WO2013186978A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2013186978A1
WO2013186978A1 PCT/JP2013/002871 JP2013002871W WO2013186978A1 WO 2013186978 A1 WO2013186978 A1 WO 2013186978A1 JP 2013002871 W JP2013002871 W JP 2013002871W WO 2013186978 A1 WO2013186978 A1 WO 2013186978A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
insulating film
light
printing
Prior art date
Application number
PCT/JP2013/002871
Other languages
English (en)
French (fr)
Inventor
幡 俊雄
祐介 藤田
赤松 健一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201380031106.1A priority Critical patent/CN104380486A/zh
Priority to JP2014520879A priority patent/JP6116560B2/ja
Priority to US14/406,331 priority patent/US9391242B2/en
Publication of WO2013186978A1 publication Critical patent/WO2013186978A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • H01L2224/48228Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item the bond pad being disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09363Conductive planes wherein only contours around conductors are removed for insulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]

Definitions

  • the present invention relates to a surface-mounted light-emitting device and a manufacturing method thereof, and more particularly, to a surface-mounted light-emitting device that is inexpensive and emphasizes productivity.
  • FIG. 7 is a longitudinal sectional view showing a configuration example of a conventional LED lighting module disclosed in Patent Document 1.
  • the LED lighting module 100 includes a circuit wiring 102 formed on a flexible substrate 101, a flexible substrate 104 formed thereon via an adhesive 103, and an LED die 105 formed thereon.
  • a flexible wiring board formed with a flexible reflective layer 106 that reflects the light.
  • a heat spreader 107 is provided so as to penetrate the flexible wiring boards 101, 104, an LED die 105 is mounted on the heat spreader 107, and an electrode on the surface side of the LED dice 105 is connected to the circuit through an opening provided in the flexible board 104.
  • the exposed surface of 102 is connected by a wire 108 by wire bonding.
  • FIG. 8 is a longitudinal sectional view showing a configuration example of a conventional LED illumination module disclosed in Patent Document 2.
  • an electrical insulating material 201 (201a: adhesive layer, 202b: base material) having a total reflectance of light of at least the first surface side (wavelength 450 nm) of 80% or more.
  • 201c white insulating material
  • via holes 202 to 204 that penetrate the electrical insulating material 201
  • wiring patterns 205 to 207 provided on the second surface side of the electrical insulating material 201
  • the via holes 202 A wiring pattern 208, a wiring pattern 209 provided in the via hole 203, and a metal filling portion 210 provided in the via hole 204.
  • the LED chip 211 is die-bonded to the first surface side of the electrical insulating material 201 and the surface of the metal filling portion 210, and wire-bonded to the electrodes of the LED chip 211 and the wiring patterns 208 and 209 with wires 212. Thereafter, the LED chip 211 is resin-sealed with a resin sealing material 213.
  • light-emitting devices such as LEDs have been improved in brightness, and are characterized by low power consumption, high impact resistance, and long life, such as display devices, illumination devices, liquid crystal televisions, and backlight devices for liquid crystal monitors. It is used in the direction. While the application range and expectation of light emitting devices are expanding, there is an increasing demand for lowering the cost of light emitting devices, and for example, LED dies of light emitting devices are becoming lower in cost and mounting costs are also becoming lower.
  • a separate structure for drawing the circuit wiring 102 to the outside is required according to the application form of the light emitting device 100, and the upper and lower layers of the flexible substrate 101 are used.
  • 104 has a structure in which the circuit wiring 102 is sandwiched between the flexible wiring boards 101, 104. In order to cut out and use the required number of light emitting devices from the flexible wiring boards 101, 104, the flexible wiring boards 101, 104 are dedicated. Therefore, it is considered that the structure is unsuitable for mass production at a low cost.
  • the conventional light emitting device disclosed in Patent Document 2 is also considered to have a structure in which a protective element is difficult to be formed, as in the case of the conventional light emitting device 100.
  • the wiring pattern 209 provided in the power supply wiring pattern 205 or the via hole 203, the wiring pattern 208 provided in the power supply wiring pattern 206 or the via hole 202, and the heat radiation wiring pattern 207 or the via hole 204 are provided. Since the heat dissipation wiring pattern 210 is not electrically connected, the heat dissipation wiring pattern 210 exists between the wiring patterns 208 and 209, and one power supply wiring pattern 205 and the other power supply wiring pattern are present. Since the heat radiation wiring pattern 207 exists also between 206, it is difficult to form a protective element between one power feeding wiring pattern 205 and the other power feeding wiring pattern 206.
  • the present invention solves the above-mentioned conventional problems, and can form a protective element without lowering the light emission efficiency from the light emitting element, and is an inexpensive and highly reliable surface mount type that emphasizes productivity.
  • An object is to provide a light emitting device.
  • the light-emitting device of the present invention includes both conductive regions provided on the insulating film corresponding to ⁇ polarity, and a light-emitting element mounted on the surface side of the two conductive regions and electrically connected to the two conductive regions And a protective element connected in parallel with the light emitting element, the protective element being on the back side of the mounting surface of the light emitting element, and on the front side, the back side and the inside of the insulating film At least one of them is formed, and thereby the above object is achieved.
  • the protective element in the light emitting device of the present invention is configured by a printing resistor or a thin film resistor.
  • the protective element in the light emitting device of the present invention is formed on the surface of the insulating film.
  • the protective element in the light emitting device of the present invention is formed on an adhesive layer formed on the insulating film.
  • the protective element in the light emitting device of the present invention is formed on the back surface of the insulating film.
  • the protective element in the light emitting device of the present invention is electrically connected between a pair of terminal portions electrically connected to the both conductive regions.
  • the protective element in the light emitting device of the present invention is formed between the pair of terminal portions including the pair of terminal portions.
  • the pair of terminal portions are respectively formed on both ends of the protective element in the light emitting device of the present invention to protect the protective element.
  • the light emitting element in the light emitting device of the present invention is covered with at least one of a phosphor-containing resin layer and a translucent resin layer formed on the surface side of the insulating film, and the protective element is It is formed on the front side or the back side of the insulating film and on the outside in plan view of at least one of the phosphor-containing resin layer and the translucent resin layer.
  • At least one of the phosphor-containing resin layer and the translucent resin layer in the light emitting device of the present invention has a dome-shaped surface.
  • the printing resistance in the light emitting device of the present invention is formed by screen printing a paste containing a resistance component.
  • the paste in the light emitting device of the present invention is composed of ruthenium oxide, a caking additive, a resin and a solvent.
  • the two conductive regions are insulated with a space therebetween.
  • the stepped portion in the light emitting device of the present invention is at least one of a planar concavo-convex shape for device breakage prevention and a planar view L-shape / L-shape for device breakage prevention.
  • the opposing sides of the both conductive regions are fitted with a predetermined distance.
  • the opposing sides of the both conductive regions enter each other with a predetermined distance.
  • both conductive regions provided on the insulating film corresponding to ⁇ polarity a light emitting element mounted on the surface side of both conductive regions and electrically connected to both conductive regions, and a light emitting element
  • a protective element connected in parallel to the light emitting element the protective element is on the back side of the mounting surface of the light emitting element, and is formed on at least one of the front side, the back side, and the inside of the insulating film .
  • the protective element is formed on the back side of the mounting surface of the light emitting element, the light emitted from the light emitting element is not hindered by the protective element, and the protective element is formed without a decrease in light emission efficiency. Therefore, it is possible to obtain a surface mount type light emitting device which is inexpensive and excellent in reliability and emphasizes productivity.
  • the protective element is formed on at least one of the front surface side, the back surface side, and the inside of the insulating film, the protective element is formed on the back side from the mounting surface of the light emitting element. Therefore, the light emitted from the light emitting element is not obstructed by the protective element, and the protective element can be formed without lowering the light emitting efficiency from the light emitting element as in the past. A surface-mounted light emitting device with excellent properties can be obtained.
  • FIG. 6 It is a figure which shows one structural example of the light-emitting device of Embodiment 6 of this invention, Comprising: (a) is the longitudinal cross-sectional view, (b) is a top view when it sees from the upper side, (c) is the figure It is a back view. It is a longitudinal cross-sectional view which shows the structural example of the conventional LED illumination module currently disclosed by patent document 1. FIG. It is a longitudinal cross-sectional view which shows the structural example of the conventional LED illumination module currently disclosed by patent document 2. FIG.
  • Light-emitting device 2 Insulating film 3, 4, 3B, 4B, 3C, 4C One pair of land portions 5, 6, 5A, 6A, 5B, 6B, 5C, 6C A pair of terminals for external connection Part 7 Adhesive 8, 9, 8B, 9B, 8C, 9C Through conductor 10
  • White silicon resin 11
  • Light emitting element 12 Wire 13
  • Phosphor-containing silicon resin 14, 15, 5A1, 5A2, 6A1, 6A2 Plating layers 16, 16A to 16D printing resistance
  • FIG. 1A and 1B are diagrams illustrating a configuration example of a light-emitting device according to Embodiment 1 of the present invention, in which FIG. 1A is a longitudinal sectional view, and FIG. 1B is a plan view when viewed from the upper side. c) is a rear view thereof.
  • the light-emitting device 1 of Embodiment 1 is a metal as both conductive regions provided on the upper surface side of the insulating film 2 corresponding to ⁇ polarity. It is provided with a pair of land portions 3 and 4 made of film pieces, and has a pair of terminal portions 5 and 6 for external connection made of metal film pieces on the lower surface, and each land portion 3 and 4 is connected via an adhesive layer 7 Adhering to the upper surface of the insulating film 2, similarly, the terminal portions 5 and 6 are provided on the lower surface of the insulating film 2.
  • the land portion 3 and the terminal portion 5 are opposed to each other with the insulating film 2 interposed therebetween, and are electrically connected by a through conductor 8 that penetrates the insulating film 2.
  • the land portion 4 and the terminal portion 6 are opposed to each other with the insulating film 2 interposed therebetween, and are electrically connected by a through conductor 9 that penetrates the insulating film 2.
  • the pair of land portions 3 and 4 are electrically insulated and separated between the land portions 3 and 4 by an elongated gap in a plan view.
  • the terminal portions 5 and 6 constituting a pair of terminal portions are also electrically insulated and separated between the terminal portions 5 and 6 by an elongated gap.
  • the white silicon resin 10 covers, for example, the end edges of the pair of land portions 3 and 4 in the gap between the outer periphery of the pair of land portions 3 and 4, and the upper surface of the pair of land portions 3 and 4. It is formed in a dam shape so as to be slightly higher than the upper surface.
  • the area of the land portions 3 and 4 is increased, for example, on the land portion 3 side as compared with the land portion 4, and the substrate side of the wire bonding type light emitting element 11 (semiconductor light emitting element) is disposed on the land portion 3.
  • the P electrode (anode) of the light emitting element 11 and the land part 4 and the N electrode of the light emitting element 11 and the land part 3 are connected via bonding wires 12, respectively.
  • a phosphor-containing silicon resin 13 for sealing the light emitting element 11 is formed in a dome shape on a region surrounded by the white silicon resin 10 formed on the outer periphery of the pair of land portions 3 and 4.
  • a white silicon resin 10 is formed on the outer periphery of the pair of land portions 3 and 4 and a gap therebetween, and a light emitting element is formed on the region surrounded by the white silicon resin 10 formed on the outer periphery of the pair of land portions 3 and 4.
  • the phosphor-containing silicon resin 13 for sealing 11 is formed in a dome shape on the surface.
  • the plating layers 14 and 15 obtained by performing nickel + silver plating on the copper foil of the pair of land portions 3 and 4 are used.
  • the insulating film 2 a polyimide film having a thickness of 0.05 mm is used.
  • a printing resistor 16 as a protective element is formed on the back side of the insulating film 2 so as to connect the terminal portions 5 and 6 with a predetermined width. As a result, the printing resistor 16 is electrically connected in parallel between both electrodes of the light emitting element 11.
  • the forward leak component flowing through the printing resistor 16 (protective element) is In order not to affect the driving current, the resistance value of the printing resistor 16 is preferably 1 M ⁇ to 10 G ⁇ .
  • the printing resistor 16 is formed by screen printing a paste containing a resistance component.
  • the paste is composed of ruthenium oxide (RuO2, ruthenium as a conductive powder), a caking agent, a resin, and a solvent. This paste is creamy and has a high viscosity, and the shape does not collapse even in a state immediately after screen printing before baking.
  • a polyimide film having a film thickness of 0.05 mm is used as the material of the insulating film 2.
  • a bismaleimide triazine resin film or a liquid crystal polymer film is used. Also good.
  • the film thickness of the insulating film 2 is not limited to 0.05 mm, and a material having a higher strength can be made thinner than 0.05 mm and can be easily cut with a splicer or a simple cutting tool. It is also possible to increase the film thickness.
  • the metal laminated film is formed on one surface of the insulating film 2 via the adhesive layer 7 and then the unnecessary portions are removed to form the land portions 3 and 4. Then, a metal laminated film in which the land portions 3 and 4 are patterned in advance may be bonded to one surface of the insulating film 2.
  • a blue light emitting diode is used as the light emitting element 11, and the light emitting element 11 is sealed with a silicon resin 13 containing a red phosphor and a green phosphor (white light emitting device).
  • the present invention can also be applied to light emitting devices other than white light emitting devices, and light emitting diodes of light emitting colors (light emitting wavelengths) other than blue light emitting diodes may be used as the light emitting elements 11. It is good also as transparent sealing resin, without making fluorescent substance contain, and you may use fluorescent substance other than red fluorescent substance and green fluorescent substance as fluorescent substance contained in the silicone resin 13 as sealing resin.
  • the emission wavelength of the phosphor needs to be longer than the emission wavelength of the light emitting element 11.
  • the case where the same light emitting element 11 is mounted in each unit section on the multilayer substrate has been described.
  • different light emission is performed in one unit section and other unit sections on the same multilayer substrate.
  • the element 11 (for example, a light emitting diode having a different emission wavelength) may be mounted.
  • each part described in the first embodiment are examples, and can be changed according to, for example, the chip size of the light emitting element 11.
  • the bottom shape of the silicon resin 13 as the sealing resin is not limited to a rectangle, a square, or an ellipse, and may be, for example, a circle or an oval.
  • the light emitting device 1 of Embodiment 1 includes the insulating film 2, the LED chip as the light emitting element 11, the printing resistor 16 as the protective element (printing resistance element), the white silicon resin layer 10, and the Ni + Ag plating layers 14 and 15. , A silicon resin 13 as a phosphor-containing resin layer, land portions 3 and 4 (copper foil film), and through conductors 8 and 9 are provided.
  • the through conductors 8 and 9 are extended on the back surface of the insulating film 2, and the print resistance as a print resistance element is provided between the through conductors 8 and 9. 16 is provided.
  • a method of manufacturing the light emitting device 1 according to the first embodiment will be described with the above configuration.
  • an insulating film 2 (polyimide) having an adhesive 7 applied on its surface is prepared.
  • a copper foil layer (here, the copper foil layer before becoming the land portions 3 and 4) is formed on the side of the insulating film 2 where the adhesive 7 is formed.
  • the through conductors 8 and 9 are filled in the through hole (opening) by copper plating.
  • cathode land portion 3 and the anode land portion 4 having a predetermined shape are formed on the copper foil layer by using photoetching.
  • a pair of Ni + Ag plating layers 14 and 15 and a pair of Ni + Ag plating layers are formed on the land portions 3 and 4 formed on the front and back surfaces of the insulating film 2 and through conductors 8 and 9 connected thereto. Terminal portions 5 and 6 are formed.
  • a white silicon resin layer 10 is formed on the surface of the insulating film 2 other than the land portions 3 and 4.
  • the cathode land portion 3 and the anode land portion 4 are formed with penetrating conductors 8 and 9 extending through the main surface of the insulating film 2 and reaching the back surface, respectively.
  • the printing resistor 16 is formed.
  • the printing resistor 16 as the printing resistor element is formed between the through conductors 8 and 9, that is, electrically connected in parallel to the light emitting element 11.
  • both ends of the printing resistor 16 as the protective element are electrically connected between the pair of land portions 3 and 4 to which the light emitting element 11 is mounted and electrically connected.
  • the printing resistor 16 as the printing resistor element is disposed on the back surface of the insulating film 2, so that the printing resistor 16 does not hinder the light emission of the light emitting element 11 on the front surface side.
  • the mountable area of the LED chip as the light emitting element 11 on the main surface side of the insulating film 2 is expanded, and for example, at least one LED chip can be mounted. Thereby, the brighter light-emitting device 1 can be produced on the base material using the insulating film 2.
  • the printing resistance 16 as a protection element (printing resistance element) used here is not a material that wets the brazing material, even if the light-emitting device 1 is mounted on the mounting substrate, the printing resistance 16 as the printing resistance element is used.
  • the brazing material does not get wet and electrically connects the penetrating conductors 8 and 9, so that a brazing material portion parallel to the printing resistor 16 as a protective element (printing resistance element) is not formed.
  • an insulating layer such as a dry film or a glass layer is formed on the printing resistance 16 as the protection element (printing resistance element). It is necessary to devise a method to cover with.
  • the light-emitting device 1 of Embodiment 1 is connected in parallel to the insulating film 2 (substrate or base material), the light-emitting element 11 mounted on the surface side of the insulating film 2, and the light-emitting element 11.
  • the protective element comprises a printing resistor 16 and is formed on the back surface of the insulating film 2.
  • the protective element is made a thin film printing resistor 16 with a predetermined width, so that the arrangement of the protective element is not restricted.
  • the arrangement is not restricted by the thin film printing resistor 16
  • electrical connection with the thin film metal layer is facilitated, and a part (see the second embodiment) or the whole can be easily formed with a resin or the like. Since it becomes possible to cover, shielding / absorption of the emitted light from the light emitting element 11 by the protective element is reduced.
  • the light absorption of the light emitted from the light emitting element 11 on the front side can be reduced by forming the printing resistor 16 as a protective element on the back surface.
  • the distance between the through conductors 8 and 9 is long on the back surface, it is easy to design a large resistance value of the printing resistor 16 as a protective element.
  • it is a thin printed resistor 16, it can be formed at low cost.
  • the thin printed resistor 16 is formed on the back surface as a protective element, the shape of the phosphor-containing silicon resin 13 of the sealing resin (phosphor-containing) is not affected. For this reason, changes in chromaticity and luminance are reduced.
  • the printing resistor 16 is formed on the back surface of the insulating film 2 so as to expose the printing resistor 16, but in the second embodiment, both ends of the printing resistor 16 are covered with another conductive film. The case where it is protected will be described.
  • FIG. 2A and 2B are diagrams showing a configuration example of a light emitting device according to Embodiment 2 of the present invention, in which FIG. 2A is a longitudinal sectional view, and FIG. 2B is a plan view when viewed from the upper side. c) is a rear view thereof.
  • symbol is attached
  • the light emitting device 1A includes an insulating film 2, an LED chip as the light emitting element 11, and a printing resistance as a protective element (printing resistance element).
  • 16A white silicon resin layer 10, Ni + Ag plating layers 14, 15, Ni + Ag plating layers 5A1 and 5A2, 6A1 and 6A2, terminal portions 5A and 6A, a phosphor resin-containing resin layer 13, and a pair of land portions 3 4 (copper foil layer).
  • a cathode electrode (terminal portion 5A) and an anode electrode (terminal portion 6A) are extended on the back surface of the insulating film 2, and a printing resistor 16A is provided.
  • the printing resistor 16A as a protective element is formed on the back surface of the insulating film 2 before forming the cathode electrode (terminal portion 5A) and the anode electrode (terminal portion 6A).
  • land portions 3 and 4 Ni + Ag plating layers 14, 15, 5A1 and 5A2, 6A1 and 6A2 formed on the front and back surfaces of the insulating film 2 are formed.
  • a white silicon resin layer 10 is formed on the surface of the insulating film 2 other than the Ni + Ag plating layers 14 and 15.
  • the cathode land portion 3 and the anode land portion 4 are formed to extend to the cathode terminal portion 5A and the anode terminal portion 6A through penetrating conductors 8 and 9 that penetrate the main surface of the insulating film 2 and reach the back surface, respectively. ing.
  • the cathode terminal portion 5A and the anode terminal portion 6A are connected to both ends of the printing resistor 16A as a protection element (printing resistance element). It is formed so as to cover the side. Thereby, the printing resistor 16A as a protective element (printing resistance element) is formed between the cathode terminal portion 5A and the anode terminal portion 6A.
  • the printing resistor 16A is electrically connected as a protective element in parallel with the LED chip as the light emitting element 11.
  • both ends of the printing resistor 16A as the protection element are partially covered (both ends) by the anode terminal portion 5A and the cathode terminal portion 6A. Since the resistor 16A is difficult to be damaged, adverse effects on the characteristics of the protective element (here, the resistance value) can be reduced.
  • the printing resistor 16 ⁇ / b> A as a protective element is disposed on the back surface of the insulating film 2, and thus the light emitting device 11 on the main surface of the insulating film 2.
  • the mountable area of the LED chip is expanded, and for example, at least one LED chip can be mounted.
  • the printing resistor 16A as the protection element (printing resistance element) used here is not a material that wets the brazing material. Therefore, even if the light emitting device 1A is mounted on the mounting substrate, the printing resistance 16A is a protection element (printing resistance element).
  • the brazing material gets wet on the printing resistor 16A, and the cathode terminal portion 5A and the anode terminal portion 6A are electrically connected to form a brazing material portion in parallel with the printing resistor 16A as a protective element (printing resistance element). There is nothing.
  • the printing resistor 16A as the protection element uses a material that gets wet with the brazing material, an insulating layer such as a dry film or a glass layer is formed on the printing resistance 16A as the protection element (printing resistance element). It is necessary to devise a method to cover with.
  • a protective film may be formed on the exposed printing resistor 16 and the cathode terminal portion 5A and the anode terminal portion 6A to completely cover the printing resistor 16 for protection.
  • FIG. 3A and 3B are diagrams showing a configuration example of a light emitting device according to Embodiment 3 of the present invention, in which FIG. 3A is a plan view when viewed from the upper side, and FIG. 3B is a rear view thereof.
  • symbol is attached
  • the light-emitting device 1B of Embodiment 3 includes an insulating film 2 with an adhesive 7, an LED chip as the light-emitting element 11, and a protective element (printing resistance element).
  • Printing resistor 16B white silicon resin layer 10, Ni + Ag plating layers 14B and 15B, a pair of terminal portions 5B and 6B made of Ni + Ag plating layer, a silicon resin 13 as a phosphor-containing resin layer, and a pair of land portions 3B 4B (copper foil layer) and through conductors 8B and 9B.
  • the shape of the land portions 3B and 4B is different from that of the first and second embodiments, and the opposite side shapes are uneven shapes in plan view.
  • the opposing side shape of the land portions 3B and 4B is at least a surface uneven shape, and is formed so that the convex portion and the concave portion enter each other and fit.
  • the land portion 3B has a convex shape in plan view at the center, and the land portion 4B has a concave shape in plan view at the center so that the film strength increases.
  • the through conductors 8B and 9B are extended on the back surface of the insulating film 2 and between the through conductors 8B and 9B (between the pair of terminal portions 5B and 6B below the through conductors 8B and 9B).
  • a printing resistor 16B as a protection element (printing resistance element) is provided so as to be connected.
  • the strength of the insulating film 2 is reinforced by the uneven shape of the opposing sides of the land portions 3B and 4B, it is difficult to provide a protective element between the land portions 3B and 4B on the surface because the distance is too short. For this reason, since there is a distance between the through conductors 8B and 9B on the back surface (actually, between the pair of terminal portions 5B and 6B below), between the through conductors 8B and 9B on the back surface of the insulating film 2 A printing resistor 16B is provided so that both ends thereof are connected (actually between the pair of terminal portions 5B and 6B below it).
  • the strength of the insulating film 2 can be further increased by providing the printing resistor 16B so as to span between the through conductors 8B and 9B (actually, between the pair of terminal portions 5B and 6B underneath). .
  • the tip side shape of the land portion 3B / Ni + Ag plating layer 14B is made a convex shape in plan view, and the tip side shape of the land portion 4B / Ni + Ag plating layer 15B facing this is changed to a concave shape in plan view.
  • the strength of the insulating film 2 can be increased when the concave portions in plan view are inserted at an equal distance and are engaged with each other.
  • the through conductor 8B / Ni + Ag plating layer 5B and the through conductor 9B / Ni + Ag plating layer are not provided on the same surface side of the land portion 3B / Ni + Ag plating layer 14B and the land portion 4B / Ni + Ag plating layer 15B. Since the distance to 6B is long, the resistance value of the printing resistor 16B can be easily designed as a protective element.
  • the printing resistor 16B (in this case, ruthenium oxide) as a protective element is hard, the strength of the insulating film 2 is further reinforced.
  • the light emitting device 1B is equipped with the printing resistor 16B as a protective element and the film strength of the insulating film 2 is increased, the light emitting device 1B having good reliability can be obtained.
  • a printing resistor 16B as a protective element is connected in parallel with the LED chip as the light emitting element 11.
  • the printing resistor 16B is provided at a place other than the surface side of the TAB substrate using the insulating film 2 as a base material. That is, the printing resistor 16 ⁇ / b> B is provided on the back surface of the insulating film 2.
  • the printing resistor 16B has a strip shape and is a thin film printing resistor so that it is not restricted in arrangement.
  • the printing resistor 16B is a thin film printing resistor and is not subject to arrangement restrictions. Therefore, the printing resistor 16B can be easily electrically connected to the thin film metal layer and can be easily covered with a resin.
  • the printing resistor 16B shielding / absorption of the emitted light from the LED chip as the semiconductor light emitting element 11 is reduced. Therefore, shielding / absorption of light emitted from the LED chip as the semiconductor light emitting element 11 is suppressed, and emitted light with good luminance can be obtained without causing a reduction in light output. Further, the light emitting device 1B can be formed at low cost.
  • FIG. 4A and 4B are diagrams showing a configuration example of a light emitting device according to Embodiment 4 of the present invention, where FIG. 4A is a plan view when viewed from the upper side, and FIG. 4B is a rear view thereof.
  • symbol is attached
  • the light emitting device 1C includes an insulating film 2 with an adhesive 7, an LED chip as a semiconductor light emitting element 11, and a protective element (printing resistance element).
  • Printing resistor 16C white silicon resin layer 10, Ni + Ag plating layers 14C, 15C, a pair of terminal portions 5C and 6C made of Ni + Ag plating layer, a silicon resin 13 as a phosphor-containing resin layer, and a pair of land portions 3C, 4C (copper foil layer) and through conductors 8C, 9C are provided.
  • the opposing side shape of the pair of land portions 3C and 4C (copper foil layer) which are both conductive regions is different from the case of Embodiment 3 in a plan view L- As the L-shape, the front ends enter each other at an equal distance.
  • the protruding high end side of the L-shaped land portion 3C in one plan view is located so as to enter the recessed low end side of the other L-shaped land portion 4C in plan view, and the other plan view L
  • the protruding high-end side of the land portion 4C is positioned so as to enter the recessed low-end side of the L-shaped land portion 3C in plan view.
  • the land portions 3C and 4C are L-shaped and L-shaped in plan view and fitted to each other, so that the film is hard to be bent and the film strength is increased.
  • a printing resistor 16C as a protective element (printing resistance element) is provided.
  • the strength of the insulating film 2 is reinforced by the L-shape and L-shape in plan view of the pair of land portions 3C, 4C (copper foil layer), but the land portions 3C on the surface of the insulating film 2 It is difficult to provide the printing resistor 16C as a protective element between 4C.
  • a printing resistor 16C is provided on the back surface of the insulating film 2. Furthermore, the strength of the insulating film 2 is increased by providing the printing resistor 16C between the through conductors 8C and 9C (actually, between the pair of terminal portions 5B and 6B below it).
  • the insulating film is formed by fitting the tip side of the land portion 3C / Ni + Ag plating layer 14C to an L shape and the tip side of the land portion 4C / Ni + Ag plating layer 15C facing the L shape to fit each other.
  • the strength of 2 can be increased.
  • the printing resistance 16C (here, ruthenium oxide) as a protective element is hard, the strength of the insulating film 2 is also reinforced.
  • the light emitting device 1C is equipped with the printing resistor 16C as a protective element and the film strength of the insulating film 2 is increased, the light emitting device 1C having good reliability can be obtained.
  • FIG. 5A and 5B are diagrams showing a configuration example of a light emitting device according to Embodiment 5 of the present invention, in which FIG. 5A is a longitudinal sectional view, and FIG. 5B is a plan view when viewed from the upper side. c) is a rear view thereof.
  • symbol is attached
  • the light emitting device 1D of the fifth embodiment includes an insulating film 2, an LED chip as the semiconductor light emitting element 11, and printing as a protection element (printing resistance element).
  • Resistor 16D white silicon resin layer 10, Ni + Ag plating layers 14, 15, a pair of terminal portions 5, 6 made of Ni + Ag plating layer, a silicon resin 13 as a phosphor-containing resin layer, a pair of land portions 3, 4,
  • the through conductors 8 and 9 are provided.
  • a printing resistor 16D is provided as a printing resistor element on the adhesive layer 7 on the surface of the insulating film 2.
  • the printing resistor 16 ⁇ / b> D is formed on the surface of the insulating film 2 before the cathode land portion 3 and the anode land portion 4 are formed.
  • a pair of land portions 3 and 4 are formed on the surface of the insulating film 2.
  • a pair of terminal portions 5 and 6 comprising Ni + Ag plating layers 14 and 15 and a Ni + Ag plating layer are formed on the pair of land portions 3 and 4 and the through conductors 8 and 9.
  • a white silicon resin layer 10 is formed on the surface of the insulating film 2.
  • the printing resistor 16 ⁇ / b> D as the printing resistor element is formed between the cathode land portion 3 and the anode land portion 4.
  • the cathode land portion 3 and the anode land portion 4 are formed so as to extend through the through conductors 8 and 9 that penetrate the main surface of the insulating film 2 and reach the back surface.
  • the printing resistor 16D as a protective element is disposed on the front surface side of the insulating film 2 and on the back surface side of the cathode land portion 3 and the anode land portion 4, so that the cathode land
  • the mountable area of the LED chip on the main surface of the portion 3 is expanded, and for example, at least one LED chip can be mounted.
  • a brighter light emitting device 1D can be produced on the base material using the insulating film 2.
  • the protective element printing resistance element
  • the printing resistance element is provided on the surface of the insulating film 2.
  • the light emitting element 11 is covered with a phosphor-containing resin layer (or translucent resin layer) formed on the surface side of the insulating film 2, and a protective element (printing resistance element).
  • a phosphor-containing resin layer or translucent resin layer
  • a protective element printing resistance element
  • FIG. 6A and 6B are diagrams showing a configuration example of a light emitting device according to Embodiment 6 of the present invention, in which FIG. 6A is a longitudinal sectional view, and FIG. 6B is a plan view when viewed from the upper side. c) is a rear view thereof.
  • symbol is attached
  • the light emitting device 1E includes an insulating film 2, an LED chip as the light emitting element 11, and a printing resistance as a protection element (printing resistance element). 16D, white silicon resin layer 10, Ni + Ag plating layers 14, 15, terminal portions 5, 6 made of Ni + Ag plating layer, phosphor-containing resin layer 13E, a pair of land portions 3, 4, and penetrating conductors 8, 9 Yes.
  • the cathode terminal portion 5 and the anode terminal portion 6 are extended on the back surface of the insulating film 2.
  • a printing resistor 16D as a protective element is provided on the adhesive layer 7 on the surface of the insulating film 2.
  • the printing resistor 16D is formed on the surface of the insulating film 2 before the cathode land portion 3 and the anode land portion 4 are formed.
  • a pair of land portions 3 and 4 are formed on the surface of the insulating film 2 so as to overlap both ends of the printing resistor 16D.
  • a pair of terminal portions 5 and 6 made of Ni + Ag plating layers 14 and 15 and a Ni + Ag plating layer are formed on the pair of land portions 3 and 4 and the through conductors 8 and 9.
  • a white silicon resin layer 10 is formed on the surface of the insulating film 2 other than the pair of land portions 3 and 4.
  • the bottom shape of the phosphor-containing resin layer 13E was formed in an elliptical shape here.
  • the cathode land portion 3 and the anode land portion 4 are formed so as to cover each end of the printing resistor 16D.
  • the printing resistor 16D is formed between the cathode land portion 3 and the anode land portion 4.
  • the cathode land portion 3 and the anode land portion 4 are formed by extending through conductors 8 and 9 that penetrate the main surface of the insulating film 2 and reach the back surface.
  • the bottom face shape of the phosphor-containing resin layer 13E is formed in an elliptical shape, it may be circular, oval, rectangular or square.
  • the light emitting element 11 is covered with the phosphor-containing resin layer 13E formed on the surface side of the insulating film 2, and the printing resistor 16D is on the surface side of the insulating film 2 and the phosphor-containing resin.
  • the layer 13E is formed outside in a plan view.
  • the surface of the phosphor-containing resin layer 13E is shaped like a dome.
  • the printing resistor 16 as the protective element is formed on at least one of the front surface side, the back surface side, and the inside of the insulating film 2. Since, for example, the printing resistor 16 as a protective element is formed on the back side from the mounting surface, the emitted light from the light emitting element 11 is not hindered by light shielding or light absorption by the printing resistor 16 as a protective element, A conventional surface mount type light emitting device which can form, for example, the printing resistor 16 as a protective element without lowering the light emission efficiency from the light emitting element 11 as in the prior art, and is inexpensive and excellent in reliability. Obtainable.
  • both conductive regions for example, a pair of land portions 3 and 4) provided on the insulating film 2 corresponding to ⁇ polarity are mounted on the surface side of both conductive regions.
  • a protective element for example, a printing resistor 16 connected in parallel with the light emitting element 11, and the protective element is located on the back side of the mounting surface of the light emitting element 11.
  • the insulating film 2 is formed on the front surface side or the back surface side, but the present invention is not limited to this, and a protective element may be provided inside the insulating film 2.
  • the insulating film 2 may have a two-layer structure, and a protective element may be provided therebetween. In this case, both ends of the protective element may be electrically connected to the through conductors 8 and 9.
  • the protective element for example, the printing resistor 16
  • the protective element is formed on the back side of the mounting surface of the light emitting element 11, and is formed on at least one of the front side, the back side, and the inside of the insulating film 2.
  • the protective element for example, the printing resistor 16
  • the protective element may be formed not only on the front surface side of the insulating film 2 but also on the back surface side.
  • the protective element is configured by a printing resistor as a thin film resistor, but is not limited thereto, and may be a thin film resistor other than the printing resistor.
  • the thin film resistor is a resistor having a predetermined width and a predetermined length and a predetermined film thickness.
  • the phosphor-containing resin layer may be further covered with a light-transmitting resin layer. Therefore, the light emitting element 11 is covered with at least one of the phosphor-containing resin layer (phosphor-containing silicon resin 13) and the translucent resin layer formed on the surface side of the insulating film 2, and serves as a protective element. Any one of the printing resistors 16 and 16A to 16D is provided on the front side or the back side of the insulating film 2 and at least one of the phosphor-containing resin layer (phosphor-containing silicon resin 13) and the translucent resin layer. Are formed on the outside in plan view. Further, at least one of the phosphor-containing resin layer (phosphor-containing silicon resin 13) and the translucent resin layer has a dome-shaped surface.
  • corrugated shape for device breakage prevention fits the planar view convex part and recessed part of the opposing side of both electroconductive area
  • planar view L shape and L shape (plan view L shape and reverse L shape) for device breakage prevention are a pair of conductive regions. Opposite sides of the land portion are formed so as to be opposed to each other in an L shape in plan view and an inverted L shape in plan view and enter each other with a predetermined insulation distance.
  • At least one of the planar concavo-convex shape for preventing device breakage and the planar view L-shape / inverted L-shape for preventing device breakage is used in the light emitting device of the present invention.
  • an uneven shape in plan view and an L-shape / L-shape in plan view can be formed continuously and used together.
  • the printing resistor 16 as the protective element of the first embodiment has been described as an example.
  • the printing resistors 16B and 16C as the protective elements the printing resistor 16A and / or the printing resistor 16D as the protective elements of the above-described Embodiments 2 and 5 can be used, and between the two insulating films 2 (insulating properties) A printing resistor formed on the inside of the film 2 can also be used.
  • Both end portions of the printing resistor 16A are covered with the anode terminal portion 5A and the cathode terminal portion 6A. Further, a printing resistor 16 ⁇ / b> D is provided as a printing resistor element on the adhesive layer 7 on the surface of the insulating film 2.
  • the printing resistor 16 of the first embodiment formed on the back side of the insulating film 2 as a protective element, the insulating property.
  • the printed resistor 16A of the second embodiment formed on the back side of the film 2 and covered at both ends, the printed resistor 16D of the fifth embodiment formed on the surface side of the insulating film 2, and two insulating films
  • the printing resistance formed between the two (inside the insulating film 2) is on the back side of the mounting surface of the light emitting element 11, and these protective elements are the front side, the back side and the insulating film 2, respectively. It may be formed in at least one of the insides.
  • the present invention relates to a surface-mounted light-emitting device and a manufacturing method thereof, and in particular, in the field of a surface-mounted light-emitting device that is inexpensive and emphasizes productivity, protective elements are provided on the front side, back side, and inside of an insulating film. Since the protective element is formed on the back side of the mounting surface of the light emitting element, light emitted from the light emitting element is not hindered by the protective element and emits light as in the conventional case. A protective element can be formed without a decrease in light emission efficiency from the element, and a surface-mounted light-emitting device that is inexpensive and excellent in reliability with an emphasis on productivity can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

【課題】発光素子からの光出射効率の低下なく保護素子を形成することができて、廉価で生産性を重視した信頼性の優れた表面実装型の発光装置を提供する。 【解決手段】保護素子としての例えば印刷抵抗16が、絶縁性フィルム2の表面側、裏面側および内部の少なくともいずれかに形成されているため、発光素子11の搭載面よりも背面側に保護素子としての例えば印刷抵抗16が形成されることから、発光素子11からの出射光が保護素子としての例えば印刷抵抗16によって光遮蔽や光吸収などで妨げられない。

Description

発光装置
 本発明は、表面実装型の発光装置およびその製造方法に関し、特に、廉価で生産性を重視した表面実装型の発光装置に関する。
 従来、基板面に例えば発光ダイオード(LED)などの発光素子を搭載し、透明樹脂で封止した表面実装型の発光装置として、例えば、下記の特許文献1および特許文献2などに開示されているものがある。
 図7は、特許文献1に開示されている従来のLED照明モジュールの構成例を示す縦断面図である。
 図7に示すように、LED照明モジュール100は、フレキシブル基板101上に回路配線102を形成し、その上に接着剤103を介してフレキシブル基板104を形成し、その上に、LEDのダイス105からの光を反射するフレキシブルな反射層106を形成してなるフレキシブル配線基板を備えている。
 当該フレキシブル配線基板101、104を貫通してヒートスプレッダ107が設けられ、ヒートスプレッダ107上にLEDのダイス105を搭載し、LEDのダイス105の表面側の電極をフレキシブル基板104に設けた開口部を通して回路配線102の露出面とワイヤボンディングによりワイヤ108で接続した構造となっている。
 図8は、特許文献2に開示されている従来のLED照明モジュールの構成例を示す縦断面図である。
 図8に示すように、LED照明モジュール200において、少なくとも第1面側の光(波長450nm)の全反射率が80%以上である電気的絶縁材201(201a:接着材層、202b:基材、201c:白色絶縁材)と、電気的絶縁材201を貫通するビアホール202~204と、電気的絶縁材201の第2面側に設けられた配線パターン205~207と、ビアホール202内に設けられた配線パターン208と、ビアホール203内に設けられた配線パターン209と、ビアホール204内に設けられた金属充填部210とを有している。
 電気的絶縁材201の第1面側かつ金属充填部210の表面にLEDチップ211をダイボンディングし、LEDチップ211の各電極と配線パターン208、209に対してワイヤ212にてワイヤボンディングする。その後、LEDチップ211を樹脂封止材213により樹脂封止している。
特開2005-136224号公報 特開2012-33855号公報
 近年、例えばLEDなどの発光装置は、高輝度化が進み、低消費電力、高耐衝撃性、長寿命を特徴として、表示装置、照明装置、液晶テレビジョンや液晶モニタのバックライト装置など、多方面で活用されている。発光装置の応用範囲および期待が広がる一方で、発光装置に対する低廉化の要望も増しており、発光装置の例えばLEDダイスの低コスト化と共にその実装コストの低廉化も必要となってきている。
 特許文献1に開示されている上記従来の発光装置100では、当該発光装置100の応用形態に応じて回路配線102を外部に引き出すための構造が別途必要になると共に、上下2層のフレキシブル基板101、104の間に接着剤103を介して回路配線102を挟み込んだ構造のため、フレキシブル配線基板101、104から、所要数の発光装置を切り出して使用するには、フレキシブル配線基板101、104を専用の加工装置で切断する必要があり、低コストで大量生産するには不適当な構造と考えられる。
 この場合、LEDのダイス105からワイヤボンディングされる一方の回路配線102と他方の回路配線102との間にヒートスプレッダ107が存在するため、一方の回路配線102と他方の回路配線102との間に保護素子を形成し難い構造となっている。
 特許文献2に開示されている上記従来の発光装置でも、上記従来の発光装置100の場合と同様、保護素子が形成され難い構造と考えられる。
 即ち、給電用配線パターン205またはビアホール203内に設けられた配線パターン209と、給電用配線パターン206またはビアホール202内に設けられた配線パターン208と、放熱用配線パターン207またはビアホール204内に設けられた放熱用配線パターン210とが電気的に接続されていないため、配線パターン208、209の間に放熱用配線パターン210が存在し、かつ、一方の給電用配線パターン205と他方の給電用配線パターン206間にも放熱用配線パターン207が存在するため、一方の給電用配線パターン205と他方の給電用配線パターン206間に保護素子を形成し難い構造となっている。
 一方、以上の特許文献1、2の場合に、保護素子を発光素子の搭載面側に配設すると、搭載された発光素子からの出射光を保護素子が遮蔽・吸収して光出射効率を低下させてしまうという問題がある。
 本発明は、上記従来の問題を解決するもので、発光素子からの光出射効率の低下なく保護素子を形成することができて、廉価で生産性を重視した信頼性の優れた表面実装型の発光装置を提供することを目的とする。
 本発明の発光装置は、絶縁性フィルム上に±極性に対応して設けられた両導電領域と、該両導電領域の表面側に搭載されて該両導電領域に電気的に接続された発光素子と、該発光素子と並列に接続された保護素子とを有し、該保護素子は、該発光素子の搭載面よりも背面側にあって、該絶縁性フィルムの表面側、裏面側および内部の少なくともいずれかに形成されているものであり、そのことにより上記目的が達成される。
 また、好ましくは、本発明の発光装置における保護素子は、印刷抵抗または薄膜抵抗により構成されている。
 さらに、好ましくは、本発明の発光装置における保護素子は、前記絶縁性フィルムの表面に形成されている。
 さらに、好ましくは、本発明の発光装置における保護素子は、前記絶縁性フィルム上に形成された接着材層上に形成されている。
 さらに、好ましくは、本発明の発光装置における保護素子は、前記絶縁性フィルムの裏面に形成されている。
 さらに、好ましくは、本発明の発光装置における保護素子は、前記両導電領域に電気的に接続される1対の端子部間に電気的に接続されている。
 さらに、好ましくは、本発明の発光装置における保護素子は、前記1対の端子部上を含む該1対の端子部間に形成されている。
 さらに、好ましくは、本発明の発光装置における保護素子の両端部上にそれぞれ前記1対の端子部がそれぞれ形成されて該保護素子を保護している。
 さらに、好ましくは、本発明の発光装置における発光素子は、前記絶縁性フィルムの表面側に形成された蛍光体含有樹脂層および透光性樹脂層の少なくともいずれかにより覆われ、前記保護素子は、該絶縁性フィルムの表面側または裏面側でかつ該蛍光体含有樹脂層および該透光性樹脂層の少なくともいずれかの平面視外側に形成されている。
 さらに、好ましくは、本発明の発光装置における蛍光体含有樹脂層および前記透光性樹脂層の少なくともいずれかは、その表面がドーム状に形状されている。
 さらに、好ましくは、本発明の発光装置における印刷抵抗は、抵抗成分を含むペーストをスクリーン印刷することにより形成されている。
 さらに、好ましくは、本発明の発光装置におけるペーストは、酸化ルテニウム、固結剤、樹脂および溶剤により構成されている。
 さらに、好ましくは、本発明の発光装置における両導電領域の対向辺に平面視で段差部が設けられた状態で該両導電領域は互いに間隔を空けて絶縁されている。
 さらに、好ましくは、本発明の発光装置における段差部は、デバイス折れ防止用の平面視凹凸形状および、デバイス折れ防止用の平面視L字・L字形状のうちの少なくともいずれかである。
 さらに、好ましくは、本発明の発光装置における平面視凹凸形状は、前記両導電領域の対向辺が所定距離を開けて嵌合している。
 さらに、好ましくは、本発明の発光装置における平面視L字・L字形状は、前記両導電領域の対向辺が所定距離を開けて互いに入り込んでいる。
 上記構成により、以下、本発明の作用を説明する。
 本発明においては、絶縁性フィルム上に±極性に対応して設けられた両導電領域と、両導電領域の表面側に搭載されて両導電領域に電気的に接続された発光素子と、発光素子と並列に接続された保護素子とを有し、保護素子は、発光素子の搭載面よりも背面側にあって、絶縁性フィルムの表面側、裏面側および内部の少なくともいずれかに形成されている。
 このように、保護素子が、発光素子の搭載面よりも背面側に形成されているため、発光素子からの出射光が保護素子によって妨げられず、光出射効率の低下なく保護素子を形成することが可能となって、廉価で生産性を重視した信頼性の優れた表面実装型の発光装置を得ることが可能となる。
 以上により、本発明によれば、保護素子が、絶縁性フィルムの表面側、裏面側および内部の少なくともいずれかに形成されているため、発光素子の搭載面よりも背面側に保護素子が形成されることから、発光素子からの出射光が保護素子によって妨げられず、従来のように発光素子からの光出射効率の低下なく保護素子を形成することができて、廉価で生産性を重視した信頼性の優れた表面実装型の発光装置を得ることができる。
本発明の実施形態1の発光装置の一構成例を示す図であって、(a)はその縦断面図、(b)はその上側から見たときの平面図であり、(c)はその裏面図である。 本発明の実施形態2の発光装置の一構成例を示す図であって、(a)はその縦断面図、(b)はその上側から見たときの平面図であり、(c)はその裏面図である。 本発明の実施形態3の発光装置の一構成例を示す図であって、(a)はその上側から見たときの平面図であり、(b)はその裏面図である。 本発明の実施形態4の発光装置の一構成例を示す図であって、(a)はその上側から見たときの平面図であり、(b)はその裏面図である。 本発明の実施形態5の発光装置の一構成例を示す図であって、(a)はその縦断面図、(b)はその上側から見たときの平面図であり、(c)はその裏面図である。 本発明の実施形態6の発光装置の一構成例を示す図であって、(a)はその縦断面図、(b)はその上側から見たときの平面図であり、(c)はその裏面図である。 特許文献1に開示されている従来のLED照明モジュールの構成例を示す縦断面図である。 特許文献2に開示されている従来のLED照明モジュールの構成例を示す縦断面図である。
 1、1A~1E 発光装置
 2 絶縁性フィルム
 3、4、3B、4B、3C、4C 1対のランド部
 5、6、5A、6A、5B、6B、5C、6C 外部接続用の1対の端子部
 7 接着剤
 8、9、8B、9B、8C、9C 貫通導電体 10 白色シリコン樹脂
 11 発光素子
 12 ワイヤ
 13 蛍光体含有シリコン樹脂
 14、15、5A1、5A2、6A1、6A2 メッキ層
 16、16A~16D 印刷抵抗
 以下に、フィルム配線基板(フレキシブル配線基板)としてのTAB(テープ・オートメイテッド・ボンディング;TapeAutomated Bonding)基板を用い
た表面実装型の発光装置の実施形態1~6について図面を参照しながら詳細に説明する。なお、各図における構成部材のそれぞれの厚みや長さなどは図面作成上の観点から、図示する構成に限定されるものではない。
 (実施形態1)
 図1は、本発明の実施形態1の発光装置の一構成例を示す図であって、(a)はその縦断面図、(b)はその上側から見たときの平面図であり、(c)はその裏面図である。
 図1(a)~図1(c)に示すように、本実施形態1の発光装置1は、絶縁性フィルム2の上面側に、±極性に対応して設けられた両導電領域としての金属膜片からなる1対のランド部3、4を備え、下面に金属膜片からなる外部接続用の1対の端子部5、6を備え、各ランド部3、4は接着層7を介して絶縁性フィルム2の上面に接着し、同様に、各端子部5、6は絶縁性フィルム2の下面に設けられている。ランド部3および端子部5は、絶縁性フィルム2を挟んで対向し、絶縁性フィルム2を貫通する貫通導電体8により電気的に導通している。同様に、ランド部4および端子部6は、絶縁性フィルム2を挟んで対向し、絶縁性フィルム2を貫通する貫通導電体9により電気的に導通している。
 1対のランド部3、4は、このランド部3、4間を平面視細長い間隙によって電気的に絶縁分離されている。同様に、1対の端子部を構成する端子部5、6も、この端子部5、6間を細長い間隙によって電気的に絶縁分離されている。
 白色シリコン樹脂10は、1対のランド部3、4の外周との間隙に、例えば、1対のランド部3、4の端縁部を被覆し、上面が1対のランド部3、4の上面より僅かに高くなるようにダム状に形成されている。
 本実施形態1では、ランド部3、4の面積を、例えばランド部3側をランド部4に比べて大きくして、ワイヤボンディング型の発光素子11(半導体発光素子)の基板側をランド部3にダイボンディングにより接続する。発光素子11のP電極(アノード)とランド部4間、および、発光素子11のN電極とランド部3間を、それぞれボンディング用ワイヤ12を介して接続する。
 1対のランド部3、4の外周に形成された白色シリコン樹脂10で囲まれた領域上に、発光素子11を封止する蛍光体含有シリコン樹脂13をドーム状に形成する。
 1対のランド部3、4の外周とその間隙に白色シリコン樹脂10を形成し、1対のランド部3、4の外周に形成された白色シリコン樹脂10で囲まれた領域上に、発光素子11を封止する蛍光体含有シリコン樹脂13をその表面がドーム状に形成する。
 本実施形態1では、1対のランド部3、4の金属膜片の一例として、1対のランド部3、4の銅箔上にニッケル+銀メッキを施したメッキ層14、15を使用し、絶縁性フィルム2の一例として、膜厚0.05mmのポリイミドフィルムを使用する。
 保護素子(印刷抵抗素子)としての印刷抵抗16が絶縁性フィルム2の裏面側に、端子部5、6間を所定幅で接続するように形成されている。これによって、印刷抵抗16は発光素子11の両電極間に並列に電気的に接続されたことになる。
 ここで、発光素子11に対するサージ破壊の防止、および光起電力による発光素子11の劣化対策の効果を奏するために、また、印刷抵抗16(保護素子)に流れる順方向リーク成分が発光素子11の駆動電流に対して影響を与えないようにするために、印刷抵抗16の抵抗値は、1MΩ~10GΩであることが望ましい。
 印刷抵抗16は、抵抗成分を含むペーストをスクリーン印刷することにより形成されている。ペーストは、酸化ルテニウム(RuO2、導電粉末としてルテニウム)、固結剤、樹脂、および溶剤により構成される。このペーストは、クリーム状であって粘度が高く、焼成前のスクリーン印刷直後の状態でも形状が崩れることはない。
 本実施形態1では、絶縁性フィルム2の材質として、膜厚0.05mmのポリイミドフィルムを使用するが、ポリイミドフィルム以外に、例えば、ビスマレイミドトリアジン樹脂系フィルムまたは液晶ポリマー系フィルム等を使用してもよい。
 また、絶縁性フィルム2の膜厚も、0.05mmに限定されるものではなく、より強度の大きい材質では膜厚を0.05mmより薄くでき、スプライサーや簡易切断具で容易に切断可能な範囲で膜厚を厚くすることも可能である。
 本実施形態1では、絶縁性フィルム2の片面に、接着層7を介して金属積層膜を形成した後に、不要部分を除去して、ランド部3、4を形成したが、この形成方法に代えて、予めランド部3、4をパターニングした金属積層膜を絶縁性フィルム2の片面に接着するようにしてもよい。
 本実施形態1では、発光素子11として青色系の発光ダイオードを用い、発光素子11を赤色蛍光体と緑色蛍光体を含有するシリコン樹脂13で封止する形態(白色系の発光装置)を説明した。しかし、本発明は白色系以外の発光装置にも適用可能であり、発光素子11として青色系の発光ダイオード以外の発光色(発光波長)の発光ダイオードを用いてもよく、また、シリコン樹脂13に蛍光体を含有させずに透明封止樹脂としてもよく、また、封止樹脂としてのシリコン樹脂13に含有する蛍光体として、赤色蛍光体と緑色蛍光体以外の蛍光体を用いてもよい。但し、蛍光体の発光波長は、発光素子11の発光波長より長波長である必要がある。
 本実施形態1では、1つの単位区画内には、1つの発光素子11を搭載する場合を説明しているが、1つの単位区画内に複数の発光素子11のダイスを搭載してもよい。
 また、本実施形態1では、積層基板上の各単位区画には、同じ発光素子11を搭載する場合を説明したが、同じ積層基板上において、一の単位区画と他の単位区画において、異なる発光素子11(例えば、発光波長の異なる発光ダイオード)を搭載してもよい。
 本実施形態1で説明する各部の形状や寸法は一例であり、例えば、発光素子11のチップサイズなどに応じて変更可能である。また、封止樹脂であるシリコン樹脂13の底面形状も、長方形、正方形、楕円形に限定されるものではなく、例えば、円形または長円形であってももちろんよい。
 したがって、本実施形態1の発光装置1は、絶縁性フィルム2、発光素子11としてのLEDチップ、保護素子(印刷抵抗素子)としての印刷抵抗16、白色シリコン樹脂層10、Ni+Agメッキ層14、15、蛍光体含有樹脂層としてのシリコン樹脂13、ランド部3、4(銅箔膜)、貫通導電体8、9を備えている。
 ここで、本実施形態1の発光装置1では、絶縁性フィルム2の裏面に、貫通導電体8、9が延設されていると共に、貫通導電体8、9間に印刷抵抗素子としての印刷抵抗16が設けられている。
 上記構成により、本実施形態1の発光装置1の製造方法について説明する。
 まず、接着剤7が表面に塗布された絶縁性フィルム2(ポリイミド)を準備する。
 次に、貫通導電体8、9用の貫通穴(開口部)を接着剤7付き絶縁性フィルム2に形成する。
 続いて、絶縁性フィルム2の接着剤7が形成されている側に銅箔層(ここではランド部3、4となる前の銅箔層)を形成する。
 その後、その貫通穴(開口部)内に銅メッキにより貫通導電体8、9を充填して形成する。
 さらに、銅箔層をフォトエッチングを用いて所定形状のカソードランド部3およびアノードランド部4を形成する。
 次に、絶縁性フィルム2の表面と裏面に形成されているランド部3、4および、これに接続された貫通導電体8、9にNi+Agメッキ層14、15および、Ni+Agメッキ層の1対の端子部5、6を形成する。
 続いて、ランド部3、4以外の絶縁性フィルム2の表面上に白色シリコン樹脂層10を形成する。
 このようにして、カソードランド部3およびアノードランド部4には、絶縁性フィルム2の主表面を貫通し裏面に至る貫通導電体8、9がそれぞれ延設されて形成されている。
 貫通導電体8、9上のNi+Agメッキ層(端子部5、6)上に、貫通導電体8、9間を電気的に接続するように保護素子(印刷抵抗素子)としての所定幅で短冊状の印刷抵抗16を形成する。
 これにより、印刷抵抗素子としての印刷抵抗16は、貫通導電体8、9の間、即ち、発光素子11に並列に電気的に接続されて形成される。
 したがって、保護素子としての印刷抵抗16の両端は、発光素子11が搭載されて電気的に接続される1対のランド部3、4間に電気的接続されていることになる。
 本実施形態1の発光装置1では、印刷抵抗素子としての印刷抵抗16が絶縁性フィルム2の裏面に配置されていることから、印刷抵抗16が表面側の発光素子11の発光の妨げにならず、絶縁性フィルム2の主表面側における発光素子11としてのLEDチップの搭載可能領域が拡がり、例えばLEDチップを少なくとも一つ搭載することができる。これにより、絶縁性フィルム2を用いた基材上により明るい発光装置1が作製可能となる。
 なお、ここで使用する保護素子(印刷抵抗素子)としての印刷抵抗16は、ろう材が濡れる材質ではないので、発光装置1を実装基板に実装しても、印刷抵抗素子としての印刷抵抗16上にろう材が濡れて貫通導電体8、9とを電気的に接続し、保護素子(印刷抵抗素子)としての印刷抵抗16と並列となるろう材部分が形成されることはない。しかし、保護素子(印刷抵抗素子)としての印刷抵抗16が、ろう材に濡れる材質を使用する場合は、保護素子(印刷抵抗素子)としての印刷抵抗16上にドライフィルムやガラス層などの絶縁層で覆うような工夫が必要となる。
 以上により、本実施形態1の発光装置1は、絶縁性フィルム2(基板または基材)と、絶縁性フィルム2の表面側に搭載された発光素子11と、この発光素子11と並列に接続された保護素子とを備え、保護素子は印刷抵抗16からなり、絶縁性フィルム2の裏面に形成されている。
 このように、保護素子を所定幅で薄膜の印刷抵抗16とすることにより、保護素子の配置の制約を受けない。このように、薄膜の印刷抵抗16で配置の制約を受けないことから、薄膜金属層と電気的接続が容易になり、樹脂などで容易にその一部(次の実施形態2参照)または全部を覆うことが可能となるので、保護素子による発光素子11からの出射光の遮蔽・吸収が低減される。
 よって、発光素子11から外部に出射される光の遮蔽・吸収を抑制し、発光素子11からの光出力の外部への光出射の低減を招くことなく、良好な輝度の出射光を得ることが可能となる。
 ここでは、裏面に保護素子としての印刷抵抗16を形成することによって表側の発光素子11からの発光の光吸収が低減できる。また、裏面は貫通導電体8、9の距離が長いために保護素子としての印刷抵抗16の大きな抵抗値の設計が容易になる。さらに、薄膜の印刷抵抗16であることから低コストで形成できる。
 保護素子として薄膜の印刷抵抗16を裏面に形成するため、封止樹脂(蛍光体含有)の蛍光体含有シリコン樹脂13の平面視形状に影響を与えない。このため色度、輝度の変化が低減される。
 (実施形態2)
 上記実施形態1では印刷抵抗16を全て露出するように、印刷抵抗16を絶縁性フィルム2の裏面に形成したが、本実施形態2では印刷抵抗16の両端部が他の導電膜で覆われて保護される場合について説明する。
 図2は、本発明の実施形態2の発光装置の一構成例を示す図であって、(a)はその縦断面図、(b)はその上側から見たときの平面図であり、(c)はその裏面図である。なお、図1の構成部材と同一の作用効果を奏する部材には同一の符号付して説明する。
 図2(a)~図2(c)に示すように、本実施形態2の発光装置1Aは、絶縁性フィルム2、発光素子11としてのLEDチップ、保護素子(印刷抵抗素子)としての印刷抵抗16A、白色シリコン樹脂層10、Ni+Agメッキ層14、15、Ni+Agメッキ層5A1および5A2、6A1および6A2からなる端子部5A、6A、蛍光体含有樹脂層であるシリコン樹脂13、1対のランド部3、4(銅箔層)を備えている。ここで、発光装置1Aでは、絶縁性フィルム2の裏面に、カソード電極(端子部5A)およびアノード電極(端子部6A)が延設されていると共に、印刷抵抗16Aが設けられている。
 保護素子(印刷抵抗素子)としての印刷抵抗16Aは、カソード電極(端子部5A)およびアノード電極(端子部6A)を形成する前に、絶縁性フィルム2の裏面に形成する。
 次いで、絶縁性フィルム2の表面と裏面に形成されているランド部3、4、Ni+Agメッキ層14、15、5A1および5A2、6A1および6A2を形成する。
 続いて、Ni+Agメッキ層14、15以外の絶縁性フィルム2の表面上に白色シリコン樹脂層10を形成する。
 カソードランド部3およびアノードランド部4は、絶縁性フィルム2の主表面を貫通し裏面に至る貫通導電体8、9を介してカソード端子部5A、アノード端子部6Aにそれぞれ延設されて形成されている。
 保護素子(印刷抵抗素子)としての印刷抵抗16Aを絶縁性フィルム2の裏面に形成した後に、カソード端子部5Aおよびアノード端子部6Aを、保護素子(印刷抵抗素子)としての印刷抵抗16Aの両端部側を覆うように形成している。これにより、保護素子(印刷抵抗素子)としての印刷抵抗16Aは、カソード端子部5Aとアノード端子部6Aとの間に形成されている。
 これによって、発光素子11としてのLEDチップと並列に保護素子として印刷抵抗16Aが電気的に接続されることになる。
 以上により、本実施形態2によれば、保護素子としての印刷抵抗16Aの両端部がアノード端子部5Aとカソード端子部6Aに一部(両端部)覆われていることから、保護素子としての印刷抵抗16Aに傷などが付き難いため、保護素子の特性(ここでは抵抗値)に与える悪影響が低減できる。
 本実施形態2の発光装置1Aでは、保護素子(印刷抵抗素子)としての印刷抵抗16Aが絶縁性フィルム2の裏面に配置されていることから、絶縁性フィルム2の主表面における発光素子11としてのLEDチップの搭載可能領域が拡がり、例えばLEDチップを少なくとも一つ搭載することができる。
 これにより、絶縁性フィルム2を用いた基材上に、より明るい発光装置1Aが作製可能となる。
 なお、ここで使用する保護素子(印刷抵抗素子)としての印刷抵抗16Aは、ろう材が濡れる材質ではないので、発光装置1Aを実装基板に実装しても、保護素子(印刷抵抗素子)としての印刷抵抗16A上にろう材が濡れてカソード端子部5Aとアノード端子部6Aとを電気的に接続し、保護素子(印刷抵抗素子)としての印刷抵抗16Aと並列となるろう材部分が形成されることはない。
 しかし、保護素子(印刷抵抗素子)としての印刷抵抗16Aが、ろう材に濡れる材質を使用する場合は、保護素子(印刷抵抗素子)としての印刷抵抗16A上にドライフィルムやガラス層などの絶縁層で覆うような工夫が必要となる。
 なお、本実施形態2では、絶縁性フィルム2の裏面の印刷抵抗16の両端部が他の導電膜としてカソード端子部5Aとアノード端子部6Aで覆われて保護される場合について説明したが、これに加えて、露出した印刷抵抗16およびカソード端子部5Aとアノード端子部6A上に保護膜を形成して、印刷抵抗16上を完全に覆って保護するようにしてもよい。
 (実施形態3)
 本実施形態3では、デバイス折れ防止のために、±極性に対応した両導電領域の対向辺を平面視凹凸形状に形成した場合について説明する。
 図3は、本発明の実施形態3の発光装置の一構成例を示す図であって、(a)はその上側から見たときの平面図であり、(b)はその裏面図である。なお、図1の構成部材と同一の作用効果を奏する部材には同一の符号付して説明する。
 図3(a)および図3(b)に示すように、本実施形態3の発光装置1Bは、接着剤7付き絶縁性フィルム2、発光素子11としてのLEDチップ、保護素子(印刷抵抗素子)としての印刷抵抗16B、白色シリコン樹脂層10、Ni+Agメッキ層14B、15B、Ni+Agメッキ層からなる1対の端子部5B、6B、蛍光体含有樹脂層としてのシリコン樹脂13、1対のランド部3B、4B(銅箔層)、貫通導電体8B、9Bを備えている。
 ここで、絶縁性フィルム強度を補強するために、ランド部3B、4Bの形状を上記実施形態1、2とは違った互いに対向する辺形状を平面視凹凸形状としている。要するに、ランド部3B、4Bの対向辺形状は、少なくとも表面凹凸形状で互いに凸部と凹部が入り込んで嵌合するように形成されている。ランド部3Bは中心が平面視凸部形状、ランド部4Bは中心が平面視凹部形状にして互いに嵌合させることによりフィルム強度が増す。
 この発光装置1Bでは、絶縁性フィルム2の裏面に、貫通導電体8B、9Bが延設されていると共に、貫通導電体8B、9B間(その下の1対の端子部5B、6B間)に接続するように保護素子(印刷抵抗素子)としての印刷抵抗16Bが設けられている。
 ランド部3B、4Bの対向辺凹凸形状によって絶縁性フィルム2の強度は補強されるが、表面のランド部3B、4B間に保護素子を設けることは距離が短過ぎて困難である。このため、その裏面の貫通導電体8B、9B間(実際はその下の1対の端子部5B、6B間)には距離があるため、その絶縁性フィルム2の裏面の貫通導電体8B、9B間(実際はその下の1対の端子部5B、6B間)に印刷抵抗16Bをその両端が接続するように設ける。
 さらに、印刷抵抗16Bを貫通導電体8B、9B間(実際はその下の1対の端子部5B、6B間)に掛け渡すように設けることにより、絶縁性フィルム2の強度を更に増加させることができる。
 要するに、ランド部3B/Ni+Agメッキ層14Bの先端辺形状を平面視凸形状にし、これに対向するランド部4B/Ni+Agメッキ層15Bの先端辺形状を平面視凹形状にして平面視凸形状部と平面視凹形状部が等距離を開けて互いに入り込んで嵌合していることにより絶縁性フィルム2の強度を増加させることができる。
 ただし、この場合、ランド部3B/Ni+Agメッキ層14Bとランド部4B/Ni+Agメッキ層15Bとの距離が近いため保護素子として印刷抵抗16Bの抵抗値の設計が困難となる(特に大きな抵抗値が必要な場合)。
 このため、ランド部3B/Ni+Agメッキ層14Bとランド部4B/Ni+Agメッキ層15Bとの同一表面側ではなく、裏面側において、貫通導電体8B/Ni+Agメッキ層5Bと貫通導電体9B/Ni+Agメッキ層6Bとの距離が長いために保護素子として印刷抵抗16Bの抵抗値の設計が容易になる。
 さらに、保護素子としての印刷抵抗16B(ここでは酸化ルテニウム)が硬いため、絶縁性フィルム2の強度を更に補強することにもなる。
 したがって、発光装置1Bは保護素子として印刷抵抗16Bが搭載され、絶縁性フィルム2のフィルム強度が増すため、信頼性の良好な発光装置1Bが得られる。
 発光素子11としてのLEDチップと並列に保護素子である印刷抵抗16Bが接続されている。印刷抵抗16Bは、絶縁性フィルム2を基材としたTAB基板の表面側以外の場所に設けられる。即ち、印刷抵抗16Bは、絶縁性フィルム2の裏面に設けられる。印刷抵抗16Bは短冊状で薄膜の印刷抵抗体とすることにより配置の制約を受けない。
 このように、印刷抵抗16Bは薄膜の印刷抵抗で、配置の制約を受けないことから、薄膜金属層と電気的接続が容易になり、樹脂などで容易に覆うことが可能となるので、印刷抵抗16Bによって半導体発光素子11としてのLEDチップからの出射光の遮蔽・吸収が低減される。よって、半導体発光素子11としてのLEDチップから外部に出射される光の遮蔽・吸収を抑制し、光出力の低減を招くことなく、良好な輝度の出射光を得ることが可能となる。また、発光装置1Bは低コストで形成できる。
 (実施形態4)
 本実施形態4では、デバイス折れ防止のために、±極性に対応した両導電領域の対向辺が平面視L字・L字形状に形成した場合について説明する。
 図4は、本発明の実施形態4の発光装置の一構成例を示す図であって、(a)はその上側から見たときの平面図であり、(b)はその裏面図である。なお、図1の構成部材と同一の作用効果を奏する部材には同一の符号付して説明する。
 図4(a)および図4(b)に示すように、本実施形態4の発光装置1Cは、接着剤7付き絶縁性フィルム2、半導体発光素子11としてのLEDチップ、保護素子(印刷抵抗素子)としての印刷抵抗16C、白色シリコン樹脂層10、Ni+Agメッキ層14C、15C、Ni+Agメッキ層からなる1対の端子部5C、6C、蛍光体含有樹脂層としてのシリコン樹脂13、1対のランド部3C、4C(銅箔層)、貫通導電体8C、9Cを備えている。
 ここで、絶縁性フィルム強度を補強するために両導電領域である1対のランド部3C、4C(銅箔層)の対向辺形状を上記実施形態3の場合とは違った平面視L字・L字形状として互いに先端部が等距離を開けて入り込んでいる。
 要するに、一方の平面視L字形状のランド部3Cの突き出た高端辺が、他方の平面視L字形状のランド部4Cの凹んだ低端辺側に入り込むように位置し、他方の平面視L字形状のランド部4Cの突き出た高端辺側が、一方の平面視L字形状のランド部3Cの凹んだ低端辺側に入るように位置している。ランド部3C、4Cを平面視L字・L字形状として互いに嵌合させることにより折れ曲がり難くフィルム強度が増す。
 発光装置1Cでは、絶縁性フィルム2の裏面に、貫通導電体8C、9Cが延設されていると共に、保護素子(印刷抵抗素子)としての印刷抵抗16Cが設けられている。
 このように、1対のランド部3C、4C(銅箔層)の平面視L字・L字形状によって絶縁性フィルム2の強度は補強されるが、絶縁性フィルム2の表面のランド部3C、4C間に保護素子として印刷抵抗16Cを設けることは困難である。
 このため、絶縁性フィルム2の裏面に印刷抵抗16Cを設ける。さらに、印刷抵抗16Cを貫通導電体8C、9C間(実際はその下の1対の端子部5B、6B間)に設けることにより絶縁性フィルム2の強度も増すことになる。
 要するに、ランド部3C/Ni+Agメッキ層14Cの先端辺をL字形状、これに対向するランド部4C/Ni+Agメッキ層15Cの先端辺をL字形状にして互いに嵌り合うようにすることにより絶縁性フィルム2の強度を増加させることができる。
 ただし、この場合、ランド部3C/Ni+Agメッキ層14Cとランド部4C/Ni+Agメッキ層15Cとの距離が近いため保護素子として印刷抵抗16Cの抵抗値の設計が困難となる(特に大きな抵抗値が必要な場合)。
 このため、ランド部3C/Ni+Agメッキ層14Cとランド部4C/Ni+Agメッキ層15Cとの同一表面側ではなく、裏面側において、貫通導電体8C/Ni+Agメッキ層の端子部5Cと貫通導電体9C/Ni+Agメッキ層の端子部6Cとの距離が長いために保護素子として印刷抵抗16Cの抵抗値の設計が容易になる。
 さらに、保護素子としての印刷抵抗16C(ここでは酸化ルテニウム)が硬いため、絶縁性フィルム2の強度を補強することにもなる。
 したがって、発光装置1Cは保護素子として印刷抵抗16Cが搭載され、絶縁性フィルム2のフィルム強度が増すため、信頼性の良好な発光装置1Cが得られる。
 (実施形態5)
 上記実施形態1~4では、保護素子(印刷抵抗素子)が絶縁性フィルム2の裏面に設けられる場合について説明したが、本実施形態5では、保護素子(印刷抵抗素子)が絶縁性フィルム2の表面に設けられる場合について説明する。
 図5は、本発明の実施形態5の発光装置の一構成例を示す図であって、(a)はその縦断面図、(b)はその上側から見たときの平面図であり、(c)はその裏面図である。なお、図1の構成部材と同一の作用効果を奏する部材には同一の符号付して説明する。
 図5(a)および図5(b)に示すように、本実施形態5の発光装置1Dは、絶縁性フィルム2、半導体発光素子11としてのLEDチップ、保護素子(印刷抵抗素子)としての印刷抵抗16D、白色シリコン樹脂層10、Ni+Agメッキ層14、15、Ni+Agメッキ層からなる1対の端子部5、6、蛍光体含有樹脂層としてのシリコン樹脂13、1対のランド部3、4、貫通導電体8、9を備えている。
 ここで、発光装置1Dでは絶縁性フィルム2の表面の接着材層7上に印刷抵抗素子として印刷抵抗16Dが設けられている。印刷抵抗16Dは、カソードランド部3およびアノードランド部4を形成する前に、絶縁性フィルム2の表面に形成される。次に、絶縁性フィルム2の表面に一対のランド部3、4を形成する。
 さらに、一対のランド部3、4と貫通導電体8、9にNi+Agメッキ層14、15、Ni+Agメッキ層からなる1対の端子部5、6を形成する。
 さらに、絶縁性フィルム2の表面上に白色シリコン樹脂層10を形成する。
 これにより、印刷抵抗素子としての印刷抵抗16Dは、カソードランド部3とアノードランド部4との間に形成される。なお、カソードランド部3およびアノードランド部4は、絶縁性フィルム2の主表面を貫通し裏面に至る貫通導電体8、9にそれぞれ延設されて形成されている。
 発光装置1Dでは、保護素子(印刷抵抗素子)としての印刷抵抗16Dが絶縁性フィルム2の表面側にあってカソードランド部3とアノードランド部4の裏面側に配置されていることから、カソードランド部3の主表面におけるLEDチップの搭載可能領域が拡がり、例えばLEDチップを少なくとも一つ搭載することができる。
 これにより、絶縁性フィルム2を用いた基材上により明るい発光装置1Dが作製可能となる。
 (実施形態6)
 上記実施形態1~4では、保護素子(印刷抵抗素子)が絶縁性フィルム2の裏面に設けられる場合について説明し、上記実施形態5では、印刷抵抗素子が絶縁性フィルム2の表面に設けられる場合について説明し、本実施形態6では、発光素子11は、絶縁性フィルム2の表面側に形成された蛍光体含有樹脂層(または透光性樹脂層)により覆われ、保護素子(印刷抵抗素子)が、絶縁性フィルム2の表面側でかつ蛍光体含有樹脂層(または透光性樹脂層)の平面視外側に形成されている場合について説明する。
 図6は、本発明の実施形態6の発光装置の一構成例を示す図であって、(a)はその縦断面図、(b)はその上側から見たときの平面図であり、(c)はその裏面図である。なお、図1および図5の構成部材と同一の作用効果を奏する部材には同一の符号付して説明する。
 図6(a)および図6(b)に示すように、本実施形態6の発光装置1Eは、絶縁性フィルム2、発光素子11としてのLEDチップ、保護素子(印刷抵抗素子)としての印刷抵抗16D、白色シリコン樹脂層10、Ni+Agメッキ層14、15、Ni+Agメッキ層からなる端子部5、6、蛍光体含有樹脂層13E、一対のランド部3、4、貫通導電体8、9を備えている。
 絶縁性フィルム2の裏面に、カソード端子部5およびアノード端子部6が延設されている。ここで、発光装置1Eでは絶縁性フィルム2の表面の接着材層7上に保護素子(印刷抵抗素子)としての印刷抵抗16Dが設けられている。
 印刷抵抗16Dは、カソードランド部3およびアノードランド部4を形成する前に、絶縁性フィルム2の表面に形成される。
 次に、絶縁性フィルム2の表面に、印刷抵抗16Dの両端部と重なるように1対のランド部3、4を形成する。
 さらに、1対のランド部3、4と貫通導電体8、9にNi+Agメッキ層14、15と、Ni+Agメッキ層からなる1対の端子部5、6を形成する。
 さらに、1対のランド部3、4以外の絶縁性フィルム2の表面上に白色シリコン樹脂層10を形成する。
 ここで、蛍光体含有樹脂層13Eの底面形状は、ここでは楕円状に形成した。
 保護素子(印刷抵抗素子)としての印刷抵抗16Dを形成した後に、カソードランド部3およびアノードランド部4を、印刷抵抗16Dの各端部を覆うように形成している。
 これにより、印刷抵抗16Dは、カソードランド部3およびアノードランド部4間に形成される。なお、カソードランド部3およびアノードランド部4は、絶縁性フィルム2の主表面を貫通し裏面に至る貫通導電体8、9がそれぞれ延設されて形成されている。
 これにより、絶縁性フィルム2を用いた基材上により明るい発光装置1Eが作製可能となる。ここで、蛍光体含有樹脂層13Eの底面形状は、ここでは楕円状に形成したが、円形状であっても、長円形状であっても、長方形状または正方形状であってもよい。
 本実施形態6では、発光素子11は、絶縁性フィルム2の表面側に形成された蛍光体含有樹脂層13Eにより覆われ、印刷抵抗16Dが、絶縁性フィルム2の表面側でかつ蛍光体含有樹脂層13Eの平面視で外側に形成されている。蛍光体含有樹脂層13Eは、その表面がドーム状に形状されている。
 以上により、上記実施形態1~6によれば、保護素子としての例えば印刷抵抗16が、絶縁性フィルム2の表面側、裏面側および内部の少なくともいずれかに形成されているため、発光素子11の搭載面よりも背面側に保護素子としての例えば印刷抵抗16が形成されることから、発光素子11からの出射光が保護素子としての例えば印刷抵抗16によって光遮蔽や光吸収などで妨げられず、従来のように発光素子11からの光出射効率の低下なく保護素子としての例えば印刷抵抗16を形成することができて、廉価で生産性を重視した信頼性の優れた表面実装型の発光装置を得ることができる。
 なお、上記実施形態1~6では、絶縁性フィルム2上に±極性に対応して設けられた両導電領域(例えば1対のランド部3、4)と、両導電領域の表面側に搭載されて電気的に接続された発光素子11と、発光素子11と並列に接続された保護素子(例えば印刷抵抗16)とを有し、保護素子は、発光素子11の搭載面よりも背面側にあって、絶縁性フィルム2の表面側または裏面側に形成したが、これに限らず、保護素子が絶縁性フィルム2の内部に設けられていてもよい。例えば絶縁性フィルム2が2層構造でその間に保護素子が設けられていてもよい。この場合、保護素子の両端は貫通導電体8、9などに電気的に接続されていればよい。
 したがって、保護素子(例えば印刷抵抗16)は、発光素子11の搭載面よりも背面側にあって、絶縁性フィルム2の表面側、裏面側および内部の少なくともいずれかに形成されている。要するに、保護素子(例えば印刷抵抗16)は、絶縁性フィルム2の表面側だけではなく、裏面側にも形成されていてもよい。
 なお、上記実施形態1~6では、保護素子は薄膜抵抗としての印刷抵抗により構成したが、これに限らず、印刷抵抗以外の他の薄膜抵抗であってもよい。薄膜抵抗は、所定幅で所定長さ所定膜厚の抵抗体である。
 なお、上記実施形態1~6では、特に詳細には説明しなかったが、蛍光体含有樹脂層をさらに透光性樹脂層で覆う場合がある。したがって、発光素子11は、絶縁性フィルム2の表面側に形成された蛍光体含有樹脂層(蛍光体含有シリコン樹脂13)および透光性樹脂層のうちの少なくともいずれかにより覆われ、保護素子としての印刷抵抗16および16A~16Dのいずれかは、絶縁性フィルム2の表面側または裏面側でかつ蛍光体含有樹脂層(蛍光体含有シリコン樹脂13)および透光性樹脂層のうちの少なくともいずれかの平面視外側に形成されている。また、蛍光体含有樹脂層(蛍光体含有シリコン樹脂13)および透光性樹脂層のうちの少なくともいずれかは、その表面がドーム状に形状されている。
 なお、上記実施形態3で説明したが、さらに説明すると、デバイス折れ防止用の平面視凹凸形状は、両導電領域の対向辺の平面視凸部と凹部とが所定距離を開けて嵌合して形成されている。また、上記実施形態4で説明したが、さらに説明すると、デバイス折れ防止用の平面視L字・L字形状(平面視L字および逆L字形状)とは、両導電領域としての1対のランド部の対向辺が、平面視L字と平面視逆L字形状で対向して互いに所定の絶縁距離を空けて互いに入り込んで形成されている。これらのデバイス折れ防止用の平面視凹凸形状と、デバイス折れ防止用の平面視L字・逆L字形状とのうちの少なくともいずれかが本発明の発光装置に用いられている。例えば、平面視凹凸形状および平面視L字・L字形状(平面視L字および逆L字形状)が連続的に形成されてこれらを共に用いることもできる。
 上記実施形態3、4の保護素子としての印刷抵抗16B、16Cでは、上記実施形態1の保護素子としての印刷抵抗16を事例として用いて説明したが、これに限らず、上記実施形態3、4の保護素子としての印刷抵抗16B、16Cとして、上記実施形態2、5の保護素子としての印刷抵抗16Aまたは/および印刷抵抗16Dを用いることもできし、2枚の絶縁性フィルム2間(絶縁性フィルム2の内部)に形成された印刷抵抗を用いることもできる。
 印刷抵抗16Aの両端部がアノード端子部5Aとカソード端子部6Aに覆われている。また、絶縁性フィルム2の表面の接着材層7上に印刷抵抗素子として印刷抵抗16Dが設けられている。
 なお、上記実施形態1~6では、特に、互いの関係について詳細には説明しなかったが、保護素子として、絶縁性フィルム2の裏側に形成された上記実施形態1の印刷抵抗16、絶縁性フィルム2の裏側に形成され、両端部が覆われた上記実施形態2の印刷抵抗16A、絶縁性フィルム2の表面側に形成された上記実施形態5の印刷抵抗16D、および2枚の絶縁性フィルム2間(絶縁性フィルム2の内部)に形成された印刷抵抗はそれぞれ、発光素子11の搭載面よりも背面側にあって、これらの保護素子は、絶縁性フィルム2の表面側、裏面側および内部のうちの少なくともいずれかに形成されていればよい。
 以上のように、本発明の好ましい実施形態1~6を用いて本発明を例示してきたが、本発明は、この実施形態1~6に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態1~6の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本発明は、表面実装型の発光装置およびその製造方法に関し、特に、廉価で生産性を重視した表面実装型の発光装置の分野において、保護素子が、絶縁性フィルムの表面側、裏面側および内部の少なくともいずれかに形成されているため、発光素子の搭載面よりも背面側に保護素子が形成されていることから、発光素子からの出射光が保護素子によって妨げられず、従来のように発光素子からの光出射効率の低下なく保護素子を形成することができて、廉価で生産性を重視した信頼性の優れた表面実装型の発光装置を得ることができる。

Claims (16)

  1.  絶縁性フィルム上に±極性に対応して設けられた両導電領域と、該両導電領域の表面側に搭載されて該両導電領域に電気的に接続された発光素子と、該発光素子と並列に接続された保護素子とを有し、該保護素子は、該発光素子の搭載面よりも背面側にあって、該絶縁性フィルムの表面側、裏面側および内部の少なくともいずれかに形成されている発光装置。
  2.  前記保護素子は、印刷抵抗または薄膜抵抗により構成されている請求項1に記載の発光装置。
  3.  前記保護素子は、前記絶縁性フィルムの表面に形成されている請求項2に記載の発光装置。
  4.  前記保護素子は、前記絶縁性フィルム上に形成された接着材層上に形成されている請求項2に記載の発光装置。
  5.  前記保護素子は、前記絶縁性フィルムの裏面に形成されている請求項2に記載の発光装置。
  6.  前記保護素子は、前記両導電領域に電気的に接続される1対の端子部間に電気的に接続されている請求項に記載の発光装置。
  7.  前記保護素子は、前記1対の端子部上を含む該1対の端子部間に形成されている請求項6に記載の発光装置。
  8.  前記保護素子の両端部上にそれぞれ前記1対の端子部がそれぞれ形成されて該保護素子を保護している請求項6に記載の発光装置。
  9.  前記発光素子は、前記絶縁性フィルムの表面側に形成された蛍光体含有樹脂層および透光性樹脂層の少なくともいずれかにより覆われ、前記保護素子は、該絶縁性フィルムの表面側または裏面側でかつ該蛍光体含有樹脂層および該透光性樹脂層の少なくともいずれかの平面視外側に形成されている請求項2に記載の発光装置。
  10.  前記蛍光体含有樹脂層および前記透光性樹脂層の少なくともいずれかは、その表面がドーム状に形状されている請求項9に記載の発光装置。
  11.  前記印刷抵抗は、抵抗成分を含むペーストをスクリーン印刷することにより形成されている請求項2に記載の発光装置。
  12.  前記ペーストは、酸化ルテニウム、固結剤、樹脂および溶剤により構成されている請求項11に記載の発光装置。
  13.  前記両導電領域の対向辺に平面視で段差部が設けられた状態で該両導電領域は互いに間隔を空けて絶縁されている請求項1に記載の発光装置。
  14.  前記段差部は、デバイス折れ防止用の平面視凹凸形状および、デバイス折れ防止用の平面視L字・L字形状のうちの少なくともいずれかである請求項13に記載の発光装置。
  15.  前記平面視凹凸形状は、前記両導電領域の対向辺が所定距離を開けて嵌合している請求項14に記載の発光装置。
  16.  前記平面視L字・L字形状は、前記両導電領域の対向辺が所定距離を開けて互いに入り込んでいる請求項14に記載の発光装置。
PCT/JP2013/002871 2012-06-15 2013-04-26 発光装置 WO2013186978A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380031106.1A CN104380486A (zh) 2012-06-15 2013-04-26 发光装置
JP2014520879A JP6116560B2 (ja) 2012-06-15 2013-04-26 発光装置
US14/406,331 US9391242B2 (en) 2012-06-15 2013-04-26 Light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012136435 2012-06-15
JP2012-136435 2012-06-15

Publications (1)

Publication Number Publication Date
WO2013186978A1 true WO2013186978A1 (ja) 2013-12-19

Family

ID=49757832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002871 WO2013186978A1 (ja) 2012-06-15 2013-04-26 発光装置

Country Status (4)

Country Link
US (1) US9391242B2 (ja)
JP (1) JP6116560B2 (ja)
CN (1) CN104380486A (ja)
WO (1) WO2013186978A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109065527A (zh) * 2018-07-31 2018-12-21 江门黑氪光电科技有限公司 一种无电阻led灯串
TWI685098B (zh) * 2019-02-01 2020-02-11 同泰電子科技股份有限公司 拼接式發光二極體電路板
US11393960B2 (en) * 2019-02-26 2022-07-19 Rohm Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213301A (ja) * 1987-02-28 1988-09-06 イビデン株式会社 印刷抵抗体付プリント配線板
JPH0525749U (ja) * 1991-09-10 1993-04-02 株式会社小糸製作所 チツプ型発光ダイオードの取付構造
JP2003023221A (ja) * 2001-07-10 2003-01-24 Sony Corp フレキシブル配線基板
JP2009105198A (ja) * 2007-10-23 2009-05-14 Sanyo Electric Co Ltd プリント配線基板およびそれを備えた発光装置
JP2011014695A (ja) * 2009-07-01 2011-01-20 Sharp Corp 発光装置および発光装置の製造方法
WO2012011363A1 (ja) * 2010-07-23 2012-01-26 シャープ株式会社 発光装置及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3810148A (en) * 1972-07-06 1974-05-07 Kewp Inc Electronic line indicator apparatus
JPH0525749A (ja) 1991-07-10 1993-02-02 Toyota Autom Loom Works Ltd 織機におけるクロスロール交換装置の織布巻き付け機構
US20080179618A1 (en) * 2007-01-26 2008-07-31 Ching-Tai Cheng Ceramic led package
KR100870950B1 (ko) * 2007-11-19 2008-12-01 일진반도체 주식회사 발광다이오드 소자 및 그 제조 방법
JP4951090B2 (ja) * 2010-01-29 2012-06-13 株式会社東芝 Ledパッケージ
CN102054829A (zh) * 2010-11-05 2011-05-11 深圳市华星光电技术有限公司 发光二极管封装构造
CN105304800B (zh) * 2011-04-20 2019-06-11 松下电器产业株式会社 发光装置、背光单元、液晶显示装置以及照明装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213301A (ja) * 1987-02-28 1988-09-06 イビデン株式会社 印刷抵抗体付プリント配線板
JPH0525749U (ja) * 1991-09-10 1993-04-02 株式会社小糸製作所 チツプ型発光ダイオードの取付構造
JP2003023221A (ja) * 2001-07-10 2003-01-24 Sony Corp フレキシブル配線基板
JP2009105198A (ja) * 2007-10-23 2009-05-14 Sanyo Electric Co Ltd プリント配線基板およびそれを備えた発光装置
JP2011014695A (ja) * 2009-07-01 2011-01-20 Sharp Corp 発光装置および発光装置の製造方法
WO2012011363A1 (ja) * 2010-07-23 2012-01-26 シャープ株式会社 発光装置及びその製造方法

Also Published As

Publication number Publication date
US9391242B2 (en) 2016-07-12
JP6116560B2 (ja) 2017-04-19
CN104380486A (zh) 2015-02-25
US20150137161A1 (en) 2015-05-21
JPWO2013186978A1 (ja) 2016-02-04

Similar Documents

Publication Publication Date Title
US9735133B2 (en) Light-emitting device and lighting device provided with the same
EP2455966B1 (en) Light emitting device
JP6007249B2 (ja) 列発光装置およびその製造方法
WO2013150882A1 (ja) Led発光装置
JP6191224B2 (ja) 配線基板及びこれを用いた発光装置
US11112094B2 (en) Method for manufacturing light-emitting device
JP2010109119A (ja) 発光モジュール及びその製造方法
KR102037866B1 (ko) 전자장치
JP6736256B2 (ja) Ledパッケージ
WO2018105448A1 (ja) 発光装置
JP6116560B2 (ja) 発光装置
JP2006303458A (ja) 電子部品実装基板
CN110611024B (zh) 发光模块及发光模块的制造方法
JP6107229B2 (ja) 発光装置
JP6104946B2 (ja) 発光装置およびその製造方法
JP2008288487A (ja) 表面実装型発光ダイオード
CN111162063A (zh) 一种led器件、显示屏及其封装工艺
JP2015138902A (ja) 発光装置
US9385283B2 (en) Light emitting device equipped with protective member
US10147709B2 (en) Light emitting module
KR101815963B1 (ko) 칩 패키지 및 칩 패키지 제조방법
US20220069184A1 (en) Semiconductor light emitting device and method for manufacturing the same
JP6650480B2 (ja) 発光素子モジュール
KR102403335B1 (ko) 발광모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520879

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14406331

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13804555

Country of ref document: EP

Kind code of ref document: A1