WO2013186914A1 - 回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法 - Google Patents

回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法 Download PDF

Info

Publication number
WO2013186914A1
WO2013186914A1 PCT/JP2012/065358 JP2012065358W WO2013186914A1 WO 2013186914 A1 WO2013186914 A1 WO 2013186914A1 JP 2012065358 W JP2012065358 W JP 2012065358W WO 2013186914 A1 WO2013186914 A1 WO 2013186914A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
epoxy
thermosetting resin
liquid thermosetting
Prior art date
Application number
PCT/JP2012/065358
Other languages
English (en)
French (fr)
Inventor
茂之 山本
馬渕 貴裕
久保 一樹
悠平 粟野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014521077A priority Critical patent/JP5766352B2/ja
Priority to US14/405,528 priority patent/US9890277B2/en
Priority to CN201280073955.9A priority patent/CN104364999B/zh
Priority to PCT/JP2012/065358 priority patent/WO2013186914A1/ja
Priority to DE112012006529.8T priority patent/DE112012006529T5/de
Publication of WO2013186914A1 publication Critical patent/WO2013186914A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • the present invention relates to a liquid thermosetting resin composition for insulating a rotating electric machine stator coil, a rotating electric machine using the same, and a method for producing the same.
  • insulating materials used in these electrical equipment are also required to have excellent chemical stability at high temperatures. It became so.
  • an insulating material is applied to the insulation of a stator coil of a rotating electrical machine, it is generally common to improve the heat resistance by increasing the crosslink density of the cured body.
  • Patent Document 1 an amino acid obtained by reacting an ⁇ -ketonitrile compound having at least two ⁇ -ketonitrile groups and a maleimide compound having at least two maleimide groups with an amine having at least two amino groups.
  • Heat resistance is improved by using a thermosetting resin composition containing at least a maleimide compound.
  • Patent Document 2 a polyfunctional epoxy resin obtained by reacting a specific bisphenol with a mixture of a bifunctional epoxy resin having a specific bisphenol such as bisphenol A as a skeleton and a resorcinic novolak resin, and a curing agent for the epoxy resin
  • a specific bisphenol such as bisphenol A as a skeleton and a resorcinic novolak resin
  • a curing agent for the epoxy resin In addition to heat resistance, mechanical strength and flexibility are also improved by using an epoxy resin composition that contains.
  • Patent Document 3 heat resistance and flexibility are obtained by blending a polysulfide-modified epoxy resin as a flexibility-imparting agent in a resin composition containing a bisphenol-based epoxy resin, a cresol novolac-based epoxy resin, and an alicyclic epoxy resin. Has improved.
  • the heat resistance is improved by providing a maleimide skeleton.
  • the cured body of such a resin composition is rigid, cracks occur when the film thickness increases. There was a problem that occurred.
  • the resin composition of patent document 2 and patent document 3 although flexibility was improved to some extent, heat resistance was still not enough. Therefore, the conventional resin composition cannot satisfy the mechanical characteristics and heat resistance required for the stator coil insulating resin of a rotating electric machine. Accordingly, the present invention has been made to solve the above-mentioned problems of the prior art, and a liquid thermosetting resin composition for insulating a rotating electric machine stator coil having excellent mechanical characteristics and heat resistance. The purpose is to provide.
  • thermosetting resin composition containing an epoxy resin is effective in insulating a rotating electric machine stator coil, and have completed the present invention.
  • the liquid thermosetting resin composition for insulating a stator coil of a rotating electric machine has at least one selected from the group consisting of linear epoxy resins and epoxy acrylate resins having a polymerization degree of 2 or more, At least one selected from the group consisting of a novolak type epoxy resin and a naphthalene type epoxy compound is ether-bonded and includes an epoxy resin having a weight average molecular weight of 2000 to 10,000.
  • thermosetting resin composition for insulating a rotating electric machine stator coil that can improve mechanical properties without reducing heat resistance.
  • Embodiment 1 A liquid thermosetting resin composition for insulating a rotating electric machine stator coil according to an embodiment of the present invention includes a compound having at least one stress relaxation skeleton selected from the group consisting of a linear epoxy resin and an epoxy acrylate resin. And an epoxy resin having a weight average molecular weight of 2000 to 10,000 obtained by reacting with a compound having at least one rigid skeleton selected from the group consisting of a novolac type epoxy resin and a naphthalene type epoxy compound Is.
  • linear epoxy used in the embodiment of the present invention examples include a bisphenol A type epoxy resin represented by the following formula (1), a bisphenol F type epoxy resin represented by the following formula (2), and bisphenol AD.
  • n represents a positive integer.
  • n represents a positive integer.
  • the epoxy acrylate resin used in the embodiment of the present invention includes bisphenol F type epoxy acrylate, modified bisphenol A type epoxy acrylate, and modified bisphenol. Examples thereof include F-type epoxy acrylate, brominated bisphenol A-type epoxy acrylate, brominated bisphenol F-type epoxy acrylate, and the like. These may be used alone or in combination of two or more.
  • n represents a positive integer
  • R represents H or an alkyl group having 1 to 3 carbon atoms.
  • novolak type epoxy resin used in the embodiment of the present invention a phenol novolak type epoxy resin represented by the following formula (4), a cresol novolak type epoxy resin represented by the following formula (5), Brominated phenol novolac type epoxy resins, brominated cresol novolac type epoxy resins and the like can be mentioned. These may be used alone or in combination of two or more.
  • n represents a positive integer.
  • m represents 1 or 2
  • n represents a positive integer
  • R represents H or an alkyl group having 1 to 3 carbon atoms
  • X represents a direct bond or the number of carbon atoms 1 to 3 methylene groups are represented.
  • naphthalene type epoxy compound used in the embodiment of the present invention a tetrafunctional naphthalene type epoxy compound represented by the following formula (6), a bifunctional naphthalene type epoxy compound represented by the following formula (7), Examples thereof include a phenol naphthalene type epoxy resin, a cresol naphthalene type epoxy resin, a brominated phenol naphthalene type epoxy resin, and a brominated cresol naphthalene type epoxy resin. These may be used alone or in combination of two or more.
  • linear epoxy resin When using a linear epoxy resin, it is necessary to include a linear epoxy resin having a degree of polymerization of 2 or more. When only a linear epoxy resin having a degree of polymerization of less than 2 is used, the resulting epoxy resin does not exhibit the effect of introducing a linear skeleton into the molecular structure, and cracks occur in the cured product.
  • the degree of polymerization of the linear epoxy resin is preferably 2 to 10. When a linear epoxy resin having a degree of polymerization of 11 or more is included, the heat resistance of the cured product tends to decrease.
  • an epoxy acrylate resin When using an epoxy acrylate resin, it is preferable to include an epoxy acrylate resin having a polymerization degree of 2 to 10. When only an epoxy acrylate resin having a degree of polymerization of less than 2 is used, the resulting epoxy resin does not exhibit the effect of introducing a linear skeleton into the molecular structure and tends to cause cracks in the cured product. When the epoxy acrylate resin having a degree of polymerization of 11 or more is included, the resulting epoxy resin tends to reduce the heat resistance of the cured product.
  • a novolac type epoxy resin When using a novolac type epoxy resin, it is preferable to include a novolac type epoxy resin having a polymerization degree of 3 to 10. When only a novolac type epoxy resin having a degree of polymerization of less than 3 is used, the resulting epoxy resin tends to have reduced heat resistance. When a novolac type epoxy resin having a degree of polymerization of 11 or more is included, the novolac type epoxy resin is not compatible with the linear epoxy resin and the epoxy acrylate resin, and the epoxy resin obtained even when they are compatible has a viscosity of It is expensive and the cured product tends to be brittle.
  • an epoxy resin is obtained by reacting at least one selected from the group consisting of a linear epoxy resin and an epoxy acrylate resin with at least one of a novolak type epoxy resin and a naphthalene type epoxy compound, the novolac type epoxy resin and the naphthalene At least one selected from the group consisting of linear epoxy resins and epoxy acrylate resins, preferably 2 to 50 epoxy equivalents, more preferably 3 to 40 per 100 epoxy equivalents of at least one type of epoxy compound Epoxy equivalent reaction.
  • the resulting epoxy resin is at least selected from the group consisting of linear epoxy resins and epoxy acrylate resins.
  • the glass transition temperature of the cured product is lowered as compared with a mixture obtained by mixing one kind and at least one kind of novolac type epoxy resin and naphthalene type epoxy compound without reacting them.
  • at least one selected from the group consisting of a linear epoxy resin and an epoxy acrylate resin is less than 2 epoxy equivalents, the resulting epoxy resin does not exhibit the effect of introducing a linear skeleton into the molecular structure, Cracks occur in the cured body.
  • a curing accelerator When at least one selected from the group consisting of a linear epoxy resin and an epoxy acrylate resin is reacted with at least one of a novolac type epoxy resin and a naphthalene type epoxy compound, it is preferable to use a curing accelerator.
  • the curing accelerator include zinc naphthenate, zinc octylate, iron octylate, tin octylate, zinc naphthylate, iron naphthylate, tin naphthylate and the like, 2,5-dimethyl-2,5 ( And peroxides such as dibenzoylperoxy) hexane. These may be used alone or in combination of two or more.
  • the amount of the curing accelerator used is usually 0.01 to 1 part by weight with respect to 100 parts by weight of the thermosetting resin composition composed of the main agent and the curing agent.
  • the weight average molecular weight of the epoxy resin obtained by reacting at least one selected from the group consisting of a linear epoxy resin and an epoxy acrylate resin with at least one of a novolac type epoxy resin and a naphthalene type epoxy compound is 2000 to 10,000. It is necessary that it is 2500 to 8000. When the weight average molecular weight of the epoxy resin is less than 2000, the mechanical strength becomes insufficient. On the other hand, when the weight average molecular weight of the epoxy resin is more than 10,000, it becomes solid at room temperature and is difficult to handle.
  • the weight average molecular weight of the epoxy resin in the present embodiment is a numerical value measured with tetrahydrofuran as a developing solvent, sample concentration: 0.1% by weight, and flow rate during measurement: 1 mL / min, using the following apparatus. is there.
  • the liquid thermosetting resin composition for insulating a rotating electric machine stator coil it is preferable to add at least one selected from maleimide and isocyanurate in order to improve heat resistance.
  • the bismaleimide include 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, bisphenol A diphenyl ether bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, 4 -Methyl-1,3-phenylenebismaleimide, 1,6'-bismaleimide- (2,2,4-trimethyl) hexane and the like.
  • isocyanurates examples include triallyl isocyanurate and trimethallyl isocyanurate. These may be used alone or in combination of two or more.
  • the amount of bismaleimide and isocyanurate used is preferably 10 to 50 parts by weight, more preferably 15 to 30 parts by weight, based on 100 parts by weight of the epoxy resin obtained by the reaction. .
  • a curing agent may be added to the liquid thermosetting resin composition for insulating a rotating electric machine stator coil according to the embodiment of the present invention as necessary.
  • the curing agent include acid anhydrides, amide compounds, phenol compounds, and imidazole compounds. These may be used alone or in combination of two or more.
  • acid anhydrides include aromatics such as phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol trimellitic anhydride, and biphenyltetracarboxylic anhydride.
  • the amount of acid anhydride used is usually such that the equivalent ratio of carboxyl groups to epoxy groups of the epoxy resin obtained by reaction is 0.3 to 1.5, more preferably 0.5 to 1.
  • the amount is 2.
  • the amount of the acid anhydride used is less than 0.3, the heat resistance is poor, and when it is more than 1.5, the usable life is shortened.
  • amide compounds include dicyandiamide and the like.
  • phenolic compound include naphthol and cresol.
  • Specific examples of the imidazole compound include 2-methylimidazole (2MZ), 2-ethyl-4-methylimidazole (2E4MZ), 2-undecylimidazole (C11Z), 2-heptadecylimidazole (C17Z), 2 -Phenylimidazole (2PZ), 1-benzyl-2-methylimidazole (1B2MZ), 1-cyanoethyl compound, 1-cyanoethyl trimellitic acid salt, azine compound, quaternary salt, isocyanuric acid salt, hydroxymethyl compound, etc. It is done.
  • the amount of these curing agents used is usually such that the equivalent ratio of the curing agent to the epoxy group of the epoxy resin obtained by the reaction is 0.2 to 2.0, preferably 0.3 to 1. The amount is 5.
  • the cured product using the liquid thermosetting resin composition according to the embodiment of the present invention includes at least one selected from the group consisting of a linear epoxy resin and an epoxy acrylate resin, a novolac epoxy resin, and a naphthalene epoxy.
  • a liquid thermosetting resin composition in which at least one compound, a curing agent, and a curing accelerator are mixed the occurrence of cracks is remarkably suppressed, and the glass transition temperature is reduced. There is no decline.
  • the liquid thermosetting resin composition according to the embodiment of the present invention is bonded to an electric wire. There is also an effect that the property is good.
  • liquid thermosetting resin composition according to the embodiment of the present invention has a very long usable life with low viscosity in addition to the above characteristics, so that it is not only used for rotating electrical machine stator coils but also used for lamination. It is also useful for casting applications.
  • a rotating electrical machine includes a rotor and a stator that is disposed outside or inside the rotor and has a plurality of slots, and the slot is a liquid heat for insulating the rotating electrical machine stator coil described above. It comprises a winding covered with a cured body of a curable resin composition.
  • a stator according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the stator includes a stator core 1 in which iron plates are stacked in a cylindrical shape, a plurality of slots 2 formed in the axial direction on the inner peripheral surface of the stator core 1, and a plurality of slots.
  • FIG. 1 An insulating film 3 provided inside the slot 2, an electric wire 4 wound around the plurality of slots 2, a binding thread 5 for binding the electric wire 4, and a liquid thermosetting resin composition covering the stator It is comprised with the hardening body 6.
  • FIG. 1 the plurality of slots 2 are insulated, the electric wires 4 are wound a predetermined number of times, and the stator is coated with the above-described liquid thermosetting resin composition for coil insulation of a rotating electric machine and then cured. Thus, it can be obtained by insulating treatment.
  • a rotating electrical machine is manufactured by arranging the stator on the outside or the inside of the rotor.
  • the rotating electrical machine according to the embodiment of the present invention only needs to be obtained by impregnating the stator having a plurality of slots with the liquid thermosetting resin composition described above.
  • a coil may or may not be incorporated.
  • vacuum impregnation may be performed to improve impregnation into the stator core, impregnation between windings, and impregnation into an insulating layer such as an insulating film forming coil insulation.
  • an insulating film is wound on a coil conductor, and the liquid thermosetting resin composition described above is impregnated under vacuum and pressure under known conditions on this wound layer, and then inserted into a mold. Then, the insulation coil is manufactured by heating and pressing.
  • a heating temperature of 100 ° C. to 250 ° C., a molding pressure of 5 kg / cm 2 to 100 kg / cm 2 , and a heating time of 4 hours to 24 hours are employed.
  • a heating temperature of 100 to 250 ° C. and a heating time of 0.5 to 20 hours are employed.
  • an insulating coil and a winding excellent in electrical and thermal properties can be obtained. If the molding condition is out of the above range, the interlayer adhesion of the obtained insulating coil is weak, and as a result, the electrical characteristics during thermal deterioration are remarkably lowered, and the insulating layer is floated or peeled off, which is not preferable. On the other hand, if the molding condition is out of the above range, the fixing force between the electric wires is weak, and as a result, the electrical characteristics at the time of thermal deterioration or mechanical deterioration are lowered, which is not preferable.
  • thermosetting resin composition having superior heat resistance and mechanical properties as compared with a conventional liquid thermosetting resin composition.
  • a rotating electrical machine using a stator insulated with this liquid thermosetting resin composition can have excellent electrical characteristics.
  • Example 1 100 parts by weight of m-cresol novolak type epoxy resin (mixture with a degree of polymerization of 3-6, epoxy equivalent: 200) and 20 parts by weight of bisphenol A type epoxy resin (a mixture with a degree of polymerization of 1-4, epoxy equivalent: 190) and naphthenic acid After adding 1 part by weight of zinc, the mixture was heated and stirred at 150 ° C. for 2 hours. The obtained epoxy resin had a weight average molecular weight of 3,400. After cooling to 100 ° C., 50 parts by weight of bisphenol A diphenyl ether bismaleimide was added and stirred at the same temperature for 2 hours. After cooling to 80 ° C.
  • thermosetting resin composition of Example 1 60 parts by weight of methyltetrahydrophthalic anhydride was added as a curing agent to prepare a liquid thermosetting resin composition of Example 1.
  • This composition was cured by heating, and the heat resistance and cracking property of the obtained cured product were evaluated.
  • glass transition temperature was evaluated using TMASS6000 (Seiko Instruments Co., Ltd.) at a heating rate of 10 ° C./min.
  • the cracking property a cured product having a thickness of 3 mm was held in a curing furnace at 220 ° C. for 10 days, and then the appearance of cracks was inspected.
  • the obtained cured product had a glass transition temperature of 150 ° C., and no cracks were observed.
  • the liquid thermosetting resin composition of Example 1 is excellent in heat resistance and mechanical properties.
  • Example 2 Instead of 20 parts by weight of a bisphenol A type epoxy resin (a mixture having a degree of polymerization of 1-4, epoxy equivalent: 190), 50 parts by weight of a bisphenol F type epoxy resin (a mixture having a degree of polymerization of 1-5, epoxy equivalent: 190) was used. Except that, an epoxy resin was obtained in the same manner as in Example 1. The obtained epoxy resin had a weight average molecular weight of 5,100. Using this epoxy resin, a liquid thermosetting resin composition of Example 2 was prepared in the same manner as in Example 1 except that 50 parts by weight of triallyl isocyanurate was used instead of 50 parts by weight of bisphenol A diphenyl ether bismaleimide. . The characteristics of the cured product were examined in the same manner as in Example 1. As a result, the glass transition temperature was 139 ° C., no cracks were observed, and it was confirmed that the heat resistance and mechanical characteristics were excellent.
  • a bisphenol A type epoxy resin a mixture having a degree of polymerization of 1-4, epoxy
  • Example 3> Instead of 100 parts by weight of m-cresol novolac type epoxy resin (a mixture with a polymerization degree of 3-6, epoxy equivalent: 200), 100 parts by weight of phenol novolac type epoxy resin (a mixture with a polymerization degree of 3-6, epoxy equivalent: 200) In place of 20 parts by weight of bisphenol A type epoxy resin (mixture with a polymerization degree of 1-4, epoxy equivalent: 190), 10 parts by weight of bisphenol A type epoxy resin (a mixture with a polymerization degree of 5-10, epoxy equivalent: 450) An epoxy resin was obtained in the same manner as in Example 1 except that it was used. The weight average molecular weight of the obtained epoxy resin was 3000.
  • Example 3 Using this epoxy resin, a liquid thermosetting resin composition of Example 3 was prepared in the same manner as in Example 1 except that the amount of bisphenol A diphenyl ether bismaleimide was changed to 30 parts by weight. The characteristics of the cured product were examined in the same manner as in Example 1. As a result, the glass transition temperature was 140 ° C., no cracks were observed, and it was confirmed that the heat resistance and mechanical characteristics were excellent.
  • Example 4 100 parts by weight of 1,5-naphthalenediglycidyl ether naphthalene was used in place of 100 parts by weight of m-cresol novolac type epoxy resin (a mixture having a polymerization degree of 3 to 6, an epoxy equivalent of 200), and a bisphenol A type epoxy resin (a polymerization degree of 1 An epoxy resin was obtained in the same manner as in Example 1 except that 20 parts by weight of an epoxy acrylate resin (a mixture having a polymerization degree of 1 to 15) was used in place of 20 parts by weight of the mixture of 4 to 4, epoxy equivalent: 190). The obtained epoxy resin had a weight average molecular weight of 6,500.
  • Example 4 Using this epoxy resin, a liquid thermosetting resin composition of Example 4 was prepared in the same manner as Example 1. The characteristics of the cured product were examined in the same manner as in Example 1. As a result, the glass transition temperature was 162 ° C., no cracks were observed, and it was confirmed that they were excellent in heat resistance and mechanical properties.
  • Example 5 Instead of 20 parts by weight of a bisphenol A type epoxy resin (a mixture having a degree of polymerization of 1-4, epoxy equivalent: 190), 50 parts by weight of a brominated bisphenol A type epoxy resin (a mixture having a degree of polymerization of 1-5, epoxy equivalent: 500) An epoxy resin was obtained in the same manner as in Example 1 except that it was used. The obtained epoxy resin had a weight average molecular weight of 5,600. Using this epoxy resin, a liquid thermosetting resin composition of Example 5 was prepared in the same manner as in Example 1 except that 50 parts by weight of triallyl isocyanurate was used instead of 50 parts by weight of bisphenol A diphenyl ether bismaleimide. . The characteristics of the cured product were examined in the same manner as in Example 1. As a result, the glass transition temperature was 156 ° C., no cracks were observed, and it was confirmed that the heat resistance and mechanical characteristics were excellent.
  • a bisphenol A type epoxy resin a mixture having a degree of polymerization of 1-4
  • Example 6 Using the liquid thermosetting resin composition of Example 1, a stator coil wound with an enameled wire was impregnated at normal pressure. Thereafter, it was cured by heating at 160 ° C. for 8 hours. A rotating electrical machine using this stator was manufactured and subjected to a heat cycle of 150 ° C. to ⁇ 40 ° C., and the insulation resistance was measured. As a result, it was as good as before the heat cycle test (insulation resistance of 1000 M ⁇ or more) ). Further, when the appearance was inspected, generation of cracks was not recognized.
  • Example 7 A glass cloth (Arisawa Mfg. Co., Ltd., thickness 0.025 mm) is used as a backing material on a coil conductor having a cross section of 40 ⁇ 10 mm, in which 2 ⁇ 5 ⁇ 2000 mm double glass-wrapped rectangular copper wires are combined in two rows and 20 stages.
  • the resulting laminated mica tape was wound 12 times in a semi-wrapped manner, and further a Tetron (registered trademark) tape (manufactured by Teijin Ltd., thickness 0.13 mm) was wound once as a protective tape.
  • the curable resin composition was vacuum impregnated at a pressure of 0.1 mmHg or less for 120 minutes, then pressurized at a pressure of 3 kg / cm 2 for 180 minutes, and then inserted into a mold, at a temperature of 150 ° C., a pressure of 20 kg / cm 2 , After performing heat and pressure molding under conditions of 6 hours, curing was further performed at 150 ° C. under conditions of 16 hours to obtain an insulating coil.
  • the initial ⁇ tan ⁇ , breakdown voltage and ⁇ tan ⁇ after 16 days at 180 ° C. were measured. As a result, the initial ⁇ tan ⁇ was 0.02, the breakdown voltage was 105 kV, ⁇ Tan ⁇ after 16 days at 180 ° C. was 0.16, and the characteristics of the insulating coil were good.
  • Comparative example 2 Instead of 20 parts by weight of a bisphenol A type epoxy resin (a mixture having a degree of polymerization of 1 to 5, epoxy equivalent: 190), 200 parts by weight of a bisphenol F type epoxy resin (a mixture having a degree of polymerization of 1 to 5, epoxy equivalent: 190) was used.
  • a liquid thermosetting resin composition of Comparative Example 2 was prepared in the same manner as in Comparative Example 1 except for the above. When the characteristics of the cured product were examined in the same manner as in Example 1, the glass transition temperature was 122 ° C., and the occurrence of cracks was observed.
  • Comparative Example 3 The amount of m-cresol novolac epoxy resin (a mixture having a polymerization degree of 3-6, epoxy equivalent: 200) was changed to 90 parts by weight, and a bisphenol A type epoxy resin (a mixture having a polymerization degree of 1-5, epoxy equivalent: 190).
  • the liquid thermosetting resin composition of Comparative Example 3 was prepared in the same manner as Comparative Example 1 except that 2 parts by weight of bisphenol A type epoxy resin (polymerization degree 1 to 12, epoxy equivalent: 470) was used instead of 20 parts by weight. Prepared. When the characteristics of the cured product were examined in the same manner as in Example 1, the glass transition temperature was 118 ° C., and the occurrence of cracks was observed.
  • Stator core 1 Stator core 1, 2 slot, 3 insulating film, 4 electric wire, 5 string, 6 hardened body of liquid thermosetting resin composition.

Abstract

 本発明の液状熱硬化性樹脂組成物は、重合度が2以上である直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種と、ノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物からなる群から選択される少なくとも1種とがエーテル結合され、重量平均分子量が2000~10000であるエポキシ樹脂を含むことを特徴とするものである。本発明の液状熱硬化性樹脂組成物を回転電機固定子コイル絶縁用途に用いることで、耐熱性を低下させることなく機械的特性を向上させることができる。

Description

回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法
 本発明は、回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法に関するものである。
 電気機器の小形化、高耐熱化等に代表される高性能化及び高信頼性化の要求に伴い、これらの電気機器に用いられる絶縁材料にも高温における化学的安定性に優れるものが要求されるようになった。特に、絶縁材料が、回転電機の固定子コイルの絶縁に適用される場合、硬化体の架橋密度を上げることにより耐熱性を向上させることが一般的によく行われている。
 例えば、特許文献1では、少なくとも2個のα-ケトニトリル基を有するα-ケトニトリル化合物及び少なくとも2個のマレイミド基を有するマレイミド化合物と少なくとも2個のアミノ基を有するアミンとを反応させて得られるアミノマレイミド化合物を少なくとも含有する熱硬化性樹脂組成物とすることで、耐熱性の向上を図っている。
 特許文献2では、ビスフェノールA等の特定のビスフェノール類を骨格として有する二官能エポキシ樹脂とレゾルシン系ノボラック樹脂との混合物に特定のビスフェノール類を反応させて得られる多官能エポキシ樹脂及びエポキシ樹脂用硬化剤を含むエポキシ樹脂組成物とすることで、耐熱性だけでなく、機械的強度及び可撓性も向上させている。
 特許文献3では、ビスフェノール系エポキシ樹脂、クレゾールノボラック系エポキシ樹脂及び脂環系エポキシ樹脂を含有する樹脂組成物にポリサルファイド変性エポキシ樹脂を可撓性付与剤として配合することで、耐熱性及び可撓性を向上させている。
特開昭60-152528号公報 特開昭63-48323号公報 特開平7-207123号公報
 しかし、特許文献1に記載の樹脂組成物では、マレイミド骨格を付与することで耐熱性を向上させているが、このような樹脂組成物の硬化体は剛直であるため、膜厚が厚くなるとクラックが発生するという問題があった。また、特許文献2及び特許文献3に記載の樹脂組成物では、可撓性はある程度改善されるものの、耐熱性が未だ十分でなかった。そのため、従来の樹脂組成物では、回転電機の固定子コイル絶縁用樹脂に求められる機械的特性及び耐熱性を満足できなかった。
 従って、本発明は、上記のような従来技術の問題点を解決するためになされたものであり、優れた機械的特性及び耐熱性を有する回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物を提供することを目的としている。
 そこで、本発明者らは上記のような従来の問題点を解決すべく鋭意研究、開発を遂行した結果、応力緩和骨格を有する特定の化合物と剛直骨格を有する特定の化合物とを予め反応させて得られるエポキシ樹脂を含む熱硬化性樹脂組成物が回転電機固定子コイルの絶縁に有効であることに想到し、本発明を完成するに至った。
 即ち、本発明に係る回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物は、重合度が2以上である直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種と、ノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物からなる群から選択される少なくとも1種とがエーテル結合され、重量平均分子量が2000~10000であるエポキシ樹脂を含むことを特徴とするものである。
 本発明によれば、耐熱性を低下させることなく機械的特性を向上させることができる回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物を提供することができる。
本発明の実施の形態1に係る回転電機の上面図である。 本発明の実施の形態1に係る回転電機の側面図である。
 実施の形態1.
 本発明の実施の形態による回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物は、直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種の応力緩和骨格を有する化合物と、ノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物からなる群から選択される少なくとも1種の剛直骨格を有する化合物とを反応させて得られる重量平均分子量が2000~10000のエポキシ樹脂を含むことを特徴とするものである。
 本発明の実施の形態に用いられる直鎖状エポキシとしては、下記の式(1)で表されるビスフェノールA型エポキシ樹脂、下記の式(2)で表されるビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ブロム化ビスフェノールA型エポキシ樹脂、ブロム化ビスフェノールF型エポキシ樹脂、ブロム化ビスフェノールAD型エポキシ樹脂、脂環式エポキシ樹脂、ブロム化脂環式エポキシ樹脂等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000001
 式(1)において、nは、正の整数を表す。
Figure JPOXMLDOC01-appb-C000002
 式(2)において、nは、正の整数を表す。
 また、本発明の実施の形態に用いられるエポキシアクリレート樹脂としては、下記の式(3)で表されるビスフェノールA型エポキシアクリレートの他、ビスフェノールF型エポキシアクリレート、変性ビスフェノールA型エポキシアクリレート、変性ビスフェノールF型エポキシアクリレート、臭素化ビスフェノールA型エポキシアクリレート、臭素化ビスフェノールF型エポキシアクリレート等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000003
 式(3)において、nは、正の整数を表し、Rは、H又は炭素原子数1~3のアルキル基を表す。
 また、本発明の実施の形態に用いられるノボラック型エポキシ樹脂としては、下記の式(4)で表されるフェノールノボラック型エポキシ樹脂、下記の式(5)で表されるクレゾールノボラック型エポキシ樹脂、ブロム化フェノールノボラック型エポキシ樹脂、ブロム化クレゾールノボラック型エポキシ樹脂等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000004
 式(4)において、nは、正の整数を表す。
Figure JPOXMLDOC01-appb-C000005
 式(5)において、mは、1又は2を表し、nは、正の整数を表し、Rは、H又は炭素原子数1~3のアルキル基を表し、Xは、直接結合又は炭素原子数1~3のメチレン基を表す。
 本発明の実施の形態に用いられるナフタレン型エポキシ化合物としては、下記の式(6)で表される4官能ナフタレン型エポキシ化合物、下記の式(7)で表される2官能ナフタレン型エポキシ化合物、フェノールナフタレン型エポキシ樹脂、クレゾールナフタレン型エポキシ樹脂、ブロム化フェノールナフタレン型エポキシ樹脂、ブロム化クレゾールナフタレン型エポキシ樹脂等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 直鎖状エポキシ樹脂を使用する場合、重合度が2以上である直鎖状エポキシ樹脂を含むことが必要である。重合度が2未満の直鎖状エポキシ樹脂のみを使用した場合、得られるエポキシ樹脂は、直鎖骨格を分子構造に導入した効果を発揮せず、硬化体にクラックが発生する。直鎖状エポキシ樹脂の重合度は、好ましくは2~10である。重合度が11以上である直鎖状エポキシ樹脂を含む場合、硬化体の耐熱性は低下する傾向がある。
 エポキシアクリレート樹脂を使用する場合、重合度が2~10であるエポキシアクリレート樹脂を含むことが好ましい。重合度が2未満のエポキシアクリレート樹脂のみを使用した場合、得られるエポキシ樹脂は、直鎖骨格を分子構造に導入した効果を発揮せず、硬化体にクラックが発生する傾向がある。重合度が11以上であるエポキシアクリレート樹脂を含む場合、得られるエポキシ樹脂は、硬化体の耐熱性が低下する傾向がある。
 ノボラック型エポキシ樹脂を使用する場合、重合度が3~10であるノボラック型エポキシ樹脂を含むことが好ましい。重合度が3未満のノボラック型エポキシ樹脂のみを使用した場合、得られるエポキシ樹脂は、耐熱性が低下する傾向がある。重合度が11以上であるノボラック型エポキシ樹脂を含む場合、ノボラック型エポキシ樹脂と直鎖状エポキシ樹脂及びエポキシアクリレート樹脂とが相溶せず、また相溶した場合でも得られるエポキシ樹脂は、粘度が高く、また硬化体がもろくなる傾向がある。
 直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種とノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物の少なくとも1種とを反応させてエポキシ樹脂を得る場合、ノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物の少なくとも1種の100エポキシ当量に対して、直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種を、好ましくは2~50エポキシ当量、より好ましくは3~40エポキシ当量反応させる。直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種が50エポキシ当量より多い場合、得られるエポキシ樹脂は、直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種とノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物の少なくとも1種とを反応させずに混合した混合物と比較して、硬化体のガラス転移温度が低下する傾向がある。一方、直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種が2エポキシ当量より少ない場合、得られるエポキシ樹脂は、直鎖骨格を分子構造に導入した効果を発揮せず、硬化体にクラックが発生する。
 直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種とノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物の少なくとも1種とを反応させる際には、硬化促進剤を使用することが好ましい。 硬化促進剤としては、ナフテン酸亜鉛、オクチル酸亜鉛、オクチル酸鉄、オクチル酸錫、ナフチル酸亜鉛、ナフチル酸鉄、ナフチル酸錫等のカルボン酸金属塩、2,5-ジメチル-2,5(ジベンゾイルパーオキシ)ヘキサン等の過酸化物が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。硬化促進剤の使用量は、通常、主剤と硬化剤とで構成される熱硬化性樹脂組成物100重量部に対して0.01重量部~1重量部である。
 直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種とノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物の少なくとも1種とを反応させたエポキシ樹脂の重量平均分子量は2000~10000であることが必要であり、2500~8000であることが好ましい。エポキシ樹脂の重量平均分子量が2000未満である場合、機械的強度が不十分となる。一方、エポキシ樹脂の重量平均分子量が10000超である場合、室温で固形となり取扱いが困難となる。
 なお、本実施の形態におけるエポキシ樹脂の重量平均分子量は、以下の装置を用いて、テトラヒドロフランを展開溶媒とし、サンプル濃度:0.1重量%、測定時の流量:1mL/分で測定した数値である。
 使用機器;東ソー株式会社製HLC-8320
 カラム;TSK―GEL1000~4000
 標準試料;ポリスチレン
 本発明の実施の形態による回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物には、耐熱性向上のために、マレイミド及びイソシアヌレートから選択される少なくとも1種を添加することが好ましい。ビスマレイミドとしては、4,4’-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、1,6’-ビスマレイミド-(2,2,4-トリメチル)ヘキサン等が挙げられる。また、イソシアヌレートとしては、トリアリルイソシアヌレート、トリメタリルイソシアヌレート等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。ビスマレイミド及びイソシアヌレートの使用量は、反応させて得られたエポキシ樹脂100重量部に対して、10重量部~50重量部であることが好ましく、15重量~30重量部であることが更に好ましい。
 また、本発明の実施の形態による回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物には、必要に応じて硬化剤を添加してもよい。硬化剤としては、酸無水物、アミド系化合物、フェノール系化合物、イミダゾール化合物等が挙げられる。これらは、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 酸無水物の具体例としては、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、エチレングリコール無水トリメリット酸、ビフェニルテトラカルボン酸無水物等の芳香族カルボン酸無水物、アゼライン酸、セバシン酸、ドデカン二酸等の脂肪族カルボン酸の無水物、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、ナジック酸無水物、クロレンド酸無水物、ハイミック酸無水物等の脂環式カルボン酸無水物等があげられる。酸無水物の使用量は、通常、反応させて得られたエポキシ樹脂のエポキシ基に対するカルボキシル基の当量比が0.3~1.5となる量であり、更に好ましくは0.5~1.2となる量である。酸無水物の使用量が0.3より少ないと耐熱性に劣り、1.5より多いと可使寿命が短くなる。
 アミド系化合物の具体例としては、ジシアンジアミド等が挙げられる。また、フェノール系化合物の具体例としては、ナフトール、クレゾール等が挙げられる。また、イミダゾール系化合物の具体例としては、2-メチルイミダゾール(2MZ)、2-エチル-4-メチルイミダゾール(2E4MZ)、2-ウンデシルイミダゾール(C11Z)、2-ヘプタデシルイミダゾール(C17Z)、2-フェニルイミダゾール(2PZ)、1-ベンジル-2-メチルイミダゾール(1B2MZ)、1-シアノエチル体、1-シアノエチル体トリメリット酸塩、アジン化合物、四級塩、イソシアヌル酸塩、ヒドロキシメチル体等が挙げられる。これらの硬化剤の使用量は、通常、反応させて得られたエポキシ樹脂のエポキシ基に対する硬化剤の当量比が0.2~2.0となる量であり、好ましくは0.3~1.5となる量である。
 本発明の実施の形態による液状熱硬化性樹脂組成物を用いた硬化体は、直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種と、ノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物の少なくとも1種と、硬化剤と、硬化促進剤とを混合した液状熱硬化性樹脂組成物を用いた場合と比較して、クラックの発生が顕著に抑制される上に、ガラス転移温度の低下が無い。また、上述した反応により得られるエポキシ樹脂には、反応に寄与しない水酸基が長鎖骨格内に残存しているため、本発明の実施の形態による液状熱硬化性樹脂組成物は、電線との接着性が良好であるという効果も奏する。更に、本発明の実施の形態による液状熱硬化性樹脂組成物は、上記特性に加えて、低粘度で非常に長い可使寿命を有するので、回転電機固定子コイル絶縁用途だけでなく、積層用途及び注型用途にも有用である。
 本発明の実施の形態による回転電機は、回転子と、回転子の外側又は内側に配置され、複数のスロットを有する固定子とを備え、スロットが、上述した回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物の硬化体で覆われた巻線を具備することを特徴とするものである。
 本発明の実施の形態による固定子を図面に基づいて説明する。図1及び2に示すように、固定子は、鉄板を円筒状に積層した固定子コア1と、この固定子コア1の内周面において軸方向に形成された複数のスロット2と、複数のスロット2の内側に設けられた絶縁フィルム3と、複数のスロット2に巻きつけられた電線4と、電線4を結束するための縛り糸5と、固定子を覆う液状熱硬化性樹脂組成物の硬化体6とで構成されている。このような固定子は、複数のスロット2に絶縁処理を施し電線4を所定回数巻きつけ、固定子を上述した回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物で被覆した後、硬化させることにより絶縁処理
して得ることができる。この固定子を回転子の外側又は内側に配置することで回転電機が製造される。
 なお、本発明の実施の形態による回転電機は、複数のスロットを有する固定子が上述した液状熱硬化性樹脂組成物により含浸されたものであればよく、複数のスロットを有する固定子に電線あるいはコイルが組み入れられていてもいなくてもよい。また、固定子コア内への含浸性、巻線間への含浸性、コイル絶縁を形成している絶縁フィルム等の絶縁層への含浸性を高めるために真空含浸を行ってもよい。絶縁フィルムを用いた固定子の場合、コイル導体上に絶縁フィルムを巻回し、この巻回層に上述した液状熱硬化性樹脂組成物を公知の条件で真空加圧含浸した後、金型に挿入し、加熱加圧成形せしめて絶縁コイルを製造する。この場合の成形条件としては、100℃~250℃の加熱温度、5kg/cm2~100kg/cm2の成形圧力、4時間~24時間の加熱時間が採用される。また、それ以外の場合は100℃~250℃の加熱温度、0.5時間~20時間の加熱時間が採用される。それにより電気的性質及び熱的性質に優れた絶縁コイル及び巻線が得られる。成形条件が上記範囲を外れると、得られる絶縁コイルの層間接着力が弱く、その結果熱劣化時の電気特性が著しく低下し、また絶縁層に浮きや剥がれが生じ、好ましくない。また、成形条件が上記範囲を外れると、電線間の固着力が弱く、その結果、熱劣化あるいは機械的劣化時の電気特性が低下し、好ましくない。
 本実施の形態によれば、従来の液状熱硬化性樹脂組成物と比較して、優れた耐熱性及び機械的特性を有する液状熱硬化性樹脂組成物を提供することができる。この液状熱硬化性樹脂組成物で絶縁した固定子を用いた回転電機は優れた電気特性を有することが可能となる。
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
 m-クレゾールノボラック型エポキシ樹脂(重合度3~6の混合物、エポキシ当量:200)100重量部にビスフェノールA型エポキシ樹脂(重合度1~4の混合物、エポキシ当量:190)20重量部及びナフテン酸亜鉛1重量部を添加した後、150℃で2時間加熱撹拌を行った。得られたエポキシ樹脂の重量平均分子量は3400であった。100℃まで冷却後、ビスフェノールAジフェニルエーテルビスマレイミド50重量部を添加し、同温で2時間撹拌を行った。80℃以下まで冷却後、硬化剤としてメチルテトラヒドロ無水フタル酸60重量部を添加し、実施例1の液状熱硬化性樹脂組成物を調製した。この組成物を加熱硬化させ、得られた硬化体の耐熱性及びクラック性を評価した。耐熱性に関しては、TMASS6000(セイコーインスツル(株))を用い、昇温速度10℃/分でガラス転移温度を評価した。また、クラック性に関しては、3mm厚の硬化体を220℃の硬化炉内で10日間保持した後、クラック有無を外観検査した。得られた硬化体のガラス転移温度は150℃であり、またクラックの発生は認められなかった。このように、実施例1の液状熱硬化性樹脂組成物は、耐熱性及び機械的特性に優れていることが確認された。
<実施例2>
 ビスフェノールA型エポキシ樹脂(重合度1~4の混合物、エポキシ当量:190)20重量部の代わりにビスフェノールF型エポキシ樹脂(重合度1~5の混合物、エポキシ当量:190)50重量部を用いた以外は実施例1と同様にしてエポキシ樹脂を得た。得られたエポキシ樹脂の重量平均分子量は5100であった。このエポキシ樹脂を用い、ビスフェノールAジフェニルエーテルビスマレイミド50重量部の代わりにトリアリルイソシアヌレート50重量部を用いた以外は実施例1と同様にして実施例2の液状熱硬化性樹脂組成物を調製した。実施例1と同様にして硬化体の特性を調べたところ、ガラス転移温度は139℃であり、またクラックの発生は認められず、耐熱性及び機械的特性に優れていることが確認された。
<実施例3>
 m-クレゾールノボラック型エポキシ樹脂(重合度3~6の混合物、エポキシ当量:200)100重量部の代わりにフェノールノボラック型エポキシ樹脂(重合度3~6の混合物、エポキシ当量:200)100重量部を用い、ビスフェノールA型エポキシ樹脂(重合度1~4の混合物、エポキシ当量:190)20重量部の代わりにビスフェノールA型エポキシ樹脂(重合度5~10の混合物、エポキシ当量:450)10重量部を用いた以外は実施例1と同様にしてエポキシ樹脂を得た。得られたエポキシ樹脂の重量平均分子量は3000であった。このエポキシ樹脂を用い、ビスフェノールAジフェニルエーテルビスマレイミドの量を30重量部に変更した以外は実施例1と同様にして実施例3の液状熱硬化性樹脂組成物を調製した。実施例1と同様にして硬化体の特性を調べたところ、ガラス転移温度は140℃であり、またクラックの発生は認められず、耐熱性及び機械的特性に優れていることが確認された。
<実施例4>
 m-クレゾールノボラック型エポキシ樹脂(重合度3~6の混合物、エポキシ当量200)100重量部の代わりに1,5-ナフタレンジグリシジルエーテルナフタレン100重量部を用い、ビスフェノールA型エポキシ樹脂(重合度1~4の混合物、エポキシ当量:190)20重量部の代わりにエポキシアクリレート樹脂(重合度1~15の混合物)20重量部を用いた以外は実施例1と同様にしてエポキシ樹脂を得た。得られたエポキシ樹脂の重量平均分子量は6500であった。このエポキシ樹脂を用い、実施例1と同様にして実施例4の液状熱硬化性樹脂組成物を調製した。実施例1と同様にして硬化体の特性を調べたところ、ガラス転移温度は162℃であり、またクラックの発生は認められず、耐熱性及び機械的特性に優れていることが確認された。
<実施例5>
 ビスフェノールA型エポキシ樹脂(重合度1~4の混合物、エポキシ当量:190)20重量部の代わりにブロム化ビスフェノールA型エポキシ樹脂(重合度1~5の混合物、エポキシ当量:500)50重量部を用いた以外は実施例1と同様にしてエポキシ樹脂を得た。得られたエポキシ樹脂の重量平均分子量は5600であった。このエポキシ樹脂を用い、ビスフェノールAジフェニルエーテルビスマレイミド50重量部の代わりにトリアリルイソシアヌレート50重量部を用いた以外は実施例1と同様にして実施例5の液状熱硬化性樹脂組成物を調製した。実施例1と同様にして硬化体の特性を調べたところ、ガラス転移温度は156℃であり、またクラックの発生は認められず、耐熱性及び機械的特性に優れていることが確認された。
<実施例6>
 実施例1の液状熱硬化性樹脂組成物を用い、エナメル電線を巻線した固定子コイルを常圧含浸した。その後、160℃で8時間加熱硬化した。この固定子を用いた回転電機を作製し、150℃~-40℃のヒートサイクルを行った後、絶縁抵抗を測定した結果、ヒートサイクル試験前と同等で良好であった(1000MΩ以上の絶縁抵抗)。また、外観検査したところ、クラックの発生は認められなかった。
<実施例7>
 2×5×2000mmの2重ガラス巻き平角銅線を2列20段に組み合わせた40×10mmの断面を持つコイル導体上に、ガラスクロス(有沢製作所製、厚さ0.025mm)を裏打材として得られる集成マイカテープを半重ね巻きにして12回巻回し、更に保護テープとしてテトロン(登録商標)テープ(帝人株式会社製、厚さ0.13mm)を1回巻回し、実施例1の液状熱硬化性樹脂組成物を圧力0.1mmHg以下で120分の真空含浸を行い、次いで圧力3kg/cm2で180分加圧した後、金型に挿入し、温度150℃、圧力20kg/cm2、6時間の条件で加熱加圧成形を行った後、更に150℃で16時間の条件で硬化を行って絶縁コイルを得た。初期のΔtanδ、破壊電圧及び180℃で16日後のΔtanδを測定した。その結果、初期のΔtanδは0.02、破壊電圧は105kV、180℃で16日後のΔTanδは0.16であり、絶縁コイルの特性は良好であった。
<比較例1>
 m-クレゾールノボラック性エポキシ樹脂(重合度3~6の混合物、エポキシ当量:200)100重量部にビスフェノールA型エポキシ樹脂(重合度1~5の混合物、エポキシ当量:190)20重量部、ナフテン酸亜鉛1重量部及び硬化剤としてのメチルテトラヒドロ無水フタル酸60重量部を添加し、比較例1の液状熱硬化性樹脂組成物を調製した。実施例1と同様にして硬化体の特性を調べたところ、ガラス転移温度は131℃であり、またクラックの発生が認められた。
<比較例2>
 ビスフェノールA型エポキシ樹脂(重合度1~5の混合物、エポキシ当量:190)20重量部の代わりにビスフェノールF型エポキシ樹脂(重合度1~5の混合物、エポキシ当量:190)200重量部を用いた以外は比較例1と同様にして比較例2の液状熱硬化性樹脂組成物を調製した。実施例1と同様にして硬化体の特性を調べたところ、ガラス転移温度は122℃であり、またクラックの発生が認められた。
<比較例3>
 m-クレゾールノボラック性エポキシ樹脂(重合度3~6の混合物、エポキシ当量:200)の量を90重量部に変更し、ビスフェノールA型エポキシ樹脂(重合度1~5の混合物、エポキシ当量:190)20重量部の代わりにビスフェノールA型エポキシ樹脂(重合度1~12、エポキシ当量:470)2重量部を用いた以外は比較例1と同様にして比較例3の液状熱硬化性樹脂組成物を調製した。実施例1と同様にして硬化体の特性を調べたところ、ガラス転移温度は118℃であり、またクラックの発生が認められた。
<比較例4>
 m-クレゾールノボラック性エポキシ樹脂(重合度3~6の混合物、エポキシ当量:200)100重量部の代わりに1,5-ナフタレンジグリシジルエーテルナフタレン85重量部を用い、ビスフェノールA型エポキシ樹脂(重合度1~5の混合物、エポキシ当量:190)20重量部の代わりにビスフェノールA型エポキシ樹脂(重合度1~15、エポキシ当量:500)1重量部を用いた以外は比較例1と同様にして比較例4の液状熱硬化性樹脂組成物を調製した。実施例1と同様にして硬化体の特性を調べたところ、ガラス転移温度は128℃であり、またクラックの発生が認められた。
<比較例5>
 1,5-ナフタレンジグリシジルエーテルナフタレン85重量部にビスフェノールF型エポキシ樹脂(重合度1~5の混合物、エポキシ当量:190)200重量部及びナフテン酸亜鉛1重量部を添加した後、150℃で1時間加熱撹拌を行った。得られたエポキシ樹脂の重量平均分子量は1600であった。このエポキシ樹脂を用い、実施例1と同様にして比較例5の液状熱硬化性樹脂組成物を調製した。実施例1と同様にして硬化体の特性を調べたところ、ガラス転移温度は128℃であり、またクラックの発生が認められた。
 1 固定子コア1、2 スロット、3 絶縁フィルム、4 電線、5 縛り糸、6 液状熱硬化性樹脂組成物の硬化体。

Claims (6)

  1.  重合度が2以上である直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種と、ノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物からなる群から選択される少なくとも1種とがエーテル結合され、重量平均分子量が2000~10000であるエポキシ樹脂を含むことを特徴とする回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物。
  2.  前記ノボラック型エポキシ樹脂は、重合度が3以上であることを特徴とする請求項1に記載の回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物。
  3.  前記エポキシ樹脂は、前記ノボラック型エポキシ樹脂及び前記ナフタレン型エポキシ化合物らなる群から選択される少なくとも1種の100エポキシ当量に対して、2~50エポキシ当量の前記直鎖状エポキシ樹脂及び前記エポキシアクリレート樹脂からなる群から選択される少なくとも1種を反応させて得られるものであることを特徴とする請求項1又は2に記載の回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物。
  4.  前記熱硬化性樹脂組成物は、ビスマレイミド及びイソシアヌレートからなる群から選択される少なくとも1種を更に含むことを特徴とする請求項1~3のいずれか一項に記載の回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物。
  5.  回転子と、前記回転子の外側又は内側に配置され、複数のスロットを有する固定子とを備え、前記スロットは、請求項1~4のいずれか一項に記載の回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物の硬化体で覆われた巻線を具備することを特徴とする回転電機。
  6.  重合度が2以上である直鎖状エポキシ樹脂及びエポキシアクリレート樹脂からなる群から選択される少なくとも1種と、ノボラック型エポキシ樹脂及びナフタレン型エポキシ化合物からなる群から選択される少なくとも1種とがエーテル結合され、重量平均分子量が2000~10000であるエポキシ樹脂を、ビスマレイミド及びイソシアヌレートからなる群から選択される少なくとも1種と混合して液状熱硬化性樹脂組成物を得る工程と、
     固定子にある複数のスロットに絶縁処理を施し電線を所定回数巻きつける工程と、
     前記固定子を前記液状熱硬化性樹脂組成物で被覆し、硬化させることにより絶縁処理した固定子を得る工程と、
     前記固定子の内側又は外側に回転子を配置する工程と
    を有することを特徴とする回転電機の製造方法。
PCT/JP2012/065358 2012-06-15 2012-06-15 回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法 WO2013186914A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014521077A JP5766352B2 (ja) 2012-06-15 2012-06-15 回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法
US14/405,528 US9890277B2 (en) 2012-06-15 2012-06-15 Liquid thermosetting resin composition for insulating stator coil of rotating electric machine
CN201280073955.9A CN104364999B (zh) 2012-06-15 2012-06-15 旋转电机定子线圈绝缘用液体状热固化性树脂组合物、使用了其的旋转电机及其制造方法
PCT/JP2012/065358 WO2013186914A1 (ja) 2012-06-15 2012-06-15 回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法
DE112012006529.8T DE112012006529T5 (de) 2012-06-15 2012-06-15 Flüssige, wärmeaushärtende Harzzusammensetzung zum Isolieren einer Statorspule einer drehenden elektrischen Maschine, drehende elektrische Maschine, die diese verwendet, und Herstellungsverfahren dafür

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065358 WO2013186914A1 (ja) 2012-06-15 2012-06-15 回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法

Publications (1)

Publication Number Publication Date
WO2013186914A1 true WO2013186914A1 (ja) 2013-12-19

Family

ID=49757776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065358 WO2013186914A1 (ja) 2012-06-15 2012-06-15 回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法

Country Status (5)

Country Link
US (1) US9890277B2 (ja)
JP (1) JP5766352B2 (ja)
CN (1) CN104364999B (ja)
DE (1) DE112012006529T5 (ja)
WO (1) WO2013186914A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013006364T5 (de) * 2013-01-07 2015-10-08 Mitsubishi Electric Corporation Statorwicklung für eine rotierende elektrische Maschine, Verfahren zum Herstellen der Statorwicklung und rotierende elektrische Maschine
US10416004B2 (en) * 2016-05-02 2019-09-17 Mitsubishi Electric Corporation Resin impregnation detection device, coil for rotating machine, and method for impregnating and molding resin of coil for rotating machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455457A (ja) * 1990-06-26 1992-02-24 Nippon Soda Co Ltd 硬化性樹脂組成物
JPH09235358A (ja) * 1996-02-29 1997-09-09 Hitachi Chem Co Ltd 電子部品用光硬化性エポキシ樹脂組成物及びこれを用いた電子部品の製造方法
JP2006063312A (ja) * 2004-07-29 2006-03-09 Dainippon Ink & Chem Inc 分岐ポリエーテル樹脂組成物の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348323A (ja) 1986-08-18 1988-03-01 Dainippon Ink & Chem Inc エポキシ樹脂組成物
JPH01275622A (ja) 1988-04-28 1989-11-06 Mitsubishi Cable Ind Ltd エポキシ樹脂組成物
JPH0322310A (ja) * 1989-06-19 1991-01-30 Sony Corp 線材
JPH0621165A (ja) 1992-07-06 1994-01-28 Hitachi Ltd 画像の二値化良否判別方法
JPH07316270A (ja) * 1994-05-26 1995-12-05 Yaskawa Electric Corp 含浸用樹脂組成物
US6447915B1 (en) * 1999-03-11 2002-09-10 Sumitomo Bakelite Company Limited Interlaminar insulating adhesive for multilayer printed circuit board
US20060009547A1 (en) * 2002-09-05 2006-01-12 Hisashi Maeshima Process for preparation of alicyclic diepoxy compound, curable epoxy resin compositions, epoxy resin compositions for the encapsulation of electronic components, stabilizers for electrical insulating oils, and casting epoxy resin compositions for electrical insulation
JP2005060662A (ja) * 2003-07-31 2005-03-10 Hitachi Chem Co Ltd 変性エポキシ樹脂、その製造方法、感光性樹脂組成物及び感光性エレメント
TW200602427A (en) * 2004-03-30 2006-01-16 Taiyo Ink Mfg Co Ltd Thermosetting resin composition and multilayered printed wiring board comprising the same
JP4692744B2 (ja) * 2004-08-02 2011-06-01 信越化学工業株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
KR101090654B1 (ko) * 2006-10-02 2011-12-07 히다치 가세고교 가부시끼가이샤 밀봉용 에폭시 수지 성형 재료 및 전자 부품 장치
CA2687286C (en) * 2007-05-21 2015-03-24 Mitsubishi Gas Chemical Company, Inc. Amine epoxy resin curing agent, gas barrier epoxy resin composition comprising the curing agent, coating agent, and adhesive agent for laminate
JP2011184650A (ja) * 2010-03-11 2011-09-22 Nitto Denko Corp 電子部品封止用樹脂組成物およびそれを用いた電子部品装置
WO2012101976A1 (ja) * 2011-01-25 2012-08-02 パナソニック株式会社 モールド構造体およびモータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455457A (ja) * 1990-06-26 1992-02-24 Nippon Soda Co Ltd 硬化性樹脂組成物
JPH09235358A (ja) * 1996-02-29 1997-09-09 Hitachi Chem Co Ltd 電子部品用光硬化性エポキシ樹脂組成物及びこれを用いた電子部品の製造方法
JP2006063312A (ja) * 2004-07-29 2006-03-09 Dainippon Ink & Chem Inc 分岐ポリエーテル樹脂組成物の製造方法

Also Published As

Publication number Publication date
JPWO2013186914A1 (ja) 2016-02-01
CN104364999B (zh) 2016-12-07
CN104364999A (zh) 2015-02-18
US20150225563A1 (en) 2015-08-13
US9890277B2 (en) 2018-02-13
DE112012006529T5 (de) 2015-03-12
JP5766352B2 (ja) 2015-08-19

Similar Documents

Publication Publication Date Title
EP1850460B1 (en) Winding insulation applied with a single vacuum pressure impregnation
JP5166495B2 (ja) ドライマイカテープ及びこれを用いた電気絶縁線輪
AU614695B2 (en) Electrically insulated coil, electric rotating machine, and method of manufacturing same
JP6030125B2 (ja) 絶縁配合物
JP6058169B2 (ja) 絶縁テープ及びその製造方法、固定子コイル及びその製造方法、並びに回転電機
EP2602105A2 (en) Dry mica tape, electrically insulated coil using the same, and electrical rotating machine using the same
JP5606619B2 (ja) 回転機コイルおよびその製造方法
JP2010193673A (ja) ドライマイカテープ、それを用いた電気絶縁線輪,固定子コイル及び回転電機
JP5766352B2 (ja) 回転電機固定子コイル絶縁用液状熱硬化性樹脂組成物、それを用いた回転電機及びその製造方法
JP2015220897A (ja) 回転電機
JP4560982B2 (ja) 高圧回転機用絶縁コイルの製造方法
WO2015121999A1 (ja) 絶縁電線、回転電機及び絶縁電線の製造方法
JP2009201228A (ja) 絶縁シート、絶縁シートを用いた回転電機及び回転電機の製造方法
JPH06233486A (ja) 絶縁電気線輪、回転電機及びその製造方法
KR20190059947A (ko) 발전기 및 모터용의 에폭시 수지계 전기 절연 시스템
JP2874501B2 (ja) 電気絶縁線輪、電気絶縁線輪の製造方法、回転電機および絶縁シート
JP2570210B2 (ja) プリプレグ
JP7292525B2 (ja) 回転機コイルと回転電機、および回転機コイルの製造方法
JP2013155346A (ja) 大型モールドコイル含浸用樹脂組成物、およびこれを用いた大型モールドコイル
JP5563740B2 (ja) 回転電機及び回転電機の製造方法
CN111164126A (zh) 浸渍树脂混合物
WO2016021036A1 (ja) 回転電機用固定子及び回転電機
JP2000034338A (ja) 液状熱硬化性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014521077

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14405528

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012006529

Country of ref document: DE

Ref document number: 1120120065298

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878739

Country of ref document: EP

Kind code of ref document: A1