WO2014002370A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2014002370A1
WO2014002370A1 PCT/JP2013/003221 JP2013003221W WO2014002370A1 WO 2014002370 A1 WO2014002370 A1 WO 2014002370A1 JP 2013003221 W JP2013003221 W JP 2013003221W WO 2014002370 A1 WO2014002370 A1 WO 2014002370A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
outside air
heat exchanger
heating
blown
Prior art date
Application number
PCT/JP2013/003221
Other languages
English (en)
French (fr)
Inventor
樋口 輝一
柳町 佳宣
康弘 横尾
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201380034365.XA priority Critical patent/CN104411521A/zh
Priority to DE201311003244 priority patent/DE112013003244T5/de
Priority to US14/411,149 priority patent/US20150122472A1/en
Publication of WO2014002370A1 publication Critical patent/WO2014002370A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00835Damper doors, e.g. position control
    • B60H1/00849Damper doors, e.g. position control for selectively commanding the induction of outside or inside air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3211Control means therefor for increasing the efficiency of a vehicle refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3272Cooling devices output of a control signal related to a compressing unit to control the revolving speed of a compressor

Definitions

  • the present disclosure relates to a vehicle air conditioner including a refrigeration cycle in which a refrigerant is circulated by an electric compressor.
  • Patent Document 1 discloses an intermediate period heating when the target temperature (Tao) of the blown air blown into the passenger compartment is slightly lower than the outside air temperature (Tam) or when the Tao is slightly higher than Tam. Interim control during operation is disclosed.
  • both air cooling by the evaporator of the refrigeration cycle and air heating by the heater are performed.
  • the blowing air is adjusted to Tao by adjusting the heating degree by a heater with an air mix door.
  • the discharge amount of the electric compressor since the discharge amount of the electric compressor has a minimum discharge amount, it is necessary to reduce the discharge amount of the electric compressor and adjust the blown air temperature accurately in the intermediate period when the temperature difference between Tao and Tam is small. It is difficult. Therefore, in the above-described intermediate period control, cooling is performed even during the heating operation, and heating is performed even during the cooling operation, and the temperature is adjusted by the air mix door.
  • An object of the present disclosure is to provide a vehicle air conditioner that reduces power consumption of an electric compressor.
  • a vehicle air conditioner in the refrigeration cycle, a blower that blows air and blows out the air from a blower outlet into the vehicle interior, a refrigeration cycle that circulates refrigerant using an electric compressor, and the like. And an indoor heat exchanger for exchanging heat with the refrigerant for the blown air blown by the blower, an inside / outside air adjusting device for adjusting the ratio of the inside air to the outside air contained in the blown air, and a blowout blown from the blowout port
  • the blower is operated with the electric compressor stopped, and at least air containing outside air is blown into the vehicle interior.
  • a first air blow control unit for controlling the operation of the inside / outside air adjusting device.
  • Tao is a temperature close to Tam
  • the electric compressor is stopped and air containing outside air is blown by the blower, so that the blown air can be brought to a temperature close to Tao while reducing power consumption.
  • the user's comfort is not significantly reduced even if the blown air temperature slightly deviates from Tao, rather than adjusting the blown air temperature with high accuracy so that it matches Tao. This prioritizes a reduction in power consumption of the compressor.
  • an electric vehicle system 1 is mounted on an electric vehicle.
  • An electric vehicle is a vehicle including an electric drive system including a storage battery and an electric motor.
  • the electric vehicle is a road traveling vehicle, a ship, or an aircraft.
  • the electric vehicle can be provided by a so-called electric vehicle having only an electric drive system.
  • the electric vehicle may be provided by a hybrid vehicle including an internal combustion engine system including a fuel tank and an internal combustion engine in addition to an electric drive system.
  • the electric vehicle system 1 includes a high voltage battery (HVBT) 2.
  • the high voltage battery 2 is a secondary battery.
  • the high voltage battery 2 can be provided by a lithium ion battery or the like.
  • the high voltage battery 2 supplies a relatively high voltage of several hundred volts.
  • the high-voltage battery 2 is charged from a stationary wide-area power network or from a generator mounted on a vehicle.
  • the electric vehicle system 1 includes a battery control unit (BTCU) 3.
  • the battery control device 3 monitors charge / discharge of the high-voltage battery 2 and controls the charge / discharge.
  • the electric vehicle system 1 includes an electric motor (DRMT) 4 for traveling.
  • the electric motor 4 drives the drive wheels of the electric vehicle.
  • the high voltage battery 2 is mainly designed to supply power to the electric motor 4.
  • the electric vehicle system 1 includes a high voltage device (HVDV) 5 mounted on the electric vehicle.
  • the high-voltage device 5 does not include the electric motor 4 for traveling.
  • the high voltage device 5 is a device having a rated voltage suitable for power supply from the high voltage battery 2.
  • the electric vehicle system 1 includes a converter (CONV) 6 and a low voltage battery (LVBT) 7.
  • the converter 6 converts the power supplied from the high voltage battery 2 and supplies it to the low voltage battery 7.
  • Converter 6 charges low voltage battery 7.
  • the converter 6 is also one of the high voltage devices 5.
  • the low voltage battery 7 is a secondary battery having a relatively low voltage.
  • the low voltage battery 7 supplies a voltage of about 10 volts, for example, 12 volts or 24 volts.
  • the low voltage battery 7 is charged from the high voltage battery 2 via the converter 6.
  • the electric vehicle system 1 includes a plurality of low-voltage devices (LVDV) 8.
  • the plurality of low-voltage devices 8 operate at a voltage lower than the voltage of the high-voltage battery 2.
  • the plurality of low voltage devices 8 are operated by electric power supplied from the low voltage battery 7.
  • the plurality of low-pressure devices 8 include most devices of the air conditioner 20 described later. Only the electric compressor 41 of the air conditioner 20 is not included in the low-pressure device 8.
  • the electric vehicle system 1 can include a vehicle windshield 9.
  • the windshield 9 is installed in front of the driver of the vehicle.
  • the windshield 9 is also called a windshield.
  • the electric vehicle system 1 includes a window heater (WDSH) 10 provided on the windshield 9.
  • the window heater 10 is an electrical heater device that is provided on the windshield 9 and can directly heat the windshield 9.
  • the window heater 10 can be provided by a heating wire laid on the windshield 9 or a transparent heating element attached to the windshield 9.
  • the window heater 10 is one of the low-voltage devices 8 and is supplied with power from the low-voltage battery 7.
  • the window heater 10 is an element that can exert a heating function for the windshield 9 even when the electric compressor is stopped.
  • the window heater 10 is the only heating element that can heat the windshield 9 directly.
  • the window heater 10 directly suppresses the fogging of the windshield 9 by directly raising the temperature of the windshield 9.
  • the electric vehicle system 1 includes a vehicle air conditioner (AIRC) 20.
  • the window heater 10 can be considered as one component of the air conditioner 20.
  • the air conditioner 20 includes an air conditioning unit (HVAC) 21.
  • HVAC air conditioning unit
  • the air conditioning unit 21 is also referred to as an HVAC (HeatingentiVentilating and Air-Conditioning) unit.
  • the air conditioning unit 21 includes a plurality of elements 22-31 for heating, blowing, and cooling the interior of the electric vehicle.
  • the air conditioning unit 21 provides a duct through which air can flow toward the room.
  • the inside / outside air switching device 22 selects the air to be introduced into the air conditioning unit 21.
  • the inside / outside air switching device 22 can select either inside air (RCL) or outside air (FRS).
  • the inside / outside air switching device 22 may adjust the ratio between the inside air and the outside air continuously or stepwise.
  • the inside / outside air switching device 22 can be provided by an inside air passage, an outside air passage, and a switching damper mechanism.
  • the switching damper mechanism has an opening, and either the inside air passage or the outside air passage cannot be completely closed. That is, the outside air is mixed from the opening even in the inside air mode, and the inside air is mixed from the opening even in the outside air mode.
  • the inside air is air that is circulated from inside the room. Outside air is air newly introduced from the outside. When indoor heating is required, the outside air is often cooler than the inside air. For this reason, the outside air often has a lower humidity than the inside air. Also, due to the users in the room, the humidity is often lower than when there is no outside air. Therefore, the outside air can be used to reduce the humidity of the air blown from the air conditioning unit 21 or to reduce the indoor humidity.
  • the inside / outside air switching device 22 switches between an outside air mode for introducing outside air from the outside and an inside air mode for circulating inside air in the room.
  • the inside / outside air switching device 22 reduces the indoor humidity when the outside air mode is selected.
  • the inside / outside air switching device 22 is one of humidity reducing devices that reduce the humidity in the room even when the electric compressor 41 is stopped.
  • the inside / outside air switching device 22 indirectly suppresses fogging of the windshield 9 by reducing indoor humidity.
  • the blower 23 generates an air flow toward the room in the air conditioning unit 21.
  • the blower 23 is also called a blower fan.
  • the cooling heat exchanger 24 (indoor heat exchanger) is a part of the refrigeration cycle 40 described later.
  • the cooling heat exchanger 24 is an indoor heat exchanger of the refrigeration cycle 40.
  • the cooling heat exchanger 24 is provided by the evaporator of the refrigeration cycle 40.
  • the cooling heat exchanger 24 cools the air flowing in the air conditioning unit 21 with the refrigerant.
  • a low-temperature and low-pressure refrigerant flowing through the refrigeration cycle 40 flows through the cooling heat exchanger 24.
  • the cooling heat exchanger 24 is disposed so as to cool the entire amount of air flowing through the air conditioning unit 21.
  • the cooling heat exchanger 24 can cool the air only when the electric compressor 41 that is the high-pressure device 5 operates. Therefore, the cooling heat exchanger 24 is an air cooling element that loses the function of cooling the air when the electric compressor 41 is stopped.
  • the cooling heat exchanger 24 exhibits a cooling function only when the refrigeration cycle 40 is cooled. Condensed water is generated on the surface of the cooling heat exchanger 24 while performing the cooling function. When the cooling heat exchanger 24 loses the cooling function, the condensed water evaporates and is blown out into the room.
  • the cooling heat exchanger 24 is the only air cooling element in the air conditioner 20.
  • the air mix damper 25 adjusts the temperature of the blown air by adjusting the ratio of hot air and cold air in the air conditioning unit 21.
  • the air mix damper 25 adjusts the ratio of the amount of air that passes through the air heating element described later and the amount of air that bypasses the air heating element.
  • the air mix damper 25 provides a temperature adjusting member that adjusts the temperature of the blown air.
  • the heating heat exchanger 26 (indoor heat exchanger) is a part of the refrigeration cycle 40 described later.
  • the heating heat exchanger 26 is an indoor heat exchanger of the refrigeration cycle 40.
  • the heating heat exchanger 26 is provided by the condenser of the refrigeration cycle 40.
  • the heating heat exchanger 26 heats the air flowing in the air conditioning unit 21 with the refrigerant.
  • a high-temperature and high-pressure refrigerant flows through the heating heat exchanger 26.
  • the heating heat exchanger 26 is disposed so as to heat at least a part of the air flowing in the air conditioning unit 21.
  • the heating heat exchanger 26 is one of air heating elements.
  • the heating heat exchanger 26 can heat the air only when the electric compressor 41 that is the high-pressure device 5 operates. Therefore, the heat exchanger 26 for heating is an air heating element that loses the heating function for the windshield 9 when the electric compressor 41 is stopped.
  • the electric heater 27 heats the air flowing through the air conditioning unit 21 and blown into the room with electric power.
  • the electric heater 27 is disposed so as to heat at least a part of the air flowing in the air conditioning unit 21.
  • the electric heater 27 is provided by an electric heating element.
  • the electric heater is provided by a heating element called a PTC (Positive Temperature Coefficient) heater.
  • the electric heater 27 is one of the low-pressure devices 8.
  • the electric heater 27 is supplied with power from the low-voltage battery 7.
  • the electric heater 27 is one of air heating elements that heats the air blown into the interior of the electric vehicle and indirectly heats the windshield 9.
  • the electric heater 27 is an air heating element that can exhibit a heating function for the windshield 9 even when the electric compressor 41 is stopped.
  • the electric heater 27 is one of heating elements that can indirectly heat the windshield 9.
  • the electric heater 27 indirectly suppresses fogging of the windshield 9 by raising the temperature of the windshield 9.
  • the blowing mode switching device 31 switches the air blowing mode from the air conditioning unit 21 to the room.
  • the blowing mode switching device 31 provides a plurality of blowing modes by selectively opening and closing the plurality of blowing outlets 31a, 31b, 31c.
  • the blowing mode switching device 31 can include a plurality of air passages and a plurality of damper devices that open and close the air passages.
  • the blowing mode switching device 31 provides a defroster outlet (DEF) 31a, a face outlet (FC) 31b, and a foot outlet (FT) 31c.
  • the blowout mode switching device 31 provides a plurality of blowout modes by combining the plurality of blowout ports 31a, 31b, and 31c.
  • the air flowing through the air conditioning unit 21 is blown mainly from the defroster outlet 31a toward the windshield 9.
  • the air flowing through the air conditioning unit 21 is blown out mainly from the face blowing port 31b toward the upper body of the occupant.
  • the air flowing through the air conditioning unit 21 is blown out mainly from the foot outlet 31c toward the feet of the passenger.
  • the air conditioner 20 includes a refrigeration cycle (CYCL) 40.
  • the cooling heat exchanger 24 provides an indoor heat exchanger for cooling the refrigeration cycle 40.
  • the heating heat exchanger 26 provides an indoor heat exchanger for heating the refrigeration cycle 40.
  • the refrigeration cycle 40 includes at least a cooling heat exchanger 24 in order to allow at least air to be cooled.
  • the refrigeration cycle 40 of this embodiment is a heat pump cycle capable of both air cooling and air heating.
  • the refrigeration cycle 40 includes an electric compressor 41.
  • the electric compressor 41 includes a compressor 42 and an electric motor (CPMT) 43.
  • the rotating shaft of the compressor 42 is connected to the rotating shaft of the electric motor 43.
  • the electric motor 43 drives the compressor 42.
  • the compressor 42 is driven by the electric motor 43 to suck in the refrigerant, compress the sucked refrigerant, and discharge the compressed refrigerant.
  • the electric motor 43 is one of the high-voltage devices 5.
  • the electric motor 43 rotates by receiving a high voltage from the high voltage battery 2.
  • the electric motor 43 is one of the loads with large power consumption among the electric loads mounted on the electric vehicle. In the illustrated example, the electric motor 43 is an electrical load having the largest power consumption after the traveling electric motor 4. Therefore, by prohibiting power feeding to the electric motor 43, it is possible to suppress a decrease in the remaining amount of the high-voltage battery 2. By prohibiting power feeding to the electric motor 43, the travel distance of the electric vehicle can be extended.
  • a gas-liquid separator 44 is provided on the suction side of the compressor 42.
  • the compressor 42 sucks the refrigerant from the gas / liquid separator 44.
  • a heating heat exchanger 26 is provided on the discharge side of the compressor 42.
  • the compressor 42 supplies a high-temperature and high-pressure refrigerant to the heating heat exchanger 26.
  • the heating heat exchanger 26 functions as a radiator or a condenser in the refrigeration cycle 40.
  • the refrigeration cycle 40 includes an outdoor heat exchanger 45.
  • the outdoor heat exchanger 45 is installed outside the electric vehicle and is configured to exchange heat with the outside air.
  • the outdoor heat exchanger 45 can function as an evaporator or a radiator.
  • the outdoor heat exchanger 45 is provided between the heating heat exchanger 26 and the cooling heat exchanger 24.
  • the refrigerant that has flowed through the heating heat exchanger 26 is supplied to the outdoor heat exchanger 45.
  • the refrigerant that has flowed through the outdoor heat exchanger 45 can be supplied to the cooling heat exchanger 24.
  • a parallel circuit including a decompressor 46 and an on-off valve 47 is disposed between the heat exchanger 26 for heating and the outdoor heat exchanger 45.
  • the parallel circuit provides part of the switching device in the refrigeration cycle 40.
  • the decompressor 46 can be provided by an expansion valve or a capillary tube.
  • the on-off valve 47 is an electromagnetic valve provided with an electromagnetic actuator.
  • the refrigerant that has flowed through the heating heat exchanger 26 flows into the outdoor heat exchanger 45 through the decompressor 46 or the on-off valve 47.
  • the on-off valve 47 When the on-off valve 47 is opened, the refrigerant flows through the on-off valve 47. Therefore, the refrigerant that has flowed through the heating heat exchanger 26 flows to the outdoor heat exchanger 45 while maintaining a high temperature and a high pressure.
  • the outdoor heat exchanger 45 functions as a radiator.
  • a series circuit including a decompressor 48 and a switching valve 49 is disposed between the outdoor heat exchanger 45 and the cooling heat exchanger 24 .
  • the series circuit provides part of the switching device in the refrigeration cycle 40.
  • the decompressor 48 can be provided by an expansion valve or a capillary tube.
  • the switching valve 49 is an electromagnetic valve provided with an electromagnetic actuator.
  • the switching valve 49 is a three-port switching valve.
  • the switching valve 49 has a common port that communicates with the outdoor heat exchanger 45, a first port that communicates with the decompressor 48, and a second port that communicates with the gas-liquid separator 44.
  • the second port provides a bypass passage through which the refrigerant flowing through the outdoor heat exchanger 45 can flow to the gas-liquid separator 44 without passing through the decompressor 48 and the cooling heat exchanger 24.
  • the switching valve 49 selectively provides a communication state between the common port and the first port and a communication state between the common port and the second port. When the switching valve 49 communicates between the common port and the first port, the refrigerant flows through the decompressor 48 and the cooling heat exchanger 24. Therefore, the refrigerant flowing through the outdoor heat exchanger 45 is decompressed by the decompressor 48 and flows through the cooling heat exchanger 24.
  • the low-temperature and low-pressure refrigerant evaporates in the cooling heat exchanger 24 and cools the air in the air conditioning unit 21. Therefore, when the switching valve 49 causes the refrigerant to flow through the decompressor 48, the cooling heat exchanger 24 functions as an evaporator. When the switching valve 49 communicates between the common port and the second port, the refrigerant flows bypassing the cooling heat exchanger 24. Therefore, the refrigerant that has flowed through the outdoor heat exchanger 45 is sucked into the compressor 42 via the gas-liquid separator 44 as it is. At this time, only the heat exchanger 26 for heating functions.
  • the on-off valve 47 and the switching valve 49 are controlled in conjunction with each other.
  • the switching valve 49 causes the refrigerant to flow through the decompressor 49 and the cooling heat exchanger 24.
  • the cooling heat exchanger 24 functions as an evaporator to cool the air flowing in the air conditioning unit 21, and the heating heat exchanger 26 functions as a radiator to convert the air flowing in the air conditioning unit 21.
  • Heat When the on-off valve 47 closes the air conditioning unit refrigerant, the switching valve 49 bypasses the decompressor 49 and the cooling heat exchanger 24 and allows the refrigerant to flow. At this time, the cooling heat exchanger 24 is disabled, and the heating heat exchanger 26 functions as a radiator to heat the air flowing in the air conditioning unit 21.
  • the air conditioner 20 includes a control unit (ACCU) 60 for air conditioning.
  • the air conditioning control device 60 constitutes a control system for controlling the air conditioning device 20.
  • the air conditioning control device 60 inputs signals from a plurality of input devices including a plurality of sensors, and controls a plurality of actuators based on these signals and a preset control program.
  • the air conditioning control device 60 controls a plurality of actuators related to indoor temperature control.
  • the air conditioning control device 60 can control the air mix damper 25 and the blower 23 so that the room temperature Tr, which is the room temperature, matches the set temperature Tset.
  • the air conditioning control device 60 can operate the electric compressor 41 within the range of the available electric energy allowed by the battery control device 3.
  • the air conditioning control device 60 can control the cooling heat exchanger 24 and the heating heat exchanger 26 to a predetermined temperature state by controlling the plurality of valves 47 and 49.
  • the air conditioning control device 60 controls a plurality of actuators that can directly or indirectly participate in the suppression of fogging of the windshield 9.
  • the air conditioner 20 includes an operation panel (PANL) 61.
  • the operation panel 61 includes a plurality of switches for operating the air conditioner 20 and a display device that indicates an operating state of the air conditioner 20. Therefore, the operation panel 61 is one of input devices and one of output devices of the control system.
  • the plurality of switches are a setter for setting the set temperature Tset, an inside / outside air switch for selecting inside air or outside air, an air volume switch for setting the air volume, an air conditioner switch for selecting cooling or heating, and a blowing mode for selecting a blowing mode.
  • a switch can be included.
  • the blowing mode switch can include a DEF switch for selecting a defroster blowing mode from the defroster outlet 31a.
  • the air conditioner 20 includes a plurality of sensors.
  • the plurality of sensors includes a dew condensation sensor (FGSN) 62 that detects the relative humidity RHW on the inner surface of the windshield 9.
  • the dew condensation sensor 62 provides a sensor that detects fogging of the windshield 9.
  • the output signal of the dew condensation sensor 62 indicates the relative humidity RHW at the inner surface temperature of the windshield 9. Therefore, it can be said that the windshield 9 may be clouded when the relative humidity RHW output from the dew condensation sensor 62 exceeds 100%.
  • the relative humidity RHW output from the dew condensation sensor 62 is less than 100%, it can be determined that the windshield 9 is not likely to be fogged. Further, when the relative humidity RHW output from the dew condensation sensor 62 greatly exceeds 100%, it can be determined that the windshield 9 is likely to be fogged.
  • the air conditioning control device 60 inputs signals from, for example, a room temperature sensor that detects the room temperature Tr, a setting device that sets the set temperature Tset, and an outside air temperature sensor that detects the outside air temperature Tam.
  • the air conditioning control device 60 can input signals from a solar radiation sensor that detects the amount of solar radiation and a sensor that detects the surface temperature of the heat exchange fins of the cooling heat exchanger 24.
  • the air conditioning control device 60 can input a signal indicating the current operating state of the refrigeration cycle 40, that is, cooling operation or heating operation.
  • the air conditioning control device 60 can input signals from a plurality of sensors that detect the refrigerant pressure and / or the refrigerant temperature in each part of the refrigeration cycle 40. For example, a signal can be input from a sensor that detects the pressure of the high-pressure refrigerant in the refrigeration cycle 40 and a sensor that detects the pressure of the low-pressure refrigerant.
  • the air conditioning control device 60 calculates the target temperature Tao of the air blown out from the air outlets 31a, 31b, 31c based on the set temperature Tset, the outside air temperature Tam, the room temperature Tr, the signal from the dew condensation sensor 62, and the like.
  • the target temperature Tao is set as an optimum value that matches the room temperature Tr with the set temperature Tset. For example, data representing the relationship between the set temperature Tset, the outside air temperature Tam, the room temperature Tr, and the optimum value of the target temperature Tao is stored in advance in the form of a map or the like, and the map is based on these parameters Tset, Tam, Tr.
  • the target temperature Tao is calculated with reference to FIG.
  • the air conditioning control device 60 includes an operation mode determination unit (OPMT) 63 that determines whether the air conditioning device 20 is operated in the cooling mode, the heating mode, or the air blowing mode.
  • OPMT operation mode determination unit
  • In the heating mode warm air is blown out from the foot outlet 31c and the defroster outlet 31a to heat the passenger compartment.
  • In the cooling mode cool air is blown out from the face outlet 31b to cool the passenger compartment.
  • In the air blowing mode with the various heaters 10 and 27 and the electric compressor 41 stopped, the outside air is blown into the vehicle interior without heat exchange, and the vehicle interior is kept at an appropriate temperature. Low outside air is introduced into the passenger compartment and blown.
  • the operation mode determination unit 63 determines whether to switch to the warm air mode, the cooling mode, or the air blowing mode based on the target temperature Tao and the outside air temperature Tam. In this embodiment, the determination is made based on the map shown in FIG.
  • a solid line L1 in the figure indicates a line (heating determination line) in which the outside air temperature Tam is lower than the target temperature Tao by a predetermined value (for example, 5 ° C.).
  • a solid line L2 in the figure indicates a line (cooling determination line) in which the outside air temperature Tam is higher than the target temperature Tao by a predetermined value (for example, 5 ° C.).
  • the amount of offset of the heating determination line L1 with respect to the reference line L matches the amount of offset of the cooling determination line L2 with respect to the reference line L.
  • the operation mode determination unit 63 determines that the current mode is the blowing mode if the outside air temperature Tam and the target temperature Tao acquired at the present time are located in a region (blowing region) between the heating determination line L1 and the cooling determination line L2. To do. That is, when the temperature difference between the target temperature Tao and the outside air temperature Tam is less than a predetermined value, it is determined that the blower mode is set.
  • the heating mode is determined. If it is located in a region (cooling region) on the high Tam side and the low Tao side from the cooling determination line L2, it is determined that the cooling mode.
  • the air conditioning control device 60 includes a normal control unit (NRCT) 64 that controls the operation of the air conditioning device 20 in a cooling mode or a heating mode.
  • NRCT normal control unit
  • the normal control unit 64 performs feedback control of the components of the air conditioner 20 so that the blown air temperature becomes the target temperature Tao.
  • the air conditioning control device 60 includes an air blowing control unit (VTCT) 65 that controls the operation of the air conditioning device 20 in the air blowing mode.
  • VTCT air blowing control unit
  • the air blowing control unit 65 controls the inside / outside air switching device to be fixed to the outside air mode in place of the feedback control by the normal control unit 64, and the various heaters 10, 27 Then, the electric compressor 41 is stopped, and the blower 23 is fixedly controlled in the operating state.
  • the control provided by the air blowing control unit 65 uses only the power of the low-voltage battery 7 without using the power of the high-voltage battery 2, and suppresses the fogging of the windshield 9 and brings the room temperature Tr closer to the set temperature Tset. It is control to do.
  • the battery control device 3 and the air conditioning control device 60 are provided by a microcomputer provided with a computer-readable storage medium.
  • the storage medium stores a computer-readable program non-temporarily.
  • the storage medium can be provided by a semiconductor memory or a magnetic disk.
  • the program By being executed by the control device, the program causes the control device to function as the device described in this specification, and causes the control device to function so as to execute the control method described in this specification.
  • the means provided by the control device can also be called a functional block or module that achieves a predetermined function.
  • FIG. 3 shows an air conditioning process 170 for performing normal control and air blowing control.
  • the air conditioning control device 60 repeatedly executes the air conditioning processing 170 at a predetermined cycle.
  • step 171 the air conditioning control device 60 acquires information necessary for the air conditioning processing 170. For example, various physical quantities such as the amount of solar radiation are acquired in addition to the set temperature Tset, the outside air temperature Tam, the room temperature Tr, and the relative humidity RHW. Then, an optimum value of the target temperature Tao is calculated based on these acquired values.
  • step 172 it is determined whether to switch to the heating mode, the air blowing mode, or the cooling mode based on the target temperature Tao and the outside air temperature Tam using the map of FIG. If it is determined to switch to the air blowing mode, the process proceeds to step 190, and if it is determined to be the heating mode or the cooling mode, the process proceeds to step 180.
  • Step 180 provides the normal control unit 64, and the air conditioning control device 60 executes normal control.
  • step 181 the air conditioning control device 60 controls the refrigeration cycle 40 including the electric compressor 41 based on the determination result of the operation mode determination unit 63. That is, if the available electric energy allowed by the battery control device 3 is sufficient to operate the electric compressor 41, the electric compressor 41 is operated at a rotation speed corresponding to the target temperature Tao.
  • the switching valve 47 is operated so that the on-off valve 47 is operated so that the refrigerant flows through the decompressor 46, and the refrigerant flows by bypassing the decompressor 48 and the cooling heat exchanger 24. 49 is activated. Therefore, in the heating mode, while the dehumidification by the cooling heat exchanger 24 (cooler) is prohibited, the blown air is heated by a heater such as the heating heat exchanger 26 and various heaters 27 to heat the heater.
  • the normal control unit 63 during the control (non-dehumidifying heating control) to perform the heating operation while prohibiting dehumidification may correspond to the non-dehumidifying heating control unit.
  • the switching valve 47 is operated so that the refrigerant flows through the pressure reducer 48 and the cooling heat exchanger 24 while operating the on-off valve 47 so that the refrigerant flows by bypassing the pressure reducer 46. 49 is activated. Accordingly, in both the heating mode and the cooling mode, the refrigerant flows through the heating heat exchanger 26 (indoor heat exchanger). That is, the refrigeration cycle 40 does not include a refrigerant passage that bypasses the heating heat exchanger 26, and has a configuration in which the refrigerant constantly flows through the heating heat exchanger 26.
  • the air conditioning control device 60 controls the inside / outside air switching device 22.
  • inside air or outside air is selected according to a user's request.
  • the inside / outside air switching device 22 is controlled to suppress fogging of the windshield 9 indicated by a signal from the dew condensation sensor 62.
  • the inside / outside air switching device 22 is set to the inside air mode on condition that the occurrence of fogging in the windshield 9 is not detected.
  • the outside air mode is set. The occurrence of fogging is detected by a signal from the dew condensation sensor 62.
  • the air-conditioning control device 60 executes window heating control for heating the windshield 9.
  • the window heater 10 capable of directly heating the windshield 9 is controlled.
  • the window heater 10 energizes the window heater 10 to heat the windshield 9 when the occurrence of fogging is detected, and interrupts the energization to the window heater 10 when occurrence of fogging is not detected.
  • step 184 the air-conditioning control device 60 adjusts the degree of heating of the air flowing in the air-conditioning unit 21 by the heating heat exchanger 26, and the temperature of the air blown out from the blowout ports 31a, 31b, 31c (blowing air) Control to adjust (temperature) is executed.
  • the air mix damper 25 is controlled.
  • the electric heater 27 is controlled.
  • the flow rate of the medium flowing to the warm medium heat exchanger 28 is controlled.
  • the blown air temperature is adjusted to the target temperature Tao, and the room temperature Tr is controlled to the set temperature Tset, thereby providing a comfortable temperature environment.
  • the air conditioning control device 60 controls the blowing mode switching device 31.
  • the blowing mode is selected so as to provide a comfortable environment for the user.
  • the air-conditioning control device 60 controls the blowing mode switching device 31 so as to realize the blowing mode requested by the user. Further, when automatic control is required, the air conditioning control device 60 automatically selects an appropriate blowing mode according to the temperature of the blowing air, and sets the blowing mode switching device 31 so as to realize the selected blowing mode. Can be controlled.
  • the air conditioning control device 60 controls the blower 23.
  • the air conditioning control device 60 controls the blower 23 so as to realize the air volume requested by the user. Furthermore, when automatic control is required, the air conditioning control device 60 can automatically control the blower 23 so as to realize an air volume necessary for controlling the room temperature Tr to the set temperature Tset.
  • the air conditioning control device 60 controls the display device of the air conditioning device 20.
  • the air conditioning control device 60 displays the air conditioning state such as the current room temperature Tr, the set temperature Tset, the air volume, and the blowing mode on the operation panel 61.
  • Step 190 provides the ventilation control part 65, and the air-conditioning control apparatus 60 performs ventilation control.
  • the air blow control unit 65 may be used as an example of a first layer wind control unit.
  • the first layer wind control unit blows the blower 23 in a state where the electric compressor 41 is stopped.
  • the operation of the inside / outside air adjusting device is controlled so that air including at least outside air is blown into the vehicle interior.
  • step 191 the air conditioning control device 60 forcibly stops the electric compressor 41 and fixes the stop OFF state. At this time, the electric compressor 41 is completely stopped. The electric compressor 41 is fixed in a stopped state without depending on the signal from the dew condensation sensor 62. Since the electric compressor 41 is continuously held in the stopped state, the discharge from the high-voltage battery 2 is suppressed. As a result, the electric power of the high voltage battery 2 can be used for the electric motor 4 for traveling.
  • step 192 the air conditioning control device 60 fixes the inside / outside air switching device 22 in the outside air mode. Therefore, the air conditioning unit 21 introduces outside air having a relatively low humidity and a temperature at which the temperature difference from the target temperature Tao is less than a predetermined value.
  • step 193 the various heaters 10 and 27 are forcibly stopped, and the stop OFF state is fixed. Thereby, the discharge from the high voltage battery 2 is suppressed, and as a result, the electric power of the high voltage battery 2 can be used for the electric motor 4 for traveling. Further, the air conditioning unit 21 in the air blowing mode suppresses fogging of the windshield 9 by supplying outside air that is air having a relatively low humidity toward the room.
  • step 193 the air conditioning control device 60 fixes the window heater 10 to the ON state.
  • the window heater 10 is fixed in the operating state without depending on the signal from the dew condensation sensor 62. Therefore, the windshield 9 is continuously heated. As a result, fogging of the windshield 9 is suppressed.
  • step 193 the process proceeds to step 185.
  • step 185-187 is executed after passing through step 190, control according to the stop of the electric compressor 41 is executed.
  • step 185 the condition that the cooling effect by the cooling heat exchanger 24 cannot be obtained, and the condition that the heating effect by the heating heat exchanger 26 and the various heaters 10 and 27 cannot be obtained are imposed.
  • the blowing mode switching device 31 is controlled.
  • the target is achieved while reducing power consumption.
  • Air can be air-conditioned by blowing out air at a temperature close to the temperature Tao. For this reason, the power consumption of the high voltage battery 2 is suppressed.
  • the windshield 9 can be prevented from fogging by fixing to the outside air mode.
  • non-dehumidifying heating control is performed in the heating mode.
  • dehumidification is performed by the cooling heat exchanger 24 in the heating mode
  • condensed water is supplied to the cooling heat exchanger 24 in the heating mode. It will adhere. Therefore, for example, when the heating mode is switched to the air blowing mode as the target temperature Tao decreases, the condensed water generated in the air blowing mode evaporates during the air blowing mode. As a result, the odor component flows into the room from the outlets 31a, 31b, and 31c together with the blown air along with the evaporation, causing a problem that the occupant feels a bad odor.
  • the refrigeration cycle 40 has a configuration in which the cooling heat exchanger 24 and the outdoor heat exchanger 45 are connected in series, and the refrigerant constantly flows through the heating heat exchanger 26.
  • the amount of refrigerant required increases and the discharge capacity required for the electric compressor 41 also increases.
  • the amount of refrigerant can be reduced.
  • a passage that connects the cooling heat exchanger 24 and the outdoor heat exchanger 45 in parallel is required, and a switching valve that switches the refrigerant flow to the parallel passage is required. Incurs high costs.
  • the non-dehumidifying heating control is performed to eliminate the problem of bad odor.
  • the advantage of eliminating the parallel connection and connecting in series is more effective than the small effect.
  • the refrigeration cycle 40 having a configuration in which the cooling heat exchanger 24 and the outdoor heat exchanger 45 are connected in series is employed, the above-described merits are suitably exhibited.
  • FIG. 4 shows air blowing control according to the second embodiment. Also in this embodiment, the same configuration as in FIGS. 1 and 2 is employed. In this embodiment, step 192 of the previous embodiment is eliminated and steps 294, 295, 296 are added after step 193.
  • step 294 it is determined whether or not the temperature difference between the target temperature Tao and the outside air temperature Tam is equal to or greater than a predetermined value TH2. If
  • the inside / outside air switching device 22 has a structure in which a part of inside air is mixed even in the outside air mode. Therefore, a part of the outside air is mixed even in the inside air mode in step 295, and a part of the inside air is mixed even in the outside air mode in step 296. In short, if
  • the air blowing mode is performed if the temperature difference between the target temperature Tao and the outside air temperature Tam is less than a predetermined value (for example, 5 ° C.).
  • a predetermined value for example, 5 ° C.
  • the predetermined value used in this determination is referred to as a first predetermined value TH1
  • the predetermined value TH2 used in the inside / outside air determination in step 294 is referred to as a second predetermined value.
  • the second predetermined value TH2 is set to a value smaller than the first predetermined value.
  • a part of the air conditioning control device 60 that performs the control operation in step 295 may be used as an example of the second air blowing control unit.
  • the second blower control unit operates the blower 23 with the electric compressor 41 stopped, and the blown air
  • the operation of the inside / outside air adjusting device is controlled so as to reduce the outside air contained in the air.
  • the operation is performed in the heating mode. Then, as the room temperature Tr rises and approaches the set temperature Tset as time elapses in the heating mode operation, the target temperature Tao decreases. As a result,
  • the target temperature Tao decreases and becomes
  • the air flow control in the outside air mode is continued against the present embodiment, the outside air having a temperature lower than the set temperature Tset is indoors. As a result, the room temperature Tr decreases. As a result, the target temperature Tao rises to
  • the heating mode and the air blowing mode are repeatedly switched, the electric compressor is frequently turned on and off, and there is a concern about deterioration of the air conditioning feeling for the occupant and promotion of wear of each component. .
  • the mode is switched to the air blowing mode in which the outside air having a relatively low humidity is blown.
  • the cooling mode and the air blowing mode are repeatedly switched, the electric compressor is frequently turned on and off, and there is a concern about deterioration of the air conditioning feeling for the occupant and promotion of wear of each component. .
  • FIG. 5 shows an electric vehicle system according to the third embodiment.
  • the refrigeration cycle 340 is a cooler cycle capable of only cooling. Also in this embodiment, the same effect as the above embodiment can be obtained.
  • a warm medium heat exchanger 28 for heating the blown air with warm water is provided.
  • the heat medium heat exchanger 28 heats the air that flows through the air conditioning unit 21 and is blown into the room by a cooling medium for cooling a device (HS) 29 as a heat source mounted on the vehicle.
  • the heat medium heat exchanger 28 is disposed so as to heat at least a part of the air flowing in the air conditioning unit 21.
  • the heat medium heat exchanger 28 is a part of a cooling system for cooling the device 29.
  • the cooling medium is a heat transport fluid such as water.
  • the device 29 is a device that generates heat, and is provided by, for example, an electric device, an inverter circuit, or an internal combustion engine mounted on a vehicle.
  • the warm-medium heat exchanger 28 can heat the air with the heat supplied from the device 29 when the medium is circulating. Therefore, the warm-medium heat exchanger 28 can provide one of the air heating devices by itself.
  • the heat medium heat exchanger 28 is an air heating element that can exhibit a heating function even when the electric compressor 41 is stopped.
  • the heat medium heat exchanger 28 is one of heating elements that can indirectly heat the windshield 9.
  • the warm-medium heat exchanger 28 indirectly suppresses fogging of the windshield 9 by increasing the temperature of the windshield 9.
  • the cooling system including the hot medium heat exchanger 28 includes an electric medium heater 30 for heating the cooling medium.
  • the medium heater 30 heats the air flowing in the air conditioning unit 21 with electric power through the warm medium heat exchanger 28.
  • the medium heater 30 is disposed so as to indirectly heat at least a part of the air flowing in the air conditioning unit 21.
  • the medium heater 30 is provided by an electrical heating element.
  • the medium heater 30 is provided by a heating element called a PTC (Positive Temperature Coefficient) heater.
  • the medium heater 30 is one of the high-voltage devices 5.
  • the medium heater 30 is supplied with power from the high voltage battery 2. It is desirable that the medium heater 30 is turned off in the air blowing mode to reduce power consumption.
  • the air conditioning feeling can be improved by reducing the change in the blown air temperature.
  • the effect of reducing power consumption is greatly exhibited. That is, when heating is performed by the electric heater 30 as in this embodiment, the power consumption is extremely large compared to when heating is performed by the refrigeration cycle 40 as shown in FIG. This is because the COP (energy consumption efficiency) of the electric heater 30 is significantly lower than that of the heat pump.
  • the medium heater 30 is stopped in the air blowing mode, the disadvantage of large power consumption due to the low COP can be suppressed, and the effect of reducing the power consumption is greatly exhibited. Also in the present embodiment, it is desirable to perform the non-dehumidifying heating control in the heating mode as in the first embodiment.
  • switching between the inside air blowing area and other areas is determined based on the room temperature Tr instead of the outside air temperature Tam. You may do it. Further, switching between the inside air blowing area and another area may be determined based on the set temperature Tset instead of the target temperature Tao.
  • switching between the blowing area and other areas may be determined based on the set temperature Tset instead of the target temperature Tao.
  • the user can operate to switch between the eco mode operation and the normal mode operation.
  • the air blowing mode is performed as shown in FIG. 2, and when the normal mode is selected, The air blowing mode may be prohibited and the electric compressor 41 may be operated in the entire region of FIG.
  • control device can be provided by software only, hardware only, or a combination thereof.
  • control device may be configured by an analog circuit.
  • the heat pump cycle is provided by the refrigeration cycle 40 including the two indoor heat exchangers 24 and 26.
  • a heat pump cycle that includes a single indoor heat exchanger and switches the single indoor heat exchanger between a cooling application and a heating application may be employed.
  • an inversion type heat pump cycle that can switch between an operation mode in which the indoor heat exchanger is an evaporator and an operation mode in which the indoor heat exchanger is a radiator can be employed.
  • the inside air mode is fixed without depending on the signal of the dew condensation sensor 62.
  • the fogging may be removed by switching to the outside air mode.
  • the condensation sensor 62 when operating in the inside air mode during the air blowing mode, it may be switched to the outside air mode when the condensation sensor 62 detects clouding.
  • the various heaters 10, 27, and 30 in the air blowing mode are fixed in a stopped state without depending on the signal of the dew condensation sensor 62.
  • the various heaters 10, 27, 30 may be turned on to remove fogging.
  • the heating medium heat exchanger 28, the device 29, and the medium heater 30 shown in FIG. 5 are combined with the air conditioning system shown in FIG. 1, and the heating heat exchanger 26, the electric heater 27, and the heating medium heat exchanger 28 are air-conditioned. It may be a heating means.
  • a part of the inside air is mixed in the outside air mode and a part of the outside air is mixed in the inside air mode, but 100% of the outside air is introduced in the outside air mode, and 100% of the inside air is introduced in the inside air mode.
  • You may comprise as follows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 車両用空調装置は、吹出口から車室内へ吹き出させる送風機(23)と、電動圧縮機で冷媒を循環させる冷凍サイクル(40、340)と、冷凍サイクルに設けられ、送風機による送風空気を冷媒と熱交換させる室内熱交換器(24、26)と、送風空気に含まれる内気と外気の割合を調節する内外気調節装置(22)と、吹出口から吹き出させる吹出空気の目標温度Taoと外気温度Tamとの温度差が所定値未満である場合には、電動圧縮機を停止させた状態で送風機を作動させ、かつ、少なくとも外気を含む空気を車室内へ吹き出させるよう内外気調節装置の作動を制御する送風制御部(65)と、を備える。これによれば、TaoがTamに近い温度であれば、電動圧縮機を停止させて外気を含む空気を送風機で送風するので、消費電力低下を図りつつ吹出空気をTaoに近い温度にできる。

Description

車両用空調装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2012年6月29日に出願された日本特許出願2012-146540を基にしている。
 本開示は、電動圧縮機で冷媒を循環させる冷凍サイクルを備えた、車両用空調装置に関する。
 特許文献1には、車室内へ吹き出される吹出空気の目標温度(Tao)が外気温度(Tam)よりも僅かに低い中間期冷房運転のとき、或いはTaoがTamよりも僅かに高い中間期暖房運転のときの中間期制御が開示されている。
 当該中間期制御では、冷凍サイクルの蒸発器による空気の冷却、および加熱器による空気の加熱を両方とも実施する。そして、加熱器による加熱度合いをエアミックスドアで調整することにより、吹出空気をTaoに調整している。
 つまり、電動圧縮機の吐出量には最低吐出量が存在するため、電動圧縮機の吐出量を少なくして吹出空気温度を精度よく調整することは、TaoとTamの温度差が小さい中間期には困難である。そこで、上述した中間期制御では、暖房運転時であっても冷却を実施し、冷房運転時であっても加熱を実施して、エアミックスドアで温度調整している。
特開2009-202736号公報
 しかしながら、空気の冷却および加熱を同時に両方とも実施することはエネルギーロスであり、電動圧縮機の消費電力低下を図る上で、従来の中間期制御には改善の余地があるであろう。
 本開示の目的は、電動圧縮機の消費電力低下を図った車両用空調装置を提供することにある。
 本開示の一態様によると、車両用空調装置は、空気を送風して吹出口から車室内へ前記空気を吹き出させる送風機と、電動圧縮機で冷媒を循環させる冷凍サイクルと、前記冷凍サイクルに設けられ、前記送風機により送風される送風空気を前記冷媒と熱交換させる室内熱交換器と、前記送風空気に含まれる内気と外気の割合を調節する内外気調節装置と、前記吹出口から吹き出させる吹出空気の目標温度と外気温度との温度差が所定値未満である場合には、前記電動圧縮機を停止させた状態で前記送風機を作動させ、かつ、少なくとも外気を含む空気が車室内へ吹き出されるよう前記内外気調節装置の作動を制御する第1送風制御部と、を備える。
 これによれば、TaoがTamに近い温度であれば、電動圧縮機を停止させて外気を含む空気を送風機で送風するので、消費電力低下を図りつつ吹出空気をTaoに近い温度にできる。要するに、吹出空気温度がTaoから多少ずれていてもユーザの快適感は大幅に低下するものではないことに着目し、吹出空気温度がTaoに一致するように高精度で調整することよりも、電動圧縮機の消費電力低下を優先させるものである。
本開示の第1実施形態に係る電動車両システムを示す概略図である。 第1実施形態の運転モード領域を示す図である。 第1実施形態の空調制御を示すフローチャートである。 本開示の第2実施形態に係る空調制御を示すフローチャートである。 本開示の第3実施形態に係る電動車両システムを示す概略図である。
 以下に、図面を参照しながら開示された開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。また、後続の実施形態においては、先行する実施形態で説明した事項に対応する部分に百以上の位だけが異なる参照符号を付することにより対応関係を示し、重複する説明を省略する場合がある。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
(第1実施形態)
 図1において、電動車両システム1は、電動車両に搭載されている。電動車両は、蓄電池と電動機とを備える電気的な駆動システムを含む車両である。電動車両は、道路走行車両、船舶、または航空機である。電動車両は、電気的な駆動システムだけを備えるいわゆる電気自動車によって提供することができる。電動車両は、電気的な駆動システムに加えて、燃料タンクと内燃機関と備える内燃機関システムを備えるハイブリッド車両によって提供されてもよい。
 電動車両システム1は、高圧電池(HVBT)2を備える。高圧電池2は二次電池である。高圧電池2は、リチウムイオン電池などによって提供することができる。高圧電池2は、数百ボルトの比較的高い電圧を供給する。高圧電池2は、定置型の広域電力網から、または車両に搭載された発電機から充電される。電動車両システム1は、電池制御装置(BTCU)3を備える。電池制御装置3は、高圧電池2の充放電を監視し、その充放電を制御する。
 電動車両システム1は、走行用の電動機(DRMT)4を備える。電動機4は、電動車両の駆動輪を駆動する。高圧電池2は、主として電動機4に給電するために設計されている。
 電動車両システム1は、電動車両に搭載された高圧機器(HVDV)5を備える。高圧機器5は、走行用の電動機4を含まない。高圧機器5は、高圧電池2からの給電に適合した定格電圧をもつ機器である。
 電動車両システム1は、コンバータ(CONV)6と低圧電池(LVBT)7とを備える。コンバータ6は、高圧電池2から供給される電力を変換し、低圧電池7に供給する。コンバータ6は、低圧電池7を充電する。コンバータ6は、高圧機器5のひとつでもある。低圧電池7は、比較的低い電圧の二次電池である。低圧電池7は、十ボルト程度、例えば12ボルト、または24ボルトといった電圧を供給する。低圧電池7は、コンバータ6を経由して高圧電池2から充電される。
 電動車両システム1は、複数の低圧機器(LVDV)8を備える。複数の低圧機器8は、高圧電池2の電圧より低い電圧で作動する。複数の低圧機器8は、低圧電池7から供給される電力によって作動する。複数の低圧機器8は、後述する空調装置20のほとんどの機器を含む。唯一、空調装置20の電動圧縮機41だけが低圧機器8に含まれない。
 電動車両システム1は、車両のウインドシールド9を備えることができる。ウインドシールド9は、車両の運転者の前方に設置されている。ウインドシールド9は、フロントガラスとも呼ばれる。
 電動車両システム1は、ウインドシールド9に設けられた窓ヒータ(WDSH)10を備える。窓ヒータ10は、ウインドシールド9に設けられ、ウインドシールド9を直接的に加熱することができる電気的なヒータ装置である。窓ヒータ10は、ウインドシールド9に敷設された電熱線、またはウインドシールド9に貼り付けられた透明発熱体によって提供することができる。窓ヒータ10は、低圧機器8のひとつであって、低圧電池7から給電される。
 窓ヒータ10は、電動圧縮機が停止しているときにもウインドシールド9に対する加熱機能を発揮できる要素である。窓ヒータ10は、ウインドシールド9を直接的に加熱できる唯一の加熱要素である。窓ヒータ10は、ウインドシールド9の温度を直接的に上昇させることにより、直接的にウインドシールド9の曇りを抑制する。
 電動車両システム1は、車両用の空調装置(AIRC)20を備える。窓ヒータ10は、空調装置20のひとつの構成要素として考えることができる。空調装置20は、空調ユニット(HVAC)21を備える。空調ユニット21は、HVAC(Heating Ventilating and Air-Conditioning)ユニットとも呼ばれる。空調ユニット21は、電動車両の室内の暖房、送風、および冷房のための複数の要素22-31を備える。空調ユニット21は、室内に向けて空気を流すことができるダクトを提供する。
 内外気切換装置22(内外気調節装置)は、空調ユニット21に導入する空気を選択する。内外気切換装置22は、内気(RCL)、または外気(FRS)のいずれかを選択することができる。内外気切換装置22は、内気と外気との割合を連続的にまたは段階的に調節してもよい。内外気切換装置22は、内気通路と、外気通路と、切換えダンパ機構とによって提供することができる。
 切換えダンパ機構には、開口部が形成されており、内気通路および外気通路のいずれか一方を完全に閉鎖することはできない。つまり、内気モード時であっても前記開口部から外気が混入し、外気モード時であっても前記開口部から内気が混入するように構成されている。
 内気は、室内から循環的に導入された空気である。外気は、室外から新たに導入された空気である。室内に暖房が求められるとき、外気は内気より低温であることが多い。このため、外気は内気より低湿度であることが多い。また、室内に居る利用者に起因して、外気はないきより低湿度であることが多い。よって、外気は、空調ユニット21からの吹出空気の湿度を低下させるために、または室内の湿度を低下させるために利用することができる。
 内外気切換装置22は、室外から外気を導入する外気モードと、室内の内気を循環する内気モードとを切換える。内外気切換装置22は、外気モードを選択しているときに室内の湿度を低下させる。内外気切換装置22は、電動圧縮機41が停止しているときにも室内の湿度を低下させる湿度低下装置のひとつである。内外気切換装置22は、室内の湿度を低下させることにより、間接的にウインドシールド9の曇りを抑制する。
 送風機23は、空調ユニット21内において、室内に向かう空気流を発生させる。送風機23は、ブロワファンとも呼ばれる。
 冷却用熱交換器24(室内熱交換器)は、後述する冷凍サイクル40の一部である。冷却用熱交換器24は、冷凍サイクル40の室内熱交換器である。冷却用熱交換器24は、冷凍サイクル40の蒸発器によって提供される。冷却用熱交換器24は、冷媒によって空調ユニット21内を流れる空気を冷却する。冷却用熱交換器24には、冷凍サイクル40を流れる低温低圧の冷媒が流れる。冷却用熱交換器24は、空調ユニット21内を流れる空気の全量を冷却するように配置されている。
 冷却用熱交換器24は、高圧機器5である電動圧縮機41が作動するときにだけ、空気を冷却することができる。よって、冷却用熱交換器24は、電動圧縮機41が停止しているときに空気を冷却する機能を失う空気冷却要素である。冷却用熱交換器24は、冷凍サイクル40が冷却運転されるときにだけ冷却機能を発揮する。冷却用熱交換器24の表面には、冷却機能を発揮している間に結露水が発生する。冷却用熱交換器24が冷却機能を失うと、結露水は蒸発し、室内に吹出される。冷却用熱交換器24は、空調装置20における唯一の空気冷却要素である。
 エアミックスダンパ25は、空調ユニット21内において温風と冷風との割合を調節することにより、吹出空気の温度を調節する。エアミックスダンパ25は、後述する空気加熱要素を通過する空気量と、空気加熱要素をバイパスする空気量との割合を調節する。エアミックスダンパ25は、吹出空気の温度を調節する温度調節部材を提供する。
 加熱用熱交換器26(室内熱交換器)は、後述する冷凍サイクル40の一部である。加熱用熱交換器26は、冷凍サイクル40の室内熱交換器である。加熱用熱交換器26は、冷凍サイクル40の凝縮器によって提供される。加熱用熱交換器26は、冷媒によって空調ユニット21内を流れる空気を加熱する。加熱用熱交換器26には、高温高圧の冷媒が流れる。加熱用熱交換器26は、空調ユニット21内を流れる空気の少なくとも一部を加熱するように配置されている。加熱用熱交換器26は、空気加熱要素のひとつである。
 加熱用熱交換器26は、高圧機器5である電動圧縮機41が作動するときにだけ、空気を加熱することができる。よって、加熱用熱交換器26は、電動圧縮機41が停止しているときにウインドシールド9に対する加熱機能を失う空気加熱要素である。
 電気ヒータ27は、空調ユニット21内を流れ室内に吹出される空気を電力によって加熱する。電気ヒータ27は、空調ユニット21内を流れる空気の少なくとも一部を加熱するように配置されている。電気ヒータ27は、電気的な発熱素子によって提供される。電気ヒータは、PTC(Positive Temperature Coefficient)ヒータと呼ばれる発熱素子によって提供される。電気ヒータ27は、低圧機器8のひとつである。電気ヒータ27は、低圧電池7から給電される。
 電気ヒータ27は、電動車両の室内に吹出される空気を加熱し、ウインドシールド9を間接的に加熱する空気加熱要素のひとつである。電気ヒータ27は、電動圧縮機41が停止しているときにもウインドシールド9に対する加熱機能を発揮できる空気加熱要素である。電気ヒータ27は、ウインドシールド9を間接的に加熱できる加熱要素のひとつである。電気ヒータ27は、ウインドシールド9の温度を上昇させることにより、間接的にウインドシールド9の曇りを抑制する。
 吹出モード切換装置31は、空調ユニット21から室内への空気の吹出モードを切換える。吹出モード切換装置31は、複数の吹出口31a、31b、31cを選択的に開閉することにより、複数の吹出モードを提供する。吹出モード切換装置31は、複数の空気通路と、それら空気通路を開閉する複数のダンパ装置とを備えることができる。例えば、吹出モード切換装置31は、デフロスタ吹出口(DEF)31a、フェイス吹出口(FC)31b、およびフット吹出口(FT)31cを提供する。吹出モード切換装置31は、これら複数の吹出口31a、31b、31cを組み合わせて、複数の吹出モードを提供する。デフロスタ吹出モードにおいては、空調ユニット21内を流れた空気がデフロスタ吹出口31aから主としてウインドシールド9に向けて吹出される。フェイス吹出モードにおいては、空調ユニット21内を流れた空気がフェイス吹出口31bから主として乗員の上半身に向けて吹出される。フット吹出モードにおいては、空調ユニット21内を流れた空気がフット吹出口31cから主として乗員の足元に向けて吹出される。
 空調装置20は、冷凍サイクル(CYCL)40を備える。冷却用熱交換器24は、冷凍サイクル40の冷却用の室内熱交換器を提供する。加熱用熱交換器26は、冷凍サイクル40の加熱用の室内熱交換器を提供する。冷凍サイクル40は、少なくとも空気の冷却を可能とするために、少なくとも冷却用熱交換器24を備える。この実施形態の冷凍サイクル40は、空気の冷却および空気の加熱の両方が可能なヒートポンプサイクルである。
 冷凍サイクル40は、電動圧縮機41を備える。電動圧縮機41は、圧縮機42と、電動機(CPMT)43とを備える。圧縮機42の回転軸は、電動機43の回転軸に連結されている。電動機43は、圧縮機42を駆動する。圧縮機42は、電動機43によって駆動されることにより、冷媒を吸入し、吸入した冷媒を圧縮し、圧縮された冷媒を吐出する。電動機43は、高圧機器5のひとつである。電動機43は、高圧電池2から高電圧を給電されて回転する。電動機43は、電動車両に搭載された電気的な負荷の中でも消費電力が大きい負荷のひとつである。図示の例においては、電動機43は、走行用電動機4に次いで消費電力が大きい電気的な負荷である。よって、電動機43への給電を禁止することにより、高圧電池2残量の減少を抑制することができる。電動機43への給電を禁止することにより、電動車両の走行距離を延長することが可能である。
 圧縮機42の吸入側には気液分離器44が設けられている。圧縮機42は、気液分離器44から冷媒を吸入する。圧縮機42の吐出側には、加熱用熱交換器26が設けられている。圧縮機42は、高温高圧の冷媒を加熱用熱交換器26に供給する。加熱用熱交換器26は、冷凍サイクル40における放熱器、または凝縮器として機能する。
 冷凍サイクル40は、室外熱交換器45を備える。室外熱交換器45は、電動車両の室外に設置され、外気と熱交換可能に構成されている。室外熱交換器45は、蒸発器、または放熱器として機能することができる。室外熱交換器45は、加熱用熱交換器26と冷却用熱交換器24との間に設けられている。加熱用熱交換器26を流れた冷媒は、室外熱交換器45に供給される。室外熱交換器45を流れた冷媒は、冷却用熱交換器24に供給可能である。
 加熱用熱交換器26と室外熱交換器45との間には、減圧器46と開閉弁47とを含む並列回路が配置されている。並列回路は、冷凍サイクル40における切換装置の一部を提供する。減圧器46は、膨張弁またはキャピラリチューブによって提供することができる。開閉弁47は、電磁アクチュエータを備える電磁弁である。加熱用熱交換機26を流れた冷媒は、減圧器46または開閉弁47を通して室外熱交換器45へ流入する。開閉弁47が開かれているとき、冷媒は、開閉弁47を流れる。よって、加熱用熱交換器26を流れた冷媒は、高温高圧のまま、室外熱交換器45に流れる。開閉弁47が開かれて入るとき、室外熱交換器45は、放熱器として機能する。
 室外熱交換器45と冷却用熱交換器24との間には、減圧器48と切換弁49とを含む直列回路が配置されている。直列回路は、冷凍サイクル40における切換装置の一部を提供する。減圧器48は、膨張弁またはキャピラリチューブによって提供することができる。切換弁49は、電磁アクチュエータを備える電磁弁である。切換弁49は、3ポート切換弁である。切換弁49は、室外熱交換器45に連通する共通ポートと、減圧器48に連通する第1ポートと、気液分離器44に連通する第2ポートとを有する。第2ポートは、室外熱交換器45を流れた冷媒が、減圧器48および冷却用熱交換器24を経由することなく、気液分離器44に流れることができるバイパス通路を提供する。切換弁49は、共通ポートと第1ポートとの間の連通状態と、共通ポートと第2ポートとの間の連通状態とを選択的に提供する。切換弁49が共通ポートと第1ポートとを連通するとき、冷媒は、減圧器48と冷却用熱交換器24とを流れる。よって、室外熱交換器45を流れた冷媒は、減圧器48によって減圧され、冷却用熱交換器24を流れる。このとき、低温低圧の冷媒は、冷却用熱交換器24において蒸発し、空調ユニット21内の空気を冷却する。よって、切換弁49が減圧器48に冷媒を流すとき、冷却用熱交換器24は蒸発器として機能する。切換弁49が共通ポートと第2ポートとを連通するとき、冷媒は冷却用熱交換器24をバイパスして流れる。よって、室外熱交換器45を流れた冷媒は、そのまま気液分離器44を経由して、圧縮機42に吸入される。このとき、加熱用熱交換器26だけが機能する。
 開閉弁47および切換弁49は連動して制御される。開閉弁47が開くとき、切換弁49は、減圧器49と冷却用熱交換器24とに冷媒を流す。このとき、冷却用熱交換器24は蒸発器として機能することによって空調ユニット21内を流れる空気を冷却し、加熱用熱交換器26は放熱器として機能することによって空調ユニット21内を流れる空気を加熱する。空調ユニット冷媒を開閉弁47が閉じるとき、切換弁49は、減圧器49と冷却用熱交換器24とをバイパスして冷媒を流す。このとき、冷却用熱交換器24は無効化され、加熱用熱交換器26は放熱器として機能することによって空調ユニット21内を流れる空気を加熱する。
 空調装置20は、空調のための制御装置(ACCU)60を備える。空調制御装置60は、空調装置20を制御するための制御システムを構成する。空調制御装置60は、複数のセンサを含む複数の入力装置から信号を入力し、それら信号と予め設定された制御プログラムとに基づいて複数のアクチュエータを制御する。
 例えば、空調制御装置60は、室内の温度制御に関連する複数のアクチュエータを制御する。空調制御装置60は、室内の温度である室温Trが設定温度Tsetに一致するように、エアミックスダンパ25、および送風機23を制御することができる。また、空調制御装置60は、電池制御装置3によって許容された可用電力量の範囲内で、電動圧縮機41を運転することができる。さらに、空調制御装置60は、複数の弁47、49を制御することによって、冷却用熱交換器24および加熱用熱交換器26を所定の温度状態に制御することができる。さらに、空調制御装置60は、ウインドシールド9の曇りの抑制に直接的に、または間接的に関与できる複数のアクチュエータを制御する。
 空調装置20は、操作パネル(PANL)61を備える。操作パネル61は、空調装置20を操作するための複数のスイッチと、空調装置20の作動状態を示す表示装置とを備える。よって、操作パネル61は、入力装置のひとつであるとともに、制御システムの出力装置のひとつでもある。複数のスイッチは、設定温度Tsetを設定するための設定器、内気または外気を選択する内外気スイッチ、風量を設定する風量スイッチ、冷房または暖房を選択するエアコンスイッチ、および吹出モードを選択する吹出モードスイッチを含むことができる。吹出モードスイッチは、デフロスタ吹出口31aからのデフロスタ吹出モードを選択するためのDEFスイッチを含むことができる。
 空調装置20は、複数のセンサを備える。複数のセンサは、ウインドシールド9の内側の表面における相対湿度RHWを検出する結露センサ(FGSN)62を含む。結露センサ62は、ウインドシールド9の曇りを検出するセンサを提供する。結露センサ62の出力信号は、ウインドシールド9の内側表面温度における相対湿度RHWを示す。よって、結露センサ62が出力する相対湿度RHWが100%を上回ると、ウインドシールド9に曇りが生じる可能性があるといえる。一方、結露センサ62が出力する相対湿度RHWが100%を下回る場合、ウインドシールド9に曇りが生じる可能性はないと判定できる。また、結露センサ62が出力する相対湿度RHWが100%を大幅に上回る場合、ウインドシールド9に曇りが生じる可能性が高いと判定できる。
 空調制御装置60は、例えば、室温Trを検出する室温センサ、設定温度Tsetを設定する設定器、および外気温度Tamを検出する外気温度センサから信号を入力する。空調制御装置60は、日射量を検出する日射センサ、および冷却用熱交換器24の熱交換用フィンの表面温度を検出するセンサから信号を入力することができる。空調制御装置60は、冷凍サイクル40の現在の運転状態、すなわち冷房運転か暖房運転かを示す信号を入力することができる。空調制御装置60は、冷凍サイクル40の各部における冷媒圧力、および/または冷媒温度を検出する複数のセンサから信号を入力することができる。例えば、冷凍サイクル40の高圧冷媒の圧力を検出するセンサ、および低圧冷媒の圧力を検出するセンサから信号を入力することができる。
 空調制御装置60は、設定温度Tset、外気温度Tam、室温Trおよび結露センサ62からの信号等に基づき、吹出口31a、31b、31cから吹き出される空気の目標温度Taoを算出する。目標温度Taoは、室温Trを設定温度Tsetに一致させる最適値として設定される。例えば、設定温度Tset、外気温度Tamおよび室温Trと、目標温度Taoの最適値との関係を表したデータをマップ等の形式で予め記憶させておき、これらのパラメータTset、Tam、Trに基づきマップを参照して目標温度Taoを算出する。
 空調制御装置60は、空調装置20を、冷房モード、暖房モードおよび送風モードのいずれで運転させるかを判定する運転モード判定部(OPMT)63を備える。暖房モードでは、フット吹出口31cやデフロスタ吹出口31aから温風を吹き出して車室内を暖房する。冷房モードでは、フェイス吹出口31bから冷風を吹き出して車室内を冷房する。送風モードでは、各種ヒータ10、27および電動圧縮機41を停止させた状態で、外気を熱交換させることなくそのまま車室内へ吹き出させて、車室内を適度な温度に保つとともに、比較的湿度の低い外気を車室内へ導入して送風する。
 運転モード判定部63は、目標温度Taoおよび外気温度Tamに基づき、暖気モード、冷房モードおよび送風モードのいずれに切換えるかを判定する。本実施形態では、図2に示すマップに基づき判定する。
 図2中の一点鎖線Lは、外気温度Tamと目標温度Taoが一致するライン(基準ライン)を示す。図中の実線L1は、外気温度Tamが目標温度Taoよりも所定値(例えば5℃)だけ低いライン(暖房判定ライン)を示す。図中の実線L2は、外気温度Tamが目標温度Taoよりも所定値(例えば5℃)だけ高いライン(冷房判定ライン)を示す。基準ラインLに対する暖房判定ラインL1のオフセット量と、基準ラインLに対する冷房判定ラインL2のオフセット量とは一致する。
 運転モード判定部63は、現時点で取得されている外気温度Tamおよび目標温度Taoが、暖房判定ラインL1と冷房判定ラインL2の間の領域(送風領域)に位置していれば、送風モードと判定する。つまり、目標温度Taoと外気温度Tamとの温度差が所定値未満である場合には送風モードと判定する。
 暖房判定ラインL1よりも低Tam側かつ高Tao側の領域(暖房領域)に位置していれば、暖房モードと判定する。冷房判定ラインL2よりも高Tam側かつ低Tao側の領域(冷房領域)に位置していれば、冷房モードと判定する。
 空調制御装置60は、冷房モードまたは暖房モードで空調装置20の作動を制御する通常制御部(NRCT)64を備える。通常制御部64は、運転モード判定部63が冷房モードまたは暖房モードに切換えるよう判定したとき、吹出空気温度が目標温度Taoとなるように空調装置20の構成要素をフィードバック制御する。
 さらに、空調制御装置60は、送風モードで空調装置20の作動を制御する送風制御部(VTCT)65を備える。送風制御部65は、運転モード判定部63が送風モードに切換えるよう判定したとき、通常制御部64によるフィードバック制御に代わって、内外気切換装置を外気モードに固定制御し、さらに各種ヒータ10、27および電動圧縮機41を停止し、送風機23を作動状態に固定制御する。
 送風制御部65が提供する制御は、高圧電池2の電力を利用することなく、低圧電池7の電力だけを利用して、ウインドシールド9の曇りを抑制しつつ、室温Trを設定温度Tsetに近づけるようにする制御である。
 電池制御装置3および空調制御装置60は、コンピュータによって読み取り可能な記憶媒体を備えるマイクロコンピュータによって提供される。記憶媒体は、コンピュータによって読み取り可能なプログラムを非一時的に格納している。記憶媒体は、半導体メモリまたは磁気ディスクによって提供されうる。プログラムは、制御装置によって実行されることによって、制御装置をこの明細書に記載される装置として機能させ、この明細書に記載される制御方法を実行するように制御装置を機能させる。制御装置が提供する手段は、所定の機能を達成する機能的ブロック、またはモジュールとも呼ぶことができる。
 図3は、通常制御および送風制御を実施するための空調処理170を示す。空調制御装置60は、空調処理170を所定周期で繰り返して実行する。
 ステップ171では、空調制御装置60は、空調処理170に必要な情報を取得する。例えば、設定温度Tset、外気温度Tam、室温Trおよび相対湿度RHWの他、日射量等の各種物理量を取得する。そして、これらの取得値に基づき目標温度Taoの最適値を算出する。
 ステップ172では、図2のマップを用いて、目標温度Taoおよび外気温度Tamに基づき暖房モード、送風モードおよび冷房モードのいずれに切換えるかを判定する。送風モードに切換えると判定された場合にはステップ190へ進み、暖房モードまたは冷房モードと判定された場合にはステップ180へ進む。
 ステップ180は、通常制御部64を提供するものであり、空調制御装置60は通常制御を実行する。
 ステップ181では、空調制御装置60は、運転モード判定部63の判定結果に基づき、電動圧縮機41を含む冷凍サイクル40を制御する。すなわち、電池制御装置3によって許容された可用電力量が電動圧縮機41を作動させるに十分であれば、目標温度Taoに応じた回転数で電動圧縮機41を作動させる。
 そして、前記判定結果が暖房モードであれば、減圧器46を冷媒が流れるように開閉弁47を作動させるとともに、減圧器48および冷却用熱交換器24をバイパスして冷媒が流れるように切換弁49を作動させる。したがって、暖房モード時には、冷却用熱交換器24(冷却器)による除湿を禁止させつつ、加熱用熱交換器26および各種ヒータ27等の加熱器で送風空気を加熱して暖房する。このように、除湿を禁止させつつ暖房運転させるよう制御(非除湿暖房制御)している時の通常制御部63は、非除湿暖房制御部に相当してもよい。
 一方、前記判定結果が冷房モードであれば、減圧器46をバイパスして冷媒が流れるように開閉弁47を作動させるとともに、減圧器48および冷却用熱交換器24を冷媒が流れるように切換弁49を作動させる。したがって、暖房モードおよび冷房モードのいずれの場合においても、加熱用熱交換器26(室内熱交換器)を冷媒が流通する。つまり、冷凍サイクル40は、加熱用熱交換器26をバイパスする冷媒通路を備えておらず、加熱用熱交換器26に冷媒が常時流通する構成である。
 ステップ182では、空調制御装置60は、内外気切換装置22を制御する。ここでは、利用者の求めに応じて内気または外気が選択される。さらに、自動制御が要求されるとき、内外気切換装置22は、結露センサ62からの信号により示されるウインドシールド9の曇りを抑制するように制御される。具体的には、冷房モードおよび暖房モードのいずれの場合においても、ウインドシールド9での曇り発生が検知されていないことを条件として、内外気切換装置22を内気モードに設定する。但し、曇り発生が検知されていれば、外気モードに設定する。曇り発生は、結露センサ62からの信号により検知される。
 ステップ183では、空調制御装置60は、ウインドシールド9を加熱するための窓加熱制御を実行する。ここでは、ウインドシールド9を直接的に加熱できる窓ヒータ10が制御される。例えば、窓ヒータ10は、前記曇り発生が検知されているときには、窓ヒータ10に通電してウインドシールド9を加熱し、曇り発生が検知されていないときには、窓ヒータ10への通電を遮断する。
 ステップ184では、空調制御装置60は、空調ユニット21内を流れる空気を加熱用熱交換器26で加熱する度合いを調整して、吹出口31a、31b、31cから吹き出される空気の温度(吹出空気温度)を調整する制御を実行する。ここでは、エアミックスダンパ25が制御される。さらに、電気ヒータ27が制御される。さらに、温媒体熱交換器28に流れる媒体の流量が制御される。ステップ184により、吹出空気温度が目標温度Taoに調整され、ひいては室温Trが設定温度Tsetに制御され、快適な温度環境が提供される。
 ステップ185では、空調制御装置60は、吹出モード切換装置31を制御する。ここでは、利用者に快適な環境を提供するように、吹出モードが選択される。空調制御装置60は、利用者が要求する吹出モードを実現するように吹出モード切換装置31を制御する。さらに、自動制御が要求されるとき、空調制御装置60は、吹出空気の温度に応じて自動的に適切な吹出モードを選択し、選択された吹出モードを実現するように吹出モード切換装置31を制御することができる。
 ステップ186では、空調制御装置60は、送風機23を制御する。空調制御装置60は、利用者が要求する風量を実現するように送風機23を制御する。さらに、自動制御が要求されるとき、空調制御装置60は、室温Trを設定温度Tsetに制御するために必要な風量を実現するように送風機23を自動的に制御することができる。
 ステップ187では、空調制御装置60は、空調装置20の表示装置を制御する。例えば、空調制御装置60は、現在の室温Tr、設定温度Tset、風量、吹出モードなどの空調状態を操作パネル61に表示する。
 ステップ190は、送風制御部65を提供するものであり、空調制御装置60は送風制御を実行する。なお、送風制御部65は、第1層風制御部の一例として用いられてもよい。第1層風制御部は、吹出口から吹き出させる吹出空気の目標温度Taoと外気温度(Tam)との温度差が所定値未満である場合に、電動圧縮機41を停止させた状態で送風機23を作動させ、かつ、少なくとも外気を含む空気が車室内へ吹き出されるよう内外気調節装置の作動を制御する。
 ステップ191では、空調制御装置60は、電動圧縮機41を強制的に停止させ、その停止OFF状態を固定する。このとき、電動圧縮機41は、完全に停止する。電動圧縮機41は、結露センサ62の信号に依存することなく停止状態に固定される。電動圧縮機41が継続的に停止状態に保持されることにより、高圧電池2からの放電が抑制される。この結果、高圧電池2の電力を走行用の電動機4のために利用することができる。
 ステップ192では、空調制御装置60は、内外気切換装置22を外気モードに固定する。したがって、空調ユニット21は、湿度が比較的低い外気であって、目標温度Taoとの温度差が所定値未満となっている温度の外気を導入する。ステップ193では、各種ヒータ10、27を強制的に停止させ、その停止OFF状態を固定する。これにより、高圧電池2からの放電が抑制され、その結果、高圧電池2の電力を走行用の電動機4のために利用することができる。さらに、送風モード時の空調ユニット21は、室内に向けて湿度が比較的低い空気である外気を供給することにより、ウインドシールド9の曇りを抑制する。
 ステップ193では、空調制御装置60は、窓ヒータ10をON状態に固定する。窓ヒータ10は、結露センサ62の信号に依存することなく作動状態に固定される。よって、ウインドシールド9は継続的に加熱される。この結果、ウインドシールド9の曇りが抑制される。
 ステップ193の後、処理はステップ185へ進む。
 ステップ190を経由した後に、ステップ185-187が実行される場合、電動圧縮機41の停止に応じた制御が実行される。例えば、ステップ185では、冷却用熱交換器24による冷房効果が得られないという条件、かつ、加熱用熱交換器26および各種ヒータ10、27による加熱効果が得られないという条件を課して、吹出モード切換装置31が制御される。
 この実施形態によると、目標温度Taoが外気温度Tamに近い温度となるような中間期には、電動圧縮機41を停止させて外気モードで送風機23を作動させるので、消費電力低下を図りつつ目標温度Taoに近い温度の吹出空気を室内に吹き出して空調できる。このため、高圧電池2の電力消費が抑制される。しかも、外気モードへの固定によって、ウインドシールド9が曇ることを抑制できる。
 また、本実施形態では暖房モード時に非除湿暖房制御を実施するが、これに反して暖房モード時に冷却用熱交換器24による除湿を実施すると、暖房モード時には冷却用熱交換器24に凝縮水が付着することとなる。そのため、例えば目標温度Taoが低下することに伴い暖房モードから送風モードに切り替わった場合に、送風モード時に発生した凝縮水が送風モード時に蒸発する。その結果、その蒸発に伴って臭い成分が送風空気とともに吹出口31a、31b、31cから室内に流入し、乗員に悪臭を感じさせるといった問題が生じる。
 この点を鑑みた本実施形態では、暖房モード時に除湿を禁止する非除湿暖房制御を実施するので、凝縮水が付着した状態で暖房モードから送風モードに切り替わることが無くなる。よって、凝縮水の蒸発に伴う悪臭の問題を無くすことができる。
 また、本実施形態では冷凍サイクル40は、冷却用熱交換器24と室外熱交換器45が直列に接続された構成であり、加熱用熱交換器26に冷媒が常時流通する構成である。この構成の冷凍サイクル40で除湿暖房を実施しようとすると、必要となる冷媒量が多くなるとともに、電動圧縮機41に要求される吐出能力も大きくなる。その一方で、本実施形態に反して冷却用熱交換器24と室外熱交換器45とが並列に接続された冷凍サイクルの場合、冷媒量を少なくできる。但しこの場合には、冷却用熱交換器24と室外熱交換器45とを並列に接続する通路が必要になるとともに、その並列通路への冷媒流れの切り換えを行う切替弁が必要になるので、コスト高を招く。
 そして、本実施形態では、先述したように、悪臭の問題を無くすべく非除湿暖房制御を実施するので、冷却用熱交換器24と室外熱交換器45を並列接続にすることによるメリット(冷媒量少の効果)よりも、並列接続を廃止して直列接続にするメリット(切替弁不要)の方が大きく作用する。これらの点を鑑みた本実施形態では、冷却用熱交換器24と室外熱交換器45が直列に接続された構成の冷凍サイクル40を採用するので、前記メリットが好適に発揮される。
(第2実施形態)
 図4は、第2実施形態に係る送風制御を示す。この実施形態でも、図1および図2と同じ構成が採用されている。この実施形態では、先行する実施形態のステップ192が廃止され、ステップ294、295、296がステップ193の後に追加されている。
 ステップ294では、目標温度Taoと外気温度Tamとの温度差が所定値TH2以上であるか否かを判定する。|Tao-Tam|≧TH2であればステップ295で内気モードにし、|Tao-Tam|<TH2であればステップ296で外気モードにするよう、内外気切換装置22の作動を空調制御装置60が制御する。
 なお、先述した通り内外気切換装置22は、外気モード時であっても内気を一部混入させる構造である。そのため、ステップ295による内気モード時であっても外気が一部混入し、ステップ296による外気モード時であっても内気が一部混入する。要するに、|Tao-Tam|≧TH2であれば|Tao-Tam|<TH2の場合に比べて外気が減量する。
 ここで、ステップ172のモード判定に用いる図2のマップでは、目標温度Taoと外気温度Tamとの温度差が所定値(例えば5℃)未満であれば送風モードを実施するよう判定しているが、この判定に用いる所定値を第1所定値TH1と呼び、ステップ294の内外気判定で用いる所定値TH2を第2所定値と呼ぶ。第2所定値TH2は第1所定値よりも小さい値に設定されている。
 したがって、図2中の実線L1、L2間の領域(送風領域)のうち、一点鎖線L1aと実線L1との間の領域(内気送風領域)、および一点鎖線L2aと実線L2との間の領域(内気送風領域)では内気モードで送風する。つまり、電動圧縮機41を停止させた状態で、内気モードにして送風機23を作動させる。一方、送風領域のうち内気送風領域以外の領域では、上記第1実施形態の送風制御と同様にして外気モードで送風する。ステップ295の制御操作を行う空調制御装置60の一部は、第2送風制御部の一例として用いられても良い。第2送風制御部は、目標温度Taoと外気温度Tamとの温度差が、第2所定値未満である場合に、電動圧縮機41を停止させた状態で送風機23を作動させ、かつ、送風空気に含まれる外気を減量させるよう内外気調節装置の作動を制御する。
 ここで、暖房運転の一態様を説明する。先ず、空調開始時において、室温Trが設定温度Tsetよりも低い状況であり、目標温度Taoが外気温度Tamよりも高ければ、暖房モードで運転することとなる。そして、暖房モード運転での時間経過に伴い、室温Trが上昇して設定温度Tsetに近くなってくると、目標温度Taoが低下していく。その結果、|Tao-Tam|<TH1となり、送風モード運転に移行することとなる(図2中の矢印Y1参照)。このとき、目標温度Taoが低下して|Tao-Tam|<TH2となった以降においても、外気モードによる送風制御を本実施形態に反して継続させると、設定温度Tsetよりも低温の外気が室内へ吹き出されることにより、室温Trが低下していく。その結果、目標温度Taoが上昇して|Tao-Tam|≧TH1となり、暖房モード運転に移行することとなる。
 つまり、暖房モードと送風モードとが繰り返し切換わることとなり、電動圧縮機のオンオフが頻繁に為されることとなり、乗員に対する空調フィーリングの悪化や、各部品の消耗促進が懸念されるようになる。
 この懸念に対し、本実施形態では、|Tao-Tam|<TH1となった以降において、|Tao-Tam|<TH2となるまでは内気モードでの送風を実施するので、暖房モードから内気送風モードに移行した後、室温Trの低下が抑制される。よって、暖房モードと送風モードとが繰り返し切換わることによる、電動圧縮機41が頻繁にオンオフすることを抑制できる。
 なお、内気送風領域を送風領域全体にまで拡大させ、送風領域を廃止させると、車室内の湿度が上昇してウインドシールド9が曇りやすくなる。これに対し、本実施形態では、暖房モード運転中に|Tao-Tam|<TH2の領域では、比較的低湿度の外気を送風する送風モードに切り替わるので、曇りの懸念を解消できる。
 上記説明では暖房運転の一態様について説明したが、冷房運転の場合も同様であり、冷房モードから送風モードに移行(図2中の矢印Y2参照)する過程において、|Tao-Tam|<TH1となった時点で外気モードによる送風制御を継続させると、設定温度Tsetよりも高温の外気が室内へ吹き出されることにより、室温Trが上昇していく。その結果、|Tao-Tam|≧TH1となり、冷房モード運転に移行することとなる。
 つまり、冷房モードと送風モードとが繰り返し切換わることとなり、電動圧縮機のオンオフが頻繁に為されることとなり、乗員に対する空調フィーリングの悪化や、各部品の消耗促進が懸念されるようになる。
 この懸念に対し、本実施形態では、|Tao-Tam|<TH1となった以降は、|Tao-Tam|<TH2となるまでの期間は内気モードでの送風を実施するので、|Tao-Tam|<TH1となり冷房モードから移行した後、室温Trの上昇が抑制される。よって、冷房モードと送風モードとが頻繁に切換わることを抑制できる。
 また、内外気切換装置22は外気モード時であっても内気を一部混入させる構造である。そのため、暖房モードから送風モードに切り替わった時に、外気モードに切換えることによる吹出し空気温度の低下を、内気を混入させることにより抑制できる。よって、先述した「暖房モードと送風モードとが繰り返し切り替わる」といった懸念を抑制できる。
(第3実施形態)
 図5は、第3実施形態に係る電動車両システムを示す。この実施形態では、冷凍サイクル340は、冷房だけが可能なクーラサイクルである。この実施形態においても、上記実施形態と同様の作用効果を得ることができる。
 さらに本実施形態では、送風空気を温水で加熱する温媒体熱交換器28を備える。温媒体熱交換器28(加熱装置)は、車両に搭載された熱源としての機器(HS)29を冷却するための冷却媒体によって空調ユニット21内を流れ室内に吹出される空気を加熱する。温媒体熱交換器28は、空調ユニット21内を流れる空気の少なくとも一部を加熱するように配置されている。温媒体熱交換器28は、機器29を冷却するための冷却システムの一部である。冷却媒体は、水などの熱輸送流体である。機器29は、発熱する機器であって、例えば、車両に搭載された電気機器、インバータ回路、または内燃機関によって提供される。
 温媒体熱交換器28は、媒体が循環しているとき、機器29から供給される熱によって空気を加熱することができる。よって、温媒体熱交換器28は、それだけで、空気加熱装置のひとつを提供することができる。温媒体熱交換器28は、電動圧縮機41が停止しているときにも加熱機能を発揮できる空気加熱要素である。温媒体熱交換器28は、ウインドシールド9を間接的に加熱できる加熱要素のひとつである。温媒体熱交換器28は、ウインドシールド9の温度を上昇させることにより、間接的にウインドシールド9の曇りを抑制する。
 温媒体熱交換器28を含む冷却システムは、冷却媒体を加熱するための電気的な媒体ヒータ30を備える。媒体ヒータ30は、温媒体熱交換器28を通して、電力によって空調ユニット21内を流れる空気を加熱する。媒体ヒータ30は、空調ユニット21内を流れる空気の少なくとも一部を、間接的に加熱するように配置されている。媒体ヒータ30は、電気的な発熱素子によって提供される。媒体ヒータ30は、PTC(Positive Temperature Coefficient)ヒータと呼ばれる発熱素子によって提供される。媒体ヒータ30は、高圧機器5のひとつである。媒体ヒータ30は、高圧電池2から給電される。媒体ヒータ30は、送風モード時にはオフさせて、消費電力低下を図ることが望ましい。
 ここで、本実施形態に反して送風空気を電気ヒータで直接加熱する場合には、電気ヒータを通電オフして直ぐに吹出空気温度が低下する。これに対して本実施形態では、インバータ回路の冷却水などの熱輸送流体を熱媒体にして送風空気を加熱する。そのため、熱媒体のヒートマスにより、媒体ヒータ30の通電オフ後直ぐに吹出空気温度が低下することを抑制できる。よって、暖房モードから送風モードに切り替わることに伴い媒体ヒータ30をオフさせるにあたり、吹出空気温度が直ぐに低下することを抑制できる。よって、吹出空気温度の変化を緩和させて空調フィーリングの向上を図ることができる。
 さらに本実施形態によると、以下に説明するように消費電力低下の効果が大きく発揮される。すなわち、本実施形態の如く暖房を電気ヒータ30で実施する場合には、図1に示すように冷凍サイクル40で暖房を実施する場合に比べて、消費電力が極めて大きい。このことは、電気ヒータ30のCOP(エネルギ消費効率)がヒートポンプのCOPに比べて著しく低いことに起因する。これに対し本実施形態では、送風モード時には媒体ヒータ30を停止させるので、COPが低いことによる消費電力大のデメリットを抑制でき、消費電力低下の効果が大きく発揮されるようになる。 本実施形態においても、上記第1実施形態と同様にして、暖房モード時に非除湿暖房制御を実施することが望ましい。これによれば、上記第1実施形態と同様にして、凝縮水が付着した状態で暖房モードから送風モードに切り替わることが無くなる。よって、送風モードによる運転時において、凝縮水の蒸発に伴う悪臭の問題を無くすことができる。
(他の実施形態)
 以上、開示された開示の好ましい実施形態について説明したが、開示された開示は上述した実施形態に何ら制限されることなく、種々変形して実施することが可能である。上記実施形態の構造は、あくまで例示であって、開示された開示の技術的範囲は限定されるものではない。
 例えば、図2に示す内気送風領域を設定した場合には、内気送風領域と他の領域(送風領域、暖房領域および冷房領域)との切り換えを、外気温度Tamに替えて室温Trに基づき判定するようにしてもよい。また、内気送風領域と他の領域との切り換えを、目標温度Taoに替えて設定温度Tsetに基づき判定するようにしてもよい。
 また、内気送風領域を設定しない場合において、送風領域と他の領域(暖房領域および冷房領域)との切り換えを、目標温度Taoに替えて設定温度Tsetに基づき判定するようにしてもよい。
 例えば、エコモード運転と通常モード運転とに切換えるようにユーザが操作可能に構成し、エコモードを選択した場合には図2に示す如く送風モードを実施し、通常モードを選択した場合には前記送風モードを禁止して、図2の全領域において電動圧縮機41を作動させるようにしてもよい。
 例えば、制御装置が提供する手段と機能は、ソフトウェアのみ、ハードウェアのみ、あるいはそれらの組合せによって提供することができる。例えば、制御装置をアナログ回路によって構成してもよい。
 例えば、上記実施形態では、2つの室内熱交換器24、26を備える冷凍サイクル40によってヒートポンプサイクルを提供した。これに代えて、単一の室内熱交換器を備え、この単一の室内熱交換器を冷却用途と加熱用途とに切換えるヒートポンプサイクルを採用してもよい。例えば、室内熱交換器を蒸発器とする運転モードと、室内熱交換器を放熱器とする運転モードとを切換え可能な反転型のヒートポンプサイクルを採用することができる。
 例えば、上記実施形態では、暖房モードおよび冷房モード時には、結露センサ62の信号に依存することなく内気モードに固定させている。これに対し、暖房モードおよび冷房モード時において、結露センサ62により曇りが検知された場合には、外気モードに切換えて曇り除去を図るようにしてもよい。また、上記第2実施形態において送風モード時に内気モードで運転する場合にも、結露センサ62により曇りが検知された場合には外気モードに切換えてもよい。
 例えば、上記各実施形態では、送風モード時の各種ヒータ10、27、30を、結露センサ62の信号に依存することなく停止状態に固定させている。これに対し、結露センサ62により曇りが検知された場合には、各種ヒータ10、27、30をオン作動させて曇り除去を図るようにしてもよい。
 例えば、図5に示す温媒体熱交換器28、機器29および媒体ヒータ30を、図1に示す空調システムに組み合わせて、加熱用熱交換器26、電気ヒータ27および温媒体熱交換器28を空気加熱手段としてもよい。
 例えば、上記各実施形態では、外気モード時に内気を一部混入させ、内気モード時に外気を一部混入させているが、外気モード時には外気を100%導入させ、内気モード時には内気を100%導入するように構成してもよい。

Claims (5)

  1.  空気を送風して吹出口(31a、31b、31c)から車室内へ前記空気を吹き出させる送風機(23)と、
     電動圧縮機で冷媒を循環させる冷凍サイクル(40、340)と、
     前記冷凍サイクルに設けられ、前記送風機により送風される送風空気を前記冷媒と熱交換させる室内熱交換器(24、26)と、
     前記送風空気に含まれる内気と外気の割合を調節する内外気調節装置(22)と、
     前記吹出口から吹き出させる吹出空気の目標温度(Tao)と外気温度(Tam)との温度差が所定値未満である場合には、前記電動圧縮機を停止させた状態で前記送風機を作動させ、かつ、少なくとも外気を含む空気が車室内へ吹き出されるよう前記内外気調節装置の作動を制御する第1送風制御部(65)と、
    を備える車両用空調装置。
  2.  前記室内熱交換器は、前記送風空気を冷却する冷却器(24)、および前記送風空気を加熱する加熱器(26)を有しており、
     前記目標温度が前記外気温度よりも高く、かつ前記温度差が前記所定値以上である場合には、前記冷却器による前記送風空気の除湿を禁止させつつ前記加熱器で前記送風空気を加熱させるように制御する非除湿暖房制御手段(63)を備える請求項1に記載の車両用空調装置。
  3.  前記所定値を第1所定値とし、
     前記目標温度と前記外気温度との前記温度差が、前記第1所定値よりも小さい第2所定値未満である場合には、前記電動圧縮機を停止させた状態で前記送風機を作動させ、かつ、前記送風空気に含まれる外気を減量させるよう前記内外気調節装置の作動を制御する第2送風制御部(295)を備える請求項1または2に記載の車両用空調装置。
  4.  前記冷凍サイクルには、前記冷媒と外気とを熱交換させる室外熱交換器(45)が設けられており、
     前記冷凍サイクルは、前記電動圧縮機により循環する冷媒を前記室外熱交換器に常時流通させるよう構成されている請求項1~3のいずれか1つに記載の車両用空調装置。
  5.  前記冷凍サイクルとは別に、前記送風空気を温水で加熱する加熱装置(28)を備える請求項4に記載の車両用空調装置。
PCT/JP2013/003221 2012-06-29 2013-05-21 車両用空調装置 WO2014002370A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380034365.XA CN104411521A (zh) 2012-06-29 2013-05-21 车辆用空气调节装置
DE201311003244 DE112013003244T5 (de) 2012-06-29 2013-05-21 Fahrzeugklimatisierungsvorrichtung
US14/411,149 US20150122472A1 (en) 2012-06-29 2013-05-21 Vehicle air-conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012146540A JP2014008861A (ja) 2012-06-29 2012-06-29 車両用空調装置
JP2012-146540 2012-06-29

Publications (1)

Publication Number Publication Date
WO2014002370A1 true WO2014002370A1 (ja) 2014-01-03

Family

ID=49782572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003221 WO2014002370A1 (ja) 2012-06-29 2013-05-21 車両用空調装置

Country Status (5)

Country Link
US (1) US20150122472A1 (ja)
JP (1) JP2014008861A (ja)
CN (1) CN104411521A (ja)
DE (1) DE112013003244T5 (ja)
WO (1) WO2014002370A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108177497A (zh) * 2017-12-22 2018-06-19 吉利四川商用车有限公司 一种空调采暖控制系统以及空调采暖控制方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2987315B1 (fr) * 2012-02-24 2014-03-07 Valeo Systemes Thermiques Dispositif de conditionnement thermique d'un habitacle et d'une chaine de traction d'un vehicule.
JP6015607B2 (ja) * 2013-09-18 2016-10-26 株式会社デンソー 車両用空調ユニット
JP6337503B2 (ja) * 2014-02-21 2018-06-06 三菱自動車工業株式会社 車両用空調装置
CN105172520A (zh) * 2015-07-31 2015-12-23 博耐尔汽车电气系统有限公司 一种用于汽车自动空调的逻辑控制方法
US10166841B2 (en) * 2015-09-09 2019-01-01 International Truck Intellectual Property Company, Llc Vehicle climate control system
US10703174B2 (en) * 2015-11-30 2020-07-07 Thermo King Corporation Device and method for controlling operation of transport refrigeration unit
KR101836284B1 (ko) * 2016-06-27 2018-03-08 현대자동차 주식회사 차량용 공조시스템의 냄새 재현장치
JP6692723B2 (ja) * 2016-09-02 2020-05-13 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US10094588B2 (en) * 2016-10-12 2018-10-09 Invicon Inc. Wifi vertical fan coil system
JP6900186B2 (ja) * 2016-12-21 2021-07-07 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
KR102510377B1 (ko) * 2017-04-05 2023-03-16 한온시스템 주식회사 차량용 열관리 시스템의 수가열식 ptc 히터 제어 방법
CN107351639B (zh) * 2017-06-12 2019-10-11 西安交通大学 一种采用毛细管网辐射末端的电动汽车空调系统
CN109693512B (zh) * 2018-12-13 2022-04-19 珠海广通汽车有限公司 一种电动汽车的空调的控制方法及电动汽车
JP7066645B2 (ja) * 2019-01-23 2022-05-13 本田技研工業株式会社 移動体用制御装置
CN110303848A (zh) * 2019-06-12 2019-10-08 北京汽车股份有限公司 汽车空调系统的控制方法、系统及汽车
US11305610B2 (en) * 2020-06-02 2022-04-19 GM Global Technology Operations LLC Thermal system control for a vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183245A (ja) * 1992-12-16 1994-07-05 Zexel Corp 電気自動車用空気調和装置の制御装置
JPH0840056A (ja) * 1993-09-21 1996-02-13 Nippondenso Co Ltd 空調装置
JP2006224705A (ja) * 2005-02-15 2006-08-31 Denso Corp 車両用空調装置
JP2010137838A (ja) * 2008-11-11 2010-06-24 Denso Corp 車両用空調装置
JP2011068158A (ja) * 2009-09-22 2011-04-07 Denso Corp 車両用空調装置
JP2011073668A (ja) * 2009-09-03 2011-04-14 Denso Corp 車両用空調装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4232463B2 (ja) * 2003-01-09 2009-03-04 株式会社デンソー 空調装置
JP4434220B2 (ja) * 2007-03-06 2010-03-17 トヨタ自動車株式会社 電気機器の冷却装置、その冷却方法および冷却方法をコンピュータに実現させるプログラムならびにそのプログラムを記録した記録媒体
JP2012126330A (ja) * 2010-12-17 2012-07-05 Calsonic Kansei Corp 車両用空調制御装置
JP5625878B2 (ja) * 2010-12-20 2014-11-19 株式会社デンソー 車両用空調装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183245A (ja) * 1992-12-16 1994-07-05 Zexel Corp 電気自動車用空気調和装置の制御装置
JPH0840056A (ja) * 1993-09-21 1996-02-13 Nippondenso Co Ltd 空調装置
JP2006224705A (ja) * 2005-02-15 2006-08-31 Denso Corp 車両用空調装置
JP2010137838A (ja) * 2008-11-11 2010-06-24 Denso Corp 車両用空調装置
JP2011073668A (ja) * 2009-09-03 2011-04-14 Denso Corp 車両用空調装置
JP2011068158A (ja) * 2009-09-22 2011-04-07 Denso Corp 車両用空調装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108177497A (zh) * 2017-12-22 2018-06-19 吉利四川商用车有限公司 一种空调采暖控制系统以及空调采暖控制方法

Also Published As

Publication number Publication date
US20150122472A1 (en) 2015-05-07
JP2014008861A (ja) 2014-01-20
CN104411521A (zh) 2015-03-11
DE112013003244T5 (de) 2015-04-02

Similar Documents

Publication Publication Date Title
WO2014002370A1 (ja) 車両用空調装置
JP5786809B2 (ja) 電動車両用空調装置
JP6997558B2 (ja) 車両用空気調和装置
JP5962377B2 (ja) 電動車両用空調装置
WO2020235261A1 (ja) 車両用空気調和装置
JP5532029B2 (ja) 車両用空調装置
WO2020003969A1 (ja) 車両用空気調和装置
WO2015019612A1 (ja) 車両用空調装置
WO2020110509A1 (ja) 車両用空気調和装置
CN111032386A (zh) 车用空调装置
CN112996689A (zh) 车辆的电池温度调节装置及包括该装置的车用空调装置
JP2012081870A (ja) 車両用空調装置
JP5533516B2 (ja) 車両用空調装置
US20240059125A1 (en) Air conditioner for vehicle
CN113015638A (zh) 车用空调装置
JP5360006B2 (ja) 車両用空調装置
CN113165472B (zh) 车用空调装置
JP2014008859A (ja) 車両用空調装置
JP2014028532A (ja) 車両用空調装置
WO2021187005A1 (ja) 車両用空気調和装置
CN113453926A (zh) 车用空调装置
JP3301209B2 (ja) 車両用ヒートポンプ式冷暖房装置
JP2013079035A (ja) 車両用空調装置
JP2011068153A (ja) 車両用空調装置
WO2020100524A1 (ja) 車両用空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810456

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14411149

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130032449

Country of ref document: DE

Ref document number: 112013003244

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13810456

Country of ref document: EP

Kind code of ref document: A1