CN113088923A - 一种高长径比碳化锆纳米线的制备方法 - Google Patents

一种高长径比碳化锆纳米线的制备方法 Download PDF

Info

Publication number
CN113088923A
CN113088923A CN202110309810.5A CN202110309810A CN113088923A CN 113088923 A CN113088923 A CN 113088923A CN 202110309810 A CN202110309810 A CN 202110309810A CN 113088923 A CN113088923 A CN 113088923A
Authority
CN
China
Prior art keywords
temperature
zirconium carbide
carbon
nanowire
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110309810.5A
Other languages
English (en)
Inventor
李贺军
李博
姚西媛
张雨雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202110309810.5A priority Critical patent/CN113088923A/zh
Publication of CN113088923A publication Critical patent/CN113088923A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种高长径比碳化锆纳米线的制备方法,以CH4为C源前驱体,ZrCl4为Zr源前驱体,H2为还原气体,Ar为保护气体,Ni(NO3)2为催化剂,在炭质基底上制备碳化锆纳米线。本发明通过设置合适的温度、压力、时间,搭配合适的气体流量比例,制备出形貌和尺寸优良,纯净且产量大的碳化锆纳米线。同时所需的制备温度低,在更多种类的基体材料上沉积。可以在复杂结构上制备均匀的碳化锆纳米线,适用范围广,具有很好的经济效益和社会效益。从所制备的形貌图3中可以看到,所得到的碳化锆纳米线形貌整齐,为规则的细杆状,长径比大,直径约为200‑300nm。由图2可看出,所得到的碳化锆纳米线分布均匀,产量大。

Description

一种高长径比碳化锆纳米线的制备方法
技术领域
本发明属于纳米材料领域,涉及一种高长径比碳化锆纳米线的制备方法。
背景技术
一维纳米材料如纳米管、晶须、纳米线、纳米棒等,由于其良好的物理化学性能以及独特的几何特性而受到广泛的关注。作为典型的一维纳米材料,纳米线具有独特的光学、电学和光电学特性,可被制成各种纳米功能元件应用于纳米电子学、光电子学等领域。碳化锆陶瓷具有高强度、高硬度、高模量、良好的耐腐蚀性能,同时还具有高熔点,且在高温下具有较低的蒸气压,因此在高温陶瓷、电极材料、核电材料等领域具有广阔的应用前景。碳化锆纳米线不仅具有传统碳化锆陶瓷块体材料的优良性能,还因其在纳米尺度下独特的几何特性而具有更加优异的性能和新的特性。由于其极佳的力学性能和大的比表面积以及长径比,碳化锆纳米线可用作超高温材料的增强体,能显著改善超高温材料的力学性能。目前对碳化锆纳米线的研究报道较少,文献1“In-situ homogeneous growth of ZrC nanowireson carbon cloth and their effects on flexural properties of carbon/carboncomposites,Ningning Yan,Xiaohong Shi,Kun Li,et.al.Composites Part B,2018,154:200-208.”公开了一种采用前驱体热解法合成碳化锆纳米线的方法。该方法采用碳化锆前驱体为碳化锆源,六水合硝酸镍为催化剂,在1500-1600℃下,在碳布上合成了碳化锆纳米线。所制备的纳米线纯度较高,但是直径较粗,约1μm,且纳米线形状蜷曲杂乱,产量低,零星地分布在碳纤维上。同时,该方法所需的制备温度较高,限制了基体材料的选择。文献2“Catalyst-free in situ synthesis of ZrC nanowires with excellent thermalstability,Ningning Yan,Qiangang Fu,Kun Li,et.al.Journal of American CeramicSociety,2020,103:5825-5836.”公开了一种由碳纳米管生长为碳化锆纳米线的方法。该方法以碳纳米管为碳源,以四氯化锆为碳化锆源,采用热蒸发法使得四氯化锆粉末挥发为气态与碳纳米管接触,从而反应生成碳化锆纳米线。制备获得的碳化锆纳米线直径较细,约200nm,但是其生长极大程度依赖于碳纳米管,制约了纳米线的形态和分布等,且纳米线生长较杂乱,同时还有未完全反应的碳管残留。另一方面,该方法需先引入碳纳米管,再制备纳米线,无法实现在基体上原位生长碳化锆纳米线,使得其使用受限。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种高长径比碳化锆纳米线的制备方法,旨在克服现有碳化锆纳米线制备过程中纳米线形貌不可控、可选用的基体材料受限、纳米线质量较差等缺陷,提出一种可以获得高长径比、高纯度、高产量、分布均匀、生产周期较短,且可在基体上原位生长的碳化锆纳米线制备工艺方法。
技术方案
一种高长径比碳化锆纳米线的制备方法,其特征在于步骤如下:
步骤1:将炭质基底清理后烘干;
步骤2:将炭质基底浸泡在Ni(NO3)2乙醇溶液中,静置2~10h,使其表面附有Ni(NO3)2颗粒;之后取出泡好的炭质基底,置于40~60℃烘箱中烘干;
步骤3:将表面附有Ni(NO3)2颗粒的炭质基底用碳绳悬挂于立式双温区化学气相沉积炉高温区位置,将50~100g ZrCl4粉末装在模具中,放置于沉积炉低温区位置;;抽真空压力为1000Pa;
先将沉积炉高温区升温,在2~3h升至1000~1200℃;待高温区升温0.5~2h后,低温区开始升温,1~2h升至200~300℃;升温过程中以400~600ml/min的速率向沉积炉内通入Ar,以1000~2000ml/min的速率通入H2;通入H2目的在于升温过程中将炭质基底上的Ni(NO3)2颗粒还原为Ni颗粒;
步骤4:待高温区和低温区的温度升至指定温度后,调整气体流量,Ar为400~800ml/min,H2为1000~5000ml/min。向沉积炉内通入CH4,流量为400~800ml/min;控制炉内压力为2000~5000Pa,此时,放置于低温区的ZrCl4粉末挥发为气态,在高温区与CH4反应,在Ni的催化下在炭质基底上生成ZrC纳米线,沉积时间为2~8h;
步骤5:沉积结束后,关闭CH4和H2,调节Ar流量为400~600ml/min,关闭加热电源自然降温,降至室温后取出炭质基底,获得ZrC纳米线。
所述炭质基底清理是:分别用400、800和1000号的砂纸依次打磨后,用无水乙醇超声清洗0.5h,超声功率设为80W。
所述步骤1中的Ni(NO3)2的乙醇溶液采用同浓度的Ni(NO3)2水溶液替代。
所述步骤1溶液的浓度为0.05~5mol/L。
所述Ni(NO3)2用Ni的氯化物、硫酸盐替代。
所述炭质基底为C/C复合材料、石墨、碳毡或石墨纸。
所述CH4用C3H6替代。
有益效果
本发明提出的一种高长径比碳化锆纳米线的制备方法,以CH4为C源前驱体,ZrCl4为Zr源前驱体,H2为还原气体,Ar为保护气体,Ni(NO3)2为催化剂,在炭质基底上制备碳化锆纳米线。该方法可以获得高长径比、高纯度、高产量、形貌良好、分布均匀、生成周期较短的碳化锆纳米线,且该方法可在炭质基底上原位地生长碳化锆纳米线。
本发明利用化学气相沉积法工艺可控的优点,通过设置合适的温度、压力、时间,搭配合适的气体流量比例,制备出形貌和尺寸优良,纯净且产量大的碳化锆纳米线。同时,该方法所需的制备温度低,可在更多种类的基体材料上沉积。在该方法中,反应物以气态进入,可以实现纳米线在基体上的原位制备,操作简便且产物优良。同时,由于气体绕镀性好,可以在复杂结构上制备均匀的碳化锆纳米线,适用范围广,具有很好的经济效益和社会效益。从所制备的形貌图3中可以看到,所得到的碳化锆纳米线形貌整齐,为规则的细杆状,长径比大,直径约为200-300nm。由图2可看出,所得到的碳化锆纳米线分布均匀,产量大。
图2是本发明中实例1制备的ZrC纳米线放大500倍的扫描电子显微镜照片。从图2中可以看出,所制备的ZrC纳米线产量大且分布均匀,不存在基体未覆盖以及生长杂乱和杂质多等现象。
图3是本发明中实例1制备的ZrC纳米线放大10000倍的扫描电子显微镜照片。从图3中可以看出,所制备的ZrC纳米线形貌规则,直径约200-300nm,长径比大。
图4是本发明中实例1制备的ZrC纳米线的X射线衍射图。由图4可以看到,XRD为纯ZrC峰,所制备的纳米线纯度高。同时ZrC峰型尖锐,说明所制备的ZrC纳米线结晶性好。
附图说明
图1:本发明的方法流程图
图2:本发明实例1中ZrC纳米线的扫描电子显微镜照片(SEM)
图3:本发明实例1中ZrC纳米线的扫描电子显微镜照片(SEM)
图4:本发明实例1中ZrC纳米线的X射线衍射图(XRD)
图5:前驱体转化法制备的碳化锆纳米线的样品SEM表征图
(a)1500℃下制备的;(b)图(a)中相应位置的放大图;(c)1550℃下制备的;(d)图(c)中相应位置的放大图。
图6:碳纳米管转化法制备的碳化锆纳米线的样品SEM表征图
(a)CNTs;(b)1200℃下制备的ZrC纳米线;(c)1300℃下制备的ZrC纳米线;(d)1400℃下制备的ZrC纳米线。
具体实施方式
现结合实施例、附图对本发明作进一步描述:
实施例1:
1)将尺寸为10mm×10mm×6mm的碳碳复合材料分别用400、800和1000号的砂纸依次打磨后,用无水乙醇超声清洗0.5h,超声功率设为80W,之后放入烘箱中烘干备用。
2)称取适量的Ni(NO3)2粉末放入烧杯中,倒入适量无水乙醇,用玻璃棒搅拌,配置浓度为0.05mol/L的Ni(NO3)2的乙醇溶液。
3)将1)中烘干的碳碳复合材料浸泡在配置好的Ni(NO3)2乙醇溶液中,静置2h,使其表面附有Ni(NO3)2颗粒。之后取出泡好的碳碳复合材料,置于40℃烘箱中烘干。
4)将烘干后的表面附有Ni(NO3)2颗粒的炭质基底用碳绳悬挂于立式双温区化学气相沉积炉高温区位置,将50g ZrCl4粉末装在模具中,放置于沉积炉低温区位置。安装好沉积炉的上下法兰,打开真空泵将炉内抽为真空,压力为1000Pa。设定程序,先将沉积炉高温区升温,2h升至1000℃。待高温区升温0.5h后,低温区开始升温,1.5h升至200℃。升温过程中以400ml/min的速率向沉积炉内通入Ar,以1000ml/min的速率通入H2
5)待高温区和低温区的温度升至指定温度后,调整气体流量,Ar为400ml/min,H2为1000ml/min。向沉积炉内通入CH4,流量为400ml/min。调节真空泵抽力,控制炉内压力为2000Pa。此时,放置于低温区的ZrCl4粉末挥发为气态,在高温区与CH4反应,在Ni的催化下在碳碳复合材料表面生成ZrC纳米线。沉积时间为4h。
6)沉积结束后,关闭CH4和H2,调节Ar流量为400ml/min,关闭加热电源自然降温,降至室温后取出碳碳复合材料,获得ZrC纳米线,如图2,图3所示。
实施例2:
1)将尺寸为10mm×10mm×6mm的碳碳复合材料分别用400、800和1000号的砂纸依次打磨后,用无水乙醇超声清洗0.5h,超声功率设为80W,之后放入烘箱中烘干备用。
2)称取适量的Ni(NO3)2粉末放入烧杯中,倒入适量无水乙醇,用玻璃棒搅拌,配置浓度为1mol/L的Ni(NO3)2的乙醇溶液。
3)将1)中烘干的碳碳复合材料浸泡在配置好的Ni(NO3)2乙醇溶液中,静置6h,使其表面附有Ni(NO3)2颗粒。之后取出泡好的碳碳复合材料,置45℃烘箱中烘干。
4)将烘干后的表面附有Ni(NO3)2颗粒的炭质基底用碳绳悬挂于立式双温区化学气相沉积炉高温区位置,将80g ZrCl4粉末装在模具中,放置于沉积炉低温区位置。安装好沉积炉的上下法兰,打开真空泵将炉内抽为真空,压力为1000Pa。设定程序,先将沉积炉高温区升温,2.5h升至1100℃。待高温区升温1h后,低温区开始升温,1.5h升至250℃。升温过程中以500ml/min的速率向沉积炉内通入Ar,以1500ml/min的速率通入H2
5)待高温区和低温区的温度升至指定温度后,调整气体流量,Ar为600ml/min,H2为2000ml/min。向沉积炉内通入CH4,流量为600ml/min。调节真空泵抽力,控制炉内压力为3000Pa。此时,放置于低温区的ZrCl4粉末挥发为气态,在高温区与CH4反应,在Ni的催化下在碳碳复合材料表面生成ZrC纳米线。沉积时间为6h。
6)沉积结束后,关闭CH4和H2,调节Ar流量为600ml/min,关闭加热电源自然降温,降至室温后取出碳碳复合材料,获得ZrC纳米线。
实施例3:
1)称取适量的Ni(NO3)2粉末放入烧杯中,倒入适量无水乙醇,用玻璃棒搅拌,配置浓度为4mol/L的Ni(NO3)2的乙醇溶液。
2)将尺寸为10mm×10mm×10mm的碳毡浸泡在配置好的Ni(NO3)2乙醇溶液中,静置10h,使其表面附有Ni(NO3)2颗粒。之后取出泡好的碳毡,置于50℃烘箱中烘干。
3)将烘干后的表面附有Ni(NO3)2颗粒的炭质基底用碳绳悬挂于立式双温区化学气相沉积炉高温区位置,将100g ZrCl4粉末装在模具中,放置于沉积炉低温区位置。安装好沉积炉的上下法兰,打开真空泵将炉内抽为真空,压力为1000Pa。设定程序,先将沉积炉高温区升温,3h升至1200℃。待高温区升温1h后,低温区开始升温,2h升至300℃。升温过程中以600ml/min的速率向沉积炉内通入Ar,以2000ml/min的速率通入H2
4)待高温区和低温区的温度升至指定温度后,调整气体流量,Ar为800ml/min,H2为4000ml/min。向沉积炉内通入CH4,流量为800ml/min。调节真空泵抽力,控制炉内压力为4000Pa。此时,放置于低温区的ZrCl4粉末挥发为气态,在高温区与CH4反应,在Ni的催化下在碳毡中生成ZrC纳米线。沉积时间为8h。
5)沉积结束后,关闭CH4和H2,调节Ar流量为500ml/min,关闭加热电源自然降温,降至室温后取出碳毡,获得ZrC纳米线。
反例:其他方法制备的碳化锆纳米线
(1)前驱体转化法:将ZrC的有机前驱体和催化剂六水合硝酸镍溶于丙酮溶液中作为前驱体溶液,将碳布浸入前驱体溶液中20-60min。取出后烘干,放入管式炉中,通H2先在600℃下还原1h,再升温至1500-1600℃,还原2h,获得ZrC纳米线。得到的样品SEM表征如下(图5为引用的文章中截取):
由图可见,所制备的纳米线纯度较高,但是直径较粗,约1μm,且纳米线形状蜷曲杂乱,产量低,零星地分布在碳纤维上。同时,该方法所需的制备温度较高,对设备要求高,也限制了基体材料的选择。前驱体转化法制备ZrC纳米线,其过程无法调整,可控性差,且无法原位在基底上生长。[In-situ homogeneous growth of ZrC nanowires on carbon clothand their effects on flexural properties of carbon/carbon composites,NingningYan,Xiaohong Shi,Kun Li,Qiangang Fu,Wei Xie,Hongrui Zhang,QiangSong.Composites Part B,2018,154:200-208.]
(2)碳纳米管转化法:将碳纳米管放于方舟中,放置在CVD炉的高温区。将ZrCl4粉末装入送粉器中,以0.5-2g/h的速率将ZrCl4送入炉内。向炉内通入50-200sccm的氩气作为载气,通入50-200sccm的氢气作为还原气。分别在1200℃、1300℃和1400℃的温度下对样品进行2h热处理,压力为103-104Pa,得到ZrC纳米线。得到的样品SEM表征如下(图片为引用的文章中截取):
由图可见,碳纳米管转化法制备获得的ZrC纳米线,其生长极大地依赖于碳纳米管,制约了纳米线的形态和分布等,且纳米线生长较杂乱,同时还有未完全反应的碳管残留。另一方面,该方法需先引入碳纳米管,再制备纳米线,无法实现在基体上原位生长碳化锆纳米线,使得其使用受限。[Catalyst-free in situ synthesis of ZrC nanowireswith excellent thermal stability,Ningning Yan,Qiangang Fu,Kun Li,et.al.Journal of American Ceramic Society,2020,103:5825-5836.]。
由后面的非本发明方法的实施例对比看出本发明的优势。

Claims (7)

1.一种高长径比碳化锆纳米线的制备方法,其特征在于步骤如下:
步骤1:将炭质基底清理后烘干;
步骤2:将炭质基底浸泡在Ni(NO3)2乙醇溶液中,静置2~10h,使其表面附有Ni(NO3)2颗粒;之后取出泡好的炭质基底,置于40~60℃烘箱中烘干;
步骤3:将表面附有Ni(NO3)2颗粒的炭质基底用碳绳悬挂于立式双温区化学气相沉积炉高温区位置,将50~100g ZrCl4粉末装在模具中,放置于沉积炉低温区位置;;抽真空压力为1000Pa;
先将沉积炉高温区升温,在2~3h升至1000~1200℃;待高温区升温0.5~2h后,低温区开始升温,1~2h升至200~300℃;升温过程中以400~600ml/min的速率向沉积炉内通入Ar,以1000~2000ml/min的速率通入H2;通入H2目的在于升温过程中将炭质基底上的Ni(NO3)2颗粒还原为Ni颗粒;
步骤4:待高温区和低温区的温度升至指定温度后,调整气体流量,Ar为400~800ml/min,H2为1000~5000ml/min。向沉积炉内通入CH4,流量为400~800ml/min;控制炉内压力为2000~5000Pa,此时,放置于低温区的ZrCl4粉末挥发为气态,在高温区与CH4反应,在Ni的催化下在炭质基底上生成ZrC纳米线,沉积时间为2~8h;
步骤5:沉积结束后,关闭CH4和H2,调节Ar流量为400~600ml/min,关闭加热电源自然降温,降至室温后取出炭质基底,获得ZrC纳米线。
2.根据权利要求1所述高长径比碳化锆纳米线的制备方法,其特征在于:所述炭质基底清理是:分别用400、800和1000号的砂纸依次打磨后,用无水乙醇超声清洗0.5h,超声功率设为80W。
3.根据权利要求1所述高长径比碳化锆纳米线的制备方法,其特征在于:所述步骤1中的Ni(NO3)2的乙醇溶液采用同浓度的Ni(NO3)2水溶液替代。
4.根据权利要求1或3所述高长径比碳化锆纳米线的制备方法,其特征在于:所述步骤1溶液的浓度为0.05~5mol/L。
5.根据权利要求3所述高长径比碳化锆纳米线的制备方法,其特征在于:所述Ni(NO3)2用Ni的氯化物、硫酸盐替代。
6.根据权利要求1所述高长径比碳化锆纳米线的制备方法,其特征在于:所述炭质基底为C/C复合材料、石墨、碳毡或石墨纸。
7.根据权利要求1所述高长径比碳化锆纳米线的制备方法,其特征在于:所述CH4用C3H6替代。
CN202110309810.5A 2021-03-23 2021-03-23 一种高长径比碳化锆纳米线的制备方法 Pending CN113088923A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110309810.5A CN113088923A (zh) 2021-03-23 2021-03-23 一种高长径比碳化锆纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110309810.5A CN113088923A (zh) 2021-03-23 2021-03-23 一种高长径比碳化锆纳米线的制备方法

Publications (1)

Publication Number Publication Date
CN113088923A true CN113088923A (zh) 2021-07-09

Family

ID=76669081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110309810.5A Pending CN113088923A (zh) 2021-03-23 2021-03-23 一种高长径比碳化锆纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN113088923A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259900A (zh) * 2022-03-23 2022-11-01 西北工业大学 一种极长(TaxHf1-x)C超高温陶瓷固溶体纳米线及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730685A (zh) * 2012-07-03 2012-10-17 西北工业大学 一维碳化铪纳米材料的制备方法
CN107572525A (zh) * 2017-10-23 2018-01-12 重庆交通大学 二维碳化铪纳米片的制备方法
CN111549378A (zh) * 2020-05-28 2020-08-18 西北工业大学 一种采用化学气相沉积法制备碳化锆晶须的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730685A (zh) * 2012-07-03 2012-10-17 西北工业大学 一维碳化铪纳米材料的制备方法
CN107572525A (zh) * 2017-10-23 2018-01-12 重庆交通大学 二维碳化铪纳米片的制备方法
CN111549378A (zh) * 2020-05-28 2020-08-18 西北工业大学 一种采用化学气相沉积法制备碳化锆晶须的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TA-WEI CHIUA ET AL: ""Synthesis and field emission of ZrC nanowire"", 《MATERIALS TODAY COMMUNICATIONS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259900A (zh) * 2022-03-23 2022-11-01 西北工业大学 一种极长(TaxHf1-x)C超高温陶瓷固溶体纳米线及制备方法
CN115259900B (zh) * 2022-03-23 2024-01-30 西北工业大学 一种极长(TaxHf1-x)C超高温陶瓷固溶体纳米线及制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Structure and field-emission properties of sub-micrometer-sized tungsten-whisker arrays fabricated by vapor deposition
Huang et al. Morphology, structures and properties of ZnO nanobelts fabricated by Zn-powder evaporation without catalyst at lower temperature
Ding et al. The synthesis of titanium nitride whiskers on the surface of graphite by molten salt media
CN105543598B (zh) 一种增强镁基复合材料的制备方法
CN109437203B (zh) 一种高纯一维SiC纳米材料的制备方法
JP2020508959A (ja) 連続式工程を利用した多重壁カーボンナノチューブの製造方法
CN115058885B (zh) 一种碳纤维布表面定向SiC纳米线阵列及制备方法
CN112794330B (zh) 一种碳化硼纳米线的制备方法
CN113788464B (zh) 一种双过渡金属氧化物催化制备氮化硼纳米管的方法
CN113088923A (zh) 一种高长径比碳化锆纳米线的制备方法
CN113279249B (zh) 一种碳纤维表面原位自生弥散分布碳化物晶须及制备方法
Chen et al. Tuning the morphologies of SiC nanowires via the change of the Co x Si y melts
CN111549378A (zh) 一种采用化学气相沉积法制备碳化锆晶须的方法
CN112030544B (zh) 一种在碳化硅纤维表面原位生长碳化硅纳米线的方法
CN117534071A (zh) 一种max相材料及其制备方法与应用
CN111232983A (zh) 一种以海绵状石墨烯或其衍生物为碳源规模化制备SiC纳米线的方法
CN114032607B (zh) 一种采用碳化锆籽晶制备碳化锆晶须的方法
Li et al. A novel method for massive fabrication of β-SiC nanowires
Tang et al. Controlled synthesis of quasi-one-dimensional boron nitride nanostructures
JP3893465B2 (ja) 窒化ホウ素ナノチューブの製造方法
Khongwong et al. Influence of raw powder size, reaction temperature, and soaking time on synthesis of SiC/SiO2 coaxial nanowires via thermal evaporation
KR100561701B1 (ko) 탄화규소 나노로드 및 나노와이어의 제조 방법
CN111850498A (zh) 一种碳纳米纤维增强镍基复合涂层及其制备方法
KR100460332B1 (ko) 실리콘 카바이드 나노선의 제조방법
CN110589832A (zh) 一种SiC纳米线及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210709