1フレームの表示画像が合成処理部40Eによって生成されて、一連の処理を終了する。ステップ100の処理からの処理を行うことで、次ぎのフレームの表示画像が生成される。
 このように本発明の第3実施形態に係る超音波診断装置は、上記各実施形態と異なり2回の超音波送信が必要となるが、上記各実施形態で描出できない角度の針等の組織以外の反射体を確実に描出することができる。従って、確実に針等の反射体を描出できるので、上記各実施形態で針等の組織以外の反射体を検出できなかった場合にモード等を切り替えて行うことにより、上記各実施形態の欠点を補うことができる。
(第4実施形態)
 続いて、第4実施形態に係る超音波診断装置について説明する。
 第4実施形態では、第3実施形態において、コンベックス型の超音波プローブを使用する場合の第2受信フォーカス部40Bによる受信フォーカスについて説明する。
 コンベックス型の超音波プローブを用いて、送信ビームを角度φだけ傾けて送信したときの第2受信フォーカス部40Bの受信フォーカスについて説明する。
 まず、鏡面反射を仮定しない場合について図15A及び図15Bを参照して説明する。
 走査線iが角度φだけ傾いているとして、更に角度θだけ傾けた方向の反射点の送信焦点からのX方向、Y方向の距離DX、DYは以下式で与えられる(図15A)。
 DX = (V × Tt - FD) × sin(φ+θ)
 DY = (V × Tt - FD) × cos(φ+θ)
 Tt = T0/2
 次に、この反射点の走査線(i+k)の送信焦点からのX方向、Y方向距離を求める。
 まず図15Bから走査線(i+k)の送信焦点に対して走査線iの送信焦点のX方向、Y方向距離を求める。コンベックス中心を原点として走査線iの送信焦点のx、y座標は以下のようになる。
 xi= FD×sin(φ)
 yi= R + FD×cos(φ)
 ここで、Rはコンベックス型超音波プローブの半径を表す。
 走査線(i+k)は走査線iに対して角度k×EPだけ傾いており、従って走査線iがy方向に対して角度φだけ傾いているのに対して、走査線(i+k)はy方向に対してφ + k×EPだけ傾いている事が図15Bから分かる(ここでEPは走査線間の角度。kはi番目の走査線を0として正・負の値をとる)。従って、走査線(i+k)の送信焦点のx,y座標は以下のように表される。
 xi+k= R × sin(k×EP) + FD ×sin(φ+ k×EP)
 yi+k= R × cos(k×EP) + FD × cos(φ+ k×EP)
 上式に基づき、走査線(i+k)の送信焦点に対して走査線iの送信焦点のX方向、Y方向距離はそれぞれ以下式で求められる。
 xi- xi+k = FD×sin(φ) - R × sin(k×EP) - FD × sin(φ+ k×EP)
 yi- yi+k = R + FD×cos(φ) - R × cos(k×EP) - FD × cos(φ+ k×EP)
 従って、走査線(i+k)の送信焦点に対して反射点のX方向距離DX2およびY方向距離DY2は以下式で求められる。
 DX2 = DX + FD×sin(φ) - FD×sin(φ+ k×EP) - R×sin(k×EP)
 DY2 = DY + FD×cos(φ) - FD×cos(φ+ k×EP) + R - R×cos(k×EP)
 走査線(i+k)の開口から送信した音波が反射点に到着するまでの時間は以下のようになることが分かる。
 Tt2 = ( FD + sign(DY) ×sqrt( DX22 + DY22) ) / V
 ここでDYが負の場合には、送信焦点を形成する前に反射点に到達することからsign(DY)を掛けている。
 一方、図15Bから、反射点から走査線(i+k)の開口のj番目の素子(走査線(i+k)の位置に相当する素子を0として正負の値をとる)に帰ってくる音波の伝播時間は以下となる事が分かる。
 Tr = sqrt(X2+ Y2) / V 
 但し
 X = DX + FD×sin(φ) - R×sin(( k + j ) × EP)
 Y = DY + FD×cos(φ) + R - R×cos(( k + j ) × EP)
 ここで、EPは走査線間の角度であると共に、素子間の角度でもある。
 従って以下の式によって各走査線の各素子の信号を加算することで、この反射点からの反射波を抽出、つまり受信フォーカスすることができる。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = Tt2 + Tr
 ここでi+kが走査線、jが素子を表し、二つのΣは一方がkに関する積算、他方がjに関する積算を表す。
 すなわち、コンベックス型の超音波プローブを用いて、送信ビームを角度φだけ傾けて送信したときに、更に角度θだけ傾けた方向の受信フォーカスは、以下の式を満たすように行われる。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = Tt2 + Tr
 Tr = sqrt(X2+ Y2) / V 
 X = DX + FD×sin(φ) - R×sin(( k + j ) × EP)
 Y = DY + FD×cos(φ) + R - R×cos(( k + j ) × EP)
 Tt2 = ( FD + sign(DY) ×sqrt( DX22 + DY22) ) / V
 DX2 = DX + FD×sin(φ) - FD×sin(φ+ k×EP) - R×sin(k×EP)
 DY2 = DY + FD×cos(φ) - FD×cos(φ+ k×EP) + R - R×cos(k×EP)
 DX = (V × Tt - FD) × sin(φ+θ)
 DY = (V × Tt - FD) × cos(φ+θ)
 Tt = T0/2
 次に、針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮して受信フォーカスを行う場合について図16及び図17A、図17Bを参照して説明する。
 走査線iが角度φだけ傾いているとして、更に角度θだけ傾けた方向の反射点の送信焦点からの距離DX、DYは以下式で与えられる。
 DX = (V × Tt - FD) × sin(φ+θ)
 DY = (V × Tt - FD) × cos(φ+θ)
 Tt = T0/2
 次に、走査線i+kの送信焦点の針に対する対称位置に擬似的に音源を仮定し、走査線i+kの送信焦点からそこまでの距離DX3、DY3を求める。
 そのために、まず図17A(または図17B)においてDX2、DY2を求める。ここで図17Aおよび図17BはDX2、DY2の求め方を説明するための図であり、図17Bは図17Aの点線で囲った部分の拡大図である。
 DX2、DY2を求めるために、まず図17Bの矢印Aの距離を求める。そのために、まず走査線i+kの送信焦点と走査線iの送信焦点間の距離と、図17Bの角度βを求める。
 走査線i+kの送信焦点と走査線iの送信焦点間の距離は、図17Aを見るとコンベックス中心とそれぞれの送信焦点が形成する三角形はコンベックス中心を頂点とした2等辺三角形であることが分かる。その辺の長さをRbとすると余弦定理により以下式で与えられる事が分かる。
 Rb = sqrt( R2+ FD2+ 2×R×FD×cos(φ) )
 そしてこの2等辺三角形の頂点(コンベックス中心)の角度がk×EPである事から走査線i+kの送信焦点と走査線iの送信焦点間の距離が以下式で与えられる事が分かる。
 2×Rb×sin( k×EP / 2 )
 次に図17Bにおいてβを求めるために、まずα1、α2、α3を求める。
 α1は上述した2等辺三角形の底角なので90°- ( k ×EP / 2) である事が分かる。
 α2は図17Bより90°- φ- θである事が容易に分かる。
 α3は図17Aのα3と等しいことが分かる。そして、図17Aのα3は正弦定理により
 Rb / sin(180°- φ) = FD / sin (α3)
から、以下式で与えられる事が分かる。
 α3 = arcsin( sin(φ) × FD / Rb )
 以上からβは以下式で与えられる事が分かる。
 β = 180°- α1 - α2 - α3 
   = ( k ×EP / 2) + φ + θ- arcsin( sin(φ) × FD / Rb )
 以上から、図17Bの矢印Aの距離は以下式で求められる事が分かる。
 2×Rb×sin( k×EP / 2 )×sin(β)
 以上からDX2、DY2は以下式で与えられる。
 DX2 = 2×Rb×sin( k×EP / 2 )×sin(β)×sin(φ+θ) + DX
 DY2 = 2×Rb×sin( k×EP / 2 )×cos(β)×sin(φ+θ) + DY
 但し、
 β = ( k ×EP / 2) + φ + θ- arcsin( sin(φ) × FD / Rb )
 Rb = sqrt( R2+ FD2 + 2×R×FD×cos(φ) )
 DX3、DY3はそれぞれDX2、DY2を2倍したものなので以下のように表される。
 DX3 = 2×DX2
 DY3 = 2×DY2
 走査線(i+k)は走査線iに対して角度k×EPだけ傾いており、従って走査線iがy方向に対して角度φだけ傾いているのに対して、走査線(i+k)はy方向に対してφ + k×EPだけ傾いている事が図17Aから分かる(ここでkはi番目の走査線を0として正・負の値をとる)。
 従って、走査線(i+k)の起点(開口の中心)に対して送信焦点のX方向、Y方向距離は以下のように表される。
 FD × sin ( φ+ k×EP)
 FD × cos ( φ+ k×EP)
 そして、走査線(i+k)の開口のj番目の素子に対して走査線(i+k)の起点(開口の中心)のX方向、Y方向距離が以下となることも図17Aから分かる。
 R× ( sin ( k × EP ) - sin ( (k+j) × EP ) )
 R× ( cos ( k × EP ) - cos ( (k+j) × EP ) )
 以上から、音源から走査線(i+k)の開口のj番目の素子に帰ってくる音波の伝播時間は以下となる事が分かる。
 Tr = sqrt(X2+ Y2) / V
 但し、
 X = DX3 + FD × sin (φ+ k×EP) + R×( sin ( k ×EP ) - sin ( (k+j) × EP ) )
 Y = DY3 + FD × cos (φ+ k×EP) + R× (cos ( k ×EP ) - cos ( (k+j) × EP ) )
 従って、以下の式によって各走査線の各素子の信号を加算することで、この反射点からの反射波を抽出、つまり受信フォーカスすることができる。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = FD/V + Tr
 ここで、i+kが走査線、jが素子を表し、二つのΣは一方がkに関する積算、他方がjに関する積算を表す。
 すなわち、針を鏡面反射面としてその対称位置に音源がある場合と等価な音波となることを考慮して受信フォーカスを行う場合には、第2受信フォーカス部40Bは、以下の式を満たすように受信フォーカスを行う。
 RF(i,T0) = ΣΣELE(i+k,j,T)
 T = FD/V + Tr
 Tr = sqrt(X2+ Y2) / V
 X = DX3 + FD × sin (φ+ k×EP) + R×( sin ( k ×EP ) - sin ( (k+j) × EP ) )
 Y = DY3 + FD × cos (φ+ k×EP) + R× (cos ( k ×EP ) - cos ( (k+j) × EP ) )
 DX3 = 2×DX2
 DY3 = 2×DY2
 DX2 = 2×Rb×sin( k×EP / 2 )×sin(β)×sin(φ+θ) + DX
 DY2 = 2×Rb×sin( k×EP / 2 )×cos(β)×sin(φ+θ) + DY
 DX = (V × Tt - FD) × sin(φ+θ)
 DY = (V × Tt - FD) × cos(φ+θ)
 但し、
 β = ( k ×EP / 2) + φ + θ- arcsin( sin(φ) × FD / Rb )
 Rb = sqrt( R2+ FD2+ 2×R×FD×cos(φ) )
 この場合には、リニア型の超音波プローブを使用する場合と同様に、針の描出性能を向上することができるが、針の先端の描出性能は低下することとなる。
 なお、第4実施形態に係る超音波診断装置の要部で行われる処理の流れについては、第3実施形態に対して超音波プローブがコンベックス型超音波プローブに代わるだけで同じ処理となるため、詳細な説明を省略する。
 また、第4実施形態の第2受信フォーカス部40Bの受信フォーカスを行う際の上記式において、φ=0とすることにより、送信ビームを傾けない場合に相当する。また、kに関する積算を実施しなければ、送信焦点を共有する一つの各素子受信信号を用いることとなる。
 コンベックス型の超音波プローブの場合、送信ビームの方向は走査線毎に異なる。つまり、n素子分離れた走査線の送信ビームの方向は角度n×EPだけ異なる。この走査線毎の送信ビーム方向の違いを考慮して、上記式において走査線に依らず常に同一方向に受信フォーカスを実施するように各RF(i,T0)のθをずらすようにしてもよい。すなわち、RF(i-n,T0)…、 RF(i-1,T0)、RF(i,T0)、RF(i+1,T0)…、RF(i+n,T0)を生成するための受信フォーカスにおいてθを各々θ+n×EP…、θ+EP、θ、θ-EP…、θ-n×EPとしてもよい。
 なお、上記の各実施形態においては受信フォーカスの方向をθとした。針ガイドなどに針を固定して入射する場合には、予め固定治具によって決まるθを操作部32等を介して設定すればよい。また、フリーハンドで針を入射する場合には、複数の方向に受信フォーカスをして針画像を生成した後に、最も針描出の良い画像を選択するようにしてもよい。最も針描出の良い画像の判断方法としては、針が含まれると想定される所定領域の輝度分布において最高輝度が含まれる画像や平均輝度が最大となる画像、またはHough変換などにより直線検出し、該直線における輝度が最大となる画像などとしてもよい。
 また、描出する対象は、針のみでなく正反射を生ずる何れの反射体の描出にも有効である。つまり、正反射を生ずる反射体においては送信ビーム方向によって十分な正反射が受信開口に戻らずに描出が低下することがあるが、上述したように、送信フォーカスにより形成される音波が種々方向に伝播することを利用して、余分な送信をせずに反射体を良好に描出することができる。
 また、上記の各実施形態は、正反射を生じない反射体の描出にも有効である。つまり、従来、反射体がプローブ下になく描出に送信ステア(送信ビームを傾けた送信)を要した場合でも、送信フォーカスにより形成される音波がプローブ下のみでなく該反射体にまで広がることを利用して、余分な種々方向の送信ステアを実施せずに描出することができる。この時、広がる音波を利用するため送信ステアに比べて画質低下するが、第2実施形態の様に複数の素子データを利用することで画質向上させることができる。
 また、上記の各実施形態では、針の画像を生成する場合を説明したが、針の画像生成のみでなく針の方向検出にも有効である。つまり、複数の方向に受信フォーカスをして針画像を生成した後に、最も針描出の良い画像となる方向に垂直な方向に針が入射していると判定することができる。または、針描出の良い画像においてHough変換などにより直線検出し、該直線の方向を針の方向と判定することもできる。
 さらに、上記の各実施形態では、Bモード画像の生成を説明したが、Bモード画像生成のみでなく、ドプラ画像生成にも有効である。
 また、上記の各実施形態における各部で行われる処理は、プログラムとして各種記憶媒体に記憶して流通するようにしてもよい。
 さらに、上記の各実施形態で説明した超音波診断装置の構成や動作等は一例であり、本発明の主旨を逸脱しない範囲内において状況に応じて変更可能であることは言うまでもない。
 日本国特許出願2013-157656号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (30)

  1.  超音波を発生して送信すると共に、検査対象から反射した超音波を受信する複数の素子を備えた探触子と、
     予め定めた第1の方向に送信焦点を形成して超音波ビームを送信するように前記複数の素子から超音波を送信させる送信部と、
     前記探触子の各素子によって受信した各々の受信信号に対して、前記送信部によって検査対象内に送信された前記超音波ビームの送信波経路のうち、前記第1の方向以外の第2の方向の経路上の反射に合わせて受信フォーカスを行う第2受信フォーカス部と、
     を備えた超音波診断装置。
  2.  前記第1の方向の経路上の反射に合わせて受信フォーカスを行う第1受信フォーカス部を更に備えた
     請求項1に記載の超音波診断装置。
  3.  前記第1受信フォーカス部及び第2受信フォーカス部のそれぞれの受信フォーカス結果を合成する合成部を更に備えた
     請求項2に記載の超音波診断装置。
  4.  前記送信部は、前記探触子の異なる2つ以上の開口の各々で前記第1の方向に送信焦点を形成して超音波ビームを送信するように前記複数の素子から超音波を送信させ、
     前記第2受信フォーカス部は、各々の開口に対する前記受信信号に対して、前記第2の方向の共通する反射点に合わせて受信フォーカスを行う
     請求項1~3の何れか1項に記載の超音波診断装置。
  5.  前記第2受信フォーカス部は、前記送信焦点より浅い領域及び深い領域において送信波が球面波状に収束・発散することを仮定して設定した遅延時間に基づき受信フォーカスを行う
     請求項1~4の何れか1項に記載の超音波診断装置。
  6.  前記第2受信フォーカス部は、前記第2の方向の各点に対して、各点における鏡面反射を仮定して、該点とは異なる点に音源を仮定して、仮定した音源に対する遅延時間に基づき受信フォーカスを行う
     請求項1~4の何れか1項に記載の超音波診断装置。
  7.  前記第2受信フォーカス部による受信フォーカスを行った結果に基づいて、針の方向を判定する判定部を更に備えた
     請求項1~6の何れか1項に記載の超音波診断装置。
  8.  前記第2の方向を指定する指定部を更に備えた
     請求項1~6の何れか項に記載の超音波診断装置。
  9.  前記指定部は、針を固定する固定部から得られる方向に関する情報に基づいて前記第2の方向を指定する
     請求項8に記載の超音波診断装置。
  10.  前記指定部は、第2受信フォーカス部による前回の受信フォーカスを行った結果に基づいて前記第2の方向を指定する
     請求項8に記載の超音波診断装置。
  11.  超音波を発生して送信すると共に、検査対象から反射した超音波を受信する複数の素子を備えた探触子の前記複数の素子から、予め定めた第1の方向に送信焦点を形成して超音波ビームを送信するように超音波を送信することと、
     前記探触子の各素子によって受信した各々の受信信号に対して、検査対象物内に送信した前記超音波ビームの送信波経路のうち、前記第1の方向以外の第2の方向の経路上の反射に合わせて第2の受信フォーカスを行うことと、
     を備えた超音波診断方法。
  12.  前記第1の方向の経路上の反射に合わせて第1の受信フォーカスを行うことを更に備えた
     請求項11に記載の超音波診断方法。
  13.  前記第1の受信フォーカス及び第2の受信フォーカスのそれぞれの受信フォーカス結果を合成することを更に備えた
     請求項12に記載の超音波診断方法。
  14.  前記超音波ビームを送信することは、前記探触子の異なる2つ以上の開口の各々で前記第1の方向に送信焦点を形成して超音波ビームを送信するように前記複数の素子から超音波を送信することを更に備え、
     前記第2の受信フォーカスを行うことは、各々の開口に対する前記受信信号に対して、前記第2の方向の共通する反射点に合わせて受信フォーカスを行うことを更に備えた
     請求項11~13の何れか1項に記載の超音波診断方法。
  15.  前記第2の受信フォーカスを行うことは、前記送信焦点より浅い領域及び深い領域において送信波が球面波状に収束・発散することを仮定して設定した遅延時間に基づき受信フォーカスを行うことを更に備えた
     請求項11~14の何れか1項に記載の超音波診断方法。
  16.  前記第2の受信フォーカスを行うことは、前記第2の方向の各点に対して、各点における鏡面反射を仮定して、該点とは異なる点に音源を仮定して、仮定した音源に対する遅延時間に基づき受信フォーカスを行うことを更に備えた
     請求項11~14の何れか1項に記載の超音波診断方法。
  17.  前記第2の受信フォーカスを行った結果に基づいて、針の方向を判定することを更に備えた
     請求項11~16の何れか1項に記載の超音波診断方法。
  18.  前記第2の方向を指定することを更に備えた
     請求項11~16の何れか項に記載の超音波診断方法。
  19.  前記第2の方向を指定することは、針を固定する固定部から得られる方向に関する情報に基づいて前記第2の方向を指定することを更に備えた
     請求項18に記載の超音波診断方法。
  20.  前記第2の方向を指定することは、第2の受信フォーカスの前回の受信フォーカスを行った結果に基づいて前記第2の方向を指定することを更に備えた
     請求項18に記載の超音波診断方法。
  21.  超音波を発生して送信すると共に、検査対象から反射した超音波を受信する複数の素子を備えた探触子の前記複数の素子から、予め定めた第1の方向に送信焦点を形成して超音波ビームを送信するように超音波を送信することと、
     前記探触子の各素子によって受信した各々の受信信号に対して、検査対象物内に送信した前記超音波ビームの送信波経路のうち、前記第1の方向以外の第2の方向の経路上の反射に合わせて第2の受信フォーカスを行うことと、
     を含む処理をコンピュータに実行させるための超音波診断プログラム。
  22.  前記処理は、前記第1の方向の経路上の反射に合わせて第1の受信フォーカスを行うことを更に含む
     請求項21に記載の超音波診断プログラム。
  23.  前記処理は、前記第1の受信フォーカス及び第2の受信フォーカスのそれぞれの受信フォーカス結果を合成することを更に含む
     請求項22に記載の超音波診断プログラム。
  24.  前記超音波を送信することは、前記探触子の異なる2つ以上の開口の各々で前記第1の方向に送信焦点を形成して超音波ビームを送信するように前記複数の素子から超音波を送信することを更に含み、
     前記第2の受信フォーカスを行うことは、各々の開口に対する前記受信信号に対して、前記第2の方向の共通する反射点に合わせて受信フォーカスを行うことを更に含む
     請求項21~23の何れか1項に記載の超音波診断プログラム。
  25.  前記第2の受信フォーカスを行うことは、前記送信焦点より浅い領域及び深い領域において送信波が球面波状に収束・発散することを仮定して設定した遅延時間に基づき受信フォーカスを行うことを更に含む
     請求項21~24の何れか1項に記載の超音波診断プログラム。
  26.  前記第2の受信フォーカスを行うことは、前記第2の方向の各点に対して、各点における鏡面反射を仮定して、該点とは異なる点に音源を仮定して、仮定した音源に対する遅延時間に基づき受信フォーカスを行うことを更に含む
     請求項21~24の何れか1項に記載の超音波診断プログラム。
  27.  前記第2の受信フォーカスを行った結果に基づいて、針の方向を判定することを更に備えた
     請求項21~26の何れか1項に記載の超音波診断プログラム。
  28.  前記第2の方向を指定することを更に備えた
     請求項21~26の何れか1項に記載の超音波診断プログラム。
  29.  前記第2の方向を指定することは、針を固定する固定部から得られる方向に関する情報に基づいて前記第2の方向を指定することを更に含む
     請求項28に記載の超音波診断プログラム。
  30.  前記第2の方向を指定することは、第2の受信フォーカスの前回の受信フォーカスを行った結果に基づいて前記第2の方向を指定することを更に含む
     請求項28に記載の超音波診断プログラム。
PCT/JP2014/061198 2013-07-30 2014-04-21 超音波診断装置、超音波診断方法、及び超音波診断プログラム WO2015015848A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480040259.7A CN105407806B (zh) 2013-07-30 2014-04-21 超声波诊断装置及其工作方法
US14/981,872 US10299758B2 (en) 2013-07-30 2015-12-28 Ultrasound diagnostic device, ultrasound diagnostic method, and ultrasound diagnostic program
US16/374,284 US11096665B2 (en) 2013-07-30 2019-04-03 Ultrasound diagnostic device, ultrasound diagnostic method, and ultrasound diagnostic program
US17/371,439 US11622748B2 (en) 2013-07-30 2021-07-09 Ultrasound diagnostic device, ultrasound diagnostic method, and ultrasound diagnostic program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-157656 2013-07-30
JP2013157656A JP6165542B2 (ja) 2013-07-30 2013-07-30 超音波診断装置、超音波診断装置の作動方法、及び超音波診断プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/981,872 Continuation US10299758B2 (en) 2013-07-30 2015-12-28 Ultrasound diagnostic device, ultrasound diagnostic method, and ultrasound diagnostic program

Publications (1)

Publication Number Publication Date
WO2015015848A1 true WO2015015848A1 (ja) 2015-02-05

Family

ID=52431397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061198 WO2015015848A1 (ja) 2013-07-30 2014-04-21 超音波診断装置、超音波診断方法、及び超音波診断プログラム

Country Status (4)

Country Link
US (3) US10299758B2 (ja)
JP (1) JP6165542B2 (ja)
CN (1) CN105407806B (ja)
WO (1) WO2015015848A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6114663B2 (ja) * 2013-08-27 2017-04-12 富士フイルム株式会社 超音波診断装置および超音波画像生成方法
US10537309B2 (en) * 2014-11-13 2020-01-21 Duke University Systems and methods for ultrasound motion display and analysis
JP6402241B2 (ja) 2015-04-03 2018-10-10 富士フイルム株式会社 音響波画像生成装置および方法
JP6157796B1 (ja) * 2015-09-25 2017-07-05 オリンパス株式会社 超音波観測装置
US10932749B2 (en) * 2016-11-09 2021-03-02 Fujifilm Sonosite, Inc. Ultrasound system for enhanced instrument visualization
JP6897416B2 (ja) * 2017-08-16 2021-06-30 コニカミノルタ株式会社 超音波診断装置およびその作動方法
JP7059843B2 (ja) * 2018-07-13 2022-04-26 コニカミノルタ株式会社 超音波診断装置、超音波画像表示方法及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844372A (ja) * 1982-08-23 1983-03-15 Hitachi Medical Corp 超音波撮像方式
JP2003310611A (ja) * 2002-04-19 2003-11-05 Univ Of Pittsburgh 断層写真スライス画像と人体画像とのリアルタイム位置重畳装置及びその方法
JP2004208859A (ja) * 2002-12-27 2004-07-29 Toshiba Corp 超音波診断装置
JP2006346176A (ja) * 2005-06-16 2006-12-28 Toshiba Corp 超音波診断装置及び画像表示装置
JP2010051379A (ja) * 2008-08-26 2010-03-11 Fujifilm Corp 超音波診断装置
US20100160783A1 (en) * 2008-12-19 2010-06-24 Menachem Halmann Ultrasound imaging method and apparatus
JP2012245092A (ja) * 2011-05-26 2012-12-13 Toshiba Corp 超音波診断装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000569B2 (ja) 2011-04-01 2016-09-28 東芝メディカルシステムズ株式会社 超音波診断装置及び制御プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5844372A (ja) * 1982-08-23 1983-03-15 Hitachi Medical Corp 超音波撮像方式
JP2003310611A (ja) * 2002-04-19 2003-11-05 Univ Of Pittsburgh 断層写真スライス画像と人体画像とのリアルタイム位置重畳装置及びその方法
JP2004208859A (ja) * 2002-12-27 2004-07-29 Toshiba Corp 超音波診断装置
JP2006346176A (ja) * 2005-06-16 2006-12-28 Toshiba Corp 超音波診断装置及び画像表示装置
JP2010051379A (ja) * 2008-08-26 2010-03-11 Fujifilm Corp 超音波診断装置
US20100160783A1 (en) * 2008-12-19 2010-06-24 Menachem Halmann Ultrasound imaging method and apparatus
JP2012245092A (ja) * 2011-05-26 2012-12-13 Toshiba Corp 超音波診断装置

Also Published As

Publication number Publication date
CN105407806A (zh) 2016-03-16
US11622748B2 (en) 2023-04-11
US20190223838A1 (en) 2019-07-25
JP6165542B2 (ja) 2017-07-19
CN105407806B (zh) 2018-07-06
US11096665B2 (en) 2021-08-24
US20210330293A1 (en) 2021-10-28
US10299758B2 (en) 2019-05-28
US20160113624A1 (en) 2016-04-28
JP2015027346A (ja) 2015-02-12

Similar Documents

Publication Publication Date Title
WO2015015848A1 (ja) 超音波診断装置、超音波診断方法、及び超音波診断プログラム
US11439368B2 (en) Acoustic wave processing device, signal processing method for acoustic wave processing device, and program
JP5946427B2 (ja) 超音波検査装置、超音波検査方法、プログラム及び記録媒体
WO2014050752A1 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
US10231711B2 (en) Acoustic wave processing device, signal processing method for acoustic wave processing device, and program
JP2009056140A (ja) 超音波診断装置
US20160157830A1 (en) Ultrasonic diagnostic device and ultrasonic image generation method
JP2014023670A (ja) 超音波診断装置及びその制御プログラム
JP2009061086A (ja) 超音波診断装置、並びに、画像処理方法及びプログラム
JP6000196B2 (ja) 超音波診断装置、音速決定方法およびプログラム
US20160367224A1 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
JP2014183966A (ja) 超音波診断装置、超音波診断装置の信号処理方法およびプログラム
US20100056917A1 (en) Ultrasonic diagnostic apparatus
JP5873412B2 (ja) 超音波診断装置、音速決定方法およびプログラム
JP2010234013A (ja) 超音波診断装置及び超音波診断方法
JP5777604B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
WO2014050847A1 (ja) 超音波診断装置、超音波画像データ生成方法およびプログラム
JP2009022413A (ja) 超音波診断装置
JP2013255599A (ja) 超音波診断装置及び方法
JP2014183922A (ja) 超音波診断装置、超音波診断装置の信号処理方法およびプログラム
JP2013255598A (ja) 超音波診断装置及び方法
WO2014050756A1 (ja) 超音波検査装置、超音波画像データ生成方法およびプログラム
JP2003190152A (ja) 超音波撮影装置
JPH07120244A (ja) 超音波撮像装置における映像化方法
JP2013244199A (ja) 音響カプラ及び超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040259.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832964

Country of ref document: EP

Kind code of ref document: A1