WO2013186847A1 - 駆動装置、電子機器、及び駆動制御プログラム - Google Patents

駆動装置、電子機器、及び駆動制御プログラム Download PDF

Info

Publication number
WO2013186847A1
WO2013186847A1 PCT/JP2012/064950 JP2012064950W WO2013186847A1 WO 2013186847 A1 WO2013186847 A1 WO 2013186847A1 JP 2012064950 W JP2012064950 W JP 2012064950W WO 2013186847 A1 WO2013186847 A1 WO 2013186847A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform data
lra
vibration
touch panel
waveform
Prior art date
Application number
PCT/JP2012/064950
Other languages
English (en)
French (fr)
Inventor
遠藤 康浩
谷中 聖志
裕一 鎌田
矢吹 彰彦
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2014520833A priority Critical patent/JP5831635B2/ja
Priority to PCT/JP2012/064950 priority patent/WO2013186847A1/ja
Publication of WO2013186847A1 publication Critical patent/WO2013186847A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • the present invention relates to a drive device, an electronic device, and a drive control program.
  • the touch panel detects contact with the operation surface as an input operation, and does not provide a tactile sensation when a button or the like is pressed. For this reason, in the conventional touch panel, mounting of the apparatus which provides the tactile sensation according to input operation was desired.
  • the vibration waveform presented in response to the input operation is a repetition of the same vibration waveform, and the touch panel operation feeling is monotonous. That is, it is impossible to freely generate a vibration waveform by combining various vibration waveforms.
  • an object is to provide a drive device, an electronic device, and a drive control program that can freely generate a vibration waveform in response to an operation input by combining vibration waveforms.
  • a driving apparatus includes a first storage unit that stores a plurality of element waveform data representing a part of a vibration waveform that vibrates a touch panel, and a plurality of element waveform data stored in the first storage unit.
  • a waveform data generation unit that generates waveform data by combining the first element waveform data and the second element waveform data selected by the user, and a second that stores the waveform data generated by the waveform data generation unit.
  • a storage unit and a drive command generation unit that generates a drive command based on the waveform data selected by the user when a user operation input is performed on the touch panel.
  • FIG. 1A is a diagram showing a waveform 11 of acceleration of vibration generated when the accelerometer 1 is attached to a human finger and the button 2 is pressed.
  • FIG. 1B is a diagram showing a waveform 12 of acceleration of vibration generated when the accelerometer 1 is attached to a human finger and a touch panel 3 to which an LRA (Linear Resonant Actuator) is attached is touched.
  • the button 2 is, for example, a metal dome type button.
  • the button 2 and the touch panel 3 are provided in the electronic device.
  • the vibration indicated by waveform 11 is rapidly damped in one to several cycles.
  • the vibration indicated by the waveform 12 continues until the free vibration due to the natural frequency of the LRA is attenuated even after the supply of the drive command is stopped.
  • a human finger cannot sense vibration when the vibration acceleration is 0.02 G or less at a vibration frequency of 200 Hz.
  • the vibration frequency is the number of vibrations per second.
  • the acceleration of vibration indicates the speed change amount of vibration per unit time.
  • FIG. 2 is a diagram showing the sensitivity of an organ that detects acceleration included in human tissue.
  • human mechanical stimulus receptors Merkel cells that sense displacement, Meissner bodies that sense speed, and Patini bodies that sense acceleration.
  • the finger does not sense the vibration because the acceleration of the vibration is 0.02 G or less within 0.01 sec.
  • waveform 12 0.1 sec is required until the acceleration of vibration becomes 0.02 G or less, and the finger continues to sense vibration until 0.1 sec elapses. Therefore, the vibration indicated by the waveform 11 and the vibration indicated by the waveform 12 are completely different as tactile sensations that humans sense.
  • FIG. 3 is a diagram illustrating a cross-sectional structure of the electronic apparatus according to the embodiment.
  • the electronic apparatus 300 includes a housing 110, a touch panel 120, a double-sided tape 130, an LRA 140, and a substrate 150.
  • the electronic device 300 is a portable terminal device such as a smartphone, for example.
  • the electronic device 300 is not limited to a mobile terminal device such as a smartphone, and may be any device that uses the touch panel 120 as an input operation unit.
  • the electronic device 300 is installed in a specific place such as an ATM (Automatic Teller Machine). It may be a device to be used.
  • the touch panel 120 is fixed to the housing 110 by the double-sided tape 130.
  • the LRA 140 is attached to the surface of the touch panel 120 on the housing side.
  • the LRA 140 is a combination of a vibration system having a resonance frequency designed in advance and an actuator.
  • the LRA 140 is a vibration device that generates vibration by driving mainly at the resonance frequency. The amount of vibration changes depending on the amplitude of the drive waveform. .
  • the substrate 150 is disposed inside the housing 110.
  • the board 150 is mounted with a driver IC (Integrated Circuit) that outputs a drive command to the LRA 140 in order to control the drive of the LRA 140.
  • a driver IC Integrated Circuit
  • FIG. 3 the driver IC and the like are omitted.
  • the electronic device 300 when a user's finger contacts the touch panel 120, the contact is detected and the LRA 140 is driven by the driving device mounted on the substrate 150 to propagate the vibration of the LRA 140 to the touch panel 120.
  • the LRA 140 is a vibration device.
  • the LRA 140 is not limited to the LRA as long as it has a resonator and an actuator for excitation.
  • FIG. 4 is a diagram showing cross-sectional structures of two types of LRAs.
  • FIG. 4A is a diagram showing an LRA using a voice coil
  • FIG. 4B is a diagram showing an LRA using a piezoelectric element.
  • the 4A includes a spring 31, a magnet 32, and a coil 33.
  • An LRA 40 illustrated in FIG. 4B includes a weight 41, a beam 42, and a piezoelectric element 43.
  • the mass of the weight 41 is m
  • the Young's modulus of the beam 42 is E
  • the cross-sectional secondary moment of the beam 42 is I
  • the natural frequency f0 is expressed by the following formula 2. Note that L is the length of the beam 42 in the longitudinal direction.
  • an LRA 30 using a voice coil may be applied, or an LRA 40 using a piezoelectric element 43 may be applied.
  • FIG. 5 is a diagram illustrating the driving apparatus according to the embodiment.
  • the driving device 200 includes a control unit 210 and a memory 220.
  • the electronic device 300 includes, as main components, a driving device 200, a driver IC (Integrated Circuit) 260, an LRA 140, a display 301, a touch sensor 302, an input unit 303, a signal processing unit 304, A communication unit 305 and a recording medium I / F (Interface) unit 308 are included.
  • a driving device 200 a driver IC (Integrated Circuit) 260, an LRA 140, a display 301, a touch sensor 302, an input unit 303, a signal processing unit 304, A communication unit 305 and a recording medium I / F (Interface) unit 308 are included.
  • the control unit 210 includes a waveform data generation unit 211, a drive command generation unit 212, and a data processing unit 213.
  • the control unit 210 is realized by a CPU (Central Processing Unit).
  • the waveform data generation unit 211 generates waveform data that is data for generating a drive command for driving the LRA 140.
  • the drive command generation unit 212 reads and executes the drive control program 230 stored in the memory 220 and generates a drive command based on the waveform data, thereby driving the LRA 140 described later using the drive command.
  • the drive command generation unit 212 generates a drive command that represents a voltage value, a current value, and the like to be supplied to the LRA 140 based on waveform data that represents the drive waveform of the LRA 140.
  • the data processing unit 213 performs processing for uploading waveform data to the server 400, processing for downloading waveform data from the server 400, and other processing for waveform data.
  • the data processing unit 213 is an example of a first data processing unit and a second data processing unit.
  • the memory 220 stores a storage area for storing a drive control program 230 for controlling the driving of the LRA 140, a storage area for storing waveform data (waveform database 240), and a storage for storing an API (Application Programming Interface) 250. And an area.
  • the memory 220 is further provided with a storage area (element waveform database 350) for storing element waveform data and a storage area for storing link data 360.
  • the waveform database 240 and the element waveform database 350 are described as storage areas in the memory 220, the waveform database 240 and the element waveform database 350 are different from each other physically separated from the memory 220. It may be stored in a memory.
  • the drive control program 230 is a computer program executed by the control unit 210 when causing the control unit 210 to execute drive control of the LRA 140.
  • the waveform database 240 is a database that stores waveform data used when generating a drive command for driving the LRA 140. Details of the waveform data will be described later.
  • the API 250 is activated by the drive control program 230 and performs various processes for presenting a tactile sensation.
  • the API 250 is stored in the memory 220, but may be stored in another memory mounted on the substrate 150.
  • the driver IC 260 drives the LRA 140 based on the drive command input from the control unit 210.
  • the driver IC 260 amplifies the drive command input from the control unit 210 and inputs it to the LRA 140.
  • the display 301 is, for example, an LCD (Liquid Crystal Display).
  • LCD Liquid Crystal Display
  • GUI Graphic User Interface
  • a GUI component for example, when the electronic device 300 is a smartphone, a keypad for inputting a telephone number is a typical example.
  • the display content of the display 301 is controlled by the control unit 210.
  • the touch sensor 302 is disposed on the surface side of the display 301 and detects the coordinates of the position where the user touches the finger. Coordinates detected by the touch sensor 302 are input to the control unit 210. Note that an electronic component including the display 301 and the touch sensor 302 is a touch panel 120.
  • the input unit 303 is, for example, a switch other than the touch panel of the smartphone when the electronic device 300 is a smartphone. Examples of such a switch include a home key and a volume adjustment button.
  • the signal processing unit 304 controls data that is uploaded from the electronic device 300 to the server 400 and data that the electronic device 300 downloads from the server 400.
  • 210 is a processing unit that exchanges data with 210.
  • the signal processing unit 304 functions as a communication interface of the electronic device 300.
  • the communication unit 305 performs data communication when the electronic device 300 communicates with the server 400 via the Internet 401.
  • the server 400 is, for example, a mail server or a cloud server.
  • the recording medium I / F unit 308 is an interface between the electronic device 300 and a recording medium 309 (for example, a flash memory) connected via a data transmission path such as USB (Universal Serial Bus).
  • a recording medium 309 for example, a flash memory
  • USB Universal Serial Bus
  • a predetermined program is stored in the recording medium 309, and the program stored in the recording medium 309 is installed in the electronic device 300 via the recording medium I / F unit 308.
  • the installed predetermined program can be executed by the electronic device 300.
  • FIG. 6 is a flowchart illustrating processing when the driving apparatus 200 according to the embodiment drives the LRA 140.
  • the driving device 200 When detecting that the user has touched the touch panel 120 (step S601), the driving device 200 according to the embodiment activates the API 250 (step S602). Specifically, the driving device 200 activates the API 250 when, for example, the user touches a GUI button displayed on the touch panel 120.
  • the API 250 reads the waveform data stored in the memory 220 and outputs a drive command generated based on the waveform data to the driver IC 260 (step S603).
  • the driver IC 260 converts the drive command into D / A (Digital-to-Analog) (step S604), and amplifies it with an amplifier or the like (step S605).
  • the driver IC 260 outputs the amplified signal to the LRA 140 (step S606).
  • FIG. 7 is a diagram illustrating a usage form of the electronic device according to the embodiment.
  • FIG. 7 shows smartphones 300A and 300B. Smartphones 300A and 300B have the same configuration as electronic device 300 shown in FIG.
  • the smartphones 300 ⁇ / b> A and 300 ⁇ / b> B can download element waveform data from the database 500 stored in the server 400 by accessing the server 400 via the Internet 401.
  • Element waveform data is data representing a part of the vibration waveform represented by the waveform data. Since the waveform represented by the element waveform data is a part of the vibration waveform represented by the waveform data, the waveform data representing the vibration waveform is completed by combining a plurality of element waveform data. The processing for generating such waveform data is executed by the waveform data generation unit 211 (see FIG. 5).
  • the database 500 is a table format database.
  • FIG. 7 shows a database 500 that associates eight element waveform data names (part A to part H) and eight element waveform data.
  • the period, amplitude, phase, etc. are set at random.
  • the eight element waveforms respectively indicate vibration patterns generated on the touch panel 120 when the LRA 140 is driven using the element waveform data of the parts A to H.
  • each of the eight element waveforms shown in FIG. 7 indicates a vibration pattern generated on the touch panel 120.
  • the eight element waveforms shown in FIG. A pattern may be shown.
  • the name of the element waveform data is an example of an identifier for identifying the element waveform data. Instead of the name of the element waveform data, ID (Identification) may be used.
  • the smartphones 300A and 300B of the embodiment can download the element waveform data stored in the database 500 and store it in the memory 220 (see FIG. 5).
  • FIG. 8 is a diagram illustrating an example of a method of downloading element waveform data in the smartphone 300A according to the embodiment.
  • the smart phone 300A although demonstrated using the smart phone 300A here, even if it uses the smart phone 300B, it is the same.
  • GUI buttons 121A, 121B, 121C, 121D, 121E, and 121F for various applications are displayed on the touch panel 120 of the smartphone 300A.
  • An initial screen of the smartphone 300A is displayed on the touch panel 120 illustrated in FIG.
  • the initial screen is a screen that is displayed first after the user turns on the smartphone 300A and inputs a password or the like.
  • GUI buttons 121A to 121D are buttons for starting the Internet, mail, camera, and calculator, respectively.
  • the GUI button 121E is a GUI button for displaying a parts list.
  • the parts list is a list of element waveforms represented by a plurality of element waveform data.
  • the smartphone 300A downloads data representing a parts list stored in the database 500 of the server 400 (see FIG. 7).
  • the GUI button 121F is a GUI button used when a user uploads waveform data created by the smartphone 300A to the server 400.
  • the smartphone 300A uploads the waveform data designated by the user to the server 400.
  • the waveform data uploaded to the server 400 is stored in the database 500.
  • FIG. 9 is a diagram illustrating an example of a method of downloading element waveform data in the smartphone 300A according to the embodiment.
  • FIG. 9A shows a state in which the parts list 500A is downloaded to the smartphone 300A when the GUI button 121E is pressed (see FIG. 8B).
  • the parts list 500 ⁇ / b> A is displayed on the touch panel 120.
  • FIG. 9B shows a state in which the element waveform data of part A is selected.
  • FIGS. 10 and 11 are diagrams illustrating an example of an operation method such as saving of the element waveform data downloaded by the smartphone 300A according to the embodiment.
  • FIG. 10A shows a state in which the element waveform represented by the element waveform data of part A is displayed on the upper part of the touch panel 120.
  • GUI buttons 122A, 122B, and 122C are displayed on the touch panel 120.
  • the GUI button 122A is a “Play” button for driving the LRA 140 (see FIG. 5) with the element waveform data of part A as a test.
  • the LRA 140 is driven by a drive command based on the element waveform data of the part A, and as shown in FIG. A vibration represented by the waveform of A is generated.
  • a GUI button 122B shown in FIG. 10A is a GUI button that the user presses when the selected element waveform data is stored in the memory 220 of the smartphone 300A. For this reason, “Save” is written on the GUI button 122B.
  • the element waveform data of the part A selected by the operation shown in FIG. 9B is the element waveform database in the memory 220 (see FIG. 5). 350 is stored.
  • the GUI button 122C shown in FIG. 10A is a GUI button that the user presses when the selected element waveform data is not stored in the memory 220 of the smartphone 300A. For this reason, “do not save” is written in the GUI button 122C.
  • FIG. 12 is a diagram illustrating an example of an operation method for generating waveform data by the smartphone 300A according to the embodiment.
  • FIG. 13 is a diagram illustrating an example of an operation method for driving the LRA 140 with the waveform data generated by the smartphone 300A according to the embodiment.
  • FIG. 14 is a diagram illustrating an example of an operation method for storing waveform data generated by the smartphone 300A according to the embodiment.
  • FIG. 12A shows a state where a registration list 123 and GUI buttons 124A and 124B are displayed on the touch panel 120.
  • FIG. The registration list 123 displays the waveform data included in the waveform database 240 in the memory 220 and the element waveform data included in the element waveform database 350 in a table format.
  • the element waveform database 350 is an example of a first storage unit
  • the waveform database 240 is an example of a second storage unit.
  • the registration list 123 the element waveform data selected by the operation shown in FIG. 9B and stored in the memory 220 (see FIG. 5) when the GUI button 122B is pressed as shown in FIG. The name and waveform are displayed.
  • the registration list 123 shown in FIG. 12A includes element waveform data of parts A and E.
  • the GUI button 124 ⁇ / b> A is a “select” button for selecting a part included in the registration list 123. As shown in FIG. 12B, for example, part A and part E can be selected while the GUI button 124A is pressed.
  • the GUI button 124B is a “composite” button for compositing (combining) a plurality of parts selected from the registration list 123.
  • the GUI button 124B is pressed as shown in FIG. 12C, the element waveform data of part A and the element waveform data of part E are Can be synthesized.
  • the synthesis of element waveform data means, for example, when two element waveform data are synthesized, the element waveform represented by the other element waveform data after the element waveform represented by one element waveform data. Is connected. That is, the two element waveform data are synthesized so that the vibration of one element waveform is followed by the vibration of the other element waveform continuously.
  • the element waveform data that precedes in the time axis direction is the element waveform data that was previously selected in the process shown in FIG.
  • waveform data can be generated by combining a plurality of element waveform data.
  • the generated waveform data is stored in the waveform database 240 in the memory 220 (see FIG. 5).
  • the registration list 123 and GUI buttons 124A and 124B shown in FIG. 12A are displayed on the touch panel 120 by selecting a mode for synthesizing element waveform data.
  • the touch panel 120 When the element waveform data of part A and the element waveform data of part E are combined by pressing the GUI button 124B as shown in FIG. 12C, the touch panel 120 has a touch panel 120 as shown in FIG. Waveform data 1 obtained by synthesizing two element waveform data and its waveform are displayed. At this time, GUI buttons 125A, 125B, and 125C are also displayed on the touch panel 120.
  • the GUI button 125 ⁇ / b> A is a “Play” button for driving the LRA 140 using the waveform data displayed on the touch panel 120.
  • the GUI button 125A As shown in FIG. 13B, the touch panel 120 is vibrated as shown in FIG.
  • the GUI button 125B is a GUI button that is pressed by the user when the waveform data is stored in the memory 220 (see FIG. 5). For this reason, “save” is written on the GUI button 125B.
  • the GUI button 125C is a GUI button that the user presses when the waveform data is not stored in the memory 220. For this reason, “do not save” is written in the GUI button 125C.
  • the registration list 123 is displayed again on the touch panel 120 as shown in FIG. 14B, and the waveform data 1 is registered in the registration list 123.
  • the name of waveform data 1 (waveform 1) and its waveform are displayed on the right side of the element waveform data of parts A and E.
  • the waveform data 1 is waveform data obtained by synthesizing two element waveform data whose names are part A and part E.
  • FIGS. 15 and 16 are diagrams illustrating an operation method when the waveform data is uploaded to the server 400 by the smartphone 300A according to the embodiment.
  • the smartphone 300A starts processing for uploading waveform data to the server 400.
  • a registration list 123 and a GUI button 126 are displayed on the touch panel 120 of the smartphone 300A.
  • the GUI button 126 is a button that the user presses when executing the upload process of the waveform data selected from the registration list 123.
  • the waveform data 1 is stored in the smartphone. Uploaded to the server 400 from 300A.
  • FIG. 17 is a diagram illustrating an operation when the smartphones 300A and 300B according to the embodiment download waveform data from the server 400.
  • FIG. 17 shows the waveform data 7, waveform data 1, waveform data 105, and their waveforms, which are ranked first to third in popularity.
  • the users of the smartphones 300A and 300B can check the waveform data displayed in the popularity order in the registration list 510 of the server 400 on the touch panel 120 of their smartphones 300A and 300B, and can download the favorite waveform data.
  • GUI button for executing download is not shown, by operating the GUI button displayed on the touch panel 120, the user downloads favorite waveform data from the server 400 to his / her smartphone 300A or 300B. be able to.
  • FIG. 18 is a diagram illustrating an example of the link data 360 of the smartphone 300A according to the embodiment.
  • the link data 360 in the link data 360, the function data representing the function of the smartphone 300A and the waveform data representing the waveform are associated with each other.
  • FIG. 18 schematically shows the association between the function data and the waveform data, but an identifier may be assigned to each of the function data and the waveform data, and the function data and the waveform data may be associated by associating the identifiers with each other.
  • the link data 360 is an example of a third storage unit.
  • the association between the function data and the waveform data can be freely set by the user of the smartphone 300A.
  • the waveform is a waveform represented by waveform data registered in the waveform database 240.
  • the user can cause the touch panel 120 to vibrate with a waveform desired by the user when operating the web browser, mail, camera, calculator, or the like.
  • waveform data is generated by synthesizing a plurality of element waveform data.
  • the waveform represented by the waveform data described above is a waveform obtained by synthesizing element waveforms represented by various element waveform data, and the rising or rising shape of the waveform may be any shape.
  • the vibration waveform corresponding to the operation input can be freely generated by combining the vibration waveforms.
  • the smartphone 300A can be provided to the user with a tactile sensation as if a mechanical button other than the touch panel 120 was pressed (a feeling as if the button was clicked), it would be easier for the user to recognize various vibration waveforms.
  • the LRA driving method according to the first method, the second method, and the third method is a driving method that provides a tactile sensation that makes it easier for the user to recognize the vibration waveform of the touch panel 120.
  • the waveform data generated by the first method, the second method, and the third method described below can be used as the element waveform data described above.
  • the first method, the second method, and the second method described below are used as the element waveform data positioned later in time series.
  • Waveform data generated by the method 3 may be used. If the waveform data generated by the first method, the second method, and the third method is used as the element waveform data positioned later in time series, the tactile sensation as if a mechanical button was clicked on to the user. This is because it can be provided.
  • both of the two pieces of component waveform data are generated by the first method, the second method, and the third method. It may be waveform data.
  • the first method and the second method are used as the element waveform data positioned last in time series.
  • waveform data generated by the third method may be used.
  • the LRA vibration pattern is changed using three methods to express a tactile sensation as if a mechanical button was clicked.
  • the first method is a method of suppressing free vibration due to the natural frequency of the LRA that continues even after the supply of the drive command is stopped.
  • the free vibration due to the natural frequency of the LRA that continues even after the supply of the drive command is stopped is referred to as residual vibration.
  • the vibration of the LRA 140 stops in one to several cycles when a drive command that satisfies a specific condition described later is supplied to the LRA 140.
  • a drive command that satisfies a specific condition is applied to the LRA 140 to stop the residual vibration, thereby generating a vibration that rapidly attenuates in one to several cycles, and clicking a mechanical button. Express tactile sensation.
  • FIG. 19 is a diagram for explaining the operating principle of the LRA
  • FIG. 20 is a diagram illustrating an example of an input waveform applied to the LRA.
  • the LRA 140 When the sine wave F is applied to the LRA 140, the LRA 140 generates a vibration having a natural frequency (resonance frequency) f0 of the LRA 140. That is, the LRA 140 generates a combined wave in which the sine wave having the frequency f1 and the sine wave having the natural frequency f0 of the LRA 140 are combined, and the LRA 140 is displaced according to the combined wave.
  • FIG. 21 is a response waveform of the LRA 140 when the input sine wave F as the first drive signal is applied to the LRA 140.
  • the waveform indicated by the dotted line indicates the forced vibration component y1 of the vibration displacement generated when the input sine wave F is applied to the LRA 140
  • the waveform indicated by the solid line indicates the free vibration component y2.
  • the response displacement y3 when the drive signal F is applied to the LRA 140 is a composite wave of y1 and y2 as shown in FIG. At the timing T when the input sine wave F vibrates m times (twice) and becomes zero, the composite displacement y3 also becomes zero. At the timing T when the displacement y3 becomes 0, the displacement speed of the LRA 140 also becomes 0, and the vibration of the LRA 140 stops.
  • FIG. 22 is a diagram illustrating an example of the vibration speed and vibration acceleration of the LRA.
  • 22A is a diagram showing the waveform of the synthesized wave y3
  • FIG. 22B is a diagram showing a waveform y3 ′ of the velocity obtained by differentiating the displacement of the synthesized wave y3
  • FIG. It is a figure which shows the waveform y3 '' of the acceleration obtained by differentiating the displacement of the synthetic wave y3 twice.
  • the velocity waveform y3 ′ and the acceleration waveform y3 ′′ become 0 when the synthesized wave y3 becomes 0. That is, the vibration of the LRA 140 stops at the timing T.
  • the vibration acceleration waveform y3 ′′ of the LRA 140 stops in two cycles within 0.01 sec. Therefore, in the example of FIG. 22, the acceleration of vibration becomes 0.02 G or less within 0.01 sec, and the button 2 is pressed. Can express a click feeling.
  • FIG. 23 is a diagram illustrating vibration acceleration of the LRA 140 when a sine wave having an LRA natural frequency is used as a drive command.
  • FIG. 23B shows the vibration acceleration of the LRA 140 when a simulation is performed using the sine wave of FIG. 23A as a drive command.
  • the vibration acceleration of the touch panel 120 is measured by installing an accelerometer in the center of the touch panel 120.
  • FIG. 24 shows a conventional method in which a drive signal having a natural frequency is applied to the LRA 140 and a signal waveform having an opposite phase to the residual vibration is applied.
  • FIG. 24B shows a case where the sine wave of FIG. 24A is used as a drive signal and a voltage having a phase opposite to the vibration generated in the LRA 140 after the supply of the drive signal is stopped is applied to an actual machine equipped with the LRA 140. It is a measurement result of response acceleration in an actual electronic device.
  • the residual vibration is smaller than that of FIG. 23, but it takes 0.05 sec or more until the acceleration of the vibration becomes 0.02 G or less of the human detection lower limit.
  • FIG. 25 is a diagram illustrating an LRA acceleration response simulation when a signal that does not satisfy the conditions of the embodiment is used as an input drive signal, and an acceleration measurement result in an actual electronic device.
  • FIG. 25A shows a sine wave having a frequency of 300 Hz that does not satisfy the specific condition according to the embodiment.
  • FIG. 25B shows vibration acceleration when a simulation is performed using the sine wave of FIG. 25A as a drive command.
  • FIG. 26 is a diagram illustrating an LRA acceleration response simulation when a signal satisfying the conditions of the embodiment is an input drive signal, and an acceleration measurement result in an actual electronic device.
  • FIG. 26 (A) shows a sine wave having a frequency of 350 Hz that satisfies a specific condition.
  • FIG. 26B shows the acceleration of vibration of the LRA 140 when a simulation is performed using the sine wave of FIG.
  • the acceleration of the residual vibration is 0.02 G or less of the detection lower limit after 0.02 sec
  • the vibration waveform is a short-time waveform.
  • the natural frequency f0 may be the natural frequency of the LRA 140 after the LRA 140 is incorporated into the electronic device 300.
  • the frequency f1 is preferably set so that the error is 1% or less with respect to m / n ⁇ f0. If the frequency f1 is set in this way, even if residual vibration occurs after the application of the drive command is stopped, the acceleration of the vibration is 0.02 G or less, which is the lower limit of human detection, and is not detected by humans. There is no loss of tactile feel like clicking a button.
  • the touch panel 120 itself fixed to the housing 110 is also a vibrating body that vibrates at a high frequency.
  • the drive command for the LRA 140 is a signal for stopping the excitation of the LRA 140 when the amplitude reaches its peak, and the high frequency vibration of the touch panel 120 itself is excited to rapidly attenuate in one to several cycles. Expresses the tactile sensation of clicking a mechanical button by generating vibration.
  • FIG. 27 is a diagram for explaining excitation of vibration by the resonance frequency of the touch panel.
  • FIG. 27A shows a sine waveform of a drive command applied to the LRA 140
  • FIG. 27B shows a waveform of acceleration of vibration of the touch panel 120.
  • the drive command is a voltage.
  • the resonance frequency of the LRA 140 is 225 Hz
  • the resonance frequency of the touch panel 120 is 1 kHz. That is, it can be said that the vibration of the LRA 140 is a low-frequency vibration, and the vibration of the touch panel 120 is a high-frequency vibration.
  • the resonance frequency of the touch panel 120 is a resonance frequency in a state where the four sides of the touch panel 120 are fixed to the housing 110.
  • a signal for stopping the excitation to the LRA 140 at the point P1 at which the amplitude reached a peak is used as the drive command.
  • the amplitude of the drive command shown in FIG. 27A becomes 0 immediately after the excitation to the LRA 140 is stopped.
  • the vibration of the LRA 140 is removed from the harmonic vibration by setting the amplitude of the drive command to 0 from the peak.
  • the drive time of the LRA 140 by the drive command is set to 7/4 period, and the point P1 at which the amplitude reaches the peak is the end of the drive command. Note that the end of the drive command is a point at which the vibration to the LRA 140 is stopped.
  • FIG. 28 is a diagram showing acceleration of vibration of the touch panel when the voltage of the resonance frequency of the LRA is used as a drive command.
  • the acceleration of vibration of the touch panel 120 when attempting to express a tactile sensation as if the driving time of the LRA 140 is shortened and a mechanical button is clicked is shown.
  • the vibration of the touch panel 120 requires a rise time for amplifying the vibration amount and a time until the acceleration of the amplified vibration is attenuated to 0.02 G or less, even if the driving time of the LRA 140 is shortened.
  • the vibration continues for several cycles. In the example of FIG. 28, it can be seen that it takes about 25 msec from the rise to the decay, and the vibration continues for about 4 cycles. Therefore, it is difficult to present a sharp tactile sensation as if a mechanical button was clicked.
  • FIG. 27B it can be seen that the vibration with the frequency of 1 kHz has risen and the vibration is attenuated in about two cycles.
  • the high frequency vibration is excited at the point P1, which is the end of the drive command, and the acceleration of the high frequency vibration reaches a peak. Therefore, the timing at which the acceleration of the high-frequency vibration reaches a peak slightly deviates from the timing at which the drive command becomes the point P1.
  • FIG. 29 is a diagram illustrating an example in which the location for exciting the high-frequency vibration is shifted from the point P1.
  • FIG. 29A shows a sine waveform of a drive command applied to the LRA 140
  • FIG. 29B shows a waveform of acceleration of vibration of the LRA 140.
  • the drive command ends at a point P2 slightly deviated from the amplitude peak.
  • the end P2 of the drive command is shifted from the amplitude peak, the superimposed low-frequency vibration acceleration is smaller than the maximum value, and the high-frequency vibration acceleration peak is the value shown in FIG. Although smaller than that, the same effect as the example of FIG. 27 can be obtained.
  • the waveform representing the driving command of the LRA 140 generated using the first method and the second method is held in the waveform database 240 in the memory 220 as waveform data.
  • a drive command is a signal that satisfies the specific condition described in the first method and ends at a point where the amplitude reaches a peak as described in the second method.
  • FIG. 30 is a diagram illustrating an example of the LRA drive command of the third method.
  • FIG. 30A shows the waveform of the drive command G of the third method
  • FIG. 30B shows the acceleration of the vibration of the touch panel 120 when the drive command G of the third method is applied to the LRA 140.
  • FIG. 30A shows the waveform of the drive command G of the third method
  • FIG. 30B shows the acceleration of the vibration of the touch panel 120 when the drive command G of the third method is applied to the LRA 140.
  • the drive command G of the third method terminates at a point P3 where the amplitude becomes the maximum value.
  • the drive command G is a cosine wave whose phase is shifted by ⁇ / 2 from the sine wave waveform so that the drive command G is an m-cycle signal and the signal whose amplitude peak ends.
  • the drive command G is a cosine wave, whereby the drive command G can be a signal that satisfies a specific condition and has a peak at the end.
  • the resonance frequency of the touch panel 120 is the resonance frequency in a state where the four sides of the touch panel 120 are fixed to the housing 110.
  • the resonance frequency of the touch panel 120 is the resonance frequency of the touch panel 120 in a state where the touch panel 120 is incorporated in the housing 110, for example, when the LRA 140 is disposed inside the housing 110.
  • the waveform data of the driving device 200 of the third method includes the frequency f1, the amplitude, the phase, the period (value of m), etc. of the driving command G.
  • the waveform data of the third method may include an expression representing the waveform of the drive command G.
  • step S603 of FIG. 6 the driving device 200 of the third method reads waveform data indicating the driving command G by the API 250 and outputs a driving command corresponding to the waveform data to the driver IC 260.
  • the driver IC 260 D / A converts and amplifies the waveform data and outputs it to the LRA 140.
  • FIG. 31 is a diagram showing an input waveform for the LRA of the third method.
  • the waveform shown in FIG. 31 shows the force applied to the LRA 140 by applying the drive command G to the LRA 140.
  • the waveform shown in FIG. 31 is a cosine wave G1 obtained by shifting the phase of the sine wave F by ⁇ / 2 when the frequency of the drive command G is f1.
  • the LRA 140 When the cosine wave G1 is applied to the LRA 140, the LRA 140 is vibrated at the natural frequency f0 of the LRA 140 (ie, the resonance frequency). That is, the LRA 140 generates a combined wave obtained by combining the cosine wave G1 having the frequency f1 and the cosine wave having the natural frequency f0 of the LRA 140, and the LRA 140 is displaced according to the combined wave.
  • FIG. 32 is a diagram showing the displacement of the LRA by the third method.
  • FIG. 32A is a first diagram for explaining displacement
  • FIG. 32B is a second diagram for explaining displacement.
  • a waveform y11 indicated by a dotted line indicates a forced vibration component of a vibration displacement generated when the cosine wave G1 is applied to the LRA 140
  • a waveform y12 indicated by a solid line indicates a free vibration component.
  • the response displacement y13 when the cosine wave G1 is applied to the LRA 140 is a composite wave of the waveform y11 and the waveform y12.
  • FIG. 32B is a diagram showing an example of the displacement of the composite wave y13 of the waveform y11 and the waveform y12. It can be seen that the synthesized wave y13 becomes 0 at the timing T1 when the cosine wave G1 becomes 0.
  • FIG. 33 is a diagram showing an example of the vibration speed and vibration acceleration of the LRA in the third method.
  • FIG. 33A is a diagram showing the waveform of the composite wave y13
  • FIG. 33B is a diagram showing the velocity waveform y13 ′ obtained by differentiating the displacement of the composite wave y13
  • FIG. It is a figure which shows the waveform y13 '' of the acceleration obtained by differentiating the displacement of the synthetic wave y13 twice.
  • the velocity waveform y13 ′ and the acceleration waveform y13 ′′ become 0 at the timing T1 when the combined wave y13 becomes 0. That is, the vibration of the LRA 140 stops at the timing T1.
  • the acceleration waveform y13 ′′ stops in three cycles within 0.01 sec. Therefore, in the third method, the vibration acceleration becomes 0.02 G or less within 0.01 sec, and the metal dome type button 2 is clicked. It is possible to express a tactile feeling like that.
  • the excitation is stopped at the point where the amplitude of the cosine wave G1 reaches a peak, but the present invention is not limited to this.
  • the end of the drive command may be any point that can generate a steep peak representing a click feeling in a waveform indicating acceleration of vibration of the touch panel 120, for example.
  • the end of the drive command may be other than 0, which is the center point of the amplitude, and the end of the drive command is better as the point is closer to the peak of the amplitude.
  • the LRA 140 is attached to the surface of the touch panel 120 on the housing side, but is not limited thereto.
  • the LRA 140 may be disposed in the vicinity of the substrate 150 disposed in the housing 110.
  • FIG. 34 is a diagram illustrating an example of an electronic device in which an LRA is provided in a housing.
  • the LRA 140 is disposed in the vicinity of the substrate 150 provided in the housing 110.
  • the third method can also be applied to the electronic device 300A. Further, when the third method is applied to the electronic device 300A, it is possible to express a tactile sensation as if the metal dome type button 2 was clicked as in the case of the electronic device 300 of the third method.
  • the drive device As described above, the drive device, the electronic apparatus, and the drive control program according to the embodiment have been described in detail. It can be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

 振動波形を組み合わせて操作入力に対する振動波形を自由に生成できる駆動装置、電子機器、及び駆動制御プログラムを提供する。 駆動装置は、タッチパネルを振動させる振動波形の一部を表す複数の要素波形データを格納する第1格納部と、前記第1格納部に格納された複数の要素波形データのうち、利用者によって選択された第1要素波形データ及び第2要素波形データを組み合わせて波形データを生成する波形データ生成部と、前記波形データ生成部によって生成される波形データを格納する第2格納部と、前記タッチパネルに利用者の操作入力が行われると、利用者によって選択された前記波形データに基づく駆動指令を生成する駆動指令生成部とを含む。

Description

駆動装置、電子機器、及び駆動制御プログラム
 本発明は、駆動装置、電子機器、及び駆動制御プログラムに関する。
 従来から、タッチパネルを入力手段とする電子機器がある。タッチパネルは、操作面への接触を入力操作として検出するものであり、ボタン等を押す際の触感は得られない。このため、従来のタッチパネルでは、入力操作に応じた触感を提供する装置の搭載が望まれていた。
 そこで、近年では、例えばLRA(Linear Resonant Actuator)のようなアクチュエータを駆動してタッチパネルを振動させることにより、入力操作に応じた触感を提示することが考えられている。
特表2008-521597
 しかしながら、従来は、入力操作に対して提示される振動波形は同じ振動波形の繰り返しであり、タッチパネルの操作感が単調であった。すなわち、様々な振動波形を組み合わせて自由に振動波形を生成することはできなかった。
 そこで、振動波形を組み合わせて操作入力に対する振動波形を自由に生成できる駆動装置、電子機器、及び駆動制御プログラムを提供することを目的とする。
 本発明の実施の形態の駆動装置は、タッチパネルを振動させる振動波形の一部を表す複数の要素波形データを格納する第1格納部と、前記第1格納部に格納された複数の要素波形データのうち、利用者によって選択された第1要素波形データ及び第2要素波形データを組み合わせて波形データを生成する波形データ生成部と、前記波形データ生成部によって生成される波形データを格納する第2格納部と、前記タッチパネルに利用者の操作入力が行われると、利用者によって選択された前記波形データに基づく駆動指令を生成する駆動指令生成部とを含む。
 振動波形を組み合わせて操作入力に対する振動波形を自由に生成できる駆動装置、電子機器、及び駆動制御プログラムを提供することができる。
キースイッチの押下で生じる振動加速度の波形と、タッチパネルの接触で生じる振動加速度の波形を示す図である。 人体の組織に含まれる加速度を検出する器官の感度を示す図である。 実施の形態の電子機器の断面構造を示す図である。 2種類のLRAの断面構造を示す図である。 実施の形態の駆動装置を説明する図である。 実施の形態の駆動装置がLRAを駆動する際の処理を示すフローチャートである。 実施の形態の電子機器の利用形態の一例を示す図である。 実施の形態のスマートフォンにおける要素波形データのダウンロード方法の一例を示す図である。 実施の形態のスマートフォンにおける要素波形データのダウンロード方法の一例を示す図である。 実施の形態のスマートフォンでダウンロードした要素波形データの保存等の操作方法の一例を示す図である。 実施の形態のスマートフォンでダウンロードした要素波形データの保存等の操作方法の一例を示す図である。 実施の形態のスマートフォンで波形データを生成するための操作方法の一例を示す図である。 実施の形態のスマートフォンで生成した波形データで試しにLRAを駆動させるための操作方法の一例を示す図である。 実施の形態のスマートフォンで生成した波形データを保存するための操作方法の一例を示す図である。 実施の形態のスマートフォンで、波形データをサーバにアップロードする際の操作方法を示す図である。 実施の形態のスマートフォンで、波形データをサーバにアップロードする際の操作方法を示す図である。 実施の形態のスマートフォンがサーバから波形データをダウンロードする際の動作を示す図である。 実施の形態のスマートフォンのリンクデータの一例を示す図である。 LRAの動作原理を説明するための図である。 LRAに印加される入力波形の例を示す図である。 LRAの変位を示す図である。 LRAの振動の変位、振動の速度及び振動の加速度の例を示す図である。 LRAの固有振動数の正弦波を駆動指令としたときのLRAの振動の加速度を示す図である。 LRAの固有振動数の正弦波による駆動信号停止後にLRAに発生する振動の逆位相の電圧を振動抑制信号として印加したときのLRAの振動の加速度を示す図である。 実施形態の条件を満たさない信号を入力駆動信号としたときのLRAの加速度応答シミュレーションと、実際の電子機器での加速度測定結果を示す図である。 実施形態の条件を満たす信号を入力駆動信号としたときのLRAの加速度応答シミュレーションと、実際の電子機器での加速度測定結果を示す図である。 タッチパネルの共振周波数による振動の励起を説明する図である。 LRAの共振周波数の電圧を駆動指令としたときのタッチパネルの振動の加速度を示す図である。 高周波振動を励起する箇所をずらした例を示す図である。 実施の形態のLRAの駆動指令の例を示す図である。 実施の形態のLRAに対する入力波形を示す図である。 実施の形態のLRAの強制振動成分と自由振動成分、合成波を説明する図である。 実施の形態のLRAの振動の速度及び振動の加速度の例を示す図である。 LRAが筐体に設けられた電子機器の例を示す図である。
 以下、本発明の駆動装置、電子機器、及び駆動制御プログラムを適用した実施の形態について説明する。
 <実施の形態1>
 図1(A)は、人間の指に加速度計1を取り付けてボタン2を押下した際に生じる振動の加速度の波形11を示す図である。図1(B)は、人間の指に加速度計1を取り付けて、LRA(Linear Resonant Actuator)が取り付けられたタッチパネル3をタッチした際に生じる振動の加速度の波形12を示す図である。図1の例では、ボタン2は例えばメタルドーム式のボタンである。またボタン2とタッチパネル3は、電子機器に設けられたものである。
 波形11で示される振動は、1~数周期で急速に減衰する。これに対して波形12で示される振動は、駆動指令の供給を停止後もLRAの固有振動数による自由振動が減衰するまで続く。
 ところで、人間の指は、振動周波数200Hzにおいて振動の加速度が0.02G以下になると振動を感知できなくなる。振動周波数とは、1秒間の振動数である。振動の加速度とは、単位時間当たりの振動の速度変化量を示すものである。
 図2は、人体の組織に含まれる加速度を検出する器官の感度を示す図である。なお、人間の主な機械刺激の受容器には、変位を感じ取るメルケル細胞、速度を感じ取るマイスナー小体、加速度を感じ取るパチニ小体の3種類がある。
 すなわち波形11では、指は0.01sec以内に振動の加速度が0.02G以下になるため振動を感知しなくなる。これに対して波形12では、振動の加速度が0.02G以下になるまで0.1secが必要であり、指は0.1sec経過するまで振動を感知し続ける。したがって波形11で示される振動と、波形12で示される振動とでは、人間が感知する触感として全く異なるものとなる。
 次に、図3を用いて実施の形態の電子機器について説明する。
 図3は、実施の形態の電子機器の断面構造を示す図である。
 実施の形態の電子機器300は、筐体110、タッチパネル120、両面テープ130、LRA140、基板150を有する。電子機器300は、例えば、スマートフォンのような携帯端末機である。なお、電子機器300は、タッチパネル120を入力操作部とする機器であればよいため、スマートフォンのような携帯端末機に限られず、例えば、ATM(Automatic Teller Machine)のように特定の場所に設置されて利用される機器であってもよい。
 実施の形態の電子機器300では、両面テープ130により、タッチパネル120が筐体110に固定されている。LRA140は、タッチパネル120の筐体側の面に取り付けられている。LRA140は、予め設計された共振周波数を持つ振動系とアクチュエータとが組み合わされたもので、主に共振周波数で駆動して振動を発生させる振動デバイスであり、駆動波形の振幅により振動量が変化する。
 基板150は、筐体110内部に配置されている。基板150には、LRA140の駆動を制御するために駆動装置やLRA140に駆動指令を出力するドライバIC(Integrated Circuit)等が実装されている。なお、図3ではドライバIC等を省略する。
 実施の形態の電子機器300は、タッチパネル120に利用者の指が接触すると、この接触を感知して基板150に実装された駆動装置によりLRA140を駆動し、LRA140の振動をタッチパネル120に伝播させる。
 尚本実施例ではLRA140を振動デバイスとしたが、共振器と加振用のアクチュエータを備えた構造であればLRAに限らない。
 次に、図4を参照してLRA140について説明する。
 図4は、2種類のLRAの断面構造を示す図である。図4(A)はボイスコイルを用いたLRAを示す図であり、図4(B)は圧電素子を用いたLRAを示す図である。
 図4(A)に示すLRA30は、ばね31、磁石32、コイル33を有する。LRA30は、ばね31のばね定数をkとし、磁石32の質量をmとすると、固有振動数f0が以下の式1で示される。
Figure JPOXMLDOC01-appb-M000001
 図4(B)に示すLRA40は、重り41、梁42、圧電素子43を有する。LRA40は、重り41の質量をmとし、梁42のヤング率をEとし、梁42の断面2次モーメントをIとすると、固有振動数f0が以下の式2で示される。なお、Lを梁42の長手方向の長さとする。
Figure JPOXMLDOC01-appb-M000002
 実施の形態のLRA140は、ボイスコイルを用いたLRA30を適用しても良いし、圧電素子43を用いたLRA40を適用しても良い。
 次に、図5を参照して実施の形態の電子機器300の有する基板150に実装された駆動装置について説明する。
 図5は、実施の形態の駆動装置を説明する図である。
 実施の形態の駆動装置200は、制御部210、及びメモリ220を含む。また、実施の形態の電子機器300は、主な構成要素として、駆動装置200、ドライバIC(Integrated circuit:集積回路)260、LRA140、ディスプレイ301、タッチセンサ302、入力部303、信号処理部304、通信部305、及び記録媒体I/F(Interface)部308を含む。
 制御部210は、波形データ生成部211、駆動指令生成部212、及びデータ処理部213を含む。制御部210は、CPU(Central Processing Unit:中央演算処理装置)によって実現される。
 波形データ生成部211は、LRA140を駆動するための駆動指令を生成するためのデータである波形データを生成する。
 駆動指令生成部212は、メモリ220に格納された駆動制御プログラム230を読み出して実行し、波形データに基づいて駆動指令を生成することにより、駆動指令を用いて後述するLRA140を駆動する。駆動指令生成部212は、LRA140の駆動波形を表す波形データに基づいて、LRA140に供給するための電圧値及び電流値等を表す駆動指令を生成する。
 データ処理部213は、波形データをサーバ400にアップロードする処理、サーバ400から波形データをダウンロードする処理、及び波形データについてのその他の処理を行う。なお、データ処理部213は、第1データ処理部及び第2データ処理部の一例である。
 メモリ220には、LRA140の駆動を制御する駆動制御プログラム230が格納される記憶領域と、波形データが格納される記憶領域(波形データベース240)と、API(Application Programming Interface)250が格納される記憶領域とが設けられている。また、メモリ220には、さらに、要素波形データが格納される記憶領域(要素波形データベース350)と、リンクデータ360が格納される記憶領域とは設けられている。
 なお、ここでは、波形データベース240と要素波形データベース350がメモリ220内の記憶領域である形態について説明するが、波形データベース240と要素波形データベース350は、メモリ220とは物理的に隔離された別のメモリに格納されてもよい。
  駆動制御プログラム230は、制御部210にLRA140の駆動制御を実行させる際に、制御部210が実行するコンピュータプログラムである。
 波形データベース240は、LRA140を駆動するための駆動指令を生成する際に用いられる波形データを格納するデータベースである。波形データの詳細は後述する。
 API250は、駆動制御プログラム230により起動され、触感を提示するための各種処理を行う。図5ではAPI250はメモリ220に格納されるものとしたが、基板150に実装された他のメモリに格納されていても良い。
 ドライバIC260は、制御部210から入力される駆動指令に基づき、LRA140を駆動する。ドライバIC260は、制御部210から入力される駆動指令を増幅等してLRA140に入力する。
 ディスプレイ301は、例えば、LCD(Liquid Crystal Display)であり、電子機器300がスマートフォンの場合は、スマートフォンの各種機能を実現するために必要なGUI(Graphic User Interface)部品を表示する。GUI部品としては、例えば電子機器300がスマートフォンの場合は、電話番号を入力するためのキーパッドが典型例である。ディスプレイ301の表示内容は、制御部210によって制御される。
 タッチセンサ302は、ディスプレイ301の表面側に配設されており、利用者が指を触れた位置の座標を検出する。タッチセンサ302が検出する座標は、制御部210に入力される。なお、ディスプレイ301とタッチセンサ302を合わせた電子部品がタッチパネル120である。
 入力部303は、例えば、電子機器300がスマートフォンの場合は、スマートフォンのタッチパネル以外のスイッチ等である。このようなスイッチとしては、例えば、ホームキー、ボリューム調整用のボタン等がある。
 信号処理部304は、通信部305がサーバ400とインターネット401を介して通信を行う際に、電子機器300からサーバ400にアップロードするデータと、電子機器300がサーバ400からダウンロードするデータとを制御部210との間で受け渡す処理部である。信号処理部304は、電子機器300の通信用のインターフェイスとして機能する。
 通信部305は、電子機器300がインターネット401を介してサーバ400と通信を行う際に、データ通信を行う。サーバ400は、例えば、メールサーバ又はクラウドサーバ等である。
 記録媒体I/F部308は、USB(Universal Serial Bus)などのデータ伝送路を介して接続された記録媒体309(例えば、フラッシュメモリなど)と電子機器300とのインターフェイスである。
 また、記録媒体309に、所定のプログラムを格納し、この記録媒体309に格納されたプログラムは記録媒体I/F部308を介して電子機器300にインストールされる。インストールされた所定のプログラムは、電子機器300により実行可能となる。
 図6は、実施の形態の駆動装置200がLRA140を駆動する際の処理を示すフローチャートである。
 実施の形態の駆動装置200は、利用者がタッチパネル120に接触したことを検出すると(ステップS601)、API250を起動させる(ステップS602)。具体的には駆動装置200は、例えばタッチパネル120に表示されたGUIボタンに利用者が触れた場合にAPI250を起動する。
 API250は、メモリ220に格納された波形データを読み出し、波形データに基づいて生成した駆動指令をドライバIC260へ出力する(ステップS603)。ドライバIC260は、駆動指令ををD/A(Digital to Analog)変換し(ステップS604)、アンプ等により増幅する(ステップS605)。ドライバIC260は、増幅した信号をLRA140に出力する(ステップS606)。
 次に、図7乃至図18を用いて、実施の形態の駆動装置200が生成する波形データの利用形態及び生成方法等について説明する。
 図7は、実施の形態の電子機器の利用形態を示す図である。
 図7には、スマートフォン300A、300Bを示す。スマートフォン300A、300Bは、図5に示す電子機器300と同一構成を有する。
 スマートフォン300A、300Bは、インターネット401を経由してサーバ400にアクセスすることにより、サーバ400に格納されているデータベース500から、要素波形データをダウンロードすることができる。
 要素波形データは、波形データが表す振動波形の一部を表すデータである。要素波形データが表す波形は、波形データが表す振動波形の一部であるため、複数の要素波形データを組み合わせることにより、振動波形を表す波形データが完成する。このような波形データを生成する処理は、波形データ生成部211(図5参照)によって実行される。
 データベース500は、テーブル形式のデータベースである。図7には、8つの要素波形データの名称(パーツAからパーツH)と、8つの要素波形データを関連付けたデータベース500を示す。
 また、図7に示す8つの要素波形は、周期、振幅、位相等がランダムに設定されている。8つの要素波形は、それぞれ、パーツAからパーツHの要素波形データを用いてLRA140を駆動した場合に、タッチパネル120に生じる振動のパターンを示す。
 なお、ここでは、図7に示す8つの要素波形が、それぞれ、タッチパネル120に生じる振動のパターンを示す形態について説明するが、図7に示す8つの要素波形が、LRA140に入力される駆動指令のパターンを示すようにしてもよい。
 なお、要素波形データの名称は、要素波形データを識別するための識別子の一例である。要素波形データの名称の代わりに、ID(Identification)を用いてもよい。
 実施の形態のスマートフォン300A、300Bは、データベース500に格納される要素波形データをダウンロードし、メモリ220(図5参照)に格納することができる。
 図8は、実施の形態のスマートフォン300Aにおける要素波形データのダウンロード方法の一例を示す図である。なお、ここではスマートフォン300Aを用いて説明するが、スマートフォン300Bを用いても同様である。
 図8(A)に示すように、スマートフォン300Aのタッチパネル120には、様々なアプリケーションのGUIボタン121A、121B、121C、121D、121E、及び121Fが表示されている。図8(A)に示すタッチパネル120には、スマートフォン300Aの初期画面が表示されている。初期画面は、利用者がスマートフォン300Aの電源をオンにし、パスワード等を入力した後に、最初に表示される画面である。
 GUIボタン121Aから121Dは、それぞれ、インターネット、メール、カメラ、電卓を起動するためのボタンである。
 なお、以下では、GUIボタン121A~121Fを含め、種々のGUIボタン及びGUIボタンを含むリスト等がタッチパネル120に表示される状態を示す。その際に、利用者の指によって押されていないGUIボタンを白く示し、利用者の指によって押されているGUIボタンをグレーで示す。
 GUIボタン121Eは、パーツリストを表示させるためのGUIボタンである。パーツリストとは、複数の要素波形データが表す要素波形のリストである。図8(B)に示すように、利用者がGUIボタン121Eに触れると、スマートフォン300Aはサーバ400(図7参照)のデータベース500に格納されているパーツリストを表すデータをダウンロードする。
 GUIボタン121Fは、利用者がスマートフォン300Aで作成した波形データをサーバ400にアップロードする際に用いるGUIボタンである。利用者がGUIボタン121Fに触れると、スマートフォン300Aは利用者に指定された波形データをサーバ400にアップロードする。サーバ400にアップロードされた波形データは、データベース500に格納される。
 図9は、実施の形態のスマートフォン300Aにおける要素波形データのダウンロード方法の一例を示す図である。
 図9(A)には、GUIボタン121Eが押されることにより(図8(B)参照)、パーツリスト500Aがスマートフォン300Aにダウンロードされた状態を示す。パーツリスト500Aは、タッチパネル120に表示されている。
 この状態では、利用者はパーツリスト500Aに触れることにより、任意の要素波形データを選択することができる。図9(B)には、パーツAの要素波形データを選択している状態を示す。
 図10及び図11は、実施の形態のスマートフォン300Aでダウンロードした要素波形データの保存等の操作方法の一例を示す図である。
 図10(A)には、パーツAの要素波形データが表す要素波形がタッチパネル120の上部に表示されている状態を示す。また、この状態では、タッチパネル120には、GUIボタン122A、122B、122Cが表示される。
 GUIボタン122Aは、パーツAの要素波形データでLRA140(図5参照)を試しに駆動させるための"Play"ボタンである。図10(B)に示すように利用者がGUIボタン122Aを押すと、LRA140がパーツAの要素波形データに基づく駆動指令で駆動され、図10(C)に示すように、タッチパネル120にはパーツAの波形で表される振動が生じる。
 図10(A)に示すGUIボタン122Bは、選択した要素波形データをスマートフォン300Aのメモリ220に保存する場合に利用者が押すGUIボタンである。このため、GUIボタン122Bには、"保存"と記す。
 図11(A)に示すように利用者がGUIボタン122Bを押すと、図9(B)に示す操作で選択されたパーツAの要素波形データは、メモリ220(図5参照)の要素波形データベース350に保存される。
 図10(A)に示すGUIボタン122Cは、選択した要素波形データをスマートフォン300Aのメモリ220に保存しない場合に利用者が押すGUIボタンである。このため、GUIボタン122Cには、"保存しない"と記す。
 図11(B)に示すように利用者がGUIボタン122Cを押すと、図9(B)に示す操作で選択されたパーツAの要素波形データは、メモリ220に保存されずに消去される。
 図12は、実施の形態のスマートフォン300Aで波形データを生成するための操作方法の一例を示す図である。図13は、実施の形態のスマートフォン300Aで生成した波形データで試しにLRA140を駆動させるための操作方法の一例を示す図である。図14は、実施の形態のスマートフォン300Aで生成した波形データを保存するための操作方法の一例を示す図である。
 図12(A)には、タッチパネル120に登録リスト123とGUIボタン124A、124Bが表示されている状態を示す。登録リスト123は、メモリ220内の波形データベース240に含まれる波形データと、要素波形データベース350に含まれる要素波形データをテーブル形式で表示したものである。
 ここで、要素波形データベース350は第1格納部の一例であり、波形データベース240は第2格納部の一例である。
 登録リスト123には、図9(B)に示す操作で選択され、図11(A)に示すようにGUIボタン122Bが押されることによってメモリ220(図5参照)に保存された要素波形データの名称と波形が表示される。図12(A)に示す登録リスト123には、パーツAとパーツEの要素波形データが含まれている。
 GUIボタン124Aは、登録リスト123に含まれるパーツを選択するための"選択"ボタンである。図12(B)に示すように、GUIボタン124Aを押した状態で、例えば、パーツAとパーツEを選択することができる。
 GUIボタン124Bは、登録リスト123から選択した複数のパーツを合成する(組み合わせる)ための"合成"ボタンである。図12(B)に示すようにパーツAとパーツEを選択した状態で、図12(C)に示すようにGUIボタン124Bを押すと、パーツAの要素波形データとパーツEの要素波形データとを合成することができる。
 ここで、要素波形データの合成とは、例えば、2つの要素波形データを合成する場合には、一方の要素波形データで表される要素波形の後に、他方の要素波形データで表される要素波形を接続することをいう。すなわち、一方の要素波形による振動の後に、他方の要素波形の振動が連続的に続くように2つの要素波形データを合成することをいう。
 なお、2つの要素波形データを合成する場合に、時間軸方向で先になる要素波形データは、図12(B)に示す処理で、先に選択された要素波形データである。また、ここでは2つの要素波形データを合成する場合について説明するが、3つ以上の要素波形データを合成する場合も同様である。
 このように複数の要素波形データを合成することにより、波形データを生成することができる。生成された波形データは、メモリ220(図5参照)内の波形データベース240に保存される。
 なお、図12(A)に示す登録リスト123とGUIボタン124A、124Bは、要素波形データを合成するためのモードを選択することによってタッチパネル120に表示される。
 図12(C)に示すようにGUIボタン124Bを押すことによってパーツAの要素波形データと、パーツEの要素波形データとを合成すると、図13(A)に示すように、タッチパネル120には、2つの要素波形データを合成した波形データ1と、その波形とが表示される。また、このときタッチパネル120には、GUIボタン125A、125B、125Cも表示される。
 GUIボタン125Aは、タッチパネル120に表示されている波形データを用いて、LRA140を駆動させるための"Play"ボタンである。図13(B)に示すように利用者がGUIボタン125Aを押すと、図13(C)に示すようにタッチパネル120に振動が生じる。
 GUIボタン125Bは、波形データをメモリ220(図5参照)に保存する場合に利用者が押すGUIボタンである。このため、GUIボタン125Bには、"保存"と記す。
 GUIボタン125Cは、波形データをメモリ220に保存しない場合に利用者が押すGUIボタンである。このため、GUIボタン125Cには、"保存しない"と記す。
 利用者がGUIボタン125Bを押すと、図14(B)に示すように、タッチパネル120には再び登録リスト123が表示され、登録リスト123に波形データ1が登録される。図14(B)には、パーツAとパーツEの要素波形データの右側に、波形データ1の名称(波形1)と、その波形が表示される。波形データ1は、名称がパーツAとパーツEの2つの要素波形データを合成して得られる波形データである。
 次に、図15を用いて、波形データをサーバ400(図5参照)にアップロードする方法について説明する。
 図15及び図16は、実施の形態のスマートフォン300Aで、波形データをサーバ400にアップロードする際の操作方法を示す図である。
 図15(A)に示す初期画面において、図15(B)に示すように、GUIボタン121Fが押されると、スマートフォン300Aは波形データをサーバ400にアップロードするための処理を開始する。スマートフォン300Aのタッチパネル120には、図15(C)に示すように、登録リスト123とGUIボタン126が表示される。
 GUIボタン126は、登録リスト123から選択された波形データのアップロード処理を実行する際に、利用者が押すボタンである。
 図16(A)に示すように、利用者が登録リスト123から波形データ1を選択し、図16(B)に示すように、利用者がGUIボタン126を押すと、波形データ1は、スマートフォン300Aからサーバ400にアップロードされる。
 次に、図17を用いて、実施の形態のスマートフォン300A、300Bを用いて、利用者がサーバ400から波形データをダウンロードする際の操作方法について説明する。
 図17は、実施の形態のスマートフォン300A、300Bがサーバ400から波形データをダウンロードする際の動作を示す図である。
 図17に示すように、サーバ400に格納される登録リスト510には、様々な利用者からサーバ400にアップロードされた波形データが、ダウンロード回数の多い順に表示されている。図17には、人気が1位から3位の波形データ7、波形データ1、波形データ105と、その波形を示す。
 スマートフォン300A、300Bの利用者は、サーバ400の登録リスト510に人気順に表示されている波形データを自己のスマートフォン300A、300Bのタッチパネル120で確認し、好みの波形データをダウンロードすることができる。
 ここでは、ダウンロードを実行するためのGUIボタンを示さないが、タッチパネル120に表示されるGUIボタンを操作することにより、利用者は好みの波形データをサーバ400から自分のスマートフォン300A又は300Bにダウンロードすることができる。
 次に、図18を用いて、実施の形態のスマートフォン300Aのメモリ220内に格納されるリンクデータについて説明する。
 図18は、実施の形態のスマートフォン300Aのリンクデータ360の一例を示す図である。図18に示すように、リンクデータ360では、スマートフォン300Aの機能を表す機能データと、波形を表す波形データとが関連付けられている。図18には、機能データと波形データとの関連づけを模式的に示すが、機能データと波形データとにそれぞれ識別子を割り当て、識別子同士を関連付けることによって機能データと波形データとの関連づけを行えばよい。なお、リンクデータ360は第3格納部の一例である。
 機能データと波形データとの関連づけは、スマートフォン300Aの利用者が自由に設定することができる。
 機能としては、例えば、Webブラウザ、メール、カメラ、電卓等がある。波形は、波形データベース240に登録されている波形データが表す波形である。
 機能データと波形データとを関連付けることにより、Webブラウザ、メール、カメラ、電卓等の操作時に、利用者が好みの波形による振動をタッチパネル120に生じさせることができる。
 以上では、複数の要素波形データを合成することによって波形データを生成する実施の形態について説明した。以上で説明した波形データによって表される波形は、様々な要素波形データによって表される要素波形を合成した波形であり、波形の立ち上がり又は立ち上がりの形状は、任意の形状であってよい。
 しかしながら、波形の立ち上がり、又は、立ち下がりを急峻にすれば、利用者が指を通じてタッチパネル120の振動をより認識しやすくなり、振動波形を組み合わせて操作入力に対する振動波形を自由に生成できる。
 例えば、タッチパネル120ではない機械的なボタンを押したような触感(ボタンをクリックしたような感覚)をスマートフォン300Aを利用者に提供できれば、様々な振動波形を利用者がより認識しやすくなる。
 このため、以下では、図19乃至図34を用いて、第1の方法、第2の方法、及び第3の方法によるLRAの駆動方法について説明する。第1の方法、第2の方法、及び第3の方法によるLRAの駆動方法は、利用者がタッチパネル120の振動波形をより認識しやすくなる触感を提供する駆動方法である。
 以下で説明する第1の方法、第2の方法、及び第3の方法で生成する波形データは、以上で説明した要素波形データとして用いることができる。
 例えば、2つの要素波形データを合成して1つの波形データを作成する場合には、時系列的に後に位置する要素波形データとして、以下で説明する第1の方法、第2の方法、及び第3の方法で生成する波形データを用いればよい。時系列的に後に位置する要素波形データとして、第1の方法、第2の方法、及び第3の方法で生成する波形データを用いれば、機械的なボタンをクリックしたような触感を利用者に提供できるからである。
 また、この代わりに、2つの要素波形データを合成して1つの波形データを作成する場合に、2つの要素波形データをともに第1の方法、第2の方法、及び第3の方法で生成する波形データにしてもよい。
 また、同様に、3つ以上の要素波形データを合成して1つの波形データを生成する場合には、少なくとも時系列的に最後に位置する要素波形データとして、第1の方法、第2の方法、及び第3の方法で生成する波形データを用いればよい。
 以下に実施の形態の波形データについて説明する。実施の形態では、3つの方法を用いてLRAの振動のパターンを変化させて、機械的なボタンをクリックしたような触感を表現する。
 まず第1の方法について説明する。第1の方法は、駆動指令の供給停止後も続くLRAの固有振動数による自由振動を抑制する方法である。以下の実施の形態の説明では、駆動指令の供給停止後も続くLRAの固有振動数による自由振動を残留振動と呼ぶ。
 第1の方法では、後述する特定の条件を満たす駆動指令をLRA140に供給したときにLRA140の振動が1~数周期で停止することに着目した。第1の方法では、特定の条件を満たす駆動指令をLRA140に印加して留振動を停止させることで、1~数周期で急速に減衰する振動を発生させ、機械的なボタンをクリックしたような触感を表現する。
 特定の条件を満たす駆動指令は、LRA140の固有振動数をf0としたとき、f1=m/n×f0(m,nは自然数かつm≠n)となる周波数f1の信号でLRA140をm回加振する信号である。
 図19は、LRAの動作原理を説明するための図であり、図20は、LRAに印加される入力波形の例を示す図である。
 LRA140の固有振動数f0を175Hzとし、m=2,n=1としたとき、駆動指令の周波数f1=2/1×175=350Hzとなる。駆動指令の周波数をf1としたときの正弦波Fは、図20に示す波形である。図20の例では、正弦波F=0.01sin2πf1tとなる。
 正弦波FがLRA140に印加されると、LRA140にはLRA140の固有振動数(共振周波数)f0の振動が生じる。すなわち、LRA140には、周波数f1の正弦波と、LRA140の固有振動数f0の正弦波とが合成された合成波が生じ、LRA140はこの合成波に応じて変位する。
 図21は、LRA140に第1の駆動信号としての入力正弦波Fが印加されたときのLRA140の応答波形である。図21(A)で、点線で示される波形は、LRA140に入力正弦波Fが印加されたときに生じる振動変位の強制振動成分y1を示し、実線で示される波形は、自由振動成分y2を示す。駆動信号FがLRA140に印加された時の応答変位y3は、図21(B)に示すようにy1とy2の合成波となる。入力正弦波Fがm回(2回)振動してゼロとなるタイミングTで、合成変位y3も0となる。変位y3が0となるタイミングTにおいて、LRA140の変位の速度も0になり、LRA140の振動は停止する。
 図22は、LRAの振動の速度及び振動の加速度の例を示す図である。図22(A)は合成波y3の波形を示す図であり、図22(B)は合成波y3の変位を微分して得る速度の波形y3′を示す図であり、図22(C)は合成波y3の変位を2回微分して得る加速度の波形y3″を示す図である。
 図22からわかるように、速度の波形y3′と加速度の波形y3″とは、合成波y3が0となるタイミングで0となる。すなわちLRA140の振動がタイミングTで停止する。
 このときLRA140の振動の加速度の波形y3″は、0.01sec以内に2周期で停止する。したがって図22の例では、振動の加速度が0.01sec以内に0.02G以下となり、ボタン2を押したようなクリック感を表現することができる。
 以下に図23乃至図26を参照して、上述する第1の方法の効果を説明する。図23は、LRAの固有振動数の正弦波を駆動指令としたときのLRA140の振動の加速度を示す図である。
 図23(A)は、LRA140の固有振動数f0=175Hzの正弦波を示す。図23(B)は、図23(A)の正弦波を駆動指令としてシミュレーションした際のLRA140の振動の加速度を示す。図23(C)は、固有振動数f0=175HzのLRA140を搭載した実機において図23(A)の正弦波を駆動指令した際のタッチパネル120の振動の加速度を示す。タッチパネル120の振動の加速度は、タッチパネル120の中央に加速度計を設置して測定したものである。
 図23(B),(C)からわかるように、固有振動数f0の正弦波を駆動指令とした場合、残留振動が0.1sec以上に亘り現れる。
 なお、図23(C)において駆動指令が印加されるLRA140は、固有振動数f0=175Hz、重りの重さを1.5g、重りを支持するばね定数を1813.5N/mのものとした。
 図24は、LRA140に固有振動数の駆動信号を印加し、残留振動と逆位相の信号波形を印加する従来の方法を示す。図24(A)は固有振動数f0=175Hzの駆動信号を示す。図24(B)は、LRA140を搭載した実機において、図24(A)の正弦波を駆動信号とし、かつ、駆動信号の供給停止後にLRA140に発生する振動の逆位相の電圧を印加したときの実際の電子機器での応答加速度の測定結果である。
 図24の例では、図23に比べて残留振動は小さくなるが、振動の加速度が人の感知下限の0.02G以下になるまでに0.05sec以上かかる。
 図25は、実施形態の条件を満たさない信号を入力駆動信号としたときのLRAの加速度応答シミュレーションと、実際の電子機器での加速度測定結果を示す図である。
 図25(A)は、実施形態による特定の条件を満たさない周波数300Hzの正弦波を示す。図25(B)は、図25(A)の正弦波を駆動指令としてシミュレーションした際の振動の加速度を示す。図25(C)は、固有振動数f0=175HzのLRA140を搭載した実機において図25(A)の正弦波を駆動指令した際の振動の加速度を示す。
 図25の例では、図(B),(C)からわかるように、特定の条件を満たさない周波数の正弦波を駆動指令とした場合、残留振動が0.04sec以上に亘り現れる。
 図26は、実施形態の条件を満たす信号を入力駆動信号としたときのLRAの加速度応答シミュレーションと、実際の電子機器での加速度測定結果を示す図である。
 図26(A)は、特定の条件を満たす周波数350Hzの正弦波を示す。図26(B)は、図26(A)の正弦波を駆動指令としてシミュレーションした際のLRA140の振動の加速度を示す。図26(C)は、固有振動数f0=175HzのLRA140を搭載した実機において図26(A)の正弦波を駆動指令した際のLRA140の振動の加速度を示す。
 図26の例では、図26(B),(C)からわかるように、0.02sec以降は残留振動の加速度が感知下限の0.02G以下となり、振動の波形は短時間の波形となる。
 以上から、LRA140による振動の波形は、LRA140の固有振動数をf0としたとき、f1=m/n×f0(m,nは自然数かつm≠n)となる周波数f1の信号でLRA140をm回加振する信号を駆動指令とすれば、振動の加速度の波形は1~数周期で急速に減衰する短時間の波形となり、残留振動をなくすことができる。
 なお、固有振動数f0は、LRA140を電子機器300に組み込んだ後のLRA140の固有振動数としても良い。また周波数f1は、m/n×f0に対して誤差が1%以下となるように設定することが好ましい。このように周波数f1を設定すれば、駆動指令の印加を停止した後に残留振動が生じたとしても、振動の加速度は人の感知下限である0.02G以下となり人に感知されないため、機械的なボタンをクリックしたような触感を損ねることがない。
 次に、LRAの振動のパターンを変化させて機械的なボタンをクリックしたような触感を表現する第2の方法について説明する。
 第2の方法では、筐体110に固定されたタッチパネル120自体も高周波で振動する振動体であることに着目する。第2の方法では、LRA140の駆動指令を、振幅がピークの時点でLRA140に対する加振を停止させる信号とし、タッチパネル120自体の高周波の振動を励起することで、1~数周期で急速に減衰する振動を発生させて機械的なボタンをクリックしたような触感を表現する。
 図27は、タッチパネルの共振周波数による振動の励起を説明する図である。図27(A)は、LRA140に印加される駆動指令の正弦波形を示し、図27(B)はタッチパネル120の振動の加速度の波形を示す。図27の例では、駆動指令は電圧である。また図27の例では、LRA140の共振周波数を225Hzとし、タッチパネル120の共振周波数を1kHzとした。すなわちLRA140の振動は低周波振動であり、タッチパネル120の振動は高周波振動と言える。なお、タッチパネル120の共振周波数は、タッチパネル120の4辺が筐体110に固定された状態における共振周波数である。
 図27に示す例において、LRA140を共振周波数225Hzで低周波振動させた場合、タッチパネル120の高周波振動は励起されない。この状態においてLRA140の振動を調和振動から外し、急激な力をタッチパネル120に印加することで、タッチパネル120の共振周波数である1kHzの振動を励起する。
 図27の例では、図27(A)に示すように、振幅がピークとなった点P1でLRA140に対する加振を停止させる信号を駆動指令とした。図27(A)に示す駆動指令の振幅は、LRA140に対する加振が停止した直後に0となる。図27の例では、駆動指令の振幅をピークから0にすることで、LRA140の振動を調和振動から外す。
 また図27の例では、駆動指令によるLRA140の駆動時間を7/4周期とし、振幅がピークとなる点P1が駆動指令の終端となるようにした。なお、駆動指令の終端とは、LRA140に対する加振を停止する点である。
 この結果、図27(B)に示すように、点P1において周波数が1kHzの高周波振動が励起され、1~数周期で急速に減衰する振動を発生させる。さらに図27の例では、点P1で高周波振動を励起することで、低周波振動の加速度の最大値と高周波振動の加速度の最大値とを重畳し、短時間でより急峻なピークを発生させることができる。このように第2の方法では、振動の加速度の短時間の急峻なピークを発生させることで、鋭い触感を提示することができ、機械的なボタンをクリックしたような触感を表現できる。
 以下に図28を参照して上述する第2の方法の効果を説明する。図28は、LRAの共振周波数の電圧を駆動指令としたときのタッチパネルの振動の加速度を示す図である。図28の例では、LRA140の駆動時間を短くして機械的なボタンをクリックしたような触感の表現を試みた際のタッチパネル120の振動の加速度を示している。
 しかしながらタッチパネル120の振動は、LRA140の駆動時間を短くしても、振動量を増幅させるための立ち上がりの時間と、増幅された振動の加速度が0.02G以下に減衰するまでの時間が必要となり、振動が数周期に亘って続く。図28の例では、立ち上がりから減衰までに25msec程度の時間がかかり、振動が約4周期に亘り続いていることがわかる。したがって機械的なボタンをクリックした際の感覚のような鋭い触感を提示することが困難である。
 これに対しで図27(B)では、周波数1kHzの振動が立ち上がっており、振動も2周期程度で減衰していることがわかる。
 よって第2の方法では、振動の加速度の短時間の急峻なピークを発生させて機械的なボタンをクリックしたような触感を表現することができる。
 なお、図27の例では、駆動指令の終端である点P1で高周波振動が励起され、高周波振動の加速度がピークを迎える。よって高周波振動の加速度がピークを迎えるタイミングは、駆動指令が点P1となるタイミングから僅かにずれることになる。
 第2の方法では、このタイミングのずれを無くすために、高周波振動を励起する箇所を点P1からずらしても良い。図29は、高周波振動を励起する箇所を点P1からずらした例を示す図である。図29(A)は、LRA140に印加される駆動指令の正弦波形を示し、図29(B)はLRA140の振動の加速度の波形を示す。
 図29(A)において、駆動指令は、振幅のピークからわずかにずれた点P2を終端としている。図29(B)では、駆動指令の終端P2を振幅のピークからずらしたため、重畳される低周波振動の加速度が最大値より小さくなり、高周波振動の加速度のピークは図27(B)に示す値よりも小さくなるが、図27の例と同等の効果を得ることができる。
 次に、第1の方法と第2の方法を組み合わせた第3の方法について説明する。
 第3の方法の駆動装置200では、第1の方法と第2の方法とを用いて生成したLRA140の駆動指令を表す波形を波形データとしてメモリ220内の波形データベース240に保持している。
 以下に第3の方法の駆動指令について説明する。第3の方法では、第1の方法で説明した特定の条件を満たし、かつ、第2の方法で説明したように振幅がピークとなる点を終端とする信号を駆動指令とした。
 図30は、第3の方法のLRAの駆動指令の例を示す図である。図30(A)は、第3の方法の駆動指令Gの波形であり、図30(B)は第3の方法の駆動指令GがLRA140に印加された際のタッチパネル120の振動の加速度を示す図である。
 第3の方法の駆動指令Gは、周波数f1=m/n×f0(m,nは自然数かつm≠n)となる周波数f1の信号でかつ、LRA140をm回加振する信号である。図30の例では、m=3,n=2とした。また第3の方法の駆動指令Gは、さらに振幅が最大値となる点P3を終端とする。
 第3の方法では、駆動指令Gをm周期の信号でありかつ、振幅のピークが終端となる信号とするために、駆動指令Gを正弦波波形からπ/2位相をずらした余弦波とした。第3の方法では駆動指令Gを余弦波とすることで、駆動指令Gを特定の条件を満たしかつ、終端が振幅のピークとなる信号とすることができる。
 なお、第3の方法の電子機器300では、タッチパネル120にLRA140が取り付けられているため、タッチパネル120の共振周波数をタッチパネル120の4辺が筐体110に固定された状態における共振周波数とした。タッチパネル120の共振周波数は、例えばLRA140が筐体110内部に配置される場合には、タッチパネル120が筐体110に組み込まれた状態におけるタッチパネル120の共振周波数となる。
 第3の方法の駆動装置200の波形データは、駆動指令Gの周波数f1、振幅、位相、周期(mの値)等を含む。また第3の方法の波形データは、駆動指令Gの波形を表す式を含んでも良い。
 第3の方法の駆動装置200は、図6のステップS603において、API250により、駆動指令Gを示す波形データを読み出し、波形データに対応した駆動指令をドライバIC260へ出力する。ドライバIC260は、波形データをD/A変換して増幅し、LRA140に出力する。
 第3の方法の駆動装置200において、LRA140に駆動指令Gが印加された場合について説明する。
 図31は、第3の方法のLRAに対する入力波形を示す図である。図31に示す波形は、駆動指令GをLRA140に印加することにより、LRA140に加えられる力を示している。
 第3の方法において、LRA140の固有振動数f0を225Hzとし、m=3,n=2としたとき、駆動指令Gの周波数f1は、f1=3/2×225=337.5Hzとなる。図31に示す波形は、駆動指令Gの周波数をf1としたときの正弦波Fの位相をπ/2ずらした余弦波G1である。正弦波Fは、F=0.01sin2πf1tで得られる。
 余弦波G1がLRA140に印加されると、LRA140にはLRA140の固有振動数f0(すなわち共振周波数)の振動が生じる。すなわち、LRA140には、周波数f1の余弦波G1と、LRA140の固有振動数f0の余弦波とが合成された合成波が生じ、LRA140はこの合成波に応じて変位する。
 図32は、第3の方法によるLRAの変位を示す図である。図32(A)は、変位を説明する第一の図であり、図32(B)は変位を説明する第二の図である。
 図32(A)において、点線で示される波形y11はLRA140に余弦波G1が印加されたときに生じる振動変位の強制振動成分を示し、実線で示される波形y12は自由振動成分を示す。余弦波G1がLRA140に印加されたときの応答変位y13は、波形y11と波形y12との合成波となる。
 図32(B)は、波形y11と波形y12との合成波y13の変位の一例を示す図である。合成波y13は、余弦波G1が0となるタイミングT1において0となることがわかる。
 合成波y13が0となるタイミングT1において、LRA140の振動の速度も0になるため、LRA140の振動は停止する。
 図33は、第3の方法のLRAの振動の速度及び振動の加速度の例を示す図である。図33(A)は合成波y13の波形を示す図であり、図33(B)は合成波y13の変位を微分して得る速度の波形y13′を示す図であり、図33(C)は合成波y13の変位を2回微分して得られる加速度の波形y13″を示す図である。
 図33からわかるように、速度の波形y13′と加速度の波形y13″とは、合成波y13が0となるタイミングT1で0となる。すなわちLRA140の振動がタイミングT1で停止する。
 このとき加速度の波形y13″は、0.01sec以内に3周期で停止する。したがって第3の方法では、0.01sec以内に振動の加速度が0.02G以下となり、メタルドーム式のボタン2をクリックしたような触感を表現することができる。
 なお、第3の方法では、余弦波G1の振幅がピークとなる点で加振を停止させるものとしたが、これに限定されない。第3の方法において駆動指令の終端は、例えばタッチパネル120の振動の加速度を示す波形に、クリック感を表現する急峻なピークを生成できる点であれば良い。第3の方法において駆動指令の終端は、振幅の中心点である0以外であれば良く、駆動指令の終端は振幅のピークに近い点であるほど良い。
 また第3の方法の電子機器300では、LRA140がタッチパネル120の筐体側の面に取り付けられるものとしたが、これに限定されない。LRA140は、例えば筐体110内部に配置された基板150の近傍に配置されても良い。
 図34は、LRAが筐体に設けられた電子機器の例を示す図である。図34に示す電子機器300Aでは、LRA140が筐体110内部に設けられた基板150の近傍に配置されている。
 第3の方法は、電子機器300Aに対しても適用することができる。また電子機器300Aに第3の方法を適用した場合、第3の方法の電子機器300と同様にメタルドーム式のボタン2をクリックしたような触感を表現することができる。
 以上、実施の形態の駆動装置、電子機器、及び駆動制御プログラムについて詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
 300 電子機器
 110 筐体
 120 タッチパネル
 130 両面テープ
 140 LRA
 200 駆動装置
 210 制御部
 211 波形データ生成部
 212 駆動指令生成部
 213 データ処理部
 220 メモリ
 230 駆動制御プログラム
 240 波形データベース
 250 API
 260 ドライバIC
 300A、300B スマートフォン
 301 ディスプレイ
 302 タッチセンサ
 303 入力部
 304 信号処理部
 305 通信部
 308 記録媒体I/F部
 350 要素波形データベース
 360 リンクデータ

Claims (10)

  1.  タッチパネルを振動させる振動波形の一部を表す複数の要素波形データを格納する第1格納部と、
     前記第1格納部に格納された複数の要素波形データのうち、利用者によって選択された第1要素波形データ及び第2要素波形データを組み合わせて波形データを生成する波形データ生成部と、
     前記波形データ生成部によって生成される波形データを格納する第2格納部と、
     前記タッチパネルに利用者の操作入力が行われると、利用者によって選択された前記波形データに基づく駆動指令を生成する駆動指令生成部と
     を含む、駆動装置。
  2.  前記第2格納部に格納される波形データと、利用者によって選択された前記タッチパネルへの操作指令とを関連付けて格納する第3格納部をさらに含み、
     前記駆動指令出力部は、利用者の前記タッチパネルへの操作指令に関連付けられた波形データを前記第3格納部から読み出し、当該読み出した波形データに基づく駆動指令を出力する、請求項1記載の駆動装置。
  3.  無線又は有線の通信回線を介して外部サーバに接続される通信部をさらに含み、
     前記要素波形データは、前記通信部によって前記外部サーバから取得される、請求項1又は2記載の駆動装置。
  4.  前記波形データ生成部によって生成される前記波形データを前記通信部を介して前記外部サーバにアップロードする第1データ処理部をさらに含む、請求項1乃至3のいずれか一項記載の駆動装置。
  5.  前記通信部を介して前記外部サーバから他の利用者によって選択された第1要素波形データ及び第2要素波形データを組み合わせた波形データをダウンロードし、前記第2格納部に格納する第2データ処理部をさらに含む、請求項1乃至4のいずれか一項記載の駆動装置。
  6.  前記波形データは、前記タッチパネルを振動させるアクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波であり、かつ、前記アクチュエータをm回加振する駆動指令を表す波形データである、請求項1乃至5のいずれか一項記載の駆動装置。
  7.  前記波形データは、前記タッチパネルを振動させるアクチュエータの共振周波数と等しい周波数を有する正弦波であり、かつ、前記正弦波の振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令を表す波形データである、請求項1乃至5のいずれか一項記載の駆動装置。
  8.  前記波形データは、前記タッチパネルを振動させるアクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波から位相がπ/2ずれており、かつ、前記アクチュエータをm回加振し、振幅の中心点以外において前記アクチュエータの加振を停止させる駆動指令を表す波形データである、請求項1乃至5のいずれか一項記載の駆動装置。
  9.  請求項1乃至8のいずれか一項記載の駆動装置と、
     前記駆動指令出力部から出力される駆動指令に基づき、前記タッチパネルを振動させるアクチュエータを駆動する駆動部と
     を含む、電子装置。
  10.  コンピュータに、
     タッチパネルを振動させる振動波形の一部を表す複数の要素波形データのうち、利用者によって選択された第1要素波形データ及び第2要素波形データを組み合わせて波形データを生成し、
     前記タッチパネルに利用者の操作入力が行われると、利用者によって選択された前記波形データに基づく駆動指令を出力する、ことを実行させる駆動制御プログラム。
PCT/JP2012/064950 2012-06-11 2012-06-11 駆動装置、電子機器、及び駆動制御プログラム WO2013186847A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014520833A JP5831635B2 (ja) 2012-06-11 2012-06-11 駆動装置、電子機器、及び駆動制御プログラム
PCT/JP2012/064950 WO2013186847A1 (ja) 2012-06-11 2012-06-11 駆動装置、電子機器、及び駆動制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064950 WO2013186847A1 (ja) 2012-06-11 2012-06-11 駆動装置、電子機器、及び駆動制御プログラム

Publications (1)

Publication Number Publication Date
WO2013186847A1 true WO2013186847A1 (ja) 2013-12-19

Family

ID=49757711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064950 WO2013186847A1 (ja) 2012-06-11 2012-06-11 駆動装置、電子機器、及び駆動制御プログラム

Country Status (2)

Country Link
JP (1) JP5831635B2 (ja)
WO (1) WO2013186847A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014093091A (ja) * 2012-11-02 2014-05-19 Immersion Corp ダイナミックハプティック効果のコード化
WO2015115447A1 (ja) * 2014-01-30 2015-08-06 京セラドキュメントソリューションズ株式会社 タッチパネル装置及びタッチパネル制御方法
WO2015136923A1 (ja) * 2014-03-12 2015-09-17 パナソニックIpマネジメント株式会社 電子機器
KR20170032452A (ko) * 2014-09-02 2017-03-22 애플 인크. 햅틱 통지
JP2018020088A (ja) * 2016-07-26 2018-02-08 任天堂株式会社 振動制御システム、振動制御方法および振動制御プログラム
US9898084B2 (en) 2012-12-10 2018-02-20 Immersion Corporation Enhanced dynamic haptic effects
US10039080B2 (en) 2016-03-04 2018-07-31 Apple Inc. Situationally-aware alerts
US10069392B2 (en) 2014-06-03 2018-09-04 Apple Inc. Linear vibrator with enclosed mass assembly structure
US10120446B2 (en) 2010-11-19 2018-11-06 Apple Inc. Haptic input device
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
US10459521B2 (en) 2013-10-22 2019-10-29 Apple Inc. Touch surface for simulating materials
US10475300B2 (en) 2009-09-30 2019-11-12 Apple Inc. Self adapting haptic device
US10481691B2 (en) 2015-04-17 2019-11-19 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
US10566888B2 (en) 2015-09-08 2020-02-18 Apple Inc. Linear actuators for use in electronic devices
WO2020044621A1 (ja) * 2018-08-29 2020-03-05 アルプスアルパイン株式会社 入力装置、制御方法及びプログラム
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
US10651716B2 (en) 2013-09-30 2020-05-12 Apple Inc. Magnetic actuators for haptic response
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
JP2021158822A (ja) * 2020-03-27 2021-10-07 豊田合成株式会社 触感提示装置
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
JPWO2022244849A1 (ja) * 2021-05-19 2022-11-24
WO2023037463A1 (ja) * 2021-09-09 2023-03-16 豊田合成株式会社 触感提示装置
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149312A (ja) * 2000-08-08 2002-05-24 Ntt Docomo Inc 携帯型電子機器、電子機器、振動発生器、振動による報知方法および報知制御方法
JP2004094389A (ja) * 2002-08-29 2004-03-25 Sony Corp 入出力装置および入出力装置を有する電子機器
JP2004265281A (ja) * 2003-03-04 2004-09-24 Univ Nihon 振動応答型タッチパネル
JP2006150865A (ja) * 2004-11-30 2006-06-15 Ricoh Co Ltd 画像形成装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617893B2 (ja) * 2005-01-18 2011-01-26 ソニー株式会社 振動伝達構造、触覚機能付きの入出力装置及び電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002149312A (ja) * 2000-08-08 2002-05-24 Ntt Docomo Inc 携帯型電子機器、電子機器、振動発生器、振動による報知方法および報知制御方法
JP2004094389A (ja) * 2002-08-29 2004-03-25 Sony Corp 入出力装置および入出力装置を有する電子機器
JP2004265281A (ja) * 2003-03-04 2004-09-24 Univ Nihon 振動応答型タッチパネル
JP2006150865A (ja) * 2004-11-30 2006-06-15 Ricoh Co Ltd 画像形成装置

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12094328B2 (en) 2009-09-30 2024-09-17 Apple Inc. Device having a camera used to detect visual cues that activate a function of the device
US11043088B2 (en) 2009-09-30 2021-06-22 Apple Inc. Self adapting haptic device
US10475300B2 (en) 2009-09-30 2019-11-12 Apple Inc. Self adapting haptic device
US11605273B2 (en) 2009-09-30 2023-03-14 Apple Inc. Self-adapting electronic device
US10120446B2 (en) 2010-11-19 2018-11-06 Apple Inc. Haptic input device
US10248212B2 (en) 2012-11-02 2019-04-02 Immersion Corporation Encoding dynamic haptic effects
US9958944B2 (en) 2012-11-02 2018-05-01 Immersion Corporation Encoding dynamic haptic effects
JP2014093091A (ja) * 2012-11-02 2014-05-19 Immersion Corp ダイナミックハプティック効果のコード化
US9898084B2 (en) 2012-12-10 2018-02-20 Immersion Corporation Enhanced dynamic haptic effects
US10359851B2 (en) 2012-12-10 2019-07-23 Immersion Corporation Enhanced dynamic haptic effects
US10651716B2 (en) 2013-09-30 2020-05-12 Apple Inc. Magnetic actuators for haptic response
US10459521B2 (en) 2013-10-22 2019-10-29 Apple Inc. Touch surface for simulating materials
US10276001B2 (en) 2013-12-10 2019-04-30 Apple Inc. Band attachment mechanism with haptic response
US9690422B2 (en) 2014-01-30 2017-06-27 Kyocera Document Solutions Inc. Touch panel apparatus and touch panel control method
WO2015115447A1 (ja) * 2014-01-30 2015-08-06 京セラドキュメントソリューションズ株式会社 タッチパネル装置及びタッチパネル制御方法
JPWO2015115447A1 (ja) * 2014-01-30 2017-03-23 京セラドキュメントソリューションズ株式会社 タッチパネル装置及びタッチパネル制御方法
JP6062573B2 (ja) * 2014-01-30 2017-01-18 京セラドキュメントソリューションズ株式会社 タッチパネル装置及びタッチパネル制御方法
WO2015136923A1 (ja) * 2014-03-12 2015-09-17 パナソニックIpマネジメント株式会社 電子機器
US10055021B2 (en) 2014-03-12 2018-08-21 Panasonic Intellectual Property Management Co., Ltd. Electronic device
JPWO2015136923A1 (ja) * 2014-03-12 2017-04-06 パナソニックIpマネジメント株式会社 電子機器
US10545604B2 (en) 2014-04-21 2020-01-28 Apple Inc. Apportionment of forces for multi-touch input devices of electronic devices
US10069392B2 (en) 2014-06-03 2018-09-04 Apple Inc. Linear vibrator with enclosed mass assembly structure
KR102019505B1 (ko) * 2014-09-02 2019-09-06 애플 인크. 햅틱 통지
KR20190104468A (ko) * 2014-09-02 2019-09-09 애플 인크. 햅틱 통지
US10490035B2 (en) 2014-09-02 2019-11-26 Apple Inc. Haptic notifications
KR20170032452A (ko) * 2014-09-02 2017-03-22 애플 인크. 햅틱 통지
JP7061143B2 (ja) 2014-09-02 2022-04-27 アップル インコーポレイテッド 触覚通知
JP2017532648A (ja) * 2014-09-02 2017-11-02 アップル インコーポレイテッド 触覚通知
KR102143310B1 (ko) * 2014-09-02 2020-08-28 애플 인크. 햅틱 통지
JP2020074131A (ja) * 2014-09-02 2020-05-14 アップル インコーポレイテッドApple Inc. 触覚通知
US10353467B2 (en) 2015-03-06 2019-07-16 Apple Inc. Calibration of haptic devices
US10481691B2 (en) 2015-04-17 2019-11-19 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US11402911B2 (en) 2015-04-17 2022-08-02 Apple Inc. Contracting and elongating materials for providing input and output for an electronic device
US10566888B2 (en) 2015-09-08 2020-02-18 Apple Inc. Linear actuators for use in electronic devices
US10039080B2 (en) 2016-03-04 2018-07-31 Apple Inc. Situationally-aware alerts
US10609677B2 (en) 2016-03-04 2020-03-31 Apple Inc. Situationally-aware alerts
US10809805B2 (en) 2016-03-31 2020-10-20 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
US10268272B2 (en) 2016-03-31 2019-04-23 Apple Inc. Dampening mechanical modes of a haptic actuator using a delay
JP2018020088A (ja) * 2016-07-26 2018-02-08 任天堂株式会社 振動制御システム、振動制御方法および振動制御プログラム
US10622538B2 (en) 2017-07-18 2020-04-14 Apple Inc. Techniques for providing a haptic output and sensing a haptic input using a piezoelectric body
WO2020044621A1 (ja) * 2018-08-29 2020-03-05 アルプスアルパイン株式会社 入力装置、制御方法及びプログラム
US11435832B2 (en) 2018-08-29 2022-09-06 Alps Alpine Co., Ltd. Input device, control method, and non-transitory recording medium
US10691211B2 (en) 2018-09-28 2020-06-23 Apple Inc. Button providing force sensing and/or haptic output
US10599223B1 (en) 2018-09-28 2020-03-24 Apple Inc. Button providing force sensing and/or haptic output
US11380470B2 (en) 2019-09-24 2022-07-05 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
US11763971B2 (en) 2019-09-24 2023-09-19 Apple Inc. Methods to control force in reluctance actuators based on flux related parameters
JP7310677B2 (ja) 2020-03-27 2023-07-19 豊田合成株式会社 触感提示装置
JP2021158822A (ja) * 2020-03-27 2021-10-07 豊田合成株式会社 触感提示装置
US11977683B2 (en) 2021-03-12 2024-05-07 Apple Inc. Modular systems configured to provide localized haptic feedback using inertial actuators
JP2023025707A (ja) * 2021-05-19 2023-02-22 アルプスアルパイン株式会社 触覚制御装置、プログラム、触覚制御方法、触覚制御システム、サーバ
WO2022244849A1 (ja) * 2021-05-19 2022-11-24 アルプスアルパイン株式会社 感覚制御方法、感覚制御システム、変換モデル生成方法、変換モデル生成システム、関係式変換方法、およびプログラム
JPWO2022244849A1 (ja) * 2021-05-19 2022-11-24
JP7386363B2 (ja) 2021-05-19 2023-11-24 アルプスアルパイン株式会社 感覚制御方法、感覚制御システム、変換モデル生成方法、変換モデル生成システム、関係式変換方法、およびプログラム
JP7481419B2 (ja) 2021-05-19 2024-05-10 アルプスアルパイン株式会社 触覚制御装置、プログラム、触覚制御方法、触覚制御システム、サーバ
WO2023037463A1 (ja) * 2021-09-09 2023-03-16 豊田合成株式会社 触感提示装置
US11809631B2 (en) 2021-09-21 2023-11-07 Apple Inc. Reluctance haptic engine for an electronic device

Also Published As

Publication number Publication date
JPWO2013186847A1 (ja) 2016-02-01
JP5831635B2 (ja) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5831635B2 (ja) 駆動装置、電子機器、及び駆動制御プログラム
JP5822023B2 (ja) 電子機器、振動発生プログラム、及び振動パターン利用システム
JP5962757B2 (ja) プログラム及び電子機器
JP5822022B2 (ja) 電子機器、及び駆動制御プログラム
JP6142928B2 (ja) 駆動装置、電子機器、駆動制御プログラム、及び駆動信号の生成方法
JP6032364B2 (ja) 駆動装置、電子機器及び駆動制御プログラム
CN104423589B (zh) 用于变换触觉信号的方法和系统
WO2014207842A1 (ja) 駆動装置、電子機器及び駆動制御プログラム
JP2019114270A (ja) 触覚変換を行うためのシステム及び方法
US20110157052A1 (en) Method and apparatus for generating vibrations in portable terminal
KR20140109292A (ko) 선형 공진 액추에이터를 구비한 햅틱 디바이스
CN103425248A (zh) 具有存储的效应的触觉反馈系统
JP5935885B2 (ja) 駆動装置、電子機器及び駆動制御プログラム
CN108153419A (zh) 一种电子设备和控制方法
JP5910741B2 (ja) プログラム及び電子機器
KR100957005B1 (ko) 이종 액츄에이터를 이용한 햅틱 피드백 제공모듈, 이를 갖는 휴대기기 및 그 제공방법
JP5907260B2 (ja) 駆動装置、電子機器及び駆動制御プログラム
JP5962756B2 (ja) 電子機器及び振動提供方法
US20200142492A1 (en) Haptic effects using a high bandwidth thin actuation system
WO2013186850A1 (ja) 駆動装置、電子機器及び駆動制御プログラム
EP3674849A1 (en) Haptic effect signal processing
KR102011771B1 (ko) 사용자 인터페이스 제공 방법 및 그 장치
JP2012174100A (ja) 文字列検索装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879034

Country of ref document: EP

Kind code of ref document: A1