WO2013187496A1 - 芳香族複素環化合物 - Google Patents

芳香族複素環化合物 Download PDF

Info

Publication number
WO2013187496A1
WO2013187496A1 PCT/JP2013/066431 JP2013066431W WO2013187496A1 WO 2013187496 A1 WO2013187496 A1 WO 2013187496A1 JP 2013066431 W JP2013066431 W JP 2013066431W WO 2013187496 A1 WO2013187496 A1 WO 2013187496A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
optionally substituted
phenyl
added
mixture
Prior art date
Application number
PCT/JP2013/066431
Other languages
English (en)
French (fr)
Inventor
邦夫 猿田
則充 林
桜井 修
浩昭 澤本
絵理 大保木
Original Assignee
田辺三菱製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田辺三菱製薬株式会社 filed Critical 田辺三菱製薬株式会社
Priority to US14/407,282 priority Critical patent/US9546155B2/en
Priority to JP2014521421A priority patent/JP5977349B2/ja
Priority to ES13804940.8T priority patent/ES2690315T3/es
Priority to EP13804940.8A priority patent/EP2862856B1/en
Publication of WO2013187496A1 publication Critical patent/WO2013187496A1/ja
Priority to US15/250,379 priority patent/US10308636B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/14Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present invention relates to an aromatic heterocyclic compound having an inhibitory action on acylcoenzyme A: diacylglycerol acyltransferase (DGAT) 1 or a pharmacologically acceptable salt thereof.
  • DGAT diacylglycerol acyltransferase
  • Obesity is a condition in which fat is excessively accumulated in the body (Non-patent Document 1), hyperlipidemia, hypertriglyceridemia, dyslipidemia, fatty liver, diabetes, hypertension, arteriosclerosis, cerebrovascular May cause disability, coronary artery disease, respiratory abnormalities, low back pain, osteoarthritis of the knee, etc.
  • Non-patent Document 1 hyperlipidemia, hypertriglyceridemia, dyslipidemia, fatty liver, diabetes, hypertension, arteriosclerosis, cerebrovascular May cause disability, coronary artery disease, respiratory abnormalities, low back pain, osteoarthritis of the knee, etc.
  • those with these diseases or those that may cause these diseases in the future are obesity Defined and treated as a single disease.
  • DGAT is an enzyme that catalyzes the reaction from diacylglycerol to TG, which is the final step of triacylglycerol (TG) synthesis, and it is known that DGAT has two subtypes, DGAT1 and DGAT2. .
  • DGAT1 is known to exist in the liver, skeletal muscle, adipocytes and the like, and is involved in TG synthesis in each tissue (Non-patent Document 2).
  • Non-patent Document 3 DGAT1 is also involved in the final stage of TG resynthesis in small intestinal epithelial cells.
  • Non-Patent Document 4 a compound that inhibits DGAT1 not only inhibits TG synthesis in adipocytes, liver, etc. by inhibiting the final step of TG synthesis, but also suppresses TG resynthesis in the small intestine, thereby It is expected to suppress absorption and improve the pathology of obesity (Non-Patent Document 4).
  • Non-Patent Document 4 a compound that inhibits DGAT1 Is expected to improve insulin sensitivity by reducing ectopic fat accumulation and to have a therapeutic effect on type 2 diabetes.
  • Non-Patent Document 5 it has been reported that in mice deficient in DGAT1 by genetic manipulation (DGAT1 knockout mouse), insulin sensitivity is improved as compared to wild-type mice (Non-patent Document 5).
  • DGAT1 knockout mouse insulin sensitivity is improved as compared to wild-type mice
  • GLP-1 glucagon-like peptide-1
  • 6 a protein that causes anorexia
  • Patent Document 1 discloses (2S) -2- as a compound that inhibits protein-tyrosine phosphatase (PTPases) and is useful for the treatment of insulin resistance associated with obesity, glucose intolerance, diabetes, hypertension, and ischemic diseases.
  • PTPases protein-tyrosine phosphatase
  • [4 ′-(1-Benzyl-1H-benzimidazol-2-yl) -biphenyl-4-yloxy] -3-phenyl-propionic acid (Example 70) and the like are disclosed.
  • Patent Document 2 discloses 2-benzyl-4- [4 ′-(2-benzyl-benzofuran-3) as a compound having a protein-tyrosine phosphatase-1B (PTP-1B) inhibitory action useful for the treatment of type 2 diabetes.
  • PTP-1B protein-tyrosine phosphatase-1B
  • Patent Document 3 Patent Document 4 and Patent Document 5 disclose compounds having a structure in which biphenyl having an inhibitory action on Factor VIIa, Factor IXa, Factor Xa, and Factor XIa and a nitrogen-containing condensed heterocycle are bonded. Has been. However, its chemical structure is limited to a structure in which a nitrogen-containing condensed heterocyclic ring is bonded to the 3-position of biphenyl.
  • Patent Document 6 discloses 2-[[2 ′-(5-phenyl-1H-imidazole-2] as a compound having a therapeutic effect on obesity and diabetes by inhibiting adipocyte fatty acid binding protein (aP2). -Yl) [1,1′-biphenyl] -3-yl] oxy] acetic acid (Example 46) and the like.
  • Non-Patent Document 7 discloses 2-[[2 ′-(1-ethyl-4,5-diphenyl-1H-imidazol-2-yl) [] as a compound that binds to adipocyte fatty acid binding protein (aFABP). 1,1′-biphenyl] -3-yl] oxy] acetic acid, 2-[[2 ′-(4,5-diphenyl-1H-imidazol-2-yl) [1,1′-biphenyl] -3-yl ] Oxy] acetic acid has been reported.
  • aFABP adipocyte fatty acid binding protein
  • Patent Documents 7 to 14 and Non-Patent Document 8 are known.
  • Examples of compounds having a DGAT1 inhibitory action include heteroarylbenzene derivatives (Patent Document 15), bicyclic heterocyclic compounds (Patent Document 16), triazolopyridine derivatives (Patent Document 17), and imidazole derivatives (Patent Document 15).
  • Documents 18 to 20), spiro ring compounds (Patent Document 21), biaryl compounds (Patent Document 22), and the like are known.
  • An object of the present invention is to provide an aromatic heterocyclic compound having a DGAT1 inhibitory action or a pharmacologically acceptable salt thereof, as well as hyperlipidemia, hypertriglyceridemia caused by obesity, hyperlipidemia, dyslipidemia, fatty liver
  • Another object of the present invention is to provide a DGAT1 inhibitor useful for the prevention and / or treatment of hypertension, arteriosclerosis, diabetes and the like.
  • the present inventors have found that the aromatic heterocyclic compound represented by the following formula or a pharmacologically acceptable salt thereof has an excellent DGAT1 inhibitory action as a result of intensive studies. Completed the invention.
  • the present invention is as follows.
  • Ring A is an optionally substituted benzene or an optionally substituted 6-membered monocyclic aromatic heterocycle
  • Ring B is an optionally substituted benzene or an optionally substituted 6-membered monocyclic aromatic heterocycle
  • X is a single bond or —O—
  • Y is an optionally substituted alkyl or an optionally substituted cycloalkyl
  • Z is CR 1 or a nitrogen atom
  • R 1 is hydrogen, a halogen atom, alkoxy or alkyl which may be substituted
  • Z is CR 1
  • R 2 is: ⁇ Wherein Z ′ is a single bond, alkylene, —Alk—O— or —Alk 1 —O—Alk 2 — (Alk, Alk 1 and Alk 2 each independently represent alkylene, and the bond described at the right end represents a bond to ring C.)
  • Indicate Ring C represents an aromatic hydrocarbon group or an aromatic heterocyclic group, R 3 and
  • R 2 is an optionally substituted alkyl, an optionally substituted alkoxy, an alkylthio, an optionally substituted aromatic hydrocarbon group, or an optionally substituted.
  • Ring A is an optionally substituted benzene or an optionally substituted 6-membered monocyclic aromatic heterocycle
  • Ring B 1 is an optionally substituted benzene or an optionally substituted 6-membered monocyclic aromatic heterocycle
  • R 1 is hydrogen, a halogen atom, alkoxy or alkyl which may be substituted
  • R 2a is represented by the following formula: ⁇ Wherein Z ′ is a single bond, alkylene, —Alk—O— or —Alk 1 —O—Alk 2 — (Alk, Alk 1 and Alk 2 each independently represent alkylene, and the bond described at the right end represents a bond to ring C.)
  • Indicate Ring C represents an aromatic hydrocarbon group or an aromatic heterocyclic group
  • R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an optionally substituted alkyl, an optionally substituted alkoxy, a non-aromatic heterocyclic substituted alky
  • R 2b is an optionally substituted alkyl, an optionally substituted alkoxy, an optionally substituted aromatic hydrocarbon group or an optionally substituted aryloxy. Or a pharmaceutically acceptable salt thereof.
  • a diacylglycerol acyltransferase (DGAT) 1 inhibitor comprising the compound according to any one of 1 to 12 above or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the DGAT1 inhibitor according to 13 above which is a prophylactic / therapeutic agent for hyperlipidemia, hypertriglyceridemia, dyslipidemia, and fatty liver.
  • Type 2 diabetes diabetic complications (including diabetic peripheral neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic macroangiopathy), arteriosclerosis, hypertension, cerebrovascular disorder, coronary artery disease, respiratory abnormalities, 14.
  • the DGAT1 inhibitor according to 13 above which is a prophylactic / therapeutic agent for back pain and knee osteoarthritis.
  • the DGAT1 inhibitor according to 13 above which is a prophylactic / therapeutic agent for type 2 diabetes and diabetic complications.
  • the DGAT1 inhibitor according to 13 above which is a prophylactic / therapeutic agent for familial hyperchylomicronemia.
  • Hyperlipidemia hypertriglyceridemia, dyslipidemia, fatty liver, type 2 diabetes, diabetic complications (diabetic peripheral) of the compound according to any one of the above 1 to 12 or a pharmaceutically acceptable salt thereof
  • Hyperlipidemia hypertriglyceridemia, dyslipidemia, fatty liver, type 2, characterized in that the compound according to any one of 1 to 12 above or a pharmacologically acceptable salt thereof is administered to a patient Diabetes, diabetic complications (including diabetic peripheral neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic macroangiopathy), arteriosclerosis, hypertension, cerebrovascular disorder, coronary artery disease, respiratory abnormalities, low back pain, Methods for preventing and treating knee osteoarthritis.
  • diabetic complications including diabetic peripheral neuropathy, diabetic nephropathy, diabetic retinopathy, diabetic macroangiopathy
  • arteriosclerosis hypertension
  • cerebrovascular disorder cerebrovascular disorder
  • coronary artery disease respiratory abnormalities
  • respiratory abnormalities low back pain
  • a method for the prophylaxis or treatment of familial hyperchylomicronemia comprising administering the compound according to any one of 1 to 12 above or a pharmacologically acceptable salt thereof to a patient.
  • ring A represents an optionally substituted benzene or an optionally substituted 6-membered monocyclic aromatic heterocycle
  • Ring B 1 represents an optionally substituted benzene or an optionally substituted 6-membered monocyclic aromatic heterocycle
  • X A represents a single bond or —O—
  • Y A is (1) a cycloalkyl optionally substituted with a group selected from the following (i) to (v): (I) carboxy, (Ii) carboxyalkyl, (Iii) alkoxyalkyl, (Iv) aminocarbonyl, and (v) alkoxycarbonylalkyl, or (2) alkyl optionally substituted with a group selected from the following (i) and (ii): (Ii) carboxy, and (ii) aminocarbonyl optionally mono- or disubstituted with alkyl optionally substituted with 1 to 3 hydroxy
  • R 1A represents a hydrogen, alkyl
  • R 1A is a hydrogen atom
  • R 2A is alkyl optionally substituted with a halogen atom
  • Ring A is (In the formula, the rightmost bond represents a bond to ring B, X 1 represents N or CRX 1 , X 2 represents N or CRX 2 , X 3 represents N or CRX 3 , and X 4 represents N or CRX.
  • RX 1, RX 2, RX 3 and RX 4 are each hydrogen, optionally linear or branched alkyl optionally substituted by a halogen atom, a ring structure which may be substituted with a halogen atom And alkyl having a straight chain or branched chain, a halogen atom or cyano.
  • RX 1, RX 2, RX 3 and RX 4 are each hydrogen, optionally linear or branched alkyl optionally substituted by a halogen atom, a ring structure which may be substituted with a halogen atom And alkyl having a straight chain or branched chain, a halogen atom or cyano.
  • ring B 3 represents an optionally substituted 6-membered monocyclic aromatic heterocyclic ring, P represents hydrogen or alkyl; Q is hydrogen or represents a group that together with P forms a carbonyl; X B is a single bond or —CH 2 CO— (the bond shown at the right end indicates a bond with piperazine)
  • Y B is (1) a phenyl (i) halogen atom optionally substituted with a group selected from the following (i) to (vi): (Ii) alkyl, (Iii) carboxyalkyl, (Iv) hydroxyalkyl, (V) an alkoxycarbonylalkyl optionally substituted with a group selected from hydroxy, aralkyloxy, and 2,2, -dimethyl 1,3-dioxolane, and (vi) hydroxy, and 2,2, -dimethyl 1 Aminocarbonylalkyl optionally mono- or di-
  • ring B 1 represents an optionally substituted benzene or an optionally substituted 6-membered monocyclic aromatic heterocycle
  • X C represents a single bond, —O—, —OCH 2 — (the bond described at the right end represents a bond with piperidine) or alkylene
  • Y C is (1) a phenyl (i) halogen atom optionally substituted with a group selected from the following (i) to (v): (Ii) alkyl, (Iii) carboxyalkyl, (Iv) carboxy, and (v) alkoxy, or (2) alkyl optionally substituted with carboxy, R 2C represents alkyl which may be substituted with halogen. ) Or a pharmacologically acceptable salt thereof.
  • Y D is (1) phenyl optionally substituted with a group selected from the following (i) to (iv): (I) a halogen atom, (Ii) alkyl, (Iii) carboxyalkyl, and (iv) carboxy, (2) represents pyridyl optionally substituted with carboxy, or (3) alkyl optionally substituted with carboxy, R 2D represents alkyl which may be substituted with halogen. ) Or a pharmacologically acceptable salt thereof.
  • Halogen atom includes fluorine atom, chlorine atom, bromine atom and iodine atom. Of these, a fluorine atom and a chlorine atom are preferable.
  • alkyl examples include linear or branched alkyl having 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, and specifically include methyl, ethyl, propyl, isopropyl, butyl, t -Butyl, isobutyl, pentyl, hexyl, 2-methylpropyl, 2-ethylbutyl and 2-propylpentyl.
  • cycloalkane examples include cycloalkanes having 3 to 8 carbon atoms, preferably 3 to 6 carbon atoms, and specific examples include cyclopropane, cyclobutane, cyclopentane, cyclohexane, and cycloheptane. .
  • cycloalkyl examples include cycloalkyl having 3 to 8 carbon atoms, preferably 3 to 6 carbon atoms, and specific examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl.
  • alkoxy examples include linear or branched alkoxy having 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, specifically, methoxy, ethoxy, propoxy, isopropoxy, butoxy, Examples include t-butoxy, isobutoxy, pentyloxy and hexyloxy.
  • alkylene examples include linear or branched alkylene having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and specifically include methylene, ethylene, propylene, isopropylene, butylene and And isobutylene.
  • Alkoxycarbonyl includes, for example, linear or branched alkoxycarbonyl having 2 to 9 carbon atoms, and specifically includes methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, Examples include pentyloxycarbonyl and hexyloxycarbonyl.
  • alkoxycarbonylalkyl examples include the above “alkyl” substituted with the above “alkoxycarbonyl”, and specific examples include methoxycarbonylmethyl, methoxycarbonylethyl, ethoxycarbonylmethyl, and ethoxycarbonylethyl. It is done.
  • Examples of the “carboxyalkyl” include the above “alkyl” substituted with carboxy, specifically, carboxymethyl, carboxyethyl, carboxypropyl, carboxyisopropyl, carboxy-t-butyl, carboxyhexyl and the like. Can be mentioned.
  • alkoxyalkyl examples include the above “alkyl” substituted with the above “alkoxy”, and specific examples include methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, and t-butoxymethyl. .
  • hydroxyalkyl examples include the above “alkyl” substituted with hydroxy, and specifically include hydroxymethyl, 1-hydroxyethyl, 2-hydroxypropyl, 2-hydroxyethyl, 3-hydroxypropyl, and the like. Is mentioned.
  • aminocarbonylalkyl examples include the above “alkyl” substituted with aminocarbonyl, and specific examples include aminocarbonylmethyl and aminocarbonylethyl.
  • aromatic hydrocarbon group examples include 6 to 14-membered monocyclic, bicyclic or tricyclic aromatic hydrocarbon groups, specifically, phenyl, naphthyl, phenanthryl, and Anthryl and the like can be mentioned, and phenyl is particularly preferable.
  • aromatic heterocyclic group for example, a 5- to 14-membered monocyclic group containing 1 to 4 heteroatoms selected from a nitrogen atom, a sulfur atom and an oxygen atom in addition to a carbon atom as a ring-constituting atom or
  • bicyclic aromatic heterocyclic groups such as pyrrolyl, imidazolyl, triazolyl, tetrazolyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl, azepinyl, diazepinyl, furyl, pyranyl, oxepinyl, thienyl, thiopyranyl, Oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, furazanyl, oxadiazolyl, oxazinyl, oxadiazinyl, oxazepinyl,
  • non-aromatic heterocyclic group examples include a 5- to 14-membered monocyclic ring containing 1 to 4 heteroatoms selected from a nitrogen atom, a sulfur atom and an oxygen atom in addition to a carbon atom as a ring-constituting atom. Or a bicyclic non-aromatic heterocyclic group is mentioned.
  • alkylthio examples include linear or branched alkylthio having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms, and specific examples include methylthio, ethylthio, propylthio, butylthio and the like. .
  • aryl in “aryloxy” has the same meaning as the above “aromatic hydrocarbon group”, and phenyl is particularly preferable. Specific examples of “aryloxy” include phenyloxy, naphthyloxy and the like.
  • heteroaryl in the “heteroaryloxy” has the same meaning as the above “aromatic heterocyclic group”, and in particular, a heteroatom selected from a nitrogen atom, a sulfur atom and an oxygen atom in addition to a carbon atom as a ring-constituting atom.
  • a 5- to 6-membered monocyclic aromatic heterocyclic group containing 1 to 4 is preferable.
  • Specific examples of “heteroaryloxy” include pyridyloxy, pyrimidinyloxy, pyrazyloxy and the like.
  • cycloalkyloxy examples include cycloalkyloxy having 3 to 8 carbon atoms, preferably 3 to 6 carbon atoms, specifically cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy and And cycloheptyloxy.
  • cycloalkylalkoxy examples include the above “alkoxy” substituted with the above “cycloalkyl”, and specifically include cyclopropylmethoxy, cyclopropylethoxy, cyclobutylmethoxy, cyclopentylmethoxy, cyclohexylmethoxy and cycloheptyl. And methoxy.
  • aralkyloxy examples include the above “alkoxy” substituted with the above “aromatic hydrocarbon group”, and specifically include benzyloxy, phenethyloxy, 1-naphthylmethoxy, 2-naphthylmethoxy and the like. Is mentioned.
  • aralkyloxycarbonyl examples include the above “alkoxycarbonyl” substituted with the above “aromatic hydrocarbon group”, and specifically include benzyloxycarbonyl, phenethyloxycarbonyl, 1-naphthylmethoxycarbonyl and And 2-naphthylmethoxycarbonyl.
  • non-aromatic heterocyclic substituted alkyl examples include the above “alkyl” substituted with the above “non-aromatic heterocyclic group”, and specifically include pyrrolidinomethyl, piperidinoethyl, morpholinomethyl, morpholino. Examples include ethyl, piperidinomethyl, piperidinoethyl and the like.
  • non-aromatic heterocyclic group-substituted carbonyl examples include carbonyl substituted with the above-mentioned “non-aromatic heterocyclic group”, and specifically include piperidinocarbonyl, morpholinocarbonyl, piperidinocarbonyl and the like. Is mentioned.
  • Examples of the “6-membered monocyclic aromatic heterocycle” in ring A include a 6-membered monocyclic aromatic heterocycle containing 1 to 4 nitrogen atoms in addition to carbon atoms as ring-constituting atoms.
  • Specific examples include pyridine, pyrazine, pyrimidine, pyridazine, triazine, and tetrazine.
  • a 6-membered monocyclic aromatic heterocyclic ring containing 1 to 2 nitrogen atoms in addition to carbon atoms is preferable as a ring-constituting atom.
  • pyridine, pyrazine, pyrimidine and pyridazine are preferable, and pyridine And pyrazine are more preferable, and pyridine is particularly preferable.
  • substituents of “optionally substituted benzene” and “optionally substituted 6-membered monocyclic aromatic heterocycle” in ring A include 1 to 3 alkyls. When there are two or more, the substituents may be the same or different. A particularly preferred substituent is methyl.
  • Examples of the “6-membered monocyclic aromatic heterocycle” in the rings B, B 1 , B 2 and B 3 include, for example, a 6-membered single ring containing 1 to 4 nitrogen atoms in addition to carbon atoms as ring constituent atoms
  • Examples thereof include cyclic aromatic heterocycles, and specific examples include pyridine, pyrazine, pyrimidine, pyridazine, triazine, and tetrazine.
  • preferred are 6-membered monocyclic aromatic heterocycles containing 1 or 2 nitrogen atoms in addition to carbon atoms as ring-constituting atoms.
  • pyridine, pyrazine, pyrimidine and pyridazine are particularly preferred. Pyridine and pyrimidine are preferred.
  • substituents of “optionally substituted benzene” and “optionally substituted 6-membered monocyclic aromatic heterocycle” in rings B and B 1 include alkyl, halogen atom and cyano. These substituents may have 1 to 3 substituents, and when they have 2 or more, these substituents may be the same or different. Particularly preferred substituents include methyl, fluorine atom, chlorine atom and cyano.
  • substituents of “optionally substituted benzene” and “optionally substituted 6-membered monocyclic aromatic heterocycle” in ring B 2 include a group selected from a halogen atom and cyano. Can be mentioned. One to three substituents may be present, and when two or more substituents are present, the substituents may be the same or different. Particularly preferred substituents include a fluorine atom, a chlorine atom and cyano.
  • Preferred examples of ring A-ring B, ring AB 1 and ring AB 2 include groups represented by the following formulae.
  • G 1 , G 2 and G 3 represent CH or a nitrogen atom.
  • aromatic heterocyclic group in ring C include the above “aromatic heterocyclic group”, and preferably a hetero atom selected from a nitrogen atom, a sulfur atom, and an oxygen atom in addition to a carbon atom as a ring-constituting atom. 5 to 6-membered monocyclic aromatic heterocyclic group containing 1 to 3 of the above.
  • pyridyl, pyrimidinyl, pyrazolyl, thienyl, isoxazolyl, oxazolyl, thiazolyl, oxadiazolyl and triazolyl are preferable, pyridyl, pyrimidinyl, thienyl, thiazolyl, oxadiazolyl and oxazolyl are more preferable, and thienyl is particularly preferable.
  • Ring C is preferably an “aromatic hydrocarbon group”.
  • Alkyl in Y, Y a , Y b , Y A , Y B , Y C and Y D has two substituents (R 5 and R 6 ) on the same carbon of alkyl, and the two A group in which a substituent forms a ring with an adjacent carbon atom is included. Examples of such a group include groups represented by the following formulas.
  • Alk 3 and Alk 4 are the same or different and each represents an alkylene, n represents an integer of 0 or 1, R 5 and R 6 each represent hydrogen or alkyl, or R 5 and R 6, respectively.
  • alkyl in Y, Y a , Y b , Y A , Y B , Y C and Y D include the following groups.
  • substituent of the "alkyl which may be substituted" in Y and Y a for example, 1-3 good aminocarbonyl optionally substituted by alkyl which may be substituted with hydroxy, and carboxy like
  • substituents may have 1 to 3 substituents, and when they have 2 or more, these substituents may be the same or different.
  • preferred substituents include carboxy.
  • Examples of the substituent of “optionally substituted alkyl” in Y b include carboxy.
  • substituent of “optionally substituted cycloalkyl” in Y a include carboxyalkyl, which may have 1 to 3 such substituents. Specific examples of the substituent include carboxymethyl.
  • substituents of “optionally substituted cycloalkyl” in Y and Y b include carboxyalkyl, carboxy, alkoxyalkyl, and aminocarbonyl, and have 1 to 3 of these substituents. In the case of having two or more, the substituents may be the same or different. Preferred substituents include carboxyalkyl, carboxy, and alkoxyalkyl.
  • cycloalkyl in Y b , cycloalkyl having 3 to 6 carbon atoms is preferable, and cyclohexyl is particularly preferable.
  • Y b is preferably “optionally substituted alkyl”.
  • substituent of “optionally substituted alkyl” in R 1 examples include 1 to 6 halogen atoms, and when having 2 or more, the substituents may be the same or different.
  • a particularly preferred substituent is a fluorine atom.
  • Specific examples of “optionally substituted alkyl” include difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, and the like. Of these, trifluoromethyl is preferred.
  • the “halogen atom” represented by R 1 is particularly preferably a chlorine atom.
  • the “alkyl” represented by R 1 is preferably an alkyl having 1 to 3 carbon atoms, and particularly preferably methyl.
  • alkoxy represented by R 1
  • alkoxy having 1 to 3 carbon atoms is preferable, and methoxy is particularly preferable.
  • substituent of “optionally substituted alkyl” in R 3 and R 4 examples include 1 to 6 halogen atoms. When two or more substituents are present, the substituents may be the same or different. Also good. Of these, a fluorine atom is preferable.
  • substituents include difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, and the like. Of these, trifluoromethyl is preferred.
  • substituent of “optionally substituted alkoxy” in R 3 and R 4 include alkoxy and 1 to 6 halogen atoms, respectively, and when having two or more, the substituents are the same or May be different. Of these, a fluorine atom is preferable.
  • substituents include difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 2,2,3,3,3-pentafluoropropoxy, and the like. Of these, difluoromethoxy and trifluoromethoxy are preferred.
  • substituents of “optionally substituted alkyl” in R 2 and R 2b include 1 to 6 halogen atoms. When two or more substituents are present, the substituents are the same or different. May be.
  • a particularly preferred substituent is a fluorine atom. Specific examples of the group include trifluoromethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl and the like.
  • substituent of “optionally substituted alkoxy” in R 2 and R 2b include 1 to 6 halogen atoms, and when they have two or more, they may be the same or different. Of these, a fluorine atom is preferable. Specific examples of the group include trifluoromethoxy, 2,2,2-trifluoroethoxy, 2,2,3,3,3-pentafluoropropoxy and the like.
  • substituent of “optionally substituted cycloalkyl” in R 2 and R 2b include alkyl optionally substituted with 1 to 7 halogens. They may be the same or different. Specific examples of the group include 1-trifluoromethylcyclopropyl, 1-trifluoromethylcyclobutyl, 1-trifluoromethylcyclohexyl, 1-trifluoromethylcyclohexyl and the like.
  • substituent of the “optionally substituted aromatic hydrocarbon group” in R 2 and R 2b include 1 to 3 alkoxy, and when having 2 or more, they are the same or different. Also good. Specific examples of the group include 4-methoxyphenyl, 3-methoxyphenyl, 2-methoxyphenyl, 3,4-dimethoxyphenyl and the like.
  • substituent of the “optionally substituted non-aromatic heterocyclic group” in R 2 and R 2b include 1 to 3 halogen atoms, and the same or different when having 2 or more It may be.
  • Specific examples of the group include 4-fluoropiperidino and 4,4-difluoropiperidino.
  • substituent of “optionally substituted aryloxy” in R 2 and R 2b include a group selected from a halogen atom and cyano. 1 to 3 substituents may be present, and when two or more substituents are present, they may be the same or different. Specific examples of the group include 4-fluorophenyloxy, 2,4-difluorophenyloxy, 3,4-difluorophenyloxy, 4-cyanophenyloxy and the like.
  • substituent of “optionally substituted heteroaryloxy” in R 2 and R 2b include 1 to 3 alkyls. When the substituents have two or more, they are the same or different. It may be. Specific examples of the group include 6-methylpyridin-2-yloxy, 6-methylpyrimidin-2-yloxy and the like.
  • examples of pharmacologically acceptable salts thereof include acid addition salts (for example, hydrochloride, sulfate, phosphate, hydrobromide).
  • Inorganic salts such as acetate, fumarate, maleate, oxalate, citrate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.) and salts with bases (For example, alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, organic base salts such as triethylamine salt, amino acid salts such as lysine salt, etc.).
  • the compound of the present invention may have optical isomers based on asymmetric carbon, but the compound of the present invention includes any of these isomers and mixtures thereof. Further, when the compound of the present invention has cycloalkanediyl, there are cis and trans isomers, and the compound of the present invention may have tautomers based on unsaturated bonds such as carbonyl. Invention compounds include any of these isomers and mixtures thereof.
  • the compound of the present invention causes tautomerism represented by the following formula due to movement of hydrogen ions in the aromatic heterocyclic ring.
  • the compound of the present invention can exhibit these chemical structures even when displaying one of its chemical structures. Any tautomers and mixtures thereof are included.
  • the compound of the present invention or a pharmacologically acceptable salt thereof can be produced by the following method.
  • the production method of the compound (1) of the present invention will be described below using the compound (1-A) and the compound (1-B) included in the compound (1). By performing, the compound (1) can be produced.
  • Compound (1-A) can be produced by the following method.
  • HAL 1 represents a halogen atom (chlorine atom, bromine atom, etc.), and other symbols are as defined above.)
  • Step I The reaction of compound (2) and hydroxylamine can be carried out, for example, in a suitable solvent according to the method described in US Pat. No. 5,576,447.
  • alcohols such as methanol or ethanol, ethers such as tetrahydrofuran or 1,4-dioxane, water, or a mixed solvent thereof can be used.
  • the reaction time is usually 3 to 16 hours, preferably 4 to 6 hours.
  • the reaction temperature is usually 5 to 100 ° C., preferably 25 to 80 ° C.
  • the obtained product is treated with acetic acid-acetic anhydride according to a conventional method and then subjected to a hydrogenation reaction in a suitable solvent in the presence of a palladium catalyst in a hydrogen atmosphere to obtain compound (3) as an acetate salt.
  • solvent for example, alcohols such as methanol or ethanol, ethers such as tetrahydrofuran or 1,4-dioxane, acetic acid, or a mixed solvent thereof can be used.
  • the palladium catalyst for example, a catalyst such as palladium carbon, palladium black, or palladium chloride is used.
  • the reaction time varies depending on the catalyst and solvent used, but is usually 30 minutes to 18 hours, preferably 30 minutes to 8 hours.
  • the reaction temperature is usually 10 to 100 ° C., preferably 25 to 75 ° C.
  • a trialkylsilane such as triethylsilane can be used as a hydrogen source instead of hydrogen.
  • Compound (3) can also be produced by reacting compound (2) with an alkoxyalkali metal in an appropriate solvent and then reacting with an ammonia source.
  • alcohols such as methanol or ethanol can be used.
  • alkoxy alkali metal sodium methylate, sodium ethylate, potassium methylate and the like can be used.
  • ammonium halides such as ammonium chloride or ammonium bromide
  • ammonium organic salts such as ammonium acetate or ammonium propionate, or ammonia
  • ammonia can be used as the ammonia source.
  • Step II Compound (1-A) can be prepared, for example, according to the method described in IM Mallick et al., Journal of the American Chemical Society, 106 (23), 7252-7254, 1984, etc. 4) can be produced by subjecting it to a cyclization reaction in a suitable solvent in the presence of a base.
  • Solvents include alcohols such as methanol or ethanol, amides such as N, N-dimethylformamide or N-methylpyrrolidone, halogenated hydrocarbons such as methylene chloride or chloroform, tetrahydrofuran, acetonitrile, water or a mixed solvent thereof. Can be used.
  • potassium hydrogen carbonate potassium carbonate, sodium ethylate or the like can be used.
  • the reaction time varies depending on the base and solvent used, but is usually 40 minutes to 18 hours, preferably 5 hours to 12 hours.
  • the reaction temperature is usually 18-100 ° C, preferably 50-80 ° C.
  • Compound (1-A) is produced by further reacting the product obtained by reacting Compound (3) and Compound (4) by the above-described method in an appropriate solvent in the presence of an acid. You can also.
  • hydrochloric acid for example, hydrochloric acid, sulfuric acid, acetic acid, trifluoroacetic acid, p-toluenesulfonic acid, camphorsulfonic acid and the like can be used.
  • the solvent examples include aromatic hydrocarbons such as benzene or toluene, halogenated hydrocarbons such as chloroform or 1,2-dichloroethane, ethers such as tetrahydrofuran or 1,2-dimethoxyethane, formic acid or acetic acid.
  • aromatic hydrocarbons such as benzene or toluene
  • halogenated hydrocarbons such as chloroform or 1,2-dichloroethane
  • ethers such as tetrahydrofuran or 1,2-dimethoxyethane
  • formic acid or acetic acid formic acid or acetic acid.
  • Organic acids or mixed solvents thereof can be used.
  • the reaction time varies depending on the acid and solvent used, but is usually 1 to 48 hours, preferably 4 to 8 hours.
  • the reaction temperature is usually 50 to 100 ° C., preferably 70 to 90 ° C.
  • Lv 1 is B (OH) 2 or HAL 2 represents a halogen atom (chlorine atom, bromine atom, etc.)
  • PG 1 represents an amino protecting group (preferably a substituted alkyl (2- (trimethylsilyl) ethoxymethyl, benzyl etc.)), and other symbols Is as defined above. )
  • Step I Compound (7) is obtained by subjecting Compound (5) and Compound (6) to an appropriate solvent in the presence of a catalyst and a base, such as a Suzuki coupling reaction (for example, Advanced Organic Chemistry Part B (FA Carey & RJ Sundberg, Springer, etc.) To the reaction described in (1).
  • a catalyst for example, Advanced Organic Chemistry Part B (FA Carey & RJ Sundberg, Springer, etc.
  • the catalyst palladium chloride, palladium acetate, dichloro [1,1′-bis (diphenylphosphino) ferrocene] palladium (PdCl 2 (dppf)), tetrakistriphenylphosphine palladium, or the like can be used.
  • 1,1′-bis (diphenylphosphino) ferrocene 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (S-PHOS), 2-dicyclohexylphosphino-2 ′, 4 ′, 6
  • a ligand such as'-triisopropyl-1,1'-biphenyl (X-PHOS) or 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene (Xantphos) can also be added.
  • alkali metals such as sodium carbonate, potassium carbonate, potassium acetate, potassium phosphate, sodium hydroxide, cesium carbonate, or the like can be used.
  • amides such as N, N-dimethylformamide, ethers such as tetrahydrofuran, 1,4-dioxane or dimethoxyethane, aromatic hydrocarbons such as benzene or toluene, water, or a mixed solvent thereof is used. can do.
  • the reaction time varies depending on the amount, type, and reaction temperature of the reagent, catalyst, base and reaction solvent used, but is usually 2 to 48 hours, preferably 5 to 12 hours.
  • the reaction temperature is room temperature to 150 ° C, preferably 60 to 120 ° C.
  • Step II Compound (1-A) can be produced by deprotecting compound (7).
  • the deprotection reaction of compound (7) is carried out by removing compound (7) from a suitable solvent (alcohols such as methanol or ethanol, water, or their Treated with an acid (hydrochloric acid, trifluoroacetic acid, methanesulfonic acid, etc.) in a mixed solvent, etc., or compound (7) is treated with an appropriate solvent (ethers such as tetrahydrofuran, or halogenated hydrocarbons such as methylene chloride). Etc.), the compound (1-A) can be produced by reacting with tetra-n-butylammonium fluoride.
  • a suitable solvent alcohols such as methanol or ethanol, water, or their Treated with an acid (hydrochloric acid, trifluoroacetic acid, methanesulfonic acid, etc.) in a mixed solvent, etc.
  • an appropriate solvent ethers such as tetrahydrofuran, or halogenated hydrocarbons such as methylene chloride
  • the compound (7) is hydrogenated in an appropriate solvent (alcohol such as methanol or ethanol) in the presence of a palladium catalyst (palladium carbon or palladium hydroxide).
  • an appropriate solvent such as methanol or ethanol
  • a palladium catalyst palladium carbon or palladium hydroxide
  • compound (1-A) is substituted with compound (5) and compound (6), respectively, (In the formula, each symbol has the same meaning as described above.) Can be produced by the same method as described above using the compound represented by formula (hereinafter referred to as compound (5a) and compound (6a)).
  • Compound (1-A) in which X is —O— (hereinafter referred to as compound (1-Aa)) can be produced by the following method.
  • Step I Compound (10) is obtained by subjecting compound (8) and compound (9) to Mitsunobu reaction (for example, Advanced Organic Chemistry Part B (FA Carey & RJ Sundberg,) in the presence of azodicarboxylates and phosphines in a suitable solvent. Springer), Okuda, M .; Tomioka, K .; reaction described in Tetrahedron Lett [TELEAY] 1994, 35 (26), 4585-4586, etc.).
  • Mitsunobu reaction for example, Advanced Organic Chemistry Part B (FA Carey & RJ Sundberg,
  • azodicarboxylates and phosphines in a suitable solvent.
  • azodicarboxylates diethyl azodicarboxylate, di-t-butyl azodicarboxylate, 1,1 ′-(azodicarbonyl) dipiperidine and the like can be used.
  • triarylphosphines such as triphenylphosphine, trialkylphosphines such as tri-n-butylphosphine, and the like can be used.
  • the solvent examples include ethers such as tetrahydrofuran, 1,4-dioxane or diethyl ether, aromatic hydrocarbons such as benzene, toluene or xylene, halogenated carbonization such as methylene chloride, 1,2-dichloroethane or chloroform. Hydrogen or a mixed solvent thereof can be used.
  • the reaction time varies depending on the reagents and solvents used, but is usually 30 minutes to 24 hours, preferably 3 hours to 12 hours.
  • the reaction temperature is usually 5 ° C. to 150 ° C., preferably room temperature to 80 ° C.
  • Step II The deprotection reaction of compound (10) can be carried out in the same manner as in Step B of Method B.
  • Step I Compound (13) can be produced by a coupling reaction of compound (11) and compound (12), and can be carried out in the same manner as in Step B of Method B.
  • Step II Compound (14) can be produced by subjecting compound (13) to a hydrogenation reaction in a suitable solvent in the presence of a palladium catalyst in a hydrogen atmosphere.
  • alcohols such as methanol or ethanol, ethers such as tetrahydrofuran or 1,4-dioxane, or a mixed solvent thereof can be used.
  • a catalyst such as palladium carbon or palladium black can be used.
  • the reaction time varies depending on the catalyst and solvent used, but is usually 1 hour to 24 hours, preferably 1 hour to 12 hours.
  • the reaction temperature is usually 50 to 100 ° C., preferably 60 to 100 ° C.
  • Step III The deprotection reaction of compound (14) can be carried out in the same manner as in Step B of Method B.
  • HAL 3 represents a halogen atom (chlorine atom, bromine atom, etc.)
  • R 1a represents alkyl
  • Lv 4 represents B (OH) 2 or The other symbols are as defined above.
  • Step I Compound (1-Ad) can be produced by reacting compound (1-Ac) with a halogenating agent in an appropriate solvent, if necessary, in the presence of a base.
  • N-chlorosuccinimide N-bromosuccinimide and the like can be used.
  • halogenated hydrocarbons such as chloroform or methylene chloride, N, N-dimethylformamide, acetonitrile, ethanol and the like can be used.
  • imidazole triethylamine or the like can be used as the base.
  • the reaction time varies depending on the reagents and solvents used, but is usually 1 hour to 22 hours, preferably 2 hours to 15 hours.
  • the reaction temperature is usually 0 ° C. to 60 ° C., preferably room temperature to 50 ° C.
  • Step II The reaction of compound (1-Ad) and compound (15) can be carried out in the same manner as in Step B of Method B.
  • compound (2a) a compound in which X is —O— (hereinafter referred to as compound (2a)) can also be produced by the following method.
  • HAL 4 and HAL 5 represent a halogen atom (chlorine atom, bromine atom, etc.), and Lv 5 represents B (OH) 2 or The other symbols are as defined above. )
  • Step I The coupling reaction of compound (16) and compound (9) can be carried out in the same manner as in Step C of Method C.
  • Step II Compound (18) can be obtained by reacting compound (17) with a boronic acid ester in the presence of a palladium catalyst, a ligand and a base in an appropriate solvent.
  • ethers such as 1,4-dioxane, dimethyl sulfoxide, aromatic hydrocarbons such as toluene, and the like can be used.
  • palladium catalyst palladium acetate, dichloro [1,1′-bis (diphenylphosphino) ferrocene] palladium (PdCl 2 (dppf)), or the like can be used.
  • Examples of the ligand include 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (S-PHOS), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropyl-1,1′-biphenyl (X -PHOS), or 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene (Xantphos) or the like can be used.
  • S-PHOS 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl
  • X -PHOS 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropyl-1,1′-biphenyl
  • Xantphos 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene
  • potassium acetate or potassium phosphate can be used as the base.
  • boronic acid ester bis (pinacolato) diboron, trialkoxyboron and the like can be used.
  • the reaction time varies depending on the catalyst and solvent to be used, but is usually 1 hour to 24 hours, preferably 2 hours to 12 hours.
  • the reaction temperature is usually 50 to 130 ° C, preferably 60 to 100 ° C.
  • Step III The coupling reaction of compound (18) and compound (19) can be carried out in the same manner as in step B of Method B.
  • PG 2 represents a hydroxyl-protecting group (preferably substituted alkyl (benzyl etc.)
  • Lv 6 represents B (OH) 2 or Each symbol is as defined above.
  • Step I The coupling reaction of compound (6) and compound (20) can be carried out in the same manner as in step B of Method B.
  • Step II Compound (8) can be produced by deprotecting PG 2 of compound (21).
  • the deprotection reaction of PG 2 is carried out by subjecting compound (21) to a palladium catalyst (palladium carbon or palladium hydroxide) in a suitable solvent (alcohols such as methanol or ethanol).
  • a palladium catalyst palladium carbon or palladium hydroxide
  • a suitable solvent alcohols such as methanol or ethanol.
  • the compound (8) can be produced by performing a hydrogenation reaction in a hydrogen atmosphere in the presence of
  • Step III Compound (11a) is obtained by mixing compound (8) with a base (triethylamine, N, N-diisopropylethylamine) in a suitable solvent (halogenated hydrocarbons such as methylene chloride or chloroform, or ethers such as tetrahydrofuran or diethyl ether). , 2,6-lutidine, etc.) in the presence of trifluoromethanesulfonic anhydride at 0 to 25 ° C. for 1 to 8 hours.
  • a base triethylamine, N, N-diisopropylethylamine
  • a suitable solvent halogenated hydrocarbons such as methylene chloride or chloroform, or ethers such as tetrahydrofuran or diethyl ether.
  • Step I and Step II in this reaction can be carried out in the same manner as Step I and Step II in Method A, respectively.
  • Step III Compound (6) can be produced by protecting the amino group of compound (24).
  • PG 1 is a 2- (trimethylsilyl) ethoxymethyl group
  • the compound (24) is reacted with 2- (trimethylsilyl) ethoxymethyl chloride in a suitable solvent in the presence of a base. 6) can be manufactured.
  • an aprotic polar solvent such as N, N-dimethylformamide, N, N-dimethylacetamide or N-methylpyrrolidone can be used.
  • an alkali metal hydride sodium hydride, lithium hydride, etc.
  • an alkali metal carbonate potassium carbonate, etc.
  • Step I Compound (27) can be produced by reacting compound (25) with compound (26) and ammonia in a suitable solvent.
  • an alcohol solvent such as methanol or ethanol, water or the like can be used.
  • the reaction time is usually 1 hour to 24 hours, preferably 5 hours to 12 hours.
  • the reaction temperature is usually 5 ° C. to 60 ° C., preferably room temperature to 40 ° C.
  • Step II This reaction can be carried out in the same manner as in Step III in Method H.
  • HAL 6 and HAL 7 are the same or different and represent a halogen atom (a chlorine atom, a bromine atom or an iodine atom).)
  • Compound (25) is prepared in the presence of a base in a suitable solvent according to the method described in J. J. Baldwin et al., Journal of Medicinal Chemistry, 29 (6), 1065-1080, 1986, etc.
  • compound (27) can be produced by reacting with compound (28) and ammonia.
  • alcohols such as methanol or ethanol, water or the like can be used.
  • alkali metal acetate for example, sodium acetate
  • the base alkali metal acetate or the like can be used.
  • the compound (28) is first stirred in an aqueous solvent at 90 to 100 ° C. for 30 minutes to 1 hour in the presence of a base, and then the compound (25) and aqueous ammonia are added to the reaction system under cooling. It can be carried out by adding and stirring at 50 ° C. under ice-cooling for another 1 to 2 days. The reaction is preferably carried out at room temperature to 40 ° C.
  • Compound (4) can be produced by reacting compound (29) with a halogenating agent in an appropriate solvent (for example, halogenated hydrocarbons such as methylene chloride).
  • a halogenating agent for example, halogenated hydrocarbons such as methylene chloride.
  • halogenating agent examples include N-bromosuccinimide, N-chlorosuccinimide, copper bromide, hydrobromic acid, benzyltrimethylammonium tribromide and the like.
  • compound (4a) a compound in which R 1 is hydrogen (hereinafter referred to as compound (4a)) can also be produced by the following method.
  • Compound (4a) can be produced by reacting compound (30) with oxalyl chloride in a suitable solvent, then reacting with trimethylsilyldiazomethane in a suitable solvent and halogenating.
  • a halogenated hydrocarbon such as chloroform or methylene chloride, or an ether such as tetrahydrofuran can be used.
  • This reaction can be carried out at ⁇ 20 to 40 ° C. with a catalytic amount of N, N-dimethylformamide added, and is preferably carried out at ice-cooling to room temperature.
  • ethers such as acetonitrile and tetrahydrofuran, halogenated hydrocarbons such as chloroform or methylene chloride, and the like can be used.
  • This reaction can be carried out at ⁇ 20 to 40 ° C., and is preferably carried out from ice cooling to room temperature.
  • the halogenation reaction can be carried out in the same manner as the halogenation reaction in Method K.
  • compound (B1) a compound in which X B is a single bond and Y B is optionally substituted phenyl (hereinafter referred to as compound (B1)) can be produced by the following method.
  • X B1 represents a single bond
  • Y B1 represents an optionally substituted phenyl
  • Lv 7 represents a halogen atom (chlorine atom, bromine atom, etc.)
  • B (OH) 2 or The other symbols are as defined above.
  • Step I (1) Lv 7 is B (OH) 2 or
  • the compound (31) is reacted with the compound (32) in the presence of a catalyst such as a copper catalyst and a base in a suitable solvent according to the method described in, for example, US2007 / 208001. (33) can be manufactured.
  • a catalyst such as a copper catalyst and a base in a suitable solvent according to the method described in, for example, US2007 / 208001. (33) can be manufactured.
  • halogenated hydrocarbons such as methylene chloride and 1,2-dichloroethane
  • aromatic hydrocarbons such as toluene
  • polar solvents such as acetonitrile, dimethylformamide, and dimethyl sulfoxide
  • a copper catalyst such as copper acetate can be used.
  • organic bases such as triethylamine and pyridine can be used.
  • a dehydrating agent such as molecular sieve can be used as necessary.
  • the reaction time varies depending on the reagent and solvent used, but is usually 12 hours to 144 hours, preferably 24 hours to 48 hours.
  • the reaction temperature is usually 20 ° C. to 90 ° C., preferably 20 ° C. to 40 ° C.
  • Solvents include ethers such as tetrahydrofuran, 1,4-dioxane or dimethoxyethane, aromatic hydrocarbons such as benzene or toluene, halogenated hydrocarbons such as methylene chloride or 1,2-dichloroethane, water, N, N-dimethylformamide, dimethyl sulfoxide, or a mixed solvent thereof can be used.
  • ethers such as tetrahydrofuran, 1,4-dioxane or dimethoxyethane
  • aromatic hydrocarbons such as benzene or toluene
  • halogenated hydrocarbons such as methylene chloride or 1,2-dichloroethane
  • water, N, N-dimethylformamide, dimethyl sulfoxide, or a mixed solvent thereof can be used.
  • Examples of the base include inorganic bases such as sodium carbonate, potassium carbonate, potassium acetate, potassium phosphate, sodium hydroxide or cesium carbonate, or triethylamine, N, N-diisopropylethylamine, 1,8-diazabicyclo [5.4.0].
  • An organic base such as undec-7-ene (DBU) or N-methylmorpholine, sodium tert-butoxy and the like can be used.
  • palladium chloride palladium acetate, dichloro [1,1′-bis (diphenylphosphino) ferrocene] palladium (PdCl 2 (dppf)), tetrakistriphenylphosphine palladium, or the like can be used.
  • 1,1'-bis (diphenylphosphino) ferrocene 2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl (S-PHOS), 2-dicyclohexylphosphino-2', 4 ', 6'-Triisopropyl-1,1'-biphenyl (X-PHOS), or 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene (Xantphos), 2-dicyclohexylphosphino-2 ', 6'- Add ligands such as di-isopropoxy-1,1'-biphenyl (RuPhos) Can be added.
  • ligands such as di-isopropoxy-1,1'-biphenyl (RuPhos) Can be added.
  • the reaction time varies depending on the reagents and solvents used, but is usually 1 hour to 24 hours, preferably 3 hours to 15 hours.
  • the reaction temperature is usually 70 ° C to 120 ° C, preferably 80 ° C to 100 ° C.
  • the reaction can be accelerated by microwave irradiation.
  • Step II Compound (B1) can be produced by deprotecting compound (33) and can be carried out in the same manner as in Step B of Method B.
  • Step I and Step II in this reaction can be carried out in the same manner as Step I and Step II in Method M.
  • Y C1 represents an optionally substituted phenyl
  • n represents an integer of 0 or 1, and the other symbols are as defined above.
  • Step I and Step II in this reaction are carried out in the same manner as Step I in Method N and Step I in Method C, respectively, and PG 1 can be further deprotected to produce compound (C1).
  • compound (34a) a group A compound in which is piperidine and X is —O— (hereinafter referred to as compound (34a)) can be produced by the following method.
  • Compound (34a) can be produced by subjecting compound (36) to a reduction reaction.
  • compound (36) is reacted with a reducing agent (such as sodium borohydride) in an appropriate solvent (such as alcohol such as methanol or ethanol), and then in the presence of a catalyst (such as palladium carbon).
  • a reducing agent such as sodium borohydride
  • an appropriate solvent such as alcohol such as methanol or ethanol
  • a catalyst such as palladium carbon
  • Step I to Step III in this reaction can be carried out in the same manner as Step I to Step III in Method D, respectively.
  • Lv 9 is B (OH) 2 or HAL 8 represents a halogen atom (chlorine atom, bromine atom, etc.)
  • PG 3 represents an amino protecting group (preferably a substituted alkyl (2- (trimethylsilyl) ethoxymethyl, benzyl, etc.), and other symbols are Same as above.)
  • Step I Compound (42) is obtained by subjecting Compound (40) and Compound (41) to an appropriate solvent in the presence of a catalyst and a base, such as a Suzuki coupling reaction (for example, Advanced Organic Chemistry Part B (FA Carey & RJ Sundberg, Springer, etc.) To the reaction described in (1).
  • a Suzuki coupling reaction for example, Advanced Organic Chemistry Part B (FA Carey & RJ Sundberg, Springer, etc.
  • the catalyst examples include palladium chloride, palladium acetate, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane complex (PdCl 2 (dppf) CH 2 Cl 2 ), or tetrakistriphenylphosphine palladium.
  • 1,1′-bis (diphenylphosphino) ferrocene 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (S-PHOS), 2-dicyclohexene Ligand such as xylphosphino-2 ′, 4 ′, 6′-triisopropyl-1,1′-biphenyl (X-PHOS) or 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene (Xantphos) Can also be added.
  • alkali metals such as sodium carbonate, potassium carbonate, potassium acetate, potassium phosphate, sodium hydroxide, cesium carbonate, or the like can be used.
  • amides such as N, N-dimethylformamide, ethers such as tetrahydrofuran, 1,4-dioxane or dimethoxyethane, aromatic hydrocarbons such as benzene or toluene, water, or a mixed solvent thereof is used. can do.
  • the reaction time varies depending on the amount, type, and reaction temperature of the reagent, catalyst, base and reaction solvent used, but is usually 2 to 48 hours, preferably 5 to 12 hours.
  • the reaction temperature is room temperature to 150 ° C, preferably 60 to 120 ° C.
  • Step II Compound (1-B) can be produced by deprotecting compound (42).
  • compound (42) when PG 3 is 2- (trimethylsilyl) ethoxymethyl, the deprotection reaction of compound (42) is carried out by using compound (42) as a suitable solvent (alcohols such as methanol or ethanol, water, or their Compound (1-B) can be obtained by treatment with an acid (hydrochloric acid, trifluoroacetic acid, methanesulfonic acid or the like) in a mixed solvent or the like).
  • compound (1-B) is obtained by reacting compound (42) with tetra-n-butylammonium fluoride in an appropriate solvent (such as ethers such as tetrahydrofuran or halogenated hydrocarbons such as methylene chloride). Can also be manufactured.
  • compound (1-B) is substituted with compound (40) and compound (41), respectively: (In the formula, each symbol has the same meaning as described above.) Can be produced by carrying out the same method as described above using the compound represented by formula (hereinafter referred to as compound (40a) and compound (41a)).
  • R 2b1 represents an optionally substituted alkyl, an optionally substituted aromatic hydrocarbon group, or an optionally substituted cycloalkyl
  • R Z represents an alkyl
  • Step I Compound (44) can be prepared by reacting (i) compound (43) with hydroxylamine and treating with acetic acid-acetic anhydride, followed by hydrogenation reaction or (ii) reacting compound (43) in the presence of an acid. It can be produced by reacting with alcohol and then with ammonia, or (iii) reacting compound (43) with lithium hexamethyldisilazane and then treating with acid.
  • reaction (i) The reaction of compound (43) and hydroxylamine can be carried out, for example, in a suitable solvent according to the method described in US Pat. No. 5,576,447.
  • alcohols such as methanol or ethanol, ethers such as tetrahydrofuran or 1,4-dioxane, water, or a mixed solvent thereof can be used.
  • the reaction time is usually 3 to 24 hours, preferably 4 to 18 hours.
  • the reaction temperature is usually 5 to 100 ° C., preferably 25 to 80 ° C.
  • the resulting product is treated with acetic acid-acetic anhydride according to a conventional method and then subjected to a hydrogenation reaction in a suitable solvent in the presence of a palladium catalyst in a hydrogen atmosphere to produce compound (44).
  • acetic acid-acetic anhydride according to a conventional method and then subjected to a hydrogenation reaction in a suitable solvent in the presence of a palladium catalyst in a hydrogen atmosphere to produce compound (44).
  • alcohols such as methanol or ethanol, ethers such as tetrahydrofuran or 1,4-dioxane, or a mixed solvent thereof can be used.
  • a catalyst such as palladium carbon or palladium black can be used.
  • the reaction time varies depending on the catalyst and solvent used, but is usually 30 minutes to 18 hours, preferably 2 hours to 8 hours.
  • the reaction temperature is usually 10 to 100 ° C., preferably 25 to 50 ° C.
  • trialkylsilane such as triethylsilane can be used as a hydrogen source instead of hydrogen.
  • reaction (ii) The reaction between compound (43) and alcohol can be carried out according to the method described in Chemische Berichte, 1878, 11, 9.
  • hydrochloric acid As the acid, hydrochloric acid, sulfuric acid and the like can be used.
  • alcohol methanol, ethanol, propanol, butanol or the like can be used.
  • the reaction time in the reaction between the compound (43) and alcohol is usually 2 hours to 24 hours, preferably 5 hours to 20 hours.
  • the reaction temperature is usually 5 to 50 ° C., preferably 25 to 50 ° C.
  • a solvent may be used.
  • alcohols such as methanol or ethanol, ethers such as tetrahydrofuran, or a mixed solvent thereof may be used.
  • the reaction time in the reaction with ammonia is usually 3 to 24 hours, preferably 8 to 20 hours.
  • the reaction temperature is usually 5 to 50 ° C., preferably 25 to 50 ° C.
  • reaction (iii) The reaction of compound (43) and lithium hexamethyldisilazane can be carried out according to the method described in J. Organomet. Chem., 1987, 331, 21, 161-167.
  • ethers such as tetrahydrofuran can be used.
  • the reaction time in the reaction with lithium hexamethyldisilazane is usually 1 to 24 hours, preferably 2 to 18 hours.
  • the reaction temperature is usually 0 to 50 ° C., preferably 5 to 30 ° C.
  • hydrochloric acid As the acid in the acid treatment, hydrochloric acid, hydrobromic acid and the like can be used.
  • a solvent may be used, and as such a solvent, ethers such as tetrahydrofuran and dioxane can be used.
  • the reaction time in the acid treatment varies depending on the acid and solvent used, but is usually 30 minutes to 24 hours, preferably 1 hour to 18 hours.
  • the reaction temperature is usually 0 to 50 ° C., preferably 5 to 30 ° C.
  • Step II Compound (1-Ba) can be produced by reacting compound (44) with compound (45) and hydrazine in an appropriate solvent in the presence or absence of a base.
  • ethers such as tetrahydrofuran or 1,4-dioxane, halogenated hydrocarbons such as 1,2-dichloroethane or carbon tetrachloride, alcohols such as methanol or ethanol, or a mixed solvent thereof may be used. be able to.
  • an alkali metal carbonate such as potassium carbonate or sodium hydrogen carbonate
  • an alkali metal alkoxide such as sodium methoxide
  • an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide
  • the hydrazine used in this reaction may be in the form of a salt (for example, hydrochloride) or a hydrate.
  • the reaction time in the reaction with hydrazine is usually 30 minutes to 12 hours, preferably 30 minutes to 8 hours.
  • the reaction temperature is usually 25 to 100 ° C, preferably 50 to 80 ° C.
  • the following formula (In the formula, each symbol has the same meaning as described above.)
  • the compound (1-Ba) can also be obtained according to the method described in Tetrahedron Letters, 1987, 28, 5133-5136.
  • Compound (1-B) in which X is —O— (hereinafter referred to as compound (1-BB)) can be produced by the following method.
  • Step I Compound (48) is obtained by subjecting Compound (46) and Compound (47) to an Mitsunobu reaction (for example, Advanced Organic Chemistry Part B (FA Carey & RJ Sundberg, in the presence of azodicarboxylates and phosphines) in an appropriate solvent).
  • Mitsunobu reaction for example, Advanced Organic Chemistry Part B (FA Carey & RJ Sundberg, in the presence of azodicarboxylates and phosphines) in an appropriate solvent.
  • Mitsunobu reaction for example, Advanced Organic Chemistry Part B (FA Carey & RJ Sundberg, in the presence of azodicarboxylates and phosphines) in an appropriate solvent.
  • azodicarboxylates diethyl azodicarboxylate, di-t-butyl azodicarboxylate, 1,1 ′-(azodicarbonyl) dipiperidine, or the like can be used.
  • triarylphosphines such as triphenylphosphine, trialkylphosphines such as tri-n-butylphosphine, and the like can be used.
  • Solvents include ethers such as tetrahydrofuran, 1,4-dioxane or diethyl ether, aromatic hydrocarbons such as benzene, toluene or xylene, and halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane or chloroform. Or a mixed solvent thereof can be used.
  • the reaction time varies depending on the reagents and solvents used, but is usually 30 minutes to 24 hours, preferably 1 hour to 12 hours.
  • the reaction temperature is usually 0 ° C. to 100 ° C., preferably 25 ° C. to 80 ° C.
  • Step II The deprotection reaction of compound (48) can be carried out in the same manner as in Step II of Method R.
  • Compound (1-B) wherein X is a single bond and Y b is optionally substituted cycloalkyl (hereinafter referred to as compound (1-Bc)) can be produced by the following method. .
  • Step I Compound (51) can be produced by a coupling reaction of compound (49) and compound (50), and can be carried out in the same manner as in Step I of Method R.
  • Step II Compound (52) can be produced by subjecting compound (51) to a hydrogenation reaction in a suitable solvent in the presence of a palladium catalyst in a hydrogen atmosphere.
  • alcohols such as methanol or ethanol, ethers such as tetrahydrofuran or 1,4-dioxane, or a mixed solvent thereof can be used.
  • a catalyst such as palladium carbon or palladium black can be used.
  • the reaction time varies depending on the catalyst and solvent used, but is usually 1 hour to 24 hours, preferably 1 hour to 12 hours.
  • the reaction temperature is usually 20-50 ° C, preferably 20-40 ° C.
  • Step III The deprotection reaction of compound (52) can be carried out in the same manner as in Step R of Method R.
  • compound (1-Bd) a compound wherein R 2b is alkoxy (hereinafter referred to as compound (1-Bd)) can be produced by the following method.
  • R 2b2 represents alkoxy, and other symbols are as defined above.
  • Compound (53) is reacted with oxalyl chloride or thionyl chloride in a suitable solvent in the presence or absence of N, N-dimethylformamide, and then reacted with potassium thiocyanate in a suitable solvent.
  • Compound (1-Bd) can be produced by reacting with alcohol and hydrazine.
  • halogenated hydrocarbons such as methylene chloride, ethers such as tetrahydrofuran, and the like can be used.
  • the reaction time in the reaction with oxalyl chloride or thionyl chloride is usually 30 minutes to 5 hours, preferably 1 hour to 3 hours.
  • the reaction temperature is usually 0 to 60 ° C., preferably 20 to 40 ° C.
  • aromatic hydrocarbons such as toluene, halogenated hydrocarbons such as methylene chloride, and the like can be used.
  • the reaction time in the reaction with potassium thiocyanate is usually 2 to 24 hours, preferably 1 to 3 hours.
  • the reaction temperature is usually 0 to 60 ° C., preferably 20 to 40 ° C.
  • methanol, ethanol, propanol, isopropanol, butanol, t-butanol and the like can be used as the alcohol in this reaction.
  • the reaction time in the reaction with alcohol is usually 30 minutes to 5 hours, preferably 1 hour to 3 hours.
  • the reaction temperature is usually 0 to 100 ° C., preferably 20 to 40 ° C.
  • the reaction time in the reaction with hydrazine is usually 2 to 24 hours, preferably 1 to 3 hours.
  • the reaction temperature is usually 0 to 100 ° C., preferably 50 to 80 ° C.
  • the hydrazine used in this reaction may be in the form of a salt (for example, hydrochloride) or a hydrate.
  • compound (43a) a compound wherein X is —O— (hereinafter referred to as compound (43a)) can also be produced by the following method.
  • HAL 9 and HAL 10 represent a halogen atom (a chlorine atom, a bromine atom, etc.), and other symbols are as defined above.)
  • Step I The coupling reaction of compound (54) and compound (47) can be carried out in the same manner as in Step I of Method T.
  • Step II Compound (56) can be obtained by reacting compound (55) with a boronic ester in the presence of a palladium catalyst, a ligand and a base in an appropriate solvent.
  • a solvent ethers such as 1,4-dioxane, aromatic hydrocarbons such as dimethyl sulfoxide or toluene can be used.
  • palladium catalyst palladium acetate or [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane complex (PdCl 2 (dppf) CH 2 Cl 2 ) or the like can be used.
  • Examples of the ligand include 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (S-PHOS), 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropyl-1,1′-biphenyl (X -PHOS), or 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene (Xantphos) or the like can be used.
  • S-PHOS 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl
  • X -PHOS 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropyl-1,1′-biphenyl
  • Xantphos 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene
  • potassium acetate or potassium phosphate can be used as the base.
  • boronic acid ester bis (pinacolato) diboron, trialkoxyboron and the like can be used.
  • the reaction time varies depending on the catalyst and solvent to be used, but is usually 1 hour to 24 hours, preferably 2 hours to 12 hours.
  • the reaction temperature is usually 50 to 130 ° C, preferably 60 to 100 ° C.
  • Step III The coupling reaction of compound (56) and compound (57) can be carried out in the same manner as in Step I of Method R.
  • Steps I and II Compound (60) can be produced in the same manner as in Step S and Step II of Method S.
  • Step III Compound (41b) can be produced by protecting the amino group of compound (60).
  • PG 3 is a 2- (trimethylsilyl) ethoxymethyl group
  • the compound (60) can be obtained by reacting 2- (trimethylsilyl) ethoxymethyl chloride with an appropriate solvent in the presence of a base. Can do.
  • an aprotic polar solvent such as N, N-dimethylformamide, N, N-dimethylacetamide or N-methylpyrrolidone can be used.
  • an alkali metal hydride such as sodium hydride or potassium hydride
  • an alkali metal carbonate such as potassium carbonate or sodium carbonate
  • compound (41c) a compound in which R 2b is alkylthio (hereinafter referred to as compound (41c)) can also be produced by the following method.
  • HAL 11 represents a halogen atom (chlorine atom, bromine atom, iodine atom, etc.), R 2b3 represents alkyl, and other symbols are as defined above.
  • Step I In accordance with the method described in Synthesis, 1981, 7, 554-557, etc., compound (61) is reacted with compound (62) in the presence of methyl iodide, carbon disulfide and a base in a suitable solvent, Compound (63) can be produced by reacting the obtained product with hydrazine in a suitable solvent.
  • amides such as N, N-dimethylformamide or ethers such as tetrahydrofuran can be used.
  • an alkyl metal hydride such as sodium hydride or potassium hydride can be used as the base in the reaction between the compound (61) and the compound (62).
  • the reaction time in the reaction of the compound (61) and the compound (62) is usually 1 hour to 24 hours, preferably 2 hours to 12 hours.
  • the reaction temperature is usually ⁇ 10 to 40 ° C., preferably ⁇ 10 to 25 ° C.
  • ethers such as tetrahydrofuran, alcohols such as methanol or ethanol, or a mixed solvent thereof can be used.
  • the hydrazine used in this reaction may be in the form of a salt or a hydrate.
  • the reaction time in the reaction with hydrazine is usually 30 minutes to 8 hours, preferably 1 hour to 5 hours.
  • the reaction temperature is usually 0 to 40 ° C., preferably 0 to 25 ° C.
  • Step II The reaction from compound (63) to compound (41c) can be carried out in the same manner as in Step III in Method X.
  • Step I According to the method described in Bioorganic & Medicinal Chemistry Letters, 2003, 11, 5, 769-774, etc., compound (64) is chlorinated in an appropriate solvent in the presence or absence of N, N-dimethylformamide.
  • Compound (65) can be produced by reacting with oxalyl or thionyl chloride and then reacting with thiosemicarbazide in a suitable solvent in the presence of a base.
  • halogenated hydrocarbons such as methylene chloride, ethers such as tetrahydrofuran, and the like can be used.
  • the reaction time in the reaction with oxalyl chloride or thionyl chloride is usually 30 minutes to 5 hours, preferably 1 hour to 3 hours.
  • the reaction temperature is usually 0 to 60 ° C., preferably 20 to 40 ° C.
  • ethers such as tetrahydrofuran, halogenated hydrocarbons such as methylene chloride, and the like can be used.
  • pyridine or triethylamine can be used as the base in the reaction with thiosemicarbazide.
  • the reaction time in the reaction with thiosemicarbazide is usually 2 hours to 24 hours, preferably 1 hour to 3 hours.
  • the reaction temperature is usually 25 to 100 ° C, preferably 80 to 100 ° C.
  • Step II Compound (63) can be produced by reacting compound (65) with compound (62) in the presence of an alkali metal base such as an alkali metal hydroxide or potassium carbonate in an appropriate solvent.
  • an alkali metal base such as an alkali metal hydroxide or potassium carbonate in an appropriate solvent.
  • a mixed solvent of alcohols such as methanol or ethanol and water can be used.
  • Sodium hydroxide, potassium hydroxide, etc. can be used as the alkali metal hydroxide base.
  • the reaction time is usually 30 minutes to 5 hours, preferably 1 hour to 3 hours.
  • the reaction temperature is usually 0 to 40 ° C., preferably 0 to 25 ° C.
  • R 2b is optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, cycloalkyloxy, cycloalkylalkoxy or optionally substituted.
  • a compound that is a non-aromatic heterocyclic ring having a bond at the nitrogen atom (hereinafter referred to as compound (41d)) can be produced by the following method.
  • R 2b4 is an optionally substituted alkoxy, an optionally substituted aryloxy, an optionally substituted heteroaryloxy, cycloalkyloxy, cycloalkylalkoxy or an optionally substituted nitrogen atom.
  • Step I Compound (66) can be produced by reacting compound (63a) with an oxidizing agent in a suitable solvent.
  • halogenated hydrocarbons such as methylene chloride or chloroform
  • ethers such as tetrahydrofuran, and the like can be used.
  • metachloroperbenzoic acid As the oxidizing agent, metachloroperbenzoic acid or the like can be used.
  • the reaction time is usually 30 minutes to 24 hours, preferably 1 hour to 12 hours.
  • the reaction temperature is usually 0 to 40 ° C., preferably 0 to 25 ° C.
  • Step II Compound (41d) can be produced by reacting compound (66) with compound (67) in the presence of a base in a suitable solvent.
  • amides such as N, N-dimethylformamide or N-methylpyrrolidone
  • ethers such as tetrahydrofuran or 1,4-dioxane, or a mixed solvent thereof can be used.
  • an alkali metal hydride such as sodium hydride or potassium hydride
  • an alkali metal carbonate such as potassium carbonate or sodium carbonate
  • an organic base such as triethylamine or N, N-diisopropylethylamine
  • the reaction time is usually 10 minutes to 24 hours, preferably 10 minutes to 12 hours.
  • the reaction temperature is usually 0 to 150 ° C., preferably 0 to 120 ° C.
  • compound (41e) a compound in which R 2b is optionally substituted alkoxy (hereinafter referred to as compound (41e)) can also be produced by the following method.
  • R 2b5 represents an optionally substituted alkyl, and other symbols are as defined above.
  • Step I According to the method described in Justus Liebigs Annalen der Chemie, 1955, 597, 157-165, etc., compound (68) is reacted with a cyanogen halide (such as cyanogen bromide) in the presence of a base in an appropriate solvent. Thus, compound (69) can be produced.
  • a cyanogen halide such as cyanogen bromide
  • ethers such as 1,4-dioxane, halogenated hydrocarbons such as methylene chloride, acetonitrile and the like can be used.
  • an alkali metal carbonate such as sodium hydrogen carbonate, an alkali metal hydroxide such as sodium hydroxide, or the like can be used.
  • the reaction time is usually 1 hour to 48 hours, preferably 2 hours to 24 hours.
  • the reaction temperature is usually 0 to 100 ° C., preferably 25 to 80 ° C.
  • Step II Compound (71) can be produced by reacting compound (69) with compound (70) in the presence of an alkali metal hydroxide base.
  • Sodium hydroxide, potassium hydroxide, etc. can be used as the alkali metal hydroxide base.
  • the reaction time is usually 1 hour to 24 hours, preferably 3 hours to 12 hours.
  • the reaction temperature is usually 50 to 100 ° C., preferably 60 to 90 ° C.
  • Step III The compound (41e) can be produced by protecting the compound (71) in the same manner as in Step III in Method X.
  • a compound (hereinafter, compound (41)) which is a non-aromatic heterocyclic group (preferably piperidino, 1-piperazinyl, morpholino, etc.) having a bond to a nitrogen atom which may be substituted in R 2b. 41f)) can also be produced by the following method.
  • R 2b6 represents a non-aromatic heterocyclic group having a bond to an optionally substituted nitrogen atom (preferably piperidino, 1-piperazinyl, morpholino, etc.), and other symbols are as defined above. .)
  • Step I Compound (72) obtained by reacting benzotriazole and cyanogen halide (such as cyanogen bromide) is reacted with compound (73) in the presence of a base in a suitable solvent, and then the presence of the base in a suitable solvent.
  • a compound (75) can be manufactured by making it react with a compound (74) under.
  • ethers such as tetrahydrofuran and dioxane, halogenated hydrocarbons such as methylene chloride, acetonitrile and the like can be used.
  • an organic base such as triethylamine, diisopropylethylamine or pyridine can be used.
  • the reaction time in the reaction with the compound (72) and the compound (73) is usually 1 hour to 24 hours, preferably 3 hours to 12 hours.
  • the reaction temperature is usually 0 to 40 ° C., preferably 0 to 25 ° C.
  • halogenated hydrocarbons such as chloroform and methylene chloride, ethers such as tetrahydrofuran and dioxane, halogenated hydrocarbons such as methylene chloride, acetonitrile and the like can be used. .
  • an organic base such as triethylamine, diisopropylethylamine or pyridine can be used as the base in the reaction with the compound (74).
  • the reaction time in the reaction with the compound (74) is usually 1 hour to 24 hours, preferably 1 hour to 12 hours.
  • the reaction temperature is usually 0 to 60 ° C., preferably 0 to 40 ° C.
  • Step II The compound (76) can be produced by reacting the compound (75) with hydrazine in an appropriate solvent according to the method described in Synthesis, 2001, 6, 897-903.
  • halogenated hydrocarbons such as chloroform and methylene chloride can be used.
  • the reaction time is usually 1 hour to 24 hours, preferably 3 hours to 12 hours.
  • the reaction temperature is usually 0 to 60 ° C., preferably 0 to 40 ° C.
  • Step III Compound (41f) can be produced by protecting compound (76) in the same manner as in Step III in Method X.
  • compound (41g) a compound in which R 2b is an optionally substituted aromatic hydrocarbon group (hereinafter referred to as compound (41g)) can also be produced by the following method.
  • R 2b7 represents an optionally substituted aromatic hydrocarbon group, and other symbols are as defined above.
  • compound (41g) was reacted with compound (77) in the presence of a base in a suitable solvent in the presence of a base. It can be produced by protecting the amino group with PG 3 .
  • alcohols such as methanol, ethanol or isopropyl alcohol can be used.
  • alkali metal alkoxides such as sodium methoxide and potassium methoxide can be used.
  • the reaction time is usually 12 hours to 72 hours, preferably 24 hours to 48 hours.
  • the reaction temperature is usually 25 to 100 ° C, preferably 50 to 90 ° C.
  • R 2b is an optionally substituted alkyl, an optionally substituted cycloalkyl, and an optionally substituted aromatic hydrocarbon group (hereinafter referred to as compound (41h)). It can be produced by the following method.
  • Step I In accordance with the method described in J. Am. Chem. Soc. 2009, 131, p.15080-15081, compound (58) is compounded in a suitable solvent in an oxygen atmosphere in the presence of a base and a catalyst. Compound (79) can be produced by reacting with (78).
  • dimethyl sulfoxide N, N-dimethylformamide, dichlorobenzene, toluene and the like can be used.
  • alkali metal carbonates such as sodium carbonate, potassium carbonate and cesium carbonate can be used.
  • Catalysts such as copper (I) chloride, copper (I) bromide, copper (II) bromide, and copper (II) acetate can be used.
  • 1,10-phenanthroline and zinc (II) halide are effective as additives.
  • the reaction time is usually 12 hours to 48 hours, preferably 12 hours to 24 hours.
  • the reaction temperature is usually from room temperature to the reflux temperature of the solvent, preferably 80 to 150 ° C.
  • Step II The reaction from compound (79) to compound (41h) can be carried out in the same manner as in Step III in Method X.
  • PG 4 represents a hydroxyl-protecting group (preferably benzyl etc.), and other symbols are as defined above.)
  • Step I The coupling reaction of compound (41) and compound (80) can be carried out in the same manner as in Step I of Method R.
  • Step II Compound (46) can be produced by deprotecting PG 4 of compound (81).
  • the deprotection reaction of PG 4 is carried out by subjecting compound (81) to a palladium catalyst (palladium carbon or palladium hydroxide) in a suitable solvent (alcohols such as methanol or ethanol).
  • a palladium catalyst palladium carbon or palladium hydroxide
  • a suitable solvent alcohols such as methanol or ethanol.
  • the compound (46) can be produced by conducting a hydrogenation reaction in a hydrogen atmosphere in the presence of
  • Step III Compound (49a) is obtained by mixing compound (46) with a base (triethylamine, N, N-diisopropylethylamine) in a suitable solvent (halogenated hydrocarbons such as methylene chloride or chloroform, or ethers such as tetrahydrofuran or diethyl ether). Etc.) in the presence of trifluoromethanesulfonic acid anhydride at 0 to 25 ° C. for 1 to 8 hours.
  • a base triethylamine, N, N-diisopropylethylamine
  • a suitable solvent halogenated hydrocarbons such as methylene chloride or chloroform, or ethers such as tetrahydrofuran or diethyl ether.
  • Etc. trifluoromethanesulfonic acid anhydride at 0 to 25 ° C. for 1 to 8 hours.
  • the compound represented by the general formula (A) can be produced according to the method described in the above [Method A] to [Method AF] or PCT / JP2011 / 079958.
  • the functional group can be converted or modified according to a conventional method. Specifically, the following methods are mentioned.
  • Alcohol can be converted to the corresponding ether by reacting with an alkyl halide in the presence of a base.
  • Alcohol can be converted to the corresponding aldehyde by treating it with an oxidizing agent (such as manganese dioxide).
  • an oxidizing agent such as manganese dioxide
  • reducing agent metal reducing reagent such as sodium borohydride, lithium borohydride, lithium aluminum hydride, or sodium triacetoxyborohydride
  • amines or cyclic amines such as piperidine, piperazine or morpholine
  • halogen to cyano Halogen is converted to a palladium catalyst (such as palladium acetate or PdCl 2 (dppf)), a ligand (such as butyldi-1-adamantylphosphine, X-PHOS, S-PHOS, or Xantphos) and a base (carbonic acid).
  • a cyanating agent such as potassium hexacyanoferrate (II) potassium trihydrate, copper (I) cyanide, or zinc cyanide
  • a cyanating agent such as potassium hexacyanoferrate (II) potassium trihydrate, copper (I) cyanide, or zinc cyanide
  • the produced compound of the present invention and each intermediate can be purified by a usual method such as chromatography, distillation, recrystallization and the like.
  • the recrystallization solvent include alcohol solvents such as methanol, ethanol and 2-propanol, ether solvents such as diethyl ether, diisopropyl ether and THF, ester solvents such as ethyl acetate, aromatic solvents such as toluene, ketone solvents such as acetone, Examples thereof include hydrocarbon solvents such as hexane, water and the like, or mixed solvents thereof.
  • the compound of the present invention can be converted into a pharmaceutically acceptable salt according to a conventional method, followed by recrystallization and the like.
  • optical isomers When the compound of the present invention or a pharmacologically acceptable salt thereof has an optical isomer based on an asymmetric carbon, individual optical isomers can be obtained by ordinary optical resolution means (fractional crystallization method, resolution method using a chiral column). Can be separated. Optical isomers can also be synthesized using optically pure starting materials.
  • the compound of the present invention or a pharmacologically acceptable salt thereof has an excellent DGAT1 inhibitory action, and is used for the prevention and / or treatment of the following diseases in warm-blooded animals (preferably mammals including humans). It is useful as a pharmaceutical.
  • the compound of the present invention or a pharmacologically acceptable salt thereof has a GLP-1 secretion promoting action based on a DGAT1 inhibitory action, an insulin secretion promoting action and a pancreatic protecting action are also expected.
  • the thus obtained compound of the present invention or a pharmaceutically acceptable salt thereof can be formulated as a pharmaceutical composition containing a therapeutically effective amount of the compound and a pharmaceutically acceptable carrier.
  • Pharmaceutically acceptable carriers include binders (eg, hydroxypropyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol), excipients (eg, lactose, sucrose, mannitol, sorbitol, corn starch, potato starch, crystalline cellulose , Calcium carbonate), lubricants (for example, magnesium stearate, calcium stearate, talc), disintegrating agents (for example, low-substituted hydroxypropylcellulose, crosslinked carboxymethylcellulose) and wetting agents (for example, sodium lauryl sulfate) be able to.
  • binders eg, hydroxypropyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol
  • excipients
  • the compound of the present invention or a pharmacologically acceptable salt thereof can be administered orally or parenterally and can be used as an appropriate pharmaceutical preparation.
  • suitable pharmaceutical preparations for oral administration include, for example, solid preparations such as tablets, granules, capsules and powders, solution preparations, suspension preparations and emulsion preparations.
  • Suitable pharmaceutical preparations for parenteral administration include suppositories, injectable or infusion preparations using distilled water for injection, physiological saline or aqueous glucose solution, or inhalants.
  • the dose of the compound of the present invention or a pharmacologically acceptable salt thereof varies depending on the administration method, the age, body weight, and condition of the patient, but usually 0.001 to 100 mg / kg per day for oral administration, preferably Is 0.1 to 30 mg / kg, more preferably 0.1 to 10 mg / kg, which are administered once or divided into 2 to 4 times.
  • parenteral administration it is preferably 0.0001 to 10 mg / kg per day, and it is administered once a day or in multiple doses.
  • transmucosal administration 0.001 to 100 mg / kg per day is administered once to several times a day.
  • Examples 1-2 to 1-69 By treating in the same manner as in Example 1-1, the compounds of Table 1 and Examples 1-2 to 1-69 described later were obtained.
  • Examples 2-2 to 2-16 By treating in the same manner as in Example 2-1, compounds shown in Table 2 and Examples 2-2 to 2-16 described later were obtained.
  • Examples 3-2 to 3-13 By treating in the same manner as in Example 3-1, compounds in Table 3 and Examples 3-2 to 3-13 described later were obtained.
  • Example 5-1 By treating in the same manner as in Example 5-1, the compounds shown in Table 5 and Example 5-2 were obtained.
  • Example 15-2 By treating in the same manner as in Example 15-1, the compounds shown in Table 6 and Example 15-2 below were obtained.
  • Trifluoroacetic acid (5 mL) was added to the residue obtained by concentrating the reaction solution under reduced pressure, and the mixture was stirred at room temperature for 7 hours. A small amount of tetrahydrofuran was added to the residue obtained by concentrating the reaction solution under reduced pressure, and then neutralized with 1N aqueous sodium hydroxide solution. A few drops of acetic acid was added to the reaction solution, and then ethyl acetate was added to separate the layers. The organic layer was separated and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
  • Example 18-2 By treating in the same manner as in Example 18-1, the compounds shown in Table 7 and Example 18-2 below were obtained.
  • Example 20-2 By treating in the same manner as in Example 20-1, the compounds shown in Table 9 and Example 20-2 below were obtained.
  • Example 23-2 The compound of the postscript Table 11 and Example 23-2 was obtained by processing like the said Example 23-1.
  • Example 24-2 By treating in the same manner as in Example 24-1, the compounds shown in Table 12 and Example 24-2 below were obtained.
  • Example 26-2 By treating in the same manner as in Example 26-1, the compounds shown in Table 13 and Example 26-2 below were obtained.
  • Example 31-2 By treating in the same manner as in Example 31-1, the compounds shown in Table 15 and Example 31-2 were obtained.
  • Example 35-2 By treating in the same manner as in Example 35-1, the compounds shown in Table 17 and Example 35-2 below were obtained.
  • Examples 38-2 to 38-5 By treating in the same manner as in Example 38-1, the compounds of Table 19, Examples 38-2 to 38-5 described later were obtained.
  • Example 40-2 By treating in the same manner as in Example 40-1, the compounds shown in Table 20 and Example 40-2 below were obtained.
  • N-dimethylformamide (4 mL) was added 60% sodium hydride (43 mg) under ice cooling, and the mixture was stirred at room temperature for 30 minutes, and then the above residue N, N-dimethyl was added.
  • Formamide (2 mL) solution was added and stirred at room temperature overnight.
  • a saturated aqueous ammonium chloride solution was added to the reaction solution, and then ethyl acetate and water were added to separate the layers. The organic layer was separated, washed with water and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
  • Example 47-2 By treating in the same manner as in Example 47-1, the compounds shown in Table 26 and Example 47-2 below were obtained.
  • 1,4-Dioxane 24 mL was added to a mixture of compounds 6a and 6b (1000 mg), potassium acetate (700 mg) and bis (pinacolato) diboron (755 mg), and the atmosphere was replaced with nitrogen.
  • [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) dichloride dichloromethane complex (58 mg) and (diphenylphosphino) ferrocene (40 mg) were added, and after nitrogen substitution again at 80 ° C. for 21 hours.
  • Stir. Water and ethyl acetate were added to the reaction mixture, and the mixture was stirred and filtered through celite.

Abstract

 一般式: [式中、環Aは、置換されていてもよいベンゼン等;環Bは、置換されていてもよいベンゼン等;Xは、単結合手等;Yは、置換されていてもよいアルキル等;Zは、CRまたは窒素原子;Rは、水素等、Rは、置換されていてもよいアルキル等である。]で示される化合物またはその薬理的に許容しうる塩は、肥満症または糖尿病等の予防または治療剤として有用である。

Description

芳香族複素環化合物
 本発明は、アシルコエンザイムA:ジアシルグリセロールアシルトランスフェラーゼ(DGAT)1阻害作用を有する芳香族複素環化合物又はその薬理的に許容しうる塩に関する。
 肥満は、身体に脂肪が過剰に蓄積した状態であり(非特許文献1)、高脂血症、高トリグリセリド血症、脂質代謝異常疾患、脂肪肝、糖尿病、高血圧症、動脈硬化症、脳血管障害、冠動脈疾患、呼吸異常、腰痛、変形性膝関節症等をもたらすものであるが、肥満のうちこれらの疾患を有するもの、あるいは将来これらの疾患を生じる可能性があるものは、肥満症と定義され、一つの疾患として扱われている。
 DGATは、トリアシルグリセロール(TG)合成の最終段階であるジアシルグリセロールからTGへの反応を触媒する酵素であり、DGATにはDGAT1とDGAT2という2種類のサブタイプが存在することが知られている。このうち、DGAT1は肝臓、骨格筋、脂肪細胞等に存在することが知られており、各組織におけるTG合成に関与している(非特許文献2)。
 また、小腸におけるTG吸収時には、TGは小腸管腔内において膵リパーゼによって脂肪酸とモノアシルグリセロールに分解された後、小腸上皮細胞内に取り込まれ、上皮細胞内でTGに再合成されてから吸収されるが、小腸上皮細胞内でのTG再合成の最終段階にもDGAT1が関与していることが知られている(非特許文献3)。
 このため、DGAT1を阻害する化合物は、TG合成の最終ステップを阻害することによって、脂肪細胞、肝臓等のTG合成を阻害するだけでなく、小腸におけるTG再合成を抑制することにより、小腸におけるTG吸収を抑制し、肥満の病態を改善することが期待される(非特許文献4)。
 更に、肝臓、骨格筋等へのTGの蓄積(異所性脂肪蓄積)が、肥満に伴う2型糖尿病におけるインスリン抵抗性の原因であるという説が広く受け入れられており、DGAT1を阻害する化合物には、異所性脂肪蓄積を軽減することによって、インスリン感受性を改善し、2型糖尿病に対する治療効果を有することが期待されるとされている(非特許文献4)。また、遺伝子操作によりDGAT1を欠損したマウス(DGAT1ノックアウトマウス)においては、野生型マウスに比べ、インスリン感受性の改善が認められることが報告されている(非特許文献5)。最近、DGAT1を阻害する化合物が、グルカゴン様ペプチド-1(GLP-1)及び食欲不振を引き起こすタンパクの作用を刺激することも報告されている(非特許文献6)。
 連続する芳香環構造を有する化合物としては、次のようなものが知られている。例えば、特許文献1には、プロテイン-チロシンホスファターゼ(PTPases)を阻害し、肥満、グルコース不耐性、糖尿病、高血圧、虚血性疾患に伴うインスリン耐性の治療に有用な化合物として、(2S)-2-[4’-(1-ベンジル-1H-ベンズイミダゾール-2-イル)-ビフェニル-4-イルオキシ]-3-フェニル-プロピオン酸(実施例70)等が開示されている。
 特許文献2には、2型糖尿病の治療に有用なプロテイン-チロシンホスファターゼ-1B(PTP-1B)阻害作用を有する化合物として、2-ベンジル-4-[4’-(2-ベンジル-ベンゾフラン-3-イル)-ビフェニル-4-イル]-4-オキソ-酪酸(実施例1)、({4’-(3-ベンジルアミノ)イミダゾ[1,2-a]ピリジン-2-イル)ビフェニル-4-イル}オキシ)(フェニル)酢酸、{[4’-(5-メチル-1H-インドール-1-イル)ビフェニル-4-イル]オキシ}(フェニル)酢酸(実施例3)等が開示されている。
 特許文献3、特許文献4及び特許文献5には、第VIIa因子、第IXa因子、第Xa因子、第XIa因子に対する阻害作用を有するビフェニルと含窒素縮合複素環とが結合した構造の化合物が開示されている。しかしながら、その化学構造は含窒素縮合複素環がビフェニルの3位に結合した構造のものに限定されている。
 特許文献6には、脂肪細胞型脂肪酸結合タンパク(aP2)を阻害することにより、肥満、および糖尿病に対する治療効果を有する化合物として、2-[[2’-(5-フェニル-1H-イミダゾール-2-イル)[1,1’-ビフェニル]-3-イル]オキシ]酢酸(実施例46)等が開示されている。
 非特許文献7には、脂肪細胞型脂肪酸結合タンパク(aFABP)とに結合する化合物として、2-[[2’-(1-エチル-4,5-ジフェニル-1H-イミダゾール-2-イル)[1,1’-ビフェニル]-3-イル]オキシ]酢酸、2-[[2’-(4,5-ジフェニル-1H-イミダゾール-2-イル)[1,1’-ビフェニル]-3-イル]オキシ]酢酸等が報告されている。
 その他連続する環構造を有する化合物として、例えば、特許文献7~14および非特許文献8などが知られている。
 また、DGAT1阻害作用を有する化合物としては、例えば、ヘテロアリールベンゼン誘導体(特許文献15)、二環性へテロ環化合物(特許文献16)、トリアゾロピリジン誘導体(特許文献17)、イミダゾール誘導体(特許文献18~20)、スピロ環化合物(特許文献21)、およびビアリール化合物(特許文献22)などが知られている。
WO99/58518A WO2004/99168A WO2003/6670A WO2003/6011A US2003/0114457A WO00/59506A WO2006/034440 WO2011/002067 JP1994/116251 WO2003/093248 WO2000/066578 WO2009/079593 WO1995/015594 WO2003/064410 WO2009/011285 WO2010/107765 WO2009/126861 WO2012/015693 WO2012/047772 WO2012/044567 WO2012/009217 WO2008/067257
南山堂 医学大辞典(19版)2113頁、2006年 Proc. Natl. Acad. Sci. USA 95巻、13018頁、1998年 J. Biol. Chem. 278巻、18532頁、2003年 Arterioscler. Thromb. Vasc. Biol. 25巻、482頁、2005年 The Journal of Clinical Investigation, 109(8) 1049-1055(2002) American Chemical Society National Meeting Abst. MEDI 315(2010) Bioorganic & Medicinal Chemistry Letters 17(12) 3511-3515、2007年 J. Med. Chem. 50(13), 3086-3100(2007)
 本発明の目的は、DGAT1阻害作用を有する芳香族複素環化合物またはその薬理的に許容しうる塩、ならびに肥満又は肥満に起因する高脂血症、高トリグリセリド血症、脂質代謝異常疾患、脂肪肝、高血圧症、動脈硬化症、糖尿病等の予防及び/又は治療に有用なDGAT1阻害薬を提供することにある。
 前記課題を解決するために本発明者等は鋭意研究の結果、下式により表される芳香族複素環化合物又はその薬理的に許容しうる塩が優れたDGAT1阻害作用を有することを見出し、本発明を完成した。
 すなわち、本発明は、以下の通りである。
1. 一般式(1):
Figure JPOXMLDOC01-appb-C000006
[式中、
 環Aは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環であり;
 環Bは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環であり;
 Xは、単結合手、または-O-であり;
 Yは、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり;
 Zは、CRまたは窒素原子であり;
 Rは、水素、ハロゲン原子、アルコキシまたは置換されていてもよいアルキルであり;
(i)ZがCRのとき、Rは、下式:
Figure JPOXMLDOC01-appb-C000007
{式中、Z’は単結合手、アルキレン、-Alk-O-または-Alk-O-Alk
(Alk、AlkおよびAlkはそれぞれ独立してアルキレンを示し、右端に記載した結合手は環Cとの結合を示す。)
を示し、
 環Cは、芳香族炭化水素基または芳香族複素環基を示し、
 RおよびRは、各々独立して、水素、ハロゲン原子、置換されていてもよいアルキル、置換されていてもよいアルコキシ、非芳香族複素環置換アルキルまたは非芳香族複素環置換カルボニルを示す。}
であり;
(ii)Zが窒素原子のとき、Rは、置換されていてもよいアルキル、置換されていてもよいアルコキシ、アルキルチオ、置換されていてもよい芳香族炭化水素基、置換されていてもよい非芳香族複素環基、置換されていてもよいシクロアルキル、置換されていてもよいアリールオキシ、置換されていてもよいヘテロアリールオキシ、シクロアルキルオキシまたはシクロアルキルアルコキシである。]
で示される化合物またはその薬理的に許容しうる塩。
2. 一般式(1-A):
Figure JPOXMLDOC01-appb-C000008
[式中、
 環Aは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環であり;
 環Bは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環であり;
 Rは、水素、ハロゲン原子、アルコキシまたは置換されていてもよいアルキルであり;
 R2aは、下式:
Figure JPOXMLDOC01-appb-C000009
{式中、Z’は単結合手、アルキレン、-Alk-O-または-Alk-O-Alk
(Alk、AlkおよびAlkはそれぞれ独立してアルキレンを示し、右端に記載した結合手は環Cとの結合を示す。)
を示し、
 環Cは、芳香族炭化水素基または芳香族複素環基を示し、
 RおよびRは、各々独立して、水素、ハロゲン原子、置換されていてもよいアルキル、置換されていてもよいアルコキシ、非芳香族複素環置換アルキルまたは非芳香族複素環置換カルボニルを示す。}
であり;
 Xは、単結合手、または-O-であり;
 Yは、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキル
である。]
で示される上記1に記載の化合物またはその薬理的に許容しうる塩。
3. 環Aが置換されていてもよいベンゼンまたは置換されていてもよいピリジンである、上記2に記載の化合物またはその薬理的に許容しうる塩。
4. 環Bが置換されていてもよいベンゼン、置換されていてもよいピリジンまたは置換されていてもよいピリミジンである、上記2または3に記載の化合物またはその薬理的に許容しうる塩。
5. Xが-O-であり;Yがカルボキシで置換されたアルキルである、上記2~4のいずれかに記載の化合物またはその薬理的に許容しうる塩。
6. 1-{[(5’-フルオロ-4-メチル-6’-{5-[2-(トリフルオロメトキシ)フェニル]-1H-イミダゾール-2-イル}-3,3’-ビピリジン-6-イル)オキシ]メチル}シクロプロパンカルボン酸、
 2,2-ジメチル-3-{[4-メチル-5-(2-{5-[2-(トリフルオロメチル)フェニル]-1H-イミダゾール-2-イル}ピリミジン-5-イル)ピリジン-2-イル]オキシ}プロパン酸、
 3-{[5’-フルオロ-4-メチル-6’-(5-フェニル-1H-イミダゾール-2-イル)-3,3’-ビピリジン-6-イル]オキシ}-2,2-ジメチルプロパン酸、
 2-エチル-2-[({5-[6-(5-フェニル-1H-イミダゾール-2-イル)ピリジン-3-イル]ピラジン-2-イル}オキシ)メチル]ブタン酸、
 3-[4-(5-{5-[4-(ジフルオロメトキシ)フェニル]-1H-イミダゾール-2-イル}ピリジン-2-イル)フェノキシ]-2,2-ジメチルプロパン酸、
 2,2-ジメチル-3-[4-(5-{5-[2-(トリフルオロメトキシ)フェニル]-1H-イミダゾール-2-イル}ピリジン-2-イル)フェノキシ]プロパン酸、
 2,2-ジメチル-3-(4-{5-[5-(2-フェノキシエチル)-1H-イミダゾール-2-イル]ピリジン-2-イル}フェノキシ)プロパン酸、
 2,2-ジメチル-3-({4-メチル-5-[2-(5-フェニル-1H-イミダゾール-2-イル)ピリミジン-5-イル]ピリジン-2-イル}オキシ)プロパン酸、
 2,2-ジメチル-3-({4-メチル-5-[3-メチル-4-(5-フェニル-1H-イミダゾール-2-イル)フェニル]ピリジン-2-イル}オキシ)プロパン酸、
 2,2-ジメチル-3-({5-[3-メチル-4-(5-フェニル-1H-イミダゾール-2-イル)フェニル]ピリジン-2-イル}オキシ)プロパン酸、
 3-(4-{5-[5-(2,4-ジフルオロフェニル)-1H-イミダゾール-2-イル]ピリジン-2-イル}フェノキシ)-2,2-ジメチルプロパン酸、
 2-エチル-2-[({4-メチル-5-[2-(5-フェニル-1H-イミダゾール-2-イル)ピリミジン-5-イル]ピリジン-2-イル}オキシ)メチル]ブタン酸、
 1-[({4-メチル-5-[2-(5-フェニル-1H-イミダゾール-2-イル)ピリミジン-5-イル]ピリジン-2-イル}オキシ)メチル]シクロブタンカルボン酸、
 2,2-ジメチル-3-({5-[4-(5-フェニル-1H-イミダゾール-2-イル)フェニル]ピリジン-2-イル}オキシ)プロパン酸、
 3-[(5-{4-[5-(4-メトキシフェニル)-1H-イミダゾール-2-イル]フェニル}ピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、
 1-({[5’-フルオロ-4-メチル-6’-(5-フェニル-1H-イミダゾール-2-イル)-3,3’-ビピリジン-6-イル]オキシ}メチル)シクロプロパンカルボン酸、
 3-[(5-{3-シアノ-4-[4-(4-メトキシフェニル)-1H-イミダゾール-2-イル]フェニル}-4-メチルピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、
 2,2-ジメチル-3-[4-(5-{5-[2-(トリフルオロメチル)ベンジル]-1H-イミダゾール-2-イル}ピリジン-2-イル)フェノキシ]プロパン酸、
 3-(4-{5-[5-(4-メトキシフェニル)-1H-イミダゾール-2-イル]ピリジン-2-イル}フェノキシ)-2,2-ジメチルプロパン酸、
 2,2-ジメチル-3-({4-メチル-5-[4-(5-フェニル-1H-イミダゾール-2-イル)フェニル]ピリジン-2-イル}オキシ)プロパン酸、
 3-[4-(5-{5-[(ベンジルオキシ)メチル]-1H-イミダゾール-2-イル}ピリジン-2-イル)フェノキシ]-2,2-ジメチルプロパン酸、
 3-{4-[5-(4-クロロ-5-フェニル-1H-イミダゾール-2-イル)ピリジン-2-イル]フェノキシ}-2,2-ジメチルプロパン酸、
 2,2-ジメチル-3-(4-{5-[5-(チオフェン-2-イル)-1H-イミダゾール-2-イル]ピリジン-2-イル}フェノキシ)プロパン酸、
 3-[(5-{4-[5-(4-メトキシフェニル)-1H-イミダゾール-2-イル]フェニル}-4-メチルピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、および
 2,2-ジメチル-3-{4-[5-(5-フェニル-1H-イミダゾール-2-イル)ピリジン-2-イル]フェノキシ}プロパン酸
から選ばれる上記2に記載の化合物またはその薬理的に許容しうる塩。
7. 一般式(1-B):
Figure JPOXMLDOC01-appb-C000010
(式中、環Aは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環を示し、
 環Bは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環を示し、
 R2bは、置換されていてもよいアルキル、置換されていてもよいアルコキシ、アルキルチオ、置換されていてもよい芳香族炭化水素基、置換されていてもよい非芳香族複素環基、置換されていてもよいシクロアルキル、置換されていてもよいアリールオキシ、置換されていてもよいヘテロアリールオキシ、シクロアルキルオキシまたはシクロアルキルアルコキシを示し、
 Xは、単結合手または-O-を示し、
 Yは、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルを示す。)
で示される上記1に記載の化合物またはその薬理的に許容しうる塩。
8. 環Aが、置換されていてもよいベンゼンまたは置換されていてもよいピリジンである、上記7に記載の化合物またはその薬理的に許容しうる塩。
9. 環Bが、置換されていてもよいベンゼン、置換されていてもよいピリジンまたは置換されていてもよいピリミジンである、上記7または8に記載の化合物またはその薬理的に許容しうる塩。
10. R2bが、置換されていてもよいアルキル、置換されていてもよいアルコキシ、置換されていてもよい芳香族炭化水素基または置換されていてもよいアリールオキシである、上記7~9のいずれかに記載の化合物またはその薬理的に許容しうる塩。
11. Xが-O-であり、Yがカルボキシで置換されていてもよいアルキルである、上記7~10のいずれかに記載の化合物またはその薬理的に許容しうる塩。
12. 2,2-ジメチル-3-[(5-{4-[3-(プロパン-2-イルオキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)オキシ]プロパン酸、
 3-[(5-{3-フルオロ-4-[3-(プロパン-2-イルオキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}-4-メチルピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、
 2,2-ジメチル-3-({4’-メチル-5-[3-(プロパン-2-イルオキシ)-1H-1,2,4-トリアゾール-5-イル]-2,3’-ビピリジン-6’-イル}オキシ)プロパン酸、
 3-[(5-{4-[3-(4-フルオロフェノキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、
 3-[(5-{4-[3-(4-シアノフェノキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、
 2,2-ジメチル-3-[(5-{4-[3-(2,2,3,3,3-ペンタフルオロプロポキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)オキシ]プロパン酸ナトリウム塩、
 (トランス-4-{4’-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-5-イル]ビフェニル-4-イル}シクロヘキシル)酢酸、
 (トランス-4-{4-{5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-5-イル]ピリジン-2-イル}フェニル)シクロヘキシル]酢酸、
 [4-(5-{4-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)シクロヘキシル]酢酸、
 2,2-ジメチル-3-({5-[4-(5-フェニル-4H-1,2,4-トリアゾール-3-イル)フェニル]ピリジン-2-イル}オキシ]プロパン酸、
 (4-{5-[4-(3-エトキシ-1H-1,2,4-トリアゾール-5-イル)フェニル]ピリジン-2-イル}シクロヘキシル)酢酸、
 3-({5-[4-(3-エトキシ-1H-1,2,4-トリアゾール-5-イル)フェニル]-4-メチルピリジン-2-イル}オキシ)-2,2-ジメチルプロパン酸、
 2,2-ジメチル-3-({4-メチル-6’-[3-(プロパン-2-イルオキシ)-1H-1,2,4-トリアゾール-5-イル]-3,3’-ビピリジン-6-イル}オキシ)プロパン酸、
 3-[(5-{4-[3-(2,4-ジフルオロフェノキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、および
 3-[(5-{3-フルオロ-4-[3-(4-フルオロフェノキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}-4-メチルピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸
から選ばれる上記7に記載の化合物またはその薬理的に許容しうる塩。
13. 上記1~12のいずれかに記載の化合物又はその薬理的に許容しうる塩を有効成分としてなるジアシルグリセロールアシルトランスフェラーゼ(DGAT)1阻害剤。
14. 肥満症の予防・治療剤である上記13に記載のDGAT1阻害剤。
15. 高脂血症、高トリグリセリド血症、脂質代謝異常疾患、脂肪肝の予防・治療剤である上記13に記載のDGAT1阻害剤。
16. 2型糖尿病、糖尿病合併症(糖尿病性末梢神経障害、糖尿病性腎症、糖尿病性網膜症、糖尿病性大血管症を含む)、動脈硬化症、高血圧症、脳血管障害、冠動脈疾患、呼吸異常、腰痛、変形性膝関節症の予防・治療剤である上記13に記載のDGAT1阻害剤。
17. 2型糖尿病、糖尿病合併症の予防・治療剤である上記13に記載のDGAT1阻害剤。
18. 家族性高カイロミクロン血症の予防・治療剤である上記13に記載のDGAT1阻害剤。
19. 上記1~12のいずれかに記載の化合物又はその薬理的に許容しうる塩の高脂血症、高トリグリセリド血症、脂質代謝異常疾患、脂肪肝、2型糖尿病、糖尿病合併症(糖尿病性末梢神経障害、糖尿病性腎症、糖尿病性網膜症、糖尿病性大血管症を含む)、動脈硬化症、高血圧症、脳血管障害、冠動脈疾患、呼吸異常、腰痛、変形性膝関節症の予防・治療のための使用。
20. 上記1~12のいずれかに記載の化合物又はその薬理的に許容しうる塩の家族性高カイロミクロン血症の予防・治療のための使用。
21. 上記1~12のいずれかに記載の化合物又はその薬理的に許容しうる塩を患者に投与することを特徴とする高脂血症、高トリグリセリド血症、脂質代謝異常疾患、脂肪肝、2型糖尿病、糖尿病合併症(糖尿病性末梢神経障害、糖尿病性腎症、糖尿病性網膜症、糖尿病性大血管症を含む)、動脈硬化症、高血圧症、脳血管障害、冠動脈疾患、呼吸異常、腰痛、変形性膝関節症の予防・治療方法。
22. 上記1~12のいずれかに記載の化合物又はその薬理的に許容しうる塩を患者に投与することを特徴とする家族性高カイロミクロン血症の予防・治療方法。
 本発明の別の態様として、下記一般式(A):
Figure JPOXMLDOC01-appb-C000011
(式中、環Aは置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環を示し、
 環Bは置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環を示し、
 Xは単結合または-O-を示し、
 Yは(1)以下の(i)~(v)から選択される基で置換されていてもよいシクロアルキル、
(i)カルボキシ、
(ii)カルボキシアルキル、
(iii)アルコキシアルキル、
(iv)アミノカルボニル、および
(v)アルコキシカルボニルアルキル、または
(2)以下の(i)および(ii)から選択される基で置換されていてもよいアルキル、
(i)カルボキシ、および
(ii)1~3個のヒドロキシで置換されていてもよいアルキルでモノ-またはジ置換されていてもよいアミノカルボニル
を示し、
 R1Aは水素、アルキルまたはハロゲン原子を示し、
 R2Aは(1)ハロゲン原子、アルコキシおよびヒドロキシから選択される基で置換されていてもよいアルキル、(2)ハロゲン原子、(3)シアノ、(4)アルキルでモノ-またはジ置換されていてもよいアミノカルボニル、(5)アルコキシカルボニル、または(6)テトラヒドロピラニルを示す。
 ただし、
 R1Aが、水素原子であり;
 R2Aが、ハロゲン原子で置換されていてもよいアルキルであり;
 環Aが、
Figure JPOXMLDOC01-appb-C000012
(式中、右端の結合手は環Bとの結合を示し、XはNまたはCRXを、XはNまたはCRXを、XはNまたはCRXを、XはNまたはCRXを示し、RX、RX、RXおよびRXは、それぞれ水素、ハロゲン原子で置換されていてもよい直鎖または分枝鎖状アルキル、ハロゲン原子で置換されていてもよい環構造を有するアルキル、直鎖または分枝鎖状アルコキシ、ハロゲン原子またはシアノを示す。)
である時、
 Yが、カルボキシで置換されたアルキルであり、かつ、Xが、-O-である場合を除く。)
で表される化合物またはその薬理的に許容しうる塩が挙げられる。
 また、本発明の別の態様として、下記一般式(B):
Figure JPOXMLDOC01-appb-C000013
(式中、環Bは置換されていてもよい6員の単環式芳香族複素環を示し、
 Pは水素またはアルキルを示し、
 Qは水素であるか、またはPと一緒になってカルボニルを形成する基を示し、
 Xは単結合または-CHCO-(右端に記載した結合手はピペラジンとの結合を示す)
を示し、
 Yは(1)以下の(i)~(vi)から選択される基で置換されていてもよいフェニル
(i)ハロゲン原子、
(ii)アルキル、
(iii)カルボキシアルキル、
(iv)ヒドロキシアルキル、
(v)ヒドロキシ、アラルキルオキシ、および2,2、-ジメチル1,3-ジオキソランから選択される基で置換されていてもよいアルコキシカルボニルアルキル、および
(vi)ヒドロキシ、および2,2、-ジメチル1,3-ジオキソランから選択される基で置換されていてもよいアルキルでモノ-またはジ-置換されていてもよいアミノカルボニルアルキル、
(2)アルキルで置換されていてもよいピリジル、または
(3)カルボキシで置換されていてもよいアルキル
を示し、
 R1Bは水素またはアルキルを示し、
 R2Bはシクロアルキル、またはハロゲンで置換されていてもよいアルキルを示す。)
で表される化合物またはその薬理的に許容しうる塩が挙げられる。
 また、本発明の別の態様として、下記一般式(C):
Figure JPOXMLDOC01-appb-C000014
(式中、環Bは置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環を示し、
 Xは単結合、-O-、-OCH-(右端に記載した結合手はピペリジンとの結合を示す)またはアルキレンを示し、
 Yは(1)以下の(i)~(v)から選択される基で置換されていてもよいフェニル
(i)ハロゲン原子、
(ii)アルキル、
(iii)カルボキシアルキル、
(iv)カルボキシ、および
(v)アルコキシ、または
(2)カルボキシで置換されていてもよいアルキル
を示し、
 R2Cはハロゲンで置換されていてもよいアルキルを示す。)
で表される化合物またはその薬理的に許容しうる塩が挙げられる。
 さらに、本発明の別の態様として、下記一般式(D):
Figure JPOXMLDOC01-appb-C000015
(式中、環Bは置換されていてもよい6員の単環式芳香族複素環を示し、
 Xは単結合、-OCH-または-O-(右端に記載した結合手はシクロヘキサンとの結合を示す)を示し、
 Yは(1)以下の(i)~(iv)から選択される基で置換されていてもよいフェニル、
(i)ハロゲン原子、
(ii)アルキル、
(iii)カルボキシアルキル、および
(iv)カルボキシ、
(2)カルボキシで置換されていてもよいピリジル、または
(3)カルボキシで置換されていてもよいアルキルを示し、
 R2Dはハロゲンで置換されていてもよいアルキルを示す。)
で表される化合物またはその薬理的に許容しうる塩が挙げられる。
 以下、本明細書における各記号で表される基について説明する。なお、本明細書において使用される略号は、それぞれ以下の意味を表す。
 Ac:アセチル
 Bn:ベンジル
 Boc:t-ブトキシカルボニル
 EDC:1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド
 Et:エチル
 HOBt:1-ヒドロキシベンゾトリアゾール
 Me:メチル
 MOM:メトキシメチル
 Ph:フェニル
 SEM:2-(トリメチルシリル)エトキシメチル
 TBS:t-ブチルジメチルシリル
 t-Bu:t-ブチル
 Tf:トリフルオロメタンスルホニル
 TFA:トリフルオロ酢酸
 THF:テトラヒドロフラン
 TMS:トリメチルシリル
 「ハロゲン原子」としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。なかでも、フッ素原子および塩素原子が好ましい。
 「アルキル」としては、例えば、炭素数1~8、好ましくは炭素数1~6の直鎖または分枝鎖状アルキルが挙げられ、具体的には、メチル、エチル、プロピル、イソプロピル、ブチル、t-ブチル、イソブチル、ペンチル、へキシル、2-メチルプロピル、2-エチルブチルおよび2-プロピルペンチルなどが挙げられる。
 「シクロアルカン」としては、例えば、炭素数3~8、好ましくは炭素数3~6のシクロアルカンが挙げられ、具体的には、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサンおよびシクロヘプタンなどが挙げられる。
 「シクロアルキル」としては、例えば、炭素数3~8、好ましくは炭素数3~6のシクロアルキルが挙げられ、具体的には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルおよびシクロヘプチルなどが挙げられる。
 「アルコキシ」としては、例えば、炭素数1~8、好ましくは炭素数1~6の直鎖または分枝鎖状アルコキシが挙げられ、具体的には、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、t-ブトキシ、イソブトキシ、ペンチルオキシおよびへキシルオキシなどが挙げられる。
 「アルキレン」としては、例えば、炭素数1~6、好ましくは炭素数1~3の直鎖または分枝鎖状アルキレンが挙げられ、具体的には、メチレン、エチレン、プロピレン、イソプロピレン、ブチレンおよびイソブチレンなどが挙げられる。
 「アルコキシカルボニル」としては、例えば、炭素数2~9の直鎖または分枝鎖状のアルコキシカルボニルが挙げられ、具体的には、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、イソプロポキシカルボニル、ブトキシカルボニル、ペンチルオキシカルボニルおよびへキシルオキシカルボニルなどが挙げられる。
 「アルコキシカルボニルアルキル」としては、例えば、上記「アルコキシカルボニル」で置換された上記「アルキル」が挙げられ、具体的には、メトキシカルボニルメチル、メトキシカルボニルエチル、エトキシカルボニルメチルおよびエトキシカルボニルエチルなどが挙げられる。
 「カルボキシアルキル」としては、例えば、カルボキシで置換された上記「アルキル」が挙げられ、具体的には、カルボキシメチル、カルボキシエチル、カルボキシプロピル、カルボキシイソプロピル、カルボキシ-t-ブチルおよびカルボキシへキシルなどが挙げられる。
 「アルコキシアルキル」としては、例えば、上記「アルコキシ」で置換された上記「アルキル」が挙げられ、具体的には、メトキシメチル、メトキシエチル、エトキシメチル、エトキシエチルおよびt-ブトキシメチルなどが挙げられる。
 「ヒドロキシアルキル」としては、例えば、ヒドロキシで置換された上記「アルキル」が挙げられ、具体的には、ヒドロキシメチル、1-ヒドロキシエチル、2-ヒドロキシプロピル、2-ヒドロキシエチルおよび3-ヒドロキシプロピルなどが挙げられる。
 「アミノカルボニルアルキル」としては、例えば、アミノカルボニルで置換された上記「アルキル」が挙げられ、具体的には、アミノカルボニルメチル、およびアミノカルボニルエチルなどが挙げられる。
 「芳香族炭化水素基」としては、例えば、6~14員の単環式、二環式または三環式の芳香族炭化水素基が挙げられ、具体的には、フェニル、ナフチル、フェナントリル、およびアンスリルなどが挙げられ、特にフェニルが好ましい。
 「芳香族複素環基」としては、例えば、環構成原子として炭素原子以外に窒素原子、硫黄原子及び酸素原子から選択されるヘテロ原子を1~4個含有する5~14員の単環式または二環式の芳香族複素環基が挙げられ、具体的には、ピロリル、イミダゾリル、トリアゾリル、テトラゾリル、ピリジル、ピラジニル、ピリミジニル、ピリダジニル、トリアジニル、アゼピニル、ジアゼピニル、フリル、ピラニル、オキセピニル、チエニル、チオピラニル、オキサゾリル、イソキサゾリル、チアゾリル、イソチアゾリル、フラザニル、オキサジアゾリル、オキサジニル、オキサジアジニル、オキサゼピニル、オキサジアゼピニル、チアジアゾリル、チアジニル、インドリル、イソインドリル、ベンゾフリル、ベンゾチエニル、インダゾリル、キノリニル、イソキノリニル、キノキサリニル、キナゾリニル、ベンゾオキサゾリル、ベンゾチアゾリル、およびベンゾイミダゾリルなどが挙げられる。
 「非芳香族複素環基」としては、例えば、環構成原子として炭素原子以外に窒素原子、硫黄原子及び酸素原子から選択されるヘテロ原子を1~4個含有する5~14員の単環式または二環式の非芳香族複素環基が挙げられる。具体的には、ピロリジニル、ピラゾリジニル、ピペリジニル、ピペラジニル、モルホリニル、チオモルホリニル、ホモピペリジニル、オキサゾリジニル、チアゾリジニル、イミダゾリジニル、イミダゾリニル、テトラヒドロフリル、ジヒドロフリル、テトラヒドロチエニル、ジヒドロチエニル、テトラヒドロピリジル、ジヒドロベンゾフリルおよびジヒドロベンゾチエニルなどが挙げられる。
 「アルキルチオ」としては、例えば、炭素数1~8、好ましくは炭素数1~4の直鎖または分枝鎖状のアルキルチオがあげられ、具体的にはメチルチオ、エチルチオ、プロピルチオ、ブチルチオなどがあげられる。
 「アリールオキシ」におけるアリールとしては、上記「芳香族炭化水素基」と同義であり、特にフェニルが好ましい。「アリールオキシ」の具体例としては、フェニルオキシ、ナフチルオキシなどがあげられる。
 「ヘテロアリールオキシ」におけるヘテロアリールとしては、上記「芳香族複素環基」と同義であり、特に、環構成原子として、炭素原子以外に窒素原子、硫黄原子および酸素原子から選択されるヘテロ原子を1~4個含有する5~6員の単環式芳香族複素環基が好ましい。「ヘテロアリールオキシ」の具体例としては、ピリジルオキシ、ピリミジニルオキシ、ピラジルオキシなどがあげられる。
 「シクロアルキルオキシ」としては、例えば、炭素数3~8、好ましくは炭素数3~6のシクロアルキルオキシが挙げられ、具体的には、シクロプロピルオキシ、シクロブチルオキシ、シクロペンチルオキシ、シクロヘキシルオキシおよびシクロヘプチルオキシなどが挙げられる。
 「シクロアルキルアルコキシ」としては、上記「シクロアルキル」で置換された上記「アルコキシ」が挙げられ、具体的には、シクロプロピルメトキシ、シクロプロピルエトキシ、シクロブチルメトキシ、シクロペンチルメトキシ、シクロヘキシルメトキシおよびシクロヘプチルメトキシなどが挙げられる。
 「アラルキルオキシ」としては、例えば、上記「芳香族炭化水素基」で置換された上記「アルコキシ」が挙げられ、具体的には、ベンジルオキシ、フェネチルオキシ、1-ナフチルメトキシおよび2-ナフチルメトキシなどが挙げられる。
 「アラルキルオキシカルボニル」としては、例えば、上記「芳香族炭化水素基」で置換された上記「アルコキシカルボニル」が挙げられ、具体的には、ベンジルオキシカルボニル、フェネチルオキシカルボニル、1-ナフチルメトキシカルボニルおよび2-ナフチルメトキシカルボニルなどが挙げられる。
 「非芳香族複素環置換アルキル」としては、例えば、上記「非芳香族複素環基」で置換された上記「アルキル」が挙げられ、具体的には、ピロリジノメチル、ピペリジノエチル、モルホリノメチル、モルホリノエチル、ピペリジノメチル、およびピペリジノエチルなどが挙げられる。
 「非芳香族複素環置換カルボニル」としては、例えば、上記「非芳香族複素環基」で置換されたカルボニルが挙げられ、具体的には、ピペリジノカルボニル、モルホリノカルボニルおよびピペリジノカルボニルなどが挙げられる。
 環Aにおける「6員の単環式芳香族複素環」としては、例えば、環構成原子として炭素原子以外に窒素原子を1~4個含有する6員の単環式芳香族複素環が挙げられ、具体的には、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、テトラジンが挙げられる。このうち、好ましくは環構成原子として炭素原子以外に窒素原子を1ないし2個含有する6員の単環式芳香族複素環が挙げられ、なかでも、ピリジン、ピラジン、ピリミジンおよびピリダジンが好ましく、ピリジンおよびピラジンがより好ましく、特にピリジンが好ましい。
 環Aにおける「置換されていてもよいベンゼン」および「置換されていてもよい6員の単環式芳香族複素環」の置換基としては、例えば、1~3個のアルキルが挙げられ、2個以上有する場合には当該置換基は同一または異なっていてもよい。特に好ましい置換基としてはメチルが挙げられる。
 環B、B、BおよびBにおける「6員の単環式芳香族複素環」としては、例えば、環構成原子として炭素原子以外に窒素原子を1~4個含有する6員の単環式芳香族複素環が挙げられ、具体的には、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、テトラジンが挙げられる。このうち、好ましくは環構成原子として炭素原子以外に窒素原子を1ないし2個含有する6員の単環式芳香族複素環が挙げられ、なかでも、ピリジン、ピラジン、ピリミジンおよびピリダジンが好ましく、特にピリジンおよびピリミジンが好ましい。
 環BおよびBにおける「置換されていてもよいベンゼン」および「置換されていてもよい6員の単環式芳香族複素環」の置換基としては、例えば、アルキル、ハロゲン原子およびシアノが挙げられ、これら置換基を1~3個有していてもよく、2個以上有する場合には当該置換基は同一または異なっていてもよい。特に好ましい置換基としては、メチル、フッ素原子、塩素原子およびシアノが挙げられる。
 環Bにおける「置換されていてもよいベンゼン」および「置換されていてもよい6員の単環式芳香族複素環」の置換基としては、例えば、ハロゲン原子およびシアノから選択される基が挙げられる。当該置換基は1~3個有していてもよく、2個以上有する場合には当該置換基は同一または異なっていてもよい。特に好ましい置換基としては、フッ素原子、塩素原子およびシアノが挙げられる。
 環A-環B、環A-Bおよび環A-Bの好ましい態様としては、以下の式で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000016
(式中、G、GおよびGは、CHまたは窒素原子を示す。)
 環Cにおける「芳香族複素環基」としては、上記「芳香族複素環基」があげられ、好ましくは、環構成原子として炭素原子以外に窒素原子、硫黄原子及び酸素原子から選択されるヘテロ原子を1~3個含有する5~6員の単環式芳香族複素環基が挙げられる。なかでも、ピリジル、ピリミジニル、ピラゾリル、チエニル、イソキサゾリル、オキサゾリル、チアゾリル、オキサジアゾリルおよびトリアゾリルが好ましく、ピリジル、ピリミジニル、チエニル、チアゾリル、オキサジアゾリルおよびオキサゾリルがより好ましく、特にチエニルが好ましい。
 環Cとしては、「芳香族炭化水素基」が好ましい。
 Y、Y、Y、Y、Y、YおよびYにおける「アルキル」としては、アルキルの同一炭素上に2つの置換基(RおよびR)を有し、当該2つの置換基が隣接する炭素原子と一体となって環を形成する基が含まれる。かかる基としては、例えば、以下の式で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000017
(式中、AlkおよびAlkは同一または異なって、それぞれアルキレンを示し、nは0または1の整数を示し、RおよびRはそれぞれ水素またはアルキルを示すか、もしくはRおよびRが隣接する炭素原子とともにシクロアルカンを形成する基を示す。また、右端の結合手はX、X、X、XおよびXとの結合を示す。)
 Y、Y、Y、Y、Y、YおよびYにおける「アルキル」の好ましい具体例としては、以下の基を挙げることができる。
Figure JPOXMLDOC01-appb-C000018
(式中、右端の結合手は、X、X、X、XおよびXとの結合を示す。)
 なかでも、以下の基が好ましい。
Figure JPOXMLDOC01-appb-C000019
(式中、右端の結合手は、X、X、X、XおよびXとの結合を示す。)
 YおよびYにおける「置換されていてもよいアルキル」の置換基としては、例えば、1~3個のヒドロキシで置換されていてもよいアルキルで置換されていてもよいアミノカルボニル、およびカルボキシが挙げられ、これら置換基を1~3個有していてもよく、2個以上有する場合には当該置換基は同一または異なっていてもよい。この中で、好ましい置換基としてはカルボキシが挙げられる。
 Yにおける「置換されていてもよいアルキル」の置換基としては、例えば、カルボキシが挙げられる。
 Yにおける「置換されていてもよいシクロアルキル」の置換基としては、例えば、カルボキシアルキルが挙げられ、当該置換基を1~3個有していてもよい。当該置換基の具体例としては、カルボキシメチルなどが挙げられる。
 YおよびYにおける「置換されていてもよいシクロアルキル」の置換基としては、例えば、カルボキシアルキル、カルボキシ、アルコキシアルキル、およびアミノカルボニルが挙げられ、これら置換基を1~3個有していてもよく、2個以上有する場合には当該置換基は同一または異なっていてもよい。好ましい置換基として、カルボキシアルキル、カルボキシ、およびアルコキシアルキルが挙げられる。
 Yにおける「シクロアルキル」としては、炭素数3~6のシクロアルキルが好ましく、なかでもシクロへキシルが好ましい。
 Yとしては、「置換されていてもよいアルキル」が好ましい。
 Rにおける「置換されていてもよいアルキル」の置換基としては、例えば、1~6個のハロゲン原子が挙げられ、2個以上有する場合には当該置換基は同一または異なっていてもよい。特に好ましい置換基としては、フッ素原子が挙げられる。「置換されていてもよいアルキル」の具体例としては、ジフルオロメチル、トリフルオロメチル、2,2,2-トリフルオロエチル、2,2,3,3,3-ペンタフルオロプロピルなどがあげられ、なかでもトリフルオロメチルが好ましい。
 Rで表される「ハロゲン原子」としては、特に塩素原子が好ましい。
 Rで表される「アルキル」としては、炭素数1~3のアルキルが好ましく、なかでもメチルが好ましい。
 Rで表される「アルコキシ」としては、炭素数1~3のアルコキシが好ましく、なかでもメトキシが好ましい。
 RおよびRにおける「置換されていてもよいアルキル」の置換基としては、それぞれ、1~6個のハロゲン原子が挙げられ、2個以上有する場合には当該置換基は同一または異なっていてもよい。なかでも、フッ素原子が好ましい。「置換されていてもよいアルキル」の具体例としては、ジフルオロメチル、トリフルオロメチル、2,2,2-トリフルオロエチル、2,2,3,3,3-ペンタフルオロプロピルなどがあげられ、なかでもトリフルオロメチルが好ましい。
 RおよびRにおける「置換されていてもよいアルコキシ」の置換基としては、それぞれ、アルコキシ、および1~6個のハロゲン原子が挙げられ、2個以上有する場合には当該置換基は同一または異なっていてもよい。なかでも、フッ素原子が好ましい。「置換されていてもよいアルコキシ」の具体例としては、ジフルオロメトキシ、トリフルオロメトキシ、2,2,2-トリフルオロエトキシ、2,2,3,3,3-ペンタフルオロプロポキシなどがあげられ、なかでもジフルオロメトキシおよびトリフルオロメトキシが好ましい。
 R、およびR2bにおける「置換されていてもよいアルキル」の置換基としては、例えば、1~6個のハロゲン原子が挙げられ、2個以上有する場合には当該置換基は同一または異なっていてもよい。特に好ましい置換基としては、フッ素原子が挙げられる。当該基の具体例としては、トリフルオロメチル、2,2,2-トリフルオロエチル、2,2,3,3,3-ペンタフルオロプロピルなどがあげられる。
 R、およびR2bにおける「置換されていてもよいアルコキシ」の置換基としては、例えば、1~6個のハロゲン原子が挙げられ、2個以上有する場合には同一または異なっていてもよい。なかでも、フッ素原子が好ましい。当該基の具体例としては、トリフルオロメトキシ、2,2,2-トリフルオロエトキシ、2,2,3,3,3-ペンタフルオロプロポキシなどがあげられる。
 R、およびR2bにおける「置換されていてもよいシクロアルキル」の置換基としては、例えば、1~7個のハロゲンで置換されていてもよいアルキルが挙げられ、2個以上有する場合には同一または異なっていてもよい。当該基の具体例としては、1-トリフルオロメチルシクロプロピル、1-トリフルオロメチルシクロブチル、1-トリフルオロメチルシクロヘキシル、1-トリフルオロメチルシクロヘキシルなどが挙げられる。
 R、およびR2bにおける「置換されていてもよい芳香族炭化水素基」の置換基としては、例えば、1~3個のアルコキシが挙げられ、2個以上有する場合には同一または異なっていてもよい。当該基の具体例としては、4-メトキシフェニル、3-メトキシフェニル、2-メトキシフェニル、3,4-ジメトキシフェニルなどが挙げられる。
 R、およびR2bにおける「置換されていてもよい非芳香族複素環基」の置換基としては、例えば、1~3個のハロゲン原子が挙げられ、2個以上有する場合には同一または異なっていてもよい。当該基の具体例としては、4-フルオロピペリジノ、4,4-ジフルオロピペリジノなどが挙げられる。
 R、およびR2bにおける「置換されていてもよいアリールオキシ」の置換基としては、例えば、ハロゲン原子およびシアノから選択される基が挙げられる。当該置換基は1~3個有していてもよく、2個以上有する場合には同一または異なっていてもよい。当該基の具体例としては、4-フルオロフェニルオキシ、2,4-ジフルオロフェニルオキシ、3,4-ジフルオロフェニルオキシ、4-シアノフェニルオキシなどが挙げられる。
 R、およびR2bにおける「置換されていてもよいヘテロアリールオキシ」の置換基としては、例えば、1~3個のアルキルが挙げられ、当該置換基が2個以上有する場合には同一または異なっていてもよい。当該基の具体例としては、6-メチルピリジン-2-イルオキシ、6-メチルピリミジン-2-イルオキシなどが挙げられる。
 本発明の化合物は分子内に塩基性基及び酸性基を有するため、その薬理的に許容しうる塩としては、酸付加塩(例えば、塩酸塩、硫酸塩、リン酸塩、臭化水素酸塩等の無機酸塩、酢酸塩、フマル酸塩、マレイン酸塩、シュウ酸塩、クエン酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩等の有機酸塩)及び塩基との塩(例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩等のアルカリ土類金属塩、トリエチルアミン塩等の有機塩基塩、リジン塩等のアミノ酸塩等)が挙げられる。
 本発明の化合物には不斉炭素に基づく光学異性体が存在しうるが、本発明化合物は、それらいずれの異性体およびそれらの混合物を包含する。さらに、本発明化合物にシクロアルカンジイルを有する場合には、シス体、トランス体が存在し、また、本発明化合物にはカルボニルなどの不飽和結合に基づく互変異性体が存在しうるが、本発明化合物は、それらいずれの異性体およびそれらの混合物をも包含する。
 また、本発明の化合物には、芳香族複素環の水素イオンの移動により、次式で示される互変異性を生じるが、本発明の化合物は、その一方の化学構造を表示する場合でも、これらいずれの互変異性体及びそれらの混合物をも包含する。
Figure JPOXMLDOC01-appb-C000020
 本発明化合物またはその薬理的に許容しうる塩は、以下の方法で製造することができる。
 なお、本発明の化合物(1)の製造方法を当該化合物(1)に包含される化合物(1-A)および化合物(1-B)を用いて以下に説明するが、これら製造方法と同様に行うことにより、化合物(1)を製造することができる。
[A法]
 化合物(1-A)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000021
(式中、HALはハロゲン原子(塩素原子、臭素原子等)を示し、他の記号は前記と同義である。)
工程I:
 化合物(2)とヒドロキシルアミンとの反応は、例えば、適当な溶媒中、米国特許5576447号等に記載された方法に準じて行うことができる。
 溶媒としては、メタノールもしくはエタノール等のアルコール類、テトラヒドロフランもしくは1,4-ジオキサン等のエーテル類、水、またはそれらの混合溶媒を使用することができる。
 反応時間は通常3~16時間、好ましくは4~6時間である。反応温度は通常5~100℃、好ましくは25~80℃である。
 得られた生成物を常法に従い、酢酸-無水酢酸で処理した後、適当な溶媒中、パラジウム触媒の存在下、水素雰囲気下で水素添加反応を行うことにより、化合物(3)を酢酸塩として得ることができる。
 溶媒としては、例えば、メタノールもしくはエタノール等のアルコール類、テトラヒドロフランもしくは1,4-ジオキサン等のエーテル類、酢酸、またはそれらの混合溶媒を使用することができる。
 パラジウム触媒としては、例えば、パラジウム炭素、パラジウム黒、塩化パラジウム等の触媒が用いられる。
 反応時間は用いる触媒や溶媒などにより異なるが、通常30分間~18時間、好ましくは30分間~8時間である。反応温度は通常10~100℃、好ましくは25~75℃である。
 なお、上記水素添加反応において、水素の代わりにトリエチルシランなどのトリアルキルシランを水素源として用いることもできる。
 また、化合物(3)は、化合物(2)を適当な溶媒中、アルコキシアルカリ金属と反応させた後、アンモニア源と反応させることにより製造することもできる。
 溶媒としては、メタノールもしくはエタノールなどのアルコール類などを使用することができる。
 アルコキシアルカリ金属としては、ナトリウムメチラート、ナトリウムエチラート、カリウムメチラートなどを使用することができる。
 アンモニア源としては、塩化アンモニウムもしくは臭化アンモニウムなどのアンモニウムハロゲン化物、酢酸アンモニウムもしくはプロピオン酸アンモニウムなどのアンモニウム有機塩、またはアンモニアなどを使用することができる。
工程II:
 化合物(1-A)は、例えば、I. M. Mallick et al., Journal of the American Chemical Society, 106(23), 7252-7254, 1984 等に記載された方法に準じて、化合物(3)と化合物(4)を適当な溶媒中、塩基の存在下、環化反応に付すことにより製造することができる。
 溶媒としては、メタノールもしくはエタノール等のアルコール類、N,N-ジメチルホルムアミドもしくはN-メチルピロリドン等のアミド類、塩化メチレンもしくはクロロホルム等のハロゲン化炭化水素類、テトラヒドロフラン、アセトニトリル、水またはそれらの混合溶媒を使用することができる。
 塩基としては、炭酸水素カリウム、炭酸カリウムまたはナトリウムエチラート等を使用することができる。
 反応時間は用いる塩基や溶媒などにより異なるが、通常40分間~18時間、好ましくは5時間~12時間である。反応温度は通常18~100℃、好ましくは50~80℃である。
 また化合物(1-A)は、化合物(3)および化合物(4)を、上記方法で反応させることによって得られる生成物を、さらに適当な溶媒中、酸の存在下で反応させることによって製造することもできる。
 酸としては、例えば、塩酸、硫酸、酢酸、トリフルオロ酢酸、p-トルエンスルホン酸、カンファースルホン酸等を使用することができる。
 溶媒としては、例えば、ベンゼンもしくはトルエン等の芳香族炭化水素類、クロロホルムもしくは1,2-ジクロロエタン等のハロゲン化炭化水素類、テトラヒドロフランもしくは1,2-ジメトキシエタン等のエーテル類、ギ酸もしくは酢酸などの有機酸、またはそれらの混合溶媒を使用することができる。
 反応時間は用いる酸や溶媒などにより異なるが、通常1時間~48時間、好ましくは4時間~8時間である。反応温度は通常50~100℃、好ましくは70~90℃である。
[B法]
 化合物(1-A)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000022
(式中、LvはB(OH)または
Figure JPOXMLDOC01-appb-C000023
を示し、HALはハロゲン原子(塩素原子、臭素原子等)を表し、PGはアミノ保護基(好ましくは、置換アルキル(2-(トリメチルシリル)エトキシメチル、ベンジル等))を示し、他の記号は前記と同義である。)
工程I:
 化合物(7)は、化合物(5)と化合物(6)を適当な溶媒中、触媒および塩基の存在下で、鈴木カップリング反応(例えば、Advanced Organic Chemistry PartB(F. A. Carey & R. J. Sundberg, Springer社等に記載の反応)に付すことにより得ることができる。
 触媒としては、塩化パラジウム、酢酸パラジウム、ジクロロ〔1,1’-ビス(ジフェニルホスフィノ)フェロセン〕パラジウム(PdCl(dppf))、またはテトラキストリフェニルホスフィンパラジウム等などを使用することができ、必要に応じて、1,1’-ビス(ジフェニルホスフィノ)フェロセン、2-ジシクロへキシルホスフィノ-2’,6’-ジメトキシビフェニル(S-PHOS)、2-ジシクロへキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(X-PHOS)、または4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(Xantphos)等のリガンドも添加することができる。
 塩基としては、炭酸ナトリウム、炭酸カリウム、酢酸カリウム、リン酸カリウム、水酸化ナトリウム等のアルカリ金属、または炭酸セシウム等を使用することができる。
 溶媒としては、N,N-ジメチルホルムアミドなどのアミド類、テトラヒドロフラン、1,4-ジオキサンもしくはジメトキシエタンなどのエーテル類、ベンゼンもしくはトルエンなどの芳香族炭化水素類、水、またはそれらの混合溶媒を使用することができる。
 反応時間は用いる試薬、触媒、塩基、反応溶媒の量や種類、反応温度によっても異なるが、通常2~48時間、好ましくは5~12時間である。
 反応温度は室温~150℃であり、好ましくは60~120℃である。
工程II:
 化合物(1-A)は、化合物(7)を脱保護することにより製造することができる。
 化合物(7)の脱保護反応は、例えば、PGが2-(トリメチルシリル)エトキシメチルである場合には、化合物(7)を適当な溶媒(メタノールもしくはエタノール等のアルコール類、水、またはそれらの混合溶媒等)中、酸(塩酸、トリフルオロ酢酸またはメタンスルホン酸等)で処理するか、または化合物(7)を適当な溶媒(テトラヒドロフランなどのエーテル類、または塩化メチレンなどのハロゲン化炭化水素類等)中、フッ化テトラ-n-ブチルアンモニウムと反応させることにより化合物(1-A)を製造することができる。また、例えば、PGがベンジルである場合には、化合物(7)を適当な溶媒(メタノールもしくはエタノール等のアルコール類等)中、パラジウム触媒(パラジウム炭素もしくは水酸化パラジウムなど)の存在下、水素雰囲気下で水素添加反応を行うことにより、化合物(1-A)を製造することができる。
 また、化合物(1-A)は、化合物(5)および化合物(6)に代えて、それぞれ下式
Figure JPOXMLDOC01-appb-C000024
(式中、各記号は前記と同義である。)
で示される化合物(以下、化合物(5a)および化合物(6a)という)を用いて、上記と同様の方法を行うことにより製造することもできる。
[C法]
 Xが-O-である化合物(1-A)(以下、化合物(1-A-a)という)は、以下の方法によって製造することができる。
Figure JPOXMLDOC01-appb-C000025
(式中、各記号は前記と同義である。)
工程I:
 化合物(10)は、化合物(8)と化合物(9)を適当な溶媒中、アゾジカルボキシラート類およびホスフィン類の存在下で、光延反応(例えば、Advanced Organic Chemistry PartB(F. A. Carey & R. J. Sundberg, Springer社)、Okuda, M.; Tomioka, K.; Tetrahedron Lett [TELEAY] 1994, 35 (26), 4585-4586等に記載の反応)に付すことにより製造することができる。
 アゾジカルボキシラート類としては、アゾジカルボン酸ジエチル、アゾジカルボン酸ジ-t-ブチル、1,1’-(アゾジカルボニル)ジピペリジン等を使用することができる。
 ホスフィン類としては、トリフェニルホスフィン等のトリアリールホスフィン類、またはトリn-ブチルホスフィン等のトリアルキルホスフィン類等を使用することができる。
 溶媒としては、例えば、テトラヒドロフラン、1,4-ジオキサンもしくはジエチルエーテル等のエーテル類、ベンゼン、トルエン、もしくはキシレン等の芳香族炭化水素類、塩化メチレン、1,2-ジクロロエタンもしくはクロロホルム等のハロゲン化炭化水素類、またはそれらの混合溶媒を使用することができる。
 反応時間は用いる試薬や溶媒などにより異なるが、通常30分間~24時間、好ましくは3時間~12時間である。反応温度は通常5℃~150℃、好ましくは室温~80℃である。
工程II:
 化合物(10)の脱保護反応は、B法の工程IIと同様に実施することができる。
[D法]
 Xが単結合であり、Yが置換されていてもよいシクロアルキルである化合物(1-A)(以下、化合物(1-A-b)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000026
(式中、基
Figure JPOXMLDOC01-appb-C000027
は置換されていてもよいシクロアルケニルを示し、Yは置換されていてもよいシクロアルキルを示し、Lvはハロゲン原子(塩素原子、臭素原子等)またはトリフルオロメタンスルホニルオキシ基を示し、LvはB(OH)または
Figure JPOXMLDOC01-appb-C000028
を示し、他の記号は前記と同義である。)
工程I:
 化合物(13)は、化合物(11)と化合物(12)のカップリング反応により製造することができ、B法の工程Iと同様に実施することができる。
工程II:
 化合物(14)は、化合物(13)を適当な溶媒中、パラジウム触媒の存在下、水素雰囲気下で水素添加反応を行うことにより製造することができる。
 溶媒としては、メタノールもしくはエタノール等のアルコール類、テトラヒドロフランもしくは1,4-ジオキサン等のエーテル類、またはそれらの混合溶媒を使用することができる。
 パラジウム触媒としては、パラジウム炭素またはパラジウム黒等の触媒を使用することができる。
 反応時間は用いる触媒や溶媒などにより異なるが、通常1時間~24時間、好ましくは1時間~12時間である。反応温度は通常50~100℃、好ましくは60~100℃である。
工程III:
 化合物(14)の脱保護反応は、B法の工程IIと同様に実施することができる。
[E法]
 Rがハロゲンである化合物(1-A)(以下、化合物(1-A-d)という)および、Rがアルキルである化合物(1-A)(以下、化合物(1-A-e)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000029
(式中、HALはハロゲン原子(塩素原子、臭素原子等)を示し、R1aはアルキルを示し、LvはB(OH)または
Figure JPOXMLDOC01-appb-C000030
を示し、他の記号は前記と同義である。)
工程I:
 化合物(1-A-c)を適当な溶媒中、必要に応じて塩基の存在下で、ハロゲン化剤と反応させることにより、化合物(1-A-d)を製造することができる。
 ハロゲン化剤としては、N-クロロスクシンイミド、N-ブロモスクシンイミド等を使用することができる。
 溶媒としては、クロロホルムもしくは塩化メチレン等のハロゲン化炭化水素、N,N-ジメチルホルムアミド、アセトニトリル、エタノール等を使用することができる。
 塩基としては、イミダゾール、トリエチルアミン等を使用することができる。
 反応時間は用いる試薬や溶媒などにより異なるが、通常1時間~22時間、好ましくは2時間~15時間である。反応温度は通常0℃~60℃、好ましくは室温~50℃である。
工程II:
 化合物(1-A-d)と化合物(15)との反応は、B法の工程Iと同様に行うことができる。
[F法]
 化合物(2)において、Xが-O-である化合物(以下、化合物(2a)という)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000031
(式中、HALおよびHALはハロゲン原子(塩素原子、臭素原子等)を示し、LvはB(OH)または
Figure JPOXMLDOC01-appb-C000032
を示し、他の記号は前記と同義である。)
工程I:
 化合物(16)と化合物(9)のカップリング反応は、C法の工程Iと同様に実施することができる。
工程II:
 化合物(17)を適当な溶媒中、パラジウム触媒、リガンドおよび塩基の存在下、ボロン酸エステルと反応させることにより、化合物(18)を得ることができる。
 溶媒としては、1,4-ジオキサンなどのエーテル類、ジメチルスルホキシド、またはトルエンなどの芳香族炭化水素類などを使用することができる。
 パラジウム触媒としては、酢酸パラジウム、またはジクロロ〔1,1’-ビス(ジフェニルホスフィノ)フェロセン〕パラジウム(PdCl(dppf))などを使用することができる。
 リガンドとしては、2-ジシクロへキシルホスフィノ-2’,6’-ジメトキシビフェニル(S-PHOS)、2-ジシクロへキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(X-PHOS)、または4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(Xantphos)などを使用することができる。
 塩基としては、酢酸カリウムまたはリン酸カリウムなどを使用することができる。
 ボロン酸エステルとしては、ビス(ピナコラト)ジボロン、トリアルコキシボロンなどを使用することができる。
 反応時間は用いる触媒や溶媒などにより異なるが、通常1時間~24時時間、好ましくは2時間~12時間である。反応温度は通常50~130℃、好ましくは60~100℃である。
工程III:
 化合物(18)と化合物(19)のカップリング反応は、B法の工程Iと同様に実施することができる。
[G法]
 化合物(8)、および化合物(11)においてLvがトリフルオロメタンスルホニルオキシである化合物(11a)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000033
(式中、PGは水酸基の保護基(好ましくは、置換アルキル(ベンジル等))を示し、LvはB(OH)または
Figure JPOXMLDOC01-appb-C000034
を示し、各記号は前記と同義である。)
工程I:
 化合物(6)と化合物(20)のカップリング反応は、B法の工程Iと同様に実施することができる。
工程II:
 化合物(8)は、化合物(21)のPGを脱保護することにより製造することができる。
 PGの脱保護反応は、例えば、PGがベンジル基である場合には、化合物(21)を適当な溶媒(メタノールもしくはエタノール等のアルコール類等)中、パラジウム触媒(パラジウム炭素もしくは水酸化パラジウムなど)の存在下、水素雰囲気下で水素添加反応を行うことにより、化合物(8)を製造することができる。
工程III:
 化合物(11a)は、化合物(8)を適当な溶媒(塩化メチレンもしくはクロロホルムなどのハロゲン化炭化水素類、またはテトラヒドロフランもしくはジエチルエーテルなどのエーテル類等)中、塩基(トリエチルアミン、N,N-ジイソプロピルエチルアミン、2,6-ルチジンなど)の存在下、0℃~25℃で1時間~8時間、トリフルオロメタンスルホン酸無水物と反応させることにより製造することができる。
[H法]
 化合物(6)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000035
(式中、各記号は前記と同義である。)
 本反応における工程Iおよび工程IIは、それぞれA法における工程Iおよび工程IIと同様に実施することができる。
工程III:
 化合物(6)は、化合物(24)のアミノ基を保護することにより製造することができる。例えば、PGが2-(トリメチルシリル)エトキシメチル基である場合には、化合物(24)を適当な溶媒中、塩基の存在下で、2-(トリメチルシリル)エトキシメチルクロリドと反応させることにより化合物(6)を製造することができる。
 溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドもしくはN-メチルピロリドン等の非プロトン性極性溶媒を使用することができる。
 塩基としては、例えば、水素化アルカリ金属(水素化ナトリウム、水素化リチウム等)、炭酸アルカリ金属(炭酸カリウム等)を使用することができる。
[I法]
 化合物(6)において、Rが水素である化合物(以下、化合物(6a)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000036
(式中、各記号は前記と同義である。)
工程I:
 化合物(27)は、化合物(25)を化合物(26)およびアンモニアと、適当な溶媒中で反応させることにより製造することができる。
 溶媒としては、メタノールもしくはエタノール等のアルコール系溶媒または水等を使用することができる。
 反応時間は通常1時間~24時間、好ましくは5時間~12時間である。反応温度は通常5℃~60℃、好ましくは室温~40℃である。
工程II:
 本反応は、H法における工程IIIと同様に実施することができる。
[J法]
 化合物(27)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000037
(式中、HALおよびHALは同一または異なってハロゲン原子(塩素原子、臭素原子またはヨウ素原子)を示す。)
 化合物(25)を、J. J. Baldwin et al., Journal of Medicinal Chemistry, 29(6), 1065-1080, 1986等に記載されている方法に準じて、適当な溶媒中、塩基の存在下で、化合物(28)およびアンモニアと反応させることにより、化合物(27)を製造することができる。
 溶媒としては、メタノールもしくはエタノール等のアルコール類、または水等を使用することができる。
 塩基としては、酢酸アルカリ金属(例えば、酢酸ナトリウム)等を使用することができる。
 本反応は、例えば最初に化合物(28)を水溶媒中、塩基の存在下、90~100℃にて、30分間~1時間攪拌後、冷却下、反応系に化合物(25)およびアンモニア水を添加して、氷冷下~50℃にて、さらに1日間~2日間攪拌することにより実施することができる。反応は、室温~40℃で行うのが好ましい。
[K法]
 化合物(4)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000038
(式中、各記号は前記と同義である。)
 化合物(4)は、化合物(29)を適当な溶媒(例えば、塩化メチレン等のハロゲン化炭化水素類)中、ハロゲン化剤を反応させることにより製造することができる。
 ハロゲン化剤としては、例えば、N-ブロモスクシンイミド、N-クロロスクシンイミド、臭化銅、臭化水素酸、ベンジルトリメチルアンモニウムトリブロミド等が挙げられる。
[L法]
 化合物(4)において、Rが水素である化合物(以下、化合物(4a)という)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000039
(式中、各記号は前記と同義である。)
 化合物(30)を適当な溶媒中、塩化オキザリルを反応させた後、適当な溶媒中、トリメチルシリルジアゾメタンを反応させ、ハロゲン化することにより、化合物(4a)を製造することができる。
 化合物(30)と塩化オキザリルとの反応における溶媒としては、クロロホルムもしくは塩化メチレン等のハロゲン化炭化水素、またはテトラヒドロフラン等のエーテル類等を使用することができる。
 本反応はN,N-ジメチルホルムアミドを触媒量加え、-20~40℃で実施することができ、氷冷~室温で行うのが好ましい。
 トリメチルシリルジアゾメタンとの反応における溶媒としては、アセトニトリル、テトラヒドロフラン等のエーテル類、クロロホルムもしくは塩化メチレン等のハロゲン化炭化水素等を使用することができる。
 本反応は-20~40℃で実施することができ、氷冷~室温で行うのが好ましい。
 ハロゲン化反応は、K法におけるハロゲン化反応と同様に実施することができる。
[M法]
 一般式(B)において、Xが単結合で、Yが置換されていてもよいフェニルである化合物(以下、化合物(B1)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000040
(式中、XB1は単結合を示し、YB1は置換されていてもよいフェニルを示し、Lvはハロゲン原子(塩素原子、臭素原子等)、B(OH)または
Figure JPOXMLDOC01-appb-C000041
を示し、他の記号は前記と同義である。)
工程I:
(1)LvがB(OH)または
Figure JPOXMLDOC01-appb-C000042
である場合、例えばUS2007/208001等に記載された方法に準じて、化合物(31)を適当な溶媒中、銅触媒等の触媒及び塩基の存在下で化合物(32)と反応させることにより、化合物(33)を製造することができる。
 溶媒としては、塩化メチレン、1,2-ジクロロエタン等のハロゲン化炭化水素類、トルエンなどの芳香族炭化水素類、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシドなどの極性溶媒などを使用することができる。
 触媒としては、酢酸銅等の銅触媒等を使用することができる。
 塩基としては、トリエチルアミン、ピリジン等の有機塩基等を使用することができる。
 また、必要に応じてモレキュラーシーブ等の脱水剤を使用することができる。
 反応時間は用いる試薬や溶媒などにより異なるが、通常12時間~144時間、好ましくは24時間~48時間である。反応温度は通常20℃~90℃、好ましくは20℃~40℃である。
(2)Lvがハロゲンである場合、化合物(31)と化合物(32)を、適当な溶媒中、塩基の存在下、必要に応じて、パラジウム触媒およびリガンドの存在下で反応させることにより、化合物(33)を製造することができる。
 溶媒としては、テトラヒドロフラン、1,4-ジオキサンもしくはジメトキシエタン等のエーテル類、ベンゼンもしくはトルエン等の芳香族炭化水素類、塩化メチレンもしくは1,2-ジクロロエタン等のハロゲン化炭化水素類、水、N,N-ジメチルホルムアミド、ジメチルスルホキシド、またはそれらの混合溶媒を使用することができる。
 塩基としては、炭酸ナトリウム、炭酸カリウム、酢酸カリウム、リン酸カリウム、水酸化ナトリウムもしくは炭酸セシウム等の無機塩基、またはトリエチルアミン、N,N-ジイソプロピルエチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)もしくはN-メチルモルホリン等の有機塩基、tert-ブトキシナトリウムなどを使用することができる。
 触媒としては、塩化パラジウム、酢酸パラジウム、ジクロロ〔1,1’-ビス(ジフェニルホスフィノ)フェロセン〕パラジウム(PdCl(dppf))、またはテトラキストリフェニルホスフィンパラジウム等を使用することができ、必要に応じて、1,1’-ビス(ジフェニルホスフィノ)フェロセン、2-ジシクロへキシルホスフィノ-2’,6’-ジメトキシビフェニル(S-PHOS)、2-ジシクロへキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(X-PHOS)、または4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(Xantphos)、2-ジシクロヘキシルホスフィノ-2’,6’-ジ-イソプロポキシ-1,1’-ビフェニル(RuPhos)等などのリガンドを添加することができる。
 反応時間は用いる試薬や溶媒などにより異なるが、通常1時間~24時間、好ましくは3時間~15時間である。反応温度は通常70℃~120℃、好ましくは80℃~100℃である。
 本反応では、マイクロ波照射により反応を促進することができる。
工程II:
 化合物(B1)は、化合物(33)を脱保護することにより製造することができ、B法の工程IIと同様に実施することができる。
[N法]
 一般式(B)または一般式(C)の化合物(以下、化合物(X)という)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000043
(式中、基
Figure JPOXMLDOC01-appb-C000044
はピペリジンもしくはPおよび/またはQで置換されていてもよいピペラジンを示し、B、X、Y、R1XおよびR2Xは、それぞれBおよびB、XおよびX、YおよびY、R1Bおよび水素原子、ならびにR2BおよびR2Cを含む基を示し、他の記号は前記と同義である。)
 本反応における工程Iおよび工程IIは、M法における工程Iおよび工程IIと同様に実施することができる。
[O法]
 一般式(C)において、Xが-O-または-OCH-であり、Yが置換されていてもよいフェニルである化合物(以下、化合物(C1)という)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000045
(式中、YC1は置換されていてもよいフェニルを示し、nは0または1の整数を表し、他の記号は前記と同義である。)
 本反応における工程Iおよび工程IIは、それぞれN法における工程IおよびC法における工程Iと同様に実施し、さらにPGを脱保護することにより、化合物(C1)を製造することができる。
[P法]
 化合物(34)において、基
Figure JPOXMLDOC01-appb-C000046
がピペリジンであり、Xが-O-である化合物(以下、化合物(34a)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000047
(式中、各記号は前記と同義である)
 化合物(34a)は、化合物(36)を、還元反応に付すことにより製造することができる。
 本反応は、例えば、化合物(36)を適当な溶媒(例えば、メタノールもしくはエタノール等のアルコール類等)中、還元剤(水素化ホウ素ナトリウム等)と反応させ、次いで触媒(パラジウム炭素等)存在下、水素添加反応に付すことにより、化合物(34a)を製造することができる。
[Q法]
 一般式(D)に示す化合物は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000048
(式中、LvはB(OH)または
Figure JPOXMLDOC01-appb-C000049
を示し、他の記号は前記と同義である。)
 本反応における工程I~工程IIIは、それぞれD法における工程I~工程IIIと同様に実施することができる。
[R法]
 化合物(1-B)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000050
(式中、LvはB(OH)または
Figure JPOXMLDOC01-appb-C000051
を示し、HALはハロゲン原子(塩素原子、臭素原子等)を示し、PGはアミノ保護基(好ましくは、置換アルキル(2-(トリメチルシリル)エトキシメチル、ベンジル等)を示し、他の記号は前記と同義である。)
工程I:
 化合物(42)は、化合物(40)と化合物(41)を適当な溶媒中、触媒および塩基の存在下で、鈴木カップリング反応(例えば、Advanced Organic Chemistry PartB(F. A. Carey & R. J. Sundberg, Springer社等に記載の反応)に付すことにより得ることができる。
 触媒としては、塩化パラジウム、酢酸パラジウム、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン錯体(PdCl(dppf)CHCl)、またはテトラキストリフェニルホスフィンパラジウム等などを使用することができ、必要に応じて、1,1’-ビス(ジフェニルホスフィノ)フェロセン、2-ジシクロへキシルホスフィノ-2’,6’-ジメトキシビフェニル(S-PHOS)、2-ジシクロへキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(X-PHOS)、または4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(Xantphos)等のリガンドも添加することができる。
 塩基としては、炭酸ナトリウム、炭酸カリウム、酢酸カリウム、リン酸カリウム、水酸化ナトリウム等のアルカリ金属、または炭酸セシウム等を使用することができる。
 溶媒としては、N,N-ジメチルホルムアミドなどのアミド類、テトラヒドロフラン、1,4-ジオキサンもしくはジメトキシエタンなどのエーテル類、ベンゼンもしくはトルエンなどの芳香族炭化水素類、水、またはそれらの混合溶媒を使用することができる。
 反応時間は用いる試薬、触媒、塩基、反応溶媒の量や種類、反応温度によっても異なるが、通常2~48時間、好ましくは5~12時間である。
 反応温度は室温~150℃であり、好ましくは60~120℃である。
工程II:
 化合物(1-B)は、化合物(42)を脱保護することにより製造することができる。
 化合物(42)の脱保護反応は、例えば、PGが2-(トリメチルシリル)エトキシメチルである場合には、化合物(42)を適当な溶媒(メタノールもしくはエタノール等のアルコール類、水、またはそれらの混合溶媒等)中、酸(塩酸、トリフルオロ酢酸またはメタンスルホン酸等)で処理することにより、化合物(1-B)を得ることができる。また、化合物(1-B)は、化合物(42)を適当な溶媒(テトラヒドロフランなどのエーテル類、または塩化メチレンなどのハロゲン化炭化水素類等)中、フッ化テトラ-n-ブチルアンモニウムと反応させることにより製造することもできる。
 また、化合物(1-B)は、化合物(40)および化合物(41)に代えて、それぞれ下式
Figure JPOXMLDOC01-appb-C000052
(式中、各記号は前記と同義である。)
で示される化合物(以下、化合物(40a)および化合物(41a)という)を用いて、上記と同様の方法を行うことにより製造することもできる。
[S法]
 R2bが置換されていてもよいアルキル、置換されていてもよい芳香族炭化水素基、または置換されていてもよいシクロアルキルである化合物(1-B)(以下、化合物(1-B-a)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000053
(式中、R2b1は置換されていてもよいアルキル、置換されていてもよい芳香族炭化水素基、または置換されていてもよいシクロアルキルを示し、Rはアルキルを示し、他の記号は前記と同義である。)
工程I:
 化合物(44)は、(i)化合物(43)を、ヒドロキシルアミンと反応させ、酢酸-無水酢酸で処理した後、水素添加反応を行うか、(ii)化合物(43)を、酸の存在下、アルコールと反応させた後、アンモニアと反応させるか、または(iii)化合物(43)を、リチウムヘキサメチルジシラザンと反応させた後、酸で処理することにより製造することができる。
反応(i)
 化合物(43)とヒドロキシルアミンとの反応は、例えば、適当な溶媒中、米国特許5576447号等に記載された方法に準じて行うことができる。
 溶媒としては、メタノールもしくはエタノール等のアルコール類、テトラヒドロフランもしくは1,4-ジオキサン等のエーテル類、水、またはそれらの混合溶媒を使用することができる。
 反応時間は、通常3~24時間、好ましくは4~18時間である。反応温度は、通常5~100℃、好ましくは25~80℃である。
 得られた生成物を常法に従い、酢酸-無水酢酸で処理した後、適当な溶媒中、パラジウム触媒の存在下、水素雰囲気下で水素添加反応を行うことにより、化合物(44)を製造することができる。
 溶媒としては、メタノールもしくはエタノール等のアルコール類、テトラヒドロフランもしくは1,4-ジオキサン等のエーテル類、またはそれらの混合溶媒を使用することができる。
 パラジウム触媒としては、パラジウム炭素またはパラジウム黒等の触媒を使用することができる。
 反応時間は用いる触媒や溶媒などにより異なるが、通常30分間~18時間、好ましくは2時間~8時間である。反応温度は、通常10~100℃、好ましくは25~50℃である。
 なお、水素添加反応において、水素の代わりにトリエチルシランなどのトリアルキルシランを水素源として用いることもできる。
反応(ii)
 化合物(43)とアルコールとの反応は、Chemische Berichte, 1878, 11, 9に記載された方法に準じて、行うことができる。
 酸としては、塩酸、硫酸などを使用することができる。
 アルコールとしては、メタノール、エタノール、プロパノール、ブタノールなどを使用することができる。
 化合物(43)とアルコールとの反応における反応時間は、通常2時間~24時間、好ましくは5間~20時間である。反応温度は通常5~50℃、好ましくは25~50℃である。
 アンモニアとの反応においては、溶媒を使用してもよく、そのような溶媒としては、メタノールもしくはエタノールなどのアルコール類、テトラヒドロフランなどのエーテル類、またはそれらの混合溶媒などを使用することができる。
 アンモニアとの反応における反応時間は、通常3時間~24時間、好ましくは8時間~20時間である。反応温度は通常5~50℃、好ましくは25~50℃である。
反応(iii)
 化合物(43)とリチウムヘキサメチルジシラザンとの反応は、J. Organomet. Chem., 1987, 331, 21, 161-167に記載された方法に準じて、行うことができる。
 溶媒としては、テトラヒドロフランなどのエーテル類などを使用することができる。
 リチウムヘキサメチルジシラザンとの反応における反応時間は、通常1時間~24時間、好ましくは2時間~18時間である。反応温度は通常0~50℃、好ましくは5~30℃である。
 酸処理における酸としては、塩酸、臭化水素酸などを使用することができる。
 酸処理においては、溶媒を用いてもよく、そのような溶媒としては、テトラヒドロフラン、ジオキサンなどのエーテル類などを使用することができる。
 酸処理における反応時間は、用いる酸や溶媒などにより異なるが、通常30分間~24時間、好ましくは1時間~18時間である。反応温度は通常0~50℃、好ましくは5~30℃である。
工程II:
 化合物(44)を適当な溶媒中、塩基の存在下または非存在下で、化合物(45)およびヒドラジンと反応させることにより、化合物(1-B-a)を製造することができる。
 溶媒としては、テトラヒドロフランもしくは1,4-ジオキサンなどのエーテル類、1,2-ジクロロエタンもしくは四塩化炭素などのハロゲン化炭化水素類、メタノールもしくはエタノールなどのアルコール類、またはそれらの混合溶媒などを使用することができる。
 塩基としては、炭酸カリウムもしくは炭酸水素ナトリウムなどの炭酸アルカリ金属、ナトリウムメトキシドなどのアルカリ金属アルコキシド、または水酸化ナトリウムもしくは水酸化カリウムなどの水酸化アルカリ金属などを使用することができる。
 本反応に用いられるヒドラジンとしては、塩の形態(例えば、塩酸塩)であってもよく、また、水和物であってもよい。
 ヒドラジンと反応における反応時間は、通常30分間~12時間、好ましくは30分間~8時間である。反応温度は通常25~100℃、好ましくは50~80℃である。
 また、化合物(45)およびヒドラジンに代えて、下式
Figure JPOXMLDOC01-appb-C000054
(式中、各記号は前記と同義である。)
で示されるヒドラジド化合物(45a)を用いることにより、Tetrahedron Letters, 1987, 28, 5133 - 5136に記載された方法に準じて化合物(1-B-a)を得ることもできる。
[T法]
 Xが-O-である化合物(1-B)(以下、化合物(1-B-b)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000055
(式中、各記号は前記と同義である。)
工程I:
 化合物(48)は、化合物(46)と化合物(47)を適当な溶媒中、アゾジカルボキシラート類およびホスフィン類の存在下で、光延反応(例えば、Advanced Organic Chemistry PartB(F. A. Carey & R. J. Sundberg, Springer社)、Okuda, M.; Tomioka, K.; Tetrahedron Lett [TELEAY] 1994, 35 (26), 4585-4586等に記載の反応)に付すことにより製造することができる。
 アゾジカルボキシラート類としては、アゾジカルボン酸ジエチル、アゾジカルボン酸ジ-t-ブチル、または1,1’-(アゾジカルボニル)ジピペリジン等を使用することができる。
 ホスフィン類としては、トリフェニルホスフィンなどのトリアリールホスフィン類、またはトリn-ブチルホスフィンなどのトリアルキルホスフィン類等を使用することができる。
 溶媒としては、テトラヒドロフラン、1,4-ジオキサンもしくはジエチルエーテル等のエーテル類、ベンゼン、トルエン、もしくはキシレン等の芳香族炭化水素類、塩化メチレン、1,2-ジクロロエタンもしくはクロロホルム等のハロゲン化炭化水素類、またはそれらの混合溶媒を使用することができる。
 反応時間は用いる試薬や溶媒などにより異なるが、通常30分間~24時間、好ましくは1時間~12時間である。反応温度は通常0℃~100℃、好ましくは25℃~80℃である。
工程II:
 化合物(48)の脱保護反応は、R法の工程IIと同様に実施することができる。
[U法]
 Xが単結合であり、Yが置換されていてもよいシクロアルキルである化合物(1-B)(以下、化合物(1-B-c)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000056
(式中、基
Figure JPOXMLDOC01-appb-C000057
は置換されていてもよいシクロアルケニルを示し、Yは置換されていてもよいシクロアルキルを示し、Lv10はハロゲン原子(塩素原子、臭素原子等)またはトリフルオロメタンスルホニルオキシ基を示し、Lv11はB(OH)または
Figure JPOXMLDOC01-appb-C000058
を示し、他の記号は前記と同義である。)
工程I:
 化合物(51)は、化合物(49)と化合物(50)のカップリング反応により製造することができ、R法の工程Iと同様に実施することができる。
工程II:
 化合物(52)は、化合物(51)を適当な溶媒中、パラジウム触媒の存在下、水素雰囲気下で水素添加反応を行うことにより製造することができる。
 溶媒としては、メタノールもしくはエタノール等のアルコール類、テトラヒドロフランもしくは1,4-ジオキサン等のエーテル類、またはそれらの混合溶媒を使用することができる。
 パラジウム触媒としては、パラジウム炭素またはパラジウム黒等の触媒を使用することができる。
 反応時間は用いる触媒や溶媒などにより異なるが、通常1時間~24時間、好ましくは1時間~12時間である。反応温度は通常20~50℃、好ましくは20~40℃である。
工程III:
 化合物(52)の脱保護反応は、R法の工程IIと同様に実施することができる。
[V法]
 化合物(1-B)において、R2bがアルコキシである化合物(以下、化合物(1-B-d)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000059
(式中、R2b2はアルコキシを示し、他の記号は前記と同義である。)
 化合物(53)を適当な溶媒中、N,N-ジメチルホルムアミドの存在下または非存在下、塩化オキサリルあるいは塩化チオニルと反応させ、ついで、適当な溶媒中、カリウムチオシアナートと反応させた後、アルコールおよびヒドラジンと反応させることにより、化合物(1-B-d)を製造することができる。
 塩化オキサリルあるいは塩化チオニルとの反応における溶媒としては、塩化メチレンなどのハロゲン化炭化水素類、テトラヒドロフランなどのエーテル類などを使用することができる。
 塩化オキサリルあるいは塩化チオニルとの反応における反応時間は、通常30分間~5時間、好ましくは1時間~3時間である。反応温度は通常0~60℃、好ましくは20~40℃である。
 カリウムチオシアナートとの反応における溶媒としては、トルエンなどの芳香族炭化水素類、塩化メチレンなどのハロゲン化炭化水素類などを使用することができる。
 カリウムチオシアナートとの反応における反応時間は、通常2時間~24時間、好ましくは1時間~3時間である。反応温度は通常0~60℃、好ましくは20~40℃である。
 本反応におけるアルコールとしては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノールなどを使用することができる。
 アルコールとの反応における反応時間は、通常30分間~5時間、好ましくは1時間~3時間である。反応温度は通常0~100℃、好ましくは20~40℃である。
 ヒドラジンとの反応における反応時間は、通常2時間~24時間、好ましくは1時間~3時間である。反応温度は通常0~100℃、好ましくは50~80℃である。
 なお、本反応に使用するヒドラジンとしては、塩の形態(例えば、塩酸塩)であってもよく、また、水和物であってもよい。
[W法]
 化合物(43)において、Xが-O-である化合物(以下、化合物(43a)という)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000060
(式中、HALおよびHAL10はハロゲン原子(塩素原子、臭素原子等)を示し、他の記号は前記と同義である。)
工程I:
 化合物(54)と化合物(47)のカップリング反応は、T法の工程Iと同様に実施することができる。
工程II:
 化合物(55)を適当な溶媒中、パラジウム触媒、リガンドおよび塩基の存在下、ボロン酸エステルと反応させることにより、化合物(56)を得ることができる。
 溶媒としては、1,4-ジオキサンなどのエーテル類、ジメチルスルホキシドまたはトルエンなどの芳香族炭化水素類などを使用することができる。
 パラジウム触媒としては、酢酸パラジウム、または[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン錯体(PdCl(dppf)CHCl)などを使用することができる。
 リガンドとしては、2-ジシクロへキシルホスフィノ-2’,6’-ジメトキシビフェニル(S-PHOS)、2-ジシクロへキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(X-PHOS)、または4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(Xantphos)などを使用することができる。
 塩基としては、酢酸カリウムまたはリン酸カリウムなどを使用することができる。
 ボロン酸エステルとしては、ビス(ピナコラト)ジボロン、トリアルコキシボロンなどを使用することができる。
 反応時間は用いる触媒や溶媒などにより異なるが、通常1時間~24時時間、好ましくは2時間~12時間である。反応温度は通常50~130℃、好ましくは60~100℃である。
工程III:
 化合物(56)と化合物(57)のカップリング反応は、R法の工程Iと同様に実施することができる。
[X法]
 化合物(41)において、R2bが置換されていてもよいアルキル、置換されていてもよい芳香族炭化水素基、または置換されていてもよいシクロアルキルである化合物(以下、化合物(41b)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000061
(式中、各記号は前記と同義である。)
工程IおよびII:
 化合物(60)の製造は、S法の工程Iおよび工程IIと同様に実施することができる。
工程III:
 化合物(41b)は、化合物(60)のアミノ基を保護することにより製造することができる。例えば、PGが2-(トリメチルシリル)エトキシメチル基である場合には、化合物(60)を2-(トリメチルシリル)エトキシメチルクロリドと、適当な溶媒中、塩基の存在下で反応させることにより得ることができる。
 溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドまたはN-メチルピロリドンなどの非プロトン性極性溶媒を使用することができる。
 塩基としては、水素化ナトリウムもしくは水素化カリウムなどの水素化アルカリ金属、または炭酸カリウムもしくは炭酸ナトリウムなどの炭酸アルカリ金属を使用することができる。
[Y法]
 化合物(41)において、R2bがアルキルチオである化合物(以下、化合物(41c)という)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000062
(式中、HAL11はハロゲン原子(塩素原子、臭素原子、ヨウ素原子等)を示し、R2b3はアルキルを示し、他の記号は前記と同義である。)
工程I:
 Synthesis, 1981, 7, 554-557等に記載された方法に準じて、化合物(61)を適当な溶媒中、ヨウ化メチル、二硫化炭素および塩基の存在下、化合物(62)と反応させ、得られた生成物を適当な溶媒中、ヒドラジンと反応させることにより、化合物(63)を製造することができる。
 化合物(61)と化合物(62)との反応における溶媒としては、N,N-ジメチルホルムアミドなどのアミド類、またはテトラヒドロフランなどのエーテル類などを使用することができる。
 化合物(61)と化合物(62)との反応における塩基としては、水素化ナトリウム、水素化カリウムなどの水素化アルキル金属などを使用することができる。
 化合物(61)と化合物(62)との反応における反応時間は、通常1時間~24時間、好ましくは2時間~12時間である。反応温度は通常-10~40℃、好ましくは-10~25℃である。
 ヒドラジンとの反応における溶媒としては、テトラヒドロフランなどのエーテル類、メタノールもしくはエタノールなどのアルコール類、またはそれらの混合溶媒などを使用することができる。
 本反応に使用するヒドラジンとしては、塩の形態であってもよく、また、水和物であってもよい。
 ヒドラジンとの反応における反応時間は、通常30分間~8時間、好ましくは1時間~5時間である。反応温度は通常0~40℃、好ましくは0~25℃である。
工程II:
 化合物(63)から化合物(41c)への反応は、X法における工程IIIと同様に実施することができる。
[Z法]
 化合物(63)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000063
(式中、各記号は前記と同義である。)
工程I:
 Bioorganic & Medicinal Chemistry Letters, 2003, 11, 5, 769-774等に記載された方法に準じて、化合物(64)を適当な溶媒中、N,N-ジメチルホルムアミドの存在下または非存在下、塩化オキサリルあるいは塩化チオニルと反応させ、ついで、適当な溶媒中、塩基の存在下、チオセミカルバジドと反応させることにより、化合物(65)を製造することができる。
 塩化オキサリルあるいは塩化チオニルとの反応における溶媒としては、塩化メチレンなどのハロゲン化炭化水素類、テトラヒドロフランなどのエーテル類などを使用することができる。
 塩化オキサリルあるいは塩化チオニルとの反応における反応時間は、通常30分間~5時間、好ましくは1時間~3時間である。反応温度は通常0~60℃、好ましくは20~40℃である。
 チオセミカルバジドとの反応における溶媒としては、テトラヒドロフランなどのエーテル類、塩化メチレンなどのハロゲン化炭化水素類などを使用することができる。
 チオセミカルバジドとの反応における塩基としては、ピリジンまたはトリエチルアミンなどを使用することができる。
 チオセミカルバジドとの反応における反応時間は、通常2時間~24時間、好ましくは1時間~3時間である。反応温度は通常25~100℃、好ましくは80~100℃である。
工程II:
 化合物(63)は、化合物(65)を適当な溶媒中、水酸化アルカリ金属、炭酸カリウムなどのアルカリ金属塩基の存在下、化合物(62)と反応させることにより製造することができる。
 溶媒としては、メタノールまたはエタノールなどのアルコール類および水の混合溶媒などを使用することができる。
 水酸化アルカリ金属塩基としては、水酸化ナトリウム、水酸化カリウムなどを使用することができる。
 反応時間は、通常30分間~5時間、好ましくは1時間~3時間である。反応温度は通常0~40℃、好ましくは0~25℃である。
[AA法]
 化合物(41)において、R2bが置換されていてもよいアルコキシ、置換されていてもよいアリールオキシ、置換されていてもよいヘテロアリールオキシ、シクロアルキルオキシ、シクロアルキルアルコキシまたは置換されていてもよい窒素原子に結合手を有する非芳香族複素環である化合物(以下、化合物(41d)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000064
(式中、R2b4は置換されていてもよいアルコキシ、置換されていてもよいアリールオキシ、置換されていてもよいヘテロアリールオキシ、シクロアルキルオキシ、シクロアルキルアルコキシまたは置換されていてもよい窒素原子に結合手を有する非芳香族複素環(好ましくはピペリジノ、1-ピペラジニル、モルホリノなど)を示し、他の記号は前記と同義である。)
工程I:
 化合物(66)は、化合物(63a)を適当な溶媒中、酸化剤と反応させることにより製造することができる。
 溶媒としては、塩化メチレンまたはクロロホルムなどのハロゲン化炭化水素類、テトラヒドロフランなどのエーテル類などを使用することができる。
 酸化剤としては、メタクロロ過安息香酸などを使用することができる。
 反応時間は、通常30分間~24時間、好ましくは1時間~12時間である。反応温度は通常0~40℃、好ましくは0~25℃である。
工程II:
 化合物(66)を適当な溶媒中、塩基の存在下、化合物(67)と反応させることにより、化合物(41d)を製造することができる。
 溶媒としては、N,N-ジメチルホルムアミドもしくはN-メチルピロリドンなどのアミド類、テトラヒドロフランもしくは1,4-ジオキサンなどのエーテル類、またはそれらの混合溶媒などを使用することができる。
 塩基としては、水素化ナトリウムもしくは水素化カリウムなどの水素化アルカリ金属、炭酸カリウムもしくは炭酸ナトリウムなどの炭酸アルカリ金属、またはトリエチルアミンもしくはN,N-ジイソプロピルエチルアミンなどの有機塩基などを使用することができる。
 反応時間は、通常10分間~24時間、好ましくは10分間~12時間である。反応温度は通常0~150℃、好ましくは0~120℃である。
[AB法]
 化合物(41)において、R2bが置換されていてもよいアルコキシである化合物(以下、化合物(41e)という)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000065
(式中、R2b5は置換されていてもよいアルキルを示し、他の記号は前記と同義である。)
工程I:
 Justus Liebigs Annalen der Chemie, 1955, 597, 157-165等に記載された方法に準じて、化合物(68)を適当な溶媒中、塩基の存在下、ハロゲン化シアン(臭化シアンなど)と反応させることにより、化合物(69)を製造することができる。
 溶媒としては、1,4-ジオキサンなどのエーテル類、塩化メチレンなどのハロゲン化炭化水素類、アセトニトリルなどを使用することができる。
 塩基としては、炭酸水素ナトリウムなどの炭酸アルカリ金属、水酸化ナトリウムなどの水酸化アルカリ金属などを使用することができる。
 反応時間は、通常1時間~48時間、好ましくは2時間~24時間である。反応温度は通常0~100℃、好ましくは25~80℃である。
工程II:
 化合物(71)は、化合物(69)を、水酸化アルカリ金属塩基の存在下、化合物(70)と反応させることにより製造することができる。
 水酸化アルカリ金属塩基としては、水酸化ナトリウム、水酸化カリウムなどを使用することができる。
 反応時間は、通常1時間~24時間、好ましくは3時間~12時間である。反応温度は通常50~100℃、好ましくは60~90℃である。
工程III:
 化合物(71)を、X法における工程IIIと同様に保護することにより、化合物(41e)を製造することができる。
[AC法]
 化合物(41)において、R2bが置換されていてもよい窒素原子に結合手を有する非芳香族複素環式基(好ましくは、ピペリジノ、1-ピペラジニル、モルホリノなど)である化合物(以下、化合物(41f)という)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000066
(式中、R2b6は置換されていてもよい窒素原子に結合手を有する非芳香族複素環式基(好ましくは、ピペリジノ、1-ピペラジニル、モルホリノなど)を示し、他の記号は前記と同義である。)
工程I:
 ベンゾトリアゾールとハロゲン化シアン(臭化シアンなど)を反応させて得られる化合物(72)を、適当な溶媒中、塩基存在下で化合物(73)と反応させ、ついで、適当な溶媒中、塩基存在下で化合物(74)と反応させることにより、化合物(75)を製造することができる。
 化合物(72)および化合物(73)との反応における溶媒としては、テトラヒドロフラン、ジオキサンなどのエーテル類、塩化メチレンなどのハロゲン化炭化水素類、アセトニトリルなどを使用することができる。
 化合物(72)および化合物(73)との反応における塩基としては、トリエチルアミン、ジイソプロピルエチルアミンまたはピリジンなどの有機塩基を使用することができる。
 化合物(72)および化合物(73)との反応における反応時間は、通常1時間~24時間、好ましくは3時間~12時間である。反応温度は通常0~40℃、好ましくは0~25℃である。
 化合物(74)との反応における溶媒としては、クロロホルム、塩化メチレンなどのハロゲン化炭化水素類、テトラヒドロフラン、ジオキサンなどのエーテル類、塩化メチレンなどのハロゲン化炭化水素類、アセトニトリルなどを使用することができる。
 化合物(74)との反応における塩基としては、トリエチルアミン、ジイソプロピルエチルアミンまたはピリジンなどの有機塩基を使用することができる。
 化合物(74)との反応における反応時間は、通常1時間~24時間、好ましくは1時間~12時間である。反応温度は通常0~60℃、好ましくは0~40℃である。
工程II:
 Synthesis, 2001, 6, 897 - 903に記載されている方法に準じて、化合物(75)を適当な溶媒中、ヒドラジンと反応させることにより、化合物(76)を製造することができる。
 溶媒としては、クロロホルム、塩化メチレンなどのハロゲン化炭化水素類などを使用することができる。
 反応時間は、通常1時間~24時間、好ましくは3時間~12時間である。反応温度は通常0~60℃、好ましくは0~40℃である。
工程III:
 化合物(76)を、X法における工程IIIと同様に保護することにより、化合物(41f)を製造することができる。
[AD法]
 化合物(41)において、R2bが置換されていてもよい芳香族炭化水素基である化合物(以下、化合物(41g)という)は、以下の方法により製造することもできる。
Figure JPOXMLDOC01-appb-C000067
(式中、R2b7は置換されていてもよい芳香族炭化水素基を示し、他の記号は前記と同義である。)
 Tetrahedron Letters 1987, 28, 5133 - 5136に記載されている方法に準じて、化合物(41g)は、化合物(68)を適当な溶媒中、塩基の存在下で、化合物(77)と反応させ、さらにアミノ基をPGにて保護することにより、製造することができる。
 溶媒としては、メタノール、エタノールもしくはイソプロピルアルコールなどのアルコール類などを使用することができる。
 塩基としては、ナトリウムメトキシド、カリウムメトキシドなどのアルカリ金属アルコキシドなどを使用することができる。
 反応時間は、通常12時間~72時間、好ましくは24時間~48時間である。反応温度は、通常25~100℃、好ましくは50~90℃である。
[AE法]
 化合物(41)において、R2bが置換されていてもよいアルキル、置換されていてもよいシクロアルキルおよび置換されていてもよい芳香族炭化水素基である化合物(以下、化合物(41h)という)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000068
(式中、各記号は前記と同義である。)
工程I:
 J. Am. Chem. Soc. 2009, 131, p.15080-15081に記載されている方法に準じて、化合物(58)を適当な溶媒中、酸素雰囲気下、塩基および触媒の存在下で、化合物(78)と反応させることにより、化合物(79)を製造することができる。
 溶媒としては、ジメチルスルホキシド、N,N-ジメチルホルムアミド、ジクロロベンゼン、トルエンなどを使用することができる。
 塩基としては、炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの炭酸アルカリ金属などを使用することができる。
 触媒としては、塩化銅(I)、臭化銅(I)、臭化銅(II)、酢酸銅(II)などの触媒を使用することができる。反応基によっては添加剤として1,10-フェナンスロリンおよびハロゲン化亜鉛(II)が有効である。
 反応時間は、通常12時間~48時間、好ましくは12時間~24時間である。反応温度は、通常、室温から溶媒の還流温度、好ましくは80~150℃である。
工程II:
 化合物(79)から化合物(41h)への反応は、X法における工程IIIと同様に実施することができる。
[AF法]
 化合物(46)、および化合物(49)であってLv10がトリフルオロメタンスルホニルオキシである化合物(49a)は、以下の方法により製造することができる。
Figure JPOXMLDOC01-appb-C000069
(式中、PGは水酸基の保護基(好ましくはベンジル等)を示し、他の記号は前記と同義である。)
工程I:
 化合物(41)と化合物(80)のカップリング反応は、R法の工程Iと同様に実施することができる。
工程II:
 化合物(46)は、化合物(81)のPGを脱保護することにより製造することができる。
 PGの脱保護反応は、例えば、PGがベンジル基である場合には、化合物(81)を適当な溶媒(メタノールもしくはエタノール等のアルコール類等)中、パラジウム触媒(パラジウム炭素もしくは水酸化パラジウムなど)の存在下、水素雰囲気下で水素添加反応を行うことにより、化合物(46)を製造することができる。
工程III:
 化合物(49a)は、化合物(46)を適当な溶媒(塩化メチレンもしくはクロロホルムなどのハロゲン化炭化水素類、またはテトラヒドロフランもしくはジエチルエーテルなどのエーテル類等)中、塩基(トリエチルアミン、N,N-ジイソプロピルエチルアミンなど)の存在下、0℃~25℃で1時間~8時間、トリフルオロメタンスルホン酸無水物と反応させることにより製造することができる。
 一般式(A)に示す化合物は、上記[A法]~[AF法]またはPCT/JP2011/079958に記載された方法に準じて製造することができる。
 本発明化合物、中間体化合物、原料化合物等に官能基(水酸基、アミノ、カルボキシ等)を有する場合は、Theodora W. Greene, Peter G. M. Wuts, "Protective Groups in Organic Synthesis" 3rd. ed., John Wiley & Sons, Inc., 1999に記載の方法に準じて、有機合成化学において通常用いる保護基で保護し、反応後、当該保護基を除去することにより、目的とする化合物を得ることができる。保護基としては、同書に記載された有機合成化学において通常用いる保護基があげられ、例えば、水酸基の保護基としては、例えばテトラヒドロピラニル、トリメチルシリル、t-ブチルジメチルシリル、ベンジル、4-メトキシベンジル、メトキシメチルまたはアセチル等が挙げられ、アミノ保護基としては、例えばt-ブトキシカルボニル、ベンジルオキシカルボニル、9-フルオレニルメトキシカルボニル、2,2,2-トリクロロエトキシカルボニル、t-アミルオキシカルボニル、4-メトキシベンジル、2-ニトロベンゼンスルホニル、2,4-ジニトロベンゼンスルホニルまたは2-(トリメチルシリル)エトキシメチル等が挙げられ、カルボキシル保護基としては、例えばメチル、エチルもしくはt-ブチル等のアルキルまたはベンジル等が挙げられる。
 また、上記方法に従って本発明化合物、中間体化合物を製造した後、官能基を常法に従って変換または修飾することもできる。具体的には以下の方法が挙げられる。
(1)カルボキシまたはそのエステルからアミノカルボニルへの変換
 カルボキシまたはその塩をアシルハライドに変換した後アミンと反応させるか、カルボキシまたはその塩に縮合剤の存在下でアミンを反応させるか、あるいはそのエステルにアミンを反応させることにより、対応するアミノカルボニルに変換することができる。
(2)アミンからアミドへの変換
 アミンまたはその塩を、カルボキシまたは対応するアシルハライドと反応させるか、アミンまたはその塩に、縮合剤の存在下でカルボキシを反応させるか、あるいはアミンをカルボキシのエステルと反応させることにより、対応するアミドに変換することができる。
(3)エステルからカルボキシへの変換
 エステルを水酸化アルカリ金属塩基(水酸化ナトリウムもしくは水酸化カリウム等)または酸(塩酸もしくは硫酸等)で加水分解する、あるいは金属触媒を用いて水素添加することにより、対応するカルボキシまたはその塩に変換することができる。
(4)エステルからヒドロキシメチルへの変換
 エステルを還元剤(水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化アルミニウムリチウム、または水素化トリアセトキシホウ素ナトリウム等の金属還元試薬等)と反応させることにより、対応するヒドロキシメチルに変換することができる。
(5)アルコールからエーテルへの変換
 アルコールを塩基存在下でハロゲン化アルキルと反応させることにより、対応するエーテルに変換することができる。
(6)アルコールからアルデヒドへの変換
 アルコールを酸化剤(二酸化マンガン等)と処理することにより、対応するアルデヒドに変換することができる。
(7)アルデヒドからアミノメチルまたは環状アミノメチルへの変換
 アルデヒドを還元剤(水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化アルミニウムリチウム、または水素化トリアセトキシホウ素ナトリウム等の金属還元試薬等)の存在下でアミンまたは環状アミン(ピペリジン、ピペラジンもしくはモルホリン等)と反応させることにより、対応するアミノメチルまたは環状アミノメチルに変換することができる。
(8)ハロゲンからシアノへの変換
 ハロゲンをパラジウム触媒(酢酸パラジウムまたはPdCl(dppf)等)、リガンド(ブチルジ-1-アダマンチルホスフィン、X-PHOS、S-PHOS、またはXantphos等)および塩基(炭酸ナトリウムまたは炭酸カリウム等)の存在下または非存在下で、シアノ化剤(ヘキサシアノ鉄(II)酸カリウム三水和物、シアン化銅(I)、またはシアン化亜鉛等)と反応させることにより、対応するシアノに変換することができる。
(9)ハロアルキルからカルボキシへの変換
 ハロアルキルを塩基(水酸化ナトリウムもしくは水酸化カリウム等の水酸化アルカリ金属塩基など)で加水分解することにより、対応するカルボキシまたはその塩に変換することができる。
(10)ハロアルキルからシアノへの変換
 ハロアルキルをアンモニアで処理することにより、対応するシアノまたはその塩に変換することができる。
(11)アルキルチオからアルキルスルホニルへの変換
 アルキルチオを酸化剤(メタクロロ過安息香酸など)で処理することにより、対応するアルキルスルホニルに変換することができる。
(12)アルキルスルホニルからアルコキシ、アリールオキシまたはヘテロアリールオキシへの変換
 アルキルスルホニルを塩基(炭酸カリウム、炭酸ナトリウム、水素化ナトリウムなど)の存在下、アルコール、ヒドロキシアリールまたはヒドロキシヘテロアリールと反応させることにより、対応するアルコキシ、アリールオキシまたはヘテロアリールオキシに変換することができる。
 また、上記の製造において、製造される本発明化合物および各中間体は、通常の方法、例えばクロマトグラフィー、蒸留、再結晶等で精製することができる。再結晶溶媒としては例えばメタノール、エタノール、2-プロパノール等のアルコール溶媒、ジエチルエーテル、ジイソプロピルエーテル、THF等のエーテル溶媒、酢酸エチル等のエステル溶媒、トルエン等の芳香族溶媒、アセトン等のケトン溶媒、ヘキサン等の炭化水素溶媒、水等またはこれらの混合溶媒等が挙げられる。また、本発明化合物は常法に従って製薬上許容される塩にすることができ、その後再結晶等を行うこともできる。
 本発明の化合物またはその薬理的に許容しうる塩が不斉炭素に基づく光学異性体が存在する場合、通常の光学分割手段(分別結晶法、キラルカラムを用いた分割法)により個々の光学異性体に分離することができる。また、光学的に純粋な出発原料を用いて、光学異性体を合成することもできる。
 本発明の化合物又はその薬理的に許容しうる塩は、優れたDGAT1阻害作用を有しており、温血動物(好ましくはヒトを含む哺乳類動物)における下記の疾患の予防及び/又は治療のための医薬として有用である。
(1)脂肪蓄積(肥満症)に関する疾患:高脂血症、高トリグリセリド血症、脂質代謝異常疾患、脂肪肝等
(2)脂肪蓄積(肥満症)に起因すると考えられている疾患:2型糖尿病、糖尿病合併症(糖尿病性末梢神経障害、糖尿病性腎症、糖尿病性網膜症、糖尿病性大血管症を含む);動脈硬化症、高血圧症、脳血管障害、冠動脈疾患;呼吸異常、腰痛、変形性膝関節症等
(3)家族性高カイロミクロン血症
 また、本発明の化合物又はその薬理的に許容しうる塩は、DGAT1阻害作用に基づいたGLP-1分泌促進作用を有するため、インスリン分泌促進作用、膵保護作用も期待されるものである。
 こうして得られる本発明の化合物又はその薬理的に許容しうる塩は、当該化合物の治療上有効量及び製薬上許容される担体を含む医薬組成物として製剤化することができる。製薬上許容される担体としては、結合剤(例えば、ヒドロキシプロピルセルロース、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール)、賦形剤(例えば、乳糖、ショ糖、マンニトール、ソルビトール、コーンスターチ、ポテトスターチ、結晶セルロース、炭酸カルシウム)、滑沢剤(例えば、ステアリン酸マグネシウム、ステアリン酸カルシウム、タルク)、崩壊剤(例えば、低置換度ヒドロキシプロピルセルロース、架橋カルボキシメチルセルロース)及び湿潤剤(例えば、ラウリル硫酸ナトリウム)等を挙げることができる。
 本発明の化合物又はその薬理的に許容しうる塩は、経口的又は非経口的に投与することができ、適当な医薬製剤として用いることができる。経口投与用の適当な医薬製剤としては、例えば、錠剤、顆粒剤、カプセル剤、散剤等の固体製剤、あるいは溶液製剤、懸濁製剤又は乳化製剤等が挙げられる。非経口投与用の適当な医薬製剤としては、坐剤、注射用蒸留水、生理食塩水又はブドウ糖水溶液等を用いた注射剤又は点滴製剤、あるいは吸入剤等が挙げられる。
 本発明化合物又はその薬理的に許容し得る塩の投与量は、投与方法、患者の年令、体重、状態によっても異なるが、通常経口投与の場合、1日当り0.001~100mg/kg、好ましくは0.1~30mg/kg、更に好ましくは0.1~10mg/kgであり、これを1回或いは2回~4回に分けて投与する。非経口投与の場合、1日当り0.0001~10mg/kgとするのが好ましく、1日1回~複数回に分けて投与する。また、経粘膜投与する場合には、1日当り0.001~100mg/kgを1日1回~複数回に分けて投与する。
 以下、本発明を実施例、参考例および実験例により詳細に説明するが、本発明はこれらにより何ら限定されるものではない。
実施例1-1
Figure JPOXMLDOC01-appb-C000070
(1)化合物1の酢酸塩(1.94g)、炭酸カリウム(1.73g)をジクロロメタン(50mL)及び飽和食塩水(50mL)に溶解させ、これに化合物2(フェナシルブロミド)(1.49g)加えて4時間加熱還流した。反応液を室温に戻した後、ジクロロメタンを加え分液した。有機層を分離して、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=99:1→95:5)で精製し、得られた残渣にジエチルエーテルを加え、ろ取し、ジエチルエーテルで洗浄後、乾燥することにより、化合物3(1.93g)を得た。
MS(m/z):428[M+H]
(2)化合物3(0.31g)をメタノール(7mL)及びテトラヒドロフラン(7mL)に溶解させ、8N 水酸化ナトリウム水溶液(0.92mL)を滴下し、50 ℃で一終夜撹拌した。反応液を室温に戻した後、減圧下溶媒を留去して得られた残渣に水を加え、酢酸にて中和した。減圧下溶媒を留去した後、水を加えて、生じた固体残渣をろ取し、水で洗浄後、乾燥した。得られた残渣にジエチルエーテルを加えて、ろ取し、ジエチルエーテルで洗浄後、乾燥することにより、化合物4(0.29g)を得た。
MS(m/z):414[M+H]
実施例1-2~1-69
 前記実施例1-1と同様に処理することにより、後記表1、実施例1-2~1-69の化合物を得た。
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-I000072
Figure JPOXMLDOC01-appb-I000073
Figure JPOXMLDOC01-appb-I000074
Figure JPOXMLDOC01-appb-I000075
Figure JPOXMLDOC01-appb-I000076
Figure JPOXMLDOC01-appb-I000077
Figure JPOXMLDOC01-appb-I000078
Figure JPOXMLDOC01-appb-I000079
Figure JPOXMLDOC01-appb-I000080
実施例2-1
Figure JPOXMLDOC01-appb-C000081
 化合物1(4.40g)をアセトニトリル(100mL)に懸濁させ、1N水酸化ナトリウム水溶液(10.6mL)を滴下して、室温で一終夜攪拌した。生じた固体をろ取し、アセトニトリルで洗浄後、乾燥することにより、化合物2(4.55g)を得た。
MS(m/z):412[M-Na]-
実施例2-2~2-16
 前記実施例2-1と同様に処理することにより、後記表2、実施例2-2~2-16の化合物を得た。
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-I000083
Figure JPOXMLDOC01-appb-I000084
実施例3-1
Figure JPOXMLDOC01-appb-C000085
(1)化合物1(300mg)、化合物2(163mg)および炭酸カリウム(308mg)をテトラヒドロフラン(8mL)中に加え、さらに飽和食塩水(8mL)を加えて80℃で3時間攪拌した。反応液を室温まで冷却した後、酢酸エチルおよび飽和食塩水を加えて分液した。有機層を分離後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査に酢酸(8mL)を加えて、80℃で2時間撹拌した。反応液を室温に戻した後、減圧下溶媒を留去し、酢酸エチルおよび飽和食塩水を加えて分液した。有機層を分離後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られたシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→97:3)で精製することにより、化合物3(144mg)を得た。
MS(m/z)444[M+H]
(2)化合物3(142mg)を、実施例1-1(2)と同様に処理することにより、 化合物4(115mg)を得た。
MS(m/z):430[M+H]
実施例3-2~3-13
 前記実施例3-1と同様に処理することにより、後記表3、実施例3-2~3-13の化合物を得た。
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-I000087
実施例4-1
Figure JPOXMLDOC01-appb-C000088
(1)化合物1(250mg)と化合物2(105mg)を、実施例1-1(1)と同様に処理することにより、化合物3(131.9mg)を得た。
MS(m/z):503[M+H]
(2)化合物3(130mg)をトリフルオロ酢酸(3mL)および水(0.3mL)に溶解させ、室温で3時間撹拌した。減圧濃縮して得られた残査をテトラヒドロフランに溶解させ、1N水酸化ナトリウム水溶液で中和した。酢酸を数滴加えた後、酢酸エチルおよび水を加えて分液した。有機層を分離後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査にジエチルエーテル、ジイソプロピルエーテルおよび酢酸エチルを加えて粉末化させた後、減圧下で溶媒を留去した。得られた残渣にジイソプロピルエーテルを加えて粉末をろ取し、乾燥させることで化合物4(94.5mg)を得た。
MS(m/z)447[M+H]
実施例4-2~4-16
 前記実施例4-1と同様に処理することにより、後記表4、実施例4-2~4-16の化合物を得た。
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-I000090
Figure JPOXMLDOC01-appb-I000091
実施例5-1
Figure JPOXMLDOC01-appb-C000092
 化合物1(300mg)、化合物2(187mg)および炭酸カリウム(308mg)をテトラヒドロフラン(8mL)に加え、さらに飽和食塩水(8mL)を加えて80℃で5時間撹拌した。反応液を室温まで冷却した後、酢酸エチルおよび飽和食塩水を加えて分液した。有機層を分離し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→94:6)で精製した。得られた固体をメタノール(5mL)およびテトラヒドロフラン(5mL)に溶解させ、2N水酸化ナトリウム水溶液(1.52mL)を加えて50℃で3時間撹拌した。減圧濃縮して得られた残渣に水および酢酸を加え、析出した固体を水で洗浄、乾燥することにより化合物3(117.2mg)を得た。
MS(m/z)460[M+H]
実施例5-2
 前記実施例5-1と同様に処理することにより、後記表5、実施例5-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000093
実施例6
Figure JPOXMLDOC01-appb-C000094
(1)化合物1(696mg)と化合物2(665mg)を、実施例1-1(1)と同様に処理することにより、化合物3(938mg)を得た。
MS(m/z):562[M+H]
(2)化合物3(936mg)を、N,N-ジメチルホルムアミド(9mL)に溶解させ、窒素雰囲気下、氷冷下で60%水素化ナトリウム(87mg)を加え攪拌した。1時間後、氷冷下で2-(トリメチルシリル)エトキシメチルクロリド(442μL)を加え、徐々に室温に戻しながら、一終夜攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチル及び水で分液し、有機層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=85:15→65:35)で精製することにより、化合物4(782mg)を得た。
MS(m/z):692[M+H]
(3)化合物4(782mg)をメタノール(15mL)及びテトラヒドロフラン(15mL)に溶解させ、窒素雰囲気下で10%パラジウム炭素(300mg)を加えた後、水素雰囲気へ置換し、室温で3時間撹拌した。不溶物をメンブランフィルターでろ過し、ろ液を減圧濃縮することにより、化合物5(658mg)を得た。
MS(m/z):602[M+H]
(4)化合物5(655mg)をテトラヒドロフラン(13mL)に溶解させ、氷冷下でトリエチルアミン(182μL)及びクロロギ酸イソブチル(169μL)を加え、30分間攪拌した。生じた固体をろ過、テトラヒドロフランで洗浄後、ろ液に氷冷下にて水素化ホウ素ナトリウム(62mg)を加え、室温に戻しながら2日間攪拌した。反応液へ飽和塩化アンモニウム水溶液を加え、酢酸エチル及び水で分液した。有機層を分離し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→95:5)で精製することにより、化合物6(553mg)を得た。
MS(m/z):588[M+H]
(5)化合物6(551mg)をジクロロメタン(11mL)に溶解させ、二酸化マンガン(815mg)を加え、室温で一終夜攪拌した。不溶物をメンブランフィルターでろ過し、ろ液を減圧下濃縮することにより、化合物7(443mg)を得た。
MS(m/z):586[M+H]
(6)化合物7(441mg)をテトラヒドロフラン(9mL)に溶解させ、モルホリン(132μL)を加え攪拌した。1時間後、水素化トリアセトキシホウ素ナトリウム(479mg)及び酢酸(43μL)を加えて、さらに室温で一終夜攪拌した。反応液へジクロロメタン及び飽和炭酸水素ナトリウム水溶液を加えて分液した。有機層を水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=50:50→0:100)で精製することにより、化合物8(477mg)を得た。
MS(m/z):657[M+H]
(7)化合物8(475mg)をトリフルオロ酢酸(10mL)及び水(1mL)に溶解させ、室温で一終夜攪拌した。減圧下溶媒を留去した後、残渣に酢酸エチル及び飽和炭酸水素ナトリウム水溶液を加え分液した。有機層を水で洗い、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残渣をメタノール(5mL)及びテトラヒドロフラン(5mL)に溶解させ、氷冷下で2N水酸化ナトリウム水溶液(1.8mL)を加えて、室温で一終夜攪拌した。反応液に2N塩酸(1.8mL)を加え、減圧下溶媒を留去したした。得られた残渣をLC-MS分取で精製することにより、化合物9(264mg)を得た。
MS(m/z):513[M+H]
実施例7
Figure JPOXMLDOC01-appb-C000095
(1)化合物1(1000mg)、化合物2(986mg)および[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロリド-ジクロロメタン錯体(193mg)をN,N-ジメチルホルムアミド(12mL)に溶解させ、2M炭酸ナトリウム水溶液(3.55mL)を加えて、窒素雰囲気下、65℃で6時間撹拌した。反応液を室温まで冷却後、食塩水及び酢酸エチルを加えて分液した。有機層を分離後、無水硫酸マグネシウムおよび活性炭を加えてセライトろ過し、ろ液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=88:12→80:20→75:25)で精製することにより、化合物3(1.14g)を得た。
MS(m/z):550[M+H]
(2)化合物3(2.56g)をトリフルオロ酢酸(40mL)及び水(6mL)に溶解させ、室温で一終夜撹拌した。反応液を減圧濃縮して得られた残渣に、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチル及びテトラヒドロフランで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残渣を、シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→95:5)で精製することにより、化合物4(1.90g)を得た。
MS(m/z):420[M+H]
(3)化合物4(1.88g)をメタノール(20mL)及びテトラヒドロフラン(20mL)に溶解させ、28%アンモニア水(40mL)を加え、40℃で一終夜撹拌した。さらに、28%アンモニア水(10mL)を2回に分けて加え、40℃で一終夜攪拌した。反応液を室温に戻した後、減圧下溶媒を留去し、得られた残渣に酢酸エチル、テトラヒドロフランおよび水を加えて分液した。有機層を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→96:4)で精製することにより、化合物5(1.16g)を得た。
MS(m/z):377[M+H]
(4)化合物5(854mg)を用いて、実施例6(2)と同様に処理することにより、 化合物6(1.09g)を得た。
MS(m/z):507[M+H]
(5)化合物6(1.08g)を用いて、参考例7-1(4)と同様に処理することにより、化合物7(1.14g)を得た。
MS(m/z):540[M+H]
(6)化合物7(1.14g)に無水酢酸(15mL)を加えて、120℃で2時間攪拌した。反応液を室温に戻した後、減圧下溶媒を留去(トルエンによる共沸操作(3回)含む)し、得られた残渣に飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、このときの水層をさらに酢酸エチルにて抽出した。有機層を合わせて無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル)で精製することにより、化合物8(679mg)を得た。
MS(m/z):564[M+H]
(7)化合物8(672mg)を用いて、実施例6(7)と同様に処理することにより、 化合物9(389mg)を得た。
MS(m/z):420[M+H]
実施例8
Figure JPOXMLDOC01-appb-C000096
(1)化合物1(102mg)と化合物2(119mg)をジメチルホルムアミド(2.5mL)に溶解させ、塩化パラジウム(dppf)塩化メチレン錯体(10mg)および2M炭酸ナトリウム水溶液(0.5mL)を加えて、窒素雰囲気下、70℃にて8時間撹拌した。反応混合物に水、酢酸エチルを加えて分液し、有機層にヘキサンを加え、水および飽和食塩水にて洗浄した。有機層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=90:10→67:33)で精製することにより、化合物3(81mg)を得た。
MS(m/z):582[M+H]
(2)化合物3(80mg)を用いて、実施例7(2)と同様に処理することにより、化合物4(51mg)を得た。
MS(m/z):452[M+H]
(3)化合物4(43mg)を用いて、実施例1-1(2)と同様に処理することにより、化合物5(36mg)を得た。
MS(m/z):438[M+H]
実施例9
Figure JPOXMLDOC01-appb-C000097
(1)化合物1(9.43g)、化合物2(10g)および炭酸ナトリウム(8.77g)を、トルエン(285mL)、エタノール(143mL)および水(143mL)の混合溶媒に加え、窒素雰囲気に置換した。これにテトラキストリフェニルホスフィンパラジウム(0.48g)を加え、16時間加熱還流した。反応液を室温まで冷却した後、酢酸エチルおよび水を加えて分液した。有機層を分離し、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた固体を酢酸エチルにより結晶化させることで、化合物3(10.55g)を得た。
MS(m/z):340/342[M+H]
(2)化合物3(1000mg)、ビス(ピナコラト)ジボラン(933mg)および酢酸カリウム(865mg)を1,4-ジオキサン(29mL)に加え、窒素置換した。これに塩化パラジウム(dppf)塩化メチレン錯体(72mg)およびdppf(49mg)を加えてさらに窒素置換し、80℃で一終夜撹拌した。反応液へ水および酢酸エチルを加えてかき混ぜた後、セライトろ過した。有機層を分離し、無水硫酸マグネシウムおよび活性炭を加えた後、セライトろ過し、減圧下溶媒を留去した。得られた残査にメタノールを加え、固体をろ取することにより、化合物4(803mg)を得た。
MS(m/z):388[M+H]
Figure JPOXMLDOC01-appb-C000098
(3)化合物5(10g)を用いて、実施例6(2)と同様に処理することにより、化合物6および化合物7の混合物(13.27g)を得た。
MS(m/z):423/425[M+H]
Figure JPOXMLDOC01-appb-C000099
(4)化合物4(800mg)ならびに化合物6および化合物7の混合物(1139mg)を、2M炭酸ナトリウム水溶液(4131μL)およびジメトキシエタン(17mL)の混合溶媒に加え、窒素置換した。これにテトラキス(トリフェニルホスフィン)パラジウム(24mg)を加えて、80℃で12時間撹拌した。反応液へ酢酸エチルおよび水を加え攪拌し、不溶物をろ去した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=91:9→67:33)で精製することにより、化合物8および化合物9の混合物(749mg)を得た。
MS(m/z):604/606[M+H]
(5)化合物8および化合物9の混合物(500mg)、フェニルボロン酸(151mg)ならびに2M炭酸ナトリウム水溶液(1654μL)を、ジメトキシエタン(5mL)およびエタノール(5mL)の混合溶媒に加え、窒素置換した。これに塩化パラジウム(dppf)塩化メチレン錯体(68mg)を加え、80℃で一終夜撹拌した。反応液へ酢酸エチルおよび水を加えて分液した。有機層を分離して、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→85:15)で精製することにより、化合物10および化合物11の混合物(403mg)を得た。
MS(m/z):602[M+H]
(6)化合物10および化合物11の混合物(400mg)をメタノール(8mL)に溶解させ、パラジウム-炭素(80mg)を加えて、水素雰囲気下室温で5時間撹拌した。不溶物をメンブランフィルターでろ過し、ろ液を減圧濃縮することにより、化合物12および化合物13の混合物(300mg)を得た。
MS(m/z):512[M+H]
Figure JPOXMLDOC01-appb-C000100
(7)化合物12および化合物13の混合物(300mg)を用いて、参考例7-1(1)と同様に処理することにより、化合物14および化合物15の混合物(58mg)を得た。
MS(m/z):626[M+H]
(8)化合物14および化合物15の混合物(58mg)を用いて、実施例1-1(2)と同様に処理することにより、化合物16および化合物17の混合物(57mg)を得た。
MS(m/z):612[M+H]
(9)化合物16および化合物17の混合物(57mg)を用いて、実施例7(2)と同様に処理することにより、化合物18(34mg)を得た。
MS(m/z):482[M+H]
実施例10
Figure JPOXMLDOC01-appb-C000101
(1)化合物1(6.69g)および化合物2(6.04g)を用いて、実施例7(1)と同様に処理することにより、化合物3(6.54g)を得た。
MS(m/z):622[M+H]
(2)化合物3(1.14g)をテトラヒドロフラン(30mL)に溶解させ、氷冷下で水素化リチウムアルミニウム(104mg)を加えた後、0℃で20分間撹拌した。反応液へ水(1mL)、15%水酸化ナトリウム水溶液(1mL)および水(2mL)を順に加え、氷冷下で30分間撹拌した。反応液をセライトろ過し、ろ液を減圧濃縮した。得られた残査をテトラヒドロフランに溶解させ、10%クエン酸水溶液でpH4未満に調整した後、酢酸エチルを加えて分液した。有機層を分離し、水および飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→85:15)で精製し、得られた固体へ、氷冷した酢酸エチルおよびn-ヘキサンを加えてろ取することにより、化合物4(872mg)を得た。
MS(m/z):518[M+H]
(3)化合物4(290mg)をテトラヒドロフラン(10mL)およびN,N-ジメチルホルムアミド(10mL)に溶解させ、60%水素化ナトリウム(34mg)を加え、1分間超音波処理した。これに臭化ベンジル(125mg)を室温にて加え、さらに室温で6時間かき混ぜた。反応液にジエチルエーテル、n-ヘキサン、酢酸エチルおよび水を加えて分液した。有機層を分離し、水および飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残渣へジイソプロピルエーテルおよびn-ヘキサンを加えて、ろ取することにより、化合物5(293mg)を得た。
MS(m/z):608[M+H]
(4)化合物5(290mg)を塩化メチレン(8mL)に溶解させ、氷冷下、トリフルオロ酢酸(4mL)を加え、そのまま1時間撹拌した。反応混合物へ飽和重曹水を加えて塩基性(>pH8)とし、酢酸エチルを加えて分液した。有機層を分離し、水および飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→90:10)で精製し、得られた残渣にジイソプロピルエーテルおよびn-ヘキサンを加えて、ろ取することにより、化合物6(209mg)を得た。
MS(m/z):488[M+H]
(5)化合物6(208mg)および化合物7(113mg)を用いて、参考例7-1(1)と同様に処理することにより、化合物8(127mg)を得た。
MS(m/z):602[M+H]
(6)化合物8(127mg)を用いて、実施例7(2)と同様に処理することにより、化合物9(67mg)を得た。
MS(m/z):472[M+H]
(7)化合物9(67mg)を用いて、実施例1-1(2)と同様に処理することにより、化合物10(34mg)を得た。
MS(m/z):458[M+H]
実施例11
Figure JPOXMLDOC01-appb-C000102
(1)化合物1(2.46g)を、N,N-ジメチルホルムアミド(10mL)およびテトラヒドロフラン(20mL)の混合溶媒に溶解させ、氷冷下にて60%水素化ナトリウム(276mg)を加えた。5分間撹拌した後、反応液に臭化ベンジル(1.18g)を加え、さらに氷冷下で2時間撹拌した。反応液に10%クエン酸水溶液を加えてpH4に調整し、ジエチルエーテルを加え分液した。有機層を分離して、水および飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(クロロホルム:酢酸エチル=100:0→85:15)で精製することにより、化合物2(2.82g)を得た。
MS(m/z):518[M+H]
(2)化合物2(2.82g)を用いて、実施例1-1(2)と同様に処理することにより、化合物3(2.58g)を得た。
MS(m/z):504[M+H]
(3)化合物3(200mg)、化合物4(83mg)、1-ヒドロキシベンズトリアゾール(107mg)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(152mg)をN,N-ジメチルホルムアミドに加え、室温で2日間撹拌した。減圧下溶媒を留去し、得られた残渣へ酢酸エチルおよび飽和炭酸水素ナトリウム水溶液を加えて分液した。有機層を分離し、10%クエン酸水溶液、水および飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→85:15)で精製することにより、化合物5(119mg)を得た。
MS(m/z):591[M+H]
(4)化合物5(115mg)をテトラヒドロフラン(10mL)に溶解させ、20%水酸化パラジウム-炭素(130mg)を加え、水素雰囲気下室温で8時間撹拌した。溶媒をエタノール(10mL)に置換し、水素雰囲気下75℃で4時間撹拌した。反応液を窒素ガスにて置換した後、クロロホルムおよびメタノールで希釈し、ろ過した。減圧下溶媒を留去して得られた残査をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→85:15)で精製し、得られた油状物をジエチルエーテルおよびジイソプロピルエーテルで固体化させ、得られた固体をろ取することにより、化合物6(36mg)を得た。
MS(m/z):501[M+H]
実施例12
Figure JPOXMLDOC01-appb-C000103
(1)化合物1(実施例1-1化合物3参照)(200mg)およびN-クロロコハク酸イミド(102mg)を、クロロホルム(30mL)に加え、室温で一終夜撹拌した。N-クロロコハク酸イミド(102mg)を追加し、さらに4時間撹拌した。反応液をシリカゲルカラムクロマトグラフィー(クロロホルム:酢酸エチル=100:0→50:50)で精製し、得られた油状物をジイソプロピルエーテルで固体化させ、n-ヘキサンで希釈後ろ取することにより、化合物2(207mg)を得た。
MS(m/z):462/464[M+H]
(2)化合物2(100mg)、メタノール(500μL)、および60%水素化ナトリウム(26mg)を、1,4-ジオキサン(5mL)に加え、95℃で1時間撹拌した。N,N-ジメチルアセトアミド(5mL)を加え、95℃で一終夜撹拌した。反応混合物へ10%クエン酸水溶液、n-ヘキサン、および酢酸エチルを加えて分液した。有機層を分離して、水および飽和食塩水で洗浄、硫酸ナトリウムで乾燥、減圧濃縮した。残査をシリカゲルカラムクロマトグラフィー(クロロホルム:酢酸エチル=100:0→50:50)で精製し、得られた固体へジイソプロピルエーテルおよびイソプロピルアルコールを加え、ろ過することにより、化合物3(51mg)を得た。
MS(m/z):448/450[M+H]
実施例13
Figure JPOXMLDOC01-appb-C000104
(1)化合物1(250mg)、アセトアミジン塩酸塩(70mg)、臭化銅(4mg)、炭酸セシウム(482mg)をジメチルスルホキシド(4mL)に加え、120℃で一終夜撹拌した。反応液へ水および酢酸エチルを加えて攪拌し、不溶物をろ過した。ろ液の有機層を分離し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→90:10)、LC-MS分取、およびジオールシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=50:50→0:100)で精製することにより、化合物2(20.4mg)を得た。
MS(m/z):563[M+H]
(2)化合物2(19mg)を用いて、実施例6(7)と同様に処理することにより化合物3(11.5mg)を得た。
MS(m/z):419[M+H]
実施例14
Figure JPOXMLDOC01-appb-C000105
(1)化合物1(120mg)を用いて、実施例6(2)と同様に処理することにより、化合物2(112mg)を得た。
MS(m/z):636/638[M+H]
(2)化合物2(110mg)、K[Fe(CN)]3HO(37mg)、酢酸パラジウム(4mg)、ブチルジ-1-アダマンチルホスフィン(19mg)、炭酸ナトリウム(4mg)をN-メチルピロリドン(2mL)に加え、窒素雰囲気下140℃で2.5時間、160℃で3時間撹拌した。反応液を室温まで冷却した後、酢酸エチルおよび水を加えて分液した。有機層を分離し、水および飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→50:50)で精製することにより、化合物3(32mg)を得た。
MS(m/z):627[M+H]
(3)化合物3(30mg)に1Mテトラブチルアンモニウムフロリド-テトラヒドロフラン溶液(239μL)を加え、室温で2.5時間、さらに60℃で4時間撹拌した。反応液へ飽和炭酸水素ナトリウム水溶液および酢酸エチルを加え分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をメタノール(1mL)に溶解させ、1N水酸化ナトリウム水溶液(479μL)を加え、室温で17時間撹拌した。反応液に1N塩酸(479μL)を加えた後、酢酸エチルを加えて分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→90:10)で精製した後、ジエチルエーテルを加えてろ取、乾燥することにより、化合物4(13.8mg)を得た。
MS(m/z):483[M+H]
実施例15-1
Figure JPOXMLDOC01-appb-C000106
(1)化合物1(1394mg)をメタノール(14mL)に溶解させ、ナトリウムメチラート(35mg)を加え、室温で一終夜撹拌した。反応液へ塩化アンモニウム(377mg)を加え、室温で1時間撹拌し、さらに7時間加熱還流した。反応液を減圧濃縮し、得られた残査へ酢酸エチルを加え、固体をろ取、乾燥することにより、化合物2(1268mg)を塩酸塩として得た。
MS(m/z):234/236[M+H]
(2)化合物2(600mg)および化合物3(533mg)を用いて、実施例3-1(1)と同様に処理することにより、化合物4(465mg)を得た。
MS(m/z):364/366[M+H]
(3)化合物4(450mg)を用いて、実施例6(2)と同様に処理することにより、化合物5(605mg)を得た。
MS(m/z):494/496[M+H]
(4)化合物5(300mg)および化合物6(253mg)を用いて、実施例7(1)と同様に処理することにより、化合物7(88mg)を得た。
MS(m/z):634/635[M+H]
(5)化合物7(85mg)を用いて、実施例6(7)と同様に処理することにより、化合物8(59mg)を得た。
MS(m/z):491/493[M+H]
実施例15-2
 前記実施例15-1と同様に処理することにより、後記表6、実施例15-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000107
実施例16
Figure JPOXMLDOC01-appb-C000108
 化合物1(参考例7-11参照)(200mg)、化合物2(175mg)および炭酸カリウム(242mg)をクロロホルム(5mL)および飽和食塩水(5mL)の混合溶媒に加え、70℃で7時間撹拌した。反応液より有機層を分離して、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残査をメタノール(7mL)およびテトラヒドロフラン(7mL)に溶解させ、2N水酸化ナトリウム水溶液(2186μL)を加え50℃で5時間撹拌した。反応液を減圧濃縮して得られた残査にトリフルオロ酢酸(5mL)を加え、室温で7時間撹拌した。反応液を減圧濃縮して得られた残査にテトラヒドロフラン少量を加えた後、1N水酸化ナトリウム水溶液で中和した。反応液に酢酸を数滴加えた後、酢酸エチルを加えて分液した。有機層を分離して、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→94:6)で精製し、ジエチルエーテルから固化させ、ろ取することにより、化合物3(12.3mg)を得た。
MS(m/z):510[M+H]
実施例17
Figure JPOXMLDOC01-appb-C000109
(1)化合物1および化合物2の混合物(300mg)と化合物3(357mg)を用いて、実施例7(1)と同様に処理することにより、化合物4および化合物5の混合物(317mg)を得た。
MS(m/z):574[M+H]
(2)化合物4および化合物5の混合物(369mg)を用いて、実施例7(2)と同様に処理することにより、化合物6(235mg)を得た。
MS(m/z):444[M+H]
(3)化合物6(195mg)を用いて、実施例1-1(2)と同様に処理することにより、化合物7(160mg)を得た。MS(m/z):430[M+H]
実施例18-1
Figure JPOXMLDOC01-appb-C000110
(1)化合物1(1.0g)および化合物2(1.08g)を用いて、実施例7(1)と同様に処理することにより、化合物3(1.04g)を得た。
MS(m/z):525[M+H]
(2)化合物3(770mg)をメタノール(8mL)およびテトラヒドロフラン(6mL)に溶解させ、窒素雰囲気下で10%パラジウム-炭素(154mg)を加え、水素雰囲気に置換して室温で5時間撹拌した。反応混合物をメンブランフィルターでろ過し、ろ液を減圧濃縮した。得られた残渣をメタノールで希釈し、これに活性炭を加えてセライトろ過を行い、ろ液を減圧濃縮した。超音波処理により結晶化させることにより、化合物4(612mg)を得た。
MS(m/z):436[M+H]
(3)化合物4(150mg)、化合物5(119mg)および1、1’-(アゾジカルビニル)ジピペリジン(ADDP)(217mg)をテトラヒドロフラン(3mL)中で混合させ、これにトリブチルホスフィン(213μL)を加えて、70℃で8時間撹拌した。化合物5(119mg)、1、1’-(アゾジカルビニル)ジピペリジン(217mg)およびトリブチルホスフィン(213μL)を追加して、70℃でさらに2.5時間撹拌した。反応液へジエチルエーテルを加え、不溶物をろ過した。ろ液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=85:15→67:33)で精製することにより、化合物6(117mg)を得た。
MS(m/z):590[M+H]
(4)化合物6(117mg)を用いて、実施例7(2)と同様に処理することにより、化合物7(74mg)を得た。
MS(m/z):460[M+H]
(5)化合物7(73mg)を用いて、実施例1-1(2)と同様に処理することにより、化合物8(27.5mg)を得た。
MS(m/z):446[M+H]
実施例18-2
 前記実施例18-1と同様に処理することにより、後記表7、実施例18-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000111
実施例19-1
Figure JPOXMLDOC01-appb-C000112
(1)化合物1(100mg)および化合物2(168mg)を用いて、実施例18-1(3)と同様に処理することにより、化合物3(152mg)を得た。
MS(m/z):662[M+H]
(2)化合物3(151mg)をトリフルオロ酢酸(3mL)および水(0.3mL)に溶解させ、室温で一終夜撹拌した。反応液を減圧濃縮して得た残渣をテトラヒドロフランに溶解させ、0.1Nリン酸緩衝液(pH7)および酢酸エチルを加えて混合した。有機層を分離して減圧濃縮した。得られた残渣へ冷却したメタノールを加えて固体をろ取することにより、化合物4(89.7mg)を得た。
MS(m/z):476[M+H]
実施例19-2~19-4
 前記実施例19-1と同様に処理することにより、後記表8、実施例19-2~19-4の化合物を得た。
Figure JPOXMLDOC01-appb-T000113
実施例20-1
Figure JPOXMLDOC01-appb-C000114
(1)化合物1(200mg)および化合物2(323mg)を用いて、実施例18-1(3)と同様に処理することにより、化合物3(232mg)を得た。
MS(m/z):652[M+H]
(2)化合物3(230mg)をトリフルオロ酢酸(2.3mL)および水(0.2mL)に溶解させ、室温で一日静置した。反応液を減圧濃縮し、酢酸エチルおよび飽和炭酸水素ナトリウム水溶液を加え分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をメタノール(4.6mL)およびテトラヒドロフラン(2.3mL)に溶解させ、10%パラジウム-炭素(46mg)を加え、水素雰囲気下で7時間撹拌した。反応液をろ過し、ろ液を減圧濃縮して得られた固体をろ取し、乾燥することにより化合物4(145mg)を得た。
MS(m/z):432[M+H]
実施例20-2
 前記実施例20-1と同様に処理することにより、後記表9、実施例20-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000115
実施例21-1
Figure JPOXMLDOC01-appb-C000116
(1)化合物1(300mg)および化合物2(343mg)を用いて、実施例18-1(3)と同様に処理することにより、化合物3(438mg)を得た。
MS(m/z):666[M+H]
(2)化合物3(438mg)を用いて、実施例18-1(2)と同様に処理することにより化合物4(260mg)を得た。
MS(m/z):576[M+H]
(3)化合物4(260mg)を用いて、実施例7(2)と同様に処理することにより、ラセミ体である化合物5(185mg)を得た。
MS(m/z):446[M+H]
実施例21-2~21-4
 前記実施例21-1と同様に処理することにより、後記表10、実施例21-2~21-4の化合物を得た。
Figure JPOXMLDOC01-appb-T000117
実施例22
Figure JPOXMLDOC01-appb-C000118
(1)化合物1(1.55g)および4-ブロモフェノール(1.62g)を用いて、実施例18-1(3)と同様に処理することにより、化合物2(0.408g)を得た。
MS(m/z):420/422[M+NH4]
(2)化合物2(400mg)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(18mg)、2-ジシクロへキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(X-PHOS)(19mg)、酢酸カリウム(292mg)およびビスピナコラトジボロン(504mg)を1,4-ジオキサン(20mL)に加え、窒素雰囲気下で一終夜加熱還流させた。反応液を室温まで冷却後、セライトにてろ過し、ろ液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=99:1→93:7)で精製することにより化合物3(461mg)を得た。
MS(m/z):468[M+NH4]
(3)化合物3(460mg)および化合物4(287mg)を用いて、実施例7(1)と同様に処理することにより、化合物5(521mg)を得た。
MS(m/z):666[M+H]
(4)化合物5(520mg)を用いて、実施例18-1(2)および実施例7(2)と同様に処理することにより、化合物6(203mg)を得た。
MS(m/z):446[M+H]
実施例23-1
Figure JPOXMLDOC01-appb-C000119
(1)化合物1および化合物2の混合物(1.14g)ならびに化合物3(0.8g)を用いて、実施例7(1)と同様に処理することにより、化合物4および化合物5の混合物(749mg)を得た。
MS(m/z):604/606[M+H]
(2)化合物4および化合物5の混合物(748mg)、メチルボロン酸(148mg)ならびに炭酸セシウム(806mg)を1,4-ジオキサン(15mL)に加え、窒素雰囲気とした後、塩化パラジウム(dppf)塩化メチレン錯体(101mg)を加え、80℃で一終夜撹拌した。反応液を室温まで冷却した後、NH-シリカゲルで処理し酢酸エチルで溶出した。溶出液を濃縮して得られた残査と、メチルボロン酸(148mg)および炭酸セシウム(806mg)を1,4-ジオキサン(15mL)に加え、窒素雰囲気とした後、塩化パラジウム(dppf)塩化メチレン錯体(101mg)を加え、80℃で2.5時間撹拌した。反応液を室温まで冷却した後、NH-シリカゲルで処理し酢酸エチルで溶出した。溶出液を濃縮して得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→70:30)で精製することにより、化合物6および化合物7混合物(579mg)を得た。
MS(m/z):540[M+H]
(3)化合物6および化合物7の混合物(579mg)を用いて、実施例18-1(2)と同様に処理することにより、化合物8および化合物9の混合物(476mg)を得た。
Figure JPOXMLDOC01-appb-C000120
MS(m/z):450[M+H]
(4)化合物8および化合物9の混合物(161mg)ならびに化合物10(231mg)を用いて、実施例18-1(3)と同様に処理することにより、化合物11および化合物12の混合物(131mg)を得た。
MS(m/z):676[M+H]
(5)化合物11および化合物12の混合物(109mg)を用いて、実施例19-1(2)と同様に処理することにより、化合物13(39.9mg)を得た。
MS(m/z):490[M+H]
実施例23-2
 前記実施例23-1と同様に処理することにより、後記表11、実施例23-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000121
実施例24-1
Figure JPOXMLDOC01-appb-C000122
(1)化合物1(100mg)および化合物2(64mg)を用いて、実施例1-1(1)と同様に処理することにより、化合物3(96mg)を得た。
MS(m/z):436[M+H]
(2)化合物3(128mg)を用いて、実施例1-1(2)と同様に処理することにより、化合物4(102mg)を得た。
MS(m/z):422[M+H]
実施例24-2
 前記実施例24-1と同様に処理することにより、後記表12、実施例24-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000123
実施例25
Figure JPOXMLDOC01-appb-C000124
(1)化合物1(1.0g)を用いて、実施例11(1)と同様に処理することにより、化合物2(2.68g)を得た。
MS(m/z):382/384[M+H]
(2)化合物2(1.28g)および化合物3(2.24g)を用いて、実施例7(1)および実施例1-1(2)と同様に処理することにより、化合物4(1.51g)を得た
MS(m/z):496[M+H]
(3)化合物4(600mg)および化合物5(351mg)を用いて、実施例11(3)と同様に処理することにより、化合物6(531mg)を得た。
MS(m/z):623[M+H]
(4)化合物6(530mg)を用いて、実施例11(4)と同様に処理することにより、化合物7(161mg)を得た。
MS(m/z):533[M+H]
(5)化合物7(140mg)を酢酸(2mL)および水(400μL)に溶解させ、室温で6時間撹拌した。反応液へ水、酢酸エチルおよびテトラヒドロフランを加え分液した。有機層を分離して、水、飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査を薄層シリカゲルクロマトグラフィー(クロロホルム:メタノール=5:1)で精製した後、残渣にt-ブチルアルコールおよびn-ヘキサンを加えて固化させた後、これをろ取することにより、化合物8(38mg)を得た。
MS(m/z):493[M+H]
実施例26-1
Figure JPOXMLDOC01-appb-C000125
 化合物1(300mg)および化合物2(99mg)を用いて、実施例11(3)と同様に処理することにより、化合物3(161mg)を得た。
MS(m/z):477[M+H]
実施例26-2
 前記実施例26-1と同様に処理することにより、後記表13、実施例26-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000126
実施例27
Figure JPOXMLDOC01-appb-C000127
 化合物1(60mg)、トリエチルアミン(176μL)、塩化アンモニウム(68mL)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)(173mg)および1-ヒドロキシベンズトリアゾール(HOBt)(51mg)をジメチルスルホキシド(1mL)に加え、室温で一終夜撹拌した。反応液へ酢酸エチルおよび水を加えて分液した。有機層を分離し、水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査を薄層シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=99:1)で精製することにより、化合物2(51mg)を得た。
MS(m/z):475[M+H]
実施例28
Figure JPOXMLDOC01-appb-C000128
(1)化合物1(300mg)およびヨウ化エチル(70μL)を用いて、実施例31-1(3)と同様に処理することにより、化合物2(270mg)を得た。
MS(m/z):546[M+H]
(2)化合物2(268mg)を用いて、実施例10-(4)と同様に処理することにより、化合物3(180mg)を得た。
MS(m/z):426[M+H]
(3)化合物3(179mg)を用いて、参考例7-1(1)および実施例7(2)と同様に処理することにより、化合物4(20mg)を得た。
MS(m/z):410[M+H]
(4)化合物4(19mg)を用いて、実施例1-1(2)と同様に処理することにより、化合物5(10mg)を得た。
MS(m/z):396[M+H]
実施例29-1
Figure JPOXMLDOC01-appb-C000129
(1)化合物1(実施例24-2参照)(50mg)およびN-クロロコハク酸イミド(16.3mg)をN,N-ジメチルホルムアミド(0.6mL)に加え、室温で一終夜撹拌した。別途用意した化合物1(250mg)およびN-クロロコハク酸イミド(81.3mg)をN,N-ジメチルホルムアミド(3.1mL)に加え、室温で一終夜撹拌した。上記反応液を合わせて、酢酸エチルおよび飽和重曹水を加えて分液した。有機層を分離し、飽和食塩水および水で洗浄後、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=80:20→67:33)で精製することにより、化合物2(236mg)を得た。
MS(m/z):486/488[M+H]
(2)化合物2(235mg)を用いて、実施例1-1(2)と同様に処理することにより、化合物3(237mg)を得た。
MS(m/z):472/474[M+H]
実施例29-2~29-3
 前記実施例29-1と同様に処理することにより、後記表14、実施例29-2および29-3の化合物を得た。
Figure JPOXMLDOC01-appb-T000130
実施例30
Figure JPOXMLDOC01-appb-C000131
(1)化合物1(2.0g)および化合物2(2.42g)を用いて、実施例7(1)と同様に処理することにより化合物3(2.00g)を得た。
MS(m/z):516/518[M+H]
(2)化合物3(950mg)を用いて、実施例7(2)と同様に処理することにより化合物4(665mg)を得た。
MS(m/z):386/388[M+H]
(3)化合物4(50mg)、N,N-ジメチルホルムアミドジエチルアセタール(33μL)およびトリエチルアミン(1.8μL)をトルエン(1mL)に加え、110℃で一終夜撹拌した。反応液を室温まで冷却した後、1N塩酸(1.3mL)を加え、30分間撹拌した。反応液へ1N水酸化ナトリウム水溶液(1.3mL)および酢酸エチルを加え分液した。有機層を分離して、0.1Nリン酸緩衝液(pH7)で洗浄後、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=80:20→70:30)で精製することにより、化合物5(34mg)を得た。
MS(m/z):414/416[M+H]
(4)化合物5(34mg)をメタノール(1.4mL)中で水素化ホウ素ナトリウム(31.1mg)と混合させ、これにテトラヒドロフラン(2mL)を加え、65℃で1分間、その後室温で15分間撹拌した。反応液を減圧濃縮し、残渣に酢酸エチルおよび水を加えて分液した。有機層を分離して、減圧下溶媒を留去した。得られた固体へアセトニトリルを加えて、ろ取、乾燥することにより化合物6(30.5mg)を得た。
MS(m/z):416/418[M+H]
(5)化合物6(30.5mg)を用いて、実施例1-1(2)と同様に処理することにより化合物7(20mg)を得た。
MS(m/z):402/404[M+H]
実施例31-1
Figure JPOXMLDOC01-appb-C000132
(1)化合物1(409mg)を用いて、実施例6(2)と同様に処理することにより、化合物2(411mg)を得た。
MS(m/z):544/546[M+H]
(2)化合物2(408mg)を用いて、実施例30(4)と同様に処理することにより、化合物3(357mg)を得た。
MS(m/z):546/548[M+H]
(3)化合物3(177mg)をN,N-ジメチルホルムアミド(1.8mL)およびテトラヒドロフラン(1.8mL)中に溶解させ、60%水素化ナトリウム(19.4mg)を氷冷下で加え、5分間撹拌した。ヨウ化メチル(40μL)を加え、氷冷下で10分間撹拌後、室温で2時間撹拌した。反応液へ水、飽和炭酸水素ナトリウム水溶液および酢酸エチルを加え分液した。有機層を分離して、食塩水で洗浄した後、減圧下溶媒を留去した。得られた固体をメタノール(1.8mL)およびテトラヒドロフラン(1.8mL)に溶解させ、2N水酸化ナトリウム水溶液(1.29mL)を加え、室温で一終夜撹拌した。反応液に酢酸を加えた後、食塩水および酢酸エチルを加えて分液した。有機層を分離して、0.1Nリン酸緩衝液(pH7)で洗浄後、減圧下溶媒を留去することにより、化合物4(199mg)を得た。
MS(m/z):546/548[M+H]
(4)化合物4(199mg)を用いて、実施例7(2)と同様に処理することにより、化合物5(63mg)を得た。
MS(m/z):416/418[M+H]
実施例31-2
 前記実施例31-1と同様に処理することにより、後記表15、実施例31-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000133
実施例32-1
Figure JPOXMLDOC01-appb-C000134
 化合物1(PCT/JP2011/079958参照)(470mg)を28%アンモニア水(20mL)中に溶解させ、室温で4日間、40℃で一終夜撹拌した。反応液を減圧濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→85:15)で精製した後、得られた固体へイソプロピルアルコールおよびジイソプロピルエーテルを加えてろ取することにより、化合物2(300mg)を得た。
MS(m/z):363[M+H]
実施例32-2~32-4
 前記実施例32-1と同様に処理することにより、後記表16、実施例32-2~32-4の化合物を得た。
Figure JPOXMLDOC01-appb-T000135
実施例33
Figure JPOXMLDOC01-appb-C000136
(1)化合物1(570mg)および2Mジメチルアミン-テトラヒドロフラン溶液(3.2mL)を用いて、実施例11(3)と同様に処理することにより、化合物2(139mg)を得た。
MS(m/z):295/297[M+H]
(2)化合物2(260mg)を用いて、実施例6(2)と同様に処理することにより、化合物3(292mg)を得た。
MS(m/z):425/427[M+H]
(3)化合物3(292mg)および化合物4(344mg)を用いて、実施例7(1)と同様に処理することにより、化合物5(350mg)を得た。
MS(m/z):577[M+H]
(4)化合物5(350mg)を用いて、実施例6(7)と同様に処理することにより、化合物6(178mg)を得た。
MS(m/z):433[M+H]
実施例34
Figure JPOXMLDOC01-appb-C000137
(1)化合物1(参考例15-1参照)(1.5g)および化合物2(1.4g)を用いて、実施例7(1)と同様に処理することにより、化合物3(1.35g)を得た。
MS(m/z):592[M+H]
(2)化合物3(1.30g)を用いて、実施例18-1(2)と同様に処理することにより、化合物4(860mg)を得た。
MS(m/z):412[M+H]
(3)化合物4(480mg)、N,N-ジイソプロピルエチルアミン(408μL)、およびヨウ化エチル(187μL)をN,N-ジメチルアセトアミド(5mL)に加え、室温で4時間撹拌した。反応混合物へ水を加え、上澄み液を捨てて得られた油状沈殿物を水およびn-ヘキサンで洗浄した後、酢酸エチルおよび10%クエン酸水溶液を加えて分液した。有機層を分離して、水、および飽和食塩水で洗浄後、硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(酢酸エチル:クロロホルム=0:100→40:60)で精製することにより、化合物5(359mg)を得た。
MS(m/z):440[M+H]
(4)化合物5(359mg)および化合物6(340mg)を用いて、参考例7-1(1)および実施例7(2)と同様に処理することで、化合物7(228mg)を得た。
MS(m/z):500[M+H]
(5)化合物7(225mg)を用いて、実施例18-1(2)と同様に処理することにより、化合物8(165mg)を得た。
MS(m/z):410[M+H]
実施例35-1
Figure JPOXMLDOC01-appb-C000138
(1)化合物1(80mg)、化合物2(26mg)、1-ヒドロキシベンズトリアゾール(25mg)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(36mg)をN,N-ジメチルホルムアミド(1mL)に加え、室温で一終夜撹拌した。減圧下溶媒を留去し、得られた残渣を薄層シリカゲルクロマトグラフィー(クロロホルム:メタノール)で精製することにより、化合物3(40mg)を得た。
MS(m/z):450/452[M+H]
(2)化合物3(40mg)をエタノールおよびジクロロメタンの混合溶媒に溶解させ、4N塩酸-1,4-ジオキサン溶液(23μL)を加えた。反応液を減圧濃縮して得られた固体残渣へジエチルエーテルを加えて、粉砕、ろ過、乾燥することにより、化合物4(42.8mg)を塩酸塩として得た。
MS(m/z):450/452[M+H]
実施例35-2
 前記実施例35-1と同様に処理することにより、後記表17、実施例35-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000139
実施例36
Figure JPOXMLDOC01-appb-C000140
(1)化合物1(414mg)、化合物2(500mg)、ヨウ化銅(I)(16mg)、N,N’-ジメチルエチレンジミン(19μL)およびリン酸カリウム(868mg)をトルエン(2.3mL)に加え、80℃で一終夜撹拌した。反応液を冷却した後、セライトでろ過し、ろ液を減圧濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=67:33→38:62)で精製することにより、化合物3(385mg)を得た。
MS(m/z):363[M+H]
(2)化合物3(385mg)を用いて、実施例37-1(3)と同様に処理することにより、化合物4(268mg)を得た。
MS(m/z):263[M+H]
(3)化合物4(268mg)および化合物5(400mg)を用いて、実施例39(1)と同様に処理することにより、化合物6(80mg)を得た。
MS(m/z):604[M+H]
(4)化合物6(79mg)を用いて、実施例6(7)と同様に処理することにより、化合物7(28mg)を得た。
MS(m/z):446[M+H]
実施例37-1
Figure JPOXMLDOC01-appb-C000141
(1)化合物1(18.5g)、化合物2(20g)および炭酸カリウム(16.35g)をジメチルスルホキシド(280mL)に加え、90℃で一終夜撹拌した。反応液を冷却後、水および酢酸エチルを加えて分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査へn-ヘキサンおよび酢酸エチルを加えかき混ぜた後、固体をろ取することにより、化合物3(23.21g)を得た。
MS(m/z):292[M+H]
(2)化合物4(7.44g)および酢酸ナトリウム(4.48g)を水(15.2mL)中で混合し、95℃で30分間撹拌した後、冷却した。化合物3(4g)を28%アンモニア水およびメタノール(200mL)中に溶解させ、上記で調整した反応液を加え、室温で一終夜撹拌した。反応液を減圧濃縮し、酢酸エチルおよび水を加えて分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をNH-シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)で精製した後、得られた固体をジイソプロピルエーテルで洗浄、ろ取、乾燥することにより、化合物5(4.14g)を得た。
MS(m/z):398[M+H]
(3)化合物5(4.14g)へトリフルオロ酢酸(21mL)を加え、室温で30分間撹拌した。反応液へジエチルエーテル(150mL)を加え、10分間撹拌した。析出した固体をろ取、ジエチルエーテルで洗浄、乾燥することにより、化合物6(6.33g)を得た。
MS(m/z):298[M+H]
(4)化合物6(1.50g)およびトリエチルアミン(1.47mL)をテトラヒドロフラン(15mL)中に混合させ、氷冷下にベンジルクロロホルメート(0.63mL)を加え、室温で一終夜撹拌した。反応液へ水および酢酸エチルを加えて分液した。有機層を分離し、飽和炭酸水素ナトリウム水溶液および水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた固体残渣へメタノールを加えて、ろ取することにより化合物7(709mg)を得た。
MS(m/z):432[M+H]
(5)化合物7(889mg)を用いて、実施例6(2)と同様に処理することにより、化合物8(1.117g)を得た。
MS(m/z):562[M+H]
(6)化合物8(1.11g)を用いて、実施例18-1(2)と同様に処理することにより、化合物9(833mg)を得た。
MS(m/z):428[M+H]
(7)窒素雰囲気下で酢酸パラジウム(2.7mg)、2-ジシクロへキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(X-PHOS)(17.3mg)および水(1.1μL)を1,4-ジオキサン(1.7mL)に加え、80℃で2分間撹拌した。別途化合物9(170mg)、化合物10(153mg)および炭酸セシウム(197mg)を窒素雰囲気下で混合し、80℃で上記調製液を加えた後、混合物を100℃で一終夜撹拌した。反応液をセライトろ過し、ろ液を減圧濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→70:30)で精製することにより、化合物11(163mg)を得た。
MS(m/z):618[M+H]
(8)化合物11(163mg)を用いて、実施例19-1(2)と同様に処理することにより、化合物12(73mg)を得た。
MS(m/z):432[M+H]
実施例37-2~37-6
 前記実施例37-1と同様に処理することにより、後記表18、実施例37-2~37-6の化合物を得た。
Figure JPOXMLDOC01-appb-T000142
実施例38-1
Figure JPOXMLDOC01-appb-C000143
(1)化合物1(1.0g)および化合物2(818mg)を用いて、実施例37-1(1)と同様に処理することにより、化合物3(1.457g)を得た。
MS(m/z):289[M+H]
(2)化合物3(4.0g)を用いて、参考例7-1(4)と同様に処理することにより、化合物4(4.23g)を得た。
MS(m/z):322[M+H]
(3)化合物4(2.23g)を用いて、参考例7-1(5)と同様に処理することにより、化合物5(2.51g)を得た。
MS(m/z):306[M+H]
(4)化合物5(2.94g)および化合物6(1.99g)を用いて、実施例1-1(1)と同様に処理することにより、化合物7(345mg)を得た。
MS(m/z):372[M+H]
(5)化合物7(337mg)を用いて、実施例6(2)と同様に処理することにより、化合物8(422mg)を得た。
MS(m/z):502[M+H]
(6)化合物8(416mg)へ4N塩酸-1,4-ジオキサン溶液(4mL)を加えて、室温で30分間撹拌した。反応液にジエチルエーテルを加えて、析出固体をろ取、ジエチルエーテルで洗浄後、乾燥することにより化合物9(345mg)を得た。
MS(m/z):402[M+H]
(7)化合物9(338mg)、化合物10(290mg)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(33mg)、2-ジシクロへキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(X-PHOS)(33mg)および炭酸セシウム(928mg)を、窒素雰囲気下でトルエン(4mL)に加え、80℃で一終夜撹拌した。反応液をNH-シリカゲルを用いてろ過し、ろ液をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=75:25→50:50)で精製することにより化合物11(156mg)を得た。
MS(m/z):592[M+H]
(8)化合物11(150mg)を用いて、実施例19-1(2)と同様に処理することにより、化合物12(42mg)を得た。
MS(m/z):406[M+H]
実施例38-2~38-5
 前記実施例38-1と同様に処理することにより、後記表19、実施例38-2~38-5の化合物を得た。
Figure JPOXMLDOC01-appb-T000144
実施例39
Figure JPOXMLDOC01-appb-C000145
(1)化合物1(330mg)をジメチルスルホキシド(7mL)に溶解させ、化合物2(290mg)および炭酸カリウム(140mg)を加えて、100℃で一終夜撹拌した。反応液に水および酢酸エチルを加えて分液した。有機層を分離して、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=78:22→63:37)で精製することにより、化合物3(263mg)を得た。
MS(m/z):590[M+H]
(2)水素化リチウムアルミニウム(16mg)をテトラヒドロフラン(2mL)に懸濁させ、化合物3(256mg)のテトラヒドロフラン(3mL)溶液を室温で滴下した。1時間撹拌した後、水素化リチウムアルミニウム(16mg)を少しずつ追加し、さらに30分間撹拌した。反応液に、氷冷下で硫酸ナトリウム(0.2g)および水(0.2g)を加え、室温にて30分かき混ぜた。不溶物をろ過し、ろ液を減圧濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=70:30→25:75)で精製することにより、化合物4(218mg)を得た。
MS(m/z):548[M+H]
(3)化合物4(214mg)を用いて、実施例7(2)と同様に処理することにより化合物5(54mg)を得た。
MS(m/z):418[M+H]
実施例40-1
Figure JPOXMLDOC01-appb-C000146
(1)化合物1(200mg)、化合物2(123mg)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(178mg)およびN,N-ジメチルアミノピリジン(DMAP)(6mg)をジメチルアセトアミド(5mL)に加え、室温で2日間撹拌した。反応液へ酢酸エチルおよび10%クエン酸水溶液を加えて分液した。有機層を分離して、水および飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→30:70)で精製した後、ジイソプロピルエーテルおよびn-ヘキサンを加えて固体をろ取することにより、化合物3(191mg)を得た。
MS(m/z):546[M+H]
(2)化合物3(157mg)をメタノール(6mL)に溶解させ、これに1N塩酸(2mL)を加え、室温で一終夜撹拌した。反応液を減圧濃縮して得られた残査へ、氷冷下、飽和重曹水、酢酸エチルおよびテトラヒドロフランを加えて分液した。有機層を分離して、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→80:20)で精製した後、イソプロピルエーテルおよびn-ヘキサンを加えて固体をろ取することにより、化合物4(75mg)および化合物5(20mg)を得た。
化合物4 MS(m/z):506[M+H]
化合物5 MS(m/z):446[M+H]
実施例40-2
 前記実施例40-1と同様に処理することにより、後記表20、実施例40-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000147
実施例41-1
Figure JPOXMLDOC01-appb-C000148
(1)化合物1(200mg)、化合物2(122mg)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(178mg)および1-ヒドロキシベンズトリアゾール(125mg)をジメチルホルムアミド(5mL)に加え、室温で一終夜撹拌した。反応液へ酢酸エチル、n-ヘキサンおよび水を加えて分液した。有機層を分離して、水および飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→90:10)で精製した後、ジイソプロピルエーテルおよびn-ヘキサンを加えて固体をろ取することにより、化合物3(241mg)を得た。
MS(m/z):545[M+H]
(2)化合物3(164mg)を1,4-ジオキサン(5mL)および濃塩酸(5mL)に溶解させ、室温で6時間撹拌した。氷冷下で飽和炭酸水素ナトリウム水溶液を加え、さらに酢酸エチルおよびテトラヒドロフランを加えて分液した。有機層を分離して、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査へジイソプロピルエーテルおよびイソプロピルアルコールを加え、固体をろ取することにより、化合物4(58mg)を得た。
MS(m/z):505[M+H]
実施例41-2~41-3
 前記実施例41-1と同様に処理することにより、後記表21、実施例41-2および41-3の化合物を得た。
Figure JPOXMLDOC01-appb-T000149
実施例42
Figure JPOXMLDOC01-appb-C000150
(1)化合物1(200mg)のトルエン(10mL)溶液へ、イミダゾール(153mg)、トリフェニルホスフィン(590mg)およびヨウ素(457mg)を順次加え、室温で30分間撹拌した。反応液を酢酸エチルで希釈し、これに亜硫酸ナトリウム水溶液を加えて攪拌した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。
 化合物2(180mg)のN,N-ジメチルホルムアミド(4mL)溶液へ、氷冷下で60%水素化ナトリウム(43mg)を加え、室温で30分間撹拌した後、上記残査のN,N-ジメチルホルムアミド(2mL)溶液を加え、室温で一終夜撹拌した。反応液に飽和塩化アンモニウム水溶液を加え、続いて酢酸エチルおよび水を加えて分液した。有機層を分離し、水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=67:33→40:60)で精製することにより、化合物3(44mg)を得た。
MS(m/z):405[M+H]
(2)化合物3(50mg)を4N塩酸-1,4-ジオキサン溶液(1mL)に溶解させ、室温で一終夜撹拌した。反応液を減圧濃縮して得られた残査をジメチルスルホキシド(1mL)に溶解させ、炭酸カリウム(51mg)および6-ブロモニコチンアルデヒド(30mg)を加え、100℃で3時間撹拌した。反応液を冷却後、酢酸エチルおよび水を加えて分液した。有機層を分離して、水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。
 化合物4(100mg)および酢酸ナトリウム(71mg)を水(1mL)に加え、95℃で30分間撹拌した。室温まで冷却し、これに上記残査の25%アンモニア水(1mL)およびメタノール(3mL)溶液を加え、室温で一終夜撹拌した。反応液へ酢酸エチルおよび水を加えて分液した。有機層を分離し、水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査を薄層シリカゲルクロマトグラフィー(クロロホルム:メタノール=9:1)で精製することにより、化合物5(30mg)を得た。
MS(m/z):516[M+H]
(3)化合物5(30mg)を用いて、実施例18-1(2)と同様に処理することにより、化合物6(18.9mg)を得た。
MS(m/z):426[M+H]
実施例43-1
Figure JPOXMLDOC01-appb-C000151
(1)化合物1(589mg)、化合物2(390mg)および炭酸カリウム(371mg)をジメチルスルホキシド(8mL)に加え、100℃で一終夜撹拌した。反応液へ水および酢酸エチルを加え分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=85:15→70:30)で精製することにより、化合物3(467mg)を得た。
MS(m/z):591[M+H]
(2)化合物3(467mg)を用いて、実施例1-1(2)と同様に処理することにより、化合物4(446mg)を得た。
MS(m/z):577[M+H]
(3)化合物4(440mg)を用いて、実施例7(2)と同様に処理することにより、化合物5(292mg)を得た。
MS(m/z):447[M+H]
実施例43-2~43-7
 前記実施例43-1と同様に処理することにより、後記表22、実施例43-2~43-7の化合物を得た。
Figure JPOXMLDOC01-appb-T000152
実施例44-1
Figure JPOXMLDOC01-appb-C000153
(1)化合物1(1g)および化合物2(0.545g)を用いて、実施例43-1(1)と同様に処理することにより、化合物3(1.95g)を得た。
MS(m/z):457[M+H]
(2)化合物3(0.246g)および化合物4(0.179g)を用いて、実施例18-1(3)と同様に処理することにより、化合物5(0.253g)を得た。
MS(m/z):605[M+H]
(3)化合物5(0.252g)を用いて、実施例1-1(2)と同様に処理することにより、化合物6(0.242g)を得た。
MS(m/z):591[M+H]
(4)化合物6(0.241g)を用いて、実施例7(2)と同様に処理することにより、化合物7(0.164g)を得た。
MS(m/z):461[M+H]
実施例44-2~44-11
 前記実施例44-1と同様に処理することにより、後記表23、実施例44-2~44-11の化合物を得た。
Figure JPOXMLDOC01-appb-T000154
Figure JPOXMLDOC01-appb-I000155
実施例45-1
Figure JPOXMLDOC01-appb-C000156
(1)化合物1(395mg)、化合物2(500mg)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(22mg)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(Xantphos)(41mg)およびt-ブトキシナトリウム(342mg)をトルエン(10mL)に加え、窒素雰囲気下100℃で3時間撹拌した。反応液へ酢酸エチルおよび水を加え分液した。有機層を分離して、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→80:20)で精製することにより、化合物3(121mg)を得た。
MS(m/z):618[M+H]
(2)化合物3(120mg)を用いて、実施例6(7)と同様に処理することにより、化合物4(34mg)を得た。
MS(m/z):460[M+H]
実施例45-2~45-3
 前記実施例45-1と同様に処理することにより、後記表24、実施例45-2および45-3の化合物を得た。
Figure JPOXMLDOC01-appb-T000157
実施例46-1
Figure JPOXMLDOC01-appb-C000158
(1)化合物1(5g)および2,6-ルチジン(5.13mL)を塩化メチレン(50mL)に溶解させ、氷冷下で30分間かけてトリフルオロメタンスルホン酸無水物(9.88mL)を滴下した後、室温で1時間撹拌した。トリフルオロメタンスルホン酸無水物(2.4mL)をさらに滴下し、室温で3時間撹拌した。反応液を減圧濃縮した後、得られたシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10)で精製することにより、化合物2(5.44g)を得た。
MS(m/z):303[M+H]
(2)化合物2(5.4g)を用いて、実施例9(2)と同様に処理することにより、化合物3(4.42g)を得た。
MS(m/z):281[M+H]
(3)化合物3(4.4g)および化合物4(6.15g)を用いて、実施例7(1)と同様に処理することにより、化合物5(6.06g)を得た。
MS(m/z):496[M+H]
(4)化合物5(5.73g)および10%パラジウム-炭素(0.57g)をエタノール(115mL)中で混合し、水素雰囲気下室温で6時間撹拌した。反応液をろ過し、ろ液を減圧濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→66:34)で精製することにより、化合物6(5.35g)を得た。
MS(m/z):498[M+H]
(5)化合物6(0.906g)を用いて、実施例10(2)と同様に処理することにより、化合物7(446mg)および化合物8(176mg)を得た。
MS(m/z):456[M+H]
Figure JPOXMLDOC01-appb-C000159
(6)化合物8(165mg)を塩化メチレン(3.3mL)に溶解させ、氷冷下にジイソプロピルエチルアミン(126μL)および塩化メタンスルホニル(42μL)を加え、室温で50分間撹拌した。反応液へジエチルエーテルおよび水を加えて分液した。有機層を分離して、水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。化合物9(83mg)をN,N-ジメチルホルムアミド(1.6mL)へ溶解させ、氷冷下で60%水素化ナトリウム(24.6mg)を加え、室温で30分間撹拌した。これに上記残査のN,N-ジメチルホルムアミド(1.6mL)溶液を加え、70℃で3時間撹拌した。反応液を冷却した後、水および酢酸エチルを加えて分液した。有機層を分離し、水および飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→80:20)で精製することにより、化合物10(107mg)を得た。
MS(m/z):590[M+H]
(7)化合物10(97mg)を用いて、実施例1-1(2)および実施例7(2)と同様に処理することにより、化合物11(79mg)得た。
MS(m/z):446[M+H]
実施例46-2~46-7
 前記実施例46-1と同様に処理することにより、後記表25、実施例46-2~46-7の化合物を得た。
Figure JPOXMLDOC01-appb-T000160
実施例47-1
Figure JPOXMLDOC01-appb-C000161
(1)化合物1(91mg)および化合物2(61mg)を用いて、実施例18-1(3)と同様に処理することにより、化合物3(70mg)を得た。
MS(m/z):591[M+H]
(2)化合物(67mg)を用いて、実施例1-1(2)および実施例7(2)と同様に処理することにより、化合物4(41mg)を得た。
MS(m/z):447[M+H]
実施例47-2
 前記実施例47-1と同様に処理することにより、後記表26、実施例47-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000162
実施例48
Figure JPOXMLDOC01-appb-C000163
(1)化合物1(US2010/267689参照)(320mg)および2,6-ジ-t-ブチル-4-メチルピリジン(197μL)を塩化メチレン(8mL)に溶解させ、トリフルオロメタンスルホン酸無水物(238μL)を加え室温で一終夜撹拌した。反応液へ水を加え分液した。有機層を分離し、減圧下溶媒を留去した。得られた残査へジイソプロピルエーテルを加えて混合し、不溶物をろ去した。ろ液を減圧濃縮して得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→85:15)で精製することにより、化合物2(181mg)を得た。
MS(m/z):393[M+H]
(2)化合物2(180mg)を用いて、実施例9(2)と同様に処理することにより、化合物3(202mg)を得た。
MS(m/z):388[M+NH4]
(3)化合物3(210mg)および化合物4(150mg)を用いて、実施例7(1)と同様に処理することにより、化合物5(56mg)を得た。
MS(m/z):586[M+H]
(4)化合物5(56mg)をエタノール(2.2mL)および酢酸エチル(0.56mL)に溶解させ、10%パラジウム-炭素(11mg)を加え、水素雰囲気下室温で6時間撹拌した。反応液をメンブランフィルターでろ過し、ろ液を減圧濃縮することにより、化合物6(55mg)を得た。
MS(m/z):588[M+H]
(5)化合物6(54mg)を用いて、実施例1-1(2)および実施例7(2)と同様に処理することにより、化合物7(28mg)を得た。
MS(m/z):430[M+H]
実施例49
Figure JPOXMLDOC01-appb-C000164
(1)化合物1(4.5g)をN,N-ジメチルホルムアミド(45mL)に溶解させ、これに水素化ナトリウム(1.37g)を氷冷下にて加え、窒素気流下で30分間撹拌した。これに化合物2(5.09g)を滴下した後、0℃で30分間、さらに室温で1時間撹拌した。反応液へ水および酢酸エチルを加え分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→65:35)で精製することにより、化合物3(3.13g)を得た。
MS(m/z):257[M+H]
(2)60%水素化ナトリウム(537mg)をジメチルスルホキシド(4mL)に懸濁させ、ヨウ化トリメチルスルホニウム(2.95g)を加えて、室温で1時間撹拌した。これに化合物3(3.13g)のジメチルスルホキシド(2mL)溶液を滴下し、室温で3日間撹拌した。反応液へ水およびジエチルエーテルを加え分液した。有機層を分離して、飽和食塩水で洗浄後、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→65:35)で精製することにより、化合物4(898mg)を得た。
MS(m/z):271[M+H]
(3)化合物4(100mg)を酢酸(2mL)に溶解させ、窒素雰囲気下で酸化白金(10mg)を加え、水素雰囲気下、室温で8時間撹拌した。反応液をメンブランフィルターでろ過し、ろ液を減圧濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→35:65)で精製することにより、化合物5(41mg)を得た。
MS(m/z):273[M+H]
(4)化合物5(355mg)をトリフルオロ酢酸(0.3mL)、水(1mL)およびテトラヒドロフラン(3mL)に溶解させ、65℃で3時間撹拌した。反応液へ水、飽和重曹水および酢酸エチルを加え分液した。有機層を分離し、飽和食塩水で洗浄後、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→65:35)で精製することにより、化合物6(242mg)を得た。
MS(m/z):229[M+H]
(5)化合物6(230mg)およびN-フェニルビス(トリフルオロメタンスルホンアミド)(719mg)をテトラヒドロフラン(5mL)に溶解させ、窒素雰囲気下、-78℃で0.5Nカリウムヘキサミチルジシラザン(4.03mL)を滴下し、1時間撹拌した。反応液へ水、飽和塩化アンモニウム水溶液および酢酸エチルを加え分液した。有機層を分離し、飽和食塩水で洗浄後、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=96:4→80:20)およびNH-シリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=98:2→92:8)で精製することにより、化合物7(623mg)を得た。
MS(m/z):361[M+H]
(6)化合物7を用いて、実施例9(2)と同様に処理することにより、化合物8を得た。
MS(m/z):339[M+H]
(7)化合物8を用いて、実施例7(1)と同様に処理することにより、化合物10を得た。
MS(m/z):554[M+H]
(8)化合物10(257mg)をメタノール(4mL)およびテトラヒドロフラン(2mL)中に懸濁させ、窒素雰囲気下で10%パラジウム-炭素(26mg)を加え、水素雰囲気下、室温で5時間撹拌した。反応液をメンブランフィルターでろ過し、ろ液を減圧濃縮した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=80:20→60:40)で精製することにより、化合物11(220mg)を得た。
MS(m/z):556[M+H]
(9)化合物11(218mg)を用いて、実施例1-1(2)と同様に処理することにより、化合物12(131mg)を得た。
MS(m/z):542[M+H]
(10)化合物12(130mg)を用いて、実施例7(2)と同様に処理することにより、化合物13(4.8mg)を得た。
MS(m/z):412[M+H]
実施例50
(1)
Figure JPOXMLDOC01-appb-C000165
 エタノール(250mL)に化合物1(10g)を加え、氷冷し、塩酸ガスを10分間吹き込んだ。反応液を室温にて終夜撹拌後、減圧濃縮し、白色粉末として化合物2(12.53g)を得た。
MS(m/z):228/230[M+H]
(2)
Figure JPOXMLDOC01-appb-C000166
 化合物2(12.53g)をエタノール(94mL)に溶解し、7Nアンモニア/メタノール溶液(31.5mL)を室温にて5分間かけて滴下した。反応液を室温にて3時間撹拌後、7Nアンモニア/メタノール溶液(15.7mL)を追加し、終夜撹拌した。反応液を減圧濃縮し、得られた白色固体にジエチルエーテルを加えて撹拌後、ろ取し、乾燥することにより、白色粉末として化合物3(13.25g)を得た。
MS(m/z):199/201[M+H]
(3)
Figure JPOXMLDOC01-appb-C000167
 化合物3(13.25g)を水(40mL)に懸濁し、5N水酸化ナトリウム水溶液(40mL)を加え、室温にて3時間撹拌した。析出物をろ取し、水洗した。得られた白色固体をアセトンに溶解し、活性炭を加えて10分間撹拌後、セライトでろ過した。ろ液を減圧濃縮し、得られた粉末をジエチルエーテルで洗浄した後、ろ取し、乾燥することにより、白色粉末として化合物4(9.58g)を得た。
(4)
Figure JPOXMLDOC01-appb-C000168
 テトラヒドロフラン(6mL)にトリフルオロ酢酸エチル(598μL)、抱水ヒドラジン(232μL)を加え、65℃にて1時間撹拌した。反応液に化合物4(1g)を加え、65℃にて4.5時間撹拌した。水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。乾燥後、減圧濃縮し、得られた固体を酢酸エチルに溶解し、活性炭を加えて撹拌後、セライトにてろ過した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→80:20)で精製することにより、化合物5(1.082g)を白色固体として得た。
MS(m/z):292/294[M+H]
(5)
Figure JPOXMLDOC01-appb-C000169
 化合物5(1g)をN,N-ジメチルホルムアミド(25mL)に溶解し、氷冷下にて水素化ナトリウム(212mg)を加え、40分間撹拌した。同温にて2-(クロロメトキシ)エチルトリメチルシラン(910μL)を加え、室温に昇温し、5時間撹拌した。飽和重曹水を加え、酢酸エチルで抽出た。抽出液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→80:20)で精製することにより、無色液体として化合物6aおよび6bの混合物(10:9)を得た。
MS(m/z):422/424[M+H]
(6)
Figure JPOXMLDOC01-appb-C000170
 化合物6aおよび6bの混合物(202mg)、化合物7(242mg)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン錯体 (20mg)、N,N-ジメチルホルムアミド(5mL)、2N炭酸ナトリウム水溶液(950μL)の混合液を80℃にて19時間撹拌した。反応液をセライトでろ過し、ろ液に水を加え、酢酸エチルにて抽出した。抽出液を飽和食塩水で洗浄後、濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→85:15)で精製することにより、淡黄色固体として化合物8aおよび8bの混合物(278mg)を得た。
MS(m/z):574[M+H]
(7)
Figure JPOXMLDOC01-appb-C000171
 化合物8aおよび8bの混合物(272mg)にトリフルオロ酢酸(5.4mL)、水(540μL)を加え、室温にて7時間撹拌した。反応液を減圧濃縮し、得られた固体に冷メタノールを加え、超音波にかけた。得られた懸濁液をろ取し、冷メタノールで洗浄することにより、白色固体として化合物9(152mg)を得た。
MS(m/z):444[M+H]
(8)
Figure JPOXMLDOC01-appb-C000172
 化合物9(150mg)にテトラヒドロフラン(6mL)、メタノール(6mL)、8N水酸化ナトリウム水溶液(0.175mL)を加え、室温にて終夜撹拌した。反応液に酢酸(2mL)、水(2mL)を加えた後、減圧濃縮した。得られた固体を冷メタノールに懸濁し、ろ取し、水およびメタノールで洗浄した。得られた白色粉末をLC-MSを用いて精製し、得られたフラクションを濃縮し、水(3mL)、メタノール(0.5mL)を加えた後、超音波をあてて懸濁し、酢酸(200μL)を加えて撹拌した。得られた粉末をろ取し、水およびメタノールで洗浄し、乾燥することにより、化合物10(27mg)を得た。
MS(m/z):430[M+H]
実施例51
(1)
Figure JPOXMLDOC01-appb-C000173
 窒素気流下、水素化ナトリウム(15.6g)をテトラヒドロフラン300mLに懸濁し、氷冷下にて化合物1(30mL)を30分間かけて滴下した。氷冷下にて30分間撹拌後、ヨウ化メチル(24.3mL)を滴下し、室温にて16時間撹拌した。反応液に水を加え、酢酸エチルにて抽出し、抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮後、化合物2(24.76g)を得た。得られた化合物2(24.76g)をテトラヒドロフラン(320mL)に溶解し、窒素気流下、室温にて1M水素化リチウムトリ-tert-ブトキシアルミニウム(300mL)を45分間かけて滴下後、2時間加熱還流した。反応液に飽和食塩水を加え、セライトでろ過し、酢酸エチルで洗浄した。ろ液を減圧濃縮し、濃縮残渣に酢酸エチルと水を加え、酢酸エチルで抽出し、抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮後、得られた残渣を減圧蒸留することによって、化合物3(13.52g)を得た。
MS(m/z):175[M+H]
(2)
Figure JPOXMLDOC01-appb-C000174
 化合物3(1005mg)、化合物4(500mg)、トリフェニルホスフィン(1500mg)をテトラヒドロフラン(8mL)に溶解し、40%アゾジカルボン酸ジエチルのトルエン溶液(2.65mL)を加え、80℃にて3時間撹拌した。反応液に水を加え、酢酸エチルで抽出し、抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=93:7→90:10)で精製することにより、桃色液体として化合物5(810mg)を得た。
MS(m/z):330/332[M+H]
(3)
Figure JPOXMLDOC01-appb-C000175
 化合物6aおよび6bの混合物(1000mg)、酢酸カリウム(700mg)、ビス(ピナコラト)ジボロン(755mg)に1,4-ジオキサン(24mL)を加え、窒素置換した。ついで、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン錯体 (58mg)、(ジフェニルホスフィノ)フェロセン(40mg)を加え、再び窒素置換後、80℃にて21時間撹拌した。反応液に水および酢酸エチルを加え、撹拌後、セライトでろ過した。ろ液を酢酸エチルで抽出後、飽和食塩水で洗浄し、乾燥した。減圧濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→85:15)で精製することにより、白色固体として化合物7aおよび7bの混合物(986mg)を得た。
MS(m/z):470[M+H]
(4)
Figure JPOXMLDOC01-appb-C000176
 化合物7aおよび7bの混合物(150mg)、化合物5(135mg)、N,N-ジメチルホルムアミド(3mL)、2M炭酸ナトリウム水溶液(0.64mL)の混合物を窒素置換後、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン錯体 (29mg)を加え、80℃にて15時間撹拌した。反応液に水を加え、酢酸エチルで抽出後、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→90:10)で精製することにより、淡黄色粘体として化合物8aおよび8bの混合物(125mg)を得た。
MS(m/z):593[M+H]
(5)
Figure JPOXMLDOC01-appb-C000177
 化合物8aおよび8bの混合物(125mg)にトリフルオロ酢酸(2.5mL),水(0.25mL)を加え、室温にて16時間撹拌した。反応液を減圧濃縮し、テトラヒドロフランに溶解した後、1N水酸化ナトリウムで中和し、0.1M pH7のリン酸緩衝液(2mL)を加えた。これを酢酸エチルで洗浄し、水層を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=80:20→60:40)で精製することにより、白色固体として化合物9(26mg)を得た。
MS(m/z):407[M+H]
実施例52
(1)
Figure JPOXMLDOC01-appb-C000178
 化合物1(5g)を用いて実施例50-(1)と同様に反応することにより、淡黄色粉末として化合物2(7.98g)を得た。
MS(m/z):185/187[M+H]
(2)
Figure JPOXMLDOC01-appb-C000179
 化合物2(7.98g)を用いて実施例50-(2)と同様に反応することにより、赤色粉末として化合物3(6.29g)を得た。
MS(m/z):156/158[M+H]
(3)
Figure JPOXMLDOC01-appb-C000180
 化合物3(6.29g)を用いて実施例50-(3)と同様に反応することにより、桃色粉末として化合物4(2.49g)を得た。
MS(m/z):156/158[M+H]
(4)
Figure JPOXMLDOC01-appb-C000181
 化合物4(2.48g)を用いて実施例50-(4)と同様に反応することにより、桃色粉末として化合物5(2.91g)を得た。
MS(m/z):249[M+H]
(5)
Figure JPOXMLDOC01-appb-C000182
 化合物5(2.91g)を用いて実施例50-(5)と同様に反応することにより、無色固体として化合物6a(2.18g)および無色油状物として化合物6b(2.09g)を得た。
MS(m/z):379/381[M+H]
(6)
Figure JPOXMLDOC01-appb-C000183
 化合物6a(500mg)および化合物7(881mg)を用いて実施例50-(6)と同様に反応することにより、無色粉末として化合物8(563mg)を得た。
MS(m/z):575[M+H]
(7)
Figure JPOXMLDOC01-appb-C000184
 化合物8(563mg)、メタノール(5.6mL)、テトラヒドロフラン(9.6mL)、2N水酸化ナトリウム水溶液(3.92mL)の混合物を室温にて14時間撹拌した。酢酸を加えて中和後、減圧濃縮し、得られた残留物に水を加え、酢酸エチルで抽出した。抽出液を0.1N、pH7のリン酸緩衝液で洗浄し、ろ過後、減圧濃縮した。得られた固体をメタノールから再結晶することにより、無色粉末として化合物9(353mg)を得た。さらに母液の濃縮残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→96:4)で精製することにより、白色固体として化合物9(67mg)を得た。
MS(m/z):561[M+H]
(8)
Figure JPOXMLDOC01-appb-C000185
 化合物9(419mg)をトリフルオロ酢酸(8.38mL)および水(0.84mL)に溶解し、室温にて16時間撹拌した。反応液を減圧濃縮し、得られた析出物をアセトニトリルで洗浄後、アセトニトリルから再結晶した。結晶をろ取し、50℃にて減圧乾燥することにより、白色固体として化合物10(223mg)を得た。
MS(m/z):431[M+H]
実施例53
(1)
Figure JPOXMLDOC01-appb-C000186
 化合物1(1000mg)、化合物2(1085mg)、2M炭酸ナトリウム水溶液(4736μL)、N,N-ジメチルホルムアミド(20mL)の混合液を窒素置換後[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン錯体(193mg)を加え、80℃にて終夜撹拌した。反応液に水、酢酸エチルを加え、室温にて30分間撹拌後、セライトでろ過した。酢酸エチルで抽出し、抽出液を水洗し、無水硫酸ナトリウムにて乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→80:20)で精製することにより、無色固体として化合物3(1288mg)を得た。
MS(m/z):527[M+H]
(2)
Figure JPOXMLDOC01-appb-C000187
 化合物3(1285mg)をエタノール(26mL)に溶解し、窒素置換後、パラジウム炭素(386mg)を加え、水素雰囲気下、室温にて6時間撹拌した。反応液をセライトでろ過し、テトラヒドロフランで洗浄した。ろ液を減圧濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=80:20→60:40)で精製することにより、無色固体として化合物4(966mg)を得た。
MS(m/z):437[M+H]
(3)
Figure JPOXMLDOC01-appb-C000188
 化合物5(20.04g)、イミダゾール(15.84g)をN,N-ジメチルホルムアミド(116mL)に溶解し、氷冷下にてtert-ブチルジメチルシリルクロライド(19.47g)を加え、室温にて15時間撹拌した。反応液を氷水に加え、ジエチルエーテルで抽出し、抽出液を水および飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮することにより、無色油状物として化合物6(34.94g)を得た。
MS(m/z):287[M+H]
(4)
Figure JPOXMLDOC01-appb-C000189
 化合物6(34.93g)をテトラヒドロフラン(241mL)に溶解し、2N水酸化ナトリウム水溶液(244mL)を加え、70℃にて15時間撹拌した。テトラヒドロフランを減圧留去し、水溶液をn-ヘキサンおよびジエチルエーテルで洗浄した。水層を1Nクエン酸水溶液でpH=4とし、ジエチルエーテルで抽出した。無水硫酸マグネシウムで乾燥し、減圧濃縮することにより、無色固体として化合物7(26.17g)を得た。
MS(m/z):259[M+H]
(5)
Figure JPOXMLDOC01-appb-C000190
 化合物7(33.75g)、BocO(34.2g)をtert-ブタノール(338mL)に溶解し、4-ジメチルアミノミリジン(4.79g)を加え、室温にて17時間撹拌した。反応液を減圧濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=99:1→91:9)で精製することにより、無色油状物として化合物8(40.68g)を得た。
MS(m/z):315[M+H]
(6)
Figure JPOXMLDOC01-appb-C000191
 ジイソプロピルアミン(1.94mL)のテトラヒドロフラン(30mL)溶液を-70℃に冷却し、2.6M n-ブチルリチウム(5.3mL)を滴下し、同温にて10分間撹拌後、0℃まで昇温した。再び反応液を-70℃に冷却し、化合物8(2.9g)のテトラヒドロフラン(10mL)溶液を滴下した。同温にて10分間撹拌後、0℃まで昇温した。再び反応液を-70℃に冷却し、メトキシメチルクロリド(1.4mL)を滴下した。同温にて30分間撹拌後、室温に昇温して13時間撹拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出し、抽出液を飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製することにより、無色油状物として化合物9のシス体(1.5g)得た。
MS(m/z):359[M+H]
(7)
Figure JPOXMLDOC01-appb-C000192
 化合物9(31.56g)に1M n-テトラブチルアンモニウムフルオリドのテトラヒドロフラン(175mL)溶液を加え、室温にて21時間撹拌した。さらに1M n-テトラブチルアンモニウムフルオリドのテトラヒドロフラン(85mL)溶液を加え、室温にて4時間撹拌した。反応液を減圧濃縮し、得られた残渣に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製することにより、無色油状物として化合物10(18.56g)を得た。
MS(m/z):245[M+H]
(8)
Figure JPOXMLDOC01-appb-C000193
 化合物4(150mg)、化合物10(126mg)、トリブチルホスフィン(127μL)、ADDP(130mg)のテトラヒドロフラン(3mL)溶液を終夜加熱還流した。反応液を減圧濃縮し、残渣をジエチルエーテルで洗浄し、ろ過した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→80:20)で精製することにより、無色粘体として化合物11(162mg)を得た。
MS(m/z):663[M+H]
(9)
Figure JPOXMLDOC01-appb-C000194
 化合物11(162mg)をトリフルオロ酢酸(3mL)および水(0.3mL)に溶解し、室温にて終夜撹拌した。反応液を減圧濃縮し、得られた残渣に酢酸を加え、減圧濃縮した。残渣を酢酸エチルから結晶化し、ろ過した。得られた固体を乾燥し、象牙固体として化合物12(96mg)を得た。
MS(m/z):477[M+H]
実施例54
(1)
Figure JPOXMLDOC01-appb-C000195
 化合物1(207mg)および化合物2(293mg)を用いて実施例52-(6)と同様に反応することにより、無色固体として化合物3(252mg)を得た。
MS(m/z):552[M+H]
(2)
Figure JPOXMLDOC01-appb-C000196
 化合物3(244mg)を用いて実施例52-(7)と同様に反応することにより、無色固体として化合物4(223mg)を得た。
MS(m/z):538[M+H]
(3)
Figure JPOXMLDOC01-appb-C000197
 化合物4(216mg)を用いて実施例52-(8)と同様に反応することにより、無色固体として化合物5(157mg)を得た。
MS(m/z):408[M+H]
実施例55
(1)
Figure JPOXMLDOC01-appb-C000198
 化合物1(1000mg)および化合物2(702mg)を用いて実施例51-(2)と同様に反応することにより、無色粘体として化合物3(534mg)を得た。
MS(m/z):400/402[M+H]
(2)
Figure JPOXMLDOC01-appb-C000199
 化合物3(200mg)および化合物4aおよび4bの混合物(469mg)を用いて実施例51-(4)と同様に反応することにより、化合物5a(151mg)および化合物5b(104mg)をそれぞれ無色粘体として得た。
MS(m/z):663[M+H]
(3)
Figure JPOXMLDOC01-appb-C000200
 化合物5aおよび化合物5bの混合物(250mg)を用いて実施例53-(9)と同様に反応することにより、化合物6(158mg)を得た。
MS(m/z):477[M+H]
実施例56
(1)
Figure JPOXMLDOC01-appb-C000201
 化合物2(4.21g)に、室温にてトルエン(100mL)およびトリエチルアミン(9.9mL)を加え、5分間撹拌後、化合物1(5g)を加えて、室温にて5日間撹拌した。反応液をセライトろ過し、ろ液を減圧濃縮した。得られた残渣に四塩化炭素(66.4mL)および抱水ヒドラジン(1.42mL)を加え、室温にて終夜撹拌した。反応液を酢酸エチルで希釈後、セライトろ過した。ろ液を減圧濃縮し、得られた残渣に水、酢酸エチルおよび飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。抽出液を減圧濃縮し、得られた残渣をジエチルエーテルで洗浄し、ろ過することにより、薄桃色粉体として化合物3(928mg)を得た。
MS(m/z):195/197[M+H]
(2)
Figure JPOXMLDOC01-appb-C000202
 化合物3(819mg)を用いて実施例50-(5)と同様に反応することにより、無色結晶として化合物4aおよび4bの混合物(1.014g)を得た。
MS(m/z):325/327[M+H]
(3)
Figure JPOXMLDOC01-appb-C000203
 化合物4aおよび4bの混合物(200mg)および化合物5(309mg)を用いて実施例52-(6)と同様に反応することにより、化合物6a(84mg)および化合物6b(78mg)をそれぞれ無色粉体として得た。
MS(m/z):521[M+H]
(4)
Figure JPOXMLDOC01-appb-C000204
 化合物6a(83mg)を用いて実施例52-(7)と同様に反応することにより、無色粉体として化合物7a(77mg)を得た。また、化合物6b(83mg)を用いて同様に反応することにより、無色粉体として化合物7b(69mg)を得た。
MS(m/z):507[M+H]
(5)
Figure JPOXMLDOC01-appb-C000205
 化合物7aおよび7bの混合物(146mg)を用いて実施例52-(8)と同様に反応することにより、無色粉体として化合物8(94mg)を得た。
MS(m/z):377[M+H]
実施例57
Figure JPOXMLDOC01-appb-C000206
 化合物1(73mg)、EDC-HCl(88mg)、HOBt(62mg)、塩化アンモニウム(25mg)およびトリエチルアミン(64μL)をジメチルスルホキシド(1mL)に溶解し、室温にて終夜撹拌した。反応液に水を加え、酢酸エチルで抽出し、水洗した。乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=97:3→90:10)にて精製し、無色固体として化合物2(46mg)を得た。
MS(m/z):476[M+H]
実施例58
(1)
Figure JPOXMLDOC01-appb-C000207
 化合物1(5g)のテトラヒドロフラン(96mL)溶液を-78℃に冷却し、n-ブチルリチウムのn-ヘキサン溶液(18.3mL)を10分間かけて滴下後、同温にて20分間撹拌した。ついで、同温にて、sec-ブチルリチウムのn-ヘキサン溶液(40.7mL)を10分間かけて滴下後、同温にて1時間撹拌した。さらに、同温にて化合物2(6.73g)のテトラヒドロフラン(44mL)溶液を20分間かけて滴下後、同温にて3時間撹拌した。反応液に飽和塩化アンモニア水溶液(60mL)を滴下後、室温に昇温した。水を加え、酢酸エチルで抽出し、抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムにて乾燥した。減圧濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:2-プロパノール=85:15→70:30およびクロロホルム:メタノール=100:0→93:7)にて精製し、無色粉末として化合物3(2.207g)を得た。
MS(m/z):252[M+H]
(2)
Figure JPOXMLDOC01-appb-C000208
 化合物3(1.944g)のテトラヒドロフラン(57mL)溶液にBurgess試薬を加え、20時間加熱還流した。反応液を氷冷し、飽和重曹水を加えた後、酢酸エチルで抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:2-プロパノール=91:9→80:20)にて精製し、黄色粘体として化合物4(953mg)を得た。
MS(m/z):234[M+H]
(3)
Figure JPOXMLDOC01-appb-C000209
 化合物4(953mg)のメタノール(33mL)溶液にパラジウム炭素(286mg)を加え、水素雰囲気下、室温にて2.5時間撹拌した。反応液をろ過し、ろ液を減圧濃縮した。得られた残渣をイソプロピルエーテルで洗浄し、無色粉体として化合物5(627mg)を得た。
MS(m/z):236[M+H]
(4)
Figure JPOXMLDOC01-appb-C000210
 化合物5(915mg)のテトラヒドロフラン(4.2mL)溶液を氷冷し、水素化ナトリウム(233mg)を加え、同温にて30分間撹拌した。ついで同温にて、臭化ベンジル(509μL)のジメチルスルホキシド(4.2mL)溶液を滴下後、室温にて3時間撹拌した。反応液に水を加え、酢酸エチルで抽出し、抽出液を食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧濃縮し、黄色固体(1.45g)を得た。この黄色固体(1.26g)をテトラヒドロフラン(38mL)に溶解し、2N塩酸(19mL)を加え、50℃にて19時間撹拌した。反応液を減圧濃縮し、酢酸エチルを加え、1N水酸化ナトリウム水溶液で中和した。酢酸エチルで抽出し、抽出液を食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた固体をイソプロピルエーテルで洗浄し、ろ過した。得られた粉体を50℃にて真空乾燥し、淡黄色粉体として化合物6(979mg)を得た。
MS(m/z):282[M+H]
(5)
Figure JPOXMLDOC01-appb-C000211
 化合物7(760mg)のテトラヒドロフラン(3mL)溶液を氷冷し、60%水素化ナトリウム(174mg)を加えた後、室温にて30分間撹拌した。ついで、化合物6(979mg)を加え、17時間撹拌した。反応液を氷冷し、水を加え、酢酸エチルで抽出した。抽出液を食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた固体をイソプロピルエーテルで洗浄し、ろ取した。50℃にて真空乾燥し、淡黄色粉体として化合物8(1.005g)を得た。さらに、ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=80:20→67:33)にて精製し、淡黄色粉体として化合物8(129mg)を得た。
MS(m/z):338[M+H]
(6)
Figure JPOXMLDOC01-appb-C000212
 化合物8(1133mg)の酢酸エチル(23mL)溶液にパラジウム炭素(340mg)を加え、水素雰囲気下、室温にて3日間撹拌した。反応液をろ過し、ろ液を減圧濃縮し、得られた残渣をジエチルエーテルで洗浄後、50℃にて真空乾燥することにより、淡黄色粉末として化合物9(497mg)を得た。さらに、ろ液を濃縮し、同様の操作にて化合物9(327mg)を得た。
MS(m/z):250[M+H]
(7)
Figure JPOXMLDOC01-appb-C000213
 化合物9(824mg)の塩化メチレン(16mL)懸濁液を氷冷し、無水トリフルオロメタンスルホン酸(695μL)を加え、ついでトリエチルアミン(691μL)を加え、室温にて16時間撹拌した。反応液に飽和重曹水を加え、塩化メチレンで抽出した。抽出液を無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→75:25)にて精製し、淡黄色油状物として化合物10(1.214g)を得た。
MS(m/z):382[M+H]
(8)
Figure JPOXMLDOC01-appb-C000214
 化合物10(1214mg)、化合物11(889mg)、(ジフェニルホスフィノ)フェロセン(53mg)および酢酸カリウム(937mg)を1,4-ジオキサン(16mL)に加え、窒素置換した。ついで、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン錯体 (78mg)を加え、再度、窒素置換後、80℃にて16時間撹拌した。反応液に水および酢酸エチルを加え、撹拌後、セライトでろ過した。ろ液を酢酸エチルで抽出後、飽和食塩水で洗浄し、乾燥した。減圧濃縮後、得られた残渣をジオールシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=83:17→67:33)で精製することにより、淡黄色油状物として化合物12(570mg)を得た。
MS(m/z):360[M+H]
(9)
Figure JPOXMLDOC01-appb-C000215
 化合物13aおよび13bの混合物(250mg)ならびに化合物12(255mg)を用いて実施例50-(6)と同様に反応することにより、無色油状物として化合物14aおよび14bの混合物(199mg)を得た。
MS(m/z):575[M+H]
(10)
Figure JPOXMLDOC01-appb-C000216
 化合物14aおよび14bの混合物(199mg)を用いて実施例52-(7)と同様に反応することにより、淡黄色油状物として化合物15aおよび15bの混合物(197mg)を得た。
MS(m/z):561[M+H]
(11)
Figure JPOXMLDOC01-appb-C000217
 化合物15aおよび15bの混合物(196mg)を用いて実施例52-(8)と同様に反応することにより、無色粉末のシス体/トランス体の混合物として化合物16(67mg)を得た。
MS(m/z):431[M+H]
実施例59
(1)
Figure JPOXMLDOC01-appb-C000218
 化合物1(500mg)、化合物2(458mg)、ナトリウムメチラート(821mg)およびエタノール(7mL)の混合物を4日間加熱還流した。反応液を冷却し、飽和塩化アンモニウム水溶液で希釈し、析出物をろ取し、水洗後、45℃にて終夜乾燥した。乾燥後、テトラヒドロフランに溶解し、炭酸カリウムで乾燥後、減圧濃縮することにより淡黄色固体として化合物3(505mg)を得た。
MS(m/z):300/302[M+H]
(2)
Figure JPOXMLDOC01-appb-C000219
 化合物1(505mg)用いて実施例50-(5)と同様に反応することにより、淡黄色油状物として化合物2aおよび2bの混合物(397mg)として得た。
MS(m/z):430/432[M+H]
(3)
Figure JPOXMLDOC01-appb-C000220
 化合物3(1011mg)を用いて実施例51-(3)と同様に反応することにより、無色固体として化合物5(952mg)を得た。
MS(m/z):378[M+H]
(4)
Figure JPOXMLDOC01-appb-C000221
 化合物2aおよび2bの混合物(300mg)を用いて実施例51-(4)と同様に反応することにより、淡黄色油状物として化合物6aおよび6bの混合物(298mg)を得た。
MS(m/z):601[M+H]
(5)
Figure JPOXMLDOC01-appb-C000222
 化合物6aおよび6bの混合物(298mg)を用いて実施例51-(5)と同様に反応することにより、象牙色固体として化合物7(186mg)を得た。
MS(m/z):415[M+H]
実施例60
(1)
Figure JPOXMLDOC01-appb-C000223
 ベンゾトリアゾール(112.5g)をエタノール(2L)に溶解し、氷冷下にてシアン化臭素(50g)のアセトン(200mL)溶液を滴下した。ついで、水酸化ナトリウム(18.9g)を水(170mL)に溶解した水溶液を滴下後、同温にて15分間撹拌した。析出物をろ過し、冷エタノールで洗浄後、乾燥することにより、無色固体として化合物1(71.21g)を得た。
MS(m/z):264[M+H]
(2)
Figure JPOXMLDOC01-appb-C000224
 化合物1(1000mg)のテトラヒドロフラン(20mL)の溶液に、化合物2(599mg)およびトリエチルアミン(529μL)を加え、室温にて終夜撹拌した。反応液を減圧濃縮し、残渣に塩化メチレンおよび炭酸カリウム水溶液を加え、有機層を分離し、飽和食塩水で洗浄後、減圧濃縮した。残渣にクロロホルム20mLを加え、氷冷下にて化合物3(834mg)およびトリエチルアミン(529μL)を加え、室温にて終夜撹拌した。反応液をクロロホルムで抽出し、抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮後、得られた残渣をシリカゲルシリカゲルカラムクロマトグラフィー(n-ヘキサン:2-プロパノール=97:3→55:45)で精製することにより、無色固体として化合物4(311mg)を得た。
MS(m/z):448/450[M+H]
(3)
Figure JPOXMLDOC01-appb-C000225
 化合物4(311mg)のクロロホルム(6mL)溶液に、抱水ヒドラジン(22μL)を加え、室温にて終夜撹拌した。反応液を減圧濃縮し、残渣をN,N-ジメチルホルムアミド(6mL)に溶解し、氷冷した。これに水素化ナトリウム(69mg)を加えた後、室温にて1時間撹拌した。反応液を氷冷し、(トリメチルシリル)エトキシメチルクロリド(307μL)を滴下した。反応液を室温に昇温し、3日間撹拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮後、得られた残渣をシリカゲルシリカゲルカラムクロマトグラフィー(n-ヘキサン:2-プロパノール=99:1→85:15)で精製することにより、無色油状物として化合物5aおよび5bの混合物(125mg)を得た。
MS(m/z):473/475[M+H]
(4)
Figure JPOXMLDOC01-appb-C000226
 化合物5aと5bの混合物(125mg)および化合物6(150mg)を用いて実施例50-(6)と同様に反応させた後、反応液をシリカゲルでろ過し、酢酸エチルで洗浄した。ろ液を減圧濃縮し、残渣にトリフルオロ酢酸(5mL)および水(0.5mL)を加え、室温にて終夜撹拌した。反応液を濃縮し、残渣に酢酸を加えて溶解後、再び減圧濃縮した。得られた残渣をLC-MSで精製し、ベージュ色固体として化合物8(32mg)を得た。
MS(m/z):458[M+H]
実施例61
(1)
Figure JPOXMLDOC01-appb-C000227
 化合物1(2.00g)の1,4-ジオキサン(20mL)溶液に対して炭酸水素ナトリウム(781mg)および水(15mL)から調製した炭酸水素ナトリウム水溶液を加え、室温にて5分間撹拌した。これにシアン化臭素(985mg)を加えて室温にて2時間撹拌した後、65℃に昇温して2日間撹拌した。生じた結晶をろ取した後、水およびジエチルエーテルにて順次洗浄し、乾燥することにより、化合物2(1.81g)を無色固体として得た。
MS(m/z):240/242[M+H]
(2)
Figure JPOXMLDOC01-appb-C000228
 化合物2(500mg)をエタノール(15mL)に溶解し、水酸化カリウム(467mg)を加えて90℃として8時間撹拌した。室温に放冷した後、2N塩酸水溶液を加えて中和した。反応液に酢酸エチルおよび水を加えて分液した。有機層を分離して飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→93:7)で精製することにより、化合物3(396mg)を無色固体として得た。
MS(m/z):268/270[M+H]
(3)
Figure JPOXMLDOC01-appb-C000229
 N,N-ジメチルホルムアミド(5mL)に溶解した化合物3(500mg)の溶液に、窒素雰囲気下、氷冷下で60%水素化ナトリウム(112mg)を加え、15分間撹拌した。2-(トリメチルシリル)エトキシメチルクロリド(491μL)を氷冷下で加え、1時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=99:1→60:40)で精製することにより、化合物4aおよび4bの混合物(773mg)を淡黄色粉体として得た。
MS(m/z):398/400[M+H]
(4)
Figure JPOXMLDOC01-appb-C000230
 化合物4aおよび4bの混合物(740mg)、酢酸パラジウム(21mg)、2-ジシクロへキシルホスフィノ-2’,6’-ジメトキシビフェニル(76mg)、化合物5(747mg)およびリン酸三カリウム(789mg)のテトラヒドロフラン(10mL)溶液を窒素雰囲気下、50℃として終夜撹拌した。室温に放冷した後、反応溶液に飽和炭酸水素ナトリウム水溶液を加えて撹拌し、酢酸エチルを加えて分液した。有機層を飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮した。得られた残渣にトリフルオロ酢酸(3mL)および水(0.15mL)を加えて室温にて終夜撹拌した。反応溶液に対して2N水酸化ナトリウム水溶液を加えてpHを2から3程度に調整し、酢酸エチルを加えて分液した。有機層を分離して飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=80:20→50:50)で精製することにより、化合物6(351mg)を淡黄色粘体として得た。
MS(m/z):397[M+H]
(5)
Figure JPOXMLDOC01-appb-C000231
 化合物6(348mg)をテトラヒドロフラン(2mL)およびメタノール(2mL)に溶解させ、2N水酸化ナトリウム水溶液(3mL)を加えて、50℃にて2時間撹拌した。反応液へ2N塩酸を加えて中和した後、酢酸エチルを加えて分液した。有機層を分離して飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮した。得られた残渣にジクロロメタンと少量のメタノールを加えて粉砕し、ろ取することにより、化合物7(186mg)を無色固体として得た。
MS(m/z):383[M+H]
実施例62
(1)
Figure JPOXMLDOC01-appb-C000232
 化合物1(2.00g)と2-プロパノール(60mL)を用いて実施例61-(2)と同様に処理することにより、化合物2(618mg)を無色固体として得た。
MS(m/z):282/284[M+H]
(2)
Figure JPOXMLDOC01-appb-C000233
 化合物2(610mg)から実施例61-(3)と同様に処理することにより、化合物3aおよび3bの混合物(476mg)を無色固体として得た。
MS(m/z):412/414[M+H]
(3)
Figure JPOXMLDOC01-appb-C000234
 化合物3aおよび3bの混合物(473mg)、酢酸パラジウム(13mg)、2-ジシクロへキシルホスフィノ-2’,6’-ジメトキシビフェニル(47mg)、化合物4(461mg)およびリン酸三カリウム(487mg)のテトラヒドロフラン(6mL)溶液を窒素雰囲気下、70℃として終夜撹拌した。室温に放冷した後、反応溶液に飽和炭酸水素ナトリウム水溶液を加えて撹拌し、酢酸エチルを加えて分液した。有機層を飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=98:2→65:35)で精製することにより、化合物5aおよび5bの混合物(460mg)を淡黄色粘体として得た。
MS(m/z):541[M+H]
(4)
Figure JPOXMLDOC01-appb-C000235
 化合物5aおよび5bの混合物(460mg)にトリフルオロ酢酸(2mL)および水(0.1mL)を加えて室温にて終夜撹拌した。反応溶液に対して2N水酸化ナトリウム水溶液を加えてpHを2から3程度に調整し、酢酸エチルを加えて分液した。有機層を分離して飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=80:20→50:50)で精製することにより、化合物6(144mg)を無色粘体として得た。
MS(m/z):411[M+H]
(5)
Figure JPOXMLDOC01-appb-C000236
 化合物6(143mg)から実施例61-(5)と同様に処理することにより、化合物7(124mg)を無色固体として得た。
MS(m/z):397[M+H]
実施例63
(1)
Figure JPOXMLDOC01-appb-C000237
 化合物1aおよび1bの混合物(500mg)と化合物2(526mg)から実施例62-(3)と同様に処理することにより、化合物3aおよび3bの混合物(355mg)を淡黄色粘体として得た。
MS(m/z):541[M+H]
(2)
Figure JPOXMLDOC01-appb-C000238
 化合物3aおよび3bの混合物(352mg)から実施例62-(4)と同様に処理することにより、化合物4(43.5mg)を無色粘体として得た。
MS(m/z):411[M+H]
(3)
Figure JPOXMLDOC01-appb-C000239
 化合物4(43.0mg)から実施例61-(5)と同様に処理することにより、化合物5(32.9mg)を白色固体として得た。
MS(m/z):397[M+H]
実施例64
(1)
Figure JPOXMLDOC01-appb-C000240
 化合物1aおよび1bの混合物(500mg)と化合物2(526mg)から実施例62-(3)と同様に処理することにより、化合物3aおよび3bの混合物(708mg)を淡黄色粘体として得た。
MS(m/z):541[M+H]
(2)
Figure JPOXMLDOC01-appb-C000241
 化合物3aおよび3bの混合物(705mg)から実施例62-(4)と同様に処理することにより、化合物4(480mg)を無色粘体として得た。
MS(m/z):411[M+H]
(3)
Figure JPOXMLDOC01-appb-C000242
 化合物4(478mg)から実施例61-(5)と同様に処理することにより、化合物5(288mg)を無色固体として得た。
MS(m/z):397[M+H]
実施例65
(1)
Figure JPOXMLDOC01-appb-C000243
 化合物1aおよび1bの混合物(500mg)と化合物2(526mg)から実施例62-(3)と同様に処理することにより、化合物3aおよび3bの混合物(723mg)を淡黄色粘体として得た。
MS(m/z):526[M+H]
(2)
Figure JPOXMLDOC01-appb-C000244
 化合物3aおよび3bの混合物(720mg)から実施例62-(4)と同様に処理することにより、化合物4(463mg)を無色固体として得た。
MS(m/z):396[M+H]
(3)
Figure JPOXMLDOC01-appb-C000245
 化合物4(463mg)から実施例61-(5)と同様に処理することにより、化合物5(356mg)を無色固体として得た。
MS(m/z):382[M+H]
実施例66
(1)
Figure JPOXMLDOC01-appb-C000246
 化合物1aおよび1bの混合物(1500mg)と化合物2(1035mg)から実施例62-(3)と同様に処理することにより、化合物3aおよび3bの混合物(1226mg)を白色固体として得た。
MS(m/z):503[M+H]
(2)
Figure JPOXMLDOC01-appb-C000247
 化合物3aおよび3bの混合物(1220mg)にメタノール(20mL)およびテトラヒドロフラン(20mL)を加え、水素雰囲気下、10%パラジウム炭素(244mg)を加え、室温にて6時間撹拌した。メンブレンフィルターにて触媒をろ去した後、減圧濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→93:7)で精製することにより、化合物4aおよび4bの混合物(902mg)を無色粘体として得た。
MS(m/z):413[M+H]
(3)
Figure JPOXMLDOC01-appb-C000248
 化合物4aおよび4bの混合物(500mg)の塩化メチレン(10mL)溶液にトリエチルアミン(0.34mL)を加え、氷冷下、トリフルオロメタンスルホン酸無水物(0.24mL)を滴下して1時間撹拌した。飽和炭酸水素ナトリウム水溶液を加えて抽出した。有機層を分離して飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→65:35)で精製することにより、化合物5aおよび5b(542mg)を無色固体として得た。
MS(m/z):545[M+H]
(4)
Figure JPOXMLDOC01-appb-C000249
 化合物5aおよび5bの混合物(535mg)と化合物6(330mg)から実施例62-(3)と同様に処理することにより、化合物7aおよび7bの混合物(382mg)を淡黄色粘体として得た。
MS(m/z):549[M+H]
(5)
Figure JPOXMLDOC01-appb-C000250
 化合物7aおよび7bの混合物(382mg)から実施例62-(4)と同様に処理することにより、化合物8(277mg)を無色固体として得た。
MS(m/z):419[M+H]
(6)
Figure JPOXMLDOC01-appb-C000251
 化合物7(250mg)にメタノール(4mL)およびテトラヒドロフラン(4mL)の懸濁液に窒素雰囲気下、10%パラジウム炭素(50mg)を加え、水素置換後、水素雰囲気下、室温にて4時間撹拌した。反応液をろ過し、減圧濃縮することによって、化合物8の幾何異性体混合物(219mg)を無色液体として得た。
MS(m/z):421[M+H]
(7)
Figure JPOXMLDOC01-appb-C000252
 化合物8(218mg)から実施例61-(5)と同様に処理することにより、化合物9の幾何異性体混合物(199mg)を無色固体として得た。
MS(m/z):407[M+H]
実施例67
(1)
Figure JPOXMLDOC01-appb-C000253
 化合物1aおよび1bの(400mg)、化合物2(200mg)およびトリフェニルホスフィン(763mg)のテトラヒドロフラン(8mL)溶液に氷冷下、ジエチルアゾジカルボキシレートの40重量%トルエン溶液(1324μL)を滴下し、70℃にて終夜撹拌した。室温に放冷した後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=83:17→50:50)で精製することにより、化合物3aおよび3bの混合物(421mg)を無色粘体として得た。
MS(m/z):567[M+H]
(2)
Figure JPOXMLDOC01-appb-C000254
 化合物3aおよび3bの混合物(415mg)を実施例62-(4)と同様に処理することにより、化合物4(328mg)を無色粘体として得た。
MS(m/z):437[M+H]
(3)
Figure JPOXMLDOC01-appb-C000255
 化合物4(324mg)を実施例61-(5)と同様に処理することにより、化合物5(183mg)を無色固体として得た。
MS(m/z):409[M+H]
実施例68
(1)
Figure JPOXMLDOC01-appb-C000256
 化合物1(19.0g)、二硫化炭素(22.9mL)およびヨウ化メチル(17.7mL)のテトロヒドロフラン(380mL)溶液に0℃で水素化ナトリウム(7.6g)を加えて室温とした後、8時間撹拌した。水および酢酸エチルを加えて撹拌した後、分液した。有機層を分離して飽和食塩水で洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=98:2→85:15)で精製することにより、化合物2(10.8g)を淡黄色固体として得た。
MS(m/z):304/306[M+H]
(2)
Figure JPOXMLDOC01-appb-C000257
 化合物2(10.8g)のメタノール(50mL)およびテトラヒドロフラン(50mL)溶液にヒドラジン・一水和物(1.90mL)を滴下して室温にて1時間撹拌した。溶媒を留去した後、残渣にジエチルエーテルを加えて撹拌し、結晶をろ取した後、真空乾燥することにより、化合物3(9.13g)を無色固体として得た。
MS(m/z):270/272[M+H]
(3)
Figure JPOXMLDOC01-appb-C000258
 化合物3(7g)を実施例61-(3)と同様に処理することにより、化合物4a(6.53g)を無色粘体として、化合物4b(3.02g)を無色固体として、それぞれを得た。
MS(m/z):400/402[M+H]
(4)
Figure JPOXMLDOC01-appb-C000259
 化合物4a(6.53g)の塩化メチレン(80mL)溶液に0℃で3-クロロ過安息香酸(11.2g)を加え、室温で2時間撹拌した。飽和炭酸水素ナトリウム水溶液を加えて撹拌した後、塩化メチレンにて抽出した。有機層を分離して飽和食塩水で洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=92:8→80:20)で精製することにより、化合物5(7.44g)を無色固体として得た。
MS(m/z):432/434[M+H]
(5)
Figure JPOXMLDOC01-appb-C000260
 水素化ナトリウム(14.6mg)のテトラヒドロフラン(0.5mL)溶液に氷冷下、2、2、2-トリフルオロエタノール 6(26.1μL)を滴下して同温にて15分間撹拌した。これに化合物5(79mg)のテトラヒドロフラン(1.5mL)溶液を加えて、室温で2時間撹拌した。飽和塩化アンモニウム水溶液を加えて撹拌した後、水および酢酸エチルを加えて撹拌し、分液した。有機層を分離して飽和食塩水で洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=98:2→92:8)で精製することにより、化合物7(77.3mg)を無色固体として得た。
MS(m/z):452/454[M+H]
(6)
Figure JPOXMLDOC01-appb-C000261
 化合物7(75mg)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン錯体(6.8mg)および化合物8(67mg)のN,N-ジメチルホルムアミド(1mL)溶液に窒素気流下にて2N炭酸ナトリウム水溶液(249μL)を滴下し、60℃で6時間撹拌した。室温まで冷却した後、水および酢酸エチルを加えて撹拌し、分液した。有機層を分離して飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→85:15)で精製することにより、化合物9(74.3mg)を無色粘体として得た。
MS(m/z):581[M+H]
(7)
Figure JPOXMLDOC01-appb-C000262
 化合物9(73mg)にトリフルオロ酢酸(1mL)および水(0.05mL)を加えて室温で6時間撹拌した。2N水酸化ナトリウム水溶液を加えてpH2-3程度に調整した後、酢酸エチルにて抽出した。有機層を分離して飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮した。得られた残渣にメタノール(0.5mL)、テトラヒドロフラン(0.5mL)および2N水酸化ナトリウム水溶液(0.5mL)を加え、50℃で2時間撹拌した。酢酸エチルおよび1N塩酸水溶液を加えて中和した後、抽出した。有機層を分離して飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮した。得られた残渣にジエチルエーテルを加えて撹拌し、生じた結晶をろ取し、真空乾燥することにより化合物10(34mg)を無色固体として得た。
MS(m/z):437[M+H]
実施例69
(1)
Figure JPOXMLDOC01-appb-C000263
 化合物1(5.00g)および化合物2(4.65g)から、実施例68-(6)と同様の処理を行うことにより、化合物3(4.45g)を淡黄色粉体として得た。
MS(m/z):561[M+H]
(2)
Figure JPOXMLDOC01-appb-C000264
 化合物3(48mg)、化合物4(19.2mg)および炭酸ナトリウム(59mg)のN-メチルピロリドン(0.5mL)懸濁液を120℃で1時間撹拌した。室温まで冷却した後、水および酢酸エチルを加えて撹拌し、分液した。有機層を分離して飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=88:12→70:30)で精製することにより、化合物5(40mg)を無色粘体として得た。
MS(m/z):593[M+H]
(3)
Figure JPOXMLDOC01-appb-C000265
 化合物5(21.0mg)から実施例68-(7)と同様の処理を行うことにより、化合物6(11.8mg)を無色固体として得た。
MS(m/z):449[M+H]
(4)
Figure JPOXMLDOC01-appb-C000266
 化合物6(266mg)のアセトニトリル(2mL)懸濁液に1N水酸化ナトリウム水溶液(593μL)を滴下して室温にて8時間撹拌した。溶媒を減圧留去した後、残渣の結晶をジエチルエーテルにてトリチュレートし、ろ取し、真空乾燥することにより、化合物7(253mg)を無色固体として得た。
MS(m/z):447[M-Na]
実施例70
(1)
Figure JPOXMLDOC01-appb-C000267
 化合物1(400mg)および化合物2(186mg)から、実施例69-(2)と同様の処理を行うことにより、化合物3(363mg)を無色粘体として得た。
MS(m/z):611[M+H]
(2)
Figure JPOXMLDOC01-appb-C000268
 化合物3(360mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(205mg)を無色固体として得た。
MS(m/z):467[M+H]
実施例71
(1)
Figure JPOXMLDOC01-appb-C000269
 化合物1(400mg)および化合物2(186mg)から、実施例69-(2)と同様の処理を行うことにより、化合物3(403mg)を無色粘体として得た。
MS(m/z):611[M+H]
(2)
Figure JPOXMLDOC01-appb-C000270
 化合物3(400mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(220mg)を無色固体として得た。
MS(m/z):467[M+H]
実施例72
(1)
Figure JPOXMLDOC01-appb-C000271
 化合物1(100mg)および化合物2(33.9mg)から、実施例69-(2)と同様の処理を行うことにより、化合物3(83mg)を無色粘体として得た。
MS(m/z):576[M+H]
(2)
Figure JPOXMLDOC01-appb-C000272
 化合物3(82mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(52mg)を無色固体として得た。
MS(m/z):432[M+H]
実施例73
(1)
Figure JPOXMLDOC01-appb-C000273
 化合物1(400mg)および化合物2(163mg)から、実施例68-(5)と同様の処理を行うことにより、化合物3(262mg)を無色粘体として得た。
MS(m/z):595[M+H]
(2)
Figure JPOXMLDOC01-appb-C000274
 化合物3(260mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(157mg)を無色固体として得た。
MS(m/z):451[M+H]
実施例74
(1)
Figure JPOXMLDOC01-appb-C000275
 化合物1(400mg)および化合物2(214mg)から、実施例68-(5)と同様の処理を行うことにより、化合物3(406mg)を無色固体として得た。
MS(m/z):631[M+H]
(2)
Figure JPOXMLDOC01-appb-C000276
 化合物3(402mg)から、実施例68-(7)と同様の処理を行うことにより合成されるカルボン酸化合物をアセトニトリル1mLと等量の1規定水酸化ナトリウム水溶液を加え、さらにジエチルエーテルを完溶するまで加えた。減圧下で溶媒を留去した後、少量の酢酸エチルとジエチルエーテルにて残渣を撹拌し、結晶をろ取し、減圧乾燥することにより、化合物4(271mg)を無色固体として得た。
MS(m/z):485[M-Na]
実施例75
(1)
Figure JPOXMLDOC01-appb-C000277
 化合物1(300mg)および化合物2(128mg)から、実施例69-(2)と同様の処理を行うことにより、化合物3(144mg)を無色粘体として得た。
MS(m/z):600[M+H]
(2)
Figure JPOXMLDOC01-appb-C000278
 化合物3(142mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(57mg)を無色固体として得た。
MS(m/z):456[M+H]
実施例76
(1)
Figure JPOXMLDOC01-appb-C000279
 化合物1(100mg)および化合物2(33.9mg)から、実施例69-(2)と同様の処理を行うことにより、化合物3(13.9mg)を無色固体として得た。
MS(m/z):576[M+H]
(2)
Figure JPOXMLDOC01-appb-C000280
 化合物3(30mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(18.7mg)を無色固体として得た。
MS(m/z):432[M+H]
実施例77
(1)
Figure JPOXMLDOC01-appb-C000281
 化合物1(200mg)および化合物2(77.8mg)から、実施例69-(2)と同様の処理を行うことにより、化合物3(38mg)を無色固体として得た。
MS(m/z):590[M+H]
(2)
Figure JPOXMLDOC01-appb-C000282
 化合物3(36mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(24.8mg)を無色固体として得た。
MS(m/z):446[M+H]
実施例78
(1)
Figure JPOXMLDOC01-appb-C000283
 化合物1(3.00g)および炭酸カリウム(311mg)のジメチルスルホキシド(45mL)溶液に氷冷下、30%過酸化水素水(1.7mL)を加え、室温で終夜撹拌した。これに30%過酸化水素水(0.5mL)を追加して、さらに室温4日間撹拌した。水をゆっくり滴下し、生じた結晶をろ取し、ジエチルエーテルにて洗浄した後、真空乾燥することにより、化合物2(1284mg)を無色固体として得た。
MS(m/z):218/220[M+H]
(2)
Figure JPOXMLDOC01-appb-C000284
 化合物2(1200mg)から、実施例68-(1)と同様の処理を行うことにより、化合物3(621mg)を淡黄色固体として得た。
MS(m/z):322/324[M+H]
(3)
Figure JPOXMLDOC01-appb-C000285
 化合物3(640mg)から、実施例68-(2)と同様の処理を行うことにより、化合物4(479mg)を無色固体として得た。
MS(m/z):288/290[M+H]
(4)
Figure JPOXMLDOC01-appb-C000286
 化合物4(445mg)から、実施例61-(3)と同様に処理することにより、化合物5a(328mg)および化合物5b(351mg)をどちらも無色粘体として得た。
 化合物5a:MS(m/z):418/420[M+H]
 化合物5b:MS(m/z):418/420[M+H]
(5)
Figure JPOXMLDOC01-appb-C000287
 化合物5a(325mg)から、実施例68-(4)と同様の処理を行うことにより、化合物6a(331mg)を無色粘体として得た。
MS(m/z):450/452[M+H]
(6)
Figure JPOXMLDOC01-appb-C000288
 化合物6a(330mg)および化合物7(112μL)から、実施例68-(5)と同様の処理を行うことにより、化合物8a(265mg)を無色粘体として得た。
MS(m/z):430/432[M+H]
(7)
Figure JPOXMLDOC01-appb-C000289
 化合物8a(260mg)および化合物9(253mg)から、実施例68-(6)と同様の処理を行うことにより、化合物10a(333mg)を無色粘体として得た。
MS(m/z):573[M+H]
(8)
Figure JPOXMLDOC01-appb-C000290
 化合物10a(330mg)から、実施例62-(4)と同様に処理することにより、化合物11(167mg)を無色粘体として得た。
MS(m/z):443[M+H]
(9)
Figure JPOXMLDOC01-appb-C000291
 化合物11(166mg)から、実施例61-(5)と同様に処理することにより、化合物12(132mg)を無色固体として得た。
MS(m/z):429[M+H]
実施例79
(1)
Figure JPOXMLDOC01-appb-C000292
 化合物1(3000mg)から、実施例78-(1)と同様に処理することにより、化合物2(2842mg)を無色固体として得た。
MS(m/z):201/203[M+H]
(2)
Figure JPOXMLDOC01-appb-C000293
 化合物2(2800mg)から、実施例68-(1)と同様に処理することにより、化合物3(257mg)を淡黄橙色固体として得た。
MS(m/z):305/307[M+H]
(3)
Figure JPOXMLDOC01-appb-C000294
 化合物3(255mg)から、実施例68-(2)と同様に処理することにより、化合物4(166mg)を淡黄色固体として得た。
MS(m/z):271/273[M+H]
(4)
Figure JPOXMLDOC01-appb-C000295
 化合物5(162mg)から、実施例61-(3)と同様に処理することにより、化合物6a(92.9mg)を無色粘体として、化合物6b(89.1mg)を淡黄色固体としてそれぞれ得た。
 化合物6a:MS(m/z):401/403[M+H]
 化合物6b:MS(m/z):401/403[M+H]
(5)
Figure JPOXMLDOC01-appb-C000296
 化合物6b(88.0mg)の塩化メチレン(1mL)溶液に酢酸(50μL)を加え、氷冷下、3-クロロ過安息香酸(151mg)を加えた後、室温で3時間撹拌した。飽和炭酸水素ナトリウム水溶液を加えて撹拌した後、塩化メチレンにて抽出した。有機層を分離して飽和食塩水で洗浄し、無水硫酸マグネシウムにて乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=85:15→66:34)で精製することにより、化合物7b(53.2mg)を淡黄橙色固体として得た。
MS(m/z):433/435[M+H]
(6)
Figure JPOXMLDOC01-appb-C000297
 化合物7b(53.0mg)および化合物8(19μL)から、実施例68-(5)と同様の処理を行うことにより、化合物9b(27.0mg)を無色粘体として得た。
MS(m/z):413/415[M+H]
(7)
Figure JPOXMLDOC01-appb-C000298
 化合物9b(26.0mg)および化合物10(43.9mg)から、実施例68-(6)と同様の処理を行うことにより、化合物11b(31.6mg)を無色粘体として得た。
MS(m/z):556[M+H]
(8)
Figure JPOXMLDOC01-appb-C000299
 化合物11b(31.0mg)から、実施例68-(7)と同様の処理を行うことにより、化合物12(13.8mg)を無色固体として得た。
MS(m/z):412[M+H]
実施例80
(1)
Figure JPOXMLDOC01-appb-C000300
 化合物1(2000mg)から、実施例68-(1)と同様に処理することにより、化合物2(1153mg)を白色固体として得た。
MS(m/z):261/263[M+H]
(2)
Figure JPOXMLDOC01-appb-C000301
 化合物2(1150mg)から、実施例68-(2)と同様に処理することにより、化合物3(829mg)を無色固体として得た。
MS(m/z):227/229[M+H]+
(3)
Figure JPOXMLDOC01-appb-C000302
 化合物3(500mg)から、実施例61-(3)と同様に処理することにより、化合物4a(478mg)、化合物4b(215mg)をどちらも無色粘体として得た。
 化合物4a:MS(m/z):357/359[M+H]
 化合物4b:MS(m/z):357/359[M+H]
(4)
Figure JPOXMLDOC01-appb-C000303
 化合物4a(470mg)から、実施例79-(5)と同様に処理することにより、化合物5a(363mg)を無色粘体として得た。
MS(m/z):389/391[M+H]
(5)
Figure JPOXMLDOC01-appb-C000304
 化合物5a(360mg)および化合物6(141μL)から、実施例68-(5)と同様の処理を行うことにより、化合物7a(272mg)を無色固体として得た。
MS(m/z):369/371[M+H]
(6)
Figure JPOXMLDOC01-appb-C000305
 化合物7a(200mg)および化合物8(454mg)から、実施例68-(6)と同様の処理を行うことにより、化合物9a(258mg)を無色粘体として得た。
MS(m/z):556[M+H]
(7)
Figure JPOXMLDOC01-appb-C000306
 化合物9a(254mg)から、実施例68-(7)と同様の処理を行うことにより、化合物10(156mg)を無色固体として得た。
MS(m/z):412[M+H]
実施例81
(1)
Figure JPOXMLDOC01-appb-C000307
 化合物2(400mg)、化合物1aおよび1bの混合物(363mg)を用いて実施例68-(6)と同様に反応することにより、無色粘体として化合物3aおよび3bの混合物(379mg)を得た。
MS(m/z):565[M+H]
(2)
Figure JPOXMLDOC01-appb-C000308
 化合物3aおよび3bの混合物(375mg)を用いて実施例52-(7)と同様に反応することにより、無色粘体として化合物4aおよび4bの混合物(366mg)を得た。
MS(m/z):551[M+H]
(3)
Figure JPOXMLDOC01-appb-C000309
 化合物4aおよび4bの混合物(363mg)を用いて実施例52-(8)と同様に反応することにより、無色固体として化合物5(218mg)を得た。
MS(m/z):421[M+H]
実施例82
(1)
Figure JPOXMLDOC01-appb-C000310
 化合物1(500mg)から、実施例68-(5)と同様の処理を行うことにより、化合物3(343mg)を無色固体として得た。
MS(m/z):470/472[M+H]
(2)
Figure JPOXMLDOC01-appb-C000311
 化合物3(341mg)および化合物4(304mg)から、実施例68-(6)と同様の処理を行うことにより、化合物5(436mg)を無色粘体として得た。
MS(m/z):613[M+H]
(3)
Figure JPOXMLDOC01-appb-C000312
 化合物5(435mg)から、実施例68-(7)と同様の処理を行うことにより、化合物6(290mg)を無色固体として得た。
MS(m/z):469[M+H]
実施例83
(1)
Figure JPOXMLDOC01-appb-C000313
 化合物1(500mg)から、実施例69-(2)と同様の処理を行うことにより、化合物3(357mg)を無色粘体として得た。
MS(m/z):482/484[M+H]
(2)
Figure JPOXMLDOC01-appb-C000314
 化合物3(355mg)および化合物4(308mg)から、実施例68-(6)と同様の処理を行うことにより、化合物5(464mg)を無色粘体として得た。
MS(m/z):625[M+H]
(3)
Figure JPOXMLDOC01-appb-C000315
 化合物5(450mg)から、実施例68-(7)と同様の処理を行うことにより、化合物6(293mg)を無色固体として得た。
MS(m/z):481[M+H]
実施例84
(1)
Figure JPOXMLDOC01-appb-C000316
 氷冷下、化合物1(2g)のテトラヒドロフラン(10mL)溶液に1.6Mリチウムビス(トリメチルシリル)アミド/テトラヒドロフラン溶液(7.5mL)を滴下後、室温にて3時間撹拌した。反応液を氷冷し、4N塩酸-1,4-ジオキサン(6.2mL)を加えた。ジエチルエーテルを加え、析出物をろ取した。ろ液を減圧濃縮し、析出物をジエチルエーテルで洗浄し、ろ取した。得られた析出物を合わせて次の反応に用いた。化合物3(0.75mL)および抱水ヒドラジン(0.29mL)のテトラヒドロフラン(8mL)溶液を65℃にて1時間撹拌した。反応液を室温まで冷却し、先に得られた析出物を加え、65℃にて2時間撹拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→80:20)で精製することにより、無色固体として化合物5(165mg)を得た。
MS(m/z):310/312[M+H]
(2)
Figure JPOXMLDOC01-appb-C000317
 化合物5(164mg)を用いて実施例50-(5)と同様に反応することにより、無色粘体として化合物6aおよび6bの混合物(228mg)を得た。
MS(m/z):440/442[M+H]
(3)
Figure JPOXMLDOC01-appb-C000318
 化合物6aおよび6bの混合物(220mg)、化合物7(174mg)を用いて実施
例50-(6)と同様に反応することにより、無色粘体として化合物8aおよび8bの混合物(263mg)を得た。
MS(m/z):583[M+H]
(4)
Figure JPOXMLDOC01-appb-C000319
 化合物8aおよび8bの混合物(260mg)を用いて実施例52-(7)と同様に反応することにより、無色粘体として化合物9aおよび9bの混合物(259mg)を得た。
MS(m/z):569[M+H]
(5)
Figure JPOXMLDOC01-appb-C000320
 化合物9aおよび9bの混合物(254mg)を用いて実施例52-(8)と同様に反応することにより、無色固体として化合物10(130mg)を得た。
MS(m/z):439[M+H]
実施例85
(1)
Figure JPOXMLDOC01-appb-C000321
 化合物1(10g)の塩化メチレン(200mL)溶液に室温にて塩化オキサリル(4.43mL)およびN,N-ジメチルホルムアミド(0.16mL)を加え、室温にて2時間撹拌した。反応液を減圧濃縮し、残渣をテトラヒドロフラン(50mL)に溶解し、これを氷冷下にて、チオセミカルバジド(3.85g)およびピリジン(75mL)の懸濁液に10分間かけて滴下した。滴下後、室温にて2時間撹拌後、減圧濃縮した。残渣を2N水酸化ナトリウム水溶液(210mL)に溶解し、16時間加熱還流した。反応液を氷冷し、濃塩酸(35mL)で中和した。析出物をろ取し、水およびメタノールで洗浄した。得られた固体をジエチルエーテル(50mL)で懸洗し、ろ過し、50℃にて減圧乾燥することにより、化合物2(9.46g)をベージュ色固体として得た。
MS(m/z):291/293/295[M+H]
(2)
Figure JPOXMLDOC01-appb-C000322
 化合物2(9.44g)をエタノール(24mL)に懸濁し、室温にて2N水酸化ナトリウム水溶液(17.8mL)およびヨウ化メチル(2.2mL)を加えた。反応液を室温にて30分間撹拌後、析出物をろ取し、エタノールで洗浄し、50℃にて真空乾燥することにより、ベージュ色固体として化合物3(7.815g)を得た。
MS(m/z):305/307/309[M+H]
(3)
Figure JPOXMLDOC01-appb-C000323
 化合物3(7.815g)を用いて、実施例61-(3)と同様に反応し、化合物4a(7.335g)および化合物4b(4.294g)をそれぞれ黄色粘体として得た。
MS(m/z):435/437/439[M+H]
(4)
Figure JPOXMLDOC01-appb-C000324
 化合物4b(3.69g)を用いて実施例68-(4)と同様に反応することにより、無色固体として化合物5(3.323g)を得た。
MS(m/z):466/468/470[M+H]
(5)
Figure JPOXMLDOC01-appb-C000325
 化合物5(1g)を用いて実施例68-(5)と同様に反応することにより、無色粘体として化合物6(826mg)を得た。
MS(m/z):447/449/451[M+H]
(6)
Figure JPOXMLDOC01-appb-C000326
 化合物6(400mg)を用いて実施例68-(6)と同様に反応することにより、無色粘体として化合物8(429mg)を得た。
MS(m/z):590/592[M+H]
(7)
Figure JPOXMLDOC01-appb-C000327
 化合物8(242mg)を用いて実施例68-(7)と同様に反応することにより、無色固体として化合物9(210mg)を得た。
MS(m/z):576/578[M+H]
(8)
Figure JPOXMLDOC01-appb-C000328
 化合物9(205mg)のテトラヒドロフラン(4mL)溶液に1Mテトラブチルアンモニウムフロリドのテトラヒドロフラン溶液(1.78mL)を加え、70℃にて23時間撹拌した。飽和塩化アンモニア水溶液を加え、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄した後、無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100/0→90/10)で精製し、化合物9と10の混合物を得た。これにトリフルオロ酢酸2mLおよび水0.2mLを加え、室温にて2時間撹拌した。反応溶液を氷冷し、1N水酸化ナトリウム水溶液で中和後、1N塩酸でpH=4とし、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄した後、無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100/0→90/10)で精製し、無色固体として化合物10(109mg)を得た。
MS(m/z):446/448[M+H]
実施例86
(1)
Figure JPOXMLDOC01-appb-C000329
 化合物1(4400mg)から、実施例68-(6)と同様に処理することにより、化合物3(4750mg)を淡黄色固体として得た。
MS(m/z):386[M+H]
(2)
Figure JPOXMLDOC01-appb-C000330
 化合物3(4740mg)の塩化メチレン(20mL)溶液にトリフルオロ酢酸(20mL)を加えて室温にて4時間撹拌した。減圧下溶媒を留去した後、トルエンにて共沸した。残渣にジエチルエーテルを加えて撹拌し、生じた結晶をろ取した後、真空乾燥することにより、化合物4(3144mg)を無色固体として得た。
MS(m/z):330[M+H]
(3)
Figure JPOXMLDOC01-appb-C000331
 化合物4(200mg)の塩化メチレン(8mL)溶液にN,N-ジメチルホルムアミド(7μL)を加え、塩化チオニル(266μL)を滴下して室温にて2時間撹拌した。減圧下溶媒を留去した後、トルエンにて共沸することで乾固させた。残渣にトルエン(8mL)およびカリウムチオシアナート(354mg)を加えて室温にて1時間撹拌した。上澄み液(4mL)を除いた後、残りの不溶の塩を含む溶液にメタノール(0.4mL)を加えて70℃として2時間撹拌した。室温まで冷却した後、反応液にヒドラジン・1水和物(59μL)を加えて室温にて1時間撹拌した。酢酸エチルおよび飽和食塩水を加えて撹拌した後、分液した。有機層をフェーズセパレーターに通した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=70:30→40:60)で精製することにより、化合物5(29.4mg)を白色固体として得た。
MS(m/z):383[M+H]
(4)
Figure JPOXMLDOC01-appb-C000332
 化合物5(29.0mg)から、実施例61-(5)と同様に処理することにより、化合物6(21.8mg)を無色固体として得た。
MS(m/z):369[M+H]
実施例87
(1)
Figure JPOXMLDOC01-appb-C000333
 化合物1(300mg)および化合物2(309mg)から、実施例68-(6)と同様の処理を行うことにより、化合物3(294mg)を無色粘体として得た。
MS(m/z):627[M+H]
(2)
Figure JPOXMLDOC01-appb-C000334
 化合物3(293mg)にトリフルオロ酢酸(1mL)および水(0.05mL)を加えて室温にて3時間撹拌した。反応溶液に2N水酸化ナトリウム水溶液を加えて中和し、室温にて1時間撹拌した後、酢酸エチルを加えて分液した。有機層を分離して飽和食塩水で洗浄し、フェーズセパレーターに通した後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=60:40→20:80)で精製した。目的物を含むフラクションを減圧下溶媒を留去し、残渣にジイソプロピルエーテルと少量の酢酸エチルを加え、生じた結晶をろ取し、真空乾燥することにより、化合物4(147mg)を無色固体として得た。
MS(m/z):441[M+H]
実施例88
(1)
Figure JPOXMLDOC01-appb-C000335
 化合物1(10.0g)のテトラヒドロフラン(50mL)溶液にN、N-ジメチルホルムアミド(0.5mL)を加え、塩化チオニル(12.4mL)を滴下し、50℃として2時間撹拌した。減圧下溶媒を留去した後、テトラヒドロフラン(25mL)に溶解させ、氷冷下、化合物2(3.87g)のピリジン(50mL)懸濁液にゆっくり滴下した。同温にて30分撹拌した後、室温として3時間撹拌した。減圧下溶媒を留去した後、水(50mL)および2N水酸化ナトリウム水溶液(200mL)を加えて110℃にて3時間撹拌した。氷冷下にて濃塩酸(約40mL)をゆっくり加えて中和し、生じた結晶をろ取した。ジエチルエーテルにて洗浄し、真空乾燥することにより、化合物3(8.36g)を淡黄色固体として得た。
MS(m/z):290/292[M+H]
(2)
Figure JPOXMLDOC01-appb-C000336
 化合物3(8.20g)のエタノール(19mL)懸濁液に2N水酸化ナトリウム水溶液(15.5mL)を滴下し、さらにヨウ化メチル(1.93mL)を加えて室温5分間撹拌した。生じた結晶をろ取し、水およびジエチルエーテルにて洗浄した後、乾燥することにより、化合物4(3.95g)を淡黄褐色固体として得た。
MS(m/z):304/306[M+H]
(3)
Figure JPOXMLDOC01-appb-C000337
 化合物4(3940mg)から、実施例61-(3)と同様に処理することにより、化合物5a(1353mg)および化合物5b(1020mg)をそれぞれ無色粘体として得た。
 化合物5a:MS(m/z):434/436[M+H]
 化合物5b:MS(m/z):434/436[M+H]
(4)
Figure JPOXMLDOC01-appb-C000338
 化合物5a(1330mg)から、実施例68-(4)と同様の処理を行うことにより、化合物6a(1221mg)を淡黄色粘体として得た。
MS(m/z):466/468[M+H]
(5)
Figure JPOXMLDOC01-appb-C000339
 化合物6a(800mg)および化合物7(261μL)から、実施例68-(5)と同様の処理を行うことにより、化合物8a(481mg)を無色粘体として得た。
MS(m/z):446/448[M+H]
(6)
Figure JPOXMLDOC01-appb-C000340
 化合物8a(479mg)および化合物9(393mg)から、実施例68-(6)と同様の処理を行うことにより、化合物10a(538mg)を無色粘体として得た。
MS(m/z):589/591[M+H]
(7)
Figure JPOXMLDOC01-appb-C000341
 化合物10a(300mg)のテトラヒドロフラン(4mL)にテトラブチルアンモニウムフロリドの1Mテトラヒドロフラン溶液(2.5mL)を滴下して70℃にて4日間撹拌した。1N塩酸水溶液を加えて中和した後、酢酸エチルにて抽出した。有機層を飽和食塩水にて洗浄した後、フェーズセパレーターに通し、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=65:35→5:95)で精製することにより、化合物11(136mg)を無色固体として得た。
MS(m/z):445/447[M+H]
実施例89
(1)
Figure JPOXMLDOC01-appb-C000342
 化合物1(400mg)および化合物2(209mg)から、実施例68-(5)と同様の処理を行うことにより、化合物3(368mg)を淡黄色粘体として得た。
MS(m/z):646[M+H]
(2)
Figure JPOXMLDOC01-appb-C000343
 化合物3(366mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(218mg)を無色固体として得た。
MS(m/z):502[M+H]
実施例90
(1)
Figure JPOXMLDOC01-appb-C000344
 化合物1(300mg)から、実施例69-(2)と同様の処理を行うことにより、化合物3(257mg)を無色粘体として得た。
MS(m/z):608[M+H]
(2)
Figure JPOXMLDOC01-appb-C000345
 化合物3(255mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(150mg)を無色固体として得た。
MS(m/z):464[M+H]
実施例91
(1)
Figure JPOXMLDOC01-appb-C000346
 化合物1(260mg)および化合物2(304mg)から、実施例68-(6)と同様の処理を行うことにより、化合物3(279mg)を淡黄色粘体として得た。
MS(m/z):610[M+H]
(2)
Figure JPOXMLDOC01-appb-C000347
 化合物3(278mg)から、実施例87-(2)と同様に処理することにより、化合物4(83.4mg)を無色固体として得た。
MS(m/z):424[M+H]
実施例92
(1)
Figure JPOXMLDOC01-appb-C000348
 化合物1(330mg)および化合物2(473mg)から、実施例68-(6)と同様の処理を行うことにより、化合物3(511mg)を淡茶色粘体として得た。
MS(m/z):630[M+H]
(2)
Figure JPOXMLDOC01-appb-C000349
 化合物3(508mg)から、実施例88-(7)と同様に処理することにより、化合物4(217mg)を無色固体として得た。
MS(m/z):410[M+H]
実施例93
(1)
Figure JPOXMLDOC01-appb-C000350
 化合物1(380mg)および化合物2(523mg)から、実施例68-(6)と同様の処理を行うことにより、化合物3(432mg)を無色粘体として得た。
MS(m/z):647[M+H]
(2)
Figure JPOXMLDOC01-appb-C000351
 化合物3(428mg)から、実施例88-(7)と同様に処理することにより、化合物4(204mg)を無色固体として得た。
MS(m/z):427[M+H]
実施例94
(1)
Figure JPOXMLDOC01-appb-C000352
 化合物1(200mg)および化合物2(104mg)から、実施例68-(5)と同様の処理を行うことにより、化合物3(85.2mg)を無色粘体として得た。
MS(m/z):584[M+H]
(2)
Figure JPOXMLDOC01-appb-C000353
 化合物3(85.0mg)から、実施例88-(7)と同様に処理することにより、化合物4(36.5mg)を無色固体として得た。
MS(m/z):440[M+H]
実施例95
(1)
Figure JPOXMLDOC01-appb-C000354
 化合物1(400mg)および化合物2(99μL)から、実施例68-(5)と同様の処理を行うことにより、化合物3(385mg)を淡黄色粘体として得た。
MS(m/z):596[M+H]
(2)
Figure JPOXMLDOC01-appb-C000355
 化合物3(338mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(252mg)を無色固体として得た。
MS(m/z):452[M+H]
実施例96
(1)
Figure JPOXMLDOC01-appb-C000356
 化合物1(230mg)および化合物2(302mg)から、実施例68-(6)と同様の処理を行うことにより、化合物3(274mg)を無色粘体として得た。
MS(m/z):610[M+H]
(2)
Figure JPOXMLDOC01-appb-C000357
 化合物3(273mg)から、実施例87-(2)と同様に処理することにより、化合物4(109mg)を無色固体として得た。
MS(m/z):424[M+H]
実施例97
(1)
Figure JPOXMLDOC01-appb-C000358
 化合物1(230mg)および化合物2(292mg)から、実施例68-(6)と同様の処理を行うことにより、化合物3(195mg)を淡黄褐色粘体として得た。
MS(m/z):554[M+H]
(2)
Figure JPOXMLDOC01-appb-C000359
 化合物3(194mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(109mg)を無色固体として得た。
MS(m/z):410[M+H]
実施例98
(1)
Figure JPOXMLDOC01-appb-C000360
 化合物1(230mg)および化合物2(314mg)から、実施例68-(6)と同様の処理を行うことにより、化合物3(145mg)を無色粘体として得た。
MS(m/z):626[M+H]
(2)
Figure JPOXMLDOC01-appb-C000361
 化合物3(144mg)から、実施例87-(2)と同様に処理することにより、化合物4(65.8mg)を無色固体として得た。
MS(m/z):440[M+H]
実施例99
(1)
Figure JPOXMLDOC01-appb-C000362
 化合物1(1350mg)および化合物2(1273mg)から、実施例68-(6)と同様の処理を行うことにより、化合物3(1610mg)を淡黄褐色粘体として得た。
MS(m/z):576[M+H]
(2)
Figure JPOXMLDOC01-appb-C000363
 化合物3(400mg)および化合物4(209mg)から、実施例68-(5)と同様の処理を行うことにより、化合物5(331mg)を淡黄褐色粘体として得た。
MS(m/z):646[M+H]
(3)
Figure JPOXMLDOC01-appb-C000364
 化合物5(329mg)から、実施例68-(7)と同様の処理を行うことにより、化合物6(208mg)を無色固体として得た。
MS(m/z):502[M+H]
実施例100
(1)
Figure JPOXMLDOC01-appb-C000365
 化合物1(400mg)および化合物2(156mg)から、実施例69-(2)と同様の処理を行うことにより、化合物3(260mg)を無色粘体として得た。
MS(m/z):608[M+H]
(2)
Figure JPOXMLDOC01-appb-C000366
 化合物3(258mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(175mg)を無色固体として得た。
MS(m/z):464[M+H]
実施例101
(1)
Figure JPOXMLDOC01-appb-C000367
 化合物1(400mg)および化合物2(99μL)から、実施例68-(5)と同様の処理を行うことにより、化合物3(340mg)を無色固体として得た。
MS(m/z):596[M+H]
(2)
Figure JPOXMLDOC01-appb-C000368
 化合物3(338mg)から、実施例68-(7)と同様の処理を行うことにより、化合物4(200mg)を無色固体として得た。
MS(m/z):452[M+H]
実施例102
(1)
Figure JPOXMLDOC01-appb-C000369
 化合物1(260mg)および化合物2(317mg)から、実施例68-(6)と同様の処理を行うことにより、化合物3(259mg)を淡黄色粘体として得た。
MS(m/z):626[M+H]
(2)
Figure JPOXMLDOC01-appb-C000370
 化合物3(258mg)から、実施例87-(2)と同様に処理することにより、化合物4(143mg)を淡黄色固体として得た。
MS(m/z):440[M+H]
実施例103
(1)
Figure JPOXMLDOC01-appb-C000371
 化合物1(2.03g)から、実施例88-(1)と同様に処理することにより、化合物3(791mg)を黄褐色固体として得た。
MS(m/z):258/260[M+H]
(2)
Figure JPOXMLDOC01-appb-C000372
 化合物3(785mg)から、実施例88-(2)と同様に処理することにより、化合物4(593mg)を黄褐色固体として得た。
MS(m/z):272/274[M+H]
(3)
Figure JPOXMLDOC01-appb-C000373
 化合物4(560mg)から、実施例61-(3)と同様に処理することにより、化合物5a(131mg)を無色固体として、化合物5b(369mg)を淡黄色固体としてそれぞれ得た。
 化合物5a:MS(m/z):402/404[M+H]
 化合物5b:MS(m/z):402/404[M+H]
(4)
Figure JPOXMLDOC01-appb-C000374
 化合物5a(127mg)から、実施例79-(5)と同様に処理することにより、化合物6a(110mg)を無色固体として得た。
MS(m/z):434/436[M+H]
(5)
Figure JPOXMLDOC01-appb-C000375
 化合物6a(108mg)および化合物7(74.6mg)から、実施例68-(5)と同様の処理を行うことにより、化合物8a(121mg)を無色固体として得た。
MS(m/z):504/506[M+H]
(6)
Figure JPOXMLDOC01-appb-C000376
 化合物8a(120mg)および化合物9(87.3mg)から、実施例68-(6)と同様の処理を行うことにより、化合物10a(123mg)を無色固体として得た。
MS(m/z):647[M+H]
(7)
Figure JPOXMLDOC01-appb-C000377
 化合物10a(123mg)から、実施例68-(7)と同様の処理を行うことにより、化合物11(84.2mg)を淡黄色固体として得た。
MS(m/z):503[M+H]
実施例104
(1)
Figure JPOXMLDOC01-appb-C000378
 化合物1(3.00g)および化合物2(6.03g)から、実施例68-(6)と同様の処理を行うことにより、化合物3(2.07g)を淡黄色粉体として得た。
MS(m/z):329[M+H]
(2)
Figure JPOXMLDOC01-appb-C000379
 化合物3(2060mg)から、実施例68-(1)と同様に処理することにより、化合物4(853mg)を淡黄色固体として得た。
MS(m/z):433[M+H]
(3)
Figure JPOXMLDOC01-appb-C000380
 化合物4(850mg)から、実施例68-(2)と同様に処理することにより、化合物5(480mg)を無色固体として得た。
MS(m/z):399[M+H]
(4)
Figure JPOXMLDOC01-appb-C000381
 化合物5から(64.0mg)から、実施例61-(5)と同様に処理することにより、化合物6(52.4mg)を無色固体として得た。
MS(m/z):385[M+H]
実施例105
(1)
Figure JPOXMLDOC01-appb-C000382
 化合物1aおよび1bの混合物(200mg)および化合物2(216mg)を用いて、実施例53-(1)と同様に反応することにより、淡黄色固体として化合物3aおよび3bの混合物(243mg)を得た。
MS(m/z):526[M+H]
(2)
Figure JPOXMLDOC01-appb-C000383
 化合物3aおよび3bの混合物(240mg)を用いて、実施例53-(2)と同様に反応することにより、淡黄色油状物として化合物4aおよび4bの混合物(245mg)を得た。
MS(m/z):436[M+H]
(3)
Figure JPOXMLDOC01-appb-C000384
 化合物4aおよび4bの混合物(140mg)および化合物5(140mg)を用いて、実施例55-(1)と同様の方法によって淡黄色油状物として化合物6aおよび6bの混合物(111mg)を得た。化合物6aおよび6bの混合物(110mg)を用いて、実施例51-(5)と同様に反応することにより、白色固体として化合物7(17mg)を得た。
MS(m/z):406[M+H]
実施例106
(1)
Figure JPOXMLDOC01-appb-C000385
 化合物1aおよび1bの混合物(150mg)および化合物2(120mg)を用いて、実施例55-(1)と同様に反応することにより、化合物3aおよび3bの混合物(140mg)を無色固体として得た。
MS(m/z):593[M+H]
(2)
Figure JPOXMLDOC01-appb-C000386
 化合物3aおよび3bの混合物(140mg)を用いて、実施例51-(5)と同様に反応することにより、化合物4(39mg)を無色固体として得た。
MS(m/z):407[M+H]
実施例107
(1)
Figure JPOXMLDOC01-appb-C000387
 化合物1(1.02g)、化合物2(1.10g)、臭化銅(I)(40mg)、炭酸セシウム(5.45g)およびジメチルスルホキシド(20mL)の混合物を100℃にて16時間撹拌した。反応液に1N塩酸および酢酸エチルを加え、不溶物をセライトろ過で除去した。ろ液を酢酸エチルで抽出し、抽出液を水および飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、濃縮し、残留物をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10-70:30)で精製することにより、化合物3(721mg)を無色固体として得た。
MS(m/z):293/295[M+H]
(2)
Figure JPOXMLDOC01-appb-C000388
 化合物3(715mg)を用いて、実施例50-(5)と同様に反応することにより、無色油状物として化合物4a(827mg)および化合物4b(144mg)を得た。
MS(m/z):423/425[M+H]
(3)
Figure JPOXMLDOC01-appb-C000389
 化合物4a(285mg)および化合物5(362mg)を用いて、実施例50-(6)と同様に反応することにより、化合物6a(294mg)を淡黄色粘体として得た。
MS(m/z):552[M+H]
(4)
Figure JPOXMLDOC01-appb-C000390
 化合物6a(287mg)を用いて、実施例52-(7)と同様に反応することにより、化合物7(251mg)を淡黄色粘体として得た。
MS(m/z):538[M+H]
(5)
Figure JPOXMLDOC01-appb-C000391
 化合物7(243mg)を用いて、実施例52-(8)と同様に反応することにより、化合物8(114mg)を無色粉体として得た。
MS(m/z):408[M+H]
実施例108
(1)
Figure JPOXMLDOC01-appb-C000392
 化合物1(5g)、EDC塩酸塩(7.46g)およびHOBt(5.26g)のN,N-ジメチルホルムアミド(50mL)溶液を室温にて2時間撹拌した。この溶液を抱水ヒドラジン(3.16mL)のアセトニトリル(50mL)溶液に0℃で滴下し、同温にて1時間、さらに室温にて30分間撹拌した。析出物をろ過で除去し、ろ液に飽和炭酸水素ナトリウム水溶液および酢酸エチルを加えて抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を留去した。残留物に4N塩酸/ジオキサン(3mL)およびジエチルエーテルを加えて撹拌した。析出物をろ過し、真空乾燥することによって、化合物2(1335mg)を無色粉末として得た。
MS(m/z):169[M+H]
(2)
Figure JPOXMLDOC01-appb-C000393
 化合物3(4g)および化合物4(7.37g)を用いて、実施例50-(6)と同様に反応することによって、化合物5(6.26g)を無色固体として得た。
MS(m/z):311[M+H]
(3)
Figure JPOXMLDOC01-appb-C000394
 化合物5(6.24g)、50%ヒドロキシアミン水溶液(26.6g)、メタノール(45mL)およびテトラヒドロフラン(45mL)の混合物を80℃にて2時間撹拌した。溶媒を留去後、クロロホルムおよび水を加えて抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を留去し、真空乾燥することによって化合物6(6.93g)を無色固体として得た。
MS(m/z):344[M+H]
(4)
Figure JPOXMLDOC01-appb-C000395
 化合物6(6.92g)の酢酸(20mL)溶液に無水酢酸(3.34mL)を加え、室温にて2時間撹拌した。溶媒を留去し、残留物をメタノール(100mL)に溶解し、窒素気流下、10%パラジウム-炭素を加えた後、水素雰囲気下、室温にて6時間撹拌した。メンブランフィルターで触媒をろ去し、溶媒を留去後、ジエチルエーテルを加えた。析出物をろ過し、真空乾燥することによって化合物7(6.71g)を淡黄色固体として得た。
MS(m/z):328[M+H]
(5)
Figure JPOXMLDOC01-appb-C000396
 化合物7(400mg)、化合物2(211mg)、ナトリウムメチラート(167mg)およびエタノール(6mL)の混合物を100℃にて17時間撹拌した。反応液を室温とし、酢酸エチル、1N塩酸および水を加えて抽出した。抽出液を飽和食塩水で洗浄し、フェーズセパレーターに通した後、溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=70:30→45:55)で精製することにより、化合物8(276mg)を無色油状物として得た。
MS(m/z):461[M+H]
(6)
Figure JPOXMLDOC01-appb-C000397
 化合物8(275mg)を用いて、実施例50-(8)と同様に反応することにより、化合物9(262mg)を無色固体として得た。
MS(m/z):447[M+H]
実施例109
(1)
Figure JPOXMLDOC01-appb-C000398
 化合物1(400mg)、化合物2(127mg)、ナトリウムメチラート(112mg)、塩化アンモニウム(55mg)およびN,N-ジメチルホルムアミド(6mL)の混合物を100℃にて25時間撹拌した。反応液を室温まで冷却し、酢酸エチル、飽和塩化アンモニウム水溶液および水を加えて抽出した。抽出液を飽和食塩水で洗浄し、フェーズセパレーターに通した後、溶媒を留去した。残留物をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=70:30→45:55)で精製することにより、化合物3(112mg)を淡黄色粘体として得た。
MS(m/z):395[M+H]
(2)
Figure JPOXMLDOC01-appb-C000399
 化合物3(112mg)を用いて、実施例50-(8)と同様に反応することにより、化合物4(72mg)を淡黄色固体として得た。
MS(m/z):381[M+H]
実施例110
(1)
Figure JPOXMLDOC01-appb-C000400
 化合物1(200mg)および化合物2(103mg)を用いて、実施例109-(1)と同様に反応することにより、化合物3(65mg)を淡黄色粘体として得た。
MS(m/z):459[M+H]
(2)
Figure JPOXMLDOC01-appb-C000401
 化合物3(180mg)を用いて実施例50-(8)と同様に反応することにより、化合物4(145mg)を無色固体として得た。
MS(m/z):445[M+H]
実施例111
(1)
Figure JPOXMLDOC01-appb-C000402
 化合物1(400mg)、化合物2(180mg)を用いて実施例109-(1)と同様に反応することにより、化合物3(234mg)を淡黄色粘体として得た。
MS(m/z):409[M+H]
(2)
Figure JPOXMLDOC01-appb-C000403
 化合物3(218mg)を用いて実施例50-(8)と同様に反応することにより、化合物4(149mg)を無色固体として得た。
MS(m/z):395[M+H]
実施例112
(1)
Figure JPOXMLDOC01-appb-C000404
 化合物1(297mg)および化合物2(300mg)を用いて、実施例50-(6)と同様に反応することにより、化合物3(292mg)を無色粘体として得た。
MS(m/z):566[M+H]
(2)
Figure JPOXMLDOC01-appb-C000405
 化合物3(288mg)を用いて、実施例52-(7)と同様に反応することにより、化合物4(305mg)を無色粘体として得た。
MS(m/z):552[M+H]
(3)
Figure JPOXMLDOC01-appb-C000406
 化合物4(280mg)を用いて、実施例52-(8)と同様に反応することにより、化合物5(149mg)を無色固体として得た。
MS(m/z):422[M+H]
実施例113
(1)
Figure JPOXMLDOC01-appb-C000407
 化合物1(5.3g)を用いて実施例85-(1)と同様に反応することにより、化合物2(4.05g)をベージュ色固体として得た。
MS(m/z):275/277[M+H]
(2)
Figure JPOXMLDOC01-appb-C000408
 化合物2(4.03g)を用いて実施例85-(2)と同様に反応することにより、化合物3(3.13g)を黄色固体として得た。
MS(m/z):289/291[M+H]
(3)
Figure JPOXMLDOC01-appb-C000409
 化合物3(3.1g)を用いて、実施例50-(5)と同様に反応し、化合物4a(2.55g)を無色粘体として、4b(1.70g)を無色固体として得た。
4a:MS(m/z):419/421[M+H]
4b:MS(m/z):419/421[M+H]
(4)
Figure JPOXMLDOC01-appb-C000410
 化合物4b(1.62g)を用いて実施例68-(4)と同様に反応することにより、化合物5(1.355g)を無色固体として得た。
MS(m/z):451/453[M+H]
(5)
Figure JPOXMLDOC01-appb-C000411
 化合物5(300mg)および化合物6(255mg)を用いて実施例50-(6)と同様に反応を行うことにより、化合物7(347mg)を無色固体として得た。
MS(m/z):594[M+H]
(6)
Figure JPOXMLDOC01-appb-C000412
 イソプロパノール(77mg)のテトラヒドロフラン(3mL)溶液に0℃にて60%水素化ナトリウム(35mg)を加え、10分間撹拌した。これに化合物7(345mg)のテトラヒドロフラン(3mL)溶液を加え、10分間撹拌した。次いで2N水酸化ナトリウム水溶液(2.9mL)およびメタノール(3mL)を加え、室温にて終夜撹拌した。反応液を濃縮し、残留物を1N塩酸で中和し、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→90:10)で精製することにより、化合物8(279mg)を無色粘体として得た。
MS(m/z):560[M+H]
(7)
Figure JPOXMLDOC01-appb-C000413
 化合物8(278mg)を用いて実施例88-(7)と同様に反応を行うことにより、化合物9(60mg)を無色固体として得た。
MS(m/z):430[M+H]
実施例114
(1)
Figure JPOXMLDOC01-appb-C000414
 化合物1(389mg)および3-ペンタノール(120mg)から、実施例113-(6)と同様に反応を行うことにより、化合物2(292mg)を無色粘体として得た。
MS(m/z):570[M+H]
(2)
Figure JPOXMLDOC01-appb-C000415
 化合物2(290mg)から、実施例88-(7)と同様に反応を行うことにより、化合物3(60mg)を無色固体として得た。
MS(m/z):439[M+H]
実施例115
(1)
Figure JPOXMLDOC01-appb-C000416
 化合物1(230mg)、フェリシアン化鉄(II)カリウム4水和物(66mg)、酢酸パラジウム(9mg)、ブチルジ-1-アダマンチルホスフィン(42mg)、炭酸ナトリウム(17mg)およびN-メチルピロリドン(5mL)の混合物を窒素雰囲気下、160℃にて18時間撹拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。減圧濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→80:20)で精製することにより、無色粘体として化合物2(24mg)を得た。
MS(m/z):580[M+H]
(2)
Figure JPOXMLDOC01-appb-C000417
 化合物2(20mg)を用いて、実施例88-(7)と同様に反応を行うことにより、化合物3(11mg)を無色固体として得た。
MS(m/z):436[M+H]
実施例116
(1)
Figure JPOXMLDOC01-appb-C000418
 化合物1(300mg)およびシクロブタノール(75mg)から、実施例113-(6)と同様に反応を行うことにより、化合物2(270mg)を無色粉体として得た。
MS(m/z):554[M+H]
(2)
Figure JPOXMLDOC01-appb-C000419
 化合物2(270mg)を用いて、実施例88-(7)と同様に反応を行うことにより、化合物3(110mg)を無色固体として得た。
MS(m/z):424[M+H]
実施例117
(1)
Figure JPOXMLDOC01-appb-C000420
 化合物1(2.15g)および化合物2(2.8g)を用いて、実施例51-(2)と同様に反応を行うことにより、化合物3(2.82g)を淡桃色固体として得た。
MS(m/z):314/316[M+H]
(2)
Figure JPOXMLDOC01-appb-C000421
 化合物3(2.81g)、化合物4(2.73g)、ビス(トリフェニルホスフィン)パラジウム(II)クロリド(190mg)、酢酸カリウム(2.63g)およびジオキサン(56mL)の混合物を窒素雰囲気下、100℃にて4時間撹拌した。反応液をセライトでろ過し、酢酸エチルで洗浄した。ろ液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧濃縮後、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→90:10)で精製することにより、無色固体として化合物5(1.384g)を得た。
MS(m/z):362[M+H]
(3)
Figure JPOXMLDOC01-appb-C000422
 化合物5(392mg)および化合物6(400mg)を用いて、実施例50-(6)と同様に反応することにより、無色粘体として化合物7(383mg)を得た。
MS(m/z):588[M+H]
(4)
Figure JPOXMLDOC01-appb-C000423
 化合物7(380mg)およびシクロブタノール(93mg)を用いて、実施例113-(6)と同様に反応を行うことにより、化合物8(293mg)を無色固体として得た。
MS(m/z):566[M+H]
(5)
Figure JPOXMLDOC01-appb-C000424
 化合物8(290mg)から、実施例88-(7)と同様に反応を行うことにより、化合物9(190mg)を無色固体として得た。
MS(m/z):436[M+H]
実施例118
(1)
Figure JPOXMLDOC01-appb-C000425
 化合物1(300mg)およびシクロブタノール(56mg)を用いて、実施例113-(6)と同様に反応を行うことにより、化合物2(305mg)を無色粘体として得た。
MS(m/z):554[M+H]
(2)
Figure JPOXMLDOC01-appb-C000426
 化合物2(304mg)を用いて、実施例88-(7)と同様に反応を行うことにより、化合物3(142mg)を無色固体として得た。
MS(m/z):424[M+H]
実施例119
(1)
Figure JPOXMLDOC01-appb-C000427
 化合物1(367mg)および化合物2(400mg)を用いて、実施例50-(6)と同様に反応することにより、無色粘体として化合物3(515mg)を得た。
MS(m/z):588[M+H]
(2)
Figure JPOXMLDOC01-appb-C000428
 化合物3(513mg)およびシクロブタノール(126mg)を用いて、実施例113-(6)と同様に反応を行うことにより、化合物4(463mg)を無色固体として得た。
MS(m/z):566[M+H]
(3)
Figure JPOXMLDOC01-appb-C000429
 化合物4(460mg)を用いて、実施例88-(7)と同様に反応を行うことにより、化合物5(286mg)を無色固体として得た。
MS(m/z):436[M+H]
実施例120
(1)
Figure JPOXMLDOC01-appb-C000430
 化合物1(290mg)および2-メチル-1-プロパノール(56mg)から、実施例113-(6)と同様に反応を行うことにより、化合物2(199mg)を無色粘体として得た。
MS(m/z):556[M+H]
(2)
Figure JPOXMLDOC01-appb-C000431
 化合物2(198mg)から、実施例88-(7)と同様に反応を行うことにより、化合物3(74mg)を無色固体として得た。
MS(m/z):426[M+H]
実施例121
(1)
Figure JPOXMLDOC01-appb-C000432
 化合物1(290mg)およびシクロプロピルメタノール(54mg)を用いて、実施例113-(6)と同様に反応を行うことにより、化合物2(287mg)を無色粘体として得た。
MS(m/z):554[M+H]
(2)
Figure JPOXMLDOC01-appb-C000433
 化合物2(286mg)から、実施例88-(7)と同様に反応を行うことにより、化合物3(61mg)を無色固体として得た。
MS(m/z):424[M+H]
実施例122
(1)
Figure JPOXMLDOC01-appb-C000434
 化合物1(290mg)およびシクロブチルメタノール(65mg)を用いて、実施例113-(6)と同様の処理を行うことにより、化合物2(279mg)を無色粘体として得た。
MS(m/z):568[M+H]
(2)
Figure JPOXMLDOC01-appb-C000435
 化合物2(278mg)を用いて、実施例88-(7)と同様に反応を行うことにより、化合物3(107mg)を無色固体として得た。
MS(m/z):438[M+H]
実施例123
(1)
Figure JPOXMLDOC01-appb-C000436
 化合物1(350mg)および2-メチル-1-プロパノール(90mg)から、実施例113-(6)と同様に反応を行うことにより、化合物2(319mg)を無色粘体として得た。
MS(m/z):556[M+H]
(2)
Figure JPOXMLDOC01-appb-C000437
 化合物2(317mg)を用いて、実施例88-(7)と同様の反応を行うことにより、化合物3(111mg)を無色固体として得た。
MS(m/z):426[M+H]
実施例124
(1)
Figure JPOXMLDOC01-appb-C000438
 化合物1(350mg)およびシクロプロピルメタノール(88mg)を用いて、実施例113-(6)と同様の反応を行うことにより、化合物2(345mg)を無色粘体として得た。
MS(m/z):554[M+H]
(2)
Figure JPOXMLDOC01-appb-C000439
 化合物2(343mg)から、実施例88-(7)と同様の反応を行うことにより、化合物3(129mg)を無色固体として得た。
MS(m/z):424[M+H]
実施例125
(1)
Figure JPOXMLDOC01-appb-C000440
 化合物1(350mg)およびシクロブチルメタノール(209mg)を用いて、実施例113-(6)と同様の反応を行うことにより、化合物2(345mg)を無色粘体として得た。
MS(m/z):568[M+H]
(2)
Figure JPOXMLDOC01-appb-C000441
 化合物2(343mg)から、実施例88-(7)と同様の反応を行うことにより、化合物3(115mg)を無色固体として得た。
MS(m/z):438[M+H]
実施例126
(1)
Figure JPOXMLDOC01-appb-C000442
 化合物1(300mg)およびシクロペンタノール(119mg)から、実施例68-(5)と同様の反応を行うことにより、化合物2(300mg)を無色固体として得た。
MS(m/z):439/441[M+H]
(2)
Figure JPOXMLDOC01-appb-C000443
 化合物2(298mg)および化合物3(261mg)を用いて、実施例68-(6)と同様の反応を行うことにより、化合物4(359mg)を無色粘体として得た。
MS(m/z):582[M+H]
(3)
Figure JPOXMLDOC01-appb-C000444
 化合物2(355mg)を用いて、実施例88-(7)と同様の反応を行うことにより、化合物4(178mg)を無色固体として得た。
MS(m/z):438[M+H]
実施例127
(1)
Figure JPOXMLDOC01-appb-C000445
 化合物1(400mg)およびシクロペンタノール(177mg)を用いて、実施例68-(5)と同様の処理を行うことにより、化合物2(332mg)を無色粘体として得た。
MS(m/z):395/397[M+H]
(2)
Figure JPOXMLDOC01-appb-C000446
 化合物2(330mg)および化合物3(350mg)から、実施例68-(6)と同様の処理を行うことにより、化合物4(304mg)を無色粘体として得た。
MS(m/z):582[M+H]
(3)
Figure JPOXMLDOC01-appb-C000447
 化合物4(303mg)を用いて、実施例88-(7)と同様の処理を行うことにより、化合物5(139mg)を無色固体として得た。
MS(m/z):438[M+H]
参考例1
Figure JPOXMLDOC01-appb-C000448
 化合物1(2’-(トリフルオロメチル)アセトフェノン)(1.00g)、N-ブロモスクシンイミド(0.87g)およびびトシル酸一水和物(84mg)を室温で一終夜撹拌した。反応液にジクロロメタンと飽和食塩水を加えて分液した。有機層分離し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=99:1→94:6)で精製することにより、化合物2(1.14g)を得た。
NMR(400MHz,DMSO-d):7.97(1H,dd、J=8.0,4.0Hz),7.75(1H,m),7.57(1H,t,J=8.0Hz),7.53(1H,d,J=8.0Hz),4.85(1H,s)
参考例2
Figure JPOXMLDOC01-appb-C000449
(1)化合物1(2’-ヒドロキシアセトフェノン)(1.20mL)、2-ブロモエチルメチルエーテル(1.88mL)及び炭酸セシウム(3.26g)をN,N-ジメチルホルムアミド(10mL)に溶解させ、90℃で一終夜撹拌した。反応液を室温に戻した後、酢酸エチル及び水を加えて分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→80:20)で精製することにより、化合物2(1.75g)を得た。
MS(m/z):195[M+H]
(2)化合物2(1.74g)を用いて、参考例1と同様に処理することにより、 化合物3(2.24g)を得た。
MS(m/z):273/275[M+H]
参考例3
Figure JPOXMLDOC01-appb-C000450
(1)化合物1(2’-ヒドロキシアセトフェノン)(0.60mL)をジメチルスルホキシド(25mL)に溶解させ、2-ヨードプロパン(1.70g)及びリン酸カリウム(2.12g)を加えて60 ℃で4時間撹拌した。反応液を室温に戻した後、酢酸エチル及び水を加えて分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=98:2→92:8)で精製することにより、化合物2(0.74g)を得た。
MS(m/z):179[M+H]
(2)化合物2(200mg)を酢酸エチル(2.5mL)及びクロロホルム(2.5mL)に溶解させ、臭化銅(0.50g)を加えて、窒素雰囲気下で4時間加熱還流した。室温に戻した後、反応液をセライトろ過し、酢酸エチルで洗浄した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=98:2→92:8)で精製することにより、化合物3(267mg)を得た。
MS(m/z):257/259[M+H]
参考例4
Figure JPOXMLDOC01-appb-C000451
 化合物1(2’-フルオロ-6’-(トリフルオロメチル)アセトフェノン)(500mg)をテトラヒドロフラン(10mL)に溶解させ、ベンジルトリメチルアンモニウムトリブロミド(1.04g)を加えて、室温で2時間攪拌した。反応液を減圧濃縮し、残渣にジエチルエーテルを加えて、生じた固形物をろ過、ジエチルエーテルで洗浄した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=99:1→95:5)で精製することにより、化合物2(632mg)を得た。
NMR(400MHz,DMSO-d):7.77(3H,m),4.83(1H,d,J=1.2Hz)
参考例5
Figure JPOXMLDOC01-appb-C000452
 化合物1(4-メトキシ-2-(トリフルオロメチル)安息香酸)(0.50g)をジクロロメタン(10mL)に溶解させ、塩化オキサリル(0.40mL)を滴下した。これにN,N-ジメチルホルムアミド(5滴)を加え、室温で1時間攪拌した。反応液を減圧濃縮後、アセトニトリル(10mL)を加えた。2Mトリメチルシリルジアゾメタン-n-ヘキサン溶液(2.4mL)を氷冷下で滴下し、室温で1時間撹拌した。反応液を氷冷し、48%臭化水素酸(0.39mL)を滴下して、1時間撹拌した。反応液へ酢酸エチル及び飽和炭酸水素ナトリウム水溶液を加え分液した。有機層を分離し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=98:2→92:8)で精製することにより、化合物2(0.44g)を得た。
MS(m/z):297/299[M+H]
参考例6
Figure JPOXMLDOC01-appb-C000453
(1)化合物1(3-アセチル安息香酸)(500mg)をN,N-ジメチルホルムアミド(10mL)に溶解させ、炭酸カリウム(421mg)及びベンジルブロミド(362μL)を加えて、室温で一終夜攪拌した。反応液に酢酸エチル及び水を加え分液し、有機層を無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=99:1→85:15)で精製し、化合物2を(763mg)を得た。
MS(m/z):272[M+NH
(2)化合物2(760mg)を用いて、参考例1と同様に処理することにより、 化合物3(668mg)を得た。
MS(m/z):333/335[M+H]
参考例7-1
Figure JPOXMLDOC01-appb-C000454
(1)化合物1(4-ブロモフェノール)(61.0g)、化合物2(ヒドロキシピバル酸メチル)(69.9g)およびトリフェニルホスフィン(138.7g)をテトラヒドロフラン(350mL)に溶解させ、窒素雰囲気下で、0℃に冷却した後、40%アゾジカルボン酸ジエチル-トルエン溶液(240mL)を滴下し、室温に戻しながら攪拌し、その後80℃で一終夜撹拌した。反応液を室温に戻した後、減圧濃縮し、得られた残渣にジエチルエーテル(500mL)加え、生じた固体をろ過し、ジエチルエーテルにて洗浄した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→19:1→9:1)で精製することにより、化合物3(102.2g)を得た。
MS(m/z):304/306[M+NH]
(2)化合物3(102.2g)、ビス(ピナコラト)ジボロン(98.5g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウムジクロリド(7.73g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(5.86g)、酢酸カリウム(103.8g)を1,4-ジオキサン(470mL)に加え、窒素雰囲気下、80℃で一終夜撹拌した。室温に戻した後、反応液を減圧濃縮し、得られた残渣に酢酸エチル及び水を加えて分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→9:1→4:1)で精製し、得られた残渣にn-ヘキサンを加え、氷冷下で1時間攪拌し、固体をろ取、乾燥することで、化合物4(95.5g)を得た。
MS(m/z):335[M+H]
(3)化合物4(87.6g)、化合物5(2-クロロ-5-シアノピリジン)(40.0g)、をジメトキシエタン(550mL)に溶解させ、2M 炭酸ナトリウム水溶液(525mL)を加えた。これに、窒素雰囲気下、テトラキス(トリフェニルホスフィン)パラジウム(21.2g)を加えて、90℃で一終夜撹拌した。反応液を室温に戻した後、酢酸エチル及び水を加えて分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=9:1→4:1→2:1)で精製することにより、化合物6(77.4g)を得た。
MS(m/z):311[M+H]
(4)化合物6(6.27g)をテトラヒドロフラン(100mL)とメタノール(100mL)に溶解させ、50%ヒドロキシルアミン水溶液(40mL)を加えて、80℃で4時間撹拌した。反応液を室温に戻した後、減圧濃縮し、得られた残渣にクロロホルム及び水を加えて分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去することにより、化合物7(6.70g)を得た。
MS(m/z):344[M+H]
(5)化合物7(6.68g)を酢酸(60mL)に溶解させ、無水酢酸(4mL)を加えて、室温で1.75時間撹拌した。反応液を減圧濃縮後、得られた残渣にテトラヒドロフラン(70mL)とメタノール(300mL)を加え、窒素雰囲気下、10%パラジウム/炭素(1.25g)を加え、水素置換し、室温で2時間攪拌した。反応液をろ過し、ろ物をメタノールで洗浄した。ろ液を減圧濃縮後、残渣に酢酸エチルを加えて析出した、酢酸エチルで洗浄、乾燥させることにより、化合物8(6.81g)を酢酸塩として得た。
MS(m/z):328[M+H]
参考例7-2~7-19
 前記参考例7-1と同様に処理することにより、後記表27、参考例7-2~7-19の化合物を得た。
Figure JPOXMLDOC01-appb-T000455
Figure JPOXMLDOC01-appb-I000456
Figure JPOXMLDOC01-appb-I000457
参考例8
Figure JPOXMLDOC01-appb-C000458
 化合物1(4.9g)、化合物2(5g)をN,N-ジメチルホルムアミド(50mL)に溶解させ、氷冷下で少量ずつ60%水素化ナトリウム(1.16g)を加えた。反応液を室温まで昇温させ、4時間撹拌した。氷冷下にて、飽和塩化アンモニウム水溶液を加えた後、酢酸エチルおよび水を加えて分液した。有機層を分離し、水で洗浄後、硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→97:3)で精製することにより、化合物3(6.71g)を得た。
MS(m/z):356/358[M+H]
参考例9-1
Figure JPOXMLDOC01-appb-C000459
 化合物1(1.46g)、化合物2(1.46g)、ジクロロ〔1,1’-ビス(ジフェニルホスフィノ)フェロセン〕パラジウム(PdCl(dppf))・塩化メチレン錯体(399mg)および2N炭酸セシウム水溶液(7.33mL)を1,4-ジオキサン(29mL)に加え、100℃で5時間撹拌した。反応液をろ過し、ろ液へ酢酸エチルおよび水を加えて分液した。有機層を分離して、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=95:5→80:20)で精製後、n-ヘキサンで固化させることにより、化合物3(1.39g)を得た。
MS(m/z):367[M+H]
参考例9-2~9-3
 前記参考例9-1と同様に処理することにより、後記表28、参考例9-2および9-3の化合物を得た。
Figure JPOXMLDOC01-appb-T000460
参考例10
Figure JPOXMLDOC01-appb-C000461
(1)化合物1(850mg)を用いて、参考例7-1(4)と同様に処理することにより、化合物2(940mg)を得た。
MS(m/z):392/394[M+H]
(2)化合物2(925mg)を酢酸(9mL)および無水酢酸(268μL)中に溶解させ、室温で30分間撹拌した。塩化パラジウム(46mg)およびトリエチルシラン(535μL)を加えて、70℃で4時間撹拌した。トリエチルシラン(288μL)を追加し、さらに同温で30分間撹拌した。反応液をろ過し、ろ液を減圧濃縮した。得られた残査へ飽和食塩水および酢酸エチルを加え分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた残査をNH-シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→90:10)ついでシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→67:33)で精製することにより、化合物3(201mg)を得た。
MS(m/z):376/378[M+H]
参考例11
Figure JPOXMLDOC01-appb-C000462
(1)化合物1(1.4g)を用いて、参考例7-1(4)と同様に処理することにより、化合物2(1.51g)を得た。
MS(m/z):451[M+H]
(2)化合物2(1.32g)を酢酸(30mL)および無水酢酸(610μL)に溶解させ、室温で6時間撹拌した。反応液へメタノール(10mL)およびテトラヒドロフラン(10mL)を加え、窒素雰囲気下で10%パラジウム-炭素(265mg)を加えた。反応混合物を水素雰囲気下、室温で2時間撹拌した後、セライトろ過し、ろ液を減圧濃縮した。得られた残査にエタノール(20mL)および4N塩化水素-ジオキサン溶液(10mL)を加えて、室温で一終夜、さらに60℃で8時間撹拌した。反応液へクロロホルム、メタノール、飽和重曹水を加えて分液した。有機層を分離し、無水硫酸ナトリウムで乾燥後、減圧濃縮して得られた残査をジエチルエーテルで固化させることにより、化合物3(675mg)を得た。
MS(m/z):373[M+H]
参考例12
Figure JPOXMLDOC01-appb-C000463
(1)化合物1(1.86g)、化合物2(3.02g)および28%アンモニア水(25mL)を、水(25mL)およびメタノール(100mL)の混合溶媒に加え、室温で5時間撹拌した。反応液を減圧濃縮して得られた残査へ、クロロホルムおよび飽和炭酸水素ナトリウム水溶液を加えて分液した。有機層を分離して、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=50:50→20:80)で精製することにより、化合物3(490mg)を得た。
MS(m/z):300/302[M+H]
(2)化合物3(475mg)のN,N-ジメチルホルムアミド(5mL)溶液に、窒素雰囲気下、氷冷下で60%水素化ナトリウム(95mg)を加え、室温で30分間攪拌した。これに、氷冷下、2-(トリメチルシリル)エトキシメチルクロリド(420μL)を加え、室温で6時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、このときの水層を酢酸エチルで抽出した。有機層を合わせて乾燥し、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=87:13→74:26)で精製することにより、化合物4(651mg)を得た。
MS(m/z):430/431[M+H]
参考例13-1
Figure JPOXMLDOC01-appb-C000464
(1)水(15mL)に化合物1(3,3-ジブロモ-1,1,1-トリフルオロプロパン-2-オン)(4.05g)および酢酸ナトリウム(2.46g)を加えて95℃で30分撹拌した。反応液を氷冷し、これを28%アンモニア水溶液(20mL)及びメタノール(60mL)に化合物2(6-ブロモ-ニコチンアルデヒド)(1.86g)を溶解した溶液へ、氷冷下にて加え、室温へ徐々に昇温させながら一終夜撹拌した。反応液を減圧濃縮した後、水および酢酸エチルを加えて分液し、有機層を無水硫酸ナトリウムにて乾燥し、減圧下溶媒を留去した。得られた固形残渣へジエチルエーテルを加えて粉砕、濾取、乾燥することにより、化合物3(2-ブロモ-5-[5-(トリフルオロメチル)-1H-イミダゾール-2-イル]ピリジン)(1.25g)を得た。
MS(m/z):292/294[M+H]
(2)N,N-ジメチルホルムアミド(150mL)に溶解した化合物3(2-ブロモ-5-[5-(トリフルオロメチル)-1H-イミダゾール-2-イル]ピリジン)(13.65g)の溶液に、窒素雰囲気下、氷冷下で60%水素化ナトリウム(2.62g)を加え、30分間攪拌した。これに2-(トリメチルシリル)エトキシメチルクロリド(12.4mL)を氷冷下で加え、徐々に室温に戻しつつ一終夜攪拌した。反応液に飽和塩化アンモニウム水溶液を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、このときの水層を酢酸エチルで抽出した。有機層を合わせて乾燥し、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル)で精製することにより、化合物4(2-ブロモ-5-[4-(トリフルオロメチル)-1-{[2-(トリメチルシリル)エトキシ]メチル}-1H-イミダゾール-2-イル]ピリジン)(9.42g)を得た。
MS(m/z):422/424[M+H]
参考例13-2~13-3
 前記参考例13-1と同様に処理することにより、後記表29、参考例13-2~13-3の化合物を得た。
Figure JPOXMLDOC01-appb-T000465
参考例14
Figure JPOXMLDOC01-appb-C000466
 化合物1(1.0g)を用いて、実施例11(1)と同様に処理することにより、化合物2(2.68g)を得た。
MS(m/z):382/384[M+H]
参考例15-1
Figure JPOXMLDOC01-appb-C000467
(1)化合物1(5.9g)をエタノール(70mL)へ溶解させ、8M水酸化ナトリウム水溶液(25mL)を加え、70℃で19時間撹拌した。反応液を減圧濃縮して得た残査に酢酸エチルおよび水を加えて分液した。水層を分離して、これに6M塩酸を加えpH5~6に調整し、さらにリン酸緩衝液(pH7.0)を加えて中和した後、酢酸エチルおよびテトラヒドロフランの混合溶媒で抽出した。有機層を分離して、無水硫酸ナトリウムで乾燥、減圧濃縮して得られた残査にジエチルエーテルを加え、析出した固体をろ取することにより、化合物2(2.56g)を得た。
MS(m/z):268/270[M+H]
(2)化合物2(2.62g)、ジイソプロピルエチルアミン(2.21mL)および臭化ベンジル(2.01g)をN,N-ジメチルアセトアミド(30mL)に加え、室温で一終夜撹拌した。反応混合物を氷冷し、水(270mL)を加えて生じた固体をろ取、n-ヘキサンで洗浄することにより、化合物3(3.06g)を得た。
MS(m/z):358/360[M+H]
(3)化合物3(2.88g)を用いて、実施例6(2)と同様に処理することにより、化合物4(1.76g)を得た。
MS(m/z):488/490[M+H]
参考例15-2
 前記参考例15-1と同様に処理することにより、後記表30、参考例15-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000468
参考例16
Figure JPOXMLDOC01-appb-C000469
(1)ナトリウムメチラート(1.39g)のメタノール(28.9mL)溶液へ化合物1(6-クロロニコチノニトリル)(10g)を加え、40℃で30分間撹拌した。反応液を減圧濃縮して得られた残査へテトラヒドロフラン(30mL)を加えて混合した後、減圧濃縮した。残査にテトラヒドロフラン(100mL)を加えグリシンメチルエステル塩酸塩(9.06g)およびトリエチルアミン(11.07mL)を加え、55℃で6.5時間撹拌した。析出した固体をろ取し、酢酸エチルで洗浄、乾燥することにより、化合物2(19.05g)を得た。
MS(m/z):196/198[M+H]
(2)化合物2(19.05g)をオキシ塩化リン(45.4mL)中で1.5時間加熱還流した。不溶物をろ過し、ろ液へ酢酸エチルおよび2N水酸化ナトリウム水溶液加えて中和した。テトラヒドロフランおよび活性炭を加え撹拌後にセライトを用いてろ過し、ろ液へ水および酢酸エチルを加えて分液した。有機層を分離し、食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去した。得られた固体へアセトニトリルを加えてろ取、乾燥することにより化合物3(4.87g)を得た。
MS(m/z):214/216[M+H]
(3)化合物3(5.09g)を用いて、実施例6(2)と同様に処理することにより化合物4(5.96g)を得た。
MS(m/z):344/346[M+H]
参考例17-1
Figure JPOXMLDOC01-appb-C000470
(1)酢酸パラジウム(924mg)および2-ジシクロへキシルホスフィノ-2’,4’,6’-トリイソプロピル-1,1’-ビフェニル(X-PHOS)(5.88g)を窒素雰囲気下、1,4-ジオキサン(500mL)および水(297μL)の混合溶媒に加え、80℃で10分間撹拌した。反応液を室温まで冷却した後、別途調製した化合物1(50.00g)、化合物2(45.97g)および炭酸セシウム(100.52g)の1,4-ジオキサン(500mL)溶液を加え、100℃で4時間撹拌した。反応液を冷却した後、セライトろ過し、セライトを酢酸エチルで洗浄した。得られたろ液を水、ついで飽和食塩水で洗浄し、さらに無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→80:20)で精製することにより、化合物3(69.14g)を得た。
MS(m/z):349[M+H]
(2)化合物3(186.80g)をテトラヒドロフラン(525mL)に溶解させ、氷冷した。4N塩酸-1,4-ジオキサン溶液(656mL)をゆっくり加えた後、室温で一終夜撹拌した。反応液を減圧濃縮して得られた残査へt-ブチルメチルエーテルを加えて結晶化させ、ろ取した。得られた結晶を酢酸エチルに懸濁させ、2M水酸化ナトリウム水溶液を加えてpH9に調整した。酢酸エチルで抽出し、有機層を無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=80:20→0:100)で精製することにより、化合物4(129.64g)を得た。
MS(m/z):249[M+H]
(3)化合物4(3.32g)、化合物5(2.36g)および炭酸カリウム(2.35g)をジメチルスルホキシド(50mL)に加え、100℃で2時間撹拌した。室温まで冷却後、酢酸エチルおよび水を加え分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=80:20→0:100)で精製後にジエチルエーテルで粉砕、ろ取することにより、化合物6(3.24g)を得た。
MS(m/z):351[M+H]
参考例17-2
 前記参考例17-1と同様に処理することにより、後記表31、参考例17-2の化合物を得た。
Figure JPOXMLDOC01-appb-T000471
参考例18
Figure JPOXMLDOC01-appb-C000472
(1)化合物1(7.08g)および化合物2(2.5g)を用いて、参考例7-1)と同様に処理することにより、化合物3(2.78g)を得た。
MS(m/z):350[M+H]
(2)化合物3(2.78g)を1,4-ジオキサン(10mL)に溶解させ、4N塩酸-1,4-ジオキサン溶液(20mL)を氷冷下で加えた。反応液を室温で一終夜撹拌した後、ジエチルエーテルを加えた。析出した固体をろ取し、ジエチルエーテルで洗浄後、乾燥することにより、化合物4(2.27g)を得た。
MS(m/z):250[M+H]
(3)化合物4(600mg)、化合物5(500mg)、炭酸カリウム(871mg)および1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(345μL)を1,4-ジオキサン(15mL)に加え、99℃で2日間撹拌した。反応液を減圧濃縮した後、酢酸エチルおよび水を加えて分液した。有機層を分離し、水および飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残査をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→70:30)で精製した。得られた固体に、氷冷下、酢酸エチルおよびn-ヘキサンを加え、析出物をろ取することにより化合物6(515mg)を得た。
MS(m/z):352[M+H]
参考例19
Figure JPOXMLDOC01-appb-C000473
(1)化合物1(7.64g)および化合物2(5.0g)を用いて、参考例7-1(1)と同様に処理することにより、化合物3(8.27g)を得た。
MS(m/z):210[M+H]
(2)化合物3(3.0g)をジエチルエーテル(20mL)に溶解させ、臭化ベンジル(3.4mL)を加えて室温で2日間撹拌した後、析出した固体をろ取した。固体をメタノール(60mL)に溶解させ、水素化ホウ素ナトリウム(2.17g)を少量ずつ加えた後、室温で2時間撹拌した。飽和塩化アンモニウム水溶液および塩化メチレンを加えて分液した後、有機層を分離、飽和食塩水で洗浄、減圧濃縮した。得られた残査をメタノール(60mL)に溶解させ、10%パラジウム-炭素(300mg)を加えて、水素雰囲気下で7時間撹拌した。10%パラジウム-炭素をろ別し、ろ液を減圧濃縮した。残査を酢酸(50mL)に溶解させ、10%パラジウム-炭素(300mg)を加えて、水素雰囲気下70℃で7時間撹拌した。10%パラジウム-炭素をろ別し、ろ液を減圧濃縮して得られた残査をNH-シリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=100:0→98:2)で精製することにより、化合物4(1.34g)を得た。
MS(m/z):216[M+H]
参考例20-1
Figure JPOXMLDOC01-appb-C000474
 化合物1(514mg)を用いて、参考例7-1(4)および参考例7-1(5)と同様に処理することにより、化合物2(416mg)を酢酸塩として得た。
MS(m/z):369[M+H]
参考例20-2~20-3
 前記参考例20-1と同様に処理することにより、後記表32、参考例20-2および20-3の化合物を得た。
Figure JPOXMLDOC01-appb-T000475
参考例21-1
Figure JPOXMLDOC01-appb-C000476
(1)化合物1(4-ブロモフェノール)(61.0g)、化合物2(ヒドロキシピバル酸メチル)(69.9g)およびトリフェニルホスフィン(138.7g)をテトラヒドロフラン(350mL)に溶解させ、窒素雰囲気下で、0℃に冷却した後、40%アゾジカルボン酸ジエチル-トルエン溶液(240mL)を滴下し、室温に戻しながら攪拌し、その後80℃で一終夜撹拌した。反応液を室温に戻した後、減圧濃縮し、得られた残渣にジエチルエーテル(500mL)加え、生じた固体をろ過し、ジエチルエーテルにて洗浄した。ろ液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→19:1→9:1)で精製することにより、化合物3(102.2g)を得た。
MS(m/z):304/306[M+NH
(2)化合物3(102.2g)、ビス(ピナコラト)ジボロン(98.5g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン錯体(7.73g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(5.86g)、酢酸カリウム(103.8g)を1,4-ジオキサン(470mL)に溶解させ、窒素雰囲気下、80℃で一終夜撹拌した。室温に戻した後、減圧濃縮し、得られた残渣に酢酸エチル及び水を加えて分液した。有機層を分離し、飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→9:1→4:1)で精製し、得られた残渣にn-ヘキサンを加え、氷冷下で1時間攪拌し、固体をろ取、乾燥することで、化合物4(95.5g)を得た。
MS(m/z):335[M+H]
参考例21-2~21-9
 以下の原料1および原料2を用いて参考例21-1と同様に反応させることにより、後記表33、参考例21-2~21-9の化合物を得た。
Figure JPOXMLDOC01-appb-T000477
参考例22-1
Figure JPOXMLDOC01-appb-C000478
(1)1,1-シクロヘキサンジカルボン酸ジメチル(2.08g)のメタノール(15mL)溶液に1N水酸化ナトリウム水溶液(13.2mL)を加え、室温にて23時間撹拌した。メタノールを減圧留去し、残渣をn-ヘキサンで洗浄した。水層に1N塩酸(10mL)を加え、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄後、無水硫酸マグネシウムにて乾燥した。乾燥後、減圧濃縮し、化合物2(1.58g)を無色油状物として得た。
(2)化合物2(1.57g)のテトラヒドロフラン(15mL)溶液を窒素気流下、氷冷し、1Mボラン/テトラヒドロフラン錯体のテトラヒドロフラン溶液(12mL)を滴下した。滴下後、反応液を室温にて1.5時間撹拌した。反応液を氷冷し、メタノールを加えた。減圧濃縮後、残渣をメタノール(15mL)に溶解し、20%塩酸/メタノール(4mL)を加え、70℃にて18時間撹拌した。反応液を減圧濃縮し、残渣に飽和重曹水を加え、クロロホルムで抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。これにNHシリカゲルを加えて静置後、ろ過し、減圧濃縮することによって、化合物3(1.14g)を無色油状物として得た。
MS(m/z):131[M+H]
参考例22-2
Figure JPOXMLDOC01-appb-C000479
(1)マロン酸ジベンジル(25g)のN,N-ジメチルホルムアミド(250mL)溶液に炭酸カリウム(121.5g)およびジブロモエタン(22.7mL)を加え、室温にて終夜撹拌した。反応液に水を加え、酢酸エチルで抽出した。抽出液を水洗し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→80:20)で精製することにより、無色油状物として化合物2(25.33g)を得た。
(2)化合物2(16.9g)の塩化メチレン(338mL)溶液を-65℃以下に冷却し、1Mジイソブチルアルミニウムヒドリド/トルエン溶液(119.8mL)を滴下した。滴下後、反応液を30分かけて-15℃まで昇温した。反応液に飽和塩化アンモニア水溶液(170mL)および1N塩酸(170mL)を加え、10分間撹拌した。得られたゲル状の混合物に、さらに1N塩酸(300mL)を加えて溶解した。有機層を分離し、飽和重曹水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮後、残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→50:50)で精製することにより、無色油状物として化合物3(5.18g)を得た。
MS(m/z):207[M+H]
参考例22-3
Figure JPOXMLDOC01-appb-C000480
(1)ジエチルマロン酸ジメチル(25g)のメタノール(250mL)溶液に1N水酸化ナトリウム水溶液(132.8mL)を加え、室温にて終夜撹拌した。メタノールを減圧留去し、残渣を塩化メチレンで洗浄した。水層に1N塩酸を加え、pH=3に調整し、ジエチルエーテルで抽出した。抽出液を水洗し、無水硫酸マグネシウムにて乾燥した。乾燥後、減圧濃縮し、化合物2(23.1g)を無色油状物として得た。
(2)無水硫酸マグネシウム(63.85g)を塩化メチレン(230mL)に懸濁し、室温にて濃硫酸(7.07mL)を滴下し、15分間撹拌した。これに化合物2(23.1g)の塩化メチレン(115mL)溶液を加え、次いでtert-ブタノール(63.5mL)を加えた。反応液を室温にて終夜撹拌した。反応混合物をろ過し、ろ液氷冷し、飽和重曹水でアルカリとした。有機層を分離し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮することによって化合物3(26.09g)を無色油状物として得た。
(3)得られた化合物3(14g)のテトラヒドロフラン(140mL)溶液に室温にて1Mリチウムトリ(tert-ブトキシ)アルミニウムヒドリドのテトラヒドロフラン溶液(150mL)を滴下後、徐々に加温し、8時間加熱還流した。反応液を氷冷し、1N塩酸(500mL)を滴下した。反応混合物をジエチルエーテルで抽出し、抽出液を水、飽和重曹水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧濃縮後、残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=90:10→80:20)で精製することにより、無色油状物として化合物4(7.41g)を得た。
H NMR(DMSO-d6,400MHz)(ppm):δ4.48(t,J=5.2Hz,1H),3.42(d,J=5.1Hz,2H),1.46(m,4H),1.38(s,9H),0.74(t,J=7.2Hz,6H)
参考例22-4
Figure JPOXMLDOC01-appb-C000481
(1)1,1-シクロブタンジカルボン酸ジエチル(25g)のエタノール(250mL)溶液に1N水酸化ナトリウム水溶液(125mL)を加え、室温にて6日間撹拌した。エタノールを減圧留去し、残渣をジエチルエーテルで洗浄した。水層に1N塩酸を加え、pH=3に調整し、クロロホルムで抽出した。抽出液を水洗し、無水硫酸マグネシウムにて乾燥した。乾燥後、減圧濃縮し、化合物2(20.67g)を無色油状物として得た。
(2)無水硫酸マグネシウム(52g)を塩化メチレン(186mL)に懸濁し、室温にて濃硫酸(5.8mL)を滴下し、15分間撹拌した。これに化合物2(18.6g)の塩化メチレン(93mL)溶液を加え、次いでtert-ブタノール(52mL)を加えた。反応液を室温にて終夜撹拌した。反応混合物をろ過し、ろ液氷冷し、飽和重曹水でアルカリとした。有機層を分離し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮することによって化合物3(24.7g)を無色油状物として得た。
(3)得られた化合物3(15.9g)のテトラヒドロフラン(160mL)溶液に室温にて1Mリチウムトリ(tert-ブトキシ)アルミニウムヒドリド(153mL)のテトラヒドロフラン溶液を滴下後、徐々に加温し、3.5時間加熱還流した。反応液を氷冷し、飽和塩化アンモニウム水溶液を加え、室温にて撹拌した。得られたゲル状混合物をろ過し、減圧濃縮後、残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン:酢酸エチル=100:0→75:25)で精製することにより、無色油状物として化合物4(11.02g)を得た。
MS(m/z):187[M+H]
(4)化合物4(3g)のメタノール(60mL)溶液に2N塩酸/メタノール(6mL)を加え、5.5時間加熱還流した。反応液を塩化メチレンで希釈し、飽和重曹水および飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧濃縮後、化合物5(2.16g)を無色油状物として得た。
MS(m/z):149[M+H]
実験例1(DGAT1阻害活性)
<実験方法>
(1)ヒトDGAT1遺伝子のクローニングと組換えバキュロウイルスの調製
 ヒトDGAT1遺伝子は、ヒトcDNAライブラリを鋳型とし、DGAT1をコードする塩基配列(Genbank Accession No. NM_012079における245-1711)をPCR反応で増幅することにより取得した。
 得られたヒトDGAT1遺伝子をプラスミドpVL1392(BD Biosciences)へライゲーションし、発現プラスミドpVL1392-DGAT1を作製した。さらにBD BaculoGold Baculovirus Expression vector system (BD Biosciences)を用いて、組換えバキュロウイルスを調製した。
(2)ヒトDGAT1酵素高発現昆虫細胞のミクロゾームの調製
 ヒトDGAT1酵素の調製は、前項で得られた組み換えバキュロウイルスを、expresSF+(R)昆虫細胞(日本農産工業(株))に感染させることにより行った。expresSF+(R)細胞へ組換えバキュロウイルスを添加して72時間培養した後、遠心分離によって細胞を回収し、-80℃で凍結保存した。凍結保存した細胞を氷中で融解し、Complete Protease Inhibitor(Roche)を添加した緩衝液 (200mM Sucrose、1mM EDTA、100mM Tris-HCl(pH7.4))に懸濁した後、超音波破砕を行った。その後、常法によりミクロゾーム画分を取得し、DGAT1高発現ミクロゾームとして-80℃で凍結保存した。
(3)DGAT1阻害活性の測定
 DGAT1の酵素反応に用いる緩衝液として、100mM Tris-HCl(pH7.4)、200mM Sucrose、20mM MgCl、0.125% Bovin Serum Albumin (BSA)を使用した。この緩衝液に、所定濃度の試験化合物、および15μM ジオレイルグリセロール、5μM [14C]-パルミトイル-CoA、100μgタンパク/mL DGAT1高発現expresSF+(R)ミクロゾーム、0.75%アセトン、1%ジメチルスルホキシドを添加し、100μLの容量で、トリグリセライド(TG)合成反応を30℃で20分間行った。90μLの反応液を810μLのメタノールに添加し、反応を停止させた。反応液をOasis(R) μElutionプレート(ウォーターズ社製)に添加し、150μLのアセトニトリル:イソプロパノール(=2:3)の混合液で溶出した。溶出液にMicroScintiTM-40(パーキンエルマー社製)を150μL添加し、十分に攪拌した後、TopCountTM-NXT(パーキンエルマー社製)を用いて測定することにより、反応で生成した[14C]-TG量を定量した。
 阻害率は以下の式で計算した。
阻害率(%)=(1-(試験化合物添加時TG量-ブランクTG量)÷(対照TG量-ブランクTG量))×100
 ここで、試験化合物を添加せずに反応させた溶液中の[14C]-TGのカウントを「対照TG量」とし、試験化合物とDGAT1高発現expressSF+(R)ミクロゾームを添加しなかった溶液中の[14C]-TGのカウントを「ブランクTG量」とした。また、[14C]-TG合成を50%阻害するのに必要な試験化合物の濃度(IC50値)をPrism 5.01(グラフパッド ソフトウェア社製)にて算出した。
<実験結果>
 実験結果を下表34に示す。
Figure JPOXMLDOC01-appb-T000482
実験例2(脂質投与による血漿中トリグリセリド(TG)上昇抑制作用)
<実験方法>
 6~9週齢の雄性ICRマウスを一晩絶食後、試験化合物を0.2%カルボキシメチルセルロース溶液に懸濁させ、経口投与した。30分後に脂質(イントラリポス20%、大塚製薬、10mL/kg)を経口投与した。脂質投与直前、および2時間後に尾静脈より採血を行い、血漿を得た。血漿中TGの測定は、トリグリセリドEテストワコー(和光純薬)を用い、脂質投与による血漿中TG上昇値を算出した。溶媒対照群における血漿TG上昇値を対照とし、試験物質投与群における血漿TG上昇抑制率を算出した。
<実験結果>
 上記の結果、投与量5mg/kgにおいて、実施例の化合物は下表35に示す血漿TG上昇抑制率を示した。
Figure JPOXMLDOC01-appb-T000483
実験例3(摂食抑制作用)
<実験方法>
 7~10週齢の雄性C57BL/6Jマウスを一晩絶食後、試験化合物を0.2%カルボキシメチルセルロース溶液に懸濁させ、経口投与した。直後に高脂肪食(オリエンタル酵母、60cal% fat)を与え、自由に摂取させた。4時間後までの摂食量を測定し、溶媒対照群における摂食量を対照としたときの試験物質投与群における摂餌量の低下率(摂食抑制率)を算出した。
<実験結果>
 投与量5mg/kgにおいて、実施例の化合物は下表36に示す摂食抑制率を示した。
Figure JPOXMLDOC01-appb-T000484
実験例4(KK-Ayマウスにおける体重増加抑制作用、血糖低下作用、血漿中インスリン低下作用)
<実験方法>
 8週齢の雄性KK-Ayマウスに、高脂肪食(オリエンタル酵母、60cal% fat)を与え、試験化合物を0.2%カルボキシメチルセルロース溶液に懸濁させたものを、一日一回経口投与した。2週間の反復経口投与を行い、試験期間内の溶媒対照群の体重増加量を100%として、試験物質の体重増加抑制率を算出した。最終投与後、一晩絶食し、尾静脈より採血を行った。血糖値の測定はグルコースCIIテストワコー(和光純薬)、血漿中インスリンの測定はマウスインスリン測定キット(森永生化学研究所)を用いて行った。
<実験結果>
 上記の結果、投与量30mg/kg/日において、溶媒対照群と比較して、実施例の化合物は次表37に示す血糖降下作用及び血漿インスリン低下作用、体重増加抑制作用を示した。
Figure JPOXMLDOC01-appb-T000485
 本発明の連続芳香環式化合物又はその薬理的に許容しうる塩は、優れたDGAT1阻害作用を有し、肥満症の予防・治療剤として使用することができる。

Claims (22)

  1.  一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     環Aは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環であり;
     環Bは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環であり;
     Xは、単結合手、または-O-であり;
     Yは、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルであり;
     Zは、CRまたは窒素原子であり;
     Rは、水素、ハロゲン原子、アルコキシまたは置換されていてもよいアルキルであり;
    (i)ZがCRのとき、Rは、下式:
    Figure JPOXMLDOC01-appb-C000002
    {式中、Z’は単結合手、アルキレン、-Alk-O-または-Alk-O-Alk
    (Alk、AlkおよびAlkはそれぞれ独立してアルキレンを示し、右端に記載した結合手は環Cとの結合を示す。)
    を示し、
     環Cは、芳香族炭化水素基または芳香族複素環基を示し、
     RおよびRは、各々独立して、水素、ハロゲン原子、置換されていてもよいアルキル、置換されていてもよいアルコキシ、非芳香族複素環置換アルキルまたは非芳香族複素環置換カルボニルを示す。}
    であり;
    (ii)Zが窒素原子のとき、Rは、置換されていてもよいアルキル、置換されていてもよいアルコキシ、アルキルチオ、置換されていてもよい芳香族炭化水素基、置換されていてもよい非芳香族複素環基、置換されていてもよいシクロアルキル、置換されていてもよいアリールオキシ、置換されていてもよいヘテロアリールオキシ、シクロアルキルオキシまたはシクロアルキルアルコキシである。]
    で示される化合物またはその薬理的に許容しうる塩。
  2.  一般式(1-A):
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     環Aは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環であり;
     環Bは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環であり;
     Rは、水素、ハロゲン原子、アルコキシまたは置換されていてもよいアルキルであり;
     R2aは、下式:
    Figure JPOXMLDOC01-appb-C000004
    {式中、Z’は単結合手、アルキレン、-Alk-O-または-Alk-O-Alk
    (Alk、AlkおよびAlkはそれぞれ独立してアルキレンを示し、右端に記載した結合手は環Cとの結合を示す。)
    を示し、
     環Cは、芳香族炭化水素基または芳香族複素環基を示し、
     RおよびRは、各々独立して、水素、ハロゲン原子、置換されていてもよいアルキル、置換されていてもよいアルコキシ、非芳香族複素環置換アルキルまたは非芳香族複素環置換カルボニルを示す。}
    であり;
     Xは、単結合手、または-O-であり;
     Yは、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキル
    である。]
    で示される請求項1に記載の化合物またはその薬理的に許容しうる塩。
  3.  環Aが置換されていてもよいベンゼンまたは置換されていてもよいピリジンである、請求項2に記載の化合物またはその薬理的に許容しうる塩。
  4.  環Bが置換されていてもよいベンゼン、置換されていてもよいピリジンまたは置換されていてもよいピリミジンである、請求項2または3に記載の化合物またはその薬理的に許容しうる塩。
  5.  Xが-O-であり;
     Yがカルボキシで置換されたアルキルである、請求項2~4のいずれかに記載の化合物またはその薬理的に許容しうる塩。
  6.  1-{[(5’-フルオロ-4-メチル-6’-{5-[2-(トリフルオロメトキシ)フェニル]-1H-イミダゾール-2-イル}-3,3’-ビピリジン-6-イル)オキシ]メチル}シクロプロパンカルボン酸、
     2,2-ジメチル-3-{[4-メチル-5-(2-{5-[2-(トリフルオロメチル)フェニル]-1H-イミダゾール-2-イル}ピリミジン-5-イル)ピリジン-2-イル]オキシ}プロパン酸、
     3-{[5’-フルオロ-4-メチル-6’-(5-フェニル-1H-イミダゾール-2-イル)-3,3’-ビピリジン-6-イル]オキシ}-2,2-ジメチルプロパン酸、
     2-エチル-2-[({5-[6-(5-フェニル-1H-イミダゾール-2-イル)ピリジン-3-イル]ピラジン-2-イル}オキシ)メチル]ブタン酸、
     3-[4-(5-{5-[4-(ジフルオロメトキシ)フェニル]-1H-イミダゾール-2-イル}ピリジン-2-イル)フェノキシ]-2,2-ジメチルプロパン酸、
     2,2-ジメチル-3-[4-(5-{5-[2-(トリフルオロメトキシ)フェニル]-1H-イミダゾール-2-イル}ピリジン-2-イル)フェノキシ]プロパン酸、
     2,2-ジメチル-3-(4-{5-[5-(2-フェノキシエチル)-1H-イミダゾール-2-イル]ピリジン-2-イル}フェノキシ)プロパン酸、
     2,2-ジメチル-3-({4-メチル-5-[2-(5-フェニル-1H-イミダゾール-2-イル)ピリミジン-5-イル]ピリジン-2-イル}オキシ)プロパン酸、
     2,2-ジメチル-3-({4-メチル-5-[3-メチル-4-(5-フェニル-1H-イミダゾール-2-イル)フェニル]ピリジン-2-イル}オキシ)プロパン酸、
     2,2-ジメチル-3-({5-[3-メチル-4-(5-フェニル-1H-イミダゾール-2-イル)フェニル]ピリジン-2-イル}オキシ)プロパン酸、
     3-(4-{5-[5-(2,4-ジフルオロフェニル)-1H-イミダゾール-2-イル]ピリジン-2-イル}フェノキシ)-2,2-ジメチルプロパン酸、
     2-エチル-2-[({4-メチル-5-[2-(5-フェニル-1H-イミダゾール-2-イル)ピリミジン-5-イル]ピリジン-2-イル}オキシ)メチル]ブタン酸、
     1-[({4-メチル-5-[2-(5-フェニル-1H-イミダゾール-2-イル)ピリミジン-5-イル]ピリジン-2-イル}オキシ)メチル]シクロブタンカルボン酸、
     2,2-ジメチル-3-({5-[4-(5-フェニル-1H-イミダゾール-2-イル)フェニル]ピリジン-2-イル}オキシ)プロパン酸、
     3-[(5-{4-[5-(4-メトキシフェニル)-1H-イミダゾール-2-イル]フェニル}ピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、
     1-({[5’-フルオロ-4-メチル-6’-(5-フェニル-1H-イミダゾール-2-イル)-3,3’-ビピリジン-6-イル]オキシ}メチル)シクロプロパンカルボン酸、
     3-[(5-{3-シアノ-4-[4-(4-メトキシフェニル)-1H-イミダゾール-2-イル]フェニル}-4-メチルピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、
     2,2-ジメチル-3-[4-(5-{5-[2-(トリフルオロメチル)ベンジル]-1H-イミダゾール-2-イル}ピリジン-2-イル)フェノキシ]プロパン酸、
     3-(4-{5-[5-(4-メトキシフェニル)-1H-イミダゾール-2-イル]ピリジン-2-イル}フェノキシ)-2,2-ジメチルプロパン酸、
     2,2-ジメチル-3-({4-メチル-5-[4-(5-フェニル-1H-イミダゾール-2-イル)フェニル]ピリジン-2-イル}オキシ)プロパン酸、
     3-[4-(5-{5-[(ベンジルオキシ)メチル]-1H-イミダゾール-2-イル}ピリジン-2-イル)フェノキシ]-2,2-ジメチルプロパン酸、
     3-{4-[5-(4-クロロ-5-フェニル-1H-イミダゾール-2-イル)ピリジン-2-イル]フェノキシ}-2,2-ジメチルプロパン酸、
     2,2-ジメチル-3-(4-{5-[5-(チオフェン-2-イル)-1H-イミダゾール-2-イル]ピリジン-2-イル}フェノキシ)プロパン酸、
     3-[(5-{4-[5-(4-メトキシフェニル)-1H-イミダゾール-2-イル]フェニル}-4-メチルピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、および
     2,2-ジメチル-3-{4-[5-(5-フェニル-1H-イミダゾール-2-イル)ピリジン-2-イル]フェノキシ}プロパン酸
    から選ばれる請求項2に記載の化合物またはその薬理的に許容しうる塩。
  7.  一般式(1-B):
    Figure JPOXMLDOC01-appb-C000005
    (式中、環Aは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環を示し、
     環Bは、置換されていてもよいベンゼンまたは置換されていてもよい6員の単環式芳香族複素環を示し、
     R2bは、置換されていてもよいアルキル、置換されていてもよいアルコキシ、アルキルチオ、置換されていてもよい芳香族炭化水素基、置換されていてもよい非芳香族複素環基、置換されていてもよいシクロアルキル、置換されていてもよいアリールオキシ、置換されていてもよいヘテロアリールオキシ、シクロアルキルオキシまたはシクロアルキルアルコキシを示し、
     Xは、単結合手または-O-を示し、
     Yは、置換されていてもよいアルキルまたは置換されていてもよいシクロアルキルを示す。)
    で示される請求項1に記載の化合物またはその薬理的に許容しうる塩。
  8.  環Aが、置換されていてもよいベンゼンまたは置換されていてもよいピリジンである、請求項7に記載の化合物またはその薬理的に許容しうる塩。
  9.  環Bが、置換されていてもよいベンゼン、置換されていてもよいピリジンまたは置換されていてもよいピリミジンである、請求項7または8に記載の化合物またはその薬理的に許容しうる塩。
  10.  R2bが、置換されていてもよいアルキル、置換されていてもよいアルコキシ、置換されていてもよい芳香族炭化水素基または置換されていてもよいアリールオキシである、請求項7~9のいずれかに記載の化合物またはその薬理的に許容しうる塩。
  11.  Xが-O-であり、Yがカルボキシで置換されていてもよいアルキルである、請求項7~10のいずれかに記載の化合物またはその薬理的に許容しうる塩。
  12.  2,2-ジメチル-3-[(5-{4-[3-(プロパン-2-イルオキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)オキシ]プロパン酸、
     3-[(5-{3-フルオロ-4-[3-(プロパン-2-イルオキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}-4-メチルピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、
     2,2-ジメチル-3-({4’-メチル-5-[3-(プロパン-2-イルオキシ)-1H-1,2,4-トリアゾール-5-イル]-2,3’-ビピリジン-6’-イル}オキシ)プロパン酸、
     3-[(5-{4-[3-(4-フルオロフェノキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、
     3-[(5-{4-[3-(4-シアノフェノキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、
     2,2-ジメチル-3-[(5-{4-[3-(2,2,3,3,3-ペンタフルオロプロポキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)オキシ]プロパン酸ナトリウム塩、
     (トランス-4-{4’-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-5-イル]ビフェニル-4-イル}シクロヘキシル)酢酸、
     (トランス-4-{4-{5-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-5-イル]ピリジン-2-イル}フェニル)シクロヘキシル]酢酸、
     [4-(5-{4-[3-(トリフルオロメチル)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)シクロヘキシル]酢酸、
     2,2-ジメチル-3-({5-[4-(5-フェニル-4H-1,2,4-トリアゾール-3-イル)フェニル]ピリジン-2-イル}オキシ]プロパン酸、
     (4-{5-[4-(3-エトキシ-1H-1,2,4-トリアゾール-5-イル)フェニル]ピリジン-2-イル}シクロヘキシル)酢酸、
     3-({5-[4-(3-エトキシ-1H-1,2,4-トリアゾール-5-イル)フェニル]-4-メチルピリジン-2-イル}オキシ)-2,2-ジメチルプロパン酸、
     2,2-ジメチル-3-({4-メチル-6’-[3-(プロパン-2-イルオキシ)-1H-1,2,4-トリアゾール-5-イル]-3,3’-ビピリジン-6-イル}オキシ)プロパン酸、
     3-[(5-{4-[3-(2,4-ジフルオロフェノキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}ピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸、および
     3-[(5-{3-フルオロ-4-[3-(4-フルオロフェノキシ)-1H-1,2,4-トリアゾール-5-イル]フェニル}-4-メチルピリジン-2-イル)オキシ]-2,2-ジメチルプロパン酸
    から選ばれる請求項7に記載の化合物またはその薬理的に許容しうる塩。
  13.  請求項1~12のいずれかに記載の化合物又はその薬理的に許容しうる塩を有効成分としてなるジアシルグリセロールアシルトランスフェラーゼ(DGAT)1阻害剤。
  14.  肥満症の予防・治療剤である請求項13に記載のDGAT1阻害剤。
  15.  高脂血症、高トリグリセリド血症、脂質代謝異常疾患、脂肪肝の予防・治療剤である請求項13に記載のDGAT1阻害剤。
  16.  2型糖尿病、糖尿病合併症(糖尿病性末梢神経障害、糖尿病性腎症、糖尿病性網膜症、糖尿病性大血管症を含む)、動脈硬化症、高血圧症、脳血管障害、冠動脈疾患、呼吸異常、腰痛、変形性膝関節症の予防・治療剤である請求項13に記載のDGAT1阻害剤。
  17.  2型糖尿病、糖尿病合併症の予防・治療剤である請求項13に記載のDGAT1阻害剤。
  18.  家族性高カイロミクロン血症の予防・治療剤である請求項13に記載のDGAT1阻害剤。
  19.  請求項1~12のいずれかに記載の化合物又はその薬理的に許容しうる塩の高脂血症、高トリグリセリド血症、脂質代謝異常疾患、脂肪肝、2型糖尿病、糖尿病合併症(糖尿病性末梢神経障害、糖尿病性腎症、糖尿病性網膜症、糖尿病性大血管症を含む)、動脈硬化症、高血圧症、脳血管障害、冠動脈疾患、呼吸異常、腰痛、変形性膝関節症の予防・治療のための使用。
  20.  請求項1~12のいずれかに記載の化合物又はその薬理的に許容しうる塩の家族性高カイロミクロン血症の予防・治療のための使用。
  21.  請求項1~12のいずれかに記載の化合物又はその薬理的に許容しうる塩を患者に投与することを特徴とする高脂血症、高トリグリセリド血症、脂質代謝異常疾患、脂肪肝、2型糖尿病、糖尿病合併症(糖尿病性末梢神経障害、糖尿病性腎症、糖尿病性網膜症、糖尿病性大血管症を含む)、動脈硬化症、高血圧症、脳血管障害、冠動脈疾患、呼吸異常、腰痛、変形性膝関節症の予防・治療方法。
  22.  請求項1~12のいずれかに記載の化合物又はその薬理的に許容しうる塩を患者に投与することを特徴とする家族性高カイロミクロン血症の予防・治療方法。
PCT/JP2013/066431 2012-06-15 2013-06-14 芳香族複素環化合物 WO2013187496A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/407,282 US9546155B2 (en) 2012-06-15 2013-06-14 Aromatic heterocyclic compound
JP2014521421A JP5977349B2 (ja) 2012-06-15 2013-06-14 芳香族複素環化合物
ES13804940.8T ES2690315T3 (es) 2012-06-15 2013-06-14 Compuestos de imidazol y triazol como inhibidores de DGAT-1
EP13804940.8A EP2862856B1 (en) 2012-06-15 2013-06-14 Imidazole and triazole compounds as dgat-1 inhibitors
US15/250,379 US10308636B2 (en) 2012-06-15 2016-08-29 Aromatic heterocyclic compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261660137P 2012-06-15 2012-06-15
US201261660129P 2012-06-15 2012-06-15
US61/660,137 2012-06-15
US61/660,129 2012-06-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/407,282 A-371-Of-International US9546155B2 (en) 2012-06-15 2013-06-14 Aromatic heterocyclic compound
US15/250,379 Continuation US10308636B2 (en) 2012-06-15 2016-08-29 Aromatic heterocyclic compound

Publications (1)

Publication Number Publication Date
WO2013187496A1 true WO2013187496A1 (ja) 2013-12-19

Family

ID=49758314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066431 WO2013187496A1 (ja) 2012-06-15 2013-06-14 芳香族複素環化合物

Country Status (5)

Country Link
US (2) US9546155B2 (ja)
EP (1) EP2862856B1 (ja)
JP (1) JP5977349B2 (ja)
ES (1) ES2690315T3 (ja)
WO (1) WO2013187496A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160168096A1 (en) * 2013-06-27 2016-06-16 Lg Life Sciences Ltd. Biaryl derivatives as gpr120 agonists
CN106632106A (zh) * 2016-12-21 2017-05-10 安徽师范大学 一种不对称1,2,4‑三唑类衍生物的合成方法
JP2017524010A (ja) * 2014-08-11 2017-08-24 アンジオン バイオメディカ コーポレーション チトクロームp450阻害剤およびその使用
WO2021249228A1 (zh) 2020-06-08 2021-12-16 四川百利药业有限责任公司 一种带有高稳定性亲水连接单元的喜树碱类药物及其偶联物
US11434234B2 (en) 2014-12-31 2022-09-06 Angion Biomedica Corp. Methods and agents for treating disease

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675986B2 (ja) * 2014-08-13 2020-04-08 日本曹達株式会社 ジアリールイミダゾール化合物および有害生物防除剤
KR20180122617A (ko) * 2016-03-28 2018-11-13 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
DE202018006093U1 (de) 2017-07-14 2019-03-14 Zume, Inc. Kraftfahrzeug zur Bereitstellung zubereiteter Lebensmittel
MX2021003382A (es) 2018-09-26 2021-05-27 Jiangsu Hengrui Medicine Co Conjugado de ligando y farmaco analogo de exatecan, metodo de preparacion del mismo y aplicacion del mismo.
BR112022019073A2 (pt) 2020-03-25 2022-11-08 Jiangsu Hengrui Pharmaceuticals Co Ltd Composição farmacêutica que compreende conjugado anticorpo-fármaco e uso da mesma
CN115103858A (zh) 2020-03-25 2022-09-23 江苏恒瑞医药股份有限公司 一种抗体药物偶联物的制备方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116251A (ja) 1991-09-18 1994-04-26 Glaxo Group Ltd ベンズアニリド誘導体
WO1995015594A1 (en) 1993-12-01 1995-06-08 Oy Iws International Inc. Conductor joint and tool and method for making the joint
US5576447A (en) 1994-12-05 1996-11-19 G. D. Searle & Co. Process for the preparation of amidino phenyl pyrrolidine β-alanine urea analogs
WO1999058518A2 (en) 1998-05-12 1999-11-18 American Home Products Corporation Biphenyl oxo-acetic acids useful in the treatment of insulin resistance and hyperglycemia
WO2000059506A1 (en) 1999-04-05 2000-10-12 Bristol-Myers Squibb Co. HETEROCYCLIC CONTAINING BIPHENYL aP2 INHIBITORS AND METHOD
WO2000066578A1 (en) 1999-04-30 2000-11-09 Pfizer Products Inc. Compounds for the treatment of obesity
WO2003006011A1 (en) 2001-07-09 2003-01-23 Axys Pharmaceuticals, Inc. 2-[5-(5-carbamimidoyl-1h-heteroaryl)-6-hydroxybiphenyl-3-yl]-succinic acid derivatives as factor viia inhibitors
WO2003064410A1 (fr) 2002-01-28 2003-08-07 Fuji Yakuhin Co., Ltd. Nouveau compose 1,2,4-triazole
WO2003093248A1 (en) 2002-04-30 2003-11-13 Smithkline Beecham Corporation Heteroaryl substituted biphenyl derivatives as p38 kinase inhibitors
WO2004099168A2 (en) 2003-04-30 2004-11-18 The Institutes For Pharmaceutical Discovery, Llc Substituted carboxylic acids
WO2006034440A2 (en) 2004-09-20 2006-03-30 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors
WO2008067257A2 (en) 2006-11-29 2008-06-05 Abbott Laboratories Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme
JP2008255024A (ja) * 2007-04-02 2008-10-23 Banyu Pharmaceut Co Ltd ビアリールアミン誘導体
WO2009011285A1 (ja) 2007-07-13 2009-01-22 Taisho Pharmaceutical Co., Ltd. ヘテロアリールベンゼン化合物
WO2009079593A1 (en) 2007-12-17 2009-06-25 Janssen Pharmaceutica N.V. Piperazinyl derivatives useful as modulators of the neuropeptide y2 receptor
WO2009126861A2 (en) 2008-04-11 2009-10-15 Bristol-Myers Squibb Company Triazolopyridine compounds useful as dgat1 inhibitors
WO2010107765A1 (en) 2009-03-18 2010-09-23 Schering Corporation Bicyclic compounds as inhibitors of diacylglycerol acyltransferase
US20100267689A1 (en) 2009-04-17 2010-10-21 Xuqing Zhang 4-azetidinyl-1-phenyl-cyclohexane antagonists of ccr2
WO2011002067A1 (ja) 2009-07-02 2011-01-06 武田薬品工業株式会社 複素環化合物およびその用途
WO2012009217A1 (en) 2010-07-13 2012-01-19 Merck Sharp & Dohme Corp. Spirocyclic compounds
WO2012015693A1 (en) 2010-07-28 2012-02-02 Merck Sharp & Dohme Corp. Imidazole derivatives
WO2012044567A2 (en) 2010-09-30 2012-04-05 Merck Sharp & Dohme Corp. Imidazole derivatives
WO2012047772A2 (en) 2010-10-07 2012-04-12 Schering Corporation Imidazole derivatives

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4124942A1 (de) 1991-07-27 1993-01-28 Thomae Gmbh Dr K 5-gliedrige heterocyclen, verfahren zu ihrer herstellung und diese verbindungen enthaltende arzneimittel
HU219598B (hu) 1992-12-17 2001-05-28 Sankyo Co. Ltd. Bifenilvegyületek imidazol- és piridinszármazékai, eljárás előállításukra és ezeket a vegyületeket tartalmazó gyógyszerkészítmények
GB2351081A (en) 1999-06-18 2000-12-20 Lilly Forschung Gmbh Pharmaceutically active imidazoline compounds and analogues thereof
AR044152A1 (es) 2003-05-09 2005-08-24 Bayer Corp Derivados de alquilarilo, metodo de preparacion y uso para el tratamiento de la obesidad
EP1912634A4 (en) 2005-07-29 2010-06-09 Bayer Healthcare Llc PREPARATION AND USE OF BIPHENYL AMINOACIDAL DERIVATIVES TO TREAT OBESITY
WO2007077457A2 (en) * 2006-01-06 2007-07-12 The Royal Veterinary College Treatment of equine laminitis with 5-ht1b/ 1d antagonists
US8821994B2 (en) * 2007-03-29 2014-09-02 Akron Polymer Systems Liquid crystal display having improved wavelength dispersion characteristics
TW200940537A (en) * 2008-02-26 2009-10-01 Astrazeneca Ab Heterocyclic urea derivatives and methods of use thereof
US9302996B2 (en) * 2010-12-17 2016-04-05 Mitsubishi Tanabe Pharma Corporation Continuous arycyclic compound

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116251A (ja) 1991-09-18 1994-04-26 Glaxo Group Ltd ベンズアニリド誘導体
WO1995015594A1 (en) 1993-12-01 1995-06-08 Oy Iws International Inc. Conductor joint and tool and method for making the joint
US5576447A (en) 1994-12-05 1996-11-19 G. D. Searle & Co. Process for the preparation of amidino phenyl pyrrolidine β-alanine urea analogs
WO1999058518A2 (en) 1998-05-12 1999-11-18 American Home Products Corporation Biphenyl oxo-acetic acids useful in the treatment of insulin resistance and hyperglycemia
WO2000059506A1 (en) 1999-04-05 2000-10-12 Bristol-Myers Squibb Co. HETEROCYCLIC CONTAINING BIPHENYL aP2 INHIBITORS AND METHOD
WO2000066578A1 (en) 1999-04-30 2000-11-09 Pfizer Products Inc. Compounds for the treatment of obesity
WO2003006011A1 (en) 2001-07-09 2003-01-23 Axys Pharmaceuticals, Inc. 2-[5-(5-carbamimidoyl-1h-heteroaryl)-6-hydroxybiphenyl-3-yl]-succinic acid derivatives as factor viia inhibitors
WO2003006670A2 (en) 2001-07-09 2003-01-23 Axys Pharmaceuticals, Inc. 2-[5-(5-carbamimidoyl-1h-heteroaryl)-6-hydroxybiphenyl-3-yl]-succinic acid derivatives as factor viia inhibitors
US20030114457A1 (en) 2001-07-09 2003-06-19 Axys Pharmaceuticals, Inc. 2- [5- (5-carbamimidoyl-1H-heteroaryl)-6-hydroxybiphenyl-3-yl]-succinic acid derivatives as factor viia inhibitors
WO2003064410A1 (fr) 2002-01-28 2003-08-07 Fuji Yakuhin Co., Ltd. Nouveau compose 1,2,4-triazole
WO2003093248A1 (en) 2002-04-30 2003-11-13 Smithkline Beecham Corporation Heteroaryl substituted biphenyl derivatives as p38 kinase inhibitors
WO2004099168A2 (en) 2003-04-30 2004-11-18 The Institutes For Pharmaceutical Discovery, Llc Substituted carboxylic acids
WO2006034440A2 (en) 2004-09-20 2006-03-30 Xenon Pharmaceuticals Inc. Heterocyclic derivatives and their use as stearoyl-coa desaturase inhibitors
JP2008513514A (ja) * 2004-09-20 2008-05-01 ゼノン・ファーマシューティカルズ・インコーポレイテッド 複素環誘導体および治療薬としてのそれらの使用
JP2010511058A (ja) * 2006-11-29 2010-04-08 アボット・ラボラトリーズ ジアシルグリセロールo−アシルトランスフェラーゼ1型酵素の阻害薬
WO2008067257A2 (en) 2006-11-29 2008-06-05 Abbott Laboratories Inhibitors of diacylglycerol o-acyltransferase type 1 enzyme
JP2008255024A (ja) * 2007-04-02 2008-10-23 Banyu Pharmaceut Co Ltd ビアリールアミン誘導体
WO2009011285A1 (ja) 2007-07-13 2009-01-22 Taisho Pharmaceutical Co., Ltd. ヘテロアリールベンゼン化合物
WO2009079593A1 (en) 2007-12-17 2009-06-25 Janssen Pharmaceutica N.V. Piperazinyl derivatives useful as modulators of the neuropeptide y2 receptor
WO2009126861A2 (en) 2008-04-11 2009-10-15 Bristol-Myers Squibb Company Triazolopyridine compounds useful as dgat1 inhibitors
WO2010107765A1 (en) 2009-03-18 2010-09-23 Schering Corporation Bicyclic compounds as inhibitors of diacylglycerol acyltransferase
US20100267689A1 (en) 2009-04-17 2010-10-21 Xuqing Zhang 4-azetidinyl-1-phenyl-cyclohexane antagonists of ccr2
WO2011002067A1 (ja) 2009-07-02 2011-01-06 武田薬品工業株式会社 複素環化合物およびその用途
WO2012009217A1 (en) 2010-07-13 2012-01-19 Merck Sharp & Dohme Corp. Spirocyclic compounds
WO2012015693A1 (en) 2010-07-28 2012-02-02 Merck Sharp & Dohme Corp. Imidazole derivatives
WO2012044567A2 (en) 2010-09-30 2012-04-05 Merck Sharp & Dohme Corp. Imidazole derivatives
WO2012047772A2 (en) 2010-10-07 2012-04-12 Schering Corporation Imidazole derivatives

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
"Justus Liebigs Annalen der Chemie", vol. 597, 1955, pages: 157 - 165
"Nanzando's Medical Dictionary(19th Edition),", 2006, pages: 2113
AMERICAN CHEMICAL SOCIETY NATIONAL MEETING ABST. MEDI, 2010, pages 315
ARTERIOSCLER. THROMB. VASC. BIOL., vol. 25, 2005, pages 482
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 17, no. 12, 2007, pages 3511 - 3515
F. A. CAREY; R. J. SUNDBERG: "Advanced Organic Chemistry", SPRINGER
I. M. MALLICK ET AL., JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 106, no. 23, 1984, pages 7252 - 7254
J. AM. CHEM. SOC., vol. 131, 2009, pages 15080 - 15081
J. BIOL. CHEM., vol. 278, 2003, pages 18532
J. J. BALDWIN ET AL., JOURNAL OF MEDICINAL CHEMISTRY, vol. 29, no. 6, 1986, pages 1065 - 1080
J. MED. CHEM., vol. 50, no. 13, 2007, pages 3086 - 3100
J. ORGANOMET. CHEM., vol. 331, no. 21, 1987, pages 161 - 167
OKUDA, M.; TOMIOKA, K., TETRAHEDRON LETT, vol. 35, no. 26, 1994, pages 4585 - 4586
PROC. NATL. ACAD. SCI. USA, vol. 95, 1998, pages 13018
SYNTHESIS, vol. 6, 2001, pages 897 - 903
TETRAHEDRON LETTERS, vol. 28, 1987, pages 5133 - 5136
THE JOURNAL OF CLINICAL INVESTIGATION, vol. 109, no. 8, 2002, pages 1049 - 1055
THEODORA W. GREENE; PETER G. M. WUTS: "Protective Groups in Organic Synthesis 3rd. ed.,", 1999, JOHN WILEY & SONS, INC.

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160168096A1 (en) * 2013-06-27 2016-06-16 Lg Life Sciences Ltd. Biaryl derivatives as gpr120 agonists
US10221138B2 (en) * 2013-06-27 2019-03-05 Lg Chem, Ltd. Biaryl derivatives as GPR120 agonists
JP2017524010A (ja) * 2014-08-11 2017-08-24 アンジオン バイオメディカ コーポレーション チトクロームp450阻害剤およびその使用
US11459319B2 (en) 2014-08-11 2022-10-04 Angion Biomedica Corp. Cytochrome P450 inhibitors and uses thereof
US11434234B2 (en) 2014-12-31 2022-09-06 Angion Biomedica Corp. Methods and agents for treating disease
CN106632106A (zh) * 2016-12-21 2017-05-10 安徽师范大学 一种不对称1,2,4‑三唑类衍生物的合成方法
WO2021249228A1 (zh) 2020-06-08 2021-12-16 四川百利药业有限责任公司 一种带有高稳定性亲水连接单元的喜树碱类药物及其偶联物

Also Published As

Publication number Publication date
EP2862856B1 (en) 2018-08-01
US20170050950A1 (en) 2017-02-23
ES2690315T3 (es) 2018-11-20
US10308636B2 (en) 2019-06-04
EP2862856A4 (en) 2015-11-11
US20150158844A1 (en) 2015-06-11
JPWO2013187496A1 (ja) 2016-02-08
EP2862856A1 (en) 2015-04-22
US9546155B2 (en) 2017-01-17
JP5977349B2 (ja) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5977349B2 (ja) 芳香族複素環化合物
JP6130964B2 (ja) Apj受容体のトリアゾールアゴニスト
JP5765753B2 (ja) トリアジン誘導体およびそれを含有する鎮痛作用を有する医薬組成物
JP6080947B2 (ja) Abl1、abl2およびbcr−abl1の活性を阻害するための化合物および組成物
JP6935064B2 (ja) Gpr120アゴニストとしてのビアリール誘導体
KR101396606B1 (ko) 신규 갑상선 호르몬 β 수용체 작동약
EP2864289B1 (en) Cyclopropanecarboxamido-substituted aromatic compounds as anti-tumor agents
JP5629380B2 (ja) 連続芳香環式化合物
TW201838983A (zh) Ask1抑制劑化合物及其用途
JP2010520162A (ja) ステアロイル−CoAデサチュラーゼ阻害剤であるチアジアゾール誘導体
EP4028403B1 (en) 4,4a,5,7,8,8a-hexapyrido[4,3-b][1,4]oxazin-3-one compounds as magl inhibitors
TW200914449A (en) Organic compounds
KR101665749B1 (ko) 5-하이드록시피리미딘-4-카르복사미드 유도체
AU2008263166A1 (en) Heteroaryl-substituted urea modulators of fatty acid amide hydrolase
KR20110025688A (ko) 트리아졸 유도체 또는 그의 염
JP2011136942A (ja) 新規な置換ピリミジン誘導体およびこれを含有する医薬
KR20160018686A (ko) 이환식 함질소 방향족 헤테로고리 아미드 화합물
GB2513403A (en) WNT pathway modulators
JP5721032B2 (ja) 医薬組成物
JP2007137810A (ja) インドール化合物を含有する医薬
WO2021097240A1 (en) Compounds and uses thereof
JP2006001926A (ja) インドール化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521421

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14407282

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013804940

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE