CN115383119A - 一种CNTs@HEAp复合增强体及其制备方法 - Google Patents

一种CNTs@HEAp复合增强体及其制备方法 Download PDF

Info

Publication number
CN115383119A
CN115383119A CN202111453921.XA CN202111453921A CN115383119A CN 115383119 A CN115383119 A CN 115383119A CN 202111453921 A CN202111453921 A CN 202111453921A CN 115383119 A CN115383119 A CN 115383119A
Authority
CN
China
Prior art keywords
cnts
hea
composite reinforcement
powder
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111453921.XA
Other languages
English (en)
Inventor
李才巨
杨晨茂月
邢辕
高鹏
李雪
易健宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202111453921.XA priority Critical patent/CN115383119A/zh
Publication of CN115383119A publication Critical patent/CN115383119A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开一种CNTs@HEAp复合增强体及其制备方法,属于复合材料增强体制备技术领域。本发明所述复合增强体由CNTs和HEAp两种增强相组成,其中CNTs质量百分比小于等于10wt.%,其余为HEAp。具体制备步骤为:利用高能球磨法制备FeCoNiCrMn高熵合金颗粒(HEAp)基础增强相;在其表面原位生长力学与理化性能优异的碳纳米管(CNTs),得到复合增强体(CNTs@HEAp)。该复合增强体选用HEAp颗粒作为基础增强相,解决传统陶瓷颗粒增强复合材料中陶瓷颗粒和基体变形不均匀以及界面结合较弱的问题;又可以使纳米级的CNTs在微米级HEAp颗粒的带动下,在基体中分散开来,充分发挥单根CNTs的强化效果,是一种性能优异的复合增强体。

Description

一种CNTs@HEAp复合增强体及其制备方法
技术领域
本发明涉及一种CNTs@HEAp复合增强体及其制备方法,属于复合材料增强体制备技术领域。
背景技术
陶瓷颗粒是目前最常见的复合材料的增强体,但是仍然存在很多缺点:(1)陶瓷颗粒与基体界面结合不牢固;(2)塑性变形过程中增强体与基体界面变形均匀程度差异较大;(3)陶瓷颗粒自身脆性较大,成为制约陶瓷颗粒增强复合材料性能提升的重要因素。FeCoNiCrMn系高熵合金具有典型的FCC结构,除了具有较高的强度外,还具有良好的塑韧性,其弹性模量相比传统陶瓷颗粒较低。基于该体系高熵合金的这些特征,将其作为复合材料的基础增强体,在改善基体与增强体界面变形均匀的同时,还能与基体发生化学反应,在增强体与基体之间形成良好的界面结合,增强效果显著。碳纳米管(CNTs)作为纳米材料的代表,具有耐热、耐腐蚀、耐热冲击、传热性和导电性好、高温强度高、有自润滑性和生物相容性等优异的综合性能,也是复合材料领域一种常见增强体,可以显著提高复合材料的性能。但由于CNTs的纳米尺寸效应,碳纳米管之间存在很强的范德华力,极易产生团聚,导致碳纳米管在复合材料中难以分散均匀,在塑性变形过程中,团聚物容易成为裂纹萌生的源头。因此,获得均匀分散的CNTs是获得具有优异综合力学性能CNTs增强复合材料的重要因素。
发明内容
本发明的目的在于提供一种CNTs@HEAp复合增强体,所述复合增强体包括HEAp及其上原位生长的CNTs;该复合增强体中CNTs的质量百分比小于等于10wt.%,其余为HEAp
本发明的另一目的在于提供所述CNTs@HEAp复合增强体的制备方法,生长并附着在HEAp表面的CNTs,在随后制备复合材料的过程中可以在HEAp的带动下,在基体中分散开来;具体包括以下步骤:
(1)按等原子比称取Cr粉、Mn粉、Fe粉、Co粉、Ni粉,将其混合均匀;采用高能球磨的方法使粉末机械合金化,得到粒径小于等于25μm的HEAp基础增强相。
(2)利用CVD技术,将得到的HEAp基础增强相作为载体和催化剂,在HEAp基础增强相表面原位生长力学与理化性能优异的CNTs,得到CNTs@HEAp复合增强体。
优选的,本发明步骤(1)中采用高能球磨的方法使粉末混合均匀,高能球磨条件为:转速200~400rpm,球料比10:1~20:1,球磨时间为20~40h。
优选的,本发明步骤(2)中:CVD反应过程中载气为氩气,碳源为乙炔,氩气和乙炔的气体流量比为10:1~20:1。
优选的,本发明步骤(2)中:CVD的条件为:反应温度500-700℃,反应时间20-60min。
本发明所述方法通过调控CVD反应过程中的工艺参数,可以得到不同CNTs分布和含量的复合增强体;影响复合增强体中CNTs分布和含量的主要因素为CVD反应过程中的反应温度、反应时间以及乙炔和氩气的气体流量比。当催化裂解的反应温度较低时(500℃以下),碳源气体流到催化剂颗粒表面时还不具备合成CNTs的反应温度,C的沉积非常困难,CNTs比较稀疏;此后,随着反应温度的提高,催化剂颗粒未团聚长大,温度有利于C原子的吸附,C原子扩散的阻力较小,复合增强体中CNTs的含量较高;当反应温度过高时(700℃以上),乙炔碳源气体分解较为容易,分解C原子的速度远远超过了C原子扩散的速度及形成CNTs的速度,使得C原子无法扩散到生成CNTs的一面,而在分解沉积的表面堆积成无定形碳,复合增强体中CNTs的含量较低;反应时间对复合增强体中CNTs含量的影响为随着时间的延长,CNTs的含量增加,但时间过长,CNTs会发生缠结。而且当反应时间超过60min时,催化剂失活,CNTs的含量也不再增加;碳源气体浓度太低,在催化裂解出活性C原子时,尚未来得及吸附在催化剂颗粒表面就被载气带走。碳源气体浓度太高,分解太快,生成的大量C原子把催化剂颗粒包覆,使其失活,不能发挥有效的催化效果,导致复合增强体中CNTs的含量均较低。
本发明的原理:FeCoNiCrMn高熵合金具有典型的FCC结构,除了具有较高的强度外,还具有良好的塑韧性,其弹性模量相比传统陶瓷颗粒较低。因此,将其作为增强体实际运用于复合材料,在变形过程中承担的应力较小,能够缓解复合材料在变形过程中的应力集中,在改善基体与增强体界面变形均匀的同时,还能与基体发生化学反应,形成良好的界面结合。基于该体系高熵合金的这些特征,将其作为复合材料的基础增强体,并利用其自身的催化效应在其表面原位生长力学与理化性能优异的CNTs。既能够解决CNTs的分散难题,使得CNTs不需要经过大的变形加工,就能够在基体中分散开来,又能够使CNTs保持较好的完整结构,发挥CNTs最大的增强效果;综上所述,用CNTs@HEAp作为增强体制备得到的复合材料具有优异的综合力学性能。
有益效果及其优点:
(1)本发明的CNTs@HEAp复合增强体可以控制CNTs和HEAp的含量,以及CNTs的分布,根据复合材料性能的要求制备合适CNTs含量的复合增强体;在制备和使用该复合增强体的过程中无任何污染。
(2)本发明所述方法中高能球磨得到的高强高韧的FeCoNiCrMn基础增强体既可以作为CVD制备CNTs的载体,FeCoNi多金属的组合又可以作为催化剂,催化效果明显高于单金属催化剂的效果,简化了镀催化剂的工艺流程。
(3)CVD工艺简单且参数可控,可得到满足要求的复合增强体,且无任何污染;在FeCoNiCrMn基础增强体表面得到分散均匀,管径均一,结晶度良好的CNTs,并且CNTs不需要与载体进行分离,简化工艺流程。
(4)本发明所述方法得到均匀分散的CNTs@HEAp复合增强体,在随后制备复合材料(主要包括铝基、铜基和镍基等金属基复合材料)的过程中可以在HEAp的带动下,在基体中分散开来,解决传统CNTs/复合材料中CNTs难以在基体中分散均匀的问题。
附图说明
图1为实施例1所得的CNTs@HEAp复合增强体扫描电镜图;
图2为实施例2所得的CNTs@HEAp复合增强体扫描电镜图。
具体实施方式
下面结合具体实施例本发明作进一步的详细说明,但本发明的保护范围并不限于所述内容。
实施例1
一种CNTs@HEAp复合增强体的制备方法,具体包括以下步骤:
(1)按等原子比称取Cr粉、Mn粉、Fe粉、Co粉、Ni粉,将其混合均匀;采用高能球磨的方法使粉末机械合金化,得到粒径小于等于25μm的HEAp基础增强相。高能球磨条件为:转速200rpm,球料比10:1,球磨时间为40h。
(2)将得到的FeCoNiCrMn基础增强体粉体作为CNTs生长的载体和催化剂放置于CVD反应装置的CNTs的催化生长区;将进料进气组件、碳纳米管催化生长组件、排气组件连接好,保证连接部分密封。
(3)通入氩气,排除反应装置中的氧,并检查有无气泡冒出,确认反应装置连通且气密性良好。
(4)将反应装置升温至550℃,在真空环境下通入乙炔碳源,反应30min,乙炔碳源在氩气的带动下进入碳纳米管催化生长区,氩气和乙炔的气体流量比为10:1,在基础增强体自身携带的FeCoNi组合催化剂的催化作用下生成CNTs。
(5)反应30min后,继续通入氩气,停止加热,自然冷却到室温后,在碳纳米管催化生长区收集制备的CNTs@HEAp复合增强体,CNTs的含量为4.2wt.%。
由图1可以看出,在550℃催化裂解乙炔30 min,得到的CNTs,其在FeCoNiCrMn基础增强体粉体表面呈单根发布,长度不等,管径不均一,分布较为均匀。
实施例2
(1)按等原子比称取Cr粉、Mn粉、Fe粉、Co粉、Ni粉,将其混合均匀;采用高能球磨的方法使粉末机械合金化,得到粒径小于等于25μm的HEAp基础增强相。高能球磨条件为:转速300rpm,球料比20:1,球磨时间为35h。
(2)将得到的FeCoNiCrMn基础增强体粉体作为CNTs的生长载体和催化剂放置于CVD反应装置的CNTs的催化生长区;将进料进气组件、碳纳米管催化生长组件、排气组件连接好,保证连接部分密封。
(3)通入氩气,排除反应装置中的氧,并检查有无气泡冒出,确认反应装置连通且气密性良好。
(4)将反应装置升温至600℃,在真空环境下通入乙炔碳源,反应40min,乙炔碳源在氩气的带动下进入碳纳米管催化生长区,氩气和乙炔的气体流量比为12:1,在基础增强体自身携带的FeCoNi组合催化剂的催化作用下生成CNTs。
(5)反应40min后,继续通入氩气,停止加热,自然冷却到室温后,在碳纳米管催化生长区收集制备的CNTs@HEAp复合增强体,CNTs的含量为4.8wt.%。
由图2可以看出, FeCoNi组合催化剂在600℃通过对乙炔的催化裂解40 min合成的CNTs,具有明显的中空结果,管径较为均一,结构完整,石墨程度高,管壁相对光滑,长度在几微米至几十微米之间,大多数CNTs呈弯曲状态,均匀分散在FeCoNiCrMn基础增强体粉体上,少部分CNTs曲率较大,发生缠结。这是因为在600℃下,催化剂颗粒尺寸未团聚长大,而且该温度有利于C原子的吸附,减小吸附的C原子扩散时的阻力,使得吸附在较大催化剂颗粒上的碳原子也能从催化剂的一面扩散到CNTs的生长晶面,从而使CNT的产率大,分布均匀。
实施例3
(1)按等原子比称取Cr粉、Mn粉、Fe粉、Co粉、Ni粉,将其混合均匀;采用高能球磨的方法使粉末机械合金化,得到粒径小于等于25μm的HEAp基础增强相。高能球磨条件为:转速300rpm,球料比20:1,球磨时间为35h。
(2)将得到的FeCoNiCrMn基础增强体粉体作为CNTs的生长载体和催化剂放置于CVD反应装置的CNTs的催化生长区;将进料进气组件、碳纳米管催化生长组件、排气组件连接好,保证连接部分密封。
(3)通入氩气,排除反应装置中的氧,并检查有无气泡冒出,确认反应装置连通且气密性良好。
(4)将反应装置升温至600℃,在真空环境下通入乙炔碳源,反应50min,乙炔碳源在氩气的带动下进入碳纳米管催化生长区,氩气和乙炔的气体流量比为12:1,在基础增强体自身携带的FeCoNi组合催化剂的催化作用下生成CNTS
(5)反应50min后,继续通入氩气,停止加热,自然冷却到室温后,在碳纳米管催化生长区收集制备的CNTs@HEAp复合增强体,CNTs的含量为7.8wt.%。
由扫描电镜图可以看出,FeCoNi组合催化剂在600℃通过对乙炔的催化裂解50min合成的CNTs长而弯曲,并且将HEAp表面完全覆盖,CNTs发生团聚现象。这是因为催化裂解时间过长,CNTs基本都长到几十微米,发生相互缠结。
实施例4
(1)按等原子比称取Cr粉、Mn粉、Fe粉、Co粉、Ni粉,将其混合均匀;采用高能球磨的方法使粉末机械合金化,得到粒径小于等于25μm的HEAp基础增强相。高能球磨条件为:转速400rpm,球料比20:1,球磨时间为30h。
(2)将得到的FeCoNiCrMn基础增强体粉体作为CNTs的生长载体和催化剂放置于CVD反应装置的CNTs的催化生长区;将进料进气组件、碳纳米管催化生长组件、排气组件连接好,保证连接部分密封。
(3)通入氩气,排除反应装置中的氧,并检查有无气泡冒出,确认反应装置连通且气密性良好。
(4)将反应装置升温至700℃,在真空环境下通入乙炔碳源,反应40min,乙炔碳源在氩气的带动下进入碳纳米管催化生长区,氩气和乙炔的气体流量比为20:1,在基础增强体自身携带的FeCoNi组合催化剂的催化作用下生成CNTs。
(5)反应40min后,继续通入氩气,停止加热,自然冷却到室温后,在碳纳米管催化生长区收集制备的CNTs@HEAp复合增强体,CNTs的含量为7.2wt.%。
由扫描电镜图可以看出, FeCoNi组合催化剂在700℃通过对乙炔的催化裂解40min合成的CNTs,有团聚现象,管径大小不一,且生成了很多无定形碳。这是因为在700℃下,C原子有长大的趋势,尺寸大的组合催化剂活性较差。而且温度太高,碳源气体分解容易,分解C原子的速率超过了其在催化剂颗粒中扩散合成CNTs的速率,使得C原子来不及向生长CNTs的一面扩散,从而在催化剂表面无规则地堆积,成为无定形碳,并且将催化剂表面完全覆盖,导致催化剂失活,整个催化裂解过程受阻。

Claims (5)

1.一种CNTs@HEAp复合增强体,其特征在于:所述复合增强体包括HEAp及其上原位生长的CNTs;该复合增强体中CNTs的质量百分比小于等于10wt.%,其余为HEAp
2.权利要求1所述CNTs@HEAp复合增强体的制备方法,其特征在于,具体包括以下步骤:
(1)按等原子比称取Cr粉、Mn粉、Fe粉、Co粉、Ni粉,将其混合均匀;采用高能球磨的方法使粉末机械合金化,得到粒径小于等于25μm的HEAp基础增强相;
(2)利用CVD技术,将得到的HEAp基础增强相作为载体和催化剂,在HEAp基础增强相表面原位生长力学与理化性能优异的CNTs,得到CNTs@HEAp复合增强体。
3.根据权利要求2所述CNTs@HEAp复合增强体的制备方法,其特征在于:步骤(1)中采用高能球磨的方法使粉末混合均匀,高能球磨条件为:转速200~400rpm,球料比10:1~20:1,球磨时间为20~40h。
4.根据权利要求1所述CNTs@HEAp复合增强体的制备方法,其特征在于:步骤(2)中:CVD反应过程中载气为氩气,碳源为乙炔,氩气和乙炔的气体流量比为10:1~20:1。
5.根据权利要求1所述CNTs@HEAp复合增强体的制备方法,其特征在于:步骤(2)中:CVD的条件为:反应温度500-700℃,反应时间20-60min。
CN202111453921.XA 2021-12-01 2021-12-01 一种CNTs@HEAp复合增强体及其制备方法 Pending CN115383119A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111453921.XA CN115383119A (zh) 2021-12-01 2021-12-01 一种CNTs@HEAp复合增强体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111453921.XA CN115383119A (zh) 2021-12-01 2021-12-01 一种CNTs@HEAp复合增强体及其制备方法

Publications (1)

Publication Number Publication Date
CN115383119A true CN115383119A (zh) 2022-11-25

Family

ID=84114709

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111453921.XA Pending CN115383119A (zh) 2021-12-01 2021-12-01 一种CNTs@HEAp复合增强体及其制备方法

Country Status (1)

Country Link
CN (1) CN115383119A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746746A (zh) * 2008-12-19 2010-06-23 索尼株式会社 制备和纯化碳纳米管的方法、碳纳米管以及碳纳米管元件
US20120037206A1 (en) * 2010-08-16 2012-02-16 Richard Norman Systems for cost effective concentration and utilization of solar energy
US20150147262A1 (en) * 2012-06-22 2015-05-28 The University Of Tokyo Carbon-containing metal catalyst particles for carbon nanotube synthesis and method of producing the same, catalyst carrier support, and method of producing carbon nanotubes
US20150147263A1 (en) * 2012-06-22 2015-05-28 The University Of Tokyo Carbon nanotubes and production method thereof
US20150274529A1 (en) * 2013-09-30 2015-10-01 Lg Chem, Ltd. Carbon nanotube having high specific surface area and method for manufacturing same
CN110004348A (zh) * 2019-02-13 2019-07-12 昆明理工大学 一种石墨烯增强高熵合金复合材料及其制备方法
CN110004349A (zh) * 2019-02-13 2019-07-12 昆明理工大学 一种碳纳米管增强高熵合金复合材料及其制备方法
CN113308630A (zh) * 2021-05-28 2021-08-27 昆明理工大学 一种原位CNTs@Ti混杂增强铝基复合材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101746746A (zh) * 2008-12-19 2010-06-23 索尼株式会社 制备和纯化碳纳米管的方法、碳纳米管以及碳纳米管元件
US20120037206A1 (en) * 2010-08-16 2012-02-16 Richard Norman Systems for cost effective concentration and utilization of solar energy
US20150147262A1 (en) * 2012-06-22 2015-05-28 The University Of Tokyo Carbon-containing metal catalyst particles for carbon nanotube synthesis and method of producing the same, catalyst carrier support, and method of producing carbon nanotubes
US20150147263A1 (en) * 2012-06-22 2015-05-28 The University Of Tokyo Carbon nanotubes and production method thereof
US20150274529A1 (en) * 2013-09-30 2015-10-01 Lg Chem, Ltd. Carbon nanotube having high specific surface area and method for manufacturing same
CN110004348A (zh) * 2019-02-13 2019-07-12 昆明理工大学 一种石墨烯增强高熵合金复合材料及其制备方法
CN110004349A (zh) * 2019-02-13 2019-07-12 昆明理工大学 一种碳纳米管增强高熵合金复合材料及其制备方法
CN113308630A (zh) * 2021-05-28 2021-08-27 昆明理工大学 一种原位CNTs@Ti混杂增强铝基复合材料及其制备方法

Similar Documents

Publication Publication Date Title
US20180123137A1 (en) A composite material of metal foam-carbon nanotube, the preparation method thereof and the use thereof
Sun et al. In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites
JP3850380B2 (ja) 炭素ナノチューブのマトリックスの成長方法
US7608331B2 (en) Cladophora-form carbon comprising carbon nanomaterials radially grown on a spherical core, process for producing the same and production apparatus
Yang et al. Synthesis of uniformly dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al composites
CN106582601B (zh) 富含缺陷位的二氧化钛石墨烯复合纳米光催化剂和碳纳米管石墨烯复合碳材料的制备方法
CN102021817B (zh) 原位生长有碳纳米管的碳化硅纤维立体织物及其复合材料及制备方法
CN102002652B (zh) 碳纳米管增强金属基复合材料及其原位制备方法
CN111170309B (zh) 一种超长少壁碳纳米管阵列的制备方法
CN107089662B (zh) 一种ch4还原碳化wo3制备wc粉体的方法
CN110983211A (zh) 一种碳纳米管增强铜基复合材料的制备方法
CN105543598B (zh) 一种增强镁基复合材料的制备方法
He et al. Fabrication of aluminum carbide nanowires by a nano-template reaction
CN105779962A (zh) 一种铜-碳纳米管复合粉末的制备方法
CN112008087A (zh) 一种提高碳纳米材料增强镍基高温合金综合性能的方法
Li et al. In-situ homogeneous synthesis of carbon nanotubes on aluminum matrix and properties of their composites
CN112794330B (zh) 一种碳化硼纳米线的制备方法
CN115383119A (zh) 一种CNTs@HEAp复合增强体及其制备方法
CN110899717A (zh) 一种Al2O3-CNTs/Cu复合材料及其制备方法
AU2016342606B2 (en) Method of preparing aluminum oxide-carbon nanotube composite powder material
TW200800387A (en) Catalyst for catalyzing carbon nanotubes growth
CN113088923A (zh) 一种高长径比碳化锆纳米线的制备方法
CN108165898A (zh) 一种铜碳纳米管复合粉末增强镁铜基非晶复合材料的制备方法
CN113308630A (zh) 一种原位CNTs@Ti混杂增强铝基复合材料及其制备方法
KR100561701B1 (ko) 탄화규소 나노로드 및 나노와이어의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination