WO2013186975A1 - モータ制御システム、モータ制御方法およびモータ制御装置 - Google Patents

モータ制御システム、モータ制御方法およびモータ制御装置 Download PDF

Info

Publication number
WO2013186975A1
WO2013186975A1 PCT/JP2013/002768 JP2013002768W WO2013186975A1 WO 2013186975 A1 WO2013186975 A1 WO 2013186975A1 JP 2013002768 W JP2013002768 W JP 2013002768W WO 2013186975 A1 WO2013186975 A1 WO 2013186975A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
destination
pwm
pwm signal
motor control
Prior art date
Application number
PCT/JP2013/002768
Other languages
English (en)
French (fr)
Inventor
佐藤 大資
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380002864.0A priority Critical patent/CN103781671B/zh
Priority to EP13804104.1A priority patent/EP2722237B1/en
Priority to JP2013531032A priority patent/JP5408394B1/ja
Priority to US14/238,514 priority patent/US9785156B2/en
Publication of WO2013186975A1 publication Critical patent/WO2013186975A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1917Control of temperature characterised by the use of electric means using digital means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a motor control system, a motor control method, and a motor control device for a cooling blower mounted on a vehicle.
  • Hybrid vehicles and electric vehicles are equipped with large batteries (main unit batteries) to drive the vehicles themselves, and air-cooled blowers are used to cool the batteries.
  • a cooling blower is supplied from an electronic control unit called an ECU (Electronic Control Unit) that controls a wheel drive unit of an engine or the like, and the cooling capacity (for example, the rotational speed of the fan) and the cooling time (for example, the rotation of the fan). Controlled by receiving an indication of duration).
  • ECU Electronic Control Unit
  • JP 2009-126461 A Japanese Patent No. 4491106
  • the motor control system of the present invention includes a motor control device that controls a motor of a cooling blower that cools a battery mounted on a vehicle, and a plurality of different control software corresponding to a plurality of destinations of the cooling blower.
  • a motor control system comprising: a host controller that transmits / receives control information to / from a motor control device using a PWM signal.
  • the host controller transmits a destination signal request pattern for requesting a destination signal pattern for specifying a destination to the motor control device using a PWM signal.
  • the motor control device transmits the destination signal pattern to the host controller.
  • the host controller identifies the destination of the cooling blower from the destination signal pattern, and switches to the control software corresponding to the destination of the cooling blower.
  • the motor control method of the present invention includes a motor control device that controls a motor of a cooling blower that cools a battery mounted on a vehicle, and a plurality of different control software corresponding to a plurality of destinations of the cooling blower.
  • This is a motor control method for controlling a motor by transmitting / receiving motor control information to / from a motor control device using a PWM signal.
  • the host controller transmits a destination signal request pattern for requesting a destination signal pattern for specifying the destination of the cooling blower to the motor control device by a PWM signal, and the motor control device receives the PWM signal.
  • the target signal pattern is detected from the target signal pattern, and the cooling blower finish is detected from the detected target signal pattern. Identify only the earth, and a step of switching the control software corresponding to the destination of the cooling blower.
  • the motor control device of the present invention is a motor control device that receives a PWM signal from a host controller and controls a motor of a cooling blower that cools a battery mounted on the vehicle based on the PWM signal.
  • the motor control device requests a PWM signal detection unit for detecting a PWM frequency and a PWM duty ratio of the PWM signal, and a destination signal pattern for specifying a destination of the cooling blower in the PWM signal based on an output of the PWM signal detection unit.
  • a request pattern determination unit that determines whether or not a destination signal request pattern is included, and a PWM signal generation unit that generates a PWM signal based on a determination result of the request pattern determination unit.
  • the PWM signal generation unit generates a PWM signal based on the destination signal pattern when the destination signal request pattern is included, and actually rotates the motor when the destination signal request pattern is not included.
  • a PWM signal is generated based on the speed information, and the generated PWM signal is transmitted to the host controller.
  • a motor control system and a motor control method that can easily switch the control software of the cooling blower mounted on the ECU for each destination without adding the ECU model number and circuit parts.
  • a motor control device can be provided.
  • FIG. 1 is a block diagram of a vehicle control system including a motor control system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the motor control system in the embodiment of the present invention.
  • FIG. 3 is a functional block diagram of the host ECU in the embodiment of the present invention.
  • FIG. 4 is a functional block diagram of the PWM signal processing unit of the motor control device according to the embodiment of the present invention.
  • FIG. 5 is a signal waveform diagram showing an example of a PWM signal in the embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of frequency assignment of PWM signals in the embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a destination signal pattern in the embodiment of the present invention.
  • FIG. 1 is a block diagram of a vehicle control system including a motor control system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the motor control system in the embodiment of the present invention.
  • FIG. 8A is a flowchart showing an operation when generating a PWM signal of the host ECU in the embodiment of the present invention.
  • FIG. 8B is a flowchart showing an operation at the time of detection of the PWM signal of the host ECU in the embodiment of the present invention.
  • FIG. 9 is a flowchart showing the operation of the PWM signal processing unit of the motor control device according to the embodiment of the present invention.
  • FIG. 10 is a flowchart showing the mode transition operation of the PWM signal processing unit of the motor control device according to the embodiment of the present invention.
  • FIG. 11 is a timing chart for explaining the mode transition operation of the PWM signal processing unit of the motor control device according to the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the brushless motor in the embodiment of the present invention.
  • FIG. 1 is a block diagram of a vehicle control system including a motor control system according to an embodiment of the present invention.
  • FIG. 1 shows a configuration example focusing on a cooling blower and control of an electric vehicle or a hybrid vehicle.
  • Power is supplied from the main battery 2 to the wheel drive unit 4 such as a vehicle wheel drive motor.
  • the cooling blower 8 includes a brushless motor 50 and a fan 7 that is rotationally driven by the brushless motor 50.
  • the main battery 2 is cooled by the air blown from the cooling blower 8.
  • the brushless motor 50 includes a motor 40 and a motor control device 10 that controls the rotation of the motor 40.
  • the cooling capacity of the cooling blower 8 is determined by the rotational speed of the motor 40.
  • the rotational speed of the motor 40 is controlled by the motor control device 10 receiving a signal from a host controller (hereinafter referred to as host ECU) 20.
  • host ECU a host controller
  • the host ECU 20 controls the wheel drive unit 4 and the air conditioner (not shown) in the vehicle based on information from the vehicle speed sensor and the accelerator opening sensor.
  • the host ECU 20 controls the cooling capacity of the cooling blower 8 based on information from the temperature sensor 6 that detects the temperature of the main battery 2.
  • the host ECU 20 transmits command information on the target rotational speed of the motor 40 to the motor control device 10 by the PWM signal via the PWM signal line 19.
  • the host ECU 20 receives the detection information of the actual rotation speed of the motor 40 from the motor control device 10 as the actual rotation speed information by the PWM signal via the PWM signal line 19.
  • the rotation speed of the motor 40 is the number of rotations of the motor 40 per unit time.
  • the auxiliary battery 3 supplies power to other in-vehicle modules such as a radio in addition to the host ECU 20 and the brushless motor 50.
  • the host ECU 20 includes a microcomputer (hereinafter referred to as a microcomputer), a ROM, a RAM, and the like. Such a host ECU 20 operates according to software configured by programs and data.
  • the host ECU 20 is connected to the auxiliary battery 3 via an ignition switch (hereinafter referred to as IG switch) 5.
  • IG switch ignition switch
  • FIG. 2 is a block diagram showing the configuration of the motor control system in the embodiment of the present invention.
  • the motor control system 1 of the present embodiment includes a brushless motor 50 and a host ECU 20 that controls the brushless motor 50.
  • the brushless motor 50 has a configuration in which circuit components constituting the motor control device 10 are mounted. That is, as shown in FIG. 2, in the brushless motor 50, the motor control device 10 drives and controls the motor 40.
  • the motor 40 includes a rotor and a stator having a winding 56, and the rotor rotates by energizing the winding 56.
  • a brushless motor 50 that drives the motor 40 in three phases, that is, a U phase, a V phase, and a W phase, which are 120 degrees out of phase, will be described.
  • the motor 40 includes, as the winding 56, a winding 56U that drives the U phase, a winding 56V that drives the V phase, and a winding 56W that drives the W phase. .
  • the motor control device 10 applies a drive voltage having a predetermined waveform to the winding 56 for each phase. Accordingly, the rotor rotates at a rotation speed according to the rotation control from the motor control device 10.
  • the motor 40 is provided with a sensor for detecting the rotational position and rotational speed of the rotor.
  • three position detection sensors 49 such as Hall elements are arranged in the motor 40 so as to correspond to each phase in order to detect the rotational position of the rotor.
  • the motor control device 10 is supplied with a sensor signal Det from the position detection sensor 49.
  • the motor control device 10 is signal-connected to the host ECU 20 via the PWM signal line 19.
  • the motor control device 10 is notified of a command for controlling the rotation of the motor 40 from the host ECU 20 via the PWM signal line 19a.
  • information on the brushless motor 50 is notified from the motor control device 10 to the host ECU 20 via the PWM signal line 19b.
  • a target rotational speed command for commanding a target rotational speed of the motor 40 is notified to the motor control device 10. Further, the target rotational speed commanded by the target rotational speed command is notified as a pulse width modulated PWM signal Si through the PWM signal line 19a.
  • the motor control device 10 information on the actual rotational speed of the motor 40 is notified to the host ECU 20 as a PWM signal So subjected to pulse width modulation via the PWM signal line 19b.
  • the rotation speed for example, the number of rotations per minute (rpm) is used.
  • the motor control device 10 includes a rotation control unit 12, a PWM drive circuit 14, an inverter 15, a position detection unit 16, a rotation speed calculation unit 17, and a PWM signal processing unit 30.
  • the motor control device 10 is supplied with the sensor signal Det from the three position detection sensors 49 arranged in the motor 40 as described above. Further, the motor control device 10 is connected to the host ECU 20 via PWM signal lines 19a and 19b that transmit the PWM signals Si and So.
  • the sensor signal Det from the position detection sensor 49 is supplied to the position detection unit 16.
  • the position detection unit 16 detects position information of each phase from the sensor signal Det that changes in accordance with the change in magnetic pole accompanying the rotation of the rotor. For example, the position detection unit 16 detects the timing at which the sensor signal Det crosses zero at the magnetic pole change time, and outputs a position detection signal Pd based on the detected timing. That is, the rotational position of the rotating rotor corresponds to such a detection timing, and the rotational position can be detected using the detection timing. Further, specifically, the position detection signal Pd may be a pulse signal indicating such detection timing, for example.
  • the position detection unit 16 supplies a position detection signal Pd corresponding to each phase to the rotation speed calculation unit 17.
  • Rotational speed calculation unit 17 calculates the rotational speed of the rotor by, for example, differential calculation based on the rotational position indicated by position detection signal Pd.
  • the rotation speed calculation unit 17 supplies the calculated rotation speed to the rotation control unit 12 in time series as the detected rotation speed Vd.
  • the detected rotational speed Vd is generated based on the sensor signal Det from the position detection sensor 49.
  • the rotor speed is detected by the speed detecting means, and the detection result
  • the detected rotation speed Vd may be generated based on the above. That is, the detected rotation speed Vd may be a time-series value or signal indicating the speed detected from the actual rotation of the motor.
  • the PWM signal processing unit 30 generates a PWM signal So by modulating the frequency of the pulse signal based on the detected rotational speed Vd representing the actual rotational speed, and transmits the PWM signal So to the host ECU 20.
  • the PWM signal processing unit 30 receives the PWM signal Si sent from the host ECU 20 and demodulates the pulse signal subjected to pulse width modulation.
  • the PWM signal processing unit 30 restores the target rotational speed Vr in time series from the received PWM signal Si by this demodulation operation. That is, the PWM signal processing unit 30 demodulates the PWM signal Si by detecting the pulse width of each pulse of the PWM signal Si or the duty ratio corresponding to the pulse width. Then, the PWM signal processing unit 30 outputs the target rotation speed Vr restored by the demodulation operation in time series.
  • the target rotation speed Vr is supplied to the rotation control unit 12.
  • the rotation control unit 12 is supplied with the detected rotation speed Vd calculated by the rotation speed calculation unit 17.
  • the rotation control unit 12 generates a drive value Dd indicating the drive amount to the winding 56 based on the target rotation speed Vr and the detected rotation speed Vd.
  • the rotation control unit 12 obtains a speed deviation between the target rotational speed Vr indicating the speed command and the detected rotational speed Vd indicating the detected speed corresponding to the actual speed.
  • the rotation control part 12 produces
  • the rotation control unit 12 supplies such a drive value Dd to the PWM drive circuit 14.
  • the PWM drive circuit 14 generates a drive waveform for driving the winding 56 for each phase, performs pulse width modulation on the generated drive waveform, and outputs it as a drive pulse signal Dp.
  • the drive waveform is a sine wave waveform.
  • the drive waveform is a rectangular wave waveform.
  • the amplitude of the drive waveform is determined according to the drive value Dd.
  • the PWM drive circuit 14 uses the drive waveform generated for each phase as a modulation signal, performs pulse width modulation on each, and supplies the drive pulse signal Dp of the pulse train modulated with the drive waveform to the inverter 15.
  • the inverter 15 energizes the winding 56 for each phase based on the drive pulse signal Dp, and drives the winding 56 to energize.
  • the inverter 15 includes a switching element connected to the positive side of the power source and a switching element connected to the negative side for each of the U phase, the V phase, and the W phase.
  • the U-phase drive output Uo is connected to the winding 56U
  • the V-phase drive output Vo is connected to the winding 56V
  • the W-phase drive output Wo is connected to the winding 56W.
  • the switch element is turned ON / OFF by the drive pulse signal Dp. Then, the drive voltage is supplied from the drive output to the winding 56 through the ON switch element.
  • each winding 56 is energized with a drive current corresponding to the drive waveform.
  • the energization drive unit 13 is configured by the PWM drive circuit 14 and the inverter 15. The energization drive unit 13 energizes and drives the windings 56 of the motor 40 for each phase based on the drive value Dd as described above.
  • a feedback control loop is formed that controls the rotational speed of the rotor so as to follow the target rotational speed Vr.
  • control software installed in the host ECU 20 in order to control the cooling blower 8
  • control software installed in the host ECU 20 in order to control the cooling blower 8
  • the present embodiment describes the destination correspondence of the control software
  • the present invention is not limited to the destination correspondence, and can be applied to all uses for switching different control software such as the cooling blower 8 model correspondence. .
  • the cooling blower 8 has different specifications for each destination in the United States, Europe, China, etc., and the motor control device 10 of the cooling blower 8 stores a destination signal pattern (destination information) for specifying its destination. Yes.
  • the host ECU 20 In order for the host ECU 20 to transmit appropriate control information to the motor control device 10, it is necessary to acquire a destination signal pattern from the motor control device 10 prior to transmission of the control information.
  • the host ECU 20 embeds a transmission signal request pattern for requesting the motor control device 10 to transmit a transmission signal pattern in the PWM signal Si and transmits it.
  • the motor control device 10 constantly monitors whether the PWM signal Si received from the host ECU 20 includes this destination signal request pattern.
  • the destination signal request pattern is included in the PWM signal Si
  • the destination signal pattern is read out from its own memory or the like, and this destination signal pattern is embedded in the PWM signal So and transmitted to the host ECU 20.
  • the host ECU 20 extracts a destination signal pattern from the received PWM signal So, and switches control software corresponding to the destination based on the destination signal pattern.
  • FIG. 3 is a functional block diagram of the host ECU in the embodiment of the present invention.
  • FIG. 4 is a functional block diagram of the PWM signal processing unit of the motor control device according to the embodiment of the present invention.
  • FIG. 5 is a signal waveform diagram showing an example of a PWM signal in the embodiment of the present invention. In the upper part of FIG. 5, the signal waveform of the PWM signal Si is indicated by a solid line, the target rotational speed command is indicated by a dotted line, and in the lower part of FIG. 5, the timing of the pulse start signal Ps is indicated by a solid line.
  • FIG. 3 shows only the configuration related to the control of the cooling blower 8.
  • the host ECU 20 and the PWM signal processing unit 30 are supplied with a clock signal Ck1.
  • the clock signal Ck1 is a pulse signal having a constant period, and has a frequency sufficiently higher than the frequencies of the PWM signals Si and So. For example, if the frequency of the PWM signals Si and So is 500 Hz, the frequency of the clock signal Ck1 is about 1 MHz. Further, in the configuration shown in FIG. 3, a configuration example is given in which the PWM signals Si and So are generated using a counter that counts the clock signal Ck1.
  • the host ECU 20 includes a target rotational speed determination unit 21, a request pattern generation unit 22, a PWM signal generation unit 23, a PWM signal detection unit 24, a signal pattern storage unit 25, a signal pattern determination unit 26, and a destination setting. Unit 27 and an actual rotation speed calculation unit 28.
  • the PWM signal generation unit 23 includes a duty ratio calculation unit 231, a frequency calculation unit 232, and a PWM signal output unit 233.
  • the PWM signal detection unit 24 includes a rising edge detection unit 241, an edge period detection unit 242, and a duty ratio detection unit 243.
  • the target rotational speed determination unit 21 determines the target rotational speed of the motor 40 based on the temperature of the main battery 2 from the temperature sensor 6 and the vehicle speed information from the vehicle speed sensor, and outputs a target rotational speed command. This is supplied to the duty ratio calculation unit 231.
  • the duty ratio calculation unit 231 calculates the pulse width of each pulse of the PWM signal according to the target rotation speed command, and supplies it to the PWM signal output unit 233.
  • the target rotation speed is the number of rotations per hour. By changing the duty ratio, the target rotational speed (rpm) is changed within a range of 10% to 90%.
  • the request pattern generation unit 22 when the host ECU 20 is activated, the request pattern generation unit 22 generates a predetermined destination signal request pattern and supplies it to the duty ratio calculation unit 231 and the frequency calculation unit 232.
  • the duty ratio calculation unit 231 and the frequency calculation unit 232 are the PWM signal frequency (hereinafter also referred to as PWM frequency) according to the destination signal request pattern, that is, the period of each pulse, and the duty ratio (hereinafter referred to as PWM duty ratio (PWM_Duty)). (Abbreviated)), that is, the pulse width of each pulse is calculated and supplied to the PWM signal output unit 233.
  • the PWM signal output unit 233 generates a PWM signal Si based on the calculation information from the duty ratio calculation unit 231 and the frequency calculation unit 232 and transmits the PWM signal Si to the motor control device 10.
  • the time when the host ECU 20 is started refers to the time when the power is supplied to the host ECU 20 when the IG switch 5 is turned on. Details of the destination signal request pattern will be described later.
  • the destination signal request pattern is input from the request pattern generation unit 22 to the PWM signal generation unit 23 when the host ECU 20 is started, but when the cooling blower 8 is attached to the vehicle. It may be executed once.
  • the PWM signal Si is a pulse train having a period Tp, and the period Tp period includes an ON period Ton having a high level and an OFF period Toff having a low level.
  • a duty ratio (Ton / Tp) which is a ratio between the ON period Ton and the period Tp, is modulated by the target rotation speed. For example, as the target rotational speed command level gradually increases from small (the target rotational speed increases from low speed to high speed), the PWM signal output unit 233 generates a PWM signal Si that is a pulse train signal whose duty ratio gradually increases. To do.
  • the PWM signal processing unit 30 includes a PWM signal detection unit 31, a request pattern determination unit 32, a request pattern storage unit 33, a signal pattern storage unit 34, a PWM signal generation unit 35, and a target rotation speed calculation unit 36.
  • the target rotational speed command unit 37 is provided.
  • the PWM signal detection unit 31 includes a rising edge detection unit 311, an edge period detection unit 312, and a duty ratio detection unit 313.
  • the rising edge detection unit 311 detects the timing of the edge rising from OFF to ON for each pulse of the PWM signal Si, and generates the edge detection signal Ps based on the timing.
  • the timing of the edge detection signal Ps corresponds to the start timing of each pulse constituting the PWM signal Si, as shown in the lower part of FIG.
  • the generated edge detection signal Ps is supplied to the edge period detection unit 312 and the duty ratio detection unit 313.
  • edge timing detection means for detecting the timing of an edge that changes in a predetermined direction a rising edge detection unit 311 that performs such an operation is cited.
  • the edge cycle detection unit 312 detects the cycle of the edge detection signal Ps sequentially supplied from the rising edge detection unit 311.
  • the edge period detection unit 312 includes a counter that counts the number of clock signals Ck1.
  • the counter detects the cycle of the edge detection signal Ps by counting the number of clocks between the edge detection signals Ps.
  • the counter of the edge period detection unit 312 performs such an operation, and detects the count number Ntp during the period Tp as shown in the lower part of FIG.
  • the detected count number Ntp corresponds to the cycle Tp of each pulse constituting the PWM signal Si.
  • the edge period detection unit 312 supplies the detected pulse period (frequency) to the request pattern determination unit 32.
  • the duty ratio detection unit 313 includes a counter that counts the number of clock signals Ck1. As shown in the lower part of FIG. 5, the counter of the duty ratio detection unit 313 starts counting at the timing of the edge detection signal Ps, continues counting during the ON period Ton of the PWM signal Si, and counts the ON period Ton Non is detected. Further, the duty ratio detection unit 313 calculates the ratio of the count number Non to the count number Ntp. This ratio corresponds to the duty ratio of the PWM signal Si. The duty ratio detection unit 313 supplies the detected duty ratio to the request pattern determination unit 32 and the target rotation speed calculation unit 36.
  • the request pattern storage unit 33 stores a destination signal request pattern generated based on a predetermined PWM frequency, PWM_Duty, and signal output time.
  • the signal pattern storage unit 34 stores a destination signal pattern generated based on a predetermined PWM frequency, PWM_Duty, and signal output time in order to specify the destination of the cooling blower 8 itself.
  • the request pattern determination unit 32 reads the destination signal request pattern from the request pattern storage unit 33 and compares it with the signal pattern of the received PWM signal Si to determine whether the destination signal request pattern is included in the PWM signal Si. (Detection) and supply the determination result to the PWM signal generation unit 35.
  • the PWM signal generation unit 35 generates a PWM signal So based on the determination result of the request pattern determination unit 32 and transmits the PWM signal So to the host ECU 20. That is, when the request pattern determination unit 32 detects the destination signal request pattern, the PWM signal generation unit 35 reads the destination signal pattern from the signal pattern storage unit 34 and generates the PWM signal So based on the destination signal pattern. On the other hand, when the request pattern determination unit 32 does not detect the destination signal request pattern, the PWM signal generation unit 35 modulates the frequency of the pulse signal with the detected rotation speed Vd of the motor 40 supplied from the rotation speed calculation unit 17. To generate the PWM signal So. The detailed operation of the request pattern determination unit 32 will be described later.
  • the target rotation speed calculation unit 36 receives the duty ratio from the duty ratio detection unit 313, calculates the target rotation speed Vr of the motor 40, and restores it. For example, if the count number Ntp is 2000 and the count number Non is 1000 in the lower part of FIG. 5, the ratio is 0.5 and the duty ratio is 50%. For example, the target rotational speed calculation unit 36 restores that the target rotational speed Vr is 1000 (rpm) from a duty ratio of 50% and 500 (rpm) when the duty ratio is 25%.
  • the target rotation speed command unit 37 receives the target rotation speed Vr from the target rotation speed calculation unit 36, and outputs the target rotation speed Vr as it is when the request pattern determination unit 32 does not detect the destination signal request pattern. On the other hand, when the request pattern determination unit 32 detects the destination signal request pattern, the target rotation speed Vr outputs zero or a predetermined fixed value to stop the rotation of the motor 40.
  • the PWM signal detection unit 24 detects the PWM frequency and PWM_Duty from the PWM signal So received from the motor control device 10, supplies the detected PWM frequency to the actual rotation speed calculation unit 28, and uses the detected PWM frequency and PWM_Duty as a signal pattern. It supplies to the determination part 26.
  • the operation of the PWM signal detection unit 24 is the same as that of the PWM signal detection unit 31 described with reference to FIG.
  • the signal pattern storage unit 25 stores destination signal patterns corresponding to all destinations of the cooling blower 8.
  • the signal pattern determination unit 26 compares the signal pattern included in the PWM signal So with all the destination signal patterns read from the signal pattern storage unit 25, and determines whether the PWM signal So is the destination signal pattern or not. It is determined which destination signal pattern corresponds to which destination (where is the destination of the cooling blower 8). The signal pattern determination unit 26 supplies the determination result to the destination setting unit 27 and the actual rotation speed calculation unit 28.
  • the actual rotation speed calculation unit 28 determines the actual rotation speed of the motor 40 from the PWM frequency supplied from the edge period detection unit 242. To restore. The host ECU 20 uses the restored actual rotation speed for controlling the motor 40.
  • the destination setting unit 27 switches from a plurality of control software installed in the host ECU 20 to control software corresponding to the destination of the cooling blower 8 installed in the vehicle.
  • FIG. 6 is a diagram illustrating an example of frequency allocation of the PWM signal Si.
  • 62 Hz to 310 Hz is set as the calibration area FA
  • 310 Hz to 600 Hz is set as the normal operation area FB.
  • the other area is a prohibited area, and the motor 40 is always stopped in this area.
  • a region of 320 Hz to 350 Hz in the normal operation region FB is a region for requesting a destination signal.
  • FIG. 7 is a diagram illustrating an example of a destination signal pattern in the present embodiment.
  • four step Nos. With a PWM frequency of 500 Hz to 530 Hz (increase every 10 Hz).
  • 0-No. 8 step Nos. With 4 digits corresponding to 3 and a destination number (blower model number), 540 Hz to 610 Hz (increase every 10 Hz). 4 to No. Blower solid number (serial number) corresponding to 11 and four step numbers of 620 Hz to 650 Hz (increase every 10 Hz). 12-No.
  • the software version number of the control software may be represented by 4 digits corresponding to 15 respectively.
  • the numerical value (number) of each digit is represented by PWM_Duty.
  • PWM_Duty may be represented by 0 to 10% to 90% (increase every 10%) to 1 to 9 when 5%.
  • Reference numeral 15 denotes a signal having a length of 16 seconds in total for 1 second. Therefore, each digit of the destination signal pattern is determined by both the signal output time and the PWM frequency.
  • the destination signal pattern is defined in this way, in the example of FIG. 7, the destination number is 9876, the blower solid number is 00000012, and the software version number is 2345.
  • the PWM frequency, PWM_Duty, and signal output time the information of the cooling blower 8 can be more reliably transmitted to the host ECU 20 by the PWM signal So.
  • FIGS. 8A and 8B are flowcharts showing the operation of the host ECU in the present embodiment.
  • FIG. 8A shows the operation when generating the PWM signal
  • FIG. 8B shows the operation when detecting the PWM signal.
  • FIG. 9 is a flowchart showing the operation of the motor control device in the present embodiment.
  • FIG. 10 is a flowchart showing the operation of the request pattern determination unit in the present embodiment.
  • FIG. 11 is a timing chart showing the relationship between the operation modes of the motor control device.
  • the host ECU 20 determines whether or not to request a destination signal pattern of the cooling blower 8 (step S10), and when the host ECU 20 requests a destination signal pattern at the time of startup or the like (Yes) ),
  • the request pattern generation unit 22 generates a destination signal request pattern (step S11), and the PWM signal generation unit 23 generates a PWM signal Si based on the destination signal request pattern (step S13).
  • the target rotational speed determination unit 21 determines the target rotational speed of the motor 40 from the information on the temperature of the main battery 2 and the vehicle speed (In step S12), the PWM signal generator 23 generates the PWM signal Si by modulating the duty ratio of the pulse signal at the target rotational speed (step S14).
  • step S ⁇ b> 15 the host ECU 20 transmits a PWM signal Si to the motor control device 10.
  • the motor control device 10 receives the PWM signal Si from the host ECU 20 (step S30), and the PWM signal detector 31 detects the PWM frequency and PWM_Duty (step S31). Thereafter, the request pattern determination unit 32 determines whether or not the destination signal request pattern is included in the PWM signal So (step S32). Details of the operation of the request pattern determination unit 32 will be described with reference to FIGS.
  • the request pattern determination unit 32 first determines whether the request pattern 1 is included in the PWM signal So (step S41).
  • the request pattern 1 is, for example, a PWM signal pattern with a PWM frequency of 320 Hz ⁇ 1% and a PWM_Duty of 10% ⁇ 1%.
  • the process proceeds to the request pattern detection mode (step S42). If request pattern 1 is not detected (No in step S41), detection of request pattern 1 is repeated.
  • the request pattern detection mode it is determined whether the request pattern 1 is continuously input for 1 second or longer (step S421).
  • the request pattern 1 When the request pattern 1 is continuously input for 1 second or more (in the case of Yes), it waits until the request pattern 2 is subsequently detected (step S422).
  • the request pattern 2 is, for example, a PWM signal pattern with a PWM frequency of 350 Hz ⁇ 1% and a PWM_Duty of 10% ⁇ 1%.
  • step S422 When the request pattern 2 is detected (Yes in step S422) and continuously input for 1 second or longer (Yes in step S424), the process proceeds to the destination signal output mode (step S43) and ends. On the other hand, if request pattern 2 is not detected even after 3 seconds have elapsed (Yes in step S423), or if request pattern 2 is detected and is not continuously input for more than 1 second (if No in step S424) ) Returns to the normal operation mode (step S40). If a signal pattern of PWM frequency and PWM_Duty that are out of range is input while request patterns 1 and 2 are being input (each for 1 second), the normal operation mode is restored.
  • the PWM signal generation unit 35 when the request pattern determination unit 32 determines that the destination signal is requested (Yes) in step S32, the PWM signal generation unit 35 generates the PWM signal So based on the destination signal pattern (step S33). . On the other hand, if the request pattern determination unit 32 determines in step S32 that it is not a destination signal request (in the case of No), the PWM signal generation unit 35 uses the detected rotational speed Vd supplied from the rotational speed calculation unit 17 and the frequency of the pulse signal. Is modulated to generate a PWM signal So. Thereafter, the PWM signal So is transmitted to the host ECU 20. At the same time, the target rotation speed calculation unit 36 calculates the target rotation speed Vr based on the detected PWM_Duty (step S35), and the target rotation speed command unit 37 outputs the target rotation speed Vr to the rotation control unit 12.
  • the operation of the host ECU 20 when detecting the PWM signal will be described with reference to FIG. 8B.
  • the PWM signal detector 24 detects the PWM frequency and PWM_Duty from the PWM signal So (step S21).
  • the signal pattern determination unit 26 determines whether or not the destination signal pattern is included in the PWM signal So (step S22), and when the destination signal pattern is detected (in the case of Yes), the destination setting unit 27 determines that the destination ECU 20 Is switched to the control software corresponding to the cooling blower 8 currently installed in the vehicle.
  • the signal pattern determination unit 26 does not detect the destination signal pattern (No) in step S22, it is determined as the normal operation mode, and the actual rotation speed is calculated from the PWM frequency detected by the actual rotation speed calculation unit 28. calculate.
  • the host ECU 20 uses the calculated actual rotation speed for controlling the cooling blower 8.
  • the PWM signal processing unit 30 has been described by taking an example in which the PWM signal processing unit 30 is configured using a counter or the like, but may be configured using a microcomputer or the like. In other words, the function of the PWM signal processing unit 30 as described above may be incorporated as a program to execute the processing as described above.
  • the pulse width of the ON period is modulated with reference to the rising edge of the pulse
  • the pulse width of the OFF period is modulated with reference to the falling edge of the pulse. Such a configuration may be adopted.
  • FIG. 12 is a cross-sectional view of the brushless motor 50 according to the embodiment of the present invention.
  • an example of an inner rotor type brushless motor 50 in which a rotor is rotatably disposed on the inner peripheral side of a stator will be described.
  • the brushless motor 50 includes a stator 51, a rotor 52, a circuit board 53, and a motor case.
  • the motor case 54 is formed of a sealed cylindrical metal, and the brushless motor 50 has a configuration in which the stator 51, the rotor 52, and the circuit board 53 are accommodated in the motor case 54.
  • the stator 51 is configured by winding a winding 56 for each phase around a stator iron core 55.
  • the stator iron core 55 has a plurality of salient poles that protrude toward the inner peripheral side. Further, the outer peripheral side of the stator core 55 has a substantially cylindrical shape, and the outer periphery thereof is fixed to the motor case 54.
  • a rotor 52 is inserted inside the stator 51 via a gap.
  • the rotor 52 holds a cylindrical permanent magnet 58 on the outer periphery of the rotor frame 57 and is disposed so as to be rotatable around a rotation shaft 60 supported by a bearing 59. That is, the tip end surface of the salient pole of the stator iron core 55 and the outer peripheral surface of the permanent magnet 58 are arranged to face each other.
  • the stator 40 and the rotor 52 supported by the bearing 59 constitute the motor 40.
  • a circuit board 53 on which various circuit components 41 are mounted is built in a motor case 54. These circuit components 41 specifically constitute the motor control device 10 for controlling and driving the motor 40.
  • a position detection sensor 49 such as a Hall element is mounted on the circuit board 53 in order to detect the rotational position of the rotor 52.
  • a support member 61 is attached to the stator core 55, and the circuit board 53 is fixed in the motor case 54 via the support member 61. Ends of the U-phase, V-phase, and W-phase windings 56U, 56V, and 56W are drawn out from the stator 51 as lead wires 56a, and the lead wires 56a are connected to the circuit board 53.
  • a PWM signal line 19 for connection with the host ECU 20 is drawn out.
  • a drive current flows through the winding 56 by the motor control device 10 configured on the circuit board 53, A magnetic field is generated from the stator core 55.
  • the magnetic field from the stator iron core 55 and the magnetic field from the permanent magnet 58 generate an attractive force and a repulsive force according to the polarities of the magnetic fields, and the rotor 52 rotates about the rotation shaft 60 by these forces.
  • the control software switching jumper is used in order to exchange the destination information of the cooling blower 8 between the host ECU 20 and the motor control device 10 via the PWM signal line 19.
  • a switch or the like is unnecessary, and the number of parts of the host ECU 20 can be reduced and the case shape can be simplified, thereby reducing the cost.
  • the switch since no switch is used, the switch does not malfunction or the switch does not fall. For this reason, the vibration resistance of the host ECU 20 is improved.
  • the serial communication function between the host ECU 20 and the motor control device 10 is unnecessary, the motor control device 10 can be realized using an inexpensive IC and a low-spec microcomputer. Further, since electronic components for serial communication (CAN transceiver, choke coil, high precision clock, etc.) are not required, the cost can be reduced.
  • the external noise resistance is improved. Since it becomes possible to distinguish between boards and cooling blowers 8 that have the same appearance and differ only in the control software specifications, circuit integration errors in the production process are reduced. That is, in the cooling blower 8 of the present embodiment, the destination and product specifications can be detected before the QR code (registered trademark) is assigned, so that rework costs can be reduced.
  • QR code registered trademark
  • the motor control system, motor control method, and motor control apparatus of the present invention are suitable for a vehicle-mounted cooling blower, and are particularly useful for a cooling blower mounted on a hybrid vehicle or an electric vehicle that operates with a large battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Secondary Cells (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

上位コントローラは、車両に搭載された主機バッテリを冷却する冷却ブロアの複数の仕向け地に対応する複数の異なる制御ソフトを搭載している。上位コントローラは、冷却ブロアの仕向け地を特定する仕向け信号パターンを要求する仕向け信号要求パターンをPWM信号によりモータ制御装置へ送信する。モータ制御装置は、仕向け信号要求パターンを受信すると、仕向け信号パターンを上位コントローラへ送信する。上位コントローラは、受信した仕向け信号パターンから冷却ブロアの仕向け地を特定し、冷却ブロアの仕向け地に対応した制御ソフトに切り替える。

Description

モータ制御システム、モータ制御方法およびモータ制御装置
 本発明は、車両に搭載された冷却ブロア用のモータ制御システム、モータ制御方法およびモータ制御装置に関する。
 ハイブリッド自動車や電気自動車は、車両自身を走行させるため、大型バッテリ(主機バッテリ)を搭載しており、このバッテリを冷却するために空冷ブロアを用いている。このような冷却ブロアは、エンジンなどの車輪駆動部を制御するECU(Electoronic Control Unit)と呼ばれる電子制御ユニットから冷却ブロアの冷却能力(例えば、ファンの回転数)や冷却時間(例えば、ファンの回転継続時間)の指示を受け取ることにより制御される。
 ところで、冷却ブロアは仕向け地によってその仕様が異なり、仕様に応じて異なる制御が必要となるため、仕向け地ごとにECUの制御ソフト(ソフトウェア)を変更する必要がある。従来は、同じハードウェアのECUでも、そのECUに搭載された制御ソフトに応じて異なる型番を付与し、車両組立て時に型番を確認し仕向け地ごとに異なる型番のECUを組み込んでいた。このため、ECUの型番が増加し、その管理が非常に煩雑になって管理コストが増大するという問題があった。
 この問題を解決するために、従来、車両搭載用電子機器の全仕向け地に対応できる複数の制御ソフトを同じ型番のECUに搭載し、車両組立て時にジャンパー線やスイッチ等により制御ソフトを切り替えて使用する方法が提案されている(例えば、特許文献1を参照)。
 また、制御ソフトを切り替える他の方法として、ECUと電子機器間でシリアル通信を介して仕向け地情報を通信する方法も提案されている(例えば、特許文献2を参照)。
 しかしながら、上述した従来の方法では、仕向け地に対応した制御ソフトを切り替えるために新たな回路部品(CANトランシーバやスイッチ、抵抗等)を追加する必要があり、コストアップとなる。
特開2009-126461号公報 特許第4491106号公報
 本発明のモータ制御システムは、車両に搭載されたバッテリを冷却する冷却ブロアのモータを制御するモータ制御装置と、冷却ブロアの複数の仕向け地に対応する複数の異なる制御ソフトを搭載し、モータの制御情報をPWM信号によりモータ制御装置と送受信する上位コントローラと、を備えるモータ制御システムである。上位コントローラは、仕向け地を特定する仕向け信号パターンを要求する仕向け信号要求パターンを、PWM信号によりモータ制御装置へ送信する。モータ制御装置は、仕向け信号要求パターンを受信すると、仕向け信号パターンを上位コントローラへ送信する。そして、上位コントローラは、仕向け信号パターンから冷却ブロアの仕向け地を特定し、冷却ブロアの仕向け地に対応した制御ソフトに切り替える。
 これにより、上位コントローラの型番や回路部品を追加せずに、上位コントローラに搭載された冷却ブロアの制御ソフトを仕向け地に対応して簡単に切り替えることができる。
 また、本発明のモータ制御方法は、車両に搭載されたバッテリを冷却する冷却ブロアのモータを制御するモータ制御装置と、冷却ブロアの複数の仕向け地に対応する複数の異なる制御ソフトを搭載し、モータの制御情報をPWM信号によりモータ制御装置と送受信してモータを制御するモータ制御方法である。本モータ制御方法は、上位コントローラが、冷却ブロアの仕向け地を特定する仕向け信号パターンを要求する仕向け信号要求パターンをPWM信号によりモータ制御装置へ送信するステップと、モータ制御装置が、PWM信号を受信し、PWM信号に仕向け信号要求パターンが含まれているか否かを判定するステップと、モータ制御装置が、仕向け信号要求パターンが含まれている場合には、仕向け信号パターンに基づいてPWM信号を生成し、仕向け信号要求パターンが含まれていない場合には、モータの実回転速度情報に基づいたPWM信号を生成して、PWM信号を上位コントローラへ送信するステップと、上位コントローラが、受信したPWM信号から仕向け信号パターンを検出し、検出した仕向け信号パターンから冷却ブロアの仕向け地を特定し、冷却ブロアの仕向け地に対応した制御ソフトに切り替えるステップと、を備える。
 また、本発明のモータ制御装置は、上位コントローラからPWM信号を受信し、車両に搭載されたバッテリを冷却する冷却ブロアのモータをPWM信号に基づいて制御するモータ制御装置である。本モータ制御装置は、PWM信号のPWM周波数およびPWMデューティ比を検出するPWM信号検出部と、PWM信号検出部の出力に基づいてPWM信号に冷却ブロアの仕向け地を特定する仕向け信号パターンを要求する仕向け信号要求パターンが含まれているか否かを判定する要求パターン判定部と、要求パターン判定部の判定結果に基づいてPWM信号を生成するPWM信号生成部と、を備える。そして、PWM信号生成部は、仕向け信号要求パターンが含まれている場合には、仕向け信号パターンに基づいてPWM信号を生成し、仕向け信号要求パターンが含まれていない場合には、モータの実回転速度情報に基づいてPWM信号を生成し、生成されたPWM信号を上位コントローラへ送信する。
 このように、本発明によれば、ECUの型番や回路部品を追加せずに、ECUに搭載された冷却ブロアの制御ソフトを仕向け地毎に簡単に切り替えることができるモータ制御システム、モータ制御方法およびモータ制御装置を提供することができる。
図1は、本発明の実施の形態におけるモータ制御システムを含む車両の制御系のブロック図である。 図2は、本発明の実施の形態におけるモータ制御システムの構成を示すブロック図である。 図3は、本発明の実施の形態における上位ECUの機能ブロック図である。 図4は、本発明の実施の形態におけるモータ制御装置のPWM信号処理部の機能ブロック図である。 図5は、本発明の実施の形態におけるPWM信号の一例を示す信号波形図である。 図6は、本発明の実施の形態におけるPWM信号の周波数割り当ての一例を示す図である。 図7は、本発明の実施の形態における仕向け信号パターンの一例を示す図である。 図8Aは、本発明の実施の形態における上位ECUのPWM信号の生成時の動作を示すフローチャートである。 図8Bは、本発明の実施の形態における上位ECUのPWM信号の検出時の動作を示すフローチャートである。 図9は、本発明の実施の形態におけるモータ制御装置のPWM信号処理部の動作を示すフローチャートである。 図10は、本発明の実施の形態におけるモータ制御装置のPWM信号処理部のモード移行動作を示すフローチャートである。 図11は、本発明の実施の形態におけるモータ制御装置のPWM信号処理部のモード移行動作を説明するためのタイミング図である。 図12は、本発明の実施の形態におけるブラシレスモータの断面図である。
 以下、本発明の実施の形態について図面を用いて説明する。
 (実施の形態)
 図1は、本発明の実施の形態におけるモータ制御システムを含む車両の制御系のブロック図である。図1は、電気自動車やハイブリッド自動車の冷却ブロアおよびその制御を中心にその構成例を示す。車両の車輪駆動用モータなどの車輪駆動部4には主機バッテリ2から電源が供給されている。冷却ブロア8はブラシレスモータ50とブラシレスモータ50により回転駆動されるファン7から構成されている。主機バッテリ2は、冷却ブロア8からの送風によって冷却される。ブラシレスモータ50は、モータ40と、モータ40の回転を制御するモータ制御装置10から構成されている。この冷却ブロア8の冷却能力はモータ40の回転速度で決定される。このモータ40の回転速度は、モータ制御装置10が上位コントローラ(以下、上位ECUと呼ぶ)20から信号を受信することにより制御される。
 上位ECU20は、車速センサやアクセル開度センサからの情報に基づいて車輪駆動部4や車内のエアコン(図示せず)などを制御する。また、上位ECU20は、主機バッテリ2の温度を検出する温度センサ6からの情報に基づいて冷却ブロア8の冷却能力を制御する。具体的には、上位ECU20は、PWM信号線19を介してPWM信号によりモータ40の目標回転速度の指令情報をモータ制御装置10に送信する。また、上位ECU20は、PWM信号線19を介してPWM信号によりモータ40の実回転速度の検出情報を実回転速度情報としてモータ制御装置10から受信する。なお、ここでモータ40の回転速度とは、モータ40の単位時間当たりの回転数である。
 上位ECU20やブラシレスモータ50には、主機バッテリ2とは別に補機バッテリ3から電源が供給される。なお、補機バッテリ3は、上位ECU20やブラシレスモータ50のほかにラジオなどの他の車載モジュールにも電源を供給している。ここで、上位ECU20はマイクロコンピュータ(以下、マイコンと呼ぶ)、ROM、RAMなどから構成されている。このような上位ECU20は、プログラムやデータによって構成されたソフトウェアに従って動作する。上位ECU20は、イグニッションスイッチ(以下、IGスイッチと呼ぶ)5を介して補機バッテリ3に接続されている。そして、運転中、すなわちIGスイッチ5がオン(以下、ONと記載)の状態では常時電源が供給されるが、停車してIGスイッチ5がオフ(以下、OFFと記載)になった状態では電源供給が停止される。一方、ブラシレスモータ50は、IGスイッチ5がOFFの状態でも主機バッテリ2を冷却する必要があるために補機バッテリ3と直接接続されている。
 次に、図2~図5を参照してモータ制御システム1の構成および動作を説明する。図2は、本発明の実施の形態におけるモータ制御システムの構成を示すブロック図である。
 図2に示すように、本実施の形態のモータ制御システム1は、ブラシレスモータ50と、このブラシレスモータ50を制御する上位ECU20とを含む構成である。また、本実施の形態では、ブラシレスモータ50が、モータ制御装置10を構成する回路部品を実装した構成としている。すなわち、図2に示すように、ブラシレスモータ50において、モータ制御装置10がモータ40を駆動制御する。
 モータ40は、ロータと巻線56を有したステータとを備えており、巻線56を通電駆動することでロータが回転する。本実施の形態では、互いに120度位相が異なるU相、V相、W相とする3相でモータ40を駆動するブラシレスモータ50の一例を挙げて説明する。このような3相駆動を行うため、モータ40は、巻線56として、U相を駆動する巻線56U、V相を駆動する巻線56VおよびW相を駆動する巻線56Wを有している。
 モータ制御装置10は、相ごとに巻線56に所定の波形の駆動電圧を印加する。これによって、ロータは、モータ制御装置10からの回転制御に従った回転速度で回転する。また、このような回転制御を行うため、モータ40には、ロータの回転位置や回転速度を検出するためのセンサが配置されている。本実施の形態では、ロータの回転位置を検出するために各相に対応させて、ホール素子などの3つの位置検出センサ49をモータ40に配置している。そして、モータ制御装置10には、位置検出センサ49からのセンサ信号Detが供給されている。
 また、図2に示すように、モータ制御装置10は、PWM信号線19を介して上位ECU20と信号接続されている。モータ制御装置10には、上位ECU20からPWM信号線19aを介して、モータ40を回転制御するための指令が通知される。また、逆に、ブラシレスモータ50における情報が、モータ制御装置10からPWM信号線19bを介して、上位ECU20に通知される。
 本実施の形態では、上位ECU20からの指令として、モータ40の目標回転速度を指令する目標回転速度指令がモータ制御装置10に通知される。また、目標回転速度指令によって指令される目標回転速度は、PWM信号線19aを介して、パルス幅変調されたPWM信号Siとして通知される。一方、モータ制御装置10からは、モータ40の実回転速度の情報が、PWM信号線19bを介して、パルス幅変調されたPWM信号Soとして上位ECU20に通知される。ここで、回転速度としては、例えば1分間あたりの回転数(rpm)を用いている。
 次に、モータ制御装置10の構成について説明する。モータ制御装置10は、図2に示すように、回転制御部12、PWM駆動回路14、インバータ15、位置検出部16、回転速度算出部17、PWM信号処理部30を備えている。そして、モータ制御装置10には、上述したように、モータ40に配置した3つの位置検出センサ49から、センサ信号Detが供給されている。さらに、モータ制御装置10は、PWM信号Si、Soを伝送するPWM信号線19a、19bを介して、上位ECU20と接続されている。
 まず、位置検出センサ49からのセンサ信号Detは、位置検出部16に供給される。位置検出部16は、ロータの回転に伴う磁極変化に応じて変化するセンサ信号Detから、各相の位置情報を検出する。例えば、位置検出部16は、磁極変化時点においてセンサ信号Detがゼロクロスするタイミングを検出し、この検出したタイミングに基づく位置検出信号Pdを出力する。すなわち、回転するロータの回転位置はこのような検出タイミングと対応しており、検出タイミングを利用して回転位置を検出できる。また、位置検出信号Pdは、具体的には、例えばこのような検出タイミングを示すパルス信号とすればよい。位置検出部16は、それぞれの相に対応した位置検出信号Pdを、回転速度算出部17に供給する。
 回転速度算出部17は、位置検出信号Pdが示す回転位置に基づき、例えば微分演算などによりロータの回転速度を算出する。回転速度算出部17は、算出した回転速度を検出回転速度Vdとして時系列に回転制御部12に供給する。なお、本実施の形態では、位置検出センサ49からのセンサ信号Detに基づいて検出回転速度Vdを生成するような一例を挙げて説明するが、速度検出手段によりロータ速度を検出し、この検出結果に基づき検出回転速度Vdを生成するような構成であってもよい。すなわち、検出回転速度Vdは、モータの実回転から検出した速度を示す時系列の値や信号であればよい。PWM信号処理部30は、この実回転速度を表す検出回転速度Vdにより、パルス信号の周波数を変調してPWM信号Soを生成し、上位ECU20へ送信する。
 PWM信号処理部30は、上位ECU20から送出されたPWM信号Siを受け取り、パルス幅変調されたパルス信号を復調する動作を行う。PWM信号処理部30は、この復調動作によって、受け取ったPWM信号Siから目標回転速度Vrを時系列に復元する。すなわち、PWM信号処理部30は、PWM信号Siの各パルスのパルス幅、あるいはパルス幅に対応するデューティ比を検出することによって、PWM信号Siを復調する。そして、PWM信号処理部30は、復調動作によって復元した目標回転速度Vrを時系列に出力する。
 目標回転速度Vrは、回転制御部12に供給される。また、回転制御部12には、回転速度算出部17で算出された検出回転速度Vdが供給されている。回転制御部12は、目標回転速度Vrと検出回転速度Vdとに基づき、巻線56への駆動量を示す駆動値Ddを生成する。具体的には、回転制御部12は、速度指令を示す目標回転速度Vrと、実速度に対応した検出速度を示す検出回転速度Vdとの速度偏差を求める。そして、回転制御部12は、速度指令に従った実速度となるように、速度偏差に応じたトルク量を示す駆動値Ddを生成する。回転制御部12は、このような駆動値DdをPWM駆動回路14に供給する。
 PWM駆動回路14は、巻線56を駆動するための駆動波形を相ごとに生成し、生成した駆動波形をそれぞれパルス幅変調し、駆動パルス信号Dpとして出力する。巻線56を正弦波駆動する場合には駆動波形は正弦波波形であり、矩形波駆動する場合には駆動波形は矩形波波形である。また、駆動波形の振幅は、駆動値Ddに応じて決定される。PWM駆動回路14は、相ごとに生成した駆動波形を変調信号として、それぞれにパルス幅変調を行い、駆動波形でパルス幅変調したパルス列の駆動パルス信号Dpを、インバータ15に供給する。
 インバータ15は、駆動パルス信号Dpに基づいて、相ごとに巻線56への通電を行い、巻線56を通電駆動する。インバータ15は、電源の正極側に接続されたスイッチ素子と負極側に接続されたスイッチ素子とを、U相、V相、W相それぞれに備えている。U相の駆動出力Uoは巻線56Uに、V相の駆動出力Voは巻線56Vに、そして、W相の駆動出力Woは巻線56Wに接続されている。そして、それぞれの相において、駆動パルス信号Dpによりスイッチ素子がON/OFFされる。すると、電源からONのスイッチ素子を介し、さらに駆動出力から巻線56に対して駆動電圧が供給される。この駆動電圧の供給によって、巻線56に駆動電流が流れる。ここで、駆動パルス信号Dpは駆動波形をパルス幅変調した信号であるため、駆動波形に応じた駆動電流でそれぞれの巻線56が通電される。
 また、PWM駆動回路14とインバータ15とによって、通電駆動部13が構成される。通電駆動部13は、上述のように駆動値Ddに基づいて、モータ40の巻線56を相ごとに通電駆動する。
 以上のような構成により、目標回転速度Vrに追従するようにロータの回転速度を制御するフィードバック制御ループが形成される。
 次に、冷却ブロア8を制御するため、上位ECU20に搭載された制御ソフトウェア(以下、制御ソフトとよぶ)の仕向け地対応について説明する。なお、本実施の形態では制御ソフトの仕向け地対応について説明するが、本発明は仕向け地対応に限らず、冷却ブロア8の機種対応など、異なる制御ソフトを切り替える用途にはすべての適用可能である。
 冷却ブロア8は米国、欧州、中国などの仕向け地ごとに仕様が異なり、冷却ブロア8のモータ制御装置10には自身の仕向け地を特定するための仕向け信号パターン(仕向け地情報)が保存されている。上位ECU20がモータ制御装置10に適切な制御情報を送信するためには、制御情報の送信に先立ってモータ制御装置10から仕向け信号パターンを取得する必要がある。そのために、上位ECU20は、モータ制御装置10に対して仕向け信号パターンの送信を要求するための仕向け信号要求パターンをPWM信号Siに埋め込んで送信する。モータ制御装置10は上位ECU20から受信したPWM信号Siが、この仕向け信号要求パターンを含んでいるか否かを常時監視する。PWM信号Siに仕向け信号要求パターンが含まれていると、自身のメモリ等から仕向け信号パターンを読み出して、PWM信号Soにこの仕向け信号パターンを埋め込んで、上位ECU20に送信する。上位ECU20は、受信したPWM信号Soから仕向け信号パターンを抽出して、この仕向け信号パターンに基づいて仕向け地に対応した制御ソフトを切り替える。
 次に、図3~図5を参照して上位ECU20とモータ制御装置10のPWM信号処理部30の詳細な構成について説明する。図3は、本発明の実施の形態における上位ECUの機能ブロック図である。図4は、本発明の実施の形態におけるモータ制御装置のPWM信号処理部の機能ブロック図である。図5は、本発明の実施の形態におけるPWM信号の一例を示す信号波形図である。図5の上段では、実線でPWM信号Siの信号波形を示し、点線で目標回転速度指令を示しており、図5の下段では、実線でパルス開始信号Psのタイミングを示している。ただし、図3は、冷却ブロア8の制御に関係する構成のみを示している。
 図3、図4に示すように、上位ECU20およびPWM信号処理部30には、クロック信号Ck1が供給されている。クロック信号Ck1は一定周期のパルス信号であり、PWM信号Si、Soの周波数よりも十分に高い周波数である。例えば、PWM信号Si、Soの周波数を500Hzとすると、クロック信号Ck1の周波数は1MHz程度である。また、図3に示す構成では、クロック信号Ck1をカウントするカウンタを利用してPWM信号Si、Soを生成するような構成例を挙げている。
 図3に示すように、上位ECU20は、目標回転速度決定部21、要求パターン生成部22、PWM信号生成部23、PWM信号検出部24、信号パターン保存部25、信号パターン判定部26、仕向け設定部27、実回転速度算出部28を備えている。PWM信号生成部23は、デューティ比演算部231、周波数算出部232、PWM信号出力部233から構成されている。また、PWM信号検出部24は、立上りエッジ検出部241、エッジ周期検出部242、デューティ比検出部243から構成されている。
 最初に、図3、図5を参照して上位ECU20のPWM信号Siを生成するブロック構成について説明する。まず、通常動作時には、目標回転速度決定部21は温度センサ6からの主機バッテリ2の温度や、車速センサからの車速情報に基づいてモータ40の目標回転速度を決定して、目標回転速度指令をデューティ比算出部231へ供給する。デューティ比算出部231は、この目標回転速度指令に応じたPWM信号の各パルスのパルス幅を算出し、PWM信号出力部233へ供給する。ここで目標回転速度は時間あたりの回転数である。デューティ比を変更することにより、目標回転数(rpm)を10%~90%の範囲で変更する。一方、上位ECU20の起動時には、要求パターン生成部22は、予め決められた仕向け信号要求パターンを生成してデューティ比算出部231および周波数算出部232へ供給する。デューティ比算出部231および周波数算出部232は、仕向け信号要求パターンに応じたPWM信号の周波数(以下、PWM周波数とも言う)、すなわち各パルスの周期、およびデューティ比(以下、PWMデューティ比(PWM_Dutyと略記)とも言う)すなわち各パルスのパルス幅を算出し、PWM信号出力部233へ供給する。PWM信号出力部233は、デューティ比算出部231および周波数算出部232からの算出情報に基づいてPWM信号Siを生成してモータ制御装置10へ送信する。ここで、上位ECU20の起動時とは、IGスイッチ5がONされて上位ECU20に電源が供給された時点を指す。また、仕向け信号要求パターンの詳細については後述する。なお、上記実施の形態では、要求パターン生成部22からPWM信号生成部23へ仕向け信号要求パターンが入力されるのは、上位ECU20の起動時としたが、車両へ冷却ブロア8が取り付けられる際に一度実行されてもよい。
 PWM信号Siは、図5の上段に示すように、周期Tpのパルス列であり、周期Tp期間は、レベルが高いON期間Tonとレベルが低いOFF期間Toffとで構成されている。ON期間Tonと周期Tpとの比であるデューティ比(Ton/Tp)が目標回転速度によって変調されている。例えば、目標回転速度指令のレベルが小から次第に大きくなる(目標回転速度が低速から高速になる)に従い、PWM信号出力部233は、デューティ比が次第に大きくなるパルス列の信号であるPWM信号Siを生成する。
 次に、図4を参照してモータ制御装置10のPWM信号処理部30の構成および動作を詳細に説明する。図4に示すように、PWM信号処理部30は、PWM信号検出部31、要求パターン判定部32、要求パターン保存部33、信号パターン保存部34、PWM信号生成部35、目標回転速度算出部36、目標回転速度指令部37を備えている。PWM信号検出部31は、立上りエッジ検出部311、エッジ周期検出部312、デューティ比検出部313から構成されている。
 立上りエッジ検出部311は、PWM信号Siの各パルスに対し、OFFからONへと立上るエッジのタイミングを検出し、そのタイミングに基づいてエッジ検出信号Psを生成する。このエッジ検出信号Psのタイミングは、図5の下段に示すように、PWM信号Siを構成する各パルスの開始タイミングに対応している。生成したエッジ検出信号Psは、エッジ周期検出部312およびデューティ比検出部313に供給される。本実施の形態では、所定方向に変化するエッジのタイミングを検出するエッジタイミング検出手段の一例として、このような動作を行う立上りエッジ検出部311を挙げている。
 エッジ周期検出部312は、立上りエッジ検出部311から順次供給されるエッジ検出信号Psの周期を検出する。本構成例では、エッジ周期検出部312は、クロック信号Ck1の数をカウントするようなカウンタを有している。そして、カウンタがエッジ検出信号Ps間のクロック数をカウントすることでエッジ検出信号Psの周期を検出している。エッジ周期検出部312のカウンタは、このような動作を行い、図5の下段に示すように、周期Tpの期間のカウント数Ntpを検出する。検出したこのカウント数Ntpは、PWM信号Siを構成する各パルスの周期Tpに対応している。エッジ周期検出部312は、検出したパルスの周期(周波数)を要求パターン判定部32に供給する。デューティ比検出部313は、本構成例では、クロック信号Ck1の数をカウントするようなカウンタを有している。デューティ比検出部313のカウンタは、図5の下段に示すように、エッジ検出信号Psのタイミングでカウントを開始し、PWM信号SiのON期間Tonの間カウントを継続し、ON期間Tonのカウント数Nonを検出する。さらに、デューティ比検出部313は、カウント数Ntpに対するカウント数Nonの比率を算出する。この比率は、PWM信号Siのデューティ比に対応している。デューティ比検出部313は、検出したデューティ比を要求パターン判定部32および目標回転速度算出部36に供給する。
 要求パターン保存部33は、予め定められたPWM周波数、PWM_Duty、信号出力時間に基づいて生成された仕向け信号要求パターンを保存している。信号パターン保存部34は、冷却ブロア8自身の仕向け地を特定するために予め定められたPWM周波数、PWM_Duty、信号出力時間に基づいて生成された仕向け信号パターンを保存している。
 要求パターン判定部32は、要求パターン保存部33から仕向け信号要求パターンを読み出して、受信したPWM信号Siの信号パターンと比較し、PWM信号Si中に仕向け信号要求パターンが含まれているか否か判定(検出)し、その判定結果をPWM信号生成部35に供給する。
 PWM信号生成部35は、要求パターン判定部32の判定結果に基づいて、PWM信号Soを生成して、上位ECU20へ送信する。すなわち、要求パターン判定部32が仕向け信号要求パターンを検出すると、PWM信号生成部35は、信号パターン保存部34から仕向け信号パターンを読み出して、この仕向け信号パターンに基づいてPWM信号Soを生成する。一方、要求パターン判定部32が仕向け信号要求パターンを検出しない場合には、PWM信号生成部35は、回転速度算出部17から供給されたモータ40の検出回転速度Vdでパルス信号の周波数を変調してPWM信号Soを生成する。要求パターン判定部32の詳細な動作は後程説明する。
 目標回転速度算出部36は、デューティ比検出部313からデューティ比を受け取りモータ40の目標回転速度Vrを算出して復元する。例えば、図5の下段においてカウント数Ntpが2000、カウント数Nonが1000とすると、その比率は0.5となり、デューティ比は50%となる。目標回転速度算出部36は、例えば、50%のデューティ比から目標回転速度Vrが1000(rpm)、25%のデューティ比の場合には500(rpm)であることを復元する。
 目標回転速度指令部37は、目標回転速度算出部36から目標回転速度Vrを受け取り、要求パターン判定部32が仕向け信号要求パターンを検出しない場合には、目標回転速度Vrをそのまま出力する。一方、要求パターン判定部32が仕向け信号要求パターンを検出した場合には、目標回転速度Vrはゼロまたは所定の固定値を出力してモータ40の回転を停止させる。
 次に、再び図3を参照して上位ECU20のPWM信号Soを検出するブロック構成について説明する。PWM信号検出部24は、モータ制御装置10から受信したPWM信号SoからPWM周波数とPWM_Dutyを検出し、検出したPWM周波数を実回転速度算出部28に供給し、検出したPWM周波数およびPWM_Dutyを信号パターン判定部26に供給する。PWM信号検出部24の動作は、図4で説明したPWM信号検出部31と同様であるので説明を省略する。
 信号パターン保存部25は、冷却ブロア8のすべての仕向け地に対応する仕向け信号パターンを保存している。
 信号パターン判定部26は、PWM信号Soに含まれる信号パターンと信号パターン保存部25から読み出したすべての仕向け信号パターンと比較し、PWM信号Soが仕向け信号パターンか否か、仕向け信号パターンである場合にはどの仕向け地に対応した仕向け信号パターンか(冷却ブロア8の仕向け地はどこか)を判定する。信号パターン判定部26は、その判定結果を仕向け設定部27および実回転速度算出部28に供給する。
 実回転速度算出部28は、PWM信号Soが仕向け信号パターンでない場合、すなわち、上位ECU20が通常動作モードである場合には、エッジ周期検出部242から供給されたPWM周波数からモータ40の実回転速度を復元する。上位ECU20は、復元した実回転速度をモータ40の制御に利用する。
 仕向け設定部27は、上位ECU20に搭載されている複数の制御ソフトから車両に搭載されている冷却ブロア8の仕向け地に対応した制御ソフトに切り替える。
 次に、図6、図7を参照して仕向け信号要求パターンおよび仕向け信号パターンについて具体例を挙げて説明する。図6は、PWM信号Siの周波数割り当ての一例を示す図である。図6に示すように、本実施の形態では、62Hz~310Hzをキャリブレーション領域FA、310Hz~600Hzを通常動作領域FBとしている。それ以外の領域は、禁止領域で、この領域ではモータ40は常時停止するようにしている。キャリブレーション領域FAでは、モータ40を正常に動作させるためのキャリブレーション動作が行われる。通常動作領域FB内の320Hz~350Hzの領域が仕向け信号要求のための領域である。
 図7は、本実施の形態における仕向け信号パターンの一例を示す図である。図7に示すように、例えば、PWM周波数が500Hz~530Hz(10Hz毎に増加)の4つのステップNo.0~No.3に対応する4桁で仕向け番号(ブロア型番)、540Hz~610Hz(10Hz毎に増加)の8つのステップNo.4~No.11に対応する8桁でブロア固体番号(シリアル番号)、620Hz~650Hz(10Hz毎に増加)の4つのステップNo.12~No.15に対応する4桁で制御ソフトのソフトバージョン番号をそれぞれ表してもよい。また、各桁の数値(番号)はPWM_Dutyで表し、例えば、PWM_Dutyが5%で0、10%~90%(10%毎に増加)でそれぞれ1~9を表すようにしてもよい。
 また、仕向け信号の各ステップNo.0~No.15は、それぞれ1秒で合計16秒の長さの信号である。したがって、仕向け信号パターンの各桁は信号出力時間とPWM周波数の両方で判定される。このように仕向け信号パターンを定義すると、図7の例では、仕向け番号が9876、ブロア固体番号が00000012、ソフトバージョン番号が2345となる。このようにPWM周波数とPWM_Dutyと信号出力時間の3つを組み合わせることにより、PWM信号Soで冷却ブロア8の情報を上位ECU20へより確実に送信することができる。
 次に、図8Aおよび図8B~図11を参照して上位ECU20およびモータ制御装置10の動作を説明する。図8Aおよび図8Bは、本実施の形態における上位ECUの動作を示すフローチャートであり、図8AはPWM信号の生成時の動作を示し、図8BはPWM信号の検出時の動作を示す。図9は、本実施の形態におけるモータ制御装置の動作を示すフローチャートである。図10は、本実施の形態における要求パターン判定部の動作を示すフローチャートである。図11は、モータ制御装置の各動作モードの関係を示すタイミング図である。
 まず、図8Aに示すように、上位ECU20は、冷却ブロア8の仕向け信号パターンを要求するか否かを判定し(ステップS10)、起動時などの上位ECU20が仕向け信号パターンを要求する場合(Yesの場合)は、要求パターン生成部22は仕向け信号要求パターンを生成し(ステップS11)、PWM信号生成部23は仕向け信号要求パターンに基づいてPWM信号Siを生成する(ステップS13)。一方、上位ECU20が仕向け信号パターンを要求しない通常動作モードの場合(Noの場合)は、目標回転速度決定部21は主機バッテリ2の温度や車速の情報よりモータ40の目標回転速度を決定し(ステップS12)、PWM信号生成部23は目標回転速度でパルス信号のデューティ比を変調してPWM信号Siを生成する(ステップS14)。次に、ステップS15において上位ECU20は、モータ制御装置10へPWM信号Siを送信する。
 次に、図9に示すように、モータ制御装置10は、上位ECU20からPWM信号Siを受信し(ステップS30)、PWM信号検出部31はPWM周波数とPWM_Dutyを検出する(ステップS31)。その後、要求パターン判定部32は、PWM信号Soに仕向け信号要求パターンが含まれているか否かを判定する(ステップS32)。この要求パターン判定部32の動作の詳細を図10および図11を参照して説明する。
 図10、図11に示すように、通常動作モードで動作中(ステップS40)に、要求パターン判定部32は、まずPWM信号Soに要求パターン1が含まれているか判定する(ステップS41)。ここで、要求パターン1とは、例えば、PWM周波数が320Hz±1%で、PWM_Dutyが10%±1%のPWM信号パターンである。要求パターン1が検出された場合(ステップS41でYesの場合)、要求パターン検出モード(ステップS42)に移行する。要求パターン1が検出されない場合(ステップS41でNoの場合No)は、要求パターン1の検出を繰り返す。要求パターン検出モード(ステップS42)においては、要求パターン1が1秒以上継続して入力されるか判定する(ステップS421)。要求パターン1が1秒以上継続して入力された場合(Yesの場合)、続いて要求パターン2が検出されるのを待つ(ステップS422)。ここで、要求パターン2とは、例えば、PWM周波数が350Hz±1%で、PWM_Dutyが10%±1%のPWM信号パターンである。
 要求パターン2が検出され(ステップS422でYes)、かつ1秒以上継続して入力された場合(ステップS424でYesの場合)、仕向け信号出力モード(ステップS43)へ移行して終了する。一方、3秒経過しても要求パターン2が検出されない場合(ステップS423でYesの場合)、あるいは、要求パターン2が検出されても1秒以上継続して入力されない場合(ステップS424でNoの場合)は、通常動作モード(ステップS40)へ戻る。また、要求パターン1、2の入力中(各1秒間)に、範囲外のPWM周波数、PWM_Dutyの信号パターンが入力された場合は、通常動作モードに復帰する。一方、要求パターン2の入力待ち状態で範囲外のPWM信号パターンが入力されても3秒経過するまでは通常動作モードに復帰することはない。なお、要求パターン1、2の入力中はPWM_Dutyが10%となっているので、モータ40は停止している。
 再び図9に戻って、ステップS32において要求パターン判定部32が仕向け信号要求と判定すると(Yesの場合)、PWM信号生成部35は仕向け信号パターンに基づいてPWM信号Soを生成する(ステップS33)。一方、ステップS32において要求パターン判定部32が仕向け信号要求ではないと判定すると(Noの場合)、PWM信号生成部35は、回転速度算出部17より供給された検出回転速度Vdでパルス信号の周波数を変調し、PWM信号Soを生成する。その後、上位ECU20へPWM信号Soを送信する。それと同時に、目標回転速度算出部36は検出したPWM_Dutyに基づいて目標回転速度Vrを算出し(ステップS35)、目標回転速度指令部37はその目標回転速度Vrを回転制御部12へ出力する。
 次に図8Bを参照して上位ECU20のPWM信号の検出時の動作を説明する。図8Bに示すように、上位ECU20がPWM信号Soを受信すると(ステップS20)、PWM信号検出部24はPWM信号SoからPWM周波数とPWM_Dutyを検出する(ステップS21)。信号パターン判定部26は、仕向け信号パターンがPWM信号Soに含まれているか否かを判定し(ステップS22)、仕向け信号パターンを検出した場合(Yesの場合)、仕向け設定部27は、上位ECU20の制御ソフトを車両に現在搭載されている冷却ブロア8に対応する制御ソフトに切り替える。一方、ステップS22において信号パターン判定部26が、仕向け信号パターンを検出しない場合(Noの場合)には、通常動作モードと判断し、実回転速度算出部28が検出したPWM周波数から実回転速度を算出する。上位ECU20はこの算出された実回転速度を冷却ブロア8の制御に利用する。
 なお、以上の説明では、PWM信号処理部30を、カウンタなどを利用して構成した一例を挙げて説明したが、マイコンなどを利用して構成することも可能である。すなわち、上述したようなPWM信号処理部30の機能をプログラムとして組み込み、上述のような処理を実行するよう構成すればよい。また、上述の構成例では、パルスの立上りを基準としてON期間のパルス幅を変調するような一例を挙げて説明したが、パルスの立下りを基準としたり、OFF期間のパルス幅を変調したりするような構成であってもよい。
 次にブラシレスモータ50の詳細な構成について説明する。
 図12は、本発明の実施の形態におけるブラシレスモータ50の断面図である。本実施の形態では、ロータがステータの内周側に回転自在に配置されたインナロータ型のブラシレスモータ50の例を挙げて説明する。
 図12に示すように、ブラシレスモータ50は、ステータ51、ロータ52、回路基板53およびモータケース54を備えている。モータケース54は密封された円筒形状の金属で形成されており、ブラシレスモータ50は、このようなモータケース54内にステータ51、ロータ52および回路基板53を収納した構成である。
 図12において、ステータ51は、ステータ鉄心55に相ごとの巻線56を巻回して構成される。ステータ鉄心55は、内周側に突出した複数の突極を有している。また、ステータ鉄心55の外周側は概略円筒形状であり、その外周がモータケース54に固定されている。ステータ51の内側には、空隙を介してロータ52が挿入されている。ロータ52は、ロータフレーム57の外周に円筒形状の永久磁石58を保持し、軸受59で支持された回転軸60を中心に回転自在に配置される。すなわち、ステータ鉄心55の突極の先端面と永久磁石58の外周面とが対向するように配置されている。このようなステータ51と軸受59で支持されるロータ52とによりモータ40が構成されている。
 さらに、このブラシレスモータ50には、各種の回路部品41を実装した回路基板53がモータケース54の内部に内蔵されている。これら回路部品41によって、モータ40を制御や駆動するためのモータ制御装置10が具体的に構成されている。また、回路基板53には、ロータ52の回転位置を検出するために、ホール素子などによる位置検出センサ49も実装されている。ステータ鉄心55には支持部材61が装着されており、回路基板53は、この支持部材61を介してモータケース54内に固定される。そして、U相、V相、W相それぞれの巻線56U、56V、56Wの端部が引出線56aとしてステータ51から引き出されており、回路基板53にそれぞれの引出線56aが接続されている。
 また、ブラシレスモータ50からは、上位ECU20と接続するためのPWM信号線19が引き出されている。
 以上のように構成されたブラシレスモータ50に対して、外部から電源電圧やPWM信号Siを供給することにより、回路基板53上に構成されたモータ制御装置10によって巻線56に駆動電流が流れ、ステータ鉄心55から磁界が発生する。そして、ステータ鉄心55からの磁界と永久磁石58からの磁界とにより、それら磁界の極性に応じて吸引力および反発力が生じ、これらの力によって回転軸60を中心にロータ52が回転する。
 以上説明したように、本実施の形態におけるモータ制御システム1では、上位ECU20とモータ制御装置10間で冷却ブロア8の仕向け地情報をPWM信号線19でやり取りするために、制御ソフト切り替え用のジャンパースイッチ等が不要であり、上位ECU20の部品点数減やケース形状を簡易化できてコストを削減することができる。また、スイッチを使用しないため、スイッチの誤動作やスイッチが落下することがない。このため、上位ECU20の耐振性が向上する。また、上位ECU20とモータ制御装置10間のシリアル通信機能が不要なため、安価なIC、低スペックなマイコンを用いてモータ制御装置10を実現可能である。また、シリアル通信用の電子部品(CANトランシーバ、チョークコイル、高精度クロック等)が不要となるので、コストを削減できる。
 さらに、PWM周波数とPWM_Dutyの他に信号出力時間を組み合わせる事により、外部からの耐ノイズ性が向上する。外観が同一で、制御ソフト仕様だけが異なる基板や冷却ブロア8を区別できるようになるため、生産工程での回路組込みミスが減少する。すなわち、本実施の形態の冷却ブロア8では、QRコード(登録商標)付与前に仕向け地、製品仕様の検出が可能となるので、手戻りコストを削減することができる。
 本発明のモータ制御システム、モータ制御方法およびモータ制御装置は、車載用の冷却ブロアに好適であり、特に、大型バッテリで動作するハイブリッド車や電気自動車に搭載される冷却ブロアに有用である。
 1  モータ制御システム
 2  主機バッテリ
 3  補機バッテリ
 4  車輪駆動部
 5  IGスイッチ
 6  温度センサ
 7  ファン
 8  冷却ブロア
 10  モータ制御装置
 12  回転制御部
 13  通電駆動部
 14  PWM駆動回路
 15  インバータ
 16  位置検出部
 17  回転速度算出部
 19  PWM信号線
 20  上位ECU(上位コントローラ)
 21  目標回転速度決定部
 22  要求パターン生成部
 23,35  PWM信号生成部
 24  PWM信号検出部
 25  信号パターン保存部
 26  信号パターン判定部
 27  仕向け設定部
 28  実回転速度算出部
 30  PWM信号処理部
 31  PWM信号検出部
 32  要求パターン判定部
 33  要求パターン保存部
 34  信号パターン保存部
 36  目標回転速度算出部
 37  目標回転速度指令部
 40  モータ
 41  回路部品
 49  位置検出センサ
 50  ブラシレスモータ
 51  ステータ
 52  ロータ
 53  回路基板
 54  モータケース
 55  ステータ鉄心
 56,56U,56V,56W  巻線
 56a  引出線
 57  ロータフレーム
 58  永久磁石
 59  軸受
 60  回転軸
 61  支持部材
 231  デューティ比演算部
 232  周波数算出部
 233  PWM信号出力部
 241,311  立上りエッジ検出部
 242,312  エッジ周期検出部(周期検出部)
 243,313  デューティ比検出部

Claims (7)

  1. 車両に搭載されたバッテリを冷却する冷却ブロアのモータを制御するモータ制御装置と、
    前記冷却ブロアの複数の仕向け地に対応する複数の異なる制御ソフトを搭載し、前記モータの制御情報をPWM信号により前記モータ制御装置と送受信する上位コントローラと、を備えるモータ制御システムであって、
    前記上位コントローラは、前記仕向け地を特定する仕向け信号パターンを要求する仕向け信号要求パターンを前記PWM信号により前記モータ制御装置へ送信し、
    前記モータ制御装置は、前記仕向け信号要求パターンを受信すると、前記仕向け信号パターンを前記上位コントローラへ送信し、
    前記上位コントローラは、前記仕向け信号パターンから前記冷却ブロアの仕向け地を特定し、前記冷却ブロアの仕向け地に対応した制御ソフトに切り替えることを特徴とするモータ制御システム。
  2. 前記上位コントローラは、前記PWM信号のPWMデューティ比を前記モータの目標回転速度により変調して前記モータ制御装置へ送信し、
    前記モータ制御装置は、受信した前記PWM信号から前記目標回転速度を復元して前記モータの回転速度を制御するとともに、前記PWM信号のPWM周波数を前記モータの実回転速度情報で変調して前記上位コントローラへ送信することを特徴とする請求項1に記載のモータ制御システム。
  3. 前記仕向け信号要求パターンおよび前記仕向け信号パターンは、前記PWM周波数、前記PWMデューティ比および信号出力時間に基づいて生成されたことを特徴とする請求項2に記載のモータ制御システム。
  4. 車両に搭載されたバッテリを冷却する冷却ブロアのモータを制御するモータ制御装置と、
    前記冷却ブロアの複数の仕向け地に対応する複数の異なる制御ソフトを搭載し、前記モータの制御情報をPWM信号により前記モータ制御装置と送受信して前記モータを制御するモータ制御方法であって、
    上位コントローラは、前記冷却ブロアの仕向け地を特定する仕向け信号パターンを要求する仕向け信号要求パターンをPWM信号により前記モータ制御装置へ送信するステップと、
    前記モータ制御装置は、前記PWM信号を受信し、前記PWM信号に前記仕向け信号要求パターンが含まれているか否かを判定するステップと、
    前記モータ制御装置は、前記仕向け信号要求パターンが含まれている場合には、前記仕向け信号パターンに基づいて前記PWM信号を生成し、前記仕向け信号要求パターンが含まれていない場合には、前記モータの実回転速度情報に基づいたPWM信号を生成して、前記PWM信号を前記上位コントローラへ送信するステップと、
    上位コントローラは、受信した前記PWM信号から前記仕向け信号パターンを検出し、検出した前記仕向け信号パターンから前記冷却ブロアの仕向け地を特定し、前記冷却ブロアの仕向け地に対応した制御ソフトに切り替えるステップと、
    を備えたことを特徴とするモータ制御方法。
  5. 上位コントローラからPWM信号を受信し、車両に搭載されたバッテリを冷却する冷却ブロアのモータを前記PWM信号に基づいて制御するモータ制御装置であって、
    前記PWM信号のPWM周波数およびPWMデューティ比を検出するPWM信号検出部と、
    前記PWM信号検出部の出力に基づいて前記PWM信号に前記冷却ブロアの仕向け地を特定する仕向け信号パターンを要求する仕向け信号要求パターンが含まれているか否かを判定する要求パターン判定部と、
    前記要求パターン判定部の判定結果に基づいてPWM信号を生成するPWM信号生成部と、を備え、
    前記PWM信号生成部は、前記仕向け信号要求パターンが含まれている場合には、前記仕向け信号パターンに基づいて前記PWM信号を生成し、前記仕向け信号要求パターンが含まれていない場合には、前記モータの実回転速度情報に基づいて前記PWM信号を生成し、生成された前記PWM信号を前記上位コントローラへ送信することを特徴とするモータ制御装置。
  6. 前記PWM信号検出部は、前記PWM信号の立上りエッジを検出する立上りエッジ検出部と、前記立上りエッジ検出部の出力に基づいて前記PWM周波数を検出するエッジ周期検出部と、前記立上りエッジ検出部の出力に基づいて前記PWMデューティ比を検出するデューティ比検出部から構成されることを特徴とする請求項5に記載のモータ制御装置。
  7. 前記PWM信号生成部は、前記PWM周波数を算出する周波数算出部と、前記PWMデューティ比を算出するデューティ比算出部と、前記PWM周波数および前記PWMデューティ比に基づいて前記PWM信号を生成するPWM信号出力部より構成されることを特徴とする請求項5に記載のモータ制御装置。
PCT/JP2013/002768 2012-06-12 2013-04-24 モータ制御システム、モータ制御方法およびモータ制御装置 WO2013186975A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380002864.0A CN103781671B (zh) 2012-06-12 2013-04-24 电动机控制系统、电动机控制方法以及电动机控制装置
EP13804104.1A EP2722237B1 (en) 2012-06-12 2013-04-24 Motor control system, motor control method, and motor control apparatus
JP2013531032A JP5408394B1 (ja) 2012-06-12 2013-04-24 モータ制御システム、モータ制御方法およびモータ制御装置
US14/238,514 US9785156B2 (en) 2012-06-12 2013-04-24 Motor control system, method, and device for changing control software for a vehicle cooling blower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012132459 2012-06-12
JP2012-132459 2012-06-12

Publications (1)

Publication Number Publication Date
WO2013186975A1 true WO2013186975A1 (ja) 2013-12-19

Family

ID=49757829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002768 WO2013186975A1 (ja) 2012-06-12 2013-04-24 モータ制御システム、モータ制御方法およびモータ制御装置

Country Status (5)

Country Link
US (1) US9785156B2 (ja)
EP (1) EP2722237B1 (ja)
JP (1) JP5408394B1 (ja)
CN (1) CN103781671B (ja)
WO (1) WO2013186975A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103782508B (zh) * 2012-03-09 2015-09-02 松下电器产业株式会社 电动机控制装置、无刷电动机以及电动机控制系统
CN105634189A (zh) * 2014-11-06 2016-06-01 刘粤荣 一种轮毂连体电动装置及其驱动、制动方法
CN104808719B (zh) * 2015-03-12 2017-09-22 北京长安汽车工程技术研究有限责任公司 一种温度控制系统及方法
JP6326007B2 (ja) * 2015-06-12 2018-05-16 株式会社Subaru 車載二次電池の冷却装置
US10523136B2 (en) * 2016-09-26 2019-12-31 Mitsubishi Electric Corporation Inverter device and method of controlling the same
US20180278190A1 (en) * 2017-03-21 2018-09-27 Inboard Technology, Inc. Controlling a motorized wheel
TWI635707B (zh) * 2017-12-08 2018-09-11 陞達科技股份有限公司 用以風扇晶片的訊號傳輸延遲的檢測系統及檢測方法
TWI660126B (zh) * 2018-01-16 2019-05-21 陞達科技股份有限公司 風扇控制系統及方法
KR102661933B1 (ko) 2019-06-12 2024-04-29 삼성전자주식회사 클락 모니터링 회로, 및 이를 포함하는 집적 회로 및 이를 포함하는 반도체 장치
JP7215403B2 (ja) * 2019-11-29 2023-01-31 株式会社豊田自動織機 インバータ制御装置及び車載用流体機械

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264824A (ja) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd 電子制御ユニット
JP2009126461A (ja) 2007-11-27 2009-06-11 Yuhshin Co Ltd 仕向け地設定用制御回路
JP2010003506A (ja) * 2008-06-19 2010-01-07 Honda Motor Co Ltd 水素換気ファンの検査システム
JP4491106B2 (ja) 2000-03-23 2010-06-30 株式会社日本クライメイトシステムズ 車両用空調制御装置
JP2010281307A (ja) * 2009-06-08 2010-12-16 Fujitsu Ten Ltd エコラン制御装置及びエコラン制御方法
JP2012044813A (ja) * 2010-08-20 2012-03-01 Denso Corp 車両用電源装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7548037B2 (en) * 1992-04-22 2009-06-16 Nartron Corporation Collision monitoring system
US7064658B2 (en) * 2003-03-10 2006-06-20 Daimlerchrysler Corporation Integrated vehicle power distribution and gateway system
US7141950B1 (en) * 2006-02-28 2006-11-28 Cypress Semiconductor Corp. Fan control utilizing bi-directional communication
CN201134785Y (zh) 2007-12-29 2008-10-15 马建红 Pwm电机控制器
US7821218B2 (en) * 2008-04-22 2010-10-26 Emerson Electric Co. Universal apparatus and method for configurably controlling a heating or cooling system
JP2011132853A (ja) 2009-12-24 2011-07-07 Fujitsu Ten Ltd ファンモータ制御装置及びファンモータ制御システム
CN102230658B (zh) 2010-02-01 2013-09-11 中山大洋电机制造有限公司 一种空调风机电机控制器及其控制方法
CN102959855B (zh) * 2010-06-25 2015-01-21 丰田自动车株式会社 马达驱动装置和搭载该马达驱动装置的车辆
US8688313B2 (en) * 2010-12-23 2014-04-01 Aes Technologies, Llc. Remote vehicle programming system and method
CN103782508B (zh) * 2012-03-09 2015-09-02 松下电器产业株式会社 电动机控制装置、无刷电动机以及电动机控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491106B2 (ja) 2000-03-23 2010-06-30 株式会社日本クライメイトシステムズ 車両用空調制御装置
JP2005264824A (ja) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd 電子制御ユニット
JP2009126461A (ja) 2007-11-27 2009-06-11 Yuhshin Co Ltd 仕向け地設定用制御回路
JP2010003506A (ja) * 2008-06-19 2010-01-07 Honda Motor Co Ltd 水素換気ファンの検査システム
JP2010281307A (ja) * 2009-06-08 2010-12-16 Fujitsu Ten Ltd エコラン制御装置及びエコラン制御方法
JP2012044813A (ja) * 2010-08-20 2012-03-01 Denso Corp 車両用電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2722237A4 *

Also Published As

Publication number Publication date
US9785156B2 (en) 2017-10-10
EP2722237B1 (en) 2016-11-23
EP2722237A4 (en) 2014-10-15
JPWO2013186975A1 (ja) 2016-02-01
US20140200732A1 (en) 2014-07-17
CN103781671A (zh) 2014-05-07
CN103781671B (zh) 2015-04-08
EP2722237A1 (en) 2014-04-23
JP5408394B1 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5408394B1 (ja) モータ制御システム、モータ制御方法およびモータ制御装置
JP5370625B1 (ja) モータ制御システム、モータ制御装置およびブラシレスモータ
JP5413424B2 (ja) モータ駆動装置およびブラシレスモータ
US8564232B2 (en) Motor drive control device
EP2219289B1 (en) Inverter device for washing machine
US9929687B2 (en) Motor control device
US6859001B2 (en) Torque ripple and noise reduction by avoiding mechanical resonance for a brushless DC machine
US11837923B2 (en) Rotor for an electric machine and electric machine having a rotor
JP2000515718A (ja) 特に永久磁石同期電動機のための作動・制御方法並びに作動・制御装置
CN109072853B (zh) 控制集成式起动机-发电机的方法和系统
JP5151530B2 (ja) 電動機
JP2011055651A (ja) モータ制御装置
JP2013074769A (ja) 電動機の制御データ更新方法と制御装置
JP5387804B1 (ja) モータ制御装置、ブラシレスモータおよびモータ制御システム
JP2019161933A (ja) ブラシレスモータ
JP2000188891A (ja) ブラシレスモータの駆動方法及び駆動装置
JP3655799B2 (ja) 制御回路付きモータ
KR102553804B1 (ko) 모터 및 모터의 오버슈트 감소 제어방법
CN111954978B (zh) 驱动装置、驱动方法以及电动车辆
JP2010119284A (ja) モータ駆動装置
JP2002112574A (ja) ブラシレスモータ制御装置
JPS6223388A (ja) 1相の半導体電動機及びその起動方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013531032

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013804104

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013804104

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13804104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14238514

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE