WO2013191253A1 - カーボンナノチューブ及びその製造方法 - Google Patents
カーボンナノチューブ及びその製造方法 Download PDFInfo
- Publication number
- WO2013191253A1 WO2013191253A1 PCT/JP2013/066971 JP2013066971W WO2013191253A1 WO 2013191253 A1 WO2013191253 A1 WO 2013191253A1 JP 2013066971 W JP2013066971 W JP 2013066971W WO 2013191253 A1 WO2013191253 A1 WO 2013191253A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- carbon
- carbon nanotube
- carbon nanotubes
- catalyst particles
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 219
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 152
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 152
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 239000003054 catalyst Substances 0.000 claims abstract description 171
- 239000002245 particle Substances 0.000 claims abstract description 147
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 64
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 56
- 239000002994 raw material Substances 0.000 claims abstract description 43
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 38
- 150000001875 compounds Chemical class 0.000 claims abstract description 33
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 40
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 15
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 15
- 238000001069 Raman spectroscopy Methods 0.000 claims description 12
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 8
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 73
- 239000000758 substrate Substances 0.000 description 41
- 238000012795 verification Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 22
- 238000005259 measurement Methods 0.000 description 12
- 239000010408 film Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000002109 single walled nanotube Substances 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 6
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000004939 coking Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- -1 SiN 4 and AlN Chemical compound 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000004050 hot filament vapor deposition Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000003841 Raman measurement Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 238000003705 background correction Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000001628 carbon nanotube synthesis method Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/06—Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0238—Impregnation, coating or precipitation via the gaseous phase-sublimation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2235/00—Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
- B01J2235/30—Scanning electron microscopy; Transmission electron microscopy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
Definitions
- the present invention relates to a carbon nanotube and a manufacturing method thereof.
- Carbon nanotubes have a structure in which a graphene sheet is wound into a cylindrical shape and have a one-dimensional structure with a very large aspect ratio (see Non-Patent Document 1). Carbon nanotubes are known to have excellent mechanical strength and flexibility, semiconducting or metallic conductivity, as well as chemical stability.
- a method for producing a carbon nanotube an arc discharge method, a laser evaporation method, a chemical vapor deposition method (hereinafter referred to as a CVD (Chemical Vapor Deposition) method), and the like have been reported.
- the CVD method is a synthesis method that is attracting attention as a synthesis method suitable for mass synthesis, continuous synthesis, and high purity (see Non-Patent Document 2).
- single-walled carbon nanotubes (hereinafter referred to as “SWCNT”) exhibit metallic properties and semiconducting properties depending on how they are wound and their diameter, and are expected to be applied to electrical and electronic devices.
- SWCNT single-walled carbon nanotubes
- a catalytic CVD method for growing nanotubes (for example, see Non-Patent Document 3) has become the mainstream.
- This catalytic CVD method uses metal nanoparticles as a catalyst. Then, while supplying a gaseous carbon source, the carbon source is pyrolyzed at a high temperature to grow nanotubes from the catalyst metal nanoparticles.
- catalyst particles having a diameter of several nanometers In order to synthesize carbon nanotubes having a small diameter, particularly SWCNTs, it is most important to form catalyst particles having a diameter of several nanometers and maintain the size during the synthesis of carbon nanotubes.
- catalyst particles with a small diameter expose many chemically unstable surfaces, they tend to coarsen to reduce the surface area, or easily react with oxygen or water and oxidize. It becomes diameter or crystallinity deteriorates.
- an object of the present invention is to provide a carbon nanotube production method capable of producing a carbon nanotube having a long and small diameter and good crystallinity, and a carbon nanotube obtained by the production method.
- the present invention has a catalyst particle forming step of forming catalyst particles by heating and reducing the catalyst raw material, and a carbon nanotube synthesis step of synthesizing carbon nanotubes by circulating the raw material gas over the heated catalyst particles,
- a carbon nanotube production method in which a carbon-containing compound gas having no unsaturated bond is circulated on a catalyst raw material and / or catalyst particles in at least one of a catalyst particle formation step and a carbon nanotube synthesis step. According to this carbon nanotube manufacturing method, carbon nanotubes having a small diameter and good crystallinity can be grown at a high density and in a long length.
- the present inventors consider the reason why the effect of the present invention is achieved as follows.
- the surface of the catalyst particles has a high activity, so that the number of particles and the particle size increase with time, the diameter of the carbon nanotubes to be synthesized increases, and the length is also short. turn into.
- the carbon-containing compound gas having no unsaturated bond is supplied onto the catalyst raw material and / or the catalyst particles.
- carbon of the carbon-containing compound gas having no unsaturated bond dissolves on the surface of the catalyst particles, and catalyst particles having a region containing carbon on the surface are formed. Since the surface of the catalyst particle having a carbon-containing region is stabilized, a decrease in the number of particles and an increase in the particle size are suppressed. Thereby, a carbon nanotube with a small diameter and good crystallinity can be grown long. Moreover, since the reduction
- the carbon-containing compound gas that does not have an unsaturated bond with the raw material gas by increasing the carbon-containing compound gas that does not have an unsaturated bond with the raw material gas, the increase in the particle size of the catalyst particles while the growth of the carbon nanotubes continues is suppressed. An increase in the diameter of the growing carbon nanotube is suppressed. As a result, the crystallinity of the synthesized carbon nanotube is further increased.
- the catalyst life becomes longer, and a longer carbon nanotube can be synthesized.
- the “carbon-containing compound gas having no unsaturated bond” is preferably a saturated hydrocarbon gas, and the saturated hydrocarbon gas is preferably methane.
- the source gas preferably contains acetylene or a gas that generates acetylene in the reactor.
- the carbon nanotube production method of the present invention is such that at least in the catalyst particle forming step, a carbon-containing compound gas having no unsaturated bond is circulated on the catalyst raw material and / or catalyst particles, and the catalyst particle forming step and carbon nanotube synthesis are performed. You may have the release process which releases a catalyst particle from a heating state between processes.
- the catalyst particles formed in the catalyst particle forming step have a carbon-containing region on the surface, the surface is stabilized, so that oxidation deactivation due to mixed oxygen in the process and particle size change due to temperature change are unlikely to occur. Become. Usually, when the surface of the catalyst particles is exposed, the catalyst is easily deactivated when oxygen is mixed in or the temperature changes after the catalyst is produced. In the present invention, since the catalyst particles have a carbon-containing region on the surface, for example, even when the catalyst production device and the carbon nanotube synthesis device are separated as separate devices, The influence due to temperature change can be suppressed.
- the present invention also provides a carbon nanotube produced by the above-described method for producing a carbon nanotube, wherein the G / D ratio by Raman spectroscopy is 10 or more.
- the present invention it is possible to provide a carbon nanotube having a small diameter and good crystallinity, and a carbon nanotube production method capable of growing such a carbon nanotube at a high density and a long length.
- FIG. 1 (a) shows the case where a support body is particle
- FIG.1 (b) shows the case where a support body is a fixed substrate.
- 2 is an SEM image of carbon nanotubes produced in Examples 1 and 2.
- 4 is an SEM image of carbon nanotubes produced in Examples 3 and 4.
- 3 is a Raman spectrum of carbon nanotubes produced in Examples 1 to 4.
- 3 is a SEM image of carbon nanotubes produced in Comparative Example 1.
- FIG. 4 is a SEM image of carbon nanotubes manufactured in Verification Examples 3 and 4. It is a Raman spectrum of the carbon nanotube manufactured by the comparative example 1 and the verification examples 3 and 4.
- FIG. It is an AFM image of various catalyst carrying substrates including the catalyst carrying substrate of verification examples 1 and 2.
- the method for producing carbon nanotubes of the present embodiment includes a catalyst particle forming step and a carbon nanotube synthesis step.
- Catalyst particle formation process In the catalyst particle forming step, catalyst particles necessary for the synthesis of the carbon nanotube are formed.
- the catalyst particles are formed by heating and reducing a catalyst raw material such as a metal or metal oxide film formed on a support with a reducing gas such as hydrogen. At this time, an inert gas such as argon or nitrogen is used as the carrier gas.
- the metal that forms the catalyst particles is preferably a metal that is generally used for the synthesis of carbon nanotubes, and is selected from V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, and Au. Those containing one or more elements are preferred. Among these, Fe, Co, and Ni having a large carbon solid solution amount are particularly preferable.
- the support on which the catalyst particles are supported varies depending on the carbon nanotube synthesis method, but may be in the form of particles or plates.
- the material of the support preferably contains one or more elements selected from the group consisting of Si, Al, Mg, Zr, Ti, O, N, C, Mo, Ta, and W. Specific examples of the material include oxides such as SiO 2 , Al 2 O 3 and MgO, nitrides such as SiN 4 and AlN, and carbides such as SiC. In particular, a complex oxide of Al 2 O 3 —SiO 2 is preferable.
- the support may include a carrier layer for supporting the catalyst particles, and the catalyst particles may be supported on the support layer.
- the material for the carrier layer the same materials as those for the support can be used.
- the support can have the function of a carrier layer, and in this case, it is not always necessary to carry the carrier layer.
- catalyst-supporting supports 10a and 10b in which catalyst particles are supported on the support are obtained.
- the catalyst-carrying substrate 10a has a support layer 14 formed on the support 3, and spherical or hemispherical catalyst particles 15 are formed on the support. It is formed on the layer 14.
- the catalyst-carrying substrate 10b is formed with spherical catalyst particles 15 buried in the support 3. .
- a solution in which these raw materials are dissolved may be impregnated with the support, and the solution in which these raw materials are dissolved is applied to the support and then dried. May be. Further, physical vapor deposition, sputtering, CVD, or the like may be used.
- the average particle diameter of the catalyst particles is preferably 3 nm or less from the viewpoint of reducing the diameter of the carbon nanotubes to be synthesized.
- the particle density of the catalyst particles in the catalyst-supporting supports 10a and 10b is preferably 1/100 nm 2 or more. The smaller the particle size and the higher the particle density, the higher the density of carbon nanotubes that can be grown. Examples of the method for measuring the average particle diameter of the catalyst particles include the method used in Examples described later.
- the reduction temperature is preferably 400 to 1000 ° C. From the viewpoint of making it difficult to cause catalyst poisoning such as coking, 400 to 900 ° C. is more preferable.
- 500 to 900 More preferred is ° C.
- Carbon nanotubes can be synthesized by bringing the catalyst particles formed in the catalyst particle forming step into a heated state and circulating the raw material gas over the catalyst particles.
- the “source gas” is a gas containing a carbon source that contains carbon atoms and hydrogen atoms and is decomposed in a heated state, and is composed of, for example, a carbon source for synthesis of carbon nanotubes and a carrier gas. is there.
- a carbon source in the source gas acetylene, ethylene, ethanol, or the like can be used. Acetylene may be produced in the reactor in addition to being contained in the raw material gas.
- carrier gas contained in source gas inert gas, such as argon and nitrogen, is preferable. Further, hydrogen may be used as the carrier gas.
- the “carbon-containing compound gas having no unsaturated bond” described later is not included in the raw material gas.
- the concentration of each gas in the total amount of gas supplied to the reactor may be appropriately adjusted and optimized according to a conventional method.
- the concentration of the gas serving as the carbon source in the raw material gas is, for example, acetylene
- the acetylene in the raw material gas and acetylene produced by decomposition in the reactor are supplied to the reactor in the reactor.
- the content is preferably 0.01 to 20% by volume, more preferably 0.1 to 5% by volume, based on the total amount of gas.
- acetylene in the raw material gas and the acetylene produced by decomposition in the reactor when only acetylene in the raw material gas is used, 0.01 to 15% by volume is preferable, and 0.1 to 2% by volume. Is more preferable. Further, separation and recovery of the synthesized carbon nanotubes from the catalyst particles can also be performed according to a conventional method.
- the reaction temperature is preferably 400 to 1000 ° C. From the viewpoint of making it difficult to cause catalyst poisoning such as coking, 400 to 900 ° C. is more preferable.
- 500 to 900 More preferred is ° C.
- a carbon-containing compound gas having no unsaturated bond is circulated on the catalyst raw material and / or catalyst particles (carbon).
- Content region forming step when a catalyst raw material such as a metal or metal oxide film formed on the support is heated and reduced, a carbon-containing compound gas having no unsaturated bond may be circulated, and carbon nanotubes are synthesized. A carbon-containing compound gas having no unsaturated bond may be circulated.
- the carbon of the carbon-containing compound gas not having an unsaturated bond dissolves on the surface of the catalyst particles, and a region containing carbon is formed. Catalyst particles possessed on the surface are formed. Since the surface of the catalyst particles having a carbon-containing region is stabilized (protected), a decrease in the number of particles and an increase in the particle size are suppressed. Thereby, a carbon nanotube with a small diameter and good crystallinity can be grown long. Moreover, since the reduction
- the particle diameter of the catalyst particles increases while the carbon nanotube growth continues. Therefore, an increase in the diameter of the growing carbon nanotube is suppressed. As a result, the crystallinity of the synthesized carbon nanotube is further increased. In addition, since the increase in the catalyst particle size is further suppressed, the catalyst life becomes longer, and a longer carbon nanotube can be synthesized.
- a carbon-containing compound gas having no unsaturated bond in both the catalyst particle forming step and the carbon nanotube synthesis step.
- the particle size of the catalyst particles can be reduced in advance. Even if a carbon-containing region is formed on the surface of the catalyst particle before the synthesis of the carbon nanotube, the stabilized state of the catalyst particle surface is not necessarily maintained until the synthesis of the carbon nanotube is completed.
- the increase in the particle size of the catalyst particles is suppressed, and the diameter of the growing carbon nanotubes is reduced. Increase is suppressed.
- catalyst particles refers to a catalyst raw material such as a metal or metal oxide film formed on a support, such as hydrogen, regardless of whether or not the surface has a carbon-containing region. Particles formed by heating and reducing with a reducing gas.
- Examples of the carbon-containing compound gas having no unsaturated bond include saturated hydrocarbons, alcohols, amines, and ethers, and among them, saturated hydrocarbons are preferable.
- the number of carbon atoms in the carbon-containing compound gas having no unsaturated bond is preferably 2 or less, particularly preferably 1.
- the carbon-containing compound gas which does not have an unsaturated bond is a saturated hydrocarbon, it is preferable that it is methane. Carbon nanotube growth does not occur due to the carbon-containing compound gas having no unsaturated bond (see FIGS. 10A to 10F described later).
- XPS X-ray photoelectron spectroscopy
- the concentration of the carbon-containing compound gas having no unsaturated bond is preferably 0.1 to 50% by volume based on the total amount of gas supplied to the reactor.
- the concentration of the carbon-containing compound gas having no unsaturated bond is more preferably 0.1 to 20% by volume.
- the carbon-containing compound gas having no unsaturated bond When the carbon-containing compound gas having no unsaturated bond is circulated on the catalyst raw material and / or catalyst particles in the catalyst particle forming step, as described above, the carbon-containing compound gas having no unsaturated bond on the surface of the catalyst particles. Thus, the catalyst particles having carbon on the surface thereof are formed.
- a release step of releasing the catalyst particles from the heated state can be provided between the catalyst particle formation step and the carbon nanotube synthesis step.
- the catalyst particles When the catalyst particles have a carbon-containing region on the surface, the surface is stabilized, so that oxidation deactivation due to mixed oxygen in the process, particle size change due to temperature change, and the like are less likely to occur.
- the catalyst when the surface of the catalyst particles is exposed, the catalyst is easily deactivated when oxygen is mixed in or the temperature changes after the catalyst is produced.
- the catalyst particles when the catalyst particles have a carbon-containing region on the surface, for example, even when the catalyst production apparatus and the carbon nanotube synthesis apparatus are separated as separate apparatuses, oxygen mixing accompanying the conveyance between the apparatuses And the influence of temperature change can be suppressed.
- the manufacturing method of the carbon nanotube of this embodiment can be performed by either the on-substrate thermal CVD method or the fluidized bed thermal CVD method.
- the thermal CVD method on the substrate includes a hot-wall CVD method in which the reaction tube is heated from the outside, and a cold-wall CVD method in which the reaction tube is kept at a low temperature and only the substrate is heated. Can do.
- FIG. 2 is a schematic view showing a production apparatus for producing carbon nanotubes by the hot-wall CVD method.
- the reactor 21 is composed of a horizontal cylinder whose one end is closed, and is provided with a supply pipe 25 for raw material gas, etc., which leads from the outside to the inside of the container.
- a heater 24 is installed around the reactor 21.
- a support 23 on which catalyst raw materials are stacked is placed on a quartz boat 22 and disposed in the reactor 21.
- the catalyst particle forming step is performed, and the catalyst carrying support 10 b is formed from the support 23.
- carbon nanotubes can be synthesized on the catalyst-carrying support 10b.
- powder, bead, honeycomb, porous, fiber, tube, wire, network, lattice, sponge, Layered ones can be used.
- FIG. 3 is a schematic view showing a production apparatus in the case of producing carbon nanotubes by a fluidized bed thermal CVD method.
- the reactor 1 installed vertically is provided with a porous plate 2 at the lower part, and further, a raw material gas supply pipe 5 for supplying a gas such as a raw material gas is connected to the lower part.
- the reactor 1 is filled with a granular support 3 on which catalyst raw materials are laminated.
- the heater 4 is provided so that the outer periphery of the reactor 1 may be covered.
- the catalyst particle forming step is performed, and the catalyst carrying support 10 a is formed from the support 3. Then, the catalyst support 10a is heated, and the raw material gas and the like are circulated through the raw material gas supply pipe 5 and the hole of the porous plate 2 to synthesize the carbon nanotubes on the granular support 3. Can do.
- the carbon nanotube obtained by the carbon nanotube production method of the present embodiment has a small diameter and good crystallinity.
- the catalyst particles having a small particle diameter can be present at a high density on the support, the resulting carbon nanotubes have a high density and a long length.
- the diameter of the carbon nanotube can be obtained, for example, with a transmission electron microscope (TEM). Further, the length (growth amount) of the carbon nanotube can be obtained, for example, with a scanning electron microscope (SEM).
- the ideal diameter and length of the carbon nanotube vary depending on the application of the carbon nanotube. According to the carbon nanotube manufacturing method of the present embodiment, a relatively long and small-diameter carbon nanotube can be manufactured.
- the crystallinity of the carbon nanotube can be evaluated by using Raman spectroscopy.
- the G band due to the graphite structure is observed near 1590 cm ⁇ 1
- the D band due to crystal defects is observed near 1340 cm ⁇ 1 .
- Carbon nanotubes with high crystallinity have a low D band, and conversely, the G band has a high peak. That is, the higher the value of the intensity ratio (G / D ratio) between the G band and the D band defined by the following formula (1), the higher the crystallinity.
- G / D ratio (G ⁇ Bg) / (D ⁇ Bg) (1)
- G indicates the peak top value of the G band
- D indicates the peak top value of the D band
- Bg is the background correction value, which is an average from 600 cm ⁇ 1 to 1000 cm ⁇ 1. Indicates the value.
- Carbon nanotubes with a low G / D ratio are considered to have a higher proportion of carbon nanotubes with amorphous carbon or the like attached to the surface and without linearity and bent. If amorphous carbon is adhered, the electric conductivity between the carbon nanotubes tends to be hindered, and the electric conductivity and mechanical strength of the bent carbon nanotube are lowered. Therefore, in order to draw out the electrical characteristics and mechanical strength of the carbon nanotube, the G / D ratio is preferably 8 or more, and more preferably 10 or more.
- Example 1 (Formation of catalyst-carrying substrate) A silicon substrate with a thermal oxide film was used as a support. On this silicon substrate, a metal aluminum film (thickness 15 nm) as a carrier layer and a metal iron film (thickness 0.7 nm) as a catalyst raw material were sequentially formed by sputtering.
- the substrate was placed in the reactor shown in FIG. 2 to form catalyst particles.
- the introduced gas had a total flow rate of 500 sccm (Standard Cubic Centimeter per Minutes), the constituent gases were hydrogen (25.0% by volume) and methane (1.0% by volume), and argon was used as the atmosphere gas.
- the temperature in the reactor was 800 ° C., and the reaction time was 5 minutes. In this way, a catalyst carrying substrate was obtained.
- the above volume% value is based on the total amount of gas supplied to the reactor.
- FIG. 4A shows the result of observing the produced carbon nanotube with a scanning electron microscope (SEM, manufactured by Hitachi, Ltd .: S-4800).
- SEM scanning electron microscope
- the carbon nanotubes were grown 710 ⁇ m from the surface of the silicon substrate. Further, the synthesized carbon nanotubes were observed with a transmission electron microscope (TEM, manufactured by JEOL Ltd .: 2000-EX), and the diameter of any 36 carbon nanotubes was measured. It was 6 nm.
- Example 2 Carbon nanotubes were produced in the same manner as in Example 1 except that the supply amounts of hydrogen and methane were changed as shown in Table 1.
- FIG. 4B shows the result of observing the produced carbon nanotube by SEM in the same manner as in Example 1. The carbon nanotubes grew 670 ⁇ m from the surface of the silicon substrate.
- measurement using Raman spectroscopy was performed in the same manner as in Example 1. As a result, it was found that the G / D ratio was 10.4, which was not as high as that in Example 1, but the G / D ratio was 10 or more and the crystallinity was high (FIG. 6B).
- Example 3 Carbon nanotubes were produced in the same manner as in Example 1 except that the supply amounts of hydrogen and methane were changed as shown in Table 1.
- FIG. 5A shows the result of observing the produced carbon nanotube by SEM in the same manner as in Example 1.
- the carbon nanotubes were grown 550 ⁇ m from the surface of the silicon substrate.
- measurement using Raman spectroscopy was performed in the same manner as in Example 1.
- the G / D ratio was 10.4 and the crystallinity was as high as 10 or more although not as high as Example 1 (FIG. 6C).
- Example 4 As shown in Table 1, carbon nanotubes were produced in the same manner as in Example 1 except that water vapor was added for catalyst activation.
- FIG. 5B shows the result of observing the produced carbon nanotube by SEM in the same manner as in Example 1. The carbon nanotubes grew 1170 ⁇ m from the surface of the silicon substrate.
- measurement using Raman spectroscopy was performed in the same manner as in Example 1. As a result, it was found that the G / D ratio was 12.5 and the crystallinity was high (FIG. 6 (d)). From this, it was found that the effect of introducing methane was also effective for the system to which the catalyst activator was added.
- FIG. 7 shows the results of observation of the produced carbon nanotubes by SEM in the same manner as in Example 1.
- the carbon nanotubes grew 440 ⁇ m from the surface of the silicon substrate, and it was found that the amount of carbon nanotubes grown was smaller than in Examples 1 to 3.
- the G / D ratio was 7.2, indicating that the crystallinity was poor as compared with Examples 1 to 3 (FIG. 9A).
- an atomic force microscope (AFM; manufactured by Shimadzu Corporation: SPM-9600) was used, and the measurement conditions were a scan range of 200 nm ⁇ 200 nm, a scan speed of 1 Hz, and the number of pixels of 512 ⁇ 512.
- FIGS. 10 (d) to 10 (f) show the results when methane is introduced in the catalyst particle formation step including the catalyst-carrying substrate of Verification Example 1.
- FIGS. 10 (d) to 10 (f) show the results when the methane was not introduced, including the catalyst-carrying substrate of Verification Example 2.
- the points that appear white (bright) are catalyst particles, and when methane was introduced, fibrous objects could not be confirmed on the substrate surface, and it was confirmed that no carbon nanotubes were growing.
- the results of analyzing the image and evaluating the catalyst particle density and the catalyst particle size are shown in Table 3.
- the catalyst particle size was calculated from the catalyst particle density and the amount of film formed by sputtering, assuming that the catalyst shape is a hemispherical shape. It was found that when methane was introduced, the catalyst particle size was smaller and the catalyst particle density was higher than when no methane was introduced. That is, when methane is introduced, the catalyst particle density is one or more in the range of 10 nm ⁇ 10 nm, but when methane is not introduced, the catalyst particle density is as low as one or less in the same range. It is density. This indicates that the introduction of methane suppresses the enlargement of catalyst particles.
- etching with Ar was performed, and the detected element composition before and after the etching was analyzed.
- the analysis results are shown in Table 4.
- the voltage was 1,000 V for 20 seconds, and the thickness was about 1 nm in terms of SiO 2 film.
- the catalyst supporting substrate of Verification Example 1 in which methane was introduced had a large amount of C on the surface even after etching. It was confirmed that carbon was covered.
- Verification Example 4 Except that ethylene in Verification Example 3 was changed to acetylene, film formation and catalyst particle formation were performed in the same manner as in Verification Example 3 to obtain a catalyst-carrying substrate of Verification Example 4. When the substrate was observed with the naked eye, the center of the substrate was slightly black. Next, the central part was observed with SEM in the same manner as in Example 1. As a result, as shown in FIG. 8B, it was found that the carbon nanotubes grew slightly as about 32 ⁇ m, and the surface state of the catalyst particles as in the verification example 1 was not obtained. In addition, measurement using Raman spectroscopy was performed in the same manner as in Example 1.
- the G / D ratio was 2.4, and it was found that the G / D ratio was 10 or less and the crystallinity was poor (FIG. 9C). From this, it is considered that the catalyst particles were enlarged before the carbon nanotube synthesis step.
- the carbon nanotube production method of the present invention enables mass production of carbon nanotubes that are long, small in diameter and good in crystallinity, and can greatly reduce the production cost. Therefore, the carbon nanotubes produced in the present invention are transparent electrodes, semiconductor thin films, electrode materials for lithium ion batteries, electrode materials for fuel cells, electrode materials for electric double layer capacitors, filler materials for composite polymers, electron emission guns, electric fields. Attention is paid to applications to emission displays, microscope probes, gas storage materials, and the like. In particular, SWCNTs produced by the present invention are attracting attention for application to transparent electrodes, electrode materials for lithium ion batteries, electrode materials for electric double layer capacitors, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
触媒粒子形成工程では、カーボンナノチューブの合成に必要な触媒粒子の形成を行う。触媒粒子は、支持体上に形成された金属又は金属酸化物膜等の触媒原料を、水素等の還元ガスにより加熱還元することにより形成される。このとき、キャリアガスとして、アルゴン、窒素等の不活性ガスが用いられる。
触媒粒子形成工程で形成された触媒粒子を加熱状態とし、この触媒粒子上に原料ガスを流通させることにより、カーボンナノチューブを合成することができる。
本実施形態のカーボンナノチューブの製造方法においては、触媒粒子形成工程及びカーボンナノチューブ合成工程の少なくとも一方において、不飽和結合を有しない炭素含有化合物ガスを触媒原料及び/又は触媒粒子上に流通させる(炭素含有領域形成工程)。すなわち、支持体上に形成された金属又は金属酸化物膜等の触媒原料が加熱還元されるときに不飽和結合を有しない炭素含有化合物ガスを流通させてもよく、カーボンナノチューブが合成されている最中に不飽和結合を有しない炭素含有化合物ガスを流通させてもよい。
本実施形態のカーボンナノチューブの製造方法は、基板上熱CVD法でも流動層熱CVD法でも行うことができる。また基板上熱CVD法には、反応管を外部から加熱するHot-wall CVD法と、反応管は低温に保ち基板のみを加熱するCold-wall CVD法があるが、いずれの合成方法でも行うことができる。図2は、カーボンナノチューブの製造をHot-wall CVD法で行う場合の製造装置を示す概略図である。反応器21は、一端が閉じられた横置型の円筒から構成されており、容器の外部から内部へ通じた原料ガス等供給管25を備えている。反応器21の周囲には加熱器24が設置されている。
本実施形態のカーボンナノチューブの製造方法により得られるカーボンナノチューブは、直径が小さく、結晶性がよい。また、粒径の小さな触媒粒子を支持体上に高密度で存在させることができるため、得られるカーボンナノチューブは高密度かつ長尺となる。
G/D比=(G-Bg)/(D-Bg) …… 式(1)
ここで、「G」はGバンドのピークトップ値を示し、「D]はDバンドのピークトップ値を示し、「Bg」はバックグラウンド補正値であって600cm-1から1000cm-1までの平均値を示す。
(触媒担持基板の形成)
支持体として熱酸化膜付きシリコン基板を用いた。このシリコン基板上に、スパッタ法により担体層としての金属アルミニウム膜(厚さ15nm)、及び、触媒原料としての金属鉄膜(厚さ0.7nm)を順に製膜した。
次に当該基板を図2に示す反応器内に設置し、触媒粒子の形成を行った。導入ガスは総流量を500sccm(Standard Cubic Centimeter per Minutes)とし、構成ガスとしては、水素(25.0体積%)とメタン(1.0体積%)とし、雰囲気ガスとしてアルゴンを用いた。反応器内の温度は800℃とし、反応時間は5分間とした。こうして触媒担持基板を得た。なお、上記体積%の値は、反応器に供給するガス全量を基準とするものである。
次に、総流量を変えずに、アセチレン(0.15体積%)を追加で導入し、カーボンナノチューブの合成を行った。他のガスとしては、水素(25.0体積%)とメタン(1.0体積%)と雰囲気ガスとしてのアルゴンを導入させた。反応器内の温度は、触媒粒子の形成時から引き続き800℃とし、反応時間は10分間とした。
製造したカーボンナノチューブを走査線電子顕微鏡(SEM、日立製作所社製:S-4800)で観察した結果を図4(a)に示す。カーボンナノチューブは、シリコン基板の表面から710μm成長していた。また、合成したカーボンナノチューブを透過型電子顕微鏡(TEM、日本電子株式会社(JEOL)社製:2000-EX)で観察し、任意の36本のカーボンナノチューブの直径を測定したところ、平均で2.6nmであった。
ラマン分光器(HORIBA社製:HR-800)を用い、ラマン分光法により、合成したカーボンナノチューブの結晶性について評価した。測定波長は488nmとした。測定の結果、図6(a)に示されるように、1590cm-1付近にグラファイト構造に起因するGバンドを、1340cm-1付近には結晶欠陥に起因するDバンドを観察することができた。結晶性を表すG/D比は、GバンドとDバンドの強度比から11.1であり、結晶性が高いことがわかった。
水素及びメタンの供給量を表1のように変更したこと以外は実施例1と同様にして、カーボンナノチューブを製造した。製造したカーボンナノチューブを実施例1と同様にSEMで観察した結果を図4(b)に示す。カーボンナノチューブはシリコン基板の表面から670μm成長していた。また実施例1と同様にラマン分光法を用いた測定を行った。その結果、G/D比は10.4となり、実施例1ほどではないがG/D比は10以上と結晶性が高いことがわかった(図6(b))。
水素及びメタンの供給量を表1のように変更したこと以外は実施例1と同様にして、カーボンナノチューブを製造した。製造したカーボンナノチューブを実施例1と同様にSEMで観察した結果を図5(a)に示す。カーボンナノチューブはシリコン基板の表面から550μm成長していた。また実施例1と同様にラマン分光法を用いた測定を行った。その結果、G/D比は10.4となり、実施例1ほどではないがG/D比は10以上と結晶性が高いことがわかった(図6(c))。
表1に示したように触媒賦活のために水蒸気を添加したこと以外は実施例1と同様にして、カーボンナノチューブを製造した。製造したカーボンナノチューブを実施例1と同様にSEMで観察した結果を図5(b)に示す。カーボンナノチューブはシリコン基板の表面から1170μm成長していた。また実施例1と同様にラマン分光法を用いた測定を行った。その結果、G/D比は12.5であり、結晶性が高いことがわかった(図6(d))。このことから、メタンを導入する効果が、触媒賦活剤が添加された系についても、有効であることがわかった。
水素及びメタンの供給量を表1のように変更したこと以外は実施例1と同様にして、カーボンナノチューブを製造した。製造したカーボンナノチューブを実施例1と同様にSEMで観察した結果を図7に示す。カーボンナノチューブはシリコン基板の表面から440μm成長しており、実施例1~3と比較して、カーボンナノチューブの成長量が少ないことがわかった。また実施例1と同様にTEMで観察して任意の33本のカーボンナノチューブの直径を測定したところ、平均で3.4nmであった。また実施例1と同様にラマン分光法を用いた測定を行った。その結果、G/D比は7.2となり、実施例1~3と比較して結晶性が悪いことがわかった(図9(a))。
実施例4の工程で得られた触媒担持基板を、検証例1の触媒担持基板とした。また、表2に示したように触媒賦活のために水蒸気を添加したこと以外は実施例2と同様にして、成膜及び触媒粒子の形成を行い、検証例2の触媒担持基板を得た。
カーボンナノチューブの合成直前における触媒粒子の形状を観察するため、検証例1と検証例2の触媒担持基板について触媒粒子形成工程の後における基板表面の観察を行った。触媒原料の厚みの違いによる傾向を確認するため、金属鉄の厚さを、0.7nm(検証例1及び検証例2)の他に、その前後である0.5nm及び1.0nmとした基板についても、同様の観察を行った。観察では原子間力顕微鏡(AFM;島津製作所社製:SPM-9600)を用い、測定条件はスキャン範囲を200nm×200nm、スキャン速度を1Hz、ピクセル数は512×512とした。
カーボンナノチューブの合成直前における基板表面の元素組成を評価するため、検証例1と検証例2の触媒担持基板について触媒粒子形成工程の後における基板表面の分析を行った。分析には、X線光電子分光装置(XPS;アルバック・ファイ社製:PHI 5000 VersaProbeII)を用いた。測定では単色化AlKα線1486.6keVを用い、帯電補正としてCの1sピークトップを284.8keVとした。また測定範囲はΦ200μmとした。検出角度は試料表面から45度とした。また基板表面には空気中の不純物が付着するため、Arによるエッチングを行い、エッチング前後での検出元素組成を分析した。分析結果を表4に示した。エッチングでは電圧を1,000V、20秒間とし、SiO2膜の換算で1nm程度となるように行った。その結果、メタンを導入しなかった検証例2の触媒担持基板と比較して、メタンを導入した検証例1の触媒担持基板では、エッチング後にも表面に多くのCが存在しており、触媒表面を炭素が覆っていることを確認することができた。
構成ガスとしてメタン(1.0体積%)の代わりにエチレン(1.0体積%)を用いたこと以外は実施例4と同様にして、成膜及び触媒粒子の形成を行い、検証例3の触媒担持基板を得た。
検証例3におけるエチレンをアセチレンに変更したこと以外は検証例3と同様にして、成膜及び触媒粒子の形成を行い、検証例4の触媒担持基板を得た。当該基板を肉眼で観察したところ、基板中央がわずかに黒くなっていた。次に、実施例1と同様にSEMで当該中央部分を観察した。その結果、図8(b)に示すように32μm程度と僅かにカーボンナノチューブが成長してしまっており、検証例1のような触媒粒子の表面状態になっていないことがわかった。また実施例1と同様にラマン分光法を用いた測定を行った。その結果、G/D比は2.4となり、G/D比は10以下と結晶性が悪いことがわかった(図9(c))。このことからカーボンナノチューブ合成工程を行う前に触媒粒子が肥大化したと考えられる。
Claims (7)
- 触媒原料を加熱還元して触媒粒子を形成する触媒粒子形成工程と、
原料ガスを加熱状態の前記触媒粒子上に流通させてカーボンナノチューブを合成するカーボンナノチューブ合成工程と、を有し、
前記触媒粒子形成工程及び前記カーボンナノチューブ合成工程の少なくとも一方において、不飽和結合を有しない炭素含有化合物ガスを前記触媒原料及び/又は前記触媒粒子上に流通させる、カーボンナノチューブの製造方法。 - 少なくとも前記カーボンナノチューブ合成工程において、前記不飽和結合を有しない炭素含有化合物ガスを前記触媒粒子上に流通させる、請求項1記載のカーボンナノチューブの製造方法。
- 前記不飽和結合を有しない炭素含有化合物ガスは、飽和炭化水素ガスである、請求項1又は2記載のカーボンナノチューブの製造方法。
- 前記飽和炭化水素ガスは、メタンである、請求項3記載のカーボンナノチューブの製造方法。
- 前記原料ガスは、アセチレン、又は、反応器の中でアセチレンを生成するガスを含む、請求項1~4のいずれか一項に記載のカーボンナノチューブの製造方法。
- 少なくとも前記触媒粒子形成工程において、前記不飽和結合を有しない炭素含有化合物ガスを前記触媒原料及び/又は前記触媒粒子上に流通させ、
前記触媒粒子形成工程と前記カーボンナノチューブ合成工程との間に、前記触媒粒子を加熱状態から解放する解放工程を有する、請求項1~5のいずれか一項に記載のカーボンナノチューブの製造方法。 - 請求項1~6のいずれか一項に記載のカーボンナノチューブの製造方法により製造されるカーボンナノチューブであって、ラマン分光によるG/D比が10以上である、カーボンナノチューブ。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147036298A KR102164225B1 (ko) | 2012-06-22 | 2013-06-20 | 카본 나노튜브 및 그 제조방법 |
CN201380031992.8A CN104395233A (zh) | 2012-06-22 | 2013-06-20 | 碳纳米管及其制造方法 |
CA2877612A CA2877612C (en) | 2012-06-22 | 2013-06-20 | Carbon nanotubes and production method thereof |
EP13806457.1A EP2865644B1 (en) | 2012-06-22 | 2013-06-20 | Production method of carbon nanotubes |
JP2014521509A JP6338219B2 (ja) | 2012-06-22 | 2013-06-20 | カーボンナノチューブの製造方法 |
US14/409,500 US9463981B2 (en) | 2012-06-22 | 2013-06-20 | Carbon nanotubes and production method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012141428 | 2012-06-22 | ||
JP2012-141428 | 2012-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013191253A1 true WO2013191253A1 (ja) | 2013-12-27 |
Family
ID=49768845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/066971 WO2013191253A1 (ja) | 2012-06-22 | 2013-06-20 | カーボンナノチューブ及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9463981B2 (ja) |
EP (1) | EP2865644B1 (ja) |
JP (1) | JP6338219B2 (ja) |
KR (1) | KR102164225B1 (ja) |
CN (2) | CN104395233A (ja) |
CA (1) | CA2877612C (ja) |
WO (1) | WO2013191253A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018142524A (ja) * | 2017-02-28 | 2018-09-13 | 株式会社名城ナノカーボン | 電界放出装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112533868B (zh) * | 2018-07-31 | 2023-11-03 | 株式会社大阪曹達 | 碳纳米管的制造方法 |
CN115383119A (zh) * | 2021-12-01 | 2022-11-25 | 昆明理工大学 | 一种CNTs@HEAp复合增强体及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003068676A1 (en) * | 2002-02-13 | 2003-08-21 | Toudai Tlo, Ltd. | Process for producing single-walled carbon nanotube, single-walled carbon nanotube, and composition containing single-walled carbon nanotube |
JP2006298684A (ja) * | 2005-04-19 | 2006-11-02 | Sony Corp | 炭素系一次元材料およびその合成方法ならびに炭素系一次元材料合成用触媒およびその合成方法ならびに電子素子およびその製造方法 |
JP2007115854A (ja) * | 2005-10-19 | 2007-05-10 | Bussan Nanotech Research Institute Inc | 電磁波吸収体 |
JP2007138341A (ja) * | 2005-11-18 | 2007-06-07 | Bussan Nanotech Research Institute Inc | 炭素繊維構造体 |
JP2008273806A (ja) * | 2007-05-07 | 2008-11-13 | Hokkaido Univ | 微細炭素繊維分散皮膜およびその製造方法 |
JP2008274502A (ja) * | 2007-05-07 | 2008-11-13 | Hokkaido Univ | 再分散用微細炭素繊維集合塊およびその製造方法 |
JP2009528254A (ja) * | 2006-03-03 | 2009-08-06 | ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ | 空間的に配列したナノチューブ及びナノチューブアレイの作製方法 |
JP4621896B2 (ja) | 2004-07-27 | 2011-01-26 | 独立行政法人産業技術総合研究所 | 単層カーボンナノチューブおよびその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6919064B2 (en) * | 2000-06-02 | 2005-07-19 | The Board Of Regents Of The University Of Oklahoma | Process and apparatus for producing single-walled carbon nanotubes |
WO2002095097A1 (en) | 2001-05-21 | 2002-11-28 | Trustees Of Boston College, The | Varied morphology carbon nanotubes and methods for their manufacture |
TWI237064B (en) * | 2002-03-25 | 2005-08-01 | Ind Tech Res Inst | Supported metal catalyst for synthesizing carbon nanotubes by low-temperature thermal chemical vapor deposition and method of synthesizing nanotubes using the same |
KR100596676B1 (ko) * | 2003-03-20 | 2006-07-04 | 이철진 | 기상합성법에 의한 단일벽 탄소 나노튜브의 대량 합성 방법 |
CA2578725A1 (en) * | 2004-11-10 | 2006-05-18 | Nikon Corporation | Carbon nanotube assembly and manufacturing method thereof |
CN1673073A (zh) * | 2005-03-11 | 2005-09-28 | 北京大学 | 一种合成单壁碳纳米管的方法 |
KR101328294B1 (ko) * | 2005-12-29 | 2013-11-14 | 도레이 카부시키가이샤 | 카본 나노 튜브의 제조 방법 및 카본 나노 튜브 제조용촉매 |
KR100962171B1 (ko) * | 2007-12-26 | 2010-06-10 | 제일모직주식회사 | 탄소나노튜브 합성용 금속나노촉매 및 이를 이용한탄소나노튜브의 제조방법 |
US8591858B2 (en) | 2008-05-01 | 2013-11-26 | Honda Motor Co., Ltd. | Effect of hydrocarbon and transport gas feedstock on efficiency and quality of grown single-walled nanotubes |
DE112008004235T5 (de) * | 2008-11-18 | 2012-07-12 | Universiti Sains Malaysia | Verfahren zur Herstellung von Kohlenstoffnanoröhren (CNTs) |
JP4803687B2 (ja) * | 2008-12-30 | 2011-10-26 | 独立行政法人産業技術総合研究所 | 単層カーボンナノチューブ配向集合体の製造方法 |
CA2815678C (en) * | 2010-10-26 | 2019-02-12 | Hitachi Chemical Company, Ltd. | Process for production of carbon nanotube |
-
2013
- 2013-06-20 CN CN201380031992.8A patent/CN104395233A/zh active Pending
- 2013-06-20 CN CN201910141533.4A patent/CN110002430A/zh active Pending
- 2013-06-20 US US14/409,500 patent/US9463981B2/en active Active
- 2013-06-20 JP JP2014521509A patent/JP6338219B2/ja not_active Expired - Fee Related
- 2013-06-20 CA CA2877612A patent/CA2877612C/en not_active Expired - Fee Related
- 2013-06-20 EP EP13806457.1A patent/EP2865644B1/en not_active Not-in-force
- 2013-06-20 WO PCT/JP2013/066971 patent/WO2013191253A1/ja active Application Filing
- 2013-06-20 KR KR1020147036298A patent/KR102164225B1/ko active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003068676A1 (en) * | 2002-02-13 | 2003-08-21 | Toudai Tlo, Ltd. | Process for producing single-walled carbon nanotube, single-walled carbon nanotube, and composition containing single-walled carbon nanotube |
JP4621896B2 (ja) | 2004-07-27 | 2011-01-26 | 独立行政法人産業技術総合研究所 | 単層カーボンナノチューブおよびその製造方法 |
JP2006298684A (ja) * | 2005-04-19 | 2006-11-02 | Sony Corp | 炭素系一次元材料およびその合成方法ならびに炭素系一次元材料合成用触媒およびその合成方法ならびに電子素子およびその製造方法 |
JP2007115854A (ja) * | 2005-10-19 | 2007-05-10 | Bussan Nanotech Research Institute Inc | 電磁波吸収体 |
JP2007138341A (ja) * | 2005-11-18 | 2007-06-07 | Bussan Nanotech Research Institute Inc | 炭素繊維構造体 |
JP2009528254A (ja) * | 2006-03-03 | 2009-08-06 | ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ | 空間的に配列したナノチューブ及びナノチューブアレイの作製方法 |
JP2008273806A (ja) * | 2007-05-07 | 2008-11-13 | Hokkaido Univ | 微細炭素繊維分散皮膜およびその製造方法 |
JP2008274502A (ja) * | 2007-05-07 | 2008-11-13 | Hokkaido Univ | 再分散用微細炭素繊維集合塊およびその製造方法 |
Non-Patent Citations (5)
Title |
---|
"Kabon Nanoc ubo no Kiso to Ohyoh", 2004, BAIFUKAN CO., LTD. |
H. DAI; A. G RINZLER; P. NIKOLAEV; A. THESS; D. T. COLBERT; R.E. SMALLEY, CHEM. PHYS. LETT., vol. 260, 1996, pages 471 |
KUDUS MUHAMMAD HELMI ABDUL ET AL.: "Synthesis of MWCNT-Alumina Hybrid as Composite Reinforcement using Nickel Catalyst", KEY ENGINEERING MATERIALS, vol. 471-472, 2011, pages 596 - 600, XP055181653 * |
S. LIJIMA, NATURE, vol. 354, 1991, pages 56 |
See also references of EP2865644A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018142524A (ja) * | 2017-02-28 | 2018-09-13 | 株式会社名城ナノカーボン | 電界放出装置 |
JP7062365B2 (ja) | 2017-02-28 | 2022-05-06 | 株式会社名城ナノカーボン | 電界放出装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013191253A1 (ja) | 2016-05-26 |
KR20150035752A (ko) | 2015-04-07 |
US20150147263A1 (en) | 2015-05-28 |
CN104395233A (zh) | 2015-03-04 |
CA2877612A1 (en) | 2013-12-27 |
US9463981B2 (en) | 2016-10-11 |
EP2865644B1 (en) | 2018-01-31 |
CN110002430A (zh) | 2019-07-12 |
JP6338219B2 (ja) | 2018-06-06 |
EP2865644A1 (en) | 2015-04-29 |
KR102164225B1 (ko) | 2020-10-12 |
EP2865644A4 (en) | 2016-02-24 |
CA2877612C (en) | 2020-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Clean double-walled carbon nanotubes synthesized by CVD | |
Koós et al. | Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition | |
Yadav et al. | Kinetic study of single-walled carbon nanotube synthesis by thermocatalytic decomposition of methane using floating catalyst chemical vapour deposition | |
Hongo et al. | Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates | |
Marichy et al. | Labeling and monitoring the distribution of anchoring sites on functionalized CNTs by atomic layer deposition | |
JP5106123B2 (ja) | カーボンナノホーン担持体とカーボンナノチューブの合成方法 | |
JP5831966B2 (ja) | 単層カーボンナノチューブと二層カーボンナノチューブが任意比率で混合してなるカーボンナノチューブ集合体の製造方法 | |
Yardimci et al. | The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co–Mo/MgO catalyst | |
JP2017019718A (ja) | カーボンナノチューブの製造方法 | |
Gaikwad et al. | Carbon nanotube/carbon nanofiber growth from industrial by-product gases on low-and high-alloy steels | |
Hussain et al. | Growth and plasma functionalization of carbon nanotubes | |
JP6338219B2 (ja) | カーボンナノチューブの製造方法 | |
Malgas et al. | Effect of mixture ratios and nitrogen carrier gas flow rates on the morphology of carbon nanotube structures grown by CVD | |
Liu et al. | Effects of argon flow rate and reaction temperature on synthesizing single-walled carbon nanotubes from ethanol | |
Rajesh et al. | Lanthanum nickel alloy catalyzed growth of nitrogen-doped carbon nanotubes by chemical vapor deposition | |
JP6095173B2 (ja) | カーボンナノチューブ合成用炭素含有金属触媒粒子の製造方法、及びカーボンナノチューブの製造方法 | |
Rizzo et al. | Effect of Fe catalyst thickness and C2H2/H2 flow rate ratio on the vertical alignment of carbon nanotubes grown by chemical vapour deposition | |
Yamagiwa et al. | One-step liquid-phase synthesis of carbon nanotubes: effects of substrate materials on morphology of carbon nanotubes | |
Sakurai et al. | Limitation in growth temperature for water-assisted single wall carbon nanotube forest synthesis | |
Lee et al. | Ultraviolet irradiated ozone treatment of a metal catalyst for the large-scale synthesis of single-walled carbon nanotubes with small, uniform diameters | |
Ahmed et al. | Optimization Parameters of Multi Walled Carbon Nanotubes’ Diameter Using Taguchi Design of Experimental Approach | |
Ward | Thin film catalyst and substrate interactions on the CCVD (catalytic chemical vapor deposition) growth of carbon nanotubes | |
Aghaei et al. | Synthesis single-wall carbon nanotube by catalytic decomposition of methane over Fe–Mo/Al2O3 | |
Chen | CVD synthesis of single-walled carbon nanotubes from selected catalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13806457 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014521509 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14409500 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2877612 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147036298 Country of ref document: KR Kind code of ref document: A |