WO2014002935A1 - 成形体 - Google Patents

成形体 Download PDF

Info

Publication number
WO2014002935A1
WO2014002935A1 PCT/JP2013/067215 JP2013067215W WO2014002935A1 WO 2014002935 A1 WO2014002935 A1 WO 2014002935A1 JP 2013067215 W JP2013067215 W JP 2013067215W WO 2014002935 A1 WO2014002935 A1 WO 2014002935A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylidene fluoride
copolymer
formula
fluoride copolymer
melt
Prior art date
Application number
PCT/JP2013/067215
Other languages
English (en)
French (fr)
Inventor
勇樹 堺
民人 五十嵐
慎太郎 武藤
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to EP13809597.1A priority Critical patent/EP2868675B1/en
Priority to US14/405,884 priority patent/US20150299355A1/en
Priority to JP2014522609A priority patent/JP6016917B2/ja
Publication of WO2014002935A1 publication Critical patent/WO2014002935A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • C08F214/225Vinylidene fluoride with non-fluorinated comonomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/16Esters having free carboxylic acid groups, e.g. monoalkyl maleates or fumarates
    • C08F222/165Esters having free carboxylic acid groups, e.g. monoalkyl maleates or fumarates the ester chains containing seven or more carbon atoms

Definitions

  • the present invention relates to a molded body, and more particularly to a molded body obtained from a specific vinylidene fluoride-based copolymer.
  • Vinylidene fluoride resin is excellent in chemical resistance, weather resistance, stain resistance, and the like, and is used as a molding material for various films or sheets, a paint, and a binder base.
  • the layer made of vinylidene fluoride resin is also excellent in oil permeation resistance. Therefore, the layer made of other thermoplastic resin with polyamide resin, polyolefin resin, etc. It has been proposed to form an oil supply tube or the like from an automobile gasoline tank to an engine by lamination (see, for example, Patent Documents 1 to 4).
  • stacking is employ
  • the molded article of the present invention can be obtained by melt molding a vinylidene fluoride copolymer obtained by copolymerizing vinylidene fluoride and a compound represented by the following formula (1).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a chlorine atom or an alkyl group having 1 to 5 carbon atoms, and X ′ is a main chain having 1 to 19 atoms. It is an atomic group having a molecular weight of 472 or less.
  • the compound represented by the formula (1) is preferably a compound represented by the following formula (2), more preferably at least one compound selected from acryloyloxyethyl succinic acid and carboxyethyl acrylate. preferable.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a chlorine atom or an alkyl group having 1 to 5 carbon atoms, and X ′ ′′ has a main chain having 1 to 5 atoms.
  • 18 is an atomic group composed of 18 and having a molecular weight of 456 or less.
  • the inherent viscosity of the vinylidene fluoride copolymer is preferably 0.3 to 5.0 dl / g.
  • the absorbance ratio (A R ) represented by the following formula (I) when the infrared absorption spectrum of the vinylidene fluoride copolymer is measured is preferably in the range of 0.01 to 3.0.
  • a R A 1700-1800 / A 3023 (I) (In the formula (I), A 1700-1800 is the absorbance derived from the stretching vibration of the carbonyl group detected in the range of 1700 to 1800 cm ⁇ 1 , and A 3023 is the stretching vibration of CH detected in the vicinity of 3023 cm ⁇ 1.
  • seat, a film, a strand, a fiber, or a tube is mentioned.
  • the molded body preferably has a layer obtained by melt-molding the vinylidene fluoride copolymer and a layer formed from a thermoplastic resin other than the vinylidene fluoride copolymer.
  • the layer obtained by melt-molding the vinylidene fluoride copolymer and the layer formed from a thermoplastic resin other than the vinylidene fluoride copolymer are preferably molded by coextrusion.
  • the molded article of the present invention is obtained by melt-molding a specific vinylidene fluoride copolymer, and the copolymer is excellent in adhesiveness with other thermoplastic resins.
  • the adhesion between the layers is excellent.
  • the specific vinylidene fluoride copolymer since the specific vinylidene fluoride copolymer has improved moldability and color resistance as compared with the conventional vinylidene fluoride copolymer, the molded article of the present invention is preferably produced.
  • the molded body of the present invention can be obtained by melt molding a vinylidene fluoride copolymer obtained by copolymerizing vinylidene fluoride and a compound represented by the following formula (1).
  • the vinylidene fluoride copolymer used in the present invention is obtained by copolymerizing vinylidene fluoride and a compound represented by the following formula (1).
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a chlorine atom or an alkyl group having 1 to 5 carbon atoms, and X ′ is a main chain having 1 to 19 atoms. It is an atomic group having a molecular weight of 472 or less.
  • the vinylidene fluoride copolymer used in the present invention is a polymer having a structural unit derived from vinylidene fluoride and a structural unit derived from the compound represented by the formula (1). Furthermore, you may have the structural unit derived from another monomer.
  • the vinylidene fluoride copolymer used in the present invention has a structural unit derived from the compound represented by the formula (1), it has excellent adhesion to other resins.
  • a compound represented by the following formula (2) is preferable.
  • a carboxyl group that functions as an adhesive functional group is present from the vinylidene fluoride polymer main chain via a spacer. High degree of freedom in placement. Therefore, the present inventor presumed that the functional group is easy to take an arrangement that easily exhibits its adhesiveness imparting ability and is excellent in adhesiveness.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a chlorine atom or an alkyl group having 1 to 5 carbon atoms, and X ′ ′′ has a main chain having 1 to 5 atoms.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom, a chlorine atom or an alkyl group having 1 to 5 carbon atoms, but from the viewpoint of polymerization reactivity,
  • R 1 and R 2 are desirably substituents with small steric hindrance, preferably hydrogen or an alkyl group having 1 to 3 carbon atoms, more preferably hydrogen or a methyl group.
  • the molecular weight of the atomic group represented by X ′ is 472 or less, preferably 172 or less.
  • the lower limit of the molecular weight of the atomic group represented by X ′ is not particularly limited, but usually X ′ is —CH 2 —, that is, the molecular weight is 14.
  • the molecular weight of the atomic group represented by X ′ ′′ is 456 or less, but preferably 156 or less.
  • the lower limit of the molecular weight of the atomic group represented by X ′ ′′ is not particularly limited, but usually X ′ ′′ is —CH 2 —, that is, the molecular weight is 14.
  • the molecular weight of the atomic group represented by X ′ or X ′ ′′ is preferably in the above range from the viewpoint of polymerizability.
  • the main chain is composed of 1 to 19 atoms, preferably 1 to 14 atoms, and preferably 1 to 9 It is more preferable.
  • the main chain is preferably composed of 1 to 18 atoms and preferably composed of 1 to 13 atoms. More preferably,
  • the number of atoms of the main chain of acryloyloxyethyl succinate (AES) and carboxyethyl acrylate (CEA) used in the examples is as follows.
  • AES corresponds to a compound represented by the formula (1) and a compound represented by the formula (2).
  • the atomic group represented by X ′ is —OCH 2 CH 2 O— (CO) —CH 2 CH 2 —.
  • the number of atoms in the main chain of the atomic group is the number of atoms in the straight chain skeleton. That is, the oxygen atom constituting the carbonyl group and the hydrogen atom constituting the methylene group are not counted as the number of atoms in the main chain. That is, the straight chain skeleton is —OCCO—C—CC— and has 7 atoms.
  • the main chain of the atomic group represented by X ′ ′′ has 6 atoms.
  • CEA corresponds to a compound represented by the formula (1) and a compound represented by the formula (2).
  • the main chain of the atomic group represented by X ′ has 3 atoms
  • the compound represented by the formula (2) is CEA
  • the main chain of the atomic group represented by X ′′ ′ has 2 atoms.
  • the number of atoms in the main chain of acryloyloxyethylphthalic acid is as follows.
  • Acrylyloxyethylphthalic acid is a compound represented by the following formula (B), and corresponds to a compound represented by the formula (1) and a compound represented by the formula (2).
  • the atomic group represented by X ′ is represented by the following formula (B ′).
  • the number of atoms of the main chain of the atomic group is the number of atoms of the skeleton part of the chain connecting the carboxyl group bonded to the atomic group and the group described on the left side (CH 2 ⁇ CH—CO—) with the smallest number of atoms.
  • the number of atoms in the skeleton of the chain connecting the carboxyl group and the group (CH 2 ⁇ CH—CO—) on the left side is represented by the formula (B′-1).
  • the number of atoms is 7 or the number of atoms represented by (B′-2) is 11.
  • the number of atoms in the main chain is 7, which is smaller.
  • the compound represented by the formula (2) is acryloyloxyethylphthalic acid
  • the main chain of the atomic group represented by X ′ ′′ has 6 atoms.
  • the number of atoms in the main chain is as follows.
  • a chain that connects the group described on the left side and the carboxyl group with the smallest number of atoms A value with a small number of atoms in the portion is defined as the number of atoms in the main chain. That is, in a compound having two carboxyl groups, in each carboxyl group (hereinafter referred to as carboxyl group A and carboxyl group B for convenience), a chain connecting the group described on the left side and the carboxyl group with the smallest number of atoms.
  • the number of atoms of the skeleton portion of the chain connecting the group described on the left side and the carboxyl group A with the smallest number of atoms is 3, and the group described on the left side and the carboxyl group B are
  • the number of atoms in the skeleton portion of the chain connected by the smallest number of atoms is 6, the number of atoms in the main chain in the compound is 3.
  • a compound represented by the following formula (C) will be described.
  • the compound represented by the following formula (C) corresponds to the compound represented by the formula (1) and the compound represented by the formula (2).
  • the compound represented by the formula (C) has two carboxyl groups.
  • the compound represented by the formula (1) is a compound represented by the formula (C)
  • the group (CH 2 ⁇ CH—CO—) and the carboxyl group described on the left side are connected with the smallest number of atoms.
  • the atom number 5 represented by (C-1) and the atom number 7 represented by (C-2) are conceivable. In this case, the number of atoms in the skeleton part is smaller. Is the number of atoms in the main chain.
  • the compound represented by the formula (2) is a compound represented by the formula (C)
  • the main chain of the atomic group represented by X ′ ′′ has 4 atoms.
  • (meth) acryl and (meth) acrylate mean acryl and / or methacryl, acrylate and / or methacrylate, respectively.
  • Examples of the compound represented by the formula (2) include 2-carboxyethyl acrylate, 2-carboxyethyl methacrylate, acryloyloxyethyl succinic acid, methacryloyloxyethyl succinic acid, acryloyloxyethyl phthalic acid, methacryloyloxyethyl phthalate.
  • Examples of the acid include 2-carboxyethyl acrylate, 2-carboxyethyl methacrylate, acryloyloxyethyl succinic acid, and methacryloyloxyethyl succinic acid because they are excellent in copolymerizability with vinylidene fluoride.
  • the vinylidene fluoride copolymer used in the present invention contains 0.01 to 10 mol% of a structural unit derived from the compound represented by the formula (1) (provided that the structural unit derived from vinylidene fluoride and the formula
  • the total of the structural units derived from the compound represented by (1) is preferably 100 mol%), more preferably 0.02 to 7 mol%, and more preferably 0.03 to 4 mol%. Particularly preferred.
  • the structural unit derived from vinylidene fluoride is preferably 90 to 99.99 mol%, more preferably 93 to 99.98 mol%, and particularly preferably 96 to 99.97 mol%.
  • the amount of the structural unit derived from the compound represented by the formula (1) and the amount of the structural unit derived from the vinylidene fluoride in the vinylidene fluoride copolymer used in the present invention is usually fluorinated. It can be determined by 1 H NMR spectrum of a vinylidene copolymer or neutralization titration.
  • Examples of the other monomer include a fluorine monomer copolymerizable with vinylidene fluoride, a hydrocarbon monomer such as ethylene and propylene, and a monomer copolymerizable with the formula (1).
  • Examples of the fluorine-based monomer copolymerizable with vinylidene fluoride include perfluoroalkyl vinyl ethers typified by vinyl fluoride, trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, and perfluoromethyl vinyl ether. be able to.
  • Examples of the monomer copolymerizable with the formula (1) include (meth) acrylic acid, (meth) acrylic acid alkyl compounds represented by methyl (meth) acrylate, and the like.
  • the said other monomer may be used individually by 1 type, and may use 2 or more types.
  • the structural unit derived from all monomers constituting the copolymer is 100 mol%, It is preferable to have 0.01 to 10 mol% of structural units derived from other monomers.
  • the vinylidene fluoride copolymer used in the present invention can be obtained by copolymerizing vinylidene fluoride, a compound represented by the above formula (1), and, if necessary, the other monomer.
  • the method for copolymerizing the vinylidene fluoride copolymer used in the present invention is not particularly limited, but is usually performed by a method such as suspension polymerization, emulsion polymerization, or solution polymerization.
  • Aqueous suspension polymerization and emulsion polymerization are preferred from the standpoint of ease of post-treatment and the like, and aqueous suspension polymerization is particularly preferred.
  • suspending agents such as methylcellulose, methoxylated methylcellulose, propoxylated methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, polyethylene oxide, gelatin, etc. (Vinylidene fluoride and the compound represented by the formula (1), and other monomers copolymerized as necessary) with respect to 100 parts by mass, 0.005 to 1.0 part by mass, preferably 0.01 to 0 . Used in the range of 4 parts by mass.
  • polymerization initiator examples include diisopropyl peroxydicarbonate, dinormalpropyl peroxydicarbonate, dinormalheptafluoropropyl peroxydicarbonate, isobutyryl peroxide, di (chlorofluoroacyl) peroxide, di (perfluoroacyl) peroxide, t-Butylperoxypivalate and the like can be used.
  • the amount used is from 0.05 to 100, based on 100 parts by mass of all monomers used for copolymerization (vinylidene fluoride and the compound represented by formula (1), and other monomers copolymerized as required). 5 parts by mass, preferably 0.15 to 2 parts by mass.
  • a chain transfer agent is used, the amount used is usually all monomers used for copolymerization (vinylidene fluoride and the compound represented by formula (1), and other monomers copolymerized if necessary). Is 100 to 5 parts by mass, 0.1 to 5 parts by mass, preferably 0.5 to 3 parts by mass.
  • the total amount of monomers used for copolymerization (vinylidene fluoride and the compound represented by formula (1), and other monomers copolymerized as necessary) is the sum of monomers: mass of water
  • the ratio is usually 1: 1 to 1:10, preferably 1: 2 to 1: 5.
  • the polymerization temperature T is appropriately selected according to the 10-hour half-life temperature T 10 of the polymerization initiator, and is usually selected in the range of T 10 ⁇ 25 ° C. ⁇ T ⁇ T 10 + 25 ° C.
  • T 10 of t-butyl peroxypivalate and diisopropyl peroxydicarbonate are 54.6 ° C. and 40.5 ° C. (see NOF Corporation product catalog), respectively. Therefore, in the polymerization using t-butylperoxypivalate and diisopropylperoxydicarbonate as polymerization initiators, the polymerization temperatures T are 29.6 ° C. ⁇ T ⁇ 79.6 ° C. and 15.5 ° C. ⁇ T ⁇ 65.
  • the polymerization time is not particularly limited, but is preferably 100 hours or less in consideration of productivity and the like.
  • the pressure during the polymerization is usually carried out under pressure, and is preferably 2.0 to 8.0 MPa-G.
  • the vinylidene fluoride copolymer used in the present invention has an inherent viscosity (logarithmic viscosity at 30 ° C. of a solution obtained by dissolving 4 g of resin in 1 liter of N, N-dimethylformamide. The same applies hereinafter).
  • a value within the range of 5.0 dl / g is preferred, a value within the range of 0.5 to 4.0 dl / g is more preferred, and a value within the range of 0.5 to 3.0 dl / g is preferred. A value is particularly preferred.
  • a viscosity within the above range is preferable because the molded article has excellent mechanical strength and can be easily molded by extrusion molding or the like.
  • the inherent viscosity ⁇ i can be calculated by dissolving 80 mg of vinylidene fluoride copolymer in 20 ml of N, N-dimethylformamide and using an Ubbelote viscometer in a constant temperature bath at 30 ° C. .
  • ⁇ i (1 / C) ⁇ ln ( ⁇ / ⁇ 0 )
  • is the viscosity of the polymer solution
  • ⁇ 0 is the viscosity of the solvent N, N-dimethylformamide alone
  • C is 0.4 g / dl.
  • the vinylidene fluoride copolymer preferably has an absorbance ratio (A R ) represented by the following formula (I) in the range of 0.01 to 3.0 when an infrared absorption spectrum is measured. 0.05 to 2.0 is more preferable, and 0.08 to 1.5 is particularly preferable. Within the said range, since the adhesiveness and moldability of a vinylidene fluoride type copolymer are excellent, it is preferable.
  • the measurement of the infrared absorption spectrum of this polymer is performed by measuring an infrared absorption spectrum about the film manufactured by hot-pressing this polymer. Specifically, the vinylidene fluoride copolymer was hot-pressed at 200 ° C.
  • a R A 1700-1800 / A 3023 (I)
  • a 1700-1800 is the absorbance derived from the stretching vibration of the carbonyl group detected in the range of 1700 to 1800 cm ⁇ 1
  • a 3023 is the stretching vibration of CH detected in the vicinity of 3023 cm ⁇ 1.
  • Absorbance derived from A R is a scale indicating the abundance of carbonyl groups in the vinylidene fluoride copolymer.
  • the random rate of the structural unit derived from the compound represented by the formula (1) in the vinylidene fluoride copolymer used in the present invention is preferably 40% or more, and preferably 50% or more. More preferably, it is particularly preferably 60% or more. Although details are unknown, it is preferable that the random ratio is within the above-mentioned range since the uniformity of the polymer chain is improved and the carboxyl group can more effectively exert its adhesion imparting ability.
  • the random rate is the degree to which the constituent unit derived from the compound represented by the formula (1) present in the vinylidene fluoride copolymer used in the present invention is dispersed in the polymer chain. It is an index indicating whether or not
  • the lower the random rate the more structural units derived from the compound represented by formula (1) are present, in other words, a chain in which the compounds represented by formula (1) are polymerized (hereinafter represented by formula (1)). It is also referred to as a polymer chain derived from a compound.).
  • the higher the random rate the more structural units derived from the compound represented by the formula (1) exist independently. In other words, the structural units derived from the compound represented by the formula (1) do not continue, and There is a tendency to combine with structural units derived from vinylidene chloride.
  • the abundance of the polymer chain derived from the compound represented by the formula (1) can be determined by a 19 F NMR spectrum, and the abundance of the structural unit derived from the compound represented by the formula (1) is, for example, 1 It can be determined by 1 H NMR spectrum method or neutralization titration method.
  • the random rate can be determined by the following method.
  • a CF 2 peak adjacent to the carboxyethyl acrylate unit is observed around ⁇ 94 ppm. From the integration ratio of the peak and all the peaks in the spectrum, the mol% of the carboxyethyl acrylate chain is determined.
  • the vinylidene fluoride copolymer used in the present invention having a random rate within the above range, for example, the compound represented by the formula (1) continuously when the above-described suspension polymerization or the like is performed.
  • the method of adding is mentioned.
  • the molded body of the present invention can be obtained by melt-molding powder or pellets of the vinylidene fluoride copolymer.
  • the molded body of the present invention may be a single-layer molded body composed only of a layer formed from the vinylidene fluoride copolymer, a layer formed from the vinylidene fluoride copolymer, and the like.
  • a molded body having a multilayer structure having a layer formed of the above material may be used.
  • the vinylidene fluoride copolymer is melt-molded when the molded article of the present invention is produced.
  • the melt molding of the present invention means molding through the molten state of the vinylidene fluoride copolymer. Specific melt molding methods are not particularly limited, and examples thereof include extrusion molding, injection molding, transfer molding, blow molding, compression molding, and rotational molding. Moreover, when it has the layer formed from another material, this layer may be formed by melt molding, and may be formed by another method.
  • Examples of the other materials include metals, paper, wood, and resins other than the vinylidene fluoride copolymer. From the viewpoint of adhesiveness with the vinylidene fluoride copolymer, metals and resins are preferable. A resin is more preferable.
  • the other material is a resin other than the vinylidene fluoride copolymer
  • the resin may be used alone or as a resin composition.
  • the layer formed from the other material may be a metal substrate, and is formed by vapor deposition on the layer formed from the vinylidene fluoride copolymer. It may be a metal film. Further, a metal film or a metal layer may be formed on the layer formed from the vinylidene fluoride copolymer by sputtering, lamination, or the like, and a molded body may be obtained by insert molding.
  • the vinylidene fluoride copolymer when melt-molded, it may be melt-molded together with a resin other than the vinylidene fluoride-based copolymer and additives. That is, a composition containing the vinylidene fluoride copolymer may be melt-molded.
  • thermoplastic resin other than the vinylidene fluoride copolymer any of a thermoplastic resin and a thermosetting resin other than the vinylidene fluoride copolymer can be used.
  • thermoplastic resin other than the vinylidene fluoride copolymer include polyolefin, polyester, polyurethane, polyamide, polycarbonate, cyclic polyolefin, ethylene / polyvinyl alcohol copolymer, polyaromatic vinyl resin, chlorine-containing resin, and fluoride resin.
  • Fluorine-containing resins and acrylic resins other than vinylidene copolymers can be used.
  • thermosetting resin an epoxy resin, a phenol resin, a melamine resin, a thermosetting polyester resin, or the like can be used. These resins may be used alone or in combination of two or more.
  • polystyrene resin examples include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-methyl methacrylate copolymer, and the like.
  • a polyolefin-based elastomer can also be used.
  • polyolefin is a polymer which has 50 mol% or more of repeating units derived from an olefin, and may have a repeating unit derived from another monomer.
  • polyolefin it is preferable to have 70 mol% or more of repeating units derived from olefin, and it is more preferable to have 90 mol% or more.
  • polyesters examples include aliphatic polyesters such as polylactic acid (hereinafter also referred to as PLA) and polybutylene succinate, and aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate.
  • PLA polylactic acid
  • polybutylene succinate examples include polybutylene succinate, and aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate.
  • aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate.
  • a soft polyester elastomer can also be used.
  • nylon examples include nylon.
  • nylon nylon (n-nylon) obtained by polycondensation reaction
  • n-nylon examples include nylon 6, nylon 11, nylon 12, and the like
  • n, m-nylon examples include nylon 66, nylon 610, nylon 6T, nylon 6I, nylon 9T, nylon M5T, and nylon MXD6. be able to.
  • a soft polyamide elastomer can also be used.
  • additives may be contained in the layer formed from the vinylidene fluoride copolymer and the layer formed from other materials.
  • the additive can be appropriately selected depending on the type and use of the molded body.
  • a heat stabilizer for example, a heat stabilizer, a plasticizer, an inorganic filler, a catalyst deactivator, a heat ray absorber, an ultraviolet absorber, a light stabilizer, a moisture proof agent Agents, waterproofing agents, water repellents, lubricants, crystal nucleating agents, coupling agents, pigments, dyes and the like.
  • the plasticizer can be appropriately selected from known plasticizers.
  • specific examples of the plasticizer include, for example, ethylene glycol, trimethylene glycol, propylene glycol, tetramethylene glycol, 1,3-butanediol, 2,3-butanediol, pentamethylene glycol, hexamethylene glycol, diethylene glycol, triethylene glycol, Examples thereof include ethylene glycol, polyethylene glycol, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyethylene oxide, sorbitol, mannitol, dulcitol, erythritol, glycerin, lactic acid, fatty acid, starch, and phthalate ester. These may be used in a mixture as required.
  • the layer structure is not particularly limited, but a layer formed from a vinylidene fluoride copolymer / a layer formed from another material.
  • at least one surface layer is a layer formed from the vinylidene fluoride copolymer. It is preferable.
  • the shape of the molded product of the present invention is not particularly limited.
  • a vinylidene fluoride polymer has been used by being processed by melt molding such as extrusion molding, injection molding, transfer molding, blow molding, compression molding, and rotational molding. It can be used for each application.
  • melt molding such as extrusion molding, injection molding, transfer molding, blow molding, compression molding, and rotational molding. It can be used for each application.
  • a molded object of this invention it is preferable that they are a sheet
  • the method for producing the molded body of the present invention is not particularly limited, and can be appropriately selected according to the shape of the molded body, the presence or absence of a multilayer structure, and the like.
  • the form of the raw material in the production of the molded body of the present invention is not particularly limited, but the pellet is melt-molded from the viewpoint of stabilizing the resin supply amount to the molding machine during melt molding and stabilizing the extrusion amount. It is preferable. That is, it is preferable to manufacture a desired molded article by first melt-molding the vinylidene fluoride copolymer into a pellet and then melt-molding the pellet.
  • a layer obtained by melt-molding the vinylidene fluoride copolymer using the excellent adhesiveness of the vinylidene fluoride copolymer, and the vinylidene fluoride series A molded body having a layer formed of a thermoplastic resin other than the copolymer is preferable.
  • a method for producing the molded body a layer obtained by melt-molding the vinylidene fluoride copolymer and a layer formed from a thermoplastic resin other than the vinylidene fluoride copolymer may be used.
  • It may be manufactured by extrusion, and a layer obtained by melt-molding the vinylidene fluoride copolymer and a layer formed from a thermoplastic resin other than the vinylidene fluoride copolymer are laminated. May be manufactured.
  • thermoplastic resin other than the vinylidene fluoride copolymer prepared separately by producing a sheet or film by melt-extruding the vinylidene fluoride copolymer or the composition containing the copolymer alone.
  • the sheet On a sheet or film made of a thermoplastic resin other than the vinylidene fluoride copolymer, the sheet may be produced by bonding (laminating) on the sheet or film via an adhesive layer or by heat fusion.
  • the vinylidene fluoride copolymer or the composition containing the copolymer may be produced by melt extrusion, that is, extrusion lamination.
  • the vinylidene fluoride copolymer or the composition containing the copolymer is melt-extruded alone to produce a sheet or film, and the vinylidene fluoride copolymer is formed on the sheet or film.
  • Other thermoplastic resins may be produced by melt extrusion, that is, extrusion lamination.
  • thermoplastic resins other than the said vinylidene fluoride type-copolymer or the composition containing this copolymer, and the said vinylidene fluoride-type copolymer can be coextruding the thermoplastic resins other than the said vinylidene fluoride type-copolymer or the composition containing this copolymer, and the said vinylidene fluoride-type copolymer.
  • Co-extrusion can be performed by using, for example, a single-screw or twin-screw extruder according to the number of extruded resins and a multilayer T-die according to the number of layers.
  • each layer are usually difficult to integrate, for example, the vinylidene fluoride copolymer or a composition containing the copolymer and a thermoplastic other than the vinylidene fluoride copolymer.
  • the tube may be manufactured by co-extrusion of resin. When co-extrusion is performed, for example, by using a single-screw or twin-screw extruder according to the number of extruded resins and an annular die (mandrel as required) according to the number of layers. it can.
  • the specific dimensions of the molded article of the present invention are not particularly limited.
  • the molded article is a sheet composed of only a layer obtained by melt-molding a vinylidene fluoride-based copolymer
  • the thickness of the layer obtained by melt-molding a vinylidene fluoride copolymer is usually 0.01.
  • the thickness of the entire sheet is 0.2 to 5 mm.
  • the thickness is usually 0.001 to 0.2 mm, and the molded body is laminated.
  • the thickness of a layer obtained by melt-molding a vinylidene fluoride copolymer is usually 0.001 to 0.1 mm, and the total film thickness is 0.00. 002 to 0.5 mm.
  • the molded body is a tube composed of only a layer obtained by melt-molding a vinylidene fluoride copolymer
  • the thickness of the layer is usually 0.1 to 100 mm
  • the molded body is In the case of a tube having a laminated structure, the thickness of a layer obtained by melt-molding a vinylidene fluoride copolymer is usually 0.01 to 10 mm, and the total thickness of each layer constituting the tube Is 0.2 to 100 mm.
  • the inner diameter of the tube is usually 0.1 to 500 mm.
  • the polymerization was stopped at the same time as the addition of the aqueous carboxyethyl acrylate solution, and was carried out for a total of 14.8 hours from the start of temperature increase. After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder of vinylidene fluoride-carboxyethyl acrylate copolymer.
  • the yield of the polymer was 65%, the inherent viscosity of the obtained polymer was 0.95 dl / g, and the absorbance ratio (A R ) of the obtained polymer was 0.48.
  • the 1 H NMR spectrum of the polymer powder was determined under the following conditions.
  • Apparatus manufactured by Bruker. AVANCE AC 400FT NMR spectrum meter Measurement conditions Frequency: 400 MHz Measuring solvent: DMSO-d 6 Measurement temperature: 25 ° C The amount of structural units derived from the vinylidene fluoride of the polymer and the amount of structural units derived from carboxyethyl acrylate in the 1 H NMR spectrum, observed at 4.19 ppm primarily derived from carboxyethyl acrylate, The calculation was based on the integrated intensity with the signals observed mainly at 2.24 ppm and 2.87 ppm derived from vinylidene fluoride.
  • the amount (mol%) (VDF amount) of structural units derived from vinylidene fluoride in the obtained vinylidene fluoride copolymer is 99.6 mol%, and the amount of structural units derived from carboxyethyl acrylate (Mole%) (CEA amount) was 0.4 mol%.
  • the polymerization was stopped at the same time as the addition of the acryloyloxyethyl succinic acid aqueous solution was completed, and was carried out for a total of 7.7 hours from the start of the temperature increase.
  • the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder of vinylidene fluoride-acryloyloxyethyl succinic acid copolymer. It was.
  • the polymer yield was 35%, the inherent viscosity of the polymer obtained was 1.29 dl / g, and the absorbance ratio (A R ) of the polymer obtained was 0.68.
  • the 1 H NMR spectrum of the polymer powder was measured in the same manner as in Production Example 1.
  • the amount of the structural unit derived from the vinylidene fluoride of the polymer and the amount of the structural unit derived from acryloyloxyethyl succinic acid are 4.18 ppm mainly derived from acryloyloxyethyl succinic acid in the 1 H NMR spectrum. The calculation was based on the integrated intensity of the observed signal and the signals observed at 2.23 ppm and 2.87 ppm mainly derived from vinylidene fluoride.
  • the amount (mol%) (VDF amount) of structural units derived from vinylidene fluoride in the obtained vinylidene fluoride copolymer is 99.7 mol%, and is derived from acryloyloxyethyl succinic acid
  • the unit amount (mol%) (AES amount) was 0.3 mol%.
  • the polymerization was carried out for 22 hours from the start of temperature increase. After completion of the polymerization, the polymer slurry was heat treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a vinylidene fluoride homopolymer polymer powder. The yield of the polymer was 92%, and the inherent viscosity of the obtained polymer was 1.10 dl / g.
  • the polymerization was carried out for 45 hours from the start of temperature increase. After completion of the polymerization, the polymer slurry was heat-treated at 95 ° C. for 60 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a polymer powder of vinylidene fluoride-monomethyl maleate copolymer. The yield of the polymer was 85%, and the inherent viscosity of the obtained polymer was 1.10 dl / g.
  • the polymer powder (Production Examples 1 to 4) or the mixture (Production Examples 5 and 6) is preheated at 230 ° C. for 2 minutes, and then held at a press pressure of 5 MPa for 2 minutes to obtain 5 cm ⁇ 5 cm ⁇ 0.1 cm. A test piece was prepared.
  • YI of each obtained test piece was measured by a method according to ASTM D1925 using color meter ZE6000 manufactured by Nippon Denshoku Industries Co., Ltd. In addition, it shows that yellowness is so strong that the value of YI is large.
  • the polymer powder (Production Examples 1 to 4) or the mixture (Production Examples 5 and 6) was pressed (25 ° C., 100 kg / cm 2 ) and solidified, and 0.5 g was weighed into a quartz boat. At 230 ° C. for 2 hours. After flowing air at a flow rate of 100 ml / min and absorbing the generated gas in alkaline carbonated water, fluorine ions (F ⁇ ) were quantified by ion chromatography (IC). The amount of HF generated was calculated from the amount of fluorine ions, and the amount of HF generated per 1 g of the polymer powder (Production Examples 1 to 4) or the mixture (Production Examples 5 and 6) was calculated.
  • Tables 1 and 2 show the production conditions of the polymer powder (Production Examples 1 to 4) and the physical properties of the polymer powder (Production Examples 1 to 4) and the mixture (Production Examples 5 and 6).
  • Example 1 Manufacture of vinylidene fluoride copolymer pellets
  • the polymer powder of the vinylidene fluoride-carboxyethyl acrylate copolymer obtained in Production Example 1 was melt-extruded using a co-rotating twin screw extruder to obtain pellets.
  • the cylinder temperature was set to 170 to 250 ° C., and melt extrusion was performed in a strand form from a die, which was cooled in cold water and then cut to produce pellets. The appearance of the obtained pellet was milky white.
  • the first extruder and the second extruder are fed with pellets of the vinylidene fluoride-carboxyethyl acrylate copolymer and the second extruder with pellets of the olefin resin composition (1).
  • a laminated sheet comprising a first layer having a thickness of 10 ⁇ m (a layer made of vinylidene fluoride-carboxyethyl acrylate copolymer) and a second layer having a thickness of 50 ⁇ m (a layer made of the olefin resin composition (1)). It was.
  • Example 2 Manufacture of vinylidene fluoride copolymer pellets
  • the polymer powder of vinylidene fluoride-acryloyloxyethyl succinic acid copolymer obtained in Production Example 2 was melt-extruded using a co-rotating twin-screw extruder to obtain pellets.
  • the cylinder temperature was set to 170 to 250 ° C., and melt extrusion was performed in a strand form from a die, which was cooled in cold water and then cut to produce pellets. The appearance of the obtained pellet was milky white.
  • a pellet of the vinylidene fluoride-acryloyloxyethyl succinic acid copolymer is supplied to a first extruder, and a pellet of the olefin resin composition (1) is supplied to a second extruder.
  • a molten resin is coextruded from a multi-manifold T die connected with two extruders, and the first layer (consisting of vinylidene fluoride-acryloyloxyethyl succinic acid copolymer) is placed on a cast roll whose surface is kept at 120 ° C.
  • the first layer having a thickness of 10 ⁇ m (a layer made of vinylidene fluoride-acryloyloxyethyl succinic acid copolymer) and the second layer having a thickness of 50 ⁇ m (the olefin resin composition (1)).
  • the olefin resin composition (1) the olefin resin composition (1).
  • Example 3 Manufacture of vinylidene fluoride copolymer pellets
  • the polymer powder of vinylidene fluoride-acryloyloxyethyl succinic acid copolymer obtained in Production Example 2 was melt-extruded using a co-rotating twin-screw extruder to obtain pellets.
  • the cylinder temperature was set to 170 to 250 ° C., and melt extrusion was performed in a strand form from a die, which was cooled in cold water and then cut to produce pellets. The appearance of the obtained pellet was milky white.
  • the olefin resin composition (2) pellets were melt-kneaded at a cylinder temperature of 170 to 240 ° C. using a single-screw extruder.
  • the melt was extruded from a T-die set at a temperature of 230 ° C., brought into contact with a cast roll whose surface was kept at 120 ° C., and cooled to prepare a single-layer sheet made of an olefin resin composition (2) having a thickness of 50 ⁇ m. .
  • a single layer sheet made of the vinylidene fluoride copolymer and a single layer sheet made of the olefin resin composition (2) were laminated at a laminating temperature of 180 ° C., a roll speed of 1 m / min using a laminator for thermocompression bonding. Thermocompression bonding was performed at a pressure of 2 kg / cm 2 to prepare a laminated sheet.
  • the cylinder temperature was set to 170 to 250 ° C., and melt extrusion was performed in a strand form from a die, which was cooled in cold water and then cut to produce pellets. The appearance of the obtained pellet was milky white.
  • the vinylidene fluoride homopolymer pellets were supplied to the first extruder, the pellets of the olefin resin composition (1) were supplied to the second extruder, and the first extruder and the second extruder were connected.
  • the molten resin was coextruded from a multi-manifold T die, and the first layer (layer made of vinylidene fluoride homopolymer) side was contacted and cooled on a cast roll whose surface was kept at 120 ° C.
  • a laminated sheet comprising one layer (a layer made of a vinylidene fluoride homopolymer) and a second layer (a layer made of the olefin resin composition (1)) having a thickness of 50 ⁇ m was obtained. However, in the laminated sheet, the first layer and the second layer were not substantially bonded.
  • the cylinder temperature was set to 170 to 250 ° C., and melt extrusion was performed in a strand form from a die, which was cooled in cold water and then cut to produce pellets. The appearance of the obtained pellet was milky white.
  • the olefin resin composition (2) pellets were melt-kneaded at a cylinder temperature of 170 to 240 ° C. using a single-screw extruder.
  • the melt was extruded from a T-die set at a temperature of 230 ° C., brought into contact with a cast roll whose surface was kept at 120 ° C., and cooled to prepare a single-layer sheet made of an olefin resin composition (2) having a thickness of 50 ⁇ m. .
  • a single-layer sheet made of the vinylidene fluoride homopolymer and a single-layer sheet made of the olefin resin composition (2) were laminated at a laminator temperature of 180 ° C., a roll speed of 1 m / min, and a contact pressure using a laminator for thermocompression bonding. Thermocompression bonding was performed at 2 kg / cm 2 to prepare a laminated sheet. However, in the laminated sheet, the first layer and the second layer were not substantially bonded.
  • the cylinder temperature was set to 170 to 250 ° C., and melt extrusion was performed in a strand form from a die, which was cooled in cold water and then cut to produce pellets. The appearance of the obtained pellet was brown.
  • a multi-manifold T die in which pellets of the mixture are supplied to the first extruder, pellets of the olefin resin composition (1) are supplied to the second extruder, and the first extruder and the second extruder are connected.
  • the molten resin is coextruded from above and cooled by bringing the first layer (a layer made of the mixture) into contact with a cast roll whose surface is kept at 120 ° C., and the first layer (the layer made of the mixture) having a thickness of 10 ⁇ m and the thickness
  • a laminated sheet provided with a 50 ⁇ m second layer (a layer made of the olefin resin composition (1)) was obtained.
  • the cylinder temperature was set to 170 to 250 ° C., and melt extrusion was performed in a strand form from a die, which was cooled in cold water and then cut to produce pellets. The appearance of the obtained pellet was brown.
  • the pellets of the mixture were melt-kneaded at a cylinder temperature of 190 to 240 ° C. using an extruder with a screw diameter of 40 mm.
  • the melt was extruded from a T-die set at a temperature of 230 ° C., brought into contact with a cast roll whose surface was kept at 120 ° C., and cooled to prepare a single layer sheet made of a mixture having a thickness of 100 ⁇ m.
  • the olefin resin composition (2) pellets were melt-kneaded at a cylinder temperature of 170 to 240 ° C. using a single-screw extruder.
  • the melt was extruded from a T-die set at a temperature of 230 ° C., brought into contact with a cast roll whose surface was kept at 120 ° C., and cooled to prepare a single-layer sheet made of an olefin resin composition (2) having a thickness of 50 ⁇ m. .
  • a single-layer sheet made of the mixture and a single-layer sheet made of the olefin resin composition (2) were laminated at a laminating temperature of 180 ° C., a roll speed of 1 m / min, and a contact pressure of 2 kg / cm 2 using a laminator for thermocompression bonding.
  • the laminated sheet was produced by thermocompression bonding.
  • the cylinder temperature was set to 170 to 250 ° C., and melt extrusion was performed in a strand form from a die, which was cooled in cold water and then cut to produce pellets. The appearance of the obtained pellet was light brown.
  • a multi-manifold T die in which pellets of the mixture are supplied to the first extruder, pellets of the olefin resin composition (1) are supplied to the second extruder, and the first extruder and the second extruder are connected.
  • the molten resin is coextruded from above and cooled by bringing the first layer (a layer made of the mixture) into contact with a cast roll whose surface is kept at 120 ° C., and the first layer (the layer made of the mixture) having a thickness of 10 ⁇ m and the thickness
  • a laminated sheet provided with a 50 ⁇ m second layer (a layer made of the olefin resin composition (1)) was obtained.
  • the cylinder temperature was set to 170 to 250 ° C., and melt extrusion was performed in a strand form from a die, which was cooled in cold water and then cut to produce pellets. The appearance of the obtained pellet was light brown.
  • the pellets of the mixture were melt-kneaded at a cylinder temperature of 190 to 240 ° C. using an extruder with a screw diameter of 40 mm.
  • the melt was extruded from a T-die set at a temperature of 230 ° C., brought into contact with a cast roll whose surface was kept at 120 ° C., and cooled to prepare a single layer sheet made of a mixture having a thickness of 100 ⁇ m.
  • the olefin resin composition (2) pellets were melt-kneaded at a cylinder temperature of 170 to 240 ° C. using a single-screw extruder.
  • the melt was extruded from a T-die set at a temperature of 230 ° C., brought into contact with a cast roll whose surface was kept at 120 ° C., and cooled to prepare a single-layer sheet made of an olefin resin composition (2) having a thickness of 50 ⁇ m. .
  • a single-layer sheet made of the mixture and a single-layer sheet made of the olefin resin composition (2) were laminated at a laminating temperature of 180 ° C., a roll speed of 1 m / min, and a contact pressure of 2 kg / cm 2 using a laminator for thermocompression bonding.
  • the laminated sheet was produced by thermocompression bonding.
  • the laminated sheets obtained in the examples and comparative examples were cut into a length of 100 mm and a width of 20 mm, and a head tester was used according to JIS K6854-1, using a tensile tester ("STA-1150" UNIVERSAL TESTING MACHINE manufactured by ORIENTEC). A 90 degree peel test was performed at 10 mm / min.
  • Table 3 shows the peel strengths of the laminated sheets obtained in Examples and Comparative Examples.
  • the molded product of the present invention is superior in adhesion between layers as compared with the case of using a vinylidene fluoride homopolymer.
  • the vinylidene fluoride copolymer used in the present invention has a lower YI (yellow index) and excellent coloration resistance than the vinylidene fluoride-monomethyl maleate copolymer.
  • the vinylidene fluoride-based copolymer used in the present invention has a small amount of HF generation and no foaming as compared with the vinylidene fluoride-monomethyl maleate copolymer, and is excellent in moldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

 本発明は、他の熱可塑性樹脂との接着性に優れ、成形性、耐着色性が改善されたフッ化ビニリデン系共重合体を溶融成形することにより得られる成形体を提供することを目的とする。本発明の成形体は、フッ化ビニリデンと、下記式(1)で表わされる化合物とを共重合して得られるフッ化ビニリデン系共重合体を溶融成形することにより得られる。なお、式(1)において、R1、R2、R3は、それぞれ独立に水素原子、塩素原子または炭素数1~5のアルキル基であり、X'は、主鎖が原子数1~19で構成される分子量472以下の原子団である。

Description

成形体
 本発明は成形体に関し、詳しくは特定のフッ化ビニリデン系共重合体から得られる成形体に関する。
 フッ化ビニリデン系樹脂は、耐薬品性、耐候性、耐汚染性等に優れ、各種フィルムないしシート等の成形材料、あるいは塗料、バインダー基剤として用いられている。また、フッ化ビニリデン系樹脂からなる層は、優れた耐候性、耐油性に加えて耐油透過性にも優れているため、ポリアミド樹脂、ポリオレフィン樹脂等との他の熱可塑性樹脂からなる層との積層により、自動車のガソリンタンクからエンジンへの給油用チューブ等を形成することが提案されている(例えば、特許文献1~4参照)。なお、前述の積層は、フッ化ビニリデン系樹脂の優れた耐油性、耐油透過性と、他の熱可塑性樹脂の優れた機械的特性を調和させるために採用される。
 しかしながら、フッ化ビニリデン系樹脂をはじめとするフッ素系樹脂は、その優れた耐汚染性からもわかる通り、他の熱可塑性樹脂との接着性が乏しい。このため、上記従来技術においては、フッ素系樹脂の表面処理(特許文献1)、接着剤層の挿入(特許文献2)、無水マレイン酸等によるフッ素樹脂のγ線照射グラフトによる樹脂の表面処理(特許文献3および4)等の手段が採られているが、充分な接着性が得られているとは云い難い。
 他方、基材との接着性を改善するために、フッ化ビニリデンと不飽和二塩基酸のモノエステルとの共重合体(例えば、特許文献5参照)も提案されている。しかしながら、特許文献5では、該フッ化ビニリデン共重合体は、溶液状態で、塗料、接着剤あるいはバインダーを形成するために開発されたものである。また、フッ化ビニリデンと不飽和二塩基酸のモノエステルとの共重合体からなる樹脂シート(例えば、特許文献6参照)も提案されているが、特許文献5、6では、フッ化ビニリデンと不飽和二塩基酸のモノエステルとの共重合体を成形した際の耐着色性については検討が充分にされていなかった。
特開平6-31877号公報 特開平6-15790号公報 特開2005-162330号公報 特開2005-207582号公報 特開平6-172452号公報 国際公開第2009/084483号パンフレット
 本発明は、他の熱可塑性樹脂との接着性に優れ、成形性、耐着色性が改善されたフッ化ビニリデン系共重合体を溶融成形することにより得られる成形体を提供することを目的とする。
 本発明者らは上記課題を達成するために、鋭意研究を重ねた結果、特定のフッ化ビニリデン系共重合体は、上記課題を解決することができることを見出し、本発明を完成させた。
 すなわち、本発明の成形体は、フッ化ビニリデンと、下記式(1)で表わされる化合物とを共重合して得られるフッ化ビニリデン系共重合体を溶融成形することにより得られる。
Figure JPOXMLDOC01-appb-C000003
 (式(1)において、R1、R2、R3は、それぞれ独立に水素原子、塩素原子または炭素数1~5のアルキル基であり、X'は、主鎖が原子数1~19で構成される分子量472以下の原子団である。)
 前記式(1)で表わされる化合物が、下記式(2)で表わされる化合物であることが好ましく、アクリロイロキシエチルコハク酸およびカルボキシエチルアクリレートから選択される少なくとも1種の化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000004
 (式(2)において、R1、R2、R3は、それぞれ独立に水素原子、塩素原子または炭素数1~5のアルキル基であり、X'''は、主鎖が原子数1~18で構成される分子量456以下の原子団である。)
 前記フッ化ビニリデン系共重合体のインヘレント粘度が、0.3~5.0dl/gであることが好ましい。
 前記フッ化ビニリデン系共重合体の赤外線吸収スペクトルを測定した際の下記式(I)で表される吸光度比(AR)が、0.01~3.0の範囲であることが好ましい。
 AR=A1700-1800/A3023 ・・・(I)
 (式(I)において、A1700-1800は1700~1800cm-1の範囲に検出されるカルボニル基の伸縮振動に由来の吸光度であり、A3023は3023cm-1付近に検出されるCHの伸縮振動に由来の吸光度である。)
 前記成形体としては、シート、フィルム、ストランド、繊維またはチューブが挙げられる。
 前記成形体は、前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とを有することが好ましい。
 前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とが、共押出により成形されることが好ましい。
 前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とを、ラミネートすることにより成形されることも好ましい。
 本発明の成形体は、特定のフッ化ビニリデン系共重合体を溶融成形することにより得られ、該共重合体が他の熱可塑性樹脂との接着性に優れるため、本発明の成形体はフッ化ビニリデン系共重合体から形成される層と、他の熱可塑性樹脂から形成される層との多層構造を有する場合には、層間の接着性に優れる。また、特定のフッ化ビニリデン系共重合体は、成形性、耐着色性が従来のフッ化ビニリデン系共重合体と比べて改善されているため、本発明の成形体は好適に製造される。
 次に本発明について具体的に説明する。
 本発明の成形体は、フッ化ビニリデンと、下記式(1)で表わされる化合物とを共重合して得られるフッ化ビニリデン系共重合体を溶融成形することにより得られる。
 〔フッ化ビニリデン系共重合体〕
 本発明に用いられるフッ化ビニリデン系共重合体は、フッ化ビニリデンと、下記式(1)で表わされる化合物とを共重合して得られる。
Figure JPOXMLDOC01-appb-C000005
 (式(1)において、R1、R2、R3は、それぞれ独立に水素原子、塩素原子または炭素数1~5のアルキル基であり、X'は、主鎖が原子数1~19で構成される分子量472以下の原子団である。)
 本発明に用いられるフッ化ビニリデン系共重合体は、フッ化ビニリデン由来の構成単位と、前記式(1)で表わされる化合物由来の構成単位とを有する重合体である。また、さらに他のモノマーに由来する構成単位を有していてもよい。
 本発明に用いられるフッ化ビニリデン系共重合体は、前記式(1)で表わされる化合物由来の構成単位を有するため、他の樹脂との接着性に優れる。前記式(1)で表わされる化合物としては、下記式(2)で表わされる化合物が好ましい。前記式(1)で表される化合物を用いたフッ化ビニリデン系共重合体は、接着性官能基として機能するカルボキシル基がフッ化ビニリデンポリマー主鎖からスペーサーを介して存在するため、カルボキシル基の配置の自由度が高い。そのため、該官能基がその接着性付与能力を発揮しやすい配置を取ることが容易であり、接着性に優れると本発明者は推定した。
Figure JPOXMLDOC01-appb-C000006
 (式(2)において、R1、R2、R3は、それぞれ独立に水素原子、塩素原子または炭素数1~5のアルキル基であり、X'''は、主鎖が原子数1~18で構成される分子量456以下の原子団である。)
 前記式(1)、(2)において、前記R1、R2、R3は、それぞれ独立に水素原子、塩素原子または炭素数1~5のアルキル基であるが、重合反応性の観点から、特にR1、R2は立体障害の小さな置換基であることが望まれ、水素または炭素数1~3のアルキル基が好ましく、水素またはメチル基であることがより好ましい。
 前記式(1)において、前記X'で表わされる原子団の分子量は472以下であるが、172以下であることが好ましい。また、前記X'で表わされる原子団の分子量の下限としては特に限定はないが、通常はX'が‐CH2‐の態様、すなわち分子量としては14である。
 さらに、前記式(2)において、前記X'''で表わされる原子団の分子量は456以下であるが、156以下であることが好ましい。また、前記X'''で表わされる原子団の分子量の下限としては特に限定はないが、通常はX'''が‐CH2‐の態様、すなわち分子量としては14である。
 前記X'またはX'''で表わされる原子団の分子量が前述の範囲であると、重合性の観点から好ましい。
 前記式(1)において、前記X'で表わされる原子団としては、主鎖が原子数1~19で構成され、原子数1~14で構成されることが好ましく、1~9で構成されることがより好ましい。
 また、前記式(2)において、前記X'''で表わされる原子団としては、主鎖が原子数1~18で構成され、原子数1~13で構成されることが好ましく、1~8で構成されることがより好ましい。
 主鎖の原子数が前記範囲内であると、重合性の観点から好ましい。
 なお、前記式(1)および(2)において、主鎖の原子数とは、X'またはX'''の右側に記載されたカルボキシル基と、左側に記載された基(R12C=CR3-CO-、[式(1)])、(R12C=CR3-COO-、[式(2)])とを、最も少ない原子数で結ぶ鎖の、骨格部分の原子数を意味する。
 なお、実施例で用いたアクリロイロキシエチルコハク酸(2-Acryloxyethyl succinate)(AES)、カルボキシエチルアクリレート(2-Carboxyethyl acrylate)(CEA)の主鎖の原子数は以下の通りである。
 AESは、式(1)で表わされる化合物、式(2)で表わされる化合物に相当する。式(1)で表わされる化合物がAESである場合には、X'で表わされる原子団は‐OCH2CH2O‐(CO)‐CH2CH2‐である。該原子団の主鎖の原子数は、該直鎖の骨格部分の原子数である。すなわち、カルボニル基を構成する酸素原子や、メチレン基を構成する水素原子は主鎖の原子数としては数えない。すなわち、該直鎖の骨格部分は‐OCCO‐C‐CC‐であり、その原子数は7である。同様に式(2)で表わされる化合物がAESである場合には、X'''で表わされる原子団の主鎖は原子数が6である。
 CEAは、式(1)で表わされる化合物、式(2)で表わされる化合物に相当する。式(1)で表わされる化合物がCEAである場合には、X'で表わされる原子団の主鎖は原子数が3であり、式(2)で表わされる化合物がCEAである場合には、X'''で表わされる原子団の主鎖は原子数が2である。
 また、アクリロイロキシエチルフタル酸の主鎖の原子数は、以下の通りである。アクリロイロキシエチルフタル酸は、下記式(B)で表わされる化合物であり、式(1)で表わされる化合物、式(2)で表わされる化合物に相当する。式(1)で表わされる化合物がアクリロイロキシエチルフタル酸である場合には、X'で表わされる原子団は下記式(B')で表わされる。該原子団の主鎖の原子数は、該原子団に結合するカルボキシル基と左側に記載された基(CH2=CH-CO-)とを最も少ない原子数で結ぶ鎖の骨格部分の原子数である。すなわち、下記式(B')では、カルボキシル基と左側に記載された基(CH2=CH-CO-)とを結ぶ鎖の骨格部分の原子数としては式(B'-1)で表わされる原子数7、または(B'-2)で表わされる原子数11が考えられるが、この場合には主鎖の原子数とはより原子数の小さい7である。同様に式(2)で表わされる化合物がアクリロイロキシエチルフタル酸である場合には、X'''で表わされる原子団の主鎖は原子数が6である。
 また、カルボキシル基を複数有する化合物の場合には主鎖の原子数は、以下の通りである。例えば、カルボキシル基を複数有する化合物においては、それぞれのカルボキシル基に対して、前記左側に記載された基と、カルボキシル基とを、最も少ない原子数で結ぶ鎖が存在するが、その中で最も骨格部分の原子数が小さい値を、主鎖の原子数とする。すなわち、カルボキシル基を2個有する化合物においては、各カルボキシル基(以下、便宜上カルボキシル基A、カルボキシル基Bとする)において、左側に記載された基と、カルボキシル基とを最も少ない原子数で結ぶ鎖が存在するが、例えば左側に記載された基と、カルボキシル基Aとを最も少ない原子数で結ぶ鎖の骨格部分の原子数が3であり、左側に記載された基と、カルボキシル基Bとを最も少ない原子数で結ぶ鎖の骨格部分の原子数が6である場合には、該化合物において主鎖の原子数は3である。具体例として、下記式(C)で表わされる化合物について説明する。下記式(C)で表わされる化合物は、式(1)で表わされる化合物、式(2)で表わされる化合物に相当する。式(C)で表わされる化合物はカルボキシル基を2個有している。式(1)で表わされる化合物が、式(C)で表わされる化合物である場合には、左側に記載された基(CH2=CH-CO-)とカルボキシル基とを最も少ない原子数で結ぶ鎖の骨格部分の原子数としては、(C-1)で表わされる原子5、(C-2)で表わされる原子数7が考えられるが、この場合にはより骨格部分の原子数が小さい5を主鎖の原子数とする。同様に式(2)で表わされる化合物が式(C)で表わされる化合物である場合には、X'''で表わされる原子団の主鎖は原子数が4である。
Figure JPOXMLDOC01-appb-C000007
 なお、本発明において、(メタ)アクリル、(メタ)アクリレートはそれぞれ、アクリルおよび/またはメタクリル、アクリレートおよび/またはメタクリレートを意味する。
 前記式(2)で表わされる化合物としては、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、アクリロイロキシエチルコハク酸、メタクリロイロキシエチルコハク酸、アクリロイロキシエチルフタル酸、メタクリロイロキシエチルフタル酸が挙げられ、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、アクリロイロキシエチルコハク酸、メタクリロイロキシエチルコハク酸が、フッ化ビニリデンとの共重合性に優れるため好ましい。
 本発明に用いられるフッ化ビニリデン系共重合体は、前記式(1)で表わされる化合物に由来する構成単位を0.01~10モル%(但し、フッ化ビニリデンに由来する構成単位と、式(1)で表わされる化合物に由来する構成単位との合計を100モル%とする)有することが好ましく、0.02~7モル%有することがより好ましく、0.03~4モル%有することが特に好ましい。また、フッ化ビニリデンに由来する構成単位を、90~99.99モル%有することが好ましく、93~99.98モル%有することがより好ましく、96~99.97モル%有する事が特に好ましい。
 なお、本発明に用いられるフッ化ビニリデン系共重合体中の、式(1)で表わされる化合物に由来する構成単位の量、およびフッ化ビニリデンに由来する構成単位の量は、通常はフッ化ビニリデン系共重合体の1H NMRスペクトル、もしくは中和滴定により求めることができる。
 また、前記他のモノマーとしては、例えばフッ化ビニリデンと共重合可能なフッ素系単量体あるいはエチレン、プロピレン等の炭化水素系単量体、前記式(1)と共重合可能な単量体が挙げられる。フッ化ビニリデンと共重合可能なフッ素系単量体としては、フッ化ビニル、トリフルオロエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、ペルフルオロメチルビニルエーテルに代表されるペルフルオロアルキルビニルエーテル等を挙げることができる。前記式(1)と共重合可能な単量体としては、(メタ)アクリル酸、(メタ)アクリル酸メチルに代表される(メタ)アクリル酸アルキル化合物等が挙げられる。なお、前記他のモノマーは、1種単独で用いてもよく、2種以上を用いてもよい。
 本発明に用いられるフッ化ビニリデン系共重合体が、前記他のモノマーに由来する構成単位を有する場合には、該共重合体を構成する全モノマー由来の構成単位を100モル%とすると、該他のモノマーに由来する構成単位を0.01~10モル%有することが好ましい。
 本発明に用いられるフッ化ビニリデン系共重合体は、フッ化ビニリデンおよび前記式(1)で表わされる化合物、必要に応じて前記他のモノマーを共重合することにより得られる。
 本発明に用いられるフッ化ビニリデン系共重合体を共重合する方法としては、特に限定はないが通常は、懸濁重合、乳化重合、溶液重合等の方法で行われる。後処理の容易さ等の点から水系の懸濁重合、乳化重合が好ましく、水系の懸濁重合が特に好ましい。
 水を分散媒とした懸濁重合においては、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等の懸濁剤を、共重合に使用する全モノマー(フッ化ビニリデンおよび、式(1)で表わされる化合物、必要に応じて共重合される他のモノマー)100質量部に対して0.005~1.0質量部、好ましくは0.01~0.4質量部の範囲で添加して使用する。
 重合開始剤としては、ジイソプロピルペルオキシジカーボネート、ジノルマルプロピルペルオキシジカーボネート、ジノルマルヘプタフルオロプロピルペルオキシジカーボネート、イソブチリルペルオキサイド、ジ(クロロフルオロアシル)ペルオキサイド、ジ(ペルフルオロアシル)ペルオキサイド、t-ブチルペルオキシピバレート等が使用できる。その使用量は、共重合に使用する全モノマー(フッ化ビニリデンおよび、式(1)で表わされる化合物、必要に応じて共重合される他のモノマー)を100質量部とすると、0.05~5質量部、好ましくは0.15~2質量部である。
 また、酢酸エチル、酢酸メチル、炭酸ジエチル、アセトン、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られるフッ化ビニリデン系共重合体の重合度を調節することも可能である。連鎖移動剤を使用する場合には、その使用量は通常、共重合に使用する全モノマー(フッ化ビニリデンおよび、式(1)で表わされる化合物、必要に応じて共重合される他のモノマー)を100質量部とすると、0.1~5質量部、好ましくは0.5~3質量部である。
 また、共重合に使用する全モノマー(フッ化ビニリデンおよび、式(1)で表わされる化合物、必要に応じて共重合される他のモノマー)の仕込量は、単量体の合計:水の質量比で通常は1:1~1:10、好ましくは1:2~1:5である。
 重合温度Tは、重合開始剤の10時間半減期温度T10に応じて適宜選択され、通常はT10-25℃≦T≦T10+25℃の範囲で選択される。例えば、t‐ブチルペルオキシピバレートおよびジイソプロピルペルオキシジカーボネートのT10はそれぞれ、54.6℃および40.5℃(日油株式会社製品カタログ参照)である。したがって、t‐ブチルペルオキシピバレートおよびジイソプロピルペルオキシジカーボネートを重合開始剤として用いた重合では、その重合温度Tはそれぞれ29.6℃≦T≦79.6℃および15.5℃≦T≦65.5℃の範囲で適宜選択される。重合時間は特に制限されないが、生産性等を考慮すると100時間以下であることが好ましい。重合時の圧力は通常加圧下で行われ、好ましくは2.0~8.0MPa‐Gである。
 上記の条件で水系の懸濁重合を行うことにより、容易にフッ化ビニリデンおよび、式(1)で表わされる化合物、必要に応じて共重合される他のモノマーを共重合することができ、本発明フッ化ビニリデン系共重合体を得ることができる。
 本発明に用いられるフッ化ビニリデン系共重合体は、インヘレント粘度(樹脂4gを1リットルのN,N-ジメチルホルムアミドに溶解させた溶液の30℃における対数粘度。以下、同様)が0.3~5.0dl/gの範囲内の値であることが好ましく、0.5~4.0dl/gの範囲内の値であることがより好ましく、0.5~3.0dl/gの範囲内の値であることが特に好ましい。上記範囲内の粘度であれば、成形体の機械的強度に優れ、かつ押出し成形等の成形が容易であり好ましい。
 インヘレント粘度ηiの算出は、フッ化ビニリデン系共重合体80mgを20mlのN,N-ジメチルホルムアミドに溶解して、30℃の恒温槽内でウベローテ粘度計を用いて次式により行うことができる。
   ηi=(1/C)・ln(η/η0
 ここでηは重合体溶液の粘度、η0は溶媒のN,N-ジメチルホルムアミド単独の粘度、Cは0.4g/dlである。
 また、フッ化ビニリデン系共重合体は、赤外線吸収スペクトルを測定した際の下記式(I)で表される吸光度比(AR)が、0.01~3.0の範囲であることが好ましく、0.05~2.0であることがより好ましく、0.08~1.5であることが特に好ましい。前記範囲内では、フッ化ビニリデン系共重合体の接着性および成形性に優れるため好ましい。なお、該重合体の赤外線吸収スペクトルの測定は、該重合体に熱プレスを施すことにより製造したフィルムについて、赤外線吸収スペクトルを測定することにより行われる。具体的には、フッ化ビニリデン系共重合体を、200℃で熱プレスして、プレスシート30mm×30mmを作製し、該プレスシートのIRスペクトルを、赤外分光光度計FT-730(株式会社堀場製作所製)を用いて、1500cm-1~4000cm-1の範囲で測定することにより行われる。
 AR=A1700-1800/A3023 ・・・(I)
 上記式(I)において、A1700-1800は1700~1800cm-1の範囲に検出されるカルボニル基の伸縮振動に由来の吸光度であり、A3023は3023cm-1付近に検出されるCHの伸縮振動に由来の吸光度である。ARはフッ化ビニリデン系共重合体中のカルボニル基の存在量を示す尺度となる。
 また、本発明に用いられるフッ化ビニリデン系共重合体中の式(1)で表わされる化合物に由来する構成単位のランダム率が、40%以上であることが好ましく、50%以上であることがより好ましく、60%以上であることが特に好ましい。詳細については不明であるが、ランダム率が前記範囲内であると高分子鎖の均一性が向上しカルボキシル基がより効果的にその接着性付与能力を発揮できるようになるため好ましい。
 なお、本発明において、ランダム率とは、本発明に用いられるフッ化ビニリデン系共重合体中に存在する、式(1)で表わされる化合物に由来する構成単位がどの程度重合体鎖中に分散しているかを示す指標である。ランダム率が低いほど式(1)で表わされる化合物に由来する構成単位が連続して存在する、言い換えると式(1)で表わされる化合物同士が重合した鎖(以下、式(1)で表わされる化合物由来の重合体鎖とも記す。)を有する傾向があることを意味する。一方、ランダム率が高いほど、式(1)で表わされる化合物に由来する構成単位が独立して存在する、言い換えると式(1)で表わされる化合物に由来する構成単位が連続せずに、フッ化ビニリデン由来の構成単位と結合する傾向がある。
 本発明に用いられるフッ化ビニリデン系共重合体のランダム率は、式(1)で表わされる化合物由来の重合体鎖の存在量[モル%]を、式(1)で表わされる化合物に由来する構成単位の存在量[モル%]で除することにより求めることができる(ランダム率[%]=式(1)で表わされる化合物由来の重合体鎖の存在量[モル%]/式(1)で表わされる化合物に由来する構成単位の存在量[モル%]×100)。なお、前記モル%では、フッ化ビニリデン由来の構成単位の存在量を100モル%とする。また、式(1)で表わされる化合物由来の重合体鎖の存在量は、19F NMRスペクトルにより求めることができ、式(1)で表わされる化合物に由来する構成単位の存在量は、例えば1H NMRスペクトル法や中和滴定法により求めることができる。
 例えば本発明に用いられるフッ化ビニリデン系共重合体が、フッ化ビニリデンとカルボキシエチルアクリレートとの共重合体である場合には、ランダム率は以下の方法で求めることができる。19F NMRスペクトルでは、カルボキシエチルアクリレート単位に隣接するCF2ピークは、-94ppm付近に観察される。該ピークと、スペクトル中の全てのピークの積分比より、カルボキシエチルアクリレート鎖のモル%が決定される。ランダム率は、該カルボキシエチルアクリレート鎖のモル%と、1H NMRスペクトルや中和滴定法等により求めた重合体中の全カルボキシエチルアクリレート由来の構造単位のモル%との比(ランダム率[%]=カルボキシエチルアクリレート鎖のモル%/全カルボキシエチルアクリレート由来の構造単位のモル%×100)として求めることができる。
 ランダム率が前記範囲内である本発明に用いられるフッ化ビニリデン系共重合体を製造する方法としては、例えば前述の懸濁重合等を行う際に、連続的に式(1)で表わされる化合物を添加する方法が挙げられる。
 〔成形体〕
 本発明の成形体は、前記フッ化ビニリデン系共重合体を粉体またはペレットを溶融成形することにより得られる。
 本発明の成形体としては、前記フッ化ビニリデン系共重合体から形成される層のみからなる単層の成形体であっても、前記フッ化ビニリデン系共重合体から形成される層と、他の材料から形成される層とを有する多層構造の成形体であってもよい。なお、いずれの場合であっても、本発明の成形体の製造の際には、前記フッ化ビニリデン系共重合体は溶融成形される。本発明の溶融成形とは、前記フッ化ビニリデン系共重合体を溶融した状態を経て成形することを意味する。具体的な溶融成形方法としては、特に限定はされないが、押出成形、射出成形、トランスファー成形、ブロー成形、圧縮成形、回転成形などが挙げられる。また、他の材料から形成される層を有する場合には、該層は溶融成形によって形成されてもよく、他の方法によって形成されてもよい。
 前記他の材料としては、金属、紙、木材、前記フッ化ビニリデン系共重合体以外の樹脂等が挙げられるが、フッ化ビニリデン系共重合体との接着性の観点から、金属、樹脂が好ましく、樹脂がより好ましい。
 なお、他の材料は、各種添加剤等と共に用いられてもよい。例えば他の材料が、前記フッ化ビニリデン系共重合体以外の樹脂である場合には、樹脂のみで用いても、樹脂組成物として用いてもよい。
 また、他の材料が金属である場合には、他の材料から形成される層は、金属基板であってもよく、前記フッ化ビニリデン系共重合体から形成される層上に、蒸着により形成される金属膜であってもよい。また、前記フッ化ビニリデン系共重合体から形成される層上に、スパッタリング、ラミネート等により金属膜、金属層を形成してもよく、インサート成型によって、成形体を得てもよい。
 また、前記フッ化ビニリデン系共重合体を溶融成形する際には、前記フッ化ビニリデン系共重合体以外の樹脂や、添加剤と共に、溶融成形を行ってもよい。すなわち、前記フッ化ビニリデン系共重合体を含む組成物を溶融成形してもよい。
 前記フッ化ビニリデン系共重合体以外の樹脂としては、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂、熱硬化性樹脂のいずれでも用いることができる。前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂としては、ポリオレフィン、ポリエステル、ポリウレタン、ポリアミド、ポリカーボネート、環状ポリオレフィン、エチレン・ポリビニルアルコール共重合体、ポリ芳香族ビニル樹脂、塩素含有樹脂、前記フッ化ビニリデン系共重合体以外のフッ素含有樹脂、アクリル樹脂等を用いることができる。熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、熱硬化性ポリエステル樹脂等を用いることができる。これらの樹脂としては、一種単独でも、二種以上を用いてもよい。
 前記ポリオレフィンとしては、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、エチレン-メチルメタクリレート共重合体などが挙げられる。また、ポリオレフィン系のエラストマーも用いることもできる。なお、本発明において、ポリオレフィンとは、オレフィン由来の繰り返し単位を、50モル%以上有する重合体であり、他のモノマー由来の繰り返し単位を有していてもよい。ポリオレフィンとしては、オレフィン由来の繰り返し単位を、70モル%以上有することが好ましく、90モル%以上有することがより好ましい。
 前記ポリエステルとしては、ポリ乳酸(以下、PLAとも記す。)、ポリブチレンサクシネートなどの脂肪族ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の芳香族ポリエステルが挙げられる。また、軟質のポリエステルエラストマーを用いることもできる。
 前記ポリアミドとしては、ナイロンが挙げられる。ナイロンとしては、重縮合反応によって得られるナイロン(n‐ナイロン)や、共縮重合反応によって得られるナイロン(n,m‐ナイロン)等を用いることができる。n‐ナイロンとしては、ナイロン6、ナイロン11、ナイロン12等が挙げられ、n,m‐ナイロンとしては、ナイロン66、ナイロン610、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、ナイロンMXD6等を用いることができる。また、軟質のポリアミドエラストマーを用いることもできる。
 前記フッ化ビニリデン系共重合体から形成される層、他の材料から形成される層には、各種添加剤が含まれていてもよい。
 添加剤としては、成形体の種類や用途によって適宜選択することが可能であり、例えば熱安定剤、可塑剤、無機フィラー、触媒失活剤、熱線吸収剤、紫外線吸収剤、光安定剤、防湿剤、防水剤、撥水剤、滑剤、結晶核剤、カップリング剤、顔料、染料などが挙げられる。
 可塑剤としては、公知の可塑剤から適宜選択して使用することが可能である。該可塑剤の具体例としては、例えば、エチレングリコール、トリメチレングリコール、プロピレングリコール、テトラメチレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、ペンタメチレングリコール、ヘキサメチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリエチレンオキサイド、ソルビトール、マンニトール、ズルシトール、エリトリトール、グリセリン、乳酸、脂肪酸、澱粉、フタル酸エステルなどを例示することができる。これらは必要に応じて、混合物で用いてもよい。
 本発明の成形体が、多層構造の成形体である場合には、その層構造としては特に限定は無いが、フッ化ビニリデン系共重合体から形成される層/他の材料から形成される層の二層構造、フッ化ビニリデン系共重合体から形成される層/他の材料から形成される層/フッ化ビニリデン系共重合体から形成される層の三層構造、フッ化ビニリデン系共重合体から形成される層/他の材料から形成される層/フッ化ビニリデン系共重合体から形成される層/他の材料から形成される層の四層構造等が挙げられる。多層構造の成形体に、フッ化ビニリデン系共重合体が有する、耐候性、耐油性を付与する為には、少なくとも片方の表面層が、フッ化ビニリデン系共重合体から形成される層であることが好ましい。
 本発明の成形体の形状としては特に限定がなく、従来フッ化ビニリデン系重合体が押出成形、射出成形、トランスファー成形、ブロー成形、圧縮成形、回転成形などの溶融成形により加工されて用いられていた各用途に用いることができる。本発明の成形体としては、例えばシート、フィルム、ストランド、繊維またはチューブであることが好ましい。
 本発明の成形体の製造方法としては、特に限定はなく、その成形体の形状、多層構造の有無等に応じて適宜選択することが可能である。
 本発明の成形体の製造における原料の形態としては、特に限定は無いが、溶融成形時の成形機への樹脂供給量の安定化や、押出量の安定化の観点から、ペレットを溶融成形することが好ましい。すなわち、前記フッ化ビニリデン系共重合体を、まずペレット状に溶融成形した後に、該ペレットを溶融成形することにより、所望の成形体を製造することが好ましい。
 本発明の成形体としては、前記フッ化ビニリデン系共重合体の有する優れた接着性を利用した、前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とを有する成形体が好ましい。該成形体の製造方法としては、前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とを、共押出により製造してもよく、前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とを、ラミネートすることにより製造してもよい。
 前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とを有するシート、フィルム等を製造する場合には、前記フッ化ビニリデン系共重合体または該共重合体を含む組成物を単独で溶融押出することにより、シート、フィルムを製造し、別途作成した前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂からなるシート、フィルム上に接着剤層を介してまたは熱融着によって接合(ラミネート)することにより製造してもよく、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂からなるシート、フィルム上に、前記フッ化ビニリデン系共重合体または該共重合体を含む組成物を溶融押出すること、すなわち押出ラミネートにより、製造してもよく、前記フッ化ビニリデン系共重合体または該共重合体を含む組成物を単独で溶融押出することにより、シート、フィルムを製造し、該シート、フィルム上に、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂を溶融押出すること、すなわち押出ラミネートにより、製造してもよい。また、前記フッ化ビニリデン系共重合体または該共重合体を含む組成物および前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂を共押出することにより、シート、フィルムを製造してもよい。共押出を行う際には、例えば押出樹脂数に応じた数の単軸または二軸等の押出機と、層の数に応じた多層Tダイを用いることにより行うことができる。
 前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とを有するチューブ等を製造する場合には、各層を別々に作成した後に、一体化することが通常困難であるため、例えば、前記フッ化ビニリデン系共重合体または該共重合体を含む組成物および前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂を共押出することにより、チューブを製造してもよい。共押出を行う際には、例えば押出樹脂数に応じた数の単軸または二軸等の押出機と、層の数に応じた環状ダイ(必要に応じてマンドレル)を用いることにより行うことができる。
 本発明の成形体の具体的な寸法としては、特に限定は無いが、例えば成形体がフッ化ビニリデン系共重合体を溶融成形することにより得られる層のみからなるシートである場合には、通常は厚さが0.2~5mmであり、成形体が積層構造のシートである場合には通常は、フッ化ビニリデン系共重合体を溶融成形することにより得られる層の厚さが0.01~3mmであり、シート全体の厚さとしては0.2~5mmである。また、成形体がフッ化ビニリデン系共重合体を溶融成形することにより得られる層のみからなるフィルムである場合には、通常は厚さが0.001~0.2mmであり、成形体が積層構造のフィルムである場合には通常は、フッ化ビニリデン系共重合体を溶融成形することにより得られる層の厚さが0.001~0.1mmであり、フィルム全体の厚さとしては0.002~0.5mmである。また、成形体がフッ化ビニリデン系共重合体を溶融成形することにより得られる層のみからなるチューブである場合には、通常は該層の厚さが0.1~100mmであり、成形体が積層構造のチューブである場合には通常は、フッ化ビニリデン系共重合体を溶融成形することにより得られる層の厚さが0.01~10mmであり、チューブを構成する各層を合計した厚さとしては0.2~100mmである。また、チューブの内径としては通常は0.1~500mmである。
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 〔製造例1〕
 (フッ化ビニリデン‐カルボキシエチルアクリレート共重合体の製造)
 内容量2リットルのオートクレーブに、イオン交換水を1000g、セルロース系懸濁剤としてメトローズSM-100(信越化学工業(株)製)を0.6g、カルボキシエチルアクリレート(CEA)を0.2g、50wt%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液を6g、フッ化ビニリデン400g、酢酸エチル16gを仕込み、26℃まで1時間で昇温した。
 その後、26℃を維持し、70g/lのカルボキシエチルアクリレート水溶液を0.05g/minの速度で徐々に添加した。カルボキシエチルアクリレートは、初期に添加した量を含め、全量3.1gを添加した。
 重合は、カルボキシエチルアクリレート水溶液添加終了と同時に停止し、昇温開始から合計14.8時間行った。
 重合終了後、重合体スラリーを95℃で60分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥して、フッ化ビニリデン‐カルボキシエチルアクリレート共重合体の重合体粉末を得た。
 重合体の収率は65%、得られた重合体のインヘレント粘度は0.95dl/g、得られた重合体の吸光度比(AR)は0.48であった。
 前記重合体粉末の1H NMRスペクトルを下記条件で求めた。
 装置:Bruker社製。 AVANCE AC 400FT NMRスペクトルメーター
 測定条件
 周波数:400MHz
 測定溶媒:DMSO-d6
 測定温度:25℃
 重合体のフッ化ビニリデンに由来する構成単位の量、およびカルボキシエチルアクリレートに由来する構成単位の量を、1H NMRスペクトルで、主としてカルボキシエチルアクリレートに由来する4.19ppmに観察されるシグナルと、主としてフッ化ビニリデンに由来する2.24ppmおよび2.87ppmに観察されるシグナルとの積分強度に基づき算出した。
 得られたフッ化ビニリデン系共重合体が有するフッ化ビニリデンに由来する構成単位の量(モル%)(VDF量)は、99.6モル%であり、カルボキシエチルアクリレートに由来する構成単位の量(モル%)(CEA量)は、0.4モル%であった。
 〔製造例2〕
 (フッ化ビニリデン‐アクリロイロキシエチルコハク酸共重合体の製造)
 内容量2リットルのオートクレーブに、イオン交換水を1000g、セルロース系懸濁剤としてメトローズSM-100(信越化学工業(株)製)を0.6g、アクリロイロキシエチルコハク酸(AES)を0.2g、50wt%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液を6g、フッ化ビニリデン400g、酢酸エチル8gを仕込み、26℃まで1時間で昇温した。
 その後、26℃を維持し、100g/lのアクリロイロキシエチルコハク酸水溶液を0.05g/minの速度で徐々に添加した。アクリロイロキシエチルコハク酸は、初期に添加した量を含め、全量1.48gを添加した。
 重合は、アクリロイロキシエチルコハク酸水溶液添加終了と同時に停止し、昇温開始から合計7.7時間行った。
 重合終了後、重合体スラリーを95℃で60分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥してフッ化ビニリデン‐アクリロイロキシエチルコハク酸共重合体の重合体粉末を得た。
 重合体の収率は35%、得られた重合体のインヘレント粘度は1.29dl/g、得られた重合体の吸光度比(AR)は0.68であった。
 前記重合体粉末の1H NMRスペクトルを製造例1と同様な方法で測定した。
 重合体のフッ化ビニリデンに由来する構成単位の量、およびアクリロイロキシエチルコハク酸に由来する構成単位の量を、1H NMRスペクトルで、主としてアクリロイロキシエチルコハク酸に由来する4.18ppmに観察されるシグナルと、主としてフッ化ビニリデンに由来する2.23ppmおよび2.87ppmに観察されるシグナルとの積分強度に基づき算出した。
 得られたフッ化ビニリデン系共重合体が有するフッ化ビニリデンに由来する構成単位の量(モル%)(VDF量)は、99.7モル%であり、アクリロイロキシエチルコハク酸に由来する構成単位の量(モル%)(AES量)は、0.3モル%であった。
 〔製造例3〕
 (フッ化ビニリデン単独重合体の製造)
 内容量2リットルのオートクレーブに、イオン交換水を1040g、セルロース系懸濁剤としてメトローズSM-100(信越化学工業(株)製)を0.2g、n-プロピルパーオキシジカーボネート2g、フッ化ビニリデン400g、酢酸エチル8gを仕込み、26℃まで1時間で昇温した。
 重合は、昇温開始から22時間行った。
 重合終了後、重合体スラリーを95℃で60分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥してフッ化ビニリデン単独重合体の重合体粉末を得た。
 重合体の収率は92%、得られた重合体のインヘレント粘度は1.10dl/gであった。
 〔製造例4〕
 (フッ化ビニリデン‐マレイン酸モノメチル共重合体の製造)
 内容量2リットルのオートクレーブに、イオン交換水を1040g、セルロース系懸濁剤としてメトローズSM-100(信越化学工業(株)製)を0.8g、50wt%ジイソプロピルペルオキシジカーボネート-フロン225cb溶液を8g、フッ化ビニリデン396g、マレイン酸モノメチル4g、酢酸エチル2.5gを仕込み、28℃まで1時間で昇温した。
 重合は、昇温開始から45時間行った。
 重合終了後、重合体スラリーを95℃で60分熱処理した後、脱水、水洗し、更に80℃で20時間乾燥してフッ化ビニリデン‐マレイン酸モノメチル共重合体の重合体粉末を得た。
 重合体の収率は85%、得られた重合体のインヘレント粘度は1.10dl/gであった。
 〔製造例5〕
 (フッ化ビニリデン単独重合体およびフッ化ビニリデン‐マレイン酸モノメチル共重合体の混合物の製造)
 製造例3で得られたフッ化ビニリデン単独重合体の重合体粉末と、製造例4で得られたフッ化ビニリデン‐マレイン酸モノメチル共重合体の重合体粉末とを、重量比で1:1の割合で混合することにより、フッ化ビニリデン単独重合体およびフッ化ビニリデン‐マレイン酸モノメチル共重合体の混合物を得た。
 〔製造例6〕
 (フッ化ビニリデン単独重合体およびフッ化ビニリデン‐マレイン酸モノメチル共重合体の混合物の製造)
 製造例3で得られたフッ化ビニリデン単独重合体の重合体粉末と、製造例4で得られたフッ化ビニリデン‐マレイン酸モノメチル共重合体の重合体粉末とを、重量比で9:1の割合で混合することにより、フッ化ビニリデン単独重合体およびフッ化ビニリデン‐マレイン酸モノメチル共重合体の混合物を得た。
 〔YI(イエローインデックス)の測定〕
 上記製造例1~4で得られた重合体粉末および製造例5および6で得られた混合物について、以下の方法でYIを測定した。
 210℃で2分間、重合体粉末(製造例1~4)または混合物(製造例5および6)を、予備加熱した後、プレス圧5MPaで2分間保持する事により5cm×5cm×0.1cmの試験片を作製した。
 230℃で2分間、重合体粉末(製造例1~4)または混合物(製造例5および6)を、予備加熱した後、プレス圧5MPaで2分間保持する事により5cm×5cm×0.1cmの試験片を作製した。
 得られた各試験片のYIを、日本電色工業株式会社製color meter ZE6000を用いてASTM D1925に準ずる方法で測定した。
 なお、YIの値が大きい程黄色味が強い事を示す。
 また、230℃でプレスを行い得られた試験片(プレスフィルム)について、発泡の有無を目視にて観察した。
 〔HF発生量の測定〕
 上記製造例1~4で得られた重合体粉末および製造例5および6で得られた混合物について、以下の方法でフッ化水素の発生量を測定した。
 重合体粉末(製造例1~4)または混合物(製造例5および6)を、プレス(25℃、100kg/cm2)して固めて、0.5gを石英製ボートに秤取り、電気管状炉で230℃、2時間加熱した。流量100ml/minで空気を流して、発生ガスを炭酸アルカリ水に吸収後、フッ素イオン(F-)をイオンクロマトグラフィー(IC)で定量した。フッ素イオンの量から、発生したHF量を算出し、重合体粉末(製造例1~4)または混合物(製造例5および6)1g当たりのHF発生量を算出した。
 重合体粉末(製造例1~4)の製造条件および、重合体粉末(製造例1~4)および混合物(製造例5および6)の物性を表1、2に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 〔製造例7〕
 (オレフィン樹脂組成物(1)の調製)
 高密度ポリエチレン(HDPE樹脂)(株式会社プライムポリマー製、ハイゼックス3300F)80重量%、エチレン‐グリシジルメタクリレート‐酢酸ビニル共重合体(住友化学株式会社製、ボンドファスト2B)20重量%を供給し、シリンダー温度170~210℃としダイからストランド状に溶融押出し、冷水中で冷却した後カットしてオレフィン樹脂組成物(1)のペレットを作製した。
 〔製造例8〕
 (オレフィン樹脂組成物(2)の調製)
 高密度ポリエチレン(HDPE樹脂)(株式会社プライムポリマー製、ハイゼックス2100J)70重量%、エチレン‐アクリル酸‐グリシジルメタクリレート共重合体(アルケマ(ARKEMA)製、LOTADER GMA AX8900)30重量%を供給し、シリンダー温度170~210℃としダイからストランド状に溶融押出し、冷水中で冷却した後カットしてオレフィン樹脂組成物(2)のペレットを作製した。
 〔実施例1〕
 (フッ化ビニリデン系共重合体のペレットの製造)
 製造例1で得られたフッ化ビニリデン‐カルボキシエチルアクリレート共重合体の重合体粉末を、同方向回転二軸押出機を用いて溶融押出することにより、ペレットを得た。
 なお、シリンダー温度を170~250℃とし、ダイからストランド状に溶融押出し、冷水中で冷却した後カットすることによりペレットを作製した。得られたペレットの外観は乳白色であった。
 (共押出による積層シートの製造)
 第一の押出機に前記フッ化ビニリデン‐カルボキシエチルアクリレート共重合体のペレットを、第二の押出機にオレフィン樹脂組成物(1)のペレットを供給し、第一の押出機と第二の押出機を接続したマルチマニホルードTダイから溶融樹脂を共押出して、表面を120℃に保ったキャストロール上に第1層(フッ化ビニリデン‐カルボキシエチルアクリレート共重合体からなる層)側を接触させて冷却し、厚み10μmの第1層(フッ化ビニリデン‐カルボキシエチルアクリレート共重合体からなる層)および厚み50μmの第2層(オレフィン樹脂組成物(1)からなる層)を備える積層シートを得た。
 〔実施例2〕
 (フッ化ビニリデン系共重合体のペレットの製造)
 製造例2で得られたフッ化ビニリデン‐アクリロイロキシエチルコハク酸共重合体の重合体粉末を、同方向回転二軸押出機を用いて溶融押出することにより、ペレットを得た。
 なお、シリンダー温度を170~250℃とし、ダイからストランド状に溶融押出し、冷水中で冷却した後カットすることによりペレットを作製した。得られたペレットの外観は乳白色であった。
 (共押出による積層シートの製造)
 第一の押出機に前記フッ化ビニリデン‐アクリロイロキシエチルコハク酸共重合体のペレットを、第二の押出機にオレフィン樹脂組成物(1)のペレットを供給し、第一の押出機と第二の押出機を接続したマルチマニホルードTダイから溶融樹脂を共押出して、表面を120℃に保ったキャストロール上に第1層(フッ化ビニリデン‐アクリロイロキシエチルコハク酸共重合体からなる層)側を接触させて冷却し、厚み10μmの第1層(フッ化ビニリデン‐アクリロイロキシエチルコハク酸共重合体からなる層)および厚み50μmの第2層(オレフィン樹脂組成物(1)からなる層)を備える積層シートを得た。
 〔実施例3〕
 (フッ化ビニリデン系共重合体のペレットの製造)
 製造例2で得られたフッ化ビニリデン‐アクリロイロキシエチルコハク酸共重合体の重合体粉末を、同方向回転二軸押出機を用いて溶融押出することにより、ペレットを得た。
 なお、シリンダー温度を170~250℃とし、ダイからストランド状に溶融押出し、冷水中で冷却した後カットすることによりペレットを作製した。得られたペレットの外観は乳白色であった。
 (フッ化ビニリデン系共重合体からなる単層シートの製造)
 スクリュー径40mmの押出機を用いて、前記フッ化ビニリデン‐アクリロイロキシエチルコハク酸共重合体のペレットを、シリンダー温度190~240℃で溶融混練した。溶融物を温度230℃に設定したTダイから押し出し、表面を120℃に保ったキャストロール上に接触させて冷却して、厚み100μmのフッ化ビニリデン系共重合体からなる単層シートを作製した。
 (オレフィン系樹脂組成物からなる単層シートの製造)
 単軸の押出機を用いて、前記オレフィン樹脂組成物(2)のペレットをシリンダー温度170~240℃で溶融混練した。溶融物を温度230℃に設定したTダイから押し出し、表面を120℃に保ったキャストロール上に接触させて冷却して、厚み50μmのオレフィン樹脂組成物(2)からなる単層シートを作製した。
 (ラミネートによる積層シートの製造)
 前記フッ化ビニリデン系共重合体からなる単層シートと、オレフィン樹脂組成物(2)からなる単層シートとを、熱圧着フィルム用ラミネーターを用いてラミネート温度180℃、ロール速度1m/min、接圧2kg/cm2で熱圧着し、積層シートを作製した。
 〔比較例1〕
 (フッ化ビニリデン単独重合体のペレットの製造)
 製造例3で得られたフッ化ビニリデン単独重合体の重合体粉末を、同方向回転二軸押出機を用いて溶融押出することにより、ペレットを得た。
 なお、シリンダー温度を170~250℃とし、ダイからストランド状に溶融押出し、冷水中で冷却した後カットすることによりペレットを作製した。得られたペレットの外観は乳白色であった。
 (共押出による積層シートの製造)
 第一の押出機に前記フッ化ビニリデン単独重合体のペレットを、第二の押出機にオレフィン樹脂組成物(1)のペレットを供給し、第一の押出機と第二の押出機を接続したマルチマニホルードTダイから溶融樹脂を共押出して、表面を120℃に保ったキャストロール上に第1層(フッ化ビニリデン単独重合体からなる層)側を接触させて冷却し、厚み10μmの第1層(フッ化ビニリデン単独重合体からなる層)および厚み50μmの第2層(オレフィン樹脂組成物(1)からなる層)を備える積層シートを得た。
 しかしながら、該積層シートでは、第1層と、第2層とが実質的に接着されていなかった。
 〔比較例2〕
 (フッ化ビニリデン単独重合体のペレットの製造)
 製造例3で得られたフッ化ビニリデン単独重合体の重合体粉末を、同方向回転二軸押出機を用いて溶融押出することにより、ペレットを得た。
 なお、シリンダー温度を170~250℃とし、ダイからストランド状に溶融押出し、冷水中で冷却した後カットすることによりペレットを作製した。得られたペレットの外観は乳白色であった。
 (フッ化ビニリデン単独重合体からなる単層シートの製造)
 スクリュー径40mmの押出機を用いて、前記フッ化ビニリデン単独重合体のペレットを、シリンダー温度190~240℃で溶融混練した。溶融物を温度230℃に設定したTダイから押し出し、表面を120℃に保ったキャストロール上に接触させて冷却して、厚み100μmのフッ化ビニリデン単独重合体からなる単層シートを作製した。
 (オレフィン系樹脂組成物からなる単層シートの製造)
 単軸の押出機を用いて、前記オレフィン樹脂組成物(2)のペレットをシリンダー温度170~240℃で溶融混練した。溶融物を温度230℃に設定したTダイから押し出し、表面を120℃に保ったキャストロール上に接触させて冷却して、厚み50μmのオレフィン樹脂組成物(2)からなる単層シートを作製した。
 (ラミネートによる積層シートの製造)
 前記フッ化ビニリデン単独重合体からなる単層シートと、オレフィン樹脂組成物(2)からなる単層シートとを、熱圧着フィルム用ラミネーターを用いてラミネート温度180℃、ロール速度1m/min、接圧2kg/cm2で熱圧着し、積層シートを作製した。
 しかしながら、該積層シートでは、第1層と、第2層とが実質的に接着されていなかった。
 〔比較例3〕
 (フッ化ビニリデン‐マレイン酸モノメチル共重合体のペレットの製造)
 製造例4で得られたフッ化ビニリデン‐マレイン酸モノメチル共重合体の重合体粉末を、同方向回転二軸押出機を用いて溶融押出することによりペレットを得た。得られたペレットの外観は濃褐色であった。続いて、該ペレットを用いて、押出成形によるシートの製造を試みたが、発泡、表面荒れ、筋引きが生じ、連続的な運転が困難であり、その後の評価を中止した。
 〔比較例4〕
 (混合物のペレットの製造)
 製造例5で得られた混合物を、同方向回転二軸押出機を用いて溶融押出することにより、ペレットを得た。
 なお、シリンダー温度を170~250℃とし、ダイからストランド状に溶融押出し、冷水中で冷却した後カットすることによりペレットを作製した。得られたペレットの外観は褐色であった。
 (共押出による積層シートの製造)
 第一の押出機に前記混合物のペレットを、第二の押出機にオレフィン樹脂組成物(1)のペレットを供給し、第一の押出機と第二の押出機を接続したマルチマニホルードTダイから溶融樹脂を共押出して、表面を120℃に保ったキャストロール上に第1層(混合物からなる層)側を接触させて冷却し、厚み10μmの第1層(混合物からなる層)および厚み50μmの第2層(オレフィン樹脂組成物(1)からなる層)を備える積層シートを得た。
 〔比較例5〕
 (混合物のペレットの製造)
 製造例5で得られた混合物を、同方向回転二軸押出機を用いて溶融押出することにより、ペレットを得た。
 なお、シリンダー温度を170~250℃とし、ダイからストランド状に溶融押出し、冷水中で冷却した後カットすることによりペレットを作製した。得られたペレットの外観は褐色であった。
 (混合物からなる単層シートの製造)
 スクリュー径40mmの押出機を用いて、前記混合物のペレットを、シリンダー温度190~240℃で溶融混練した。溶融物を温度230℃に設定したTダイから押し出し、表面を120℃に保ったキャストロール上に接触させて冷却して、厚み100μmの混合物からなる単層シートを作製した。
 (オレフィン系樹脂組成物からなる単層シートの製造)
 単軸の押出機を用いて、前記オレフィン樹脂組成物(2)のペレットをシリンダー温度170~240℃で溶融混練した。溶融物を温度230℃に設定したTダイから押し出し、表面を120℃に保ったキャストロール上に接触させて冷却して、厚み50μmのオレフィン樹脂組成物(2)からなる単層シートを作製した。
 (ラミネートによる積層シートの製造)
 前記混合物からなる単層シートと、オレフィン樹脂組成物(2)からなる単層シートとを、熱圧着フィルム用ラミネーターを用いてラミネート温度180℃、ロール速度1m/min、接圧2kg/cm2で熱圧着し、積層シートを作製した。
 〔比較例6〕
 (混合物のペレットの製造)
 製造例6で得られた混合物を、同方向回転二軸押出機を用いて溶融押出することにより、ペレットを得た。
 なお、シリンダー温度を170~250℃とし、ダイからストランド状に溶融押出し、冷水中で冷却した後カットすることによりペレットを作製した。得られたペレットの外観は薄褐色であった。
 (共押出による積層シートの製造)
 第一の押出機に前記混合物のペレットを、第二の押出機にオレフィン樹脂組成物(1)のペレットを供給し、第一の押出機と第二の押出機を接続したマルチマニホルードTダイから溶融樹脂を共押出して、表面を120℃に保ったキャストロール上に第1層(混合物からなる層)側を接触させて冷却し、厚み10μmの第1層(混合物からなる層)および厚み50μmの第2層(オレフィン樹脂組成物(1)からなる層)を備える積層シートを得た。
 〔比較例7〕
 (混合物のペレットの製造)
 製造例6で得られた混合物を、同方向回転二軸押出機を用いて溶融押出することにより、ペレットを得た。
 なお、シリンダー温度を170~250℃とし、ダイからストランド状に溶融押出し、冷水中で冷却した後カットすることによりペレットを作製した。得られたペレットの外観は薄褐色であった。
 (混合物からなる単層シートの製造)
 スクリュー径40mmの押出機を用いて、前記混合物のペレットを、シリンダー温度190~240℃で溶融混練した。溶融物を温度230℃に設定したTダイから押し出し、表面を120℃に保ったキャストロール上に接触させて冷却して、厚み100μmの混合物からなる単層シートを作製した。
 (オレフィン系樹脂組成物からなる単層シートの製造)
 単軸の押出機を用いて、前記オレフィン樹脂組成物(2)のペレットをシリンダー温度170~240℃で溶融混練した。溶融物を温度230℃に設定したTダイから押し出し、表面を120℃に保ったキャストロール上に接触させて冷却して、厚み50μmのオレフィン樹脂組成物(2)からなる単層シートを作製した。
 (ラミネートによる積層シートの製造)
 前記混合物からなる単層シートと、オレフィン樹脂組成物(2)からなる単層シートとを、熱圧着フィルム用ラミネーターを用いてラミネート温度180℃、ロール速度1m/min、接圧2kg/cm2で熱圧着し、積層シートを作製した。
 〔剥離強度の測定〕
 実施例、比較例で得られた積層シートを長さ100mm、幅20mmに切り出し、JIS K6854-1に準じて引張試験器(ORIENTEC社製「STA-1150」 UNIVERSAL TESTING MACHINE)を使用し、ヘッド速度10mm/分で90度剥離試験を行った。
 実施例、比較例で得られた積層シートの剥離強度を表3に示す。
Figure JPOXMLDOC01-appb-T000010
 前記実施例、比較例の結果より、本願発明の成形体は、フッ化ビニリデン単独重合体を用いた場合と比べて、層間の接着性に優れる。また、本願発明に用いられるフッ化ビニリデン系共重合体は、フッ化ビニリデン‐マレイン酸モノメチル共重合体と比べて、YI(イエローインデックス)が低く、耐着色性に優れている。さらに、本願発明に用いられるフッ化ビニリデン系共重合体は、フッ化ビニリデン‐マレイン酸モノメチル共重合体と比べて、HF発生量が小さく、発泡も確認できないため、成形性にも優れている。

Claims (9)

  1.  フッ化ビニリデンと、下記式(1)で表わされる化合物とを共重合して得られるフッ化ビニリデン系共重合体を溶融成形することにより得られる成形体。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)において、R1、R2、R3は、それぞれ独立に水素原子、塩素原子または炭素数1~5のアルキル基であり、X'は、主鎖が原子数1~19で構成される分子量472以下の原子団である。)
  2.  前記式(1)で表わされる化合物が、下記式(2)で表わされる化合物である請求項1に記載の成形体。
    Figure JPOXMLDOC01-appb-C000002
     (式(2)において、R1、R2、R3は、それぞれ独立に水素原子、塩素原子または炭素数1~5のアルキル基であり、X'''は、主鎖が原子数1~18で構成される分子量456以下の原子団である。)
  3.  前記式(1)で表わされる化合物が、アクリロイロキシエチルコハク酸およびカルボキシエチルアクリレートから選択される少なくとも1種の化合物である請求項1に記載の成形体。
  4.  前記フッ化ビニリデン系共重合体のインヘレント粘度が、0.3~5.0dl/gである請求項1~3のいずれか一項に記載の成形体。
  5.  前記フッ化ビニリデン系共重合体の赤外線吸収スペクトルを測定した際の下記式(I)で表される吸光度比(AR)が、0.01~3.0の範囲である請求項1~4のいずれか一項に記載の成形体。
     AR=A1700-1800/A3023 ・・・(I)
     (式(I)において、A1700-1800は1700~1800cm-1の範囲に検出されるカルボニル基の伸縮振動に由来の吸光度であり、A3023は3023cm-1付近に検出されるCHの伸縮振動に由来の吸光度である。)
  6.  シート、フィルム、ストランド、繊維またはチューブである請求項1~5のいずれか一項に記載の成形体。
  7.  前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とを有する請求項1~6のいずれか一項に記載の成形体。
  8.  前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とが、共押出により成形された請求項7に記載の成形体。
  9.  前記フッ化ビニリデン系共重合体を溶融成形することにより得られる層と、前記フッ化ビニリデン系共重合体以外の熱可塑性樹脂から形成される層とを、ラミネートすることにより成形された請求項7に記載の成形体。
PCT/JP2013/067215 2012-06-28 2013-06-24 成形体 WO2014002935A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13809597.1A EP2868675B1 (en) 2012-06-28 2013-06-24 Molded article
US14/405,884 US20150299355A1 (en) 2012-06-28 2013-06-24 Molded article
JP2014522609A JP6016917B2 (ja) 2012-06-28 2013-06-24 成形体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012145517 2012-06-28
JP2012-145517 2012-06-28

Publications (1)

Publication Number Publication Date
WO2014002935A1 true WO2014002935A1 (ja) 2014-01-03

Family

ID=49783081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067215 WO2014002935A1 (ja) 2012-06-28 2013-06-24 成形体

Country Status (4)

Country Link
US (1) US20150299355A1 (ja)
EP (1) EP2868675B1 (ja)
JP (1) JP6016917B2 (ja)
WO (1) WO2014002935A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137137A1 (ja) * 2014-03-11 2015-09-17 株式会社クレハ フッ化ビニリデン系共重合体、その製造方法、ゲル電解質および非水系電池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615790A (ja) 1992-02-25 1994-01-25 Elf Atochem Sa ガソリン移送用チューブ
JPH0631877A (ja) 1992-03-30 1994-02-08 Tokai Rubber Ind Ltd 燃料配管用樹脂チューブ及びその製造法
JPH06172452A (ja) 1992-12-02 1994-06-21 Kureha Chem Ind Co Ltd フッ化ビニリデン系共重合体
JP2005162330A (ja) 2003-12-02 2005-06-23 Arkema グラフト化フルオロポリマーをベースとする構造物の化学製品の貯蔵および輸送での使用
JP2005207582A (ja) 2003-12-01 2005-08-04 Arkema 照射グラフト化フルオロポリマーをベースとする多層管のガソリンスタンドのガソリン輸送における使用
WO2009084483A1 (ja) 2007-12-27 2009-07-09 Kureha Corporation 接着性フッ化ビニリデン系樹脂シート
WO2012090876A1 (ja) * 2010-12-28 2012-07-05 株式会社クレハ フッ化ビニリデン系共重合体、および該共重合体の用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680149A (en) * 1986-05-19 1987-07-14 International Hydron Corporation Mold and method for spin casting a precisely configured article
ATE465187T1 (de) * 2002-12-25 2010-05-15 Daikin Ind Ltd Fluorpolymer und zusammensetzung
WO2007094270A1 (ja) * 2006-02-14 2007-08-23 Kaneka Corporation 極性官能基を有するビニル系重合体とその製造方法
TWI437009B (zh) * 2007-04-24 2014-05-11 Solvay Solexis Spa 1,1-二氟乙烯共聚物類
WO2012093689A1 (ja) * 2011-01-06 2012-07-12 三菱レイヨン株式会社 ポリフッ化ビニリデン用改質剤、電池用バインダー樹脂組成物、二次電池用電極及び電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615790A (ja) 1992-02-25 1994-01-25 Elf Atochem Sa ガソリン移送用チューブ
JPH0631877A (ja) 1992-03-30 1994-02-08 Tokai Rubber Ind Ltd 燃料配管用樹脂チューブ及びその製造法
JPH06172452A (ja) 1992-12-02 1994-06-21 Kureha Chem Ind Co Ltd フッ化ビニリデン系共重合体
JP2005207582A (ja) 2003-12-01 2005-08-04 Arkema 照射グラフト化フルオロポリマーをベースとする多層管のガソリンスタンドのガソリン輸送における使用
JP2005162330A (ja) 2003-12-02 2005-06-23 Arkema グラフト化フルオロポリマーをベースとする構造物の化学製品の貯蔵および輸送での使用
WO2009084483A1 (ja) 2007-12-27 2009-07-09 Kureha Corporation 接着性フッ化ビニリデン系樹脂シート
WO2012090876A1 (ja) * 2010-12-28 2012-07-05 株式会社クレハ フッ化ビニリデン系共重合体、および該共重合体の用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2868675A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137137A1 (ja) * 2014-03-11 2015-09-17 株式会社クレハ フッ化ビニリデン系共重合体、その製造方法、ゲル電解質および非水系電池
JP2015172101A (ja) * 2014-03-11 2015-10-01 株式会社クレハ フッ化ビニリデン系共重合体、その製造方法、ゲル電解質および非水系電池
CN106103508A (zh) * 2014-03-11 2016-11-09 株式会社吴羽 偏二氟乙烯类共聚物、其制造方法、凝胶电解质和非水类电池
CN106103508B (zh) * 2014-03-11 2018-01-23 株式会社吴羽 偏二氟乙烯类共聚物、其制造方法、凝胶电解质和非水类电池
US10227429B2 (en) 2014-03-11 2019-03-12 Kureha Corporation Vinylidene fluoride copolymer, method for producing the same, gel electrolyte, and non-aqueous battery

Also Published As

Publication number Publication date
JP6016917B2 (ja) 2016-10-26
EP2868675A4 (en) 2016-01-13
JPWO2014002935A1 (ja) 2016-05-30
EP2868675B1 (en) 2016-09-21
EP2868675A1 (en) 2015-05-06
US20150299355A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP4784394B2 (ja) 多層成形品
JP4780153B2 (ja) 積層樹脂成形体、積層樹脂成形体製造方法及び多層成形品
JP4576782B2 (ja) 積層樹脂成形体及び多層成形品
JP6620741B2 (ja) エチレン−ビニルエステル系共重合体ケン化物樹脂組成物、高圧ガス用樹脂チューブ又は複合容器用樹脂ライナー、及び高圧ガスホース又は複合容器
KR20080022197A (ko) 적층체
JP6370683B2 (ja) 熱可塑性樹脂フィルムとその製造方法、加飾フィルム、積層フィルム、および積層体
KR100830789B1 (ko) 다층 적층체의 제조 방법
JP5480632B2 (ja) 接着性フッ化ビニリデン系樹脂シート
EP1818345A1 (en) Fluorine-containing copolymer
JP6016917B2 (ja) 成形体
JP2016094537A (ja) 熱可塑性樹脂組成物とその製造方法、成形体、および熱可塑性樹脂フィルム
JP4771217B2 (ja) 含フッ素共重合体の積層ホース
JP3972917B2 (ja) 積層体
JP4619650B2 (ja) 積層ホース
KR20150052253A (ko) 적층 시트 및 그 제조 방법 그리고 표면 보호 시트
JP4626529B2 (ja) 多層積層体の製造方法
JP6780923B2 (ja) 樹脂組成物、多層構造体、多層シート及び容器
JPH0753824A (ja) 樹脂組成物
JP4605500B2 (ja) 流体搬送ライン用物品及びその製造方法
WO2015125930A1 (ja) フッ素樹脂積層体およびその製造方法
JP6392090B2 (ja) 熱可塑性樹脂フィルムとその製造方法、光学フィルム、偏光子保護フィルム、および位相差フィルム
JP2022120387A (ja) 変性ビニルアルコール系重合体を含有する延伸フィルムおよび積層体並びにそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13809597

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013809597

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013809597

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14405884

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014522609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE