WO2013190830A1 - 熱交換器及び空気調和機 - Google Patents

熱交換器及び空気調和機 Download PDF

Info

Publication number
WO2013190830A1
WO2013190830A1 PCT/JP2013/003792 JP2013003792W WO2013190830A1 WO 2013190830 A1 WO2013190830 A1 WO 2013190830A1 JP 2013003792 W JP2013003792 W JP 2013003792W WO 2013190830 A1 WO2013190830 A1 WO 2013190830A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchange
heat exchanger
flow direction
exchange unit
Prior art date
Application number
PCT/JP2013/003792
Other languages
English (en)
French (fr)
Inventor
憲昭 山本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380029882.8A priority Critical patent/CN104350341B/zh
Priority to JP2014520951A priority patent/JP6098951B2/ja
Publication of WO2013190830A1 publication Critical patent/WO2013190830A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • the present invention relates to a heat exchanger and an air conditioner including the heat exchanger.
  • a conventional air conditioner includes a compressor 101 that compresses a refrigerant, a four-way valve 102 that switches a refrigerant path during cooling and heating operation, and indoor heat that exchanges heat between the refrigerant and indoor air.
  • An exchanger 103, a decompression device 104 that decompresses the refrigerant, and an outdoor heat exchanger 105 that exchanges heat between the refrigerant and outdoor air are provided.
  • the compressor 101, the four-way valve 102, the indoor heat exchanger 103, the decompression device 104, and the outdoor heat exchanger 105 are connected in an annular shape by a refrigerant pipe, thereby constituting a refrigeration cycle.
  • the conventional air conditioner includes an indoor fan 106 that promotes heat exchange between the refrigerant flowing inside the indoor heat exchanger 103 and the indoor air, the refrigerant flowing inside the outdoor heat exchanger 105, and the outdoor air. And an outdoor fan 107 that promotes heat exchange.
  • the refrigerant is the compressor 101, the four-way valve 102, the indoor heat exchanger 103, the decompression device 104, the outdoor heat exchanger 105, and the four-way valve 102.
  • the compressor 101 flows in this order.
  • the refrigerant is the compressor 101, the four-way valve 102, the outdoor heat exchanger 105, the decompression device 104, the indoor heat exchanger 103, the four-way valve 102, and the compressor 101. It flows in order.
  • the outdoor heat exchanger 105 When the outdoor heat exchanger 105 has a plurality of tube arrangements with respect to the flow direction of air (wind) blown from the outdoor fan 107, the flow of refrigerant flowing in the outdoor heat exchanger 105 and the outdoor fan during heating The flow of air blown from 107 becomes an opposite flow. On the other hand, at the time of cooling, the flow of the refrigerant flowing through the outdoor heat exchanger 105 and the flow of air blown from the outdoor fan 107 are parallel flows.
  • JP-A-7-280375 a first refrigerant flow switching device is connected to the discharge side of the compressor, and a second refrigerant flow switching device is connected to the suction side of the compressor, so that the flow of the refrigerant
  • An air conditioner is disclosed in which the air flow and the air flow are opposed to each other during heating operation and cooling operation.
  • JP-A-7-280375 can achieve high heat exchange efficiency, but requires a plurality of refrigerant flow switching devices outside the heat exchanger. There is a problem that it is difficult to reduce the cost and cost.
  • an object of the present invention is to solve the above-mentioned problems, and to provide a heat exchanger capable of obtaining high heat exchange efficiency and an air conditioner equipped with the heat exchanger by a configuration different from the conventional configuration. There is.
  • the heat exchanger of the present invention is: A heat exchanger having a plurality of rows of tube arrangements, During the condensation operation, the flow direction of the refrigerant is opposite to the flow direction of the air blown to exchange heat with the refrigerant, and during the evaporation operation, the flow direction of the refrigerant is the air flow direction.
  • a first heat exchange section configured to be parallel;
  • a second heat exchanging unit configured so that the flow direction of the refrigerant faces the flow direction of the air at both the condensation operation and the evaporation operation; With The first heat exchange part is arranged upstream of the second heat exchange part with respect to the flow direction of the refrigerant during the evaporation operation.
  • FIG. 1 is an explanatory view schematically showing a configuration of an air conditioner according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory view schematically showing a configuration of an outdoor heat exchanger provided in the air conditioner of FIG.
  • FIG. 3 is a graph showing an example of a temperature change of each refrigerant flow pipe during the evaporation operation of the outdoor heat exchanger of FIG.
  • FIG. 4 is a graph showing an example of the temperature change of each refrigerant flow pipe during the condensation operation of the outdoor heat exchanger of FIG.
  • FIG. 1 is an explanatory view schematically showing a configuration of an air conditioner according to a first embodiment of the present invention.
  • FIG. 2 is an explanatory view schematically showing a configuration of an outdoor heat exchanger provided in the air conditioner of FIG.
  • FIG. 3 is a graph showing an example of a temperature change of each refrigerant flow pipe during the evaporation operation of the outdoor heat exchanger of FIG.
  • FIG. 4 is a graph showing an
  • FIG. 5 is an explanatory view schematically showing a configuration of an outdoor heat exchanger provided in an air conditioner according to a second embodiment of the present invention.
  • FIG. 6 is a graph showing an example of a temperature change of each refrigerant circulation pipe during the evaporation operation of the outdoor heat exchanger of FIG.
  • FIG. 7 is an explanatory view schematically showing a configuration of a conventional air conditioner.
  • the heat exchanger of the present invention is a heat exchanger having a plurality of rows of tube arrangements, During the condensation operation, the flow direction of the refrigerant is opposite to the flow direction of the air blown to exchange heat with the refrigerant, and during the evaporation operation, the flow direction of the refrigerant is the air flow direction.
  • a first heat exchange section configured to be parallel;
  • a second heat exchanging unit configured so that the flow direction of the refrigerant faces the flow direction of the air at both the condensation operation and the evaporation operation; With The first heat exchange part is arranged upstream of the second heat exchange part with respect to the flow direction of the refrigerant during the evaporation operation.
  • the refrigerant flow and the air flow in the first heat exchanging section are opposed to each other.
  • the refrigerant flow and the air flow in the second heat exchange section are opposed.
  • the refrigerant flow and the air flow in the first heat exchange unit are in parallel flow during the evaporation operation, but the refrigerant flow and the air flow in the first heat exchange unit.
  • the heat exchange efficiency can be obtained when the two are opposed to each other. The reason is as follows.
  • the gas-liquid two-phase with a small dryness ratio of the gas phase to the sum of the gas phase and the liquid phase in the two-phase refrigerant
  • the heat exchanger outdoor heat exchanger
  • Refrigerant is supplied.
  • a gas-liquid two-phase refrigerant having a low dryness has a property that a pressure loss generated when passing through a refrigerant flow pipe in a heat exchanger is smaller than that of a gas-liquid two-phase refrigerant having a large gas phase or a high dryness.
  • the pressure loss is small, the temperature drop of the refrigerant flow pipe is small.
  • the first heat exchange unit is disposed upstream of the second heat exchange unit with respect to the flow direction of the refrigerant during the evaporation operation. That is, the first heat exchange unit is disposed where the refrigerant passing through the refrigerant flow pipe in the heat exchanger is a gas-liquid two-phase refrigerant having a low dryness.
  • coolant and air can be kept large and the fall of heat exchange efficiency can be suppressed.
  • the second heat exchange unit has more refrigerant paths than the first heat exchange unit. According to this configuration, the pressure loss can be reduced due to the large number of refrigerant paths in the second heat exchange section. In addition, since the number of refrigerant paths in the first heat exchange unit is small, the amount of refrigerant flowing through one refrigerant path can be increased. Thereby, the flow rate of a refrigerant
  • coolant can be raised and heat exchange can be accelerated
  • the first heat exchange unit is disposed downstream of the second heat exchange unit with respect to the flow direction of the refrigerant during the condensation operation. According to this configuration, for example, even when there is a variation in the temperature of the refrigerant passing through the second heat exchange section having a large number of refrigerant paths during the condensation operation, they are joined by the first heat exchange section having a small number of refrigerant paths. Can be soaked. Thereby, heat exchange efficiency can be improved.
  • the first heat exchange unit is located on the windward side with respect to the air flow direction, and is located on the lee side with respect to the air flow direction. It is preferable to provide a leeward heat exchange section with a large number of refrigerant paths. According to this configuration, during the evaporation operation, the amount of the gas-liquid two-phase refrigerant flowing in one refrigerant path can be increased by reducing the number of refrigerant paths in the windward heat exchange unit. Thereby, the flow rate of the gas-liquid two-phase refrigerant can be increased, and heat exchange can be promoted. Moreover, pressure loss can be reduced because there are many refrigerant paths of a leeward side heat exchange part. Thereby, it becomes possible to keep the temperature difference of a refrigerant
  • the heat exchanger is configured by a combination of a refrigerant flow pipe through which the refrigerant passes and a check valve that regulates the flow direction of the refrigerant in one direction. According to this configuration, since the heat exchanger is configured with simple parts, it is possible to reduce the size and cost.
  • the first heat exchange unit is disposed below the second heat exchange unit.
  • the liquid phase refrigerant can flow according to gravity, and it is possible to suppress the accumulation of useless liquid phase refrigerant in the refrigerant flow pipe of the first heat exchange unit.
  • coolant flows at the time of a condensation operation will be arrange
  • FIG. 1 is an explanatory diagram schematically showing the configuration of the air conditioner according to the first embodiment of the present invention.
  • the air conditioner 1 according to the first embodiment includes an outdoor unit 2 installed outside and an indoor unit 4 installed indoors.
  • a compressor 6 that compresses the refrigerant
  • a four-way valve 8 that switches the path of the refrigerant during the cooling and heating operation
  • an outdoor heat exchanger 10 that exchanges heat between the refrigerant and the outside air
  • a reduced pressure of the refrigerant An expansion valve 12 which is an example of a decompression device is provided.
  • An indoor heat exchanger 14 for exchanging heat between the refrigerant and indoor air is provided inside the indoor unit 4.
  • the compression valve 6, the four-way valve 8, the outdoor heat exchanger 10, the expansion valve 12, and the indoor heat exchanger 14 form a refrigeration cycle by being annularly connected by a refrigerant pipe.
  • the compressor 6 and the indoor heat exchanger 14 are connected via a refrigerant pipe 16.
  • a four-way valve 8 is provided at an intermediate portion of the refrigerant pipe 16.
  • the indoor heat exchanger 14 and the expansion valve 12 are connected via a refrigerant pipe 18.
  • a strainer 20 that prevents foreign matter from entering the expansion valve 12 is provided in the refrigerant pipe 18.
  • the expansion valve 12 and the outdoor heat exchanger 10 are connected via a refrigerant pipe 22.
  • the outdoor heat exchanger 10 and the compressor 6 are connected via a refrigerant pipe 24.
  • a four-way valve 8 is provided at an intermediate portion of the refrigerant pipe 24.
  • the refrigerant pipe 24 is provided with an accumulator 26 for separating the liquid phase refrigerant and the gas phase refrigerant.
  • the accumulator 26 is disposed between the four-way valve 8 and the compressor 6.
  • an outdoor fan (not shown) that promotes heat exchange between the refrigerant flowing inside the outdoor heat exchanger 10 and the outdoor air is provided inside the outdoor unit 2.
  • An indoor fan (not shown) that promotes heat exchange between the refrigerant flowing inside the indoor heat exchanger 14 and the indoor air is provided inside the indoor unit 4.
  • the indoor heat exchanger 14 exchanges heat between the indoor air sucked into the indoor unit 4 by the indoor fan and the refrigerant flowing inside the indoor heat exchanger 14, and is heated by heat exchange during heating. The air cooled by heat exchange is blown into the room during cooling.
  • upper and lower blades (not shown) and left and right blades (not shown) are provided inside the indoor unit 4.
  • the upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary.
  • the left and right blades change the direction of air blown from the indoor unit 4 to the left and right as necessary.
  • FIG. 1 a solid line arrow indicates the flow direction of the refrigerant during the heating operation.
  • the compressor 6 compresses the refrigerant to generate a high-temperature and high-pressure gas-phase refrigerant.
  • the high-temperature and high-pressure gas-phase refrigerant is sent to the indoor heat exchanger 14 through the refrigerant pipe 16 and the four-way valve 8.
  • the high-temperature and high-pressure gas-phase refrigerant sent to the indoor heat exchanger 14 is heat-exchanged with the air sucked in by the indoor fan to be dissipated and condensed to become a high-pressure liquid-phase refrigerant.
  • the high-pressure liquid-phase refrigerant is sent to the expansion valve 12 through the refrigerant pipe 18 and the strainer 10.
  • the air whose temperature has increased by absorbing the heat of the high-temperature and high-pressure gas-phase refrigerant is blown into the room by the indoor fan to heat the room.
  • the high-pressure liquid-phase refrigerant sent to the expansion valve 12 is decompressed by the expansion valve 12 and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant is sent to the outdoor heat exchanger 10 through the refrigerant pipe 22.
  • the gas-liquid two-phase refrigerant sent to the outdoor heat exchanger 10 evaporates by exchanging heat with the air sucked by the outdoor fan, and becomes a gas-phase refrigerant.
  • the gas phase refrigerant returns to the compressor 6 through the refrigerant pipe 24, the four-way valve 8, and the accumulator 26.
  • FIG. 1 broken line arrows indicate the flow direction of the refrigerant during the cooling operation.
  • the compressor 6 compresses the refrigerant to generate a high-temperature and high-pressure gas-phase refrigerant.
  • the high-temperature and high-pressure gas-phase refrigerant is sent to the outdoor heat exchanger 10 through the cooling pipe 24 and the four-way valve 8.
  • the high-temperature and high-pressure gas-phase refrigerant sent to the outdoor heat exchanger 10 dissipates heat by exchanging heat with the air sucked by the outdoor fan, and becomes a high-pressure liquid-phase refrigerant.
  • the high-pressure liquid-phase refrigerant is sent to the expansion valve 12 through the refrigerant pipe 22 and decompressed to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant is sent to the indoor heat exchanger 14 through the refrigerant pipe 18.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant sent to the indoor heat exchanger 14 absorbs heat and evaporates by exchanging heat with the air sucked by the indoor fan, and becomes a low-pressure gas-phase refrigerant.
  • the low-pressure gas-phase refrigerant returns to the compressor 6 through the refrigerant pipe 16, the four-way valve 8, and the accumulator 26.
  • the air whose temperature has been lowered by being absorbed by the low-temperature and low-pressure gas-liquid two-phase refrigerant is blown into the room by the indoor fan and cools the room.
  • FIG. 2 is an explanatory diagram schematically showing the configuration of the outdoor heat exchanger.
  • the solid line arrows indicate the flow direction of the refrigerant during the evaporation operation (heating operation) in which the outdoor heat exchanger 10 is used as an evaporator.
  • broken line arrows indicate the flow direction of the refrigerant during the condensation operation (in the cooling operation) in which the outdoor heat exchanger 10 is used as a condenser.
  • the outdoor heat exchanger 10 has two rows of tube arrangements on the windward side and the leeward side with respect to the flow of air (wind) blown from the outdoor fan.
  • the outdoor heat exchanger 10 includes a first heat exchange unit 30 and a second heat exchange unit 31.
  • the second heat exchange unit 31 is configured to have a larger heat transfer area than the first heat exchange unit 30.
  • the first heat exchanging unit 30 is configured such that the refrigerant flow direction is opposite to the air flow direction during the condensation operation, and the refrigerant flow direction is parallel to the air flow direction during the evaporation operation. ing.
  • the first heat exchange unit 30 is disposed upstream of the second heat exchange unit 31 with respect to the flow direction of the refrigerant during the evaporation operation.
  • the second heat exchanging unit 31 is configured such that the refrigerant flow direction opposes the air flow direction during both the condensation operation and the evaporation operation. More specifically, the first heat exchange unit 30 and the second heat exchange unit 31 are configured as follows.
  • the first heat exchange unit 30 includes a first upwind heat exchange unit 30a located on the windward side with respect to the air flow direction, and a first leeward side heat exchange unit 30b located on the downwind side with respect to the air flow direction. It has.
  • the first leeward heat exchange unit 30 a includes a refrigerant flow pipe 32.
  • the refrigerant flow pipe 32 is connected to the refrigerant pipe 22.
  • the first leeward heat exchange unit 30 b includes a refrigerant flow pipe 33.
  • the refrigerant flow pipe 33 and the refrigerant flow pipe 32 are connected to form one refrigerant flow path.
  • the second heat exchange unit 31 includes a second upwind heat exchange unit 31a located on the windward side with respect to the air flow direction, and a second leeward side heat exchange unit 31b located on the leeward side with respect to the air flow direction. It has.
  • the second upwind heat exchanging portion 31a includes four refrigerant flow pipes 35a to 35d.
  • the second leeward side heat exchanging portion 31b includes four refrigerant circulation pipes 34a to 34d.
  • the refrigerant flow pipes 34a to 34d and the refrigerant flow pipes 35a to 35d are connected to form four refrigerant flow paths.
  • a refrigerant circulation pipe 36 is connected to the refrigerant circulation pipes 34a to 34d.
  • the refrigerant flow pipe 36 is connected to the refrigerant pipe 24 and the refrigerant flow pipe 33.
  • the refrigerant pipe 24 is provided with a check valve 40 that restricts the refrigerant passing through the refrigerant flow pipe 36 from flowing into the refrigerant pipe 24 side.
  • the refrigerant flow pipe 36 is provided with a check valve 41 that restricts the refrigerant passing through the refrigerant flow pipe 36 from flowing into the refrigerant flow pipe 33 side.
  • a refrigerant circulation pipe 37 and a refrigerant circulation pipe 38 are connected to the refrigerant circulation pipes 35a to 35d.
  • the refrigerant flow pipe 37 is connected to the refrigerant pipe 24.
  • the refrigerant flow pipe 37 is provided with a check valve 42 that restricts the refrigerant passing through the refrigerant flow pipe 37 from flowing into the refrigerant flow pipes 35a to 35d.
  • the refrigerant flow pipe 38 is connected to the refrigerant flow pipe 36.
  • the refrigerant flow pipe 38 is provided with a check valve 43 that restricts the refrigerant passing through the refrigerant flow pipe 38 from flowing into the refrigerant flow pipes 35a to 35d.
  • the gas-liquid two-phase refrigerant is sent to the first heat exchange unit 30 through the refrigerant pipe 22.
  • the gas-liquid two-phase refrigerant is sent to the refrigerant flow pipe 36 through the refrigerant flow pipe 32 of the first leeward heat exchange unit 30a, the refrigerant flow pipe 33 of the first leeward heat exchange unit 30b, and the check valve 41.
  • heat exchange is performed between the gas-liquid two-phase refrigerant and the air blown from the outdoor fan.
  • the gas-liquid two-phase refrigerant is sent to the second heat exchange unit 31.
  • This gas-liquid two-phase refrigerant is distributed to the refrigerant flow pipes 34a to 34d of the second leeward heat exchange unit 31b and sent to the second leeward heat exchange unit 31a.
  • the distributed gas-liquid two-phase refrigerant is sent to the refrigerant circulation pipe 37 through the refrigerant circulation pipes 35a to 35d of the second upwind heat exchange section 31a.
  • heat exchange between the gas-liquid two-phase refrigerant and the air blown from the outdoor fan is performed, and the gas-liquid two-phase refrigerant evaporates to become a gas-phase refrigerant.
  • the gas phase refrigerant merges in the refrigerant flow pipe 37, passes through the check valve 42, and is sent to the refrigerant pipe 24.
  • FIG. 3 is a graph showing an example of a temperature change of each refrigerant flow pipe of the outdoor heat exchanger during the evaporation operation.
  • the data shown in FIG. 3 was measured under conditions where the indoor temperature was 20 ° C. and the outdoor temperature was 7 ° C. (wet bulb temperature 6 ° C.).
  • a gas-liquid two-phase refrigerant having a low dryness is supplied to the refrigerant pipe 22 serving as the inlet of the outdoor heat exchanger 10 as a refrigerant.
  • the gas-liquid two-phase refrigerant has a property that a pressure loss generated when passing through the refrigerant flow pipe is small as compared with a gas-liquid two-phase refrigerant having a large gas phase and dryness. When the pressure loss is small, the temperature drop of the refrigerant flow pipe is small.
  • the gas-liquid two-phase refrigerant passing through the refrigerant flow pipe 33 is distributed to the refrigerant flow pipes 34a to 34d, pressure loss is suppressed, and temperature drop of the refrigerant flow pipe is also suppressed. Furthermore, since the refrigerant is distributed to the refrigerant flow pipes 34a to 34d after passing through the first heat exchanging unit 30, the variation in the amount of refrigerant to be distributed can be reduced. This is because distribution of the gas-liquid two-phase refrigerant having a high degree of dryness can reduce the variation in the refrigerant amount rather than distributing the gas-liquid two-phase refrigerant having a low degree of dryness.
  • the gas-liquid two-phase refrigerant evaporates by exchanging heat with the air blown from the outdoor fan in the process of passing through the refrigerant circulations 34a to 34d, and becomes a gas phase refrigerant.
  • the refrigerant flow direction in the second heat exchange unit 31 is configured to face the air flow direction, heat exchange is promoted, and the temperature of the gas-phase refrigerant greatly increases. .
  • the temperature difference between the refrigerant and the air can be kept large, and high heat exchange efficiency can be obtained. be able to.
  • the gas-phase refrigerant is sent to the second heat exchange unit 31 through the refrigerant pipe 24 and the check valve 40.
  • the gas-phase refrigerant is distributed to the refrigerant circulation pipes 34a to 34d of the second leeward heat exchange unit 31b and sent to the refrigerant circulation pipes 35a to 35d of the second leeward heat exchange unit 31a.
  • heat exchange between the gas-phase refrigerant and the air blown from the outdoor fan is performed, and the gas-phase refrigerant is condensed to become a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant passing through the refrigerant flow pipes 35a to 35d merges in the refrigerant flow pipe 38, passes through the check valve 43, and is sent to the first heat exchange unit 31.
  • This gas-liquid two-phase refrigerant is sent to the refrigerant pipe 22 through the refrigerant flow pipe 33 of the first leeward heat exchange unit 30b and the refrigerant flow pipe 32 of the first leeward heat exchange part 30a.
  • heat exchange between the gas-liquid two-phase refrigerant and the air blown from the outdoor fan is performed, and the gas-liquid two-phase refrigerant condenses into a liquid-phase refrigerant.
  • FIG. 4 is a graph showing an example of a temperature change of each refrigerant circulation pipe during the condensation operation of the outdoor heat exchanger.
  • the data shown in FIG. 4 was measured under conditions where the indoor temperature was 27 ° C. (wet bulb temperature 19 ° C.) and the outdoor temperature was 35 ° C.
  • a gas phase refrigerant is supplied as a refrigerant to the refrigerant pipe 24 serving as the inlet of the outdoor heat exchanger 10.
  • the gas-phase refrigerant is heat-exchanged with the air blown from the outdoor fan and condensed to become a gas-liquid two-phase refrigerant.
  • the refrigerant flow direction in the second heat exchange unit 31 is configured to face the air flow direction, heat exchange is promoted, and the refrigerant temperature is greatly reduced.
  • the gas-liquid two-phase refrigerant evaporates by exchanging heat with the air blown from the outdoor fan in the process of passing through the refrigerant circulations 33 to 32, and becomes a liquid-phase refrigerant.
  • the refrigerant flow direction in the first heat exchange unit 30 is configured to face the air flow direction, heat exchange is promoted, and the temperature of the liquid-phase refrigerant is greatly reduced. .
  • the degree of supercooling is taken by the refrigerant flow pipe 32 located on the outlet side of the outdoor heat exchanger 10
  • the temperature difference between the refrigerant and the air can be kept large, and high heat exchange efficiency can be obtained. Can do.
  • the refrigerant flow and the air flow in the first heat exchange unit 30 are opposed to each other.
  • the refrigerant flow and the air flow in the second heat exchange section 31 are opposed to each other.
  • the second heat exchange unit 31 is configured to have a larger heat transfer area than the first heat exchange unit 30. For this reason, in both the condensation operation and the evaporation operation, most of the outdoor heat exchanger 10 is opposed to the refrigerant flow and the air flow. Thereby, high heat exchange efficiency can be obtained.
  • the refrigerant flow and the air flow in the first heat exchange unit 30 are in parallel flow.
  • the gas-liquid two-phase refrigerant supplied to the inlet of the outdoor heat exchanger 10 has the property that the flow velocity is slow and the pressure loss generated when passing through the refrigerant flow pipe in the heat exchanger is small. Therefore, the temperature drop of the refrigerant flow pipe can be suppressed. Thereby, the temperature difference of a refrigerant
  • high heat exchange efficiency can be obtained without providing a plurality of refrigerant flow switching devices outside the outdoor heat exchanger 10, thereby achieving downsizing and cost reduction. be able to.
  • the outdoor heat exchanger 10 is configured by a combination of a refrigerant flow pipe and a check valve, which are relatively simple parts, so that downsizing and cost reduction are achieved. be able to.
  • the pressure loss can be reduced.
  • the number of refrigerant paths in the first heat exchange unit 30 is small, the amount of the gas-liquid two-phase refrigerant flowing in one refrigerant path can be increased. Thereby, the flow rate of the gas-liquid two-phase refrigerant can be increased, and heat exchange can be promoted.
  • the refrigerant distribution and the air velocity distribution may vary, and the heat exchange efficiency may be greatly reduced.
  • the first heat exchange unit 30 with a small number of refrigerant paths is arranged downstream of the second heat exchange unit 31 with respect to the flow direction of the refrigerant during the condensation operation. Therefore, the refrigerant that has passed through the refrigerant flow pipes 35a to 35d can be joined by the first heat exchanging unit 30 and the temperature can be equalized. That is, according to the first embodiment, even if the refrigerant distribution and the air velocity distribution vary, it is possible to suppress a decrease in heat exchange efficiency.
  • the 1st heat exchange part 30 is arrange
  • the 1st heat exchange part 30 is arrange
  • FIG. 5 is an explanatory view schematically showing a configuration of an outdoor heat exchanger provided in the air conditioner according to the second embodiment of the present invention.
  • the difference between the air conditioner according to the second embodiment and the air conditioner according to the first embodiment is that the outdoor heat exchanger 10A has a windward side, a The leeward side has three rows of tube arrangements, and the refrigerant flow path of the first heat exchange section is more on the leeward side than on the leeward side.
  • the solid line arrow indicates the flow direction of the refrigerant during the evaporation operation (heating operation) in which the outdoor heat exchanger 10 ⁇ / b> A is used as an evaporator.
  • broken line arrows indicate the flow direction of the refrigerant during the condensation operation (cooling operation) in which the outdoor heat exchanger 10A is used as a condenser.
  • the outdoor heat exchanger 10 ⁇ / b> A includes a first heat exchange unit 50 and a second heat exchange unit 51.
  • the second heat exchange unit 51 is configured to have a larger heat transfer area than the first heat exchange unit 50.
  • the first heat exchange unit 50 is configured such that the refrigerant flow direction opposes the air flow direction during the condensation operation, and the refrigerant flow direction is parallel to the air flow direction during the evaporation operation. ing.
  • the first heat exchange unit 50 is disposed upstream of the second heat exchange unit 51 with respect to the flow direction of the refrigerant during the evaporation operation.
  • the second heat exchange unit 51 is configured such that the refrigerant flow direction opposes the air flow direction during both the condensation operation and the evaporation operation. More specifically, the first heat exchange unit 50 and the second heat exchange unit 51 are configured as follows.
  • the first heat exchanging part 50 is located on the leeward side with respect to the air flow direction, and the first upside heat exchanging part 50a is located on the leeward side with respect to the air flow direction.
  • a first leeward heat exchanger 50c having a larger number of refrigerant paths than the first leeward heat exchanger 50c, and a first central heat exchanger 50b located between the first leeward heat exchanger 50a and the first leeward heat exchanger 50c.
  • the first leeward heat exchange unit 50 a includes a refrigerant flow pipe 52.
  • the refrigerant flow pipe 52 is connected to the refrigerant pipe 22.
  • the 1st leeward side heat exchange part 50c is provided with the refrigerant
  • the first central heat exchanging unit 50b includes a refrigerant distribution pipe branched from the refrigerant distribution pipe 52 and connected to the refrigerant distribution pipes 53a and 53b.
  • the second heat exchange unit 51 includes a second upwind heat exchange unit 51a located on the windward side with respect to the air flow direction, and a second leeward side heat exchange unit 51c located on the downwind side with respect to the air flow direction. And a second central heat exchange part 51b located between the second leeward heat exchange part 51a and the second leeward heat exchange part 51c.
  • the second upwind heat exchange unit 51a includes six refrigerant flow pipes 55a to 55f.
  • the second leeward heat exchange unit 51c includes six refrigerant flow pipes 54a to 54f.
  • the refrigerant flow pipes 54a to 54f and the refrigerant flow pipes 55a to 55f are respectively connected to form six refrigerant flow paths.
  • a refrigerant circulation pipe 36 is connected to the refrigerant circulation pipes 54a to 54f.
  • the refrigerant flow pipe 36 is connected to the refrigerant pipe 24 and the refrigerant flow pipes 53a and 53b.
  • a refrigerant circulation pipe 37 and a refrigerant circulation pipe 38 are connected to the refrigerant circulation pipes 55a to 55f.
  • the amount of the gas-liquid two-phase refrigerant flowing in one refrigerant path can be increased by reducing the number of refrigerant paths in the first upwind heat exchange unit 50a. .
  • the flow rate of the gas-liquid two-phase refrigerant can be increased, and heat exchange can be promoted.
  • the pressure loss can be reduced by increasing the number of refrigerant paths of the first leeward side heat exchange unit 50c and the first central heat exchange unit 50b. Thereby, it becomes possible to keep the temperature difference of a refrigerant
  • the gas-liquid two-phase refrigerant is sent to the first heat exchange unit 50 through the refrigerant pipe 22.
  • the gas-liquid two-phase refrigerant is sent to the refrigerant flow pipe 36 through the refrigerant flow pipe 52 of the first leeward heat exchange unit 50a and the refrigerant flow pipes 53a and 53b of the first leeward heat exchange unit 50c.
  • heat exchange is performed between the gas-liquid two-phase refrigerant and the air blown from the outdoor fan.
  • the gas-liquid two-phase refrigerant passes through the check valve 41 and is sent to the second heat exchange unit 51.
  • This gas-liquid two-phase refrigerant is distributed to the refrigerant flow pipes 54a to 54f of the second leeward heat exchange unit 51c, and is sent to the second leeward heat exchange unit 51a via the central heat exchange unit 51b.
  • the distributed gas-liquid two-phase refrigerant is sent to the refrigerant circulation pipe 37 through the refrigerant circulation pipes 55a to 55f of the second upwind heat exchange section 51a.
  • FIG. 6 is a graph showing an example of a temperature change of each refrigerant flow pipe of the outdoor heat exchanger during the evaporation operation.
  • the data shown in FIG. 6 was measured under conditions where the indoor temperature was 20 ° C. and the outdoor temperature was 7 ° C. (wet bulb temperature 6 ° C.).
  • a gas-liquid two-phase refrigerant having a low dryness is supplied as a refrigerant to the refrigerant pipe 22 serving as the inlet of the outdoor heat exchanger 10A.
  • the gas-liquid two-phase refrigerant has a property that a pressure loss generated when passing through a refrigerant flow pipe (also referred to as a heat transfer pipe) is smaller than that of a gas-liquid two-phase refrigerant having a large gas phase or dryness. When the pressure loss is small, the temperature drop of the refrigerant flow pipe is small.
  • the gas-liquid two-phase refrigerant passing through the refrigerant flow pipe 52 is distributed to the refrigerant flow pipes 53a and 53b, the pressure loss is suppressed and the temperature drop of the refrigerant flow pipe is also suppressed.
  • the gas-liquid two-phase refrigerant passing through the refrigerant flow pipe 36 is distributed to the refrigerant flow pipes 54a to 54f, the pressure loss is further suppressed, and the temperature of the refrigerant flow pipe is further reduced. It is further suppressed. Furthermore, since the refrigerant is distributed to the refrigerant flow pipes 54a to 54f after passing through the first heat exchanging section 50, variation in the amount of refrigerant to be distributed can be reduced. This is because distribution of the gas-liquid two-phase refrigerant having a high degree of dryness can reduce the variation in the refrigerant amount rather than distributing the gas-liquid two-phase refrigerant having a low degree of dryness.
  • the gas-liquid two-phase refrigerant evaporates by exchanging heat with the air blown from the outdoor fan in the process of passing through the refrigerant circulations 54a to 54f, and becomes a gas phase refrigerant.
  • the refrigerant flow direction in the second heat exchange section 51 is configured to face the air flow direction, heat exchange is promoted, and the temperature of the gas-phase refrigerant increases greatly. .
  • the temperature difference between the refrigerant and the air can be kept large, and high heat exchange efficiency is obtained. be able to.
  • the number of refrigerant paths of the first leeward heat exchange unit 50c is larger than the number of refrigerant paths of the first leeward heat exchange unit 50a, the temperature difference between the refrigerant and air is reduced. It can be kept larger and higher heat exchange efficiency can be obtained.
  • this invention is not limited to the said embodiment, It can implement in another various aspect.
  • the configuration of the outdoor heat exchanger 10 has been described above, but the configuration may be applied to the indoor heat exchanger 14.
  • the outdoor heat exchanger 10 is configured by the combination of the refrigerant flow pipe and the check valve, but the present invention is not limited to this.
  • a two-way valve may be used instead of the check valve. Even in this case, high heat exchange efficiency can be obtained without providing a plurality of refrigerant flow switching devices or the like outside the heat exchanger, so that downsizing and cost reduction can be achieved.
  • the heat exchanger according to the present invention can obtain high heat exchange efficiency by a configuration different from the conventional configuration, a heat exchanger that is required to be downsized and reduced in cost, and an air conditioner including the heat exchanger. Useful.
  • Compressor 8 Four-way valve 10, 10A Outdoor heat exchanger (heat exchanger) 12 Expansion valve (pressure reduction device) 14 Indoor heat exchanger (heat exchanger) 16, 18, 22, 24 Refrigerant piping 20 Strainer 26 Accumulator 30, 50 First heat exchange unit 30a, 50a First upside heat exchange unit 30b, 50c First downwind heat exchange unit 31, 51 Second heat exchange unit 31a , 51a Second leeward heat exchanger 31b, 51c Second leeward heat exchanger 32, 33, 34a to 34d, 35a to 35d, 36, 37, 38, 53a, 53b, 54a to 54f, 55a to 55f Refrigerant circulation Pipe 50b First central heat exchange part 51b Second central heat exchange part 40-43 Check valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 本発明の熱交換器は、複数列で管配列を有する熱交換器(10)であって、凝縮運転時においては冷媒の流れ方向が空気の流れ方向と対向し、蒸発運転時においては冷媒の流れ方向が空気の流れ方向と並行であるように構成された第1熱交換部(30)と、凝縮運転時と蒸発運転時の両時において、冷媒の流れ方向が空気の流れ方向と対向するように構成された第2熱交換部(31)とを備え、第1熱交換部は、蒸発運転時における冷媒の流れ方向に対して、第2熱交換部よりも上流に配置されている。

Description

熱交換器及び空気調和機
 本発明は、熱交換器及びそれを備える空気調和機に関する。
 従来の空気調和機としては、例えば、図7に示す構成のものが知られている(例えば、特開平8-178445号公報参照)。
 図7に示すように、従来の空気調和機は、冷媒を圧縮する圧縮機101と、冷房暖房運転時の冷媒の経路を切り換える四方弁102と、冷媒と室内の空気の熱を交換する室内熱交換器103と、冷媒を減圧する減圧装置104と、冷媒と室外の空気の熱を交換する室外熱交換器105とを備えている。圧縮機101、四方弁102、室内熱交換器103、減圧装置104、室外熱交換器105は、冷媒配管によって環状に接続されることにより、冷凍サイクルを構成する。
 また、従来の空気調和機は、室内熱交換器103の内部を流れる冷媒と室内の空気との熱交換を促進する室内ファン106と、室外熱交換器105の内部を流れる冷媒と室外の空気との熱交換を促進する室外ファン107と、を備えている。
 従来の空気調和機において、暖房時は、図7の実線矢印で示すように、冷媒が圧縮機101、四方弁102、室内熱交換器103、減圧装置104、室外熱交換器105、四方弁102、圧縮機101の順に流れる。一方、冷房時は、図7の破線矢印で示すように、冷媒が圧縮機101、四方弁102、室外熱交換器105、減圧装置104、室内熱交換器103、四方弁102、圧縮機101の順に流れる。
 室外熱交換器105が室外ファン107から送風される空気(風)の流れ方向に対して複数列の管配列を有する場合、暖房時においては、室外熱交換器105に流れる冷媒の流れと室外ファン107から送風される空気の流れとが対向流になる。一方、冷房時においては、室外熱交換器105に流れる冷媒の流れと室外ファン107から送風される空気の流れとが並行流になる。
 熱交換効率を向上させるためには、熱交換器の入口から出口にわたって冷媒と空気との温度差を大きく保つことが有効であることが知られている。冷媒の流れと空気の流れとが並行流である場合、通常、冷媒と空気との温度差は小さくなる。このため、従来の空気調和機においては、熱交換効率が低いという課題がある。
 この課題を改善する技術が、例えば、特開平7-280375号公報に開示されている。
 特開平7-280375号公報には、圧縮機の吐出側に第1の冷媒流路切り換え装置を接続するとともに、圧縮機の吸い込み側に第2の冷媒流路切り換え装置を接続し、冷媒の流れと空気の流れとが、暖房運転時、冷房運転時とも対向流となるようにした空気調和機が開示されている。
特開平8-178445号公報 特開平7-280375号公報
 しかしながら、特開平7-280375号公報に記載の空気調和機では、高い熱交換効率を得ることができるものの、熱交換器の外部に複数の冷媒流路切り換え装置が必要になるなど、装置の小型化、低コスト化等が難しいという課題がある。
 従って、本発明の目的は、前記課題を解決することにあって、従来の構成とは異なる構成により、高い熱交換効率を得ることができる熱交換器及びそれを備えた空気調和機を提供することにある。
 前記課題を解決するために、本発明の熱交換器は、
 複数列の管配列を有する熱交換器であって、
 前記凝縮運転時においては、冷媒の流れ方向が前記冷媒と熱交換を行うために送風される空気の流れ方向と対向し、蒸発運転時においては、前記冷媒の流れ方向が前記空気の流れ方向と並行であるように構成された第1熱交換部と、
 前記凝縮運転時と前記蒸発運転時の両時において、前記冷媒の流れ方向が前記空気の流れ方向と対向するように構成された第2熱交換部と、
 を備え、
 前記第1熱交換部は、前記蒸発運転時における冷媒の流れ方向に対して前記第2熱交換部よりも上流に配置されている。
 本発明に係る熱交換器によれば、従来とは異なる構成により、高い熱交換効率を得ることができる。
 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の第1実施形態に係る空気調和機の構成を模式的に示す説明図であり、 図2は、図1の空気調和機が備える室外熱交換器の構成を模式的に示す説明図であり、 図3は、図2の室外熱交換器の蒸発運転時の各冷媒流通管の温度変化の一例を示すグラフであり、 図4は、図2の室外熱交換器の凝縮運転時の各冷媒流通管の温度変化の一例を示すグラフであり、 図5は、本発明の第2実施形態に係る空気調和機が備える室外熱交換器の構成を模式的に示す説明図であり、 図6は、図5の室外熱交換器の蒸発運転時の各冷媒流通管の温度変化の一例を示すグラフであり、 図7は、従来の空気調和機の構成を模式的に示す説明図である。
 本発明の熱交換器は、複数列の管配列を有する熱交換器であって、
 前記凝縮運転時においては、冷媒の流れ方向が前記冷媒と熱交換を行うために送風される空気の流れ方向と対向し、蒸発運転時においては、前記冷媒の流れ方向が前記空気の流れ方向と並行であるように構成された第1熱交換部と、
 前記凝縮運転時と前記蒸発運転時の両時において、前記冷媒の流れ方向が前記空気の流れ方向と対向するように構成された第2熱交換部と、
 を備え、
 前記第1熱交換部は、前記蒸発運転時における冷媒の流れ方向に対して前記第2熱交換部よりも上流に配置されている。
 この構成によれば、凝縮運転時において、第1熱交換部における冷媒の流れと空気の流れとが対向流になっている。また、凝縮運転時と蒸発運転時の両時において、第2熱交換部における冷媒の流れと空気の流れとが対向流になっている。これにより、高い熱交換効率を得ることができる。
 また、前記構成によれば、蒸発運転時において、第1熱交換部における冷媒の流れと空気の流れとが並行流になっているが、当該第1熱交換部における冷媒の流れと空気の流れとを対向流にしたときに近い熱交換効率を得ることができる。その理由は以下の通りである。
 すなわち、蒸発運転時において、熱交換器(室外熱交換器)の入口には、冷媒として乾き度(二相冷媒中の気相と液相の和に対する気相の割合)の小さい気液二相冷媒が供給される。乾き度の小さい気液二相冷媒は、熱交換器内の冷媒流通管を通る際に生じる圧力損失が、気相や乾き度の大きい気液二相冷媒に比べて小さいという性質を有する。圧力損失が小さいと、冷媒流通管の温度低下は小さくなる。
 前記構成によれば、第1熱交換部が、蒸発運転時における冷媒の流れ方向に対して第2熱交換部よりも上流に配置されている。すなわち、熱交換器内の冷媒流通管を通る冷媒が乾き度の小さい気液二相冷媒であるところに、第1熱交換部が配置されている。これにより、冷媒と空気との温度差を大きく保つことができ、熱交換効率の低下を抑えることができる。
 また、前記構成によれば、特開平7-280375号公報に記載の空気調和機のように熱交換器の外部に複数の冷媒流路切り換え装置などを設けることなく、高い熱交換効率を得ることができるので、小型化、低コスト化を図ることができる。
 なお、前記第2熱交換部は、前記第1熱交換部よりも冷媒経路数が多いことが好ましい。この構成によれば、第2熱交換部の冷媒経路数が多いことにより、圧力損失を低下させることができる。また、第1熱交換部の冷媒経路数が少ないことにより、1つの冷媒経路に流れる冷媒の量を増やすことができる。これにより、冷媒の流速を上昇させて、熱交換を促進させることができる。
 また、前記第1熱交換部は、前記凝縮運転時における冷媒の流れ方向に対して前記第2熱交換部よりも下流に配置されることが好ましい。この構成によれば、例えば、凝縮運転時に、冷媒経路数が多い第2熱交換部を通過する冷媒の温度にバラツキがあったとしても、冷媒経路数が少ない第1熱交換部によりそれらを合流させて均温化することができる。これにより、熱交換効率を向上させることができる。
 また、前記第1熱交換部は、前記空気の流れ方向に対して風上に位置する風上側熱交換部と、前記空気の流れ方向に対して風下に位置し、前記風上側熱交換部よりも冷媒経路数が多い風下側熱交換部とを備えることが好ましい。この構成によれば、蒸発運転時においては、風上側熱交換部の冷媒経路数が少ないことにより、1つの冷媒経路に流れる気液二相冷媒の量を増やすことができる。これにより、気液二相冷媒の流速を速くして、熱交換を促進させることができる。また、風下側熱交換部の冷媒経路数が多いことにより、圧力損失を低減させることができる。これにより、冷媒と空気との温度差を大きく保つことが可能となり、熱交換効率を向上させることができる。
 また、前記熱交換器は、前記冷媒を通す冷媒流通管と、前記冷媒の流れ方向を一方向に規制する逆止弁との組み合わせにより構成されることが好ましい。この構成によれば、簡易な部品で熱交換器が構成されるので、小型化、低コスト化を図ることができる。
 また、前記第1熱交換部は、前記第2熱交換部よりも下方に配置されることが好ましい。この構成によれば、例えば、凝縮運転時において、液相冷媒が重力に従って流れることが可能となり、第1熱交換部の冷媒流通管内に無駄な液相冷媒が溜まることを抑えることができる。また、本発明に係る熱交換器を室外熱交換器として使用する場合、凝縮運転時に比較的高温の冷媒が流れる第1熱交換部が、室外機の底部により近い位置に配置されることになる。これにより、熱交換器の底部と室外機の底部との間に発生した霜の溶け残りを抑えることができる。
 本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号を付している。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、この実施形態によって本発明が限定されるものではない。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る空気調和機の構成を模式的に示す説明図である。図1に示すように、本第1実施形態に係る空気調和機1は、室外に設置される室外機2と、室内に設置される室内機4とを備えている。
 室外機2の内部には、冷媒を圧縮する圧縮機6と、冷房暖房運転時の冷媒の経路を切り換える四方弁8と、冷媒と外気の熱を交換する室外熱交換器10と、冷媒を減圧する減圧装置の一例である膨張弁12とが設けられている。
 室内機4の内部には、冷媒と室内の空気の熱を交換する室内熱交換器14が設けられている。圧縮弁6、四方弁8、室外熱交換器10、膨張弁12、及び室内熱交換器14は、冷媒配管によって環状に接続されることにより、冷凍サイクルを構成する。
 圧縮機6と室内熱交換器14とは、冷媒配管16を介して接続されている。この冷媒配管16の中間部には、四方弁8が設けられている。また、室内熱交換器14と膨張弁12とは、冷媒配管18を介して接続されている。冷媒配管18には、膨張弁12への異物侵入を防止するストレーナ20が設けられている。
 膨張弁12と室外熱交換器10とは、冷媒配管22を介して接続されている。また、室外熱交換器10と圧縮機6とは、冷媒配管24を介して接続されている。冷媒配管24の中間部には、四方弁8が設けられている。また、冷媒配管24には、液相冷媒と気相冷媒とを分離するためのアキュームレータ26が設けられている。アキュームレータ26は、四方弁8と圧縮機6との間に配置されている。
 また、室外機2の内部には、室外熱交換器10の内部を流れる冷媒と室外の空気との熱交換を促進する室外ファン(図示せず)が設けられている。室内機4の内部には、室内熱交換器14の内部を流れる冷媒と室内の空気との熱交換を促進する室内ファン(図示せず)が設けられている。室内熱交換器14は、室内ファンにより室内機4の内部に吸込まれた室内の空気と、室内熱交換器14の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。
 なお、室内機4の内部には、上下羽根(図示せず)と左右羽根(図示せず)が設けられている。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更するものである。左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更するものである。
 次に、本第1実施形態に係る空気調和機の暖房運転時の動作について説明する。図1において、実線矢印は、暖房運転時の冷媒の流れ方向を示している。
 暖房運転が開始されると、圧縮機6が、冷媒を圧縮して高温高圧の気相冷媒を生成する。当該高温高圧の気相冷媒は、冷媒配管16、四方弁8を通じて室内熱交換器14に送られる。
 室内熱交換器14に送られた高温高圧の気相冷媒は、室内ファンによって吸い込まれた空気と熱交換されることにより放熱して凝縮し、高圧の液相冷媒となる。当該高圧の液相冷媒は、冷媒配管18、ストレーナ10を通じて膨張弁12に送られる。一方、前記高温高圧の気相冷媒の熱を吸収し温度が上昇した空気は、室内ファンによって室内に吹き出され、室内を暖房する。
 膨張弁12に送られた高圧の液相冷媒は、膨張弁12によって減圧されて低温低圧の気液二相冷媒となる。当該気液二相冷媒は、冷媒配管22を通じて室外熱交換器10に送られる。室外熱交換器10に送られた気液二相冷媒は、室外ファンによって吸い込まれた空気と熱交換されることにより蒸発して、気相冷媒となる。当該気相冷媒は、冷媒配管24、四方弁8、アキュームレータ26を通じて圧縮機6に戻る。
 次に、本第1実施形態に係る空気調和機の冷房運転時の動作について説明する。図1において、破線矢印は、冷房運転時の冷媒の流れ方向を示している。
 冷房運転が開始されると、圧縮機6が、冷媒を圧縮して高温高圧の気相冷媒を生成する。当該高温高圧の気相冷媒は、冷却配管24及び四方弁8を通じて室外熱交換器10に送られる。室外熱交換器10に送られた高温高圧の気相冷媒は、室外ファンによって吸い込まれた空気と熱交換されることにより放熱し、高圧の液相冷媒となる。当該高圧の液相冷媒は、冷媒配管22を通じて膨張弁12に送られて減圧され、低温低圧の気液二相冷媒となる。当該低温低圧の気液二相冷媒は、冷媒配管18を通じて室内熱交換器14に送られる。
 室内熱交換器14に送られた低温低圧の気液二相冷媒は、室内ファンによって吸い込まれた空気と熱交換されることにより吸熱して蒸発し、低圧の気相冷媒となる。当該低圧の気相冷媒は、冷媒配管16、四方弁8、アキュームレータ26を通じて圧縮機6に戻る。一方、低温低圧の気液二相冷媒に吸熱されることにより温度が低下した空気は、室内ファンによって室内に吹き出され、室内を冷房する。
 次に、室外熱交換器10の構成について説明する。図2は、室外熱交換器の構成を模式的に示す説明図である。図2において、実線矢印は、室外熱交換器10が蒸発器として使用される蒸発運転時(暖房運転時)の冷媒の流れ方向を示している。また、図2において、破線矢印は、室外熱交換器10が凝縮器として使用される凝縮運転時(冷房運転時)の冷媒の流れ方向を示している。
 図2に示すように、室外熱交換器10は、室外ファンから送風された空気(風)の流れに対して、風上側、風下側の2列の管配列を有している。また、室外熱交換器10は、第1熱交換部30と、第2熱交換部31とを備えている。また、第2熱交換部31は第1熱交換部30より伝熱面積が大きくなるように構成されている。
 第1熱交換部30は、凝縮運転時においては、冷媒の流れ方向が空気の流れ方向と対向し、蒸発運転時においては、冷媒の流れ方向が空気の流れ方向と並行であるように構成されている。第1熱交換部30は、蒸発運転時における冷媒の流れ方向に対して、第2熱交換部31よりも上流に配置されている。第2熱交換部31は、凝縮運転時と蒸発運転時の両時において、冷媒の流れ方向が空気の流れ方向と対向するように構成されている。より具体的には、第1熱交換部30及び第2熱交換部31は、以下のように構成されている。
 第1熱交換部30は、空気の流れ方向に対して風上に位置する第1風上側熱交換部30aと、空気の流れ方向に対して風下に位置する第1風下側熱交換部30bとを備えている。第1風下側熱交換部30aは、冷媒流通管32を備えている。冷媒流通管32は、冷媒配管22と接続されている。第1風下側熱交換部30bは、冷媒流通管33を備えている。冷媒流通管33と冷媒流通管32とが接続されることで、1つの冷媒流路が形成されている。
 第2熱交換部31は、空気の流れ方向に対して風上に位置する第2風上側熱交換部31aと、空気の流れ方向に対して風下に位置する第2風下側熱交換部31bとを備えている。第2風上側熱交換部31aは、4つの冷媒流通管35a~35dを備えている。第2風下側熱交換部31bは、4つの冷媒流通管34a~34dを備えている。冷媒流通管34a~34dと冷媒流通管35a~35dとがそれぞれ接続されることで、4つの冷媒流路が形成されている。
 冷媒流通管34a~34dには、冷媒流通管36が接続されている。冷媒流通管36は、冷媒配管24と冷媒流通管33とに接続されている。冷媒配管24には、冷媒流通管36を通る冷媒が冷媒配管24側に流入しないように規制する逆止弁40が設けられている。冷媒流通管36には、冷媒流通管36を通る冷媒が冷媒流通管33側に流入しないように規制する逆止弁41が設けられている。
 冷媒流通管35a~35dには、冷媒流通管37と冷媒流通管38とが接続されている。冷媒流通管37は、冷媒配管24に接続されている。冷媒流通管37には、冷媒流通管37を通る冷媒が冷媒流通管35a~35d側に流入しないように規制する逆止弁42が設けられている。冷媒流通管38は、冷媒流通管36と接続されている。冷媒流通管38には、冷媒流通管38を通る冷媒が冷媒流通管35a~35d側に流入しないように規制する逆止弁43が設けられている。
 次に、室外熱交換器10の蒸発運転時の動作について説明する。
 蒸発運転が開始されると、冷媒配管22を通じて、第1熱交換部30に気液二相冷媒が送られる。この気液二相冷媒は、第1風上側熱交換部30aの冷媒流通管32、第1風下側熱交換部30bの冷媒流通管33、逆止弁41を通じて冷媒流通管36に送られる。この過程で、気液二相冷媒と室外ファンから送風される空気との熱交換が行われる。
 その後、気液二相冷媒は、第2熱交換部31に送られる。この気液二相冷媒は、第2風下側熱交換部31bの冷媒流通管34a~34dに分配され、第2風上側熱交換部31aに送られる。その後、当該分配された気液二相冷媒は、第2風上側熱交換部31aの冷媒流通管35a~35dを通じて冷媒流通管37に送られる。この過程で、気液二相冷媒と室外ファンから送風される空気との熱交換が行われ、気液二相冷媒が蒸発して気相冷媒となる。当該気相冷媒は、冷媒流通管37で合流し、逆止弁42を通過して冷媒配管24に送られる。
 次に、室外熱交換器10の蒸発運転時の各冷媒流通管32,33,34a~34d,35a~35dの温度変化について説明する。図3は、蒸発運転時の室外熱交換器の各冷媒流通管の温度変化の一例を示すグラフである。なお、図3に示すデータは、室内温度が20℃、室外温度が7℃(湿球温度6℃)の条件下で測定されたものである。
 蒸発運転時において、室外熱交換器10の入口となる冷媒配管22には、冷媒として乾き度の小さい気液二相冷媒が供給される。当該気液二相冷媒は、冷媒流通管を通る際に生じる圧力損失が、気相や乾き度の大きい気液二相冷媒に比べて小さいという性質を有する。圧力損失が小さいと、冷媒流通管の温度低下は小さくなる。このため、乾き度の小さい気液二相冷媒が流れる第1熱交換部30では圧力損失を大きくしても、冷媒と空気との温度差を保つことができる。加えて、本第1実施形態においては、比較的圧力損失が大きい乾き度の大きい気液二相冷媒が流れる第2熱交換部31では、圧力損失の増加を抑制している。このために、室外熱交換器10全体として高い熱交換効率を得ることができる。
 また、本第1実施形態においては、冷媒流通管33を通る気液二相冷媒が冷媒流通管34a~34dに分配されるので、圧力損失が抑えられ、冷媒流通管の温度低下も抑えられる。さらに、第1熱交換部30を通過後に、冷媒を冷媒流通管34a~34dに分配しているため、分配する冷媒量のバラつきを小さくできる。これは、乾き度の低い気液二相冷媒を分配するより、乾き度の高い気液二相冷媒を分配する方が、冷媒量のバラつきを小さくできるためである。
 また、気液二相冷媒は、冷媒流通34a~34dを通る過程で、室外ファンから送風される空気と熱交換されて蒸発し、気相冷媒となる。本第1実施形態においては、第2熱交換部31における冷媒の流れ方向が空気の流れ方向と対向するように構成されているので、熱交換が促進され、気相冷媒の温度が大きく上昇する。これにより、室外熱交換器10の出口側に位置する冷媒流通管35a~35dで過熱度をとった場合においても、冷媒と空気との温度差を大きく保つことができ、高い熱交換効率を得ることができる。
 次に、室外熱交換器10の凝縮運転時の動作について説明する。
 凝縮運転が開始されると、冷媒配管24、逆止弁40を通じて、第2熱交換部31に気相冷媒が送られる。この気相冷媒は、第2風下側熱交換部31bの冷媒流通管34a~34dに分配され、第2風上側熱交換部31aの冷媒流通管35a~35dに送られる。この過程で、気相冷媒と室外ファンから送風される空気との熱交換が行われ、気相冷媒が凝縮して気液二相冷媒となる。
 その後、冷媒流通管35a~35dを通る気液二相冷媒は、冷媒流通管38にて合流し、逆止弁43を通過して第1熱交換部31に送られる。この気液二相冷媒は、第1風下側熱交換部30bの冷媒流通管33、第1風上側熱交換部30aの冷媒流通管32を通じて冷媒配管22に送られる。この過程で、気液二相冷媒と室外ファンから送風される空気との熱交換が行われ、気液二相冷媒が凝縮して液相冷媒となる。
 次に、室外熱交換器10の凝縮運転時の各冷媒流通管32,33,34a~34d,35a~35dの温度変化について説明する。図4は、室外熱交換器の凝縮運転時の各冷媒流通管の温度変化の一例を示すグラフである。なお、図4に示すデータは、室内温度が27℃(湿球温度19℃)、室外温度が35℃の条件下で測定されたものである。
 凝縮運転時において、室外熱交換器10の入口となる冷媒配管24には、冷媒として気相冷媒が供給される。この気相冷媒は、冷媒流通34a~34d,35a~35dを通る過程で、室外ファンから送風される空気と熱交換されて凝縮し、気液二相冷媒となる。本第1実施形態においては、第2熱交換部31における冷媒の流れ方向が空気の流れ方向と対向するように構成されているので、熱交換が促進され、冷媒の温度が大きく低下する。
 また、気液二相冷媒は、冷媒流通33~32を通る過程で、室外ファンから送風される空気と熱交換されて蒸発し、液相冷媒となる。本第1実施形態においては、第1熱交換部30における冷媒の流れ方向が空気の流れ方向と対向するように構成されているので、熱交換が促進され、液相冷媒の温度が大きく低下する。これにより、室外熱交換器10の出口側に位置する冷媒流通管32で過冷却度をとった場合においても、冷媒と空気との温度差を大きく保つことができ、高い熱交換効率を得ることができる。
 本第1実施形態によれば、凝縮運転時において、第1熱交換部30における冷媒の流れと空気の流れとが対向流になっている。また、凝縮運転時と蒸発運転時の両時において、第2熱交換部31における冷媒の流れと空気の流れとが対向流になっている。これにより、高い熱交換効率を得ることができる。また、第2熱交換部31は第1熱交換部30より伝熱面積が大きくなるように構成されている。このため、凝縮運転時と蒸発運転時の両時において、室外熱交換器10の大部分が冷媒の流れと空気の流れとが対向流になっている。これにより、高い熱交換効率を得ることができる。
 また、本第1実施形態によれば、蒸発運転時において、第1熱交換部30における冷媒の流れと空気の流れとが並行流になっている。しかしながら、蒸発運転時において、室外熱交換器10の入口に供給される気液二相冷媒は、流速が遅く、熱交換器内の冷媒流通管を通る際に生じる圧力損失が小さいという性質を有するので、冷媒流通管の温度低下を抑えることができる。これにより、冷媒と空気との温度差を大きく保つことができ、熱交換効率の低下を抑えることができる。当該温度低下を抑えることにより、冷媒流通管32の温度を低くすることができる。これにより、冷媒と空気との温度差を大きく保つことができ、高い熱交換効率を得ることができる。
 また、本第1実施形態によれば、室外熱交換器10の外部に複数の冷媒流路切り換え装置を設けることなく、高い熱交換効率を得ることができるので、小型化、低コスト化を図ることができる。
 また、本第1実施形態によれば、室外熱交換器10が、比較的簡易な部品である冷媒流通管と逆止弁との組み合わせにより構成されているので、小型化、低コスト化を図ることができる。
 また、本第1実施形態によれば、第2熱交換部31の冷媒経路数が多いので、圧力損失を低下させることができる。また、第1熱交換部30の冷媒経路数が少ないことにより、1つの冷媒経路に流れる気液二相冷媒の量を増やすことができる。これにより、気液二相冷媒の流速を速くして、熱交換を促進させることができる。
 なお、第2熱交換部31のように冷媒経路数を多くした場合、冷媒の分配や空気の速度分布にバラツキが生じ、熱交換効率が大きく低下してしまうことが起こり得る。
 これに対して、本第1実施形態によれば、冷媒経路数が少ない第1熱交換部30が、凝縮運転時における冷媒の流れ方向に対して、第2熱交換部31よりも下流に配置されるので、冷媒流通管35a~35dを通過した冷媒を第1熱交換部30により合流させて均温化することができる。すなわち、本第1実施形態によれば、冷媒の分配や空気の速度分布にバラツキが生じたとしても、熱交換効率が低下することを抑えることができる。
 なお、第1熱交換部30は、図2に示すように、第2熱交換部31よりも下方に配置されることが好ましい。この構成によれば、例えば、凝縮運転時において、液相冷媒が重力に従って流れることが可能となり、第1熱交換部30の冷媒流通管32,33内に無駄な液相冷媒が溜まることを抑えることができる。
 また、室外熱交換器10の底部と室外機2の底部との間には、霜の溶け残りが発生しやすい。これに対して、第1熱交換部30が第2熱交換部31よりも下方に配置されることで、凝縮運転時に比較的高温の冷媒が流れる第1熱交換部30が室外機2の底部により近い位置に配置されることになるので、室外熱交換器10の底部と室外機2の底部との間に発生した霜の溶け残りを抑えることができる。
 (第2実施形態)
 図5は、本発明の第2実施形態に係る空気調和機が備える室外熱交換器の構成を模式的に示す説明図である。本第2実施形態に係る空気調和機が前記第1実施形態に係る空気調和機と異なる点は、室外熱交換器10Aが、室外ファンから送風される空気の流れに対して、風上側、中央、風下側の3列の管配列を有し、第1熱交換部の冷媒流路が風上側よりも風下側の方が多くなっている点である。なお、図5において、実線矢印は、室外熱交換器10Aが蒸発器として使用される蒸発運転時(暖房運転時)の冷媒の流れ方向を示している。また、図5において、破線矢印は、室外熱交換器10Aが凝縮器として使用される凝縮運転時(冷房運転時)の冷媒の流れ方向を示している。
 図5に示すように、室外熱交換器10Aは、第1熱交換部50と、第2熱交換部51とを備えている。また、第2熱交換部51は第1熱交換部50より伝熱面積が大きくなるように構成されている。
 第1熱交換部50は、凝縮運転時においては、冷媒の流れ方向が空気の流れ方向と対向し、蒸発運転時においては、冷媒の流れ方向が空気の流れ方向と並行であるように構成されている。第1熱交換部50は、蒸発運転時における冷媒の流れ方向に対して、第2熱交換部51よりも上流に配置されている。第2熱交換部51は、凝縮運転時と蒸発運転時の両時において、冷媒の流れ方向が空気の流れ方向と対向するように構成されている。より具体的には、第1熱交換部50及び第2熱交換部51は、以下のように構成されている。
 第1熱交換部50は、空気の流れ方向に対して風上に位置する第1風上側熱交換部50aと、空気の流れ方向に対して風下に位置し、第1風上側熱交換部50aよりも冷媒経路数が多い第1風下側熱交換部50cと、第1風上側熱交換部50aと第1風下側熱交換部50cとの間に位置する第1中央熱交換部50bとを備えている。第1風下側熱交換部50aは、冷媒流通管52を備えている。冷媒流通管52は、冷媒配管22と接続されている。第1風下側熱交換部50cは、冷媒流通管53a,53bを備えている。第1中央熱交換部50bは、冷媒流通管52から分岐され、冷媒流通管53a,53bと接続される冷媒流通管を備えている。
 第2熱交換部51は、空気の流れ方向に対して風上に位置する第2風上側熱交換部51aと、空気の流れ方向に対して風下に位置する第2風下側熱交換部51cと、第2風上側熱交換部51aと第2風下側熱交換部51cとの間に位置する第2中央熱交換部51bとを備えている。第2風上側熱交換部51aは、6つの冷媒流通管55a~55fを備えている。第2風下側熱交換部51cは、6つの冷媒流通管54a~54fを備えている。冷媒流通管54a~54fと冷媒流通管55a~55fとがそれぞれ接続されることで、6つの冷媒流路が形成されている。
 冷媒流通管54a~54fには、冷媒流通管36が接続されている。冷媒流通管36は、冷媒配管24と冷媒流通管53a,53bとに接続されている。冷媒流通管55a~55fには、冷媒流通管37と冷媒流通管38とが接続されている。
 本第2実施形態によれば、凝縮運転時においては、第1風上側熱交換部50aの冷媒経路数が少ないことにより、1つの冷媒経路に流れる気液二相冷媒の量を増やすことができる。これにより、気液二相冷媒の流速を速くして、熱交換を促進させることができる。また、蒸発運転時においては、第1風下側熱交換部50c及び第1中央熱交換部50bの冷媒経路数が多いことにより、圧力損失を低減させることができる。これにより、冷媒と空気との温度差を大きく保つことが可能となり、熱交換効率を向上させることができる。
 次に、室外熱交換器10Aの蒸発運転時の動作について説明する。
 蒸発運転が開始されると、冷媒配管22を通じて、第1熱交換部50に気液二相冷媒が送られる。この気液二相冷媒は、第1風上側熱交換部50aの冷媒流通管52、第1風下側熱交換部50cの冷媒流通管53a、53bを通じて冷媒流通管36に送られる。この過程で、気液二相冷媒と室外ファンから送風される空気との熱交換が行われる。
 その後、気液二相冷媒は、逆止弁41を通過して第2熱交換部51に送られる。この気液二相冷媒は、第2風下側熱交換部51cの冷媒流通管54a~54fに分配され、中央熱交換部51bを介して第2風上側熱交換部51aに送られる。その後、当該分配された気液二相冷媒は、第2風上側熱交換部51aの冷媒流通管55a~55fを通じて冷媒流通管37に送られる。この過程で、気液二相冷媒と室外ファンから送風される空気との熱交換が行われ、気液二相冷媒が蒸発して気相冷媒となる。当該気相冷媒は、冷媒流通管37で合流し、逆止弁42を通過して冷媒配管24に送られる。
 次に、室外熱交換器10Aの蒸発運転時の各冷媒流通管52,53a,53b,54a~54f,55a~55fの温度変化について説明する。図6は、蒸発運転時の室外熱交換器の各冷媒流通管の温度変化の一例を示すグラフである。なお、図6に示すデータは、室内温度が20℃、室外温度が7℃(湿球温度6℃)の条件下で測定されたものである。
 蒸発運転時において、室外熱交換器10Aの入口となる冷媒配管22には、冷媒として乾き度の小さい気液二相冷媒が供給される。当該気液二相冷媒は、冷媒流通管(伝熱管ともいう)を通る際に生じる圧力損失が、気相や乾き度の大きい気液二相冷媒に比べて小さいという性質を有する。圧力損失が小さいと、冷媒流通管の温度低下は小さくなる。このため、乾き度の小さい気液二相冷媒が流れる第1熱交換部50では圧力損失を大きくしても、冷媒と空気との温度差を保つことができる。加えて、本第2実施形態においては、比較的圧力損失が大きい乾き度の大きい気液二相冷媒が流れる第2熱交換部51では、圧力損失の増加を抑制している。このために、室外熱交換器10全体として高い熱交換効率を得ることができる。このために、室外熱交換器10A全体として高い熱交換効率を得ることができる。
 また、本第2実施形態においては、冷媒流通管52を通る気液二相冷媒が冷媒流通管53a,53bに分配されるので、圧力損失が抑えられ、冷媒流通管の温度低下も抑えられる。
 また、本第2実施形態においては、冷媒流通管36を通る気液二相冷媒が冷媒流通管54a~54fに分配されるので、圧力損失がより一層抑えられ、冷媒流通管の温度低下もより一層抑えられる。さらに、第1熱交換部50を通過後に、冷媒を冷媒流通管54a~54fに分配しているため、分配する冷媒量のバラつきを小さくできる。これは、乾き度の低い気液二相冷媒を分配するより、乾き度の高い気液二相冷媒を分配する方が、冷媒量のバラつきを小さくできるためである。
 また、気液二相冷媒は、冷媒流通54a~54fを通る過程で、室外ファンから送風される空気と熱交換されて蒸発し、気相冷媒となる。本第2実施形態においては、第2熱交換部51における冷媒の流れ方向が空気の流れ方向と対向するように構成されているので、熱交換が促進され、気相冷媒の温度が大きく上昇する。これにより、室外熱交換器10Aの出口側に位置する冷媒流通管55a~55fで過熱度をとった場合においても、冷媒と空気との温度差を大きく保つことができ、高い熱交換効率を得ることができる。
 本第2実施形態によれば、第1風下側熱交換部50cの冷媒経路数が第1風上側熱交換部50aの冷媒経路数よりも多くなっているので、冷媒と空気との温度差を一層大きく保つことができ、より高い熱交換効率を得ることができる。
 なお、本発明は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、前記では、室外熱交換器10の構成について説明したが、当該構成は室内熱交換器14に適用されてもよい。
 また、前記では、冷媒流通管と逆止弁との組合せにより室外熱交換器10を構成したが、本発明はこれに限定されない。例えば、逆止弁に代えて二方弁を用いてもよい。この場合でも、熱交換器の外部に複数の冷媒流路切り換え装置などを設けることなく、高い熱交換効率を得ることができるので、小型化、低コスト化を図ることができる。
 なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 2012年6月18日に出願された日本国特許出願No.2012-136596号の明細書、図面、および特許請求の範囲の開示内容は、全体として参照されて本明細書の中に取り入れられるものである。
 本発明に係る熱交換器は、従来の構成とは異なる構成により、高い熱交換効率を得ることができるので、小型化、低コスト化が求められる熱交換器、及びそれを備える空気調和機に有用である。
  2  室外機
  4  室内機
  6  圧縮機
  8  四方弁
 10,10A  室外熱交換器(熱交換器)
 12  膨張弁(減圧装置)
 14  室内熱交換器(熱交換器)
 16,18,22,24  冷媒配管
 20  ストレーナ
 26  アキュームレータ
 30,50  第1熱交換部
 30a,50a 第1風上側熱交換部
 30b,50c 第1風下側熱交換部
 31,51  第2熱交換部
 31a,51a 第2風上側熱交換部
 31b,51c 第2風下側熱交換部
 32,33,34a~34d,35a~35d,36,37,38,53a,53b,54a~54f,55a~55f  冷媒流通管
 50b 第1中央熱交換部
 51b 第2中央熱交換部
 40~43 逆止弁

Claims (7)

  1.  複数列の管配列を有する熱交換器であって、
     凝縮運転時においては、冷媒の流れ方向が前記冷媒と熱交換を行うために送風される空気の流れ方向と対向し、蒸発運転時においては、前記冷媒の流れ方向が前記空気の流れ方向と並行であるように構成された第1熱交換部と、
     前記凝縮運転時と前記蒸発運転時の両時において、前記冷媒の流れ方向が前記空気の流れ方向と対向するように構成された第2熱交換部と、
     を備え、
     前記第1熱交換部は、前記蒸発運転時における前記冷媒の流れ方向に対して前記第2熱交換部よりも上流に配置されている、熱交換器。
  2.  前記第2熱交換部は、前記第1熱交換部よりも冷媒経路数が多い、請求項1に記載の熱交換器。
  3.  前記第1熱交換部は、前記凝縮運転時における冷媒の流れ方向に対して前記第2熱交換部よりも下流に配置されている、請求項2に記載の熱交換器。
  4.  前記第1熱交換部は、前記空気の流れ方向に対して風上に位置する風上側熱交換部と、前記空気の流れ方向に対して風下に位置し、前記風上側熱交換部よりも冷媒経路数が多い風下側熱交換部とを備える、請求項1~3のいずれか1つに記載の熱交換器。
  5.  前記熱交換器は、前記冷媒を通す冷媒流通管と、前記冷媒の流れ方向を一方向に規制する逆止弁との組合せにより構成されている、請求項1~4のいずれか1つに記載の熱交換器。
  6.  前記第1熱交換部は、前記第2熱交換部よりも下方に配置されている、請求項1~5のいずれか1つに記載の熱交換器。
  7.  請求項1~6のいずれか1つに記載の熱交換器を備える空気調和機。
PCT/JP2013/003792 2012-06-18 2013-06-18 熱交換器及び空気調和機 WO2013190830A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380029882.8A CN104350341B (zh) 2012-06-18 2013-06-18 热交换器和空调机
JP2014520951A JP6098951B2 (ja) 2012-06-18 2013-06-18 熱交換器及び空気調和機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-136596 2012-06-18
JP2012136596 2012-06-18

Publications (1)

Publication Number Publication Date
WO2013190830A1 true WO2013190830A1 (ja) 2013-12-27

Family

ID=49768444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/003792 WO2013190830A1 (ja) 2012-06-18 2013-06-18 熱交換器及び空気調和機

Country Status (3)

Country Link
JP (1) JP6098951B2 (ja)
CN (1) CN104350341B (ja)
WO (1) WO2013190830A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018029784A1 (ja) * 2016-08-09 2018-02-15 三菱電機株式会社 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
WO2019026436A1 (ja) * 2017-08-02 2019-02-07 三菱重工サーマルシステムズ株式会社 熱交換器
JPWO2018025305A1 (ja) * 2016-08-01 2019-03-22 三菱電機株式会社 空気調和機
JPWO2019130394A1 (ja) * 2017-12-25 2020-12-03 三菱電機株式会社 熱交換器および冷凍サイクル装置
WO2023013347A1 (ja) * 2021-08-02 2023-02-09 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115103987A (zh) * 2020-02-27 2022-09-23 三菱电机株式会社 热源侧单元的热交换器以及具备该热交换器的热泵装置
JP6918257B1 (ja) * 2021-01-28 2021-08-11 日立ジョンソンコントロールズ空調株式会社 空気調和機及び熱交換器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616179U (ja) * 1984-06-15 1986-01-14 三菱電機株式会社 冷凍装置
JPH07151425A (ja) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd 冷凍装置
JPH0949667A (ja) * 1995-08-07 1997-02-18 Fujitsu General Ltd 空気調和機
JPH09196489A (ja) * 1996-01-19 1997-07-31 Fujitsu General Ltd 空気調和機の冷凍サイクル
JPH10318618A (ja) * 1997-05-20 1998-12-04 Fujitsu General Ltd 空気調和機
JP2007278676A (ja) * 2006-04-12 2007-10-25 Matsushita Electric Ind Co Ltd 熱交換器
JP2008116135A (ja) * 2006-11-06 2008-05-22 Daikin Ind Ltd 熱交換器及び冷凍装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201990B2 (ja) * 2001-02-05 2008-12-24 三菱電機株式会社 空気調和機
JP4989420B2 (ja) * 2007-10-29 2012-08-01 日立アプライアンス株式会社 空気調和機
US9528769B2 (en) * 2009-06-19 2016-12-27 Daikin Industries, Ltd. Ceiling-mounted air conditioning unit
JP5493778B2 (ja) * 2009-11-30 2014-05-14 三菱電機株式会社 空気調和装置、空気調和装置の運転方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616179U (ja) * 1984-06-15 1986-01-14 三菱電機株式会社 冷凍装置
JPH07151425A (ja) * 1993-11-30 1995-06-16 Sanyo Electric Co Ltd 冷凍装置
JPH0949667A (ja) * 1995-08-07 1997-02-18 Fujitsu General Ltd 空気調和機
JPH09196489A (ja) * 1996-01-19 1997-07-31 Fujitsu General Ltd 空気調和機の冷凍サイクル
JPH10318618A (ja) * 1997-05-20 1998-12-04 Fujitsu General Ltd 空気調和機
JP2007278676A (ja) * 2006-04-12 2007-10-25 Matsushita Electric Ind Co Ltd 熱交換器
JP2008116135A (ja) * 2006-11-06 2008-05-22 Daikin Ind Ltd 熱交換器及び冷凍装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018025305A1 (ja) * 2016-08-01 2019-03-22 三菱電機株式会社 空気調和機
WO2018029784A1 (ja) * 2016-08-09 2018-02-15 三菱電機株式会社 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
US10697705B2 (en) 2016-08-09 2020-06-30 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus including the same
WO2019026436A1 (ja) * 2017-08-02 2019-02-07 三菱重工サーマルシステムズ株式会社 熱交換器
JP2019027727A (ja) * 2017-08-02 2019-02-21 三菱重工サーマルシステムズ株式会社 熱交換器
JPWO2019130394A1 (ja) * 2017-12-25 2020-12-03 三菱電機株式会社 熱交換器および冷凍サイクル装置
WO2023013347A1 (ja) * 2021-08-02 2023-02-09 パナソニックIpマネジメント株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
CN104350341B (zh) 2016-07-20
JPWO2013190830A1 (ja) 2016-02-08
JP6098951B2 (ja) 2017-03-22
CN104350341A (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
JP6098951B2 (ja) 熱交換器及び空気調和機
JP6595125B1 (ja) 空気調和装置の室外機及び空気調和装置
JP5991989B2 (ja) 冷凍空調装置
JP4922669B2 (ja) 空気調和機及び空気調和機の熱交換器
JP6045695B2 (ja) 空気調和装置
WO2015063853A1 (ja) 冷凍サイクルおよび空気調和機
JP6715929B2 (ja) 冷凍サイクル装置およびそれを備えた空気調和装置
JP5805567B2 (ja) 冷凍サイクル及び冷凍ショーケース
JP6179414B2 (ja) 冷凍装置の熱源ユニットの熱交換器、および、それを備えた熱源ユニット
JP2014105890A (ja) 冷凍サイクル装置及びそれを備えた温水生成装置
JPWO2018029817A1 (ja) 冷凍サイクル装置
JP6218944B2 (ja) 空気調和機
WO2019128519A1 (zh) 空调器系统
JP5403039B2 (ja) 空気調和装置
JP2008070053A (ja) 空気調和装置
JP5677220B2 (ja) 冷凍サイクル装置
JP6242289B2 (ja) 冷凍サイクル装置
JP2019215161A (ja) 空気調和装置の室外機及び空気調和装置
JP6298992B2 (ja) 空気調和機
WO2019130394A1 (ja) 熱交換器および冷凍サイクル装置
JP6910436B2 (ja) 室外ユニットおよび冷凍サイクル装置
JP2008267731A (ja) 空気調和装置
WO2011111602A1 (ja) 空気調和機
JP2012063083A (ja) 熱源ユニット
KR101323527B1 (ko) 공기 조화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13807269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13807269

Country of ref document: EP

Kind code of ref document: A1