WO2013186871A1 - 回転機のコギングトルク測定装置 - Google Patents

回転機のコギングトルク測定装置 Download PDF

Info

Publication number
WO2013186871A1
WO2013186871A1 PCT/JP2012/065116 JP2012065116W WO2013186871A1 WO 2013186871 A1 WO2013186871 A1 WO 2013186871A1 JP 2012065116 W JP2012065116 W JP 2012065116W WO 2013186871 A1 WO2013186871 A1 WO 2013186871A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis current
motor
cogging torque
under test
driving motor
Prior art date
Application number
PCT/JP2012/065116
Other languages
English (en)
French (fr)
Inventor
文彦 中込
小林 賢司
真一郎 萩原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/065116 priority Critical patent/WO2013186871A1/ja
Priority to JP2012551013A priority patent/JP5197896B1/ja
Priority to TW101141264A priority patent/TW201350814A/zh
Publication of WO2013186871A1 publication Critical patent/WO2013186871A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting

Definitions

  • the present invention relates to a cogging torque measuring device for a rotating machine.
  • Patent Document 1 a motor under test, a compensation joint, an encoder for measuring rotation speed, a torque sensor, and a driving motor are arranged in this order.
  • a coreless motor is used as a driving motor.
  • a technique is disclosed in which a coreless motor is driven by a belt driving device coupled to the shaft of the coreless motor, and the torque of the motor under test is measured from the q-axis current of the coreless motor.
  • Patent Document 2 discloses a technique for measuring a cogging torque and a torque ripple component before actual operation as a micro-step driving device for a stepping motor, making it a table, and subtracting a compensation component during operation.
  • Patent Document 3 discloses a technique for suppressing a cogging component (6f) and a torque ripple component as a PM motor control device (inverter drive).
  • Patent Document 4 as an elevator control device, a technique for measuring a ripple component generated during low-speed operation and subtracting a ripple component generated during low-speed operation during normal operation in order to remove a torque ripple component generated from an electric control panel Is disclosed.
  • a motor having the same structure as the motor under test is considered in consideration of error factors of the apparatus including the drive motor by coupling the motor under test using a drive motor and measuring the cogging torque with a torque sensor.
  • the cogging torque at low speed (30 [rpm] etc.) and high speed (600 [rpm]) is measured, and when the measured value is within a predetermined allowable range, the motor is set as a master motor.
  • a technique for determining a cogging torque reference value at the time of mass production test is disclosed.
  • Patent Document 6 there is a technique for measuring cogging torque by comparing a reference value when measuring a master work and a measured value of a mass-produced product with a configuration in which a drive motor and a rotor under test are connected via a torque sensor. It is disclosed.
  • JP 2005-37389 A Japanese Patent Laid-Open No. 2005-210786 JP 2007-267465 A JP 2005-247574 A JP 2009-42137 A JP 2010-14534 A
  • the master motor is selected in a form including all of the drive motor and the torque sensor, and the reference value is set. In this case, a component in the apparatus fails and is replaced. If so, the master motor must be selected from scratch. As the number of types of master motors increases, this method cannot cope with failure. Moreover, since the torque sensor is used, there is a problem that the equipment cost cannot be reduced.
  • Patent Document 6 in order to measure an apparatus error due to an apparatus failure, it is necessary to perform measurement of a master work from scratch, so that measurement accuracy is maintained. For this purpose, there is a problem that time and labor are required.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a cogging torque measuring device for a rotating machine that can ensure sufficient measurement accuracy and can reduce equipment costs and improve maintainability.
  • the present invention uses the q-axis current generated in the drive motor when the motor under test is directly connected to the drive motor and rotated.
  • a cogging torque measuring device for a rotating machine that measures the cogging torque of a test motor, wherein the motor driving unit that operates the drive motor is configured to measure the drive motor before connecting the motor under test under a cogging torque measurement condition.
  • No-load q-axis current generated in the drive motor when operated with the motor, and generated in the drive motor when the drive motor connected to the motor under test is operated under the cogging torque measurement conditions A q-axis current measuring means for measuring each of the q-axis currents under load and outputting each to a calculation unit for calculating a cogging torque of the motor under test.
  • a first Fourier calculation means for calculating a Fourier component for the no-load q-axis current and calculating each harmonic component of the no-load q-axis current, and a Fourier calculation for the loaded q-axis current.
  • Second Fourier calculation means for calculating each harmonic component of the loaded q-axis current, and subtracting each harmonic component of the unloaded q-axis current from each harmonic component of the loaded q-axis current Subtracting means; inverse Fourier calculating means for performing a reverse Fourier calculation on each harmonic component of the q-axis current caused only by the motor under test to generate a q-axis current caused only by the motor under test; And a cogging torque detecting means for detecting a cogging torque of the motor under test by performing a torque conversion process on the q-axis current caused only by the motor under test generated by the Fourier calculating means.
  • the motor under test is directly connected to the driving motor without using a torque sensor, and the cogging torque of the motor under test is measured from the q-axis current generated in the driving motor at that time.
  • the drive motor is operated as a single unit with no load under the cogging torque measurement condition to measure the q-axis current, and the no-load q-axis current is used as the direct drive motor.
  • the q-axis current component caused by the driving motor itself superimposed as a disturbance is subtracted from the loaded q-axis current obtained during the loaded operation that is connected and rotated. Therefore, it is possible to ensure sufficient accuracy in the measured value of the cogging torque without selecting and using a motor having a structure in which the cogging torque component is ideally zero, such as a coreless or slotless drive motor. There is an effect.
  • FIG. 1 is a block diagram showing a configuration of a cogging torque measuring device for a rotating machine according to Embodiment 1 of the present invention.
  • FIG. 2 is a waveform diagram showing an example of the measured cogging torque.
  • FIG. 3 is a block diagram showing a configuration of a cogging torque measuring device for a rotating machine according to Embodiment 2 of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a cogging torque measuring device for a rotating machine according to Embodiment 3 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a cogging torque measuring device for a rotating machine according to Embodiment 1 of the present invention.
  • a cogging torque measuring device 1a includes holding plates 6 and 7 for holding and holding a motor under test 2 and a driving motor 3 with their output shafts 4 and 5 facing each other on the same straight line.
  • a connecting portion 8 that directly connects the distal ends of the output shafts 4 and 5 so as to be separable, a control device 9a that is a motor operating portion, and an arithmetic device 10a that is an arithmetic portion.
  • the arithmetic device 10a is a computer device including a CPU, a ROM, and a RAM, and a so-called personal computer can be used.
  • data is exchanged with the control device 9a by an appropriate communication method such as serial communication.
  • the cogging torque measuring device 1a sets the motor under test 2 to the holding plate 6 and sets the driving motor 3 to the holding plate 7 without connecting the coupling portion 8, that is, connecting the motor under test 2 Without driving, the drive motor 3 is operated alone under the same operating conditions (cogging torque measurement conditions) as when the motor under test 2 is rotated, and the motor under test with the coupling portion 8 mounted. 2 is connected, and the load motor is operated under a cogging torque measurement condition in which the drive motor 3 is rotated, and a test is performed using the q-axis current generated in the drive motor 3 during no-load operation and load operation. The cogging torque of the motor 2 is measured. This point is the same in each embodiment described below.
  • the measurement of the cogging torque of the motor under test 2 is performed by operating the driving motor 3 at a low speed, so that the driving motor 3 detects the rotational position in the first embodiment in order to reduce speed unevenness.
  • a servo motor equipped with an encoder 11 is used.
  • the control device 9a shows the q-axis current measurement unit 13 and the interface 14 extracted as a configuration related to the measurement of the cogging torque according to this embodiment.
  • the control device 9a supplies drive power to the drive motor 3 based on the position signal detected and output by the encoder 11, and each of the dq axes generated by coordinate conversion from the three-phase drive current at that time. It is possible to cause the drive motor 3 to perform a predetermined operation by performing feedback control based on the current value.
  • the predetermined operation is a no-load operation and a load operation under the cogging torque measurement condition in this embodiment. Since the motor under test 2 is a mass-produced product, the control device 9a performs the no-load operation once, and then repeats the load operation for the number of times of the motor under test 2 to be measured.
  • the q-axis current measurement unit 13 includes a q-axis current during no-load operation (referred to as “q-axis current q0”) and a q-axis current during load-operated operation (referred to as “q-axis current q1”). Are measured by converting the coordinates from the three-phase drive current at that time, and output to the interface 14.
  • the interface 14 identifies the q-axis current q0 measured during the no-load operation and the q-axis current q1 measured during the loaded operation, which are input from the q-axis current measurement unit 13, as the format of the communication method to be employed. It inserts possible and outputs to the interface 16 in the arithmetic unit 10a via the communication line 15.
  • the arithmetic device 10a includes an interface 16, a q0 data storage unit 17, a Fourier calculation unit 18, a no-load test ripple compensation table 19, a subtracter 20, a q1 data storage unit 21, a Fourier calculation unit 22, a filter A processing unit 23, an inverse Fourier calculation unit 24, a torque conversion processing unit 25, and a cogging torque storage unit 26 are provided.
  • the interface 16 outputs the q-axis current q0 taken from the communication line 15 during no-load operation to the q0 data storage unit 17, and the q-axis current q1 taken from the communication line 15 during load-loaded operation is q1 data.
  • the data is output to the storage unit 21 and stored in each.
  • the Fourier calculation unit 18 performs a Fourier calculation on the q-axis current q0 stored in the q0 data storage unit 17 as a first Fourier calculation unit, and calculates each harmonic component q0f of the q-axis current q0.
  • Each harmonic component q0f of the q-axis current q0 calculated by the Fourier calculation unit 18 is set in the no-load test ripple compensation table 19.
  • the Fourier calculation unit 22 performs a Fourier calculation on the q-axis current q1 stored in the q1 data storage unit 21 as a second Fourier calculation unit, and calculates each harmonic component q1f of the q-axis current q1.
  • the subtracter 20 subtracts each harmonic component q0f of the q-axis current q0 set in the no-load test ripple compensation table 19 from each harmonic component q1f of the q-axis current q1 calculated by the Fourier calculation unit 22. A disturbance component caused by the drive motor 3 is removed, and each harmonic component q2f of the q-axis current q2 caused only by the motor under test 2 is generated.
  • the filter processing unit 23 removes noise components such as harmonic components included in the harmonic components q2f of the q-axis current q2 caused only by the motor under test 2 generated and output by the subtracter 20 from each q-axis current q2.
  • the harmonic component q2f ′ is output.
  • the inverse Fourier computation unit 24 performs an inverse Fourier computation on each harmonic component q2f ′ of the q-axis current q2 resulting from only the motor under test 2 output from the filter processing unit 23, and q resulting from only the motor under test 2 An axial current q2 is generated.
  • the torque conversion processing unit 25 performs a torque conversion process on the q-axis current q2 generated by the inverse Fourier calculation unit 24 using a relational expression between the phase of the q-axis current and the torque, and performs cogging of the motor under test 2. Torque is detected and stored in the cogging torque storage unit 26.
  • FIG. 2 is a waveform diagram showing an example of the measured cogging torque. Although the motor under test 2 has 6 poles and the drive motor 3 has 4 poles, FIG. 2 shows that only the pulsation of the 6 harmonic component that is the cogging torque component of the motor under test 2 appears. Yes.
  • the motor under test 2 is directly connected to the drive motor 3 without a torque sensor and rotated, and the cogging torque of the motor under test is calculated from the q-axis current generated in the drive motor 3 at that time.
  • the drive motor 3 is first operated as a single unit with no load under the cogging torque measurement conditions to measure the q-axis current q0, and the q-axis current q0 is directly used to drive the motor under test 2.
  • the q-axis current q1 obtained during the load-loaded operation connected to the motor 3 and rotated, the q-axis current component caused by the driving motor itself superimposed as a disturbance is removed.
  • sufficient accuracy for the measured value of the cogging torque can be obtained without selecting and using a motor having a structure in which the cogging torque component is ideally zero, such as a coreless or slotless drive motor. Can be secured.
  • the measurement of the q-axis current q0 by no-load operation only needs to be performed once, and after the second time, the no-load operation is not performed and only the q-axis current q1 is measured by the load operation.
  • the working time for measuring the cogging torque can be shortened for the motor under test which is a mass-produced product.
  • FIG. FIG. 3 is a block diagram showing a configuration of a cogging torque measuring device for a rotating machine according to Embodiment 2 of the present invention.
  • components that are the same as or equivalent to the components shown in FIG. 1 are assigned the same reference numerals.
  • the description will be focused on the portion related to the second embodiment.
  • the cogging torque measuring device 1b according to the second embodiment is the same as that shown in FIG. 1 (the first embodiment) except that the encoder 11 is deleted and a control device 9b is provided instead of the control device 9a. Yes.
  • Other configurations are the same as those of the first embodiment.
  • the disturbance component by the encoder 11 is removed, and the control device 9b operates the drive motor 3 by sensorless control.
  • the drive system of the drive motor 3 is speed control based on each current value of the dq axis generated by coordinate conversion from the detected three-phase drive current, the speed stability is inferior to that of the first embodiment.
  • the same operations and effects as those of Form 1 can be obtained.
  • a component error component of the drive motor 3 (2) an assembly error component of the apparatus component, and (3) the drive motor 3 and the motor under test. 2 and (4) a current-carrying ripple component of the driving motor 3, (1), (2), and (4) can be removed by arithmetic processing.
  • FIG. 4 is a block diagram showing a configuration of a cogging torque measuring device for a rotating machine according to Embodiment 3 of the present invention.
  • the same reference numerals are given to components that are the same as or equivalent to the components shown in FIG. 1 (Embodiment 1).
  • the description will be focused on the portion related to the third embodiment.
  • the cogging torque measuring device 1c is provided with an arithmetic device 10b in place of the arithmetic device 10a in the configuration shown in FIG. 1 (Embodiment 1).
  • the amplitude / phase compensation unit 28 is arranged at each output stage of the Fourier arithmetic units 18 and 22.
  • the amplitude / phase compensator 28 includes the harmonic components q0f of the q-axis current q0 calculated by the Fourier calculator 18 and the harmonic components q1f of the q-axis current q1 calculated by the Fourier calculator 22.
  • the respective amplitudes and phases are aligned and input to the subtracter 20.
  • the cogging torque measurement accuracy can be increased.
  • the application example to the first embodiment has been described. Needless to say, the third embodiment can be similarly applied.
  • Embodiment 4 FIG. In the fourth embodiment, several modifications are shown. Although described in the first embodiment, this is also applicable to the second and third embodiments.
  • Embodiment 1 in order to accurately measure the cogging torque of the motor under test 2 from the q-axis current value of the driving motor 3, the structure of the driving motor 3 is a coreless structure. In this case, since the cogging torque component by the drive motor 3 is ideally zero, it is possible to reduce the energization ripple component generated when the drive motor 3 is driven.
  • (1), (2), and (3) can be removed by arithmetic processing.
  • the cogging torque component is mainly affected by the number of poles of the motor 2 under test. Therefore, in order to accurately measure the cogging torque of the motor under test 2 from the q-axis current value of the driving motor 3, the slot combinations of the motor under test 2 and the driving motor 3 are combined differently, The cogging torque component does not interfere with the pulsating component of the driving motor 3.
  • the pulsation component of the drive motor 3 is added to the main component of cogging torque of the motor under test 2 (six harmonics in the case of a six-pole motor). It becomes difficult to superimpose.
  • a component error component of the drive motor 3 As disturbance components, (1) a component error component of the drive motor 3, (2) an assembly error component of the apparatus component, (3) a disk component of the encoder 11, and (4) a drive motor 3 There are assembly error components with the motor under test 2 and (5) energization ripple components of the driving motor 3, but (1), (2), (3), and (5) can be removed by arithmetic processing. .
  • the cogging torque measuring device for a rotating machine is useful as a cogging torque measuring device for a rotating machine that can secure sufficient measurement accuracy and can reduce equipment costs and improve maintainability. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 被試験モータを、トルクセンサを介さずに直接駆動用モータに連結して連れ回しし、その時に駆動用モータに発生するq軸電流から被試験モータのコギングトルクを測定する場合に、駆動用モータを、まず単体で、コギングトルク測定条件の下で無負荷運転してq軸電流を測定し、その無負荷時q軸電流を、被試験モータを直接駆動用モータに連結して連れ回しした有負荷運転時に得られる有負荷時q軸電流から差し引き、外乱として重畳している駆動用モータ自体に起因するq軸電流成分を除去するようにした。したがって、駆動用モータにコアレスやスロットレスなどコギングトルク成分が理想的にゼロとなる構造を有するモータを選定使用しなくとも、コギングトルクの測定値に充分な精度を確保することが可能になる。

Description

回転機のコギングトルク測定装置
 本発明は、回転機のコギングトルク測定装置に関するものである。
 回転機のコギングトルクの測定については、従来から種々の提案がなされている。例えば、特許文献1~6では、次のような方法でコギングトルクを測定するとしている。
 特許文献1では、被試験モータ、補償継手、回転数計測用エンコーダ、トルクセンサ、駆動用モータの順に配置され、駆動用モータにコアレスモータを使用し、高速域では直接コアレスモータ駆動、低速域ではコアレスモータのシャフトに結合されたベルト駆動装置によってコアレスモータを駆動し、コアレスモータのq軸電流から被試験モータのトルクを測定する技術が開示されている。
 特許文献2では、ステッピングモータのマイクロステップ駆動装置として、実運転前にコギングトルクおよびトルクリップル成分を測定してテーブル化し、運転時に補償成分を差し引く技術が開示されている。
 特許文献3では、PMモータの制御装置(インバータ駆動)としてコギング成分(6f)およびトルクリップル成分を抑制する技術が開示されている。
 特許文献4では、エレベータ制御装置として、電気制御盤から発生するトルクリップル成分を除去するために、低速運転時に発生するリップル成分を測定し、通常運転時に低速運転時に発生するリップル成分を減算する技術が開示されている。
 特許文献5では、駆動用モータを用いて被試験モータをカップリングしコギングトルクをトルクセンサにて測定することにより、駆動モータを含む装置の誤差要因を考慮し、被試験モータと同じ構造のモータの低速時(30[rpm]etc.)と高速時(600[rpm])のコギングトルクを測定し、測定値が予め定められた許容範囲内に入っていたときにそのモータをマスターモータとし、量産品試験時のコギングトルク基準値を決定する技術が開示されている。
 特許文献6では、駆動モータと被試験ロータをトルクセンサを介して接続する構成により、マスターワークを測定した場合の基準値と量産品の測定値とを比較することでコギングトルクを測定する技術が開示されている。
特開2005-37389号公報 特開2005-210786号公報 特開2007-267465号公報 特開2005-247574号公報 特開2009-42137号公報 特開2010-14534号公報
 しかし、特許文献1に開示される技術では、ベルト駆動装置では速度ムラが発生するため、q軸電流成分には外乱が発生しやすく、測定精度が下がる。このような場合、駆動側の外乱を補正する処理および速度を安定化させる機構を設ける必要がある。また、低速域の速度を安定させる機構として、駆動用モータに減速機を使用する方法が考えられるが、その場合でも駆動用モータ自身は高速回転させるため、制御装置が出力するq軸電流成分からのコギングトルク検出は難しくなる。加えて、構成要素が多いため、それに伴う外乱についても考慮する必要が出てくる。
 一般に、コギングトルクの測定は高速回転よりも低速回転で実施することが望ましい。高速回転時はq軸電流成分が大きくなるので、コギング脈動成分が相対的に小さくなり検出精度が低下するためである。なお、データサンプリング数も影響する。一方、低速回転で測定するためには、駆動用モータの速度ムラを低減する必要がある。
 また、特許文献2に開示される技術では、ステッピングモータ自身のディテントトルクを事前に測定する必要があるが、マイクロ駆動装置自身ではディテントトルクは測定できないので、別の装置にて測定する必要がある。
 また、特許文献3に開示される技術では、自身のモータを運転したときに発生するトルク電流値の6f成分がコギングトルクを補償する場合、モータを運転した場合の6f成分にもインバータ自身によるリップル成分が重畳してくるため、補正精度が向上しないという問題がある。
 また、特許文献4に開示される技術では、モータ低速運転時に発生するリップル成分を通常運転時のトルク電流値から減算しているが、実運転時に電機制御盤が発生するリップル成分を考慮されていないため、精度が低下するという問題がある。
 また、特許文献5に開示される技術では、駆動モータやトルクセンサ全てを含めた形でマスターモータを選定し、基準値を設定しているが、この場合、装置内の部品が故障し取り替えを行った場合に、マスターモータの選定を一からやり直さなければならない。マスターモータの種類が増えるにつれて、この方法では故障時に対応しきれなくなる。また、トルクセンサを用いているため、設備コスト低減も図れないという問題がある。
 また、特許文献6に開示される技術では、特許文献5と同様に、装置故障時による装置誤差を測定するには、マスターワークの測定を一から実施する必要があるため、測定精度を維持するためには時間と労力が必要となるという問題がある。
 本発明は、上記に鑑みてなされたものであり、十分な測定精度を確保できるとともに、設備コストの削減とメンテナンス性の向上とが図れる回転機のコギングトルク測定装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、被試験モータを駆動用モータに直接連結して連れ回しした際に前記駆動用モータに発生するq軸電流を用いて前記被試験モータのコギングトルクを測定する回転機のコギングトルク測定装置であって、前記駆動モータを運転するモータ運転部は、前記被試験モータを連結する前の前記駆動用モータをコギングトルク測定条件の下で運転した際に前記駆動用モータに発生する無負荷時q軸電流と、前記被試験モータを連結した前記駆動用モータを前記コギングトルク測定条件の下で運転した際に前記駆動用モータに発生する有負荷時q軸電流とをそれぞれ測定し、それぞれを前記被試験モータのコギングトルクを算出する演算部へ出力するq軸電流測定手段を備え、前記演算部は、前記無負荷時q軸電流に対しフーリェ演算を実施し無負荷時q軸電流の各調波成分を算出する第1のフーリェ演算手段と、前記有負荷時q軸電流に対しフーリェ演算を実施し有負荷時q軸電流の各調波成分を算出する第2のフーリェ演算手段と、前記無負荷時q軸電流の各調波成分を前記有負荷時q軸電流の各調波成分から減算する減算手段と、前記被試験モータのみに起因するq軸電流の各調波成分に対し逆フーリェ演算を実施し前記被試験モータのみに起因するq軸電流を生成する逆フーリェ演算手段と、前記逆フーリェ演算手段が生成する前記被試験モータのみに起因するq軸電流に対してトルク変換処理を実施し前記被試験モータのコギングトルクを検出するコギングトルク検出手段とを備えていること特徴とする。
 本発明によれば、被試験モータを、トルクセンサを介在さずに直接駆動用モータに連結して連れ回しし、その時に駆動用モータに発生するq軸電流から被試験モータのコギングトルクを測定する場合に、駆動用モータを、まず単体で、コギングトルク測定条件の下で無負荷運転してq軸電流を測定し、その無負荷時q軸電流を、被試験モータを直接駆動用モータに連結して連れ回しした有負荷運転時に得られる有負荷時q軸電流から差し引き、外乱として重畳している駆動用モータ自体に起因するq軸電流成分を除去するようにした。したがって、駆動用モータにコアレスやスロットレスなどコギングトルク成分が理想的にゼロとなる構造を有するモータを選定使用しなくとも、コギングトルクの測定値に充分な精度を確保することが可能になるという効果を奏する。
図1は、本発明の実施の形態1による回転機のコギングトルク測定装置の構成を示すブロック図である。 図2は、測定したコギングトルクの一例を示す波形図である。 図3は、本発明の実施の形態2による回転機のコギングトルク測定装置の構成を示すブロック図である。 図4は、本発明の実施の形態3による回転機のコギングトルク測定装置の構成を示すブロック図である。
 以下に、本発明にかかる回転機のコギングトルク測定装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1による回転機のコギングトルク測定装置の構成を示すブロック図である。図1において、コギングトルク測定装置1aは、被試験モータ2および駆動用モータ3を、それぞれの出力軸4,5の先端面同士を同一直線上で対面させて固定保持する保持プレート6,7と、出力軸4,5の先端同士を分離可能に直接連結する結合部8と、モータ運転部である制御装置9aと、演算部である演算装置10aとを備えている。演算装置10aは、CPU、ROM、RAMを備えたコンピュータ装置であり、所謂パソコンを使用することができる。制御装置9aとの間では、例えば、シリアル通信等適宜な通信方式によりデータの授受を行うようになっている。
 コギングトルク測定装置1aは、被試験モータ2を保持プレート6に設定し、駆動用モータ3を保持プレート7に設定しただけで、結合部8を装着せずに、つまり、被試験モータ2を連結せずに、駆動用モータ3を単独で、被試験モータ2を連れ回しするときと同じ運転条件(コギングトルク測定条件)により、運転する無負荷運転と、結合部8を装着して被試験モータ2を連結し、駆動用モータ3に連れ回しさせるコギングトルク測定条件による有負荷運転とを行い、無負荷運転時および有負荷運転時において駆動用モータ3に発生するq軸電流を用いて被試験モータ2のコギングトルクを測定する構成になっている。この点は、以下に説明する各実施の形態において同じである。
 なお、被試験モータ2のコギングトルクの測定は、駆動用モータ3を低速で運転して行うので、速度ムラを低減するため、駆動用モータ3は、この実施の形態1では、回転位置を検出するエンコーダ11を備えたサーボモータを使用している。
 制御装置9aは、この実施の形態によるコギングトルクの測定に関わる構成として、q軸電流測定部13とインターフェース14とを抜き出して示してある。制御装置9aは、一般的な位置制御動作として、エンコーダ11が検出出力する位置信号に基づき駆動用モータ3に駆動電力を供給し、そのときの三相駆動電流から座標変換生成したdq軸の各電流値に基づくフィードバック制御を行うことで駆動用モータ3に所定の運転を行わせることが可能である。ここで、所定の運転とは、この実施の形態では、コギングトルク測定条件による無負荷運転および有負荷運転である。そして、被試験モータ2は量産品であるから、制御装置9aは、1回無負荷運転を行い、その後、測定する被試験モータ2の個数回有負荷運転を繰り返すことになる。
 q軸電流測定部13は、無負荷運転時におけるq軸電流(これを「q軸電流q0」と記す)と、有負荷運転時におけるq軸電流(これを「q軸電流q1」と記す)とをそのときの三相駆動電流から座標変換して測定し、インターフェース14に出力する。インターフェース14は、q軸電流測定部13から入力される、無負荷運転時に測定されたq軸電流q0と、有負荷運転時に測定されたq軸電流q1とを、採用する通信方式のフォーマットに識別可能に挿入し、通信線15を介して演算装置10a内のインターフェース16に出力する。
 演算装置10aは、インターフェース16と、q0データ保存部17と、フーリェ演算部18と、無負荷試験リップル補償テーブル19と、減算器20と、q1データ保存部21と、フーリェ演算部22と、フィルタ処理部23と、逆フーリェ演算部24と、トルク変換処理部25と、コギングトルク保存部26とを備えている。
 以下、演算装置10aの動作について説明する。
 演算装置10aでは、インターフェース16が、無負荷運転時に通信線15から取り込んだq軸電流q0はq0データ保存部17へ出力し、有負荷運転時に通信線15から取り込んだq軸電流q1はq1データ保存部21へ出力し、それぞれに保存させる。
 フーリェ演算部18は、第1のフーリェ演算手段として、q0データ保存部17に保存されるq軸電流q0に対してフーリェ演算を実施しq軸電流q0の各調波成分q0fを算出する。フーリェ演算部18にて算出されたq軸電流q0の各調波成分q0fは、無負荷試験リップル補償テーブル19に設定される。
 フーリェ演算部22は、第2のフーリェ演算手段として、q1データ保存部21に保存されるq軸電流q1に対してフーリェ演算を実施しq軸電流q1の各調波成分q1fを算出する。
 減算器20は、無負荷試験リップル補償テーブル19に設定されるq軸電流q0の各調波成分q0fを、フーリェ演算部22にて算出されたq軸電流q1の各調波成分q1fから減じて駆動モータ3に起因する外乱成分を除去し、被試験モータ2のみに起因するq軸電流q2の各調波成分q2fを生成する。
 フィルタ処理部23は、減算器20が生成出力する被試験モータ2のみに起因するq軸電流q2の各調波成分q2fに含まれる高調波成分等のノイズ成分を除去したq軸電流q2の各調波成分q2f’を出力する。
 逆フーリェ演算部24は、フィルタ処理部23が出力する被試験モータ2のみに起因するq軸電流q2の各調波成分q2f’に対し逆フーリェ演算を実施し被試験モータ2のみに起因するq軸電流q2を生成する。
 トルク変換処理部25は、q軸電流の位相とトルクとの関係式を用いて、逆フーリェ演算部24が生成するq軸電流q2に対してトルク変換処理を実施し、被試験モータ2のコギングトルクを検出し、それをコギングトルク保存部26に保存させる。
 図2は、測定したコギングトルクの一例を示す波形図である。被試験モータ2は6極であり、駆動モータ3は4極であるが、図2では、被試験モータ2のコギングトルク成分である6調波成分の脈動のみが現れていることが示されている。
 以上のように、被試験モータ2を、トルクセンサを介在さずに直接駆動用モータ3に連結して連れ回ししその時に駆動用モータ3に発生するq軸電流から被試験モータのコギングトルクを測定する場合に、駆動用モータ3を、まず単体で、コギングトルク測定条件の下で無負荷運転してq軸電流q0を測定し、そのq軸電流q0を、被試験モータ2を直接駆動用モータ3に連結して連れ回しした有負荷運転時に得られるq軸電流q1から差し引くことで、外乱として重畳している駆動用モータ自体に起因するq軸電流成分を除去するようにした。
 したがって、この実施の形態1によれば、駆動用モータにコアレスやスロットレスなどコギングトルク成分が理想的にゼロとなる構造を有するモータを選定使用しなくとも、コギングトルクの測定値に充分な精度を確保することが可能になる。
 また、一般に使用されているトルクセンサが不要となるので、設備コストの削減とメンテナンス性の向上とが図れる。
 そして、装置側のみの誤差要因を測定しているので、装置のどこかが故障した場合には修理後の駆動モータ無負荷運転時のq軸電流q0を測定するのみでよいことになり、被試験モータの測定種類数に左右されないという効果がある。
 加えて、無負荷運転によるq軸電流q0の測定は初回の1回だけ行えばよく、2回目以降は、無負荷運転は行わず有負荷運転によるq軸電流q1の測定のみを行えばよいことになり、量産品である被試験モータについてコギングトルク測定のための作業時間の短縮化が図れる。
実施の形態2.
 図3は、本発明の実施の形態2による回転機のコギングトルク測定装置の構成を示すブロック図である。なお、図3では、図1(実施の形態1)に示した構成要素と同一ないし同等である構成要素には同一の符号が付されている。ここでは、この実施の形態2に関わる部分を中心に説明する。
 図3において、この実施の形態2によるコギングトルク測定装置1bは、図1(実施の形態1)に示した構成において、エンコーダ11が削除され、制御装置9aに代えて制御装置9bが設けられている。その他の構成は実施の形態1と同様である。
 すなわち、この実施の形態2では、エンコーダ11による外乱成分を除去し、制御装置9bは、センサレス制御により駆動モータ3を運転する。この場合、駆動モータ3の駆動方式は、検出した3相駆動電流から座標変換生成したdq軸の各電流値に基づく速度制御となるので、速度安定性が実施の形態1よりも劣るが、実施の形態1と同様の作用・効果が得られる。
 なお、この実施の形態2においては、外乱成分として、(1)駆動用モータ3の部品誤差成分と、(2)装置構成要素の組立誤差成分と、(3)駆動用モータ3と被試験モータ2との組み付け誤差成分と、(4)駆動用モータ3の通電リップル成分とがあるが、(1)(2)(4)については、演算処理にて除去可能である。
実施の形態3.
 図4は、本発明の実施の形態3による回転機のコギングトルク測定装置の構成を示すブロック図である。なお、図4では、図1(実施の形態1)に示した構成要素と同一ないし同等である構成要素には同一の符号が付されている。ここでは、この実施の形態3に関わる部分を中心に説明する。
 図4において、この実施の形態3によるコギングトルク測定装置1cは、図1(実施の形態1)に示した構成において、演算装置10aに代えて演算装置10bが設けられている。演算装置10bでは、振幅・位相補償部28が、フーリェ演算部18,22の各出力段に配置されている。
 振幅・位相補償部28は、フーリェ演算部18にて算出されたq軸電流q0の各調波成分q0fと、フーリェ演算部22にて算出されたq軸電流q1の各調波成分q1fとの各振幅および位相を揃えて減算器20に入力させる。
 この実施の形態3によれば、実施の形態1と同様の作用・効果が得られるのに加えて、コギングトルク測定精度を高めることができる。なお、実施の形態3では、実施の形態1への適用例を示したが、実施の形態2にも同様に適用できることは言うまでもない。
実施の形態4.
 この実施の形態4では、幾つかの変形例を示す。なお、実施の形態1においてと説明するが、実施の形態2,3にも適用できる事項である。
(1)実施の形態1において、駆動用モータ3のq軸電流値から被試験モータ2のコギングトルクを精度よく測定するために、駆動用モータ3の構造をコアレス構造とする。この場合、駆動用モータ3によるコギングトルク成分は理想的にゼロとなるため、駆動用モータ3を駆動する際に発生する通電リップル成分を小さくすることが可能になる。
 なお、外乱成分として、(1)駆動用モータ3の部品誤差成分と、(2)装置構成要素の組立誤差成分と、(3)エンコーダ11の円板成分と、(4)駆動用モータ3と被試験モータ2との組み付け誤差成分とがあるが、(1)(2)(3)については、演算処理にて除去可能である。
(2)実施の形態1において、コギングトルク成分は、主として被試験モータ2の極数の影響を受ける。そのため、駆動用モータ3のq軸電流値から被試験モータ2のコギングトルクを精度よく測定するために、被試験モータ2と駆動用モータ3とのスロットコンビネーションを異なる組み合わせとし、被試験モータ2のコギングトルク成分が駆動用モータ3の脈動成分に干渉しない構造とする。被試験モータ2と駆動用モータ3とをスロットコンビネーションが異なる組み合わせとすることで、例えば被試験モータ2のコギングトルク主成分(6極モータの場合6調波)に駆動用モータ3の脈動成分が重畳し難くなる。
 なお、外乱成分として、(1)駆動用モータ3の部品誤差成分と、(2)装置構成要素の組立誤差成分と、(3)エンコーダ11の円板成分と、(4)駆動用モータ3と被試験モータ2との組み付け誤差成分と、(5)駆動用モータ3の通電リップル成分とがあるが、(1)(2)(3)(5)については、演算処理にて除去可能である。
(3)実施の形態1において、被試験モータ2による静摩擦トルク、動摩擦トルクが大きい場合での無負荷運転によるq軸電流q0の測定は、被試験モータと同等の負荷を付与した状態で駆動用モータを単独運転したときのq軸電流q0’を測定することが望ましい。つまり、図1において、q0=q0’とする。無負荷運転は、コギングトルク測定条件の下で実施するからである。
 以上のように、本発明にかかる回転機のコギングトルク測定装置は、十分な測定精度を確保できるとともに、設備コストの削減とメンテナンス性の向上とが図れる回転機のコギングトルク測定装置として有用である。
 1a,1b,1c コギングトルク測定装置
 2 被試験モータ
 3 駆動用モータ
 4,5 出力軸
 6,7 保持プレート
 8 結合部
 9a,9b 制御装置(モータ運転部)
 10a,10b 演算装置(演算部)
 11 エンコーダ
 13 q軸電流測定部
 14,16 インターフェース
 17 q0データ保存部
 18,22 フーリェ演算部
 19 無負荷試験リップル補償テーブル
 21 q1データ保存部
 20 減算器
 23 フィルタ処理部
 24 逆フーリェ演算部
 25 トルク変換処理部
 26 コギングトルク保存部
 28 振幅・位相補償部

Claims (2)

  1.  被試験モータを駆動用モータに直接連結して連れ回しした際に前記駆動用モータに発生するq軸電流を用いて前記被試験モータのコギングトルクを測定する回転機のコギングトルク測定装置であって、
     前記駆動モータを運転するモータ運転部は、
     前記被試験モータを連結する前の前記駆動用モータをコギングトルク測定条件の下で運転した際に前記駆動用モータに発生する無負荷時q軸電流と、前記被試験モータを連結した前記駆動用モータを前記コギングトルク測定条件の下で運転した際に前記駆動用モータに発生する有負荷時q軸電流とをそれぞれ測定し、それぞれを前記被試験モータのコギングトルクを算出する演算部へ出力するq軸電流測定手段を備え、
     前記演算部は、
     前記無負荷時q軸電流に対しフーリェ演算を実施し無負荷時q軸電流の各調波成分を算出する第1のフーリェ演算手段と、
     前記有負荷時q軸電流に対しフーリェ演算を実施し有負荷時q軸電流の各調波成分を算出する第2のフーリェ演算手段と、
     前記無負荷時q軸電流の各調波成分を前記有負荷時q軸電流の各調波成分から減算する減算手段と、
     前記被試験モータのみに起因するq軸電流の各調波成分に対し逆フーリェ演算を実施し前記被試験モータのみに起因するq軸電流を生成する逆フーリェ演算手段と、
     前記逆フーリェ演算手段が生成する前記被試験モータのみに起因するq軸電流に対してトルク変換処理を実施し前記被試験モータのコギングトルクを検出するコギングトルク検出手段と
     を備えていること特徴とする回転機のコギングトルク測定装置。
  2.  前記演算部は、
     前記第1および第2のフーリェ演算手段のそれぞれが算出出力する前記各調波成分の振幅および位相を揃えて前記減算器に入力させる振幅・位相補償手段
     を更に備えていること特徴とする請求項1に記載の回転機のコギングトルク測定装置。
PCT/JP2012/065116 2012-06-13 2012-06-13 回転機のコギングトルク測定装置 WO2013186871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/065116 WO2013186871A1 (ja) 2012-06-13 2012-06-13 回転機のコギングトルク測定装置
JP2012551013A JP5197896B1 (ja) 2012-06-13 2012-06-13 回転機のコギングトルク測定装置
TW101141264A TW201350814A (zh) 2012-06-13 2012-11-07 旋轉機的齒槽效應轉矩測量裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065116 WO2013186871A1 (ja) 2012-06-13 2012-06-13 回転機のコギングトルク測定装置

Publications (1)

Publication Number Publication Date
WO2013186871A1 true WO2013186871A1 (ja) 2013-12-19

Family

ID=48534036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065116 WO2013186871A1 (ja) 2012-06-13 2012-06-13 回転機のコギングトルク測定装置

Country Status (3)

Country Link
JP (1) JP5197896B1 (ja)
TW (1) TW201350814A (ja)
WO (1) WO2013186871A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913261A (zh) * 2014-04-17 2014-07-09 哈尔滨工业大学 力矩电机电刷摩擦转矩波动系数检测装置及方法
WO2016035575A1 (ja) * 2014-09-03 2016-03-10 株式会社堀場製作所 電動モータ試験システム
JP2016109627A (ja) * 2014-12-09 2016-06-20 オークマ株式会社 電動機のコギングトルク測定装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655339A (zh) * 2015-01-20 2015-05-27 宁波菲仕电机技术有限公司 一种交流永磁同步伺服电机齿槽转矩测试方法
CN104964776B (zh) * 2015-06-30 2017-12-05 清华大学苏州汽车研究院(相城) 一种电机齿槽转矩和摩擦转矩的测量设备及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069778A (ja) * 1999-08-30 2001-03-16 Japan Science & Technology Corp 同期電動機の制御方法
JP2005037389A (ja) * 2003-07-16 2005-02-10 Minebea Co Ltd 電気モータのトルク測定装置
JP4676551B1 (ja) * 2009-12-22 2011-04-27 ファナック株式会社 コギングトルク補正量算出機能を有するモータ制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069778A (ja) * 1999-08-30 2001-03-16 Japan Science & Technology Corp 同期電動機の制御方法
JP2005037389A (ja) * 2003-07-16 2005-02-10 Minebea Co Ltd 電気モータのトルク測定装置
JP4676551B1 (ja) * 2009-12-22 2011-04-27 ファナック株式会社 コギングトルク補正量算出機能を有するモータ制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913261A (zh) * 2014-04-17 2014-07-09 哈尔滨工业大学 力矩电机电刷摩擦转矩波动系数检测装置及方法
WO2016035575A1 (ja) * 2014-09-03 2016-03-10 株式会社堀場製作所 電動モータ試験システム
CN106461505A (zh) * 2014-09-03 2017-02-22 株式会社堀场制作所 电动马达测试系统
EP3190397A4 (en) * 2014-09-03 2018-04-18 Horiba, Ltd.g Electric motor test system
US10295437B2 (en) 2014-09-03 2019-05-21 Horiba, Ltd. Electric motor test system
JP2016109627A (ja) * 2014-12-09 2016-06-20 オークマ株式会社 電動機のコギングトルク測定装置
CN105698991A (zh) * 2014-12-09 2016-06-22 大隈株式会社 用于电机的齿槽转矩测量装置
US10302511B2 (en) 2014-12-09 2019-05-28 Okuma Corporation Cogging torque measuring method for motor

Also Published As

Publication number Publication date
JPWO2013186871A1 (ja) 2016-02-01
JP5197896B1 (ja) 2013-05-15
TW201350814A (zh) 2013-12-16

Similar Documents

Publication Publication Date Title
JP5447810B2 (ja) モータ駆動装置およびトルクリップル除去方法
JP5197896B1 (ja) 回転機のコギングトルク測定装置
JP4910445B2 (ja) Ipmモータのベクトル制御装置
JP5332400B2 (ja) 電動機のトルク脈動抑制装置および抑制方法
JP5992113B2 (ja) 交流回転機の制御装置
CN106537760B (zh) 电动机控制装置以及该装置中的转矩常数的校正方法
KR20180030132A (ko) 드라이브 시스템 및 인버터 장치
JP5033662B2 (ja) 電動機駆動システム
US20140375235A1 (en) Permanent magnet motor controller
JP5936770B2 (ja) 回転機制御装置
KR100682220B1 (ko) 엘리베이터 제어 장치
JP2010045914A (ja) 同期モータ駆動制御装置
JP2010074918A (ja) 電力計算手段を備えたモータ駆動装置
JP6183554B2 (ja) 周期外乱自動抑制装置
JP5420831B2 (ja) モータの制御装置
CA2794823A1 (en) Sensorless torsional mode damping system and method
JP2022039968A (ja) モータの接続故障の検出方法
JP4359546B2 (ja) 交流モータの制御装置
JP6664288B2 (ja) 電動機の制御装置
JP6682313B2 (ja) モータ制御装置
JP2016187250A (ja) 電動機制御装置
JP4346574B2 (ja) サーボモータ制御装置
JP6691618B2 (ja) モータ電力変換装置、及び、それを用いたモータ電力変換システム
KR20050024631A (ko) 순시무효전력을 이용한 영구자석 동기전동기의 센서리스제어방법
JP4804237B2 (ja) 三相交流電動機の電流制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012551013

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878978

Country of ref document: EP

Kind code of ref document: A1