JP5822022B2 - 電子機器、及び駆動制御プログラム - Google Patents
電子機器、及び駆動制御プログラム Download PDFInfo
- Publication number
- JP5822022B2 JP5822022B2 JP2014520830A JP2014520830A JP5822022B2 JP 5822022 B2 JP5822022 B2 JP 5822022B2 JP 2014520830 A JP2014520830 A JP 2014520830A JP 2014520830 A JP2014520830 A JP 2014520830A JP 5822022 B2 JP5822022 B2 JP 5822022B2
- Authority
- JP
- Japan
- Prior art keywords
- actuator
- vibration
- touch panel
- drive command
- lra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000005284 excitation Effects 0.000 claims description 23
- 238000001514 detection method Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 description 98
- 230000001133 acceleration Effects 0.000 description 64
- 230000008569 process Effects 0.000 description 37
- 230000035807 sensation Effects 0.000 description 35
- 238000010586 diagram Methods 0.000 description 32
- 238000006073 displacement reaction Methods 0.000 description 20
- 230000015654 memory Effects 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- 239000000758 substrate Substances 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 238000004088 simulation Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 241000282412 Homo Species 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 210000000716 merkel cell Anatomy 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0487—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
- G06F3/0488—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- User Interface Of Digital Computer (AREA)
- Position Input By Displaying (AREA)
Description
本発明は、電子機器、及び駆動制御プログラムに関する。
従来から、タッチパネルを入力手段とする電子機器がある。タッチパネルは、操作面への接触を操作入力として検出するものであり、ボタン等を押す際の触感は得られない。このため、従来のタッチパネルでは、操作入力に応じた触感を提供する装置の搭載が望まれていた。
そこで、近年では、例えばLRA(Linear Resonant Actuator)のようなアクチュエータを駆動してタッチパネルを振動させることにより、操作入力に応じた触感を提示することが考えられている。
ところで、例えばメタルドーム等を用いた従来の機械式のキースイッチは、特定のキーの表面に突起が設けられているため、利用者が触感だけで特定のキーを識別することができる。
しかしながら、タッチパネルは、利用者が操作入力を行う面が平坦であり、タッチパネルにはGUI(Graphic User Interface)ボタンが表示される。
このため、タッチパネルを用いた電子機器では、従来のキースイッチのように特定のスイッチを識別することはできない。
そこで、特定のGUIボタンを触感で識別できる電子機器、及び駆動制御プログラムを提供することを目的とする。
本発明の実施の形態の電子機器は、タッチパネルと、前記タッチパネルを振動させるアクチュエータと、利用者の前記タッチパネルへの操作入力の荷重を検出する荷重検出部と、前記タッチパネルへの操作入力が行われた位置が前記タッチパネルの所定領域内であり、かつ、前記荷重検出部によって検出される荷重が第1所定値以上で、前記第1所定値よりも大きい第2所定値未満である場合に、前記タッチパネルに第1振動パターンによる振動を発生させる第1駆動指令で前記アクチュエータを駆動する駆動制御部とを含み、前記第1駆動指令は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波であり、かつ、前記アクチュエータをm回加振する駆動指令、前記アクチュエータの共振周波数と等しい周波数を有する正弦波であり、かつ、前記正弦波の振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令、又は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波から位相がπ/2ずれており、かつ、前記アクチュエータをm回加振し、振幅の中心点以外において前記アクチュエータの加振を停止させる駆動指令のうちのいずれか一つである。
特定のGUIボタンを触感で識別できる電子機器、及び駆動制御プログラムを提供することができる。
以下、本発明の電子機器、及び駆動制御プログラムを適用した実施の形態について説明する。
<実施の形態1>
図1(A)は、人間の指に加速度計1を取り付けてボタン2を押下した際に生じる振動の加速度の波形11を示す図である。図1(B)は、人間の指に加速度計1を取り付けて、LRA(Linear Resonant Actuator)が取り付けられたタッチパネル3をタッチした際に生じる振動の加速度の波形12を示す図である。図1の例では、ボタン2は例えばメタルドーム式のボタンである。またボタン2とタッチパネル3は、電子機器に設けられたものである。
図1(A)は、人間の指に加速度計1を取り付けてボタン2を押下した際に生じる振動の加速度の波形11を示す図である。図1(B)は、人間の指に加速度計1を取り付けて、LRA(Linear Resonant Actuator)が取り付けられたタッチパネル3をタッチした際に生じる振動の加速度の波形12を示す図である。図1の例では、ボタン2は例えばメタルドーム式のボタンである。またボタン2とタッチパネル3は、電子機器に設けられたものである。
波形11で示される振動は、1〜数周期で急速に減衰する。これに対して波形12で示される振動は、駆動指令の供給を停止後もLRAの固有振動数による自由振動が減衰するまで続く。
ところで、人間の指は、振動周波数200Hzにおいて振動の加速度が0.02G以下になると振動を感知できなくなる。振動周波数とは、1秒間の振動数である。振動の加速度とは、単位時間当たりの振動の速度変化量を示すものである。
図2は、人体の組織に含まれる加速度を検出する器官の感度を示す図である。なお、人間の主な機械刺激の受容器には、変位を感じ取るメルケル細胞、速度を感じ取るマイスナー小体、加速度を感じ取るパチニ小体の3種類がある。
すなわち波形11では、指は0.01sec以内に振動の加速度が0.02G以下になるため振動を感知しなくなる。これに対して波形12では、振動の加速度が0.02G以下になるまで0.1secが必要であり、指は0.1sec経過するまで振動を感知し続ける。したがって波形11で示される振動と、波形12で示される振動とでは、人間が感知する触感として全く異なるものとなる。
次に、図3を用いて実施の形態の電子機器について説明する。
図3は、実施の形態の電子機器の断面構造を示す図である。
実施の形態の電子機器300は、筐体110、タッチパネル120、両面テープ130、LRA140、基板150、及び荷重センサ160を有する。電子機器300は、例えば、スマートフォンのような携帯端末機である。なお、電子機器300は、タッチパネル120を操作入力部とする機器であればよいため、スマートフォンのような携帯端末機に限られず、例えば、ATM(Automatic Teller Machine)のように特定の場所に設置されて利用される機器であってもよい。
実施の形態の電子機器300では、両面テープ130により、タッチパネル120が筐体110に固定されている。LRA140は、タッチパネル120の筐体側の面に取り付けられている。LRA140は、予め設計された共振周波数を持つ振動系とアクチュエータとが組み合わされたもので、主に共振周波数で駆動して振動を発生させる振動デバイスであり、駆動波形の振幅により振動量が変化する。
基板150は、筐体110内部に配置されている。基板150には、LRA140の駆動を制御するために駆動装置やLRA140に駆動指令を出力するドライバIC(Integrated Circuit)等が実装されている。なお、図3ではドライバIC等を省略する。
実施の形態の電子機器300は、タッチパネル120に利用者の指が接触すると、この接触を感知して基板150に実装された駆動装置によりLRA140を駆動し、LRA140の振動をタッチパネル120に伝播させる。
荷重センサ160は、タッチパネル120の表面に入力される荷重を検出する荷重検出部の一例である。荷重センサ160は、筐体110の内部において、基板150の両脇に配設されている。なお、荷重センサ160は、数量と平面視における位置は任意であり、、例えばタッチパネル120の四隅に一つずつ配設されていてもよいし、中央に1つ配設されていても良い。
また、荷重センサ160は、タッチパネル120に入力される荷重を検出できるセンサであれば、どのようなタイプの荷重センサであってもよい。従って、例えば、タッチパネル120に内蔵され、利用者がタッチパネル120の表面を触れることによって生じる静電容量の変化に基づいて荷重を検出するセンサであってもよい。あるいは、この代わりに、タッチパネル120の裏面(図3中の下面)側に配設され、タッチパネル120との間の静電容量を検出するシート状のセンサを用いてもよい。
次に、図4を参照してLRA140について説明する。
図4は、2種類のLRAの断面構造を示す図である。図4(A)はボイスコイルを用いたLRAを示す図であり、図4(B)は圧電素子を用いたLRAを示す図である。
図4(A)に示すLRA30は、ばね31、磁石32、コイル33を有する。LRA30は、ばね31のばね定数をkとし、磁石32の質量をmとすると、固有振動数f0が以下の式1で示される。
図4(B)に示すLRA40は、重り41、梁42、圧電素子43を有する。LRA40は、重り41の質量をmとし、梁42のヤング率をEとし、梁42の断面2次モーメントをIとすると、固有振動数f0が以下の式2で示される。なお、Lを梁の長手方向の長さとする。
次に、図5を参照して実施の形態の電子機器300の有する基板150に実装された駆動装置について説明する。
図5は、実施の形態の電子機器を説明する図である。
実施の形態の電子機器300は、主な構成要素として、駆動装置200、ドライバIC(Integrated circuit:集積回路)260、LRA140、荷重センサ160、ディスプレイ301、タッチセンサ302、入力部303、信号処理部304、通信部305、及び記録媒体I/F(Interface)部308を含む。
駆動装置200は、制御部210、及びメモリ220を含む。
制御部210は、駆動制御部211、位置判定部212、及び荷重判定部213を含む。制御部210は、CPU(Central Processing Unit:中央演算処理装置)によって実現される。
駆動制御部211は、メモリ220に格納された駆動制御プログラム230を読み出して実行し、波形データに基づいて駆動指令を生成することにより、駆動指令を用いて後述するLRA140を駆動する。駆動制御部211は、LRA140の駆動波形を表す波形データに基づいて、LRA140に供給するための電圧値及び電流値等を表す駆動指令を生成する。
位置判定部212は、利用者の指がタッチパネル120に接触した位置(操作位置)が所定領域の内部又は外部であるかを判定する。
荷重判定部213は、荷重センサ160で検出される荷重を第1閾値及び第2閾値と比較し、荷重センサ160で検出される荷重が第1閾値及び第2閾値以上であるか否かを判定する。第1閾値及び第2閾値を表す閾値データは、閾値データベース350に格納されている。
メモリ220には、LRA140の駆動を制御する駆動制御プログラム230が格納される記憶領域と、波形データが格納される記憶領域(波形データベース240)と、API(Application Programming Interface)250が格納される記憶領域とが設けられている。また、メモリ220には、さらに、荷重センサ160の閾値を表す閾値データベース350が格納される記憶領域が設けられている。
なお、ここでは、波形データベース240と閾値データベース350がメモリ220内の記憶領域である形態について説明するが、波形データベース240と閾値データベース350は、メモリ220とは物理的に隔離された別のメモリに格納されてもよい。
駆動制御プログラム230は、制御部210にLRA140の駆動制御を実行させる際に、制御部210が実行するコンピュータプログラムである。
波形データベース240は、LRA140を駆動するための駆動指令を生成する際に用いられる波形データを格納するデータベースである。実施の形態の電子機器300では、LRA140を駆動するための4種類の波形データが波形データベース240に格納されている。
API250は、駆動制御プログラム230により起動され、触感を提示するための各種処理を行う。図5ではAPI250はメモリ220に格納されるものとしたが、基板150に実装された他のメモリに格納されていても良い。
閾値データベース350は、荷重センサ160によって検出される荷重の大きさを判定するための2種類の閾値データを格納するデータベースである。
ドライバIC260は、制御部210から入力される駆動指令に基づき、LRA140を駆動する。ドライバIC260は、制御部210から入力される駆動指令を増幅等してLRA140に入力する。
ディスプレイ301は、例えば、LCD(Liquid Crystal Display)であり、電子機器300がスマートフォンの場合は、スマートフォンの各種機能を実現するために必要なGUI(Graphic User Interface)部品を表示する。GUI部品としては、例えば電子機器300がスマートフォンの場合は、電話番号を入力するためのキーパッドが典型例である。ディスプレイ301の表示内容は、制御部210によって制御される。
タッチセンサ302は、ディスプレイ301の表面側に配設されており、利用者が指を触れた位置の座標を検出する。タッチセンサ302が検出する座標は、制御部210に入力される。なお、ディスプレイ301とタッチセンサ302を合わせた電子部品がタッチパネル120である。
入力部303は、例えば、電子機器300がスマートフォンの場合は、スマートフォンのタッチパネル以外のスイッチ等である。このようなスイッチとしては、例えば、ホームキー、ボリューム調整用のボタン等がある。
信号処理部304は、通信部305がサーバ400とインターネット401を介して通信を行う際に、電子機器300からサーバ400にアップロードするデータと、電子機器300がサーバ400からダウンロードするデータとを制御部210との間で受け渡す処理部である。信号処理部304は、電子機器300の通信用のインターフェイスとして機能する。
通信部305は、電子機器300がインターネット401を介してサーバ400と通信を行う際に、データ通信を行う。サーバ400は、例えば、メールサーバ又はクラウドサーバ等である。
記録媒体I/F部308は、USB(Universal Serial Bus)などのデータ伝送路を介して接続された記録媒体309(例えば、フラッシュメモリなど)と電子機器300とのインターフェイスである。
また、記録媒体309に、所定のプログラムを格納し、この記録媒体309に格納されたプログラムは記録媒体I/F部308を介して電子機器300にインストールされる。インストールされた所定のプログラムは、電子機器300により実行可能となる。
図6は、実施の形態の電子機器300がLRA140を駆動する際の処理を示すフローチャートである。
実施の形態の電子機器300は、利用者がタッチパネル120に接触したことを検出すると(ステップS601)、API250を起動させる(ステップS602)。具体的には電子機器300は、例えばタッチパネル120に表示されたGUIボタンに利用者が触れた場合にAPI250を起動する。
API250は、メモリ220に格納された波形データを読み出し、波形データに基づいて生成した駆動指令をドライバIC260へ出力する(ステップS603)。ドライバIC260は、駆動指令をD/A(Digital to Analog)変換し(ステップS604)、アンプ等により増幅する(ステップS605)。ドライバIC260は、増幅した信号をLRA140に出力する(ステップS606)。
図6に示すステップS601からS606による処理は、利用者にタッチパネル120で操作されるGUIボタンの種類と、荷重センサ160で検出する荷重とに関係なく、タッチパネル120に利用者の指が接触した際に電子機器300がLRA140を駆動するために行う基本的な処理を表したものである。
実施の形態の電子機器300は、利用者がタッチパネル120の特定のGUIボタンに触れた場合に、LRA140を駆動することにより、機械式のキースイッチの特定のスイッチに設けられた突起を触れたような触感を利用者に提供するものである。
従って、以下では、図7乃至図12を用いて、利用者がタッチパネル120の特定のGUIボタンに触れた場合に、機械式のキースイッチの特定のスイッチに設けられた突起を触れたような触感を利用者に提供するためのLRA140の駆動制御の手法について説明する。
図7は、実施の形態の電子機器300においてタッチパネル120への操作入力の荷重の大きさを判定するための2種類の閾値を示す図である。この2種類の閾値は、閾値データベース350に格納される2種類の閾値データによって表される。
2種類の閾値のうちの第1閾値は、第2閾値よりも低い値に設定されており、2種類の閾値のうちの第2閾値は第1閾値よりも高い値に設定されている。第1閾値及び第2閾値は、例えば、利用者がタッチパネル120を操作した場合に、指先からタッチパネル120にかかる荷重の平均的な値に基づいて設定すればよい。
第1閾値は、例えば、利用者がタッチパネル120を軽く押した程度の値であり、第2閾値は、例えば、利用者がタッチパネル120を比較的強く押した程度の値である。なお、タッチパネル120への操作入力が受け付けられるのは、利用者がタッチパネル120から指又は手を離したときである。
実施の形態の電子機器300は、例えば、タッチパネル120に表示されるGUIボタンのうちの所定のGUIボタンが利用者に押された場合に、荷重センサ160によって検出される値が第1閾値以上、第2閾値未満になると、第1振動パターンでLRA140を駆動する。
これにより、タッチパネル120には第1振動パターンによる振動が発生する。また、この状態では、電子機器300は所定のGUIボタンへの操作入力を受け付けていない。
また、電子機器300は、上述のように所定のGUIボタンが利用者に押された状態で、荷重センサ160によって検出される値が第2閾値以上になると、第1振動パターンとは異なる第2振動パターンでLRA140を駆動する。
これにより、タッチパネル120には第2振動パターンによる振動が発生する。なお、電子機器300は、第2閾値以上になったときに、所定のGUIボタンへの操作入力も受け付ける。
電子機器300は、上述のように利用者がタッチパネル120を押す力の大きさに応じて、タッチパネル120を2種類の振動パターンで振動させる。電子機器300は、所定のGUIボタンへの操作入力を受け付ける前に、まずタッチパネル120を第1振動パターンで振動させ、所定のGUIボタンがより強く押されたときに、タッチパネル120を第2振動パターンで振動させ、所定のGUIボタンへの操作入力を受け付ける。
これにより、利用者は、タッチパネル120を軽く押したときに、所定のGUIボタンを押していることを触感だけで認識できる。
また、電子機器300が所定のGUIボタンへの操作入力を受け付けるのは、所定のGUIボタンをさらに強く押したときであり、その際に第2振動パターンでタッチパネル120を振動させることにより、触感だけで操作入力が受け付けられたことを認識することができる。
すなわち、利用者が所定のGUIボタンを押すことによって荷重センサ160が検出する荷重が図7に実線で示すように増大する場合に、荷重が第1閾値以上になると、利用者は所定のGUIボタンに触れていることを触感だけで認識できる。なお、このとき電子機器300はGUIボタンの操作を受け付けていない。
また、利用者が操作入力を完了させるために所定のGUIボタンをより強く押して、荷重が第2閾値以上になると、電子機器300は第2振動パターンでタッチパネル120を振動させ、GUIボタンへの操作入力を受け付ける。
これにより、利用者は触感だけで操作入力が受け付けられたことを認識することができる。
このため、実施の形態の電子機器300によれば、所定のGUIボタンの位置を第1振動パターンで触感だけで利用者に認識させることができるとともに、第2振動パターンで操作入力の完了を触感だけで利用者に認識させることができる。
次に、図8を用いて、実施の形態の電子機器300が第1振動パターンから第4振動パターンを用いてタッチパネル120を振動させる際の処理について説明する。
図8は、実施の形態の電子機器300がタッチパネル120を振動させる際の処理を示すフローチャートである。図8に示す処理は、制御部210が実行する。
まず、制御部210は、操作入力があったか否かを判定する(ステップS801)。ステップS801の処理は、制御部210がタッチパネル120から操作入力のあった座標値を表す座標データを受信したか否かを判定することによって行われる。
なお、制御部210は、ステップS801で操作入力がないと判定した場合(S801:NO)は、ステップS801の処理を繰り返す。制御部210は、利用者の操作入力があった場合に、図8に示す一連の処理を行うからである。
制御部210は、操作入力があったと判定した場合(S801:YES)は、操作入力のあった位置が所定の領域内であるか否かを判定する(ステップS802)。ステップS802の処理は、制御部210がステップS801でタッチパネル120から受信した座標データが表す座標が、所定の領域内にあるか否かを判定することによって行われる。また、ステップS802の処理は、制御部210の位置判定部212によって行われる処理である。
なお、所定の領域は、所定のGUIボタンが表示される領域を座標で表すことによって特定すればよい。操作入力のあった座標が、所定のGUIボタンが表示される領域を表す座標に含まれれば、制御部210は操作入力のあった位置が所定の領域内であると判定する。
制御部210は、操作入力のあった位置が所定の領域内であると判定した場合(S802:YES)は、荷重が第1閾値以上であるか否かを判定する(ステップS803)。ステップS803の処理は、制御部210が荷重センサ160(図5参照)から受信した荷重データが表す荷重が第1閾値以上であるか否かを判定することによって行われる。また、ステップS803の処理は、制御部210の荷重判定部によって行われる処理である。
制御部210は、荷重が第1閾値以上であると判定した場合(S803:YES)は、荷重が第2閾値未満であるか否かを判定する(ステップS804)。ステップS804の処理は、制御部210が荷重センサ160(図5参照)から受信した荷重データが表す荷重が第2閾値未満であるか否かを判定することによって行われる。また、ステップS804の処理は、制御部210の荷重判定部によって行われる処理である。
制御部210は、荷重が第2閾値未満であると判定した場合(S804:YES)は、第1駆動指令でLRA140を駆動する(ステップS805)。第1駆動指令は、タッチパネル120に第1振動パターンによる振動を発生させる駆動指令である。
ステップS805の処理は、制御部210がドライバIC260に第1駆動指令を入力することによって行われる。なお、ステップS805の処理は、制御部210の駆動制御部211によって行われる。
ここで、フローがステップS801、S802、S803、S804、及びS805の順に進行する場合は、利用者がタッチパネル120の所定のGUIボタンを軽く押すことによって、タッチパネル120に第1振動パターンによる振動が発生する場合に相当する。この場合に、利用者は、指先の触感だけで、所定のGUIボタンに触れていることを認識できる。
制御部210は、ステップS805の処理に続いて、電子機器300の電源がオフにされたか否かを判定する(ステップS806)。電源がオフにされた場合は、処理を続ける必要がなくなるからである。
制御部210は、電源がオフにされていないと判定した場合(S806:NO)は、フローをステップS801にリターンする。
制御部210は、ステップS803において、荷重が第1閾値以上ではないと判定した場合(S803:NO)は、フローをステップS801にリターンする。この場合は、例えば、利用者が所定のGUIボタンにごく軽く触れたような場合に相当する。このような場合には、利用者が所定のGUIボタンを探している状態ではないと考えられるため、フローをS801にリターンして、操作入力の有無を判定することとしたものである。
制御部210は、ステップS804において、荷重が第2閾値未満ではないと判定した場合(S804:NO)は、フローをステップS807に進行する。
制御部210は、第2駆動指令でLRA140を駆動する(ステップS807)。第2駆動指令は、タッチパネル120に第2振動パターンによる振動を発生させる駆動指令である。
ステップS807の処理は、制御部210がドライバIC260に第2駆動指令を入力することによって行われる。なお、ステップS807の処理は、制御部210の駆動制御部211によって行われる。
ここで、フローがステップS807に進行する場合は、フローがステップS801、S802、S803、S804、S805、S806と進行し、フローがS801にリターンして、S802、S803、S804、S807と進行した場合である。
これは、利用者がタッチパネル120のGUIボタンを押す力は、徐々に立ち上がるため、GUIボタンに最初に触れ始めた際には、ステップS804で荷重が第2閾値未満であると判定されて、ステップS805に進行するからである。
従って、利用者がタッチパネル120の所定のGUIボタンを押すと、最初にステップS805の処理によってタッチパネル120に第1振動パターンの振動が発生した後に、ステップS807の処理によってタッチパネル120に第2振動パターンの振動が発生することになる。
このため、利用者は、最初に第1振動パターンによる振動で所定のGUIボタンに触れていることを認識でき、次に、第2振動パターンによる振動で所定のGUIボタンの操作が電子機器300に受け付けられたことを認識できる。
また、制御部210は、ステップS802で操作入力のあった位置が所定の領域外であると判定した場合(S802:NO)は、フローをステップS808に進行する。
制御部210は、荷重が第1閾値以上であるか否かを判定する(ステップS808)。ステップS808の処理は、ステップS803の処理と同様に、制御部210が荷重センサ160(図5参照)から受信した荷重データが表す荷重が第1閾値以上であるか否かを判定することによって行われる。また、ステップS808の処理は、制御部210の荷重判定部によって行われる処理である。
制御部210は、荷重が第1閾値以上であると判定した場合(S808:YES)は、荷重が第2閾値未満であるか否かを判定する(ステップS809)。ステップS809の処理は、ステップS804の処理と同様に、制御部210が荷重センサ160(図5参照)から受信した荷重データが表す荷重が第2閾値未満であるか否かを判定することによって行われる。また、ステップS809の処理は、制御部210の荷重判定部によって行われる処理である。
制御部210は、荷重が第2閾値未満であると判定した場合(S809:YES)は、第3駆動指令でLRA140を駆動する(ステップS810)。第3駆動指令は、タッチパネル120に第3振動パターンによる振動を発生させる駆動指令である。
ステップS810の処理は、制御部210がドライバIC260に第3駆動指令を入力することによって行われる。なお、ステップS810の処理は、制御部210の駆動制御部211によって行われる。
ここで、フローがステップS801、S802、S803、S804、及びS805の順に進行する場合は、利用者がタッチパネル120の所定のGUIボタン以外のGUIボタンを軽く押すことによって、タッチパネル120に第3振動パターンによる振動が発生する場合に相当する。この場合に、利用者は、指先の触感だけで、所定のGUIボタン以外のGUIボタンに触れていることを認識できる。
なお、第3振動パターンは、LRA140を駆動せずに、タッチパネル120に振動を発生させない振動パターンであってもよい。この場合には、利用者がタッチパネル120の所定のGUIボタンに軽く触れたときだけに、タッチパネル120を(第1振動パターンで)振動させるようにすることができる。
制御部210は、ステップS809において、荷重が第2閾値未満ではないと判定した場合(S809:NO)は、フローをステップS811に進行する。
制御部210は、第4駆動指令でLRA140を駆動する(ステップS811)。第4駆動指令は、タッチパネル120に第4振動パターンによる振動を発生させる駆動指令である。
ステップS811の処理は、制御部210がドライバIC260に第4駆動指令を入力することによって行われる。なお、ステップS811の処理は、制御部210の駆動制御部211によって行われる。
ここで、フローがステップS811に進行する場合は、フローがステップS801、S802、S808、S809、S810、S806と進行し、フローがS801にリターンして、S802、S808、S809、S811と進行した場合である。
これは、利用者がタッチパネル120のGUIボタンを押す力は、徐々に立ち上がるため、GUIボタンに最初に触れ始めた際には、ステップS809で荷重が第2閾値未満であると判定されて、ステップS810に進行するからである。
従って、利用者がタッチパネル120の所定のGUIボタン以外のGUIボタンを押すと、最初にステップS810の処理によってタッチパネル120に第3振動パターンの振動が発生した後に、ステップS811の処理によってタッチパネル120に第4振動パターンの振動が発生することになる。
このため、利用者は、最初に第3振動パターンによる振動で所定のGUIボタン以外のGUIボタンに触れていることを認識でき、次に、第4振動パターンによる振動で所定のGUIボタン以外のGUIボタンの操作が電子機器300に受け付けられたことを認識できる。
なお、第4駆動指令は、第2駆動指令と同一の駆動指令であってもよい。この場合は、所定のGUIボタンで操作入力が電子機器300に受け付けられた場合と、所定のGUIボタン以外のGUIボタンで操作入力が電子機器300に受け付けられた場合とで利用者に提供する振動を統一できる。
以上のように、実施の形態の電子機器300によれば、利用者がタッチパネル120の所定のGUIボタンを押すと、最初に第1振動パターンの振動をタッチパネル120に発生させ、その後に、第2振動パターンの振動をタッチパネル120に発生させる。
このため、利用者は、最初に第1振動パターンによる振動で所定のGUIボタンに触れていることを触感だけで認識でき、次に、第2振動パターンによる振動で所定のGUIボタンへの操作入力が電子機器300に受け付けられたことを触感だけで認識できる。
特に、利用者がタッチパネル120の所定のGUIボタンを軽く押したときに、第1振動パターンの振動をタッチパネル120に発生させることにより、従来の機械式のキースイッチの特定のキースイッチに設けられた突起を触っている場合と同様に、利用者は触感だけで特定のGUIボタンの位置を認識することができる。
また、電子機器300が所定のGUIボタンへの操作入力を受け付けるのは、所定のGUIボタンをさらに強く押したときであり、第2振動パターンでタッチパネル120を振動させることにより、触感だけで操作入力が受け付けられたことを認識することができる。
このため、実施の形態の電子機器300によれば、所定のGUIボタンの位置を第1振動パターンで触感だけで利用者に認識させることができるとともに、第2振動パターンで操作入力の完了を触感だけで利用者に認識させることができる。
次に、図9乃至図12を用いて、実施の形態の電子機器300がスマートフォン300Aである場合における動作例について説明する。
また、以下では、第3振動パターンは、タッチパネル120を振動させないパターンであることとする。
図9乃至図12は、実施の形態のスマートフォン300Aの動作例を示す図である。
図9(A)に示すように、スマートフォン300Aのタッチパネル120に、GUIボタン121A、121B、121C、121D、121E、121Fが表示されているとする。
GUIボタン121Aは、電話の機能を利用する際に押すGUIボタンであり、GUIボタン121Bは、メールの機能を利用する際に押すGUIボタンである。GUIボタン121Cは、電話帳を利用する際に押すGUIボタンである。また、GUIボタン121D〜121Fは、特定の動作を割り当てることのできるGUIボタンである。例えば、GUIボタン121D〜121Fは、特定の連絡先に電話をかけるための短縮ボタンとして利用することができる。
例えば、スマートフォン300Aにおいて、GUIボタン121Aを所定のGUIボタンに設定したとする。この場合には、例えば、図9(B)に示すように、GUIボタン121Aのボタンの色を変えてもよい。
図10(A)に示すように、利用者の指がGUIボタン121Eに軽く触れた場合には、タッチパネル120には振動は発生しない。GUIボタン121Eは、所定のGUIボタン以外のGUIボタンであり、ここでは第3振動パターンは、タッチパネル120を振動させないパターンであるからである。また、利用者がGUIボタン121Eをさらに強く押した場合には、タッチパネル120は第4振動パターンで振動され、利用者は操作入力が受け付けられたことを認識できる。
図10(B)に示すように、利用者の指がGUIボタン121Aに触れると、スマートフォン300Aは、最初にタッチパネル120を第1振動パターンで振動させ、GUIボタン121Aがさらに強く押されると、タッチパネル120を第2振動パターンで振動させる。
このため、利用者は、触感だけでGUIボタン121Aの位置を認識できるとともに、操作入力がスマートフォン300Aに受け付けられたことを認識できる。
次に、スマートフォンで電卓の機能を利用する場合について説明する。
図11(A)に示すように、スマートフォン300Aのタッチパネルには、電卓用のテンキー等を表すGUIボタンが表示されている。
図11(B)に示すように、'5'のGUIボタンを所定のGUIボタンに設定したとする。このため、'5'のGUIボタンだけをグレーで示す。
図12(A)に示すように、'9'のGUIボタンに軽く触れた場合には、タッチパネル120には振動は発生しない。'9'のGUIボタンは、所定のGUIボタン以外のGUIボタンであり、ここでは第3振動パターンは、タッチパネル120を振動させないパターンであるからである。また、利用者が'9'のGUIボタンをさらに強く押した場合には、タッチパネル120は第4振動パターンで振動され、利用者は操作入力が受け付けられたことを認識できる。
また、利用者の指が'5'のGUIボタンに触れると、スマートフォン300Aは、最初にタッチパネル120を第1振動パターンで振動させ、'5'のGUIボタンがさらに強く押されると、タッチパネル120を第2振動パターンで振動させる。
このため、利用者は、触感だけで'5'のGUIボタンの位置を認識できるとともに、操作入力がスマートフォン300Aに受け付けられたことを認識できる。
以上のように、実施の形態のスマートフォン300Aによれば、利用者がタッチパネル120の所定のGUIボタンを押すと、最初に第1振動パターンの振動をタッチパネル120に発生させ、その後に、第2振動パターンの振動をタッチパネル120に発生させる。
このため、利用者は、最初に第1振動パターンによる振動で所定のGUIボタンに触れていることを触感だけで認識でき、次に、第2振動パターンによる振動で所定のGUIボタンの操作がスマートフォン300Aに受け付けられたことを触感だけで認識できる。
特に、利用者がタッチパネル120の所定のGUIボタン(図9(B)に示すGUIボタン121Aと図11(B)に示す'5'のGUIボタン)を軽く押したときに、第1振動パターンの振動をタッチパネル120に発生させる。これにより、従来の機械式のキースイッチの特定のキースイッチに設けられた突起を触っている場合と同様に、利用者が触感だけで特定のGUIボタンの位置を認識できるスマートフォン300Aを提供することができる。
以上では、特定のGUIボタンを触感で識別できる電子機器300及びスマートフォン300Aの実施の形態について説明した。以上で説明した波形データによって表される波形の立ち上がり又は立ち上がりの形状は、任意の形状であってよい。
しかしながら、波形の立ち上がり、又は、立ち下がりを急峻にすれば、利用者が指を通じてタッチパネル120の振動をより認識しやすくなり、振動波形を組み合わせて操作入力に対する振動波形を自由に生成できる。
例えば、タッチパネル120ではない機械的なボタンを押したような触感(ボタンをクリックしたような感覚)をスマートフォン300Aを利用者に提供できれば、様々な振動波形を利用者がより認識しやすくなる。
このため、以下では、図13乃至図28を用いて、第1の方法、第2の方法、及び第3の方法によるLRAの駆動方法について説明する。第1の方法、第2の方法、及び第3の方法によるLRAの駆動方法は、利用者がタッチパネル120の振動波形をより認識しやすくなる触感を提供する駆動方法である。
以下で説明する第1の方法、第2の方法、及び第3の方法で生成する波形データは、以上で説明した第1駆動指令、第2駆動指令、第3駆動指令、第4駆動指令を生成するための波形データとして用いることができる。
例えば、第1駆動指令によって生じる第1振動パターンを機械的なボタンをクリックしたような触感にすれば、利用者の指が所定のGUIボタンに軽く触れた際に、所定のGUIボタンの位置を素早く利用者に伝えることができる。
また、第2駆動指令によって生じる第2振動パターンを機械的なボタンをクリックしたような触感にすれば、利用者の指が所定のGUIボタンを操作するために強く触れた際に、所定のGUIボタンへの操作入力が受け付けられたことを利用者が認識しやすくなる。
また、第3駆動指令によって生じる第3振動パターンを機械的なボタンをクリックしたような触感にすれば、利用者の指が所定のGUIボタン以外のGUIボタンに軽く触れた際に、所定のGUIボタン以外のGUIボタンの位置を素早く利用者に伝えることができる。
また、第4駆動指令によって生じる第4振動パターンを機械的なボタンをクリックしたような触感にすれば、利用者の指が所定のGUIボタン以外のGUIボタンを操作するために強く触れた際に、所定のGUIボタン以外のGUIボタンへの操作入力が受け付けられたことを利用者が認識しやすくなる。
なお、上述したように、第2振動パターンと第4振動パターンは同じ振動パターンでもよいが、第1振動パターンと第3振動パターンは異なる振動パターンに設定される。これは、利用者がタッチパネル120に触れ始める際に、所定のGUIボタンの位置を触感だけで利用者が認識できるようにするためである。
以下に実施の形態の波形データについて説明する。実施の形態では、3つの方法を用いてLRAの振動のパターンを変化させて、機械的なボタンをクリックしたような触感を表現する。
まず第1の方法について説明する。第1の方法は、駆動指令の供給停止後も続くLRAの固有振動数による自由振動を抑制する方法である。以下の実施の形態の説明では、駆動指令の供給停止後も続くLRAの固有振動数による自由振動を残留振動と呼ぶ。
第1の方法では、後述する特定の条件を満たす駆動指令をLRA140に供給したときにLRA140の振動が1〜数周期で停止することに着目した。第1の方法では、特定の条件を満たす駆動指令をLRA140に印加して残留振動を停止させることで、1〜数周期で急速に減衰する振動を発生させ、機械的なボタンをクリックしたような触感を表現する。
特定の条件を満たす駆動指令は、LRA140の固有振動数をf0としたとき、f1=m/n×f0(m,nは自然数かつm≠n)となる周波数f1の信号でLRA140をm回加振する信号である。
図13は、LRAの動作原理を説明するための図であり、図14は、LRAに印加される入力波形の例を示す図である。
LRA140の固有振動数f0を175Hzとし、m=2,n=1としたとき、駆動指令の周波数f1=2/1×175=350Hzとなる。駆動指令の周波数をf1としたときの正弦波Fは、図14に示す波形である。図14の例では、正弦波F=0.01sin2πf1tとなる。
正弦波FがLRA140に印加されると、LRA140にはLRA140の固有振動数(共振周波数)f0の振動が生じる。すなわち、LRA140には、周波数f1の正弦波と、LRA140の固有振動数f0の正弦波とが合成された合成波が生じ、LRA140はこの合成波に応じて変位する。
図15は、図14の入力を駆動指令として印加したときのLRAの振動の加速度を示す図である。図15(A)は、LRA140に発生する変位の強制変位成分と自由振動成分を示す図であり、図15(B)は合成波を示す図である。
図15(A)において、点線で示される波形y1はLRA140に正弦波Fが印加されたときに生じるLRA140の強制振動変位を示し、実線で示される波形y2は自由振動変位を示す。LRA140に生じる変位y3は、波形y1と波形y2との合成波となる。
図15(B)は、波形y1と波形y2との合成波y3の例を示す図である。合成波y3は、正弦波Fが0となるタイミングTにおいて0となることがわかる。
合成波y3が0となるタイミングTにおいて、LRA140の振動の速度、振動の加速度ともに0になるため、LRA140の振動は停止する。
図16は、LRAの振動の速度及び振動の加速度の例を示す図である。図16(A)は合成波y3の波形を示す図であり、図16(B)は合成波y3の変位を微分して得る速度の波形y3′を示す図であり、図16(C)は合成波y3の変位を2回微分して得る加速度の波形y3″を示す図である。
図16からわかるように、速度の波形y3′と加速度の波形y3″とは、合成波y3が0となるタイミングで0となる。すなわちLRA140の振動がタイミングTで停止する。
このときLRA140の振動の加速度の波形y3″は、0.01sec以内に2周期で停止する。したがって図16の例では、振動の加速度が0.01sec以内に人の感知限界0.02G以下となり、ボタン2を押したようなクリック感を表現することができる。
以下に図17乃至図20を参照して、上述する第1の方法の効果を説明する。図17は、LRAの固有振動数の正弦波を駆動指令としたときのLRA140の振動の加速度を示す図である。
図17(A)は、LRA140の固有振動数f0=175Hzの正弦波を示す。図17(B)は、図17(A)の正弦波を駆動指令としてシミュレーションした際のLRA140の振動の加速度を示す。図17(C)は、固有振動数f0=175HzのLRA140を搭載した実機において図17(A)の正弦波を駆動指令した際のタッチパネル120の振動の加速度を示す。タッチパネル120の振動の加速度は、タッチパネル120の中央に加速度計を設置して測定したものである。
図17(B),(C)からわかるように、固有振動数f0の正弦波を駆動指令とした場合、残留振動が0.1sec以上に亘り現れる。
なお、図17(C)において駆動指令が印加されるLRA140は、固有振動数f0=175Hz、重りの重さを1.5g、重りを支持するばね定数を1813.5N/mのものとした。
図18は、駆動信号停止後にLRA140に発生する振動の逆位相の(180度位相のずれた)電圧を印加する従来の方法を適用した際に電子機器で測定した加速度を示す図である。図18(A)は、LRA140の固有振動数f0=175Hzの正弦波を示す。図18(B)は、LRA140を搭載した実機において図18(A)の正弦波を駆動指令とし、かつ、駆動指令停止後にLRA140に発生する残留振動の逆位相の電圧を印加したときのLRA140の振動の加速度を示す。
図18の例では、図17に比べて残留振動は小さくなるが、振動の加速度が人の感知下限の0.02G以下になるまでに0.05sec以上かかる。
図19は、実施形態の条件を満たさない信号を入力駆動信号としたときのLRAの加速度応答シミュレーションと、実際の電子機器での加速度測定結果を示す図である。
図19(A)は、実施形態による特定の条件を満たさない周波数300Hzの正弦波を示す。図19(B)は、図19(A)の正弦波を駆動指令としてシミュレーションした際の振動の加速度を示す。図19(C)は、固有振動数f0=175HzのLRA140を搭載した実機において図19(A)の正弦波を駆動指令した際の振動の加速度を示す。
図19の例では、図(B),(C)からわかるように、特定の条件を満たさない周波数の正弦波を駆動指令とした場合、残留振動が0.04sec以上に亘り現れる。
図20は、実施形態の条件を満たす信号を入力駆動信号としたときのLRAの加速度応答シミュレーションと、実際の電子機器での加速度測定結果を示す図である。
図20(A)は、特定の条件を満たす周波数350Hzの正弦波を示す。図20(B)は、図20(A)の正弦波を駆動指令としてシミュレーションした際のLRA140の振動の加速度を示す。図20(C)は、固有振動数f0=175HzのLRA140を搭載した実機において図20(A)の正弦波を駆動指令した際のLRA140の振動の加速度を示す。
図20の例では、図20(B),(C)からわかるように、0.02sec以降は残留振動の加速度が感知下限の0.02G以下となり、振動の波形は短時間の波形となる。
以上から、LRA140による振動の波形は、LRA140の固有振動数をf0としたとき、f1=m/n×f0(m,nは自然数かつm≠n)となる周波数f1の信号でLRA140をm回加振する信号を駆動指令とすれば、振動の加速度の波形は1〜数周期で急速に減衰する短時間の波形となり、残留振動をなくすことができる。
なお、固有振動数f0は、LRA140を電子機器300に組み込んだ後のLRA140の固有振動数としても良い。また周波数f1は、m/n×f0に対して誤差が1%以下となるように設定することが好ましい。このように周波数f1を設定すれば、駆動指令の印加を停止した後に残留振動が生じたとしても、振動の加速度は人の感知下限である0.02G以下となり人に感知されないため、機械的なボタンをクリックしたような触感を損ねることがない。
次に、LRAの振動のパターンを変化させて機械的なボタンをクリックしたような触感を表現する第2の方法について説明する。
第2の方法では、筐体110に固定されたタッチパネル120自体も高周波で振動する振動体であることに着目する。第2の方法では、LRA140の駆動指令を、振幅がピークの時点でLRA140に対する加振を停止させる信号とし、タッチパネル120自体の高周波の振動を励起することで、1〜数周期で急速に減衰する振動を発生させて機械的なボタンをクリックしたような触感を表現する。
図21は、タッチパネルの共振周波数による振動の励起を説明する図である。図21(A)は、LRA140に印加される駆動指令の正弦波形を示し、図21(B)はタッチパネル120の振動の加速度の波形を示す。図21の例では、駆動指令は電圧である。また図21の例では、LRA140の共振周波数を225Hzとし、タッチパネル120の共振周波数を1kHzとした。すなわちLRA140の振動は低周波振動であり、タッチパネル120の振動は高周波振動と言える。なお、タッチパネル120の共振周波数は、タッチパネル120の4辺が筐体110に固定された状態における共振周波数である。
図21に示す例において、LRA140を共振周波数225Hzで低周波振動させた場合、タッチパネル120の高周波振動は励起されない。この状態においてLRA140の振動を調和振動から外し、急激な力をタッチパネル120に印加することで、タッチパネル120の共振周波数である1kHzの振動を励起する。
図21の例では、図21(A)に示すように、振幅がピークとなった点P1でLRA140に対する加振を停止させる信号を駆動指令とした。図21(A)に示す駆動指令の振幅は、LRA140に対する加振が停止した直後に0となる。図21の例では、駆動指令の振幅をピークから0にすることで、LRA140の振動を調和振動から外す。
また図21の例では、駆動指令によるLRA140の駆動時間を7/4周期とし、振幅がピークとなる点P1が駆動指令の終端となるようにした。なお、駆動指令の終端とは、LRA140に対する加振を停止する点である。
この結果、図21(B)に示すように、点P1において周波数が1kHzの高周波振動が励起され、1〜数周期で急速に減衰する振動を発生させる。さらに図21の例では、点P1で高周波振動を励起することで、低周波振動の加速度の最大値と高周波振動の加速度の最大値とを重畳し、短時間でより急峻なピークを発生させることができる。このように第2の方法では、振動の加速度の短時間の急峻なピークを発生させることで、鋭い触感を提示することができ、機械的なボタンをクリックしたような触感を表現できる。
以下に図22を参照して上述する第2の方法の効果を説明する。図22は、LRAの共振周波数の電圧を駆動指令としたときのタッチパネルの振動の加速度を示す図である。図22の例では、LRA140の駆動時間を短くして機械的なボタンをクリックしたような触感の表現を試みた際のタッチパネル120の振動の加速度を示している。
しかしながらタッチパネル120の振動は、LRA140の駆動時間を短くしても、振動量を増幅させるための立ち上がりの時間と、増幅された振動の加速度が0.02G以下に減衰するまでの時間が必要となり、振動が数周期に亘って続く。図22の例では、立ち上がりから減衰までに25msec程度の時間がかかり、振動が約4周期に亘り続いていることがわかる。したがって機械的なボタンをクリックした際の感覚のような鋭い触感を提示することが困難である。
これに対しで図21(B)では、周波数1kHzの高周波振動が励起され、であり、振動も2周期程度で減衰していることがわかる。
よって第2の方法では、振動の加速度の短時間の急峻なピークを発生させて機械的なボタンをクリックしたような触感を表現することができる。
なお、図21の例では、駆動指令の終端である点P1で高周波振動が励起され、高周波振動の加速度がピークを迎える。よって高周波振動の加速度がピークを迎えるタイミングは、駆動指令が点P1となるタイミングから僅かにずれることになる。
第2の方法では、このタイミングのずれを無くすために、高周波振動を励起する箇所を点P1からずらしても良い。図23は、高周波振動を励起する箇所を点P1からずらした例を示す図である。図23(A)は、LRA140に印加される駆動指令の正弦波形を示し、図23(B)はLRA140の振動の加速度の波形を示す。
図23(A)において、駆動指令は、振幅のピークからわずかにずれた点P2を終端としている。図23(B)では、駆動指令の終端P2を振幅のピークからずらしたため、重畳される低周波振動の加速度が最大値より小さくなり、高周波振動の加速度のピークは図21(B)に示す値よりも小さくなるが、図21の例と同等の効果を得ることができる。
次に、第1の方法と第2の方法を組み合わせた第3の方法について説明する。
第3の方法の駆動装置200では、第1の方法と第2の方法とを用いて生成したLRA140の駆動指令を表す波形を波形データとしてメモリ220内の波形データベース240に保持している。
以下に第3の方法の駆動指令について説明する。第3の方法では、第1の方法で説明した特定の条件を満たし、かつ、第2の方法で説明したように振幅がピークとなる点を終端とする信号を駆動指令とした。
図24は、第3の方法のLRAの駆動指令の例を示す図である。図24(A)は、第3の方法の駆動指令Gの波形であり、図24(B)は第3の方法の駆動指令GがLRA140に印加された際のタッチパネル120の振動の加速度を示す図である。
第3の方法の駆動指令Gは、周波数f1=m/n×f0(m,nは自然数かつm≠n)となる周波数f1の信号でかつ、LRA140をm回加振する信号である。図24の例では、m=3,n=2とした。また第3の方法の駆動指令Gは、さらに振幅が最大値となる点P3を終端とする。
第3の方法では、駆動指令Gをm周期の信号でありかつ、振幅のピークが終端となる信号とするために、駆動指令Gを正弦波波形からπ/2位相をずらした余弦波とした。第3の方法では駆動指令Gを余弦波とすることで、駆動指令Gを特定の条件を満たしかつ、終端が振幅のピークとなる信号とすることができる。
なお、第3の方法の電子機器300では、タッチパネル120にLRA140が取り付けられているため、タッチパネル120の共振周波数をタッチパネル120の4辺が筐体110に固定された状態における共振周波数とした。タッチパネル120の共振周波数は、例えばLRA140が筐体110内部に配置される場合には、タッチパネル120が筐体110に組み込まれた状態におけるタッチパネル120の共振周波数となる。
第3の方法の駆動装置200の波形データは、駆動指令Gの周波数f1、振幅、位相、周期(mの値)等を含む。また第3の方法の波形データは、駆動指令Gの波形を表す式を含んでも良い。
第3の方法の駆動装置200は、図6のステップS603において、API250により、駆動指令Gを示す波形データを読み出し、波形データに対応した駆動指令をドライバIC260へ出力する。ドライバIC260は、波形データをD/A変換して増幅し、LRA140に出力する。
第3の方法の駆動装置200において、LRA140に駆動指令Gが印加された場合について説明する。
図25は、第3の方法のLRAに対する入力波形を示す図である。図25に示す波形は、駆動指令GをLRA140に印加することにより、LRA140に加えられる力を示している。
第3の方法において、LRA140の固有振動数f0を225Hzとし、m=3,n=2としたとき、駆動指令Gの周波数f1は、f1=3/2×225=337.5Hzとなる。図25に示す波形は、駆動指令Gの周波数をf1としたときの正弦波Fの位相をπ/2ずらした余弦波G1である。正弦波Fは、F=0.01sin2πf1tで得られる。
余弦波G1がLRA140に印加されると、LRA140にはLRA140の固有振動数f0(すなわち共振周波数)の振動が生じる。すなわち、LRA140には、周波数f1の余弦波G1と、LRA140の固有振動数f0の余弦波とが合成された合成波が生じ、LRA140はこの合成波に応じて変位する。
図26は、第3の方法によるLRAの変位を示す図である。図26(A)は、変位を説明する第一の図であり、図26(B)は変位を説明する第二の図である。
図26(A)において、点線で示される波形y11はLRA140に余弦波G1が印加されたときに生じる振動変位の強制振動成分を示し、実線で示される波形y12は自由振動成分を示す。余弦波G1がLRA140に印加されたときの応答変位y13は、波形y11と波形y12との合成波となる。
図26(B)は、波形y11と波形y12との合成波y13の変位の一例を示す図である。合成波y13は、余弦波G1が0となるタイミングT1において0となることがわかる。
合成波y13が0となるタイミングT1において、LRA140の振動の速度も0になるため、LRA140の振動は停止する。
図27は、第3の方法のLRAの振動の速度及び振動の加速度の例を示す図である。図27(A)は合成波y13の波形を示す図であり、図27(B)は合成波y13の変位を微分して得る速度の波形y13′を示す図であり、図27(C)は合成波y13の変位を2回微分して得られる加速度の波形y13″を示す図である。
図27からわかるように、速度の波形y13′と加速度の波形y13″とは、合成波y13が0となるタイミングT1で0となる。すなわちLRA140の振動がタイミングT1で停止する。
このとき加速度の波形y13″は、0.01sec以内に3周期で停止する。したがって第3の方法では、0.01sec以内に振動の加速度が0.02G以下となり、メタルドーム式のボタン2をクリックしたような触感を表現することができる。
なお、第3の方法では、余弦波G1の振幅がピークとなる点で加振を停止させるものとしたが、これに限定されない。第3の方法において駆動指令の終端は、例えばタッチパネル120の振動の加速度を示す波形に、クリック感を表現する急峻なピークを生成できる点であれば良い。第3の方法において駆動指令の終端は、振幅の中心点である0以外であれば良く、駆動指令の終端は振幅のピークに近い点であるほど良い。
また第3の方法の電子機器300では、LRA140がタッチパネル120の筐体側の面に取り付けられるものとしたが、これに限定されない。LRA140は、例えば筐体110内部に配置された基板150の近傍に配置されても良い。
図28は、LRA140が筐体に設けられた電子機器の例を示す図である。図28に示す電子機器100Aでは、LRA140が筐体110内部に設けられた基板150の近傍に配置されている。
第3の方法は、電子機器100Aに対しても適用することができる。また電子機器100Aに第3の方法を適用した場合、第3の方法の電子機器300と同様にメタルドーム式のボタン2をクリックしたような触感を表現することができる。
以上、実施の形態の電子機器、及び駆動制御プログラムについて詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
300、100A 電子機器
110 筐体
120 タッチパネル
130 両面テープ
140 LRA
160 荷重センサ
200 駆動装置
210 制御部
211 駆動制御部
212 位置判定部
213 荷重判定部
220 メモリ
230 駆動制御プログラム
240 波形データベース
250 API
260 ドライバIC
300A スマートフォン
301 ディスプレイ
302 タッチセンサ
303 入力部
304 信号処理部
305 通信部
308 記録媒体I/F部
350 閾値データベース
110 筐体
120 タッチパネル
130 両面テープ
140 LRA
160 荷重センサ
200 駆動装置
210 制御部
211 駆動制御部
212 位置判定部
213 荷重判定部
220 メモリ
230 駆動制御プログラム
240 波形データベース
250 API
260 ドライバIC
300A スマートフォン
301 ディスプレイ
302 タッチセンサ
303 入力部
304 信号処理部
305 通信部
308 記録媒体I/F部
350 閾値データベース
Claims (9)
- タッチパネルと、
前記タッチパネルを振動させるアクチュエータと、
利用者の前記タッチパネルへの操作入力の荷重を検出する荷重検出部と、
前記タッチパネルへの操作入力が行われた位置が前記タッチパネルの所定領域内であり、かつ、前記荷重検出部によって検出される荷重が第1所定値以上で、前記第1所定値よりも大きい第2所定値未満である場合に、前記タッチパネルに第1振動パターンによる振動を発生させる第1駆動指令で前記アクチュエータを駆動する駆動制御部と
を含み、
前記第1駆動指令は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波であり、かつ、前記アクチュエータをm回加振する駆動指令、前記アクチュエータの共振周波数と等しい周波数を有する正弦波であり、かつ、前記正弦波の振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令、又は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波から位相がπ/2ずれており、かつ、前記アクチュエータをm回加振し、振幅の中心点以外において前記アクチュエータの加振を停止させる駆動指令のうちのいずれか一つである、電子機器。 - 前記駆動制御部は、前記第1振動指令で前記アクチュエータを駆動した後に、前記所定領域内への操作入力が行われている状態で、前記荷重検出部によって検出される荷重が前記第2所定値以上である場合には、前記第1振動パターンとは異なる第2振動パターンによる振動を前記タッチパネルに発生させる第2駆動指令で前記アクチュエータを駆動する、請求項1記載の電子機器。
- 前記駆動制御部は、前記タッチパネルへの操作入力が行われた位置が前記タッチパネルの前記所定領域外であり、前記荷重検出部によって検出される荷重が第1所定値以上で、前記第2所定値未満である場合に、前記タッチパネルに前記第1振動パターンとは異なる第3振動パターンによる振動を発生させる第3駆動指令で前記アクチュエータを駆動する、請求項1又は2記載の電子機器。
- 前記駆動制御部は、前記タッチパネルへの操作入力が行われた位置が前記タッチパネルの前記所定領域外であり、前記荷重検出部によって検出される荷重が前記第2所定値以上である場合には、第4振動パターンによる振動を前記タッチパネルに発生させる第4駆動指令で前記アクチュエータを駆動する、請求項2記載の電子機器。
- 前記第2駆動指令と前記第4駆動指令は同一の駆動指令であり、前記第2振動パターンと前記第4振動パターンは等しい、請求項4記載の電子機器。
- 前記第2駆動指令は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波であり、かつ、前記アクチュエータをm回加振する駆動指令、前記アクチュエータの共振周波数と等しい周波数を有する正弦波であり、かつ、前記正弦波の振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令、又は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波から位相がπ/2ずれており、かつ、前記アクチュエータをm回加振し、振幅の中心点以外において前記アクチュエータの加振を停止させる駆動指令のうちのいずれか一つである、請求項2記載の電子機器。
- 前記第3駆動指令は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波であり、かつ、前記アクチュエータをm回加振する駆動指令、前記アクチュエータの共振周波数と等しい周波数を有する正弦波であり、かつ、前記正弦波の振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令、又は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波から位相がπ/2ずれており、かつ、前記アクチュエータをm回加振し、振幅の中心点以外において前記アクチュエータの加振を停止させる駆動指令のうちのいずれか一つである、請求項3記載の電子機器。
- 前記第4駆動指令は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波であり、かつ、前記アクチュエータをm回加振する駆動指令、前記アクチュエータの共振周波数と等しい周波数を有する正弦波であり、かつ、前記正弦波の振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令、又は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波から位相がπ/2ずれており、かつ、前記アクチュエータをm回加振し、振幅の中心点以外において前記アクチュエータの加振を停止させる駆動指令のうちのいずれか一つである、請求項4記載の電子機器。
- コンピュータに、
タッチパネルへの操作入力が行われた位置が前記タッチパネルの所定領域内であり、かつ、利用者の前記タッチパネルへの操作入力の荷重を検出する荷重検出部によって検出される荷重が第1所定値以上で、前記第1所定値よりも大きい第2所定値未満である場合に、前記タッチパネルに第1振動パターンによる振動を発生させる第1駆動指令で前記タッチパネルを振動させるアクチュエータを駆動する、ことを実行させ、
前記第1駆動指令は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波であり、かつ、前記アクチュエータをm回加振する駆動指令、前記アクチュエータの共振周波数と等しい周波数を有する正弦波であり、かつ、前記正弦波の振幅の中心点以外において前記アクチュエータの加振を停止する駆動指令、又は、前記アクチュエータの共振周波数をf0としたとき、周波数f1=m/n×f0(m,nは自然数かつm≠n)を満たす正弦波から位相がπ/2ずれており、かつ、前記アクチュエータをm回加振し、振幅の中心点以外において前記アクチュエータの加振を停止させる駆動指令のうちのいずれか一つである、駆動制御プログラム。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/064945 WO2013186844A1 (ja) | 2012-06-11 | 2012-06-11 | 電子機器、及び駆動制御プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5822022B2 true JP5822022B2 (ja) | 2015-11-24 |
JPWO2013186844A1 JPWO2013186844A1 (ja) | 2016-02-01 |
Family
ID=49757708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014520830A Expired - Fee Related JP5822022B2 (ja) | 2012-06-11 | 2012-06-11 | 電子機器、及び駆動制御プログラム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5822022B2 (ja) |
WO (1) | WO2013186844A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106104426B (zh) * | 2014-03-21 | 2020-04-03 | 意美森公司 | 用于基于力的对象操纵和触觉检测的系统、方法和计算机可读介质 |
US11422631B2 (en) | 2016-03-31 | 2022-08-23 | Sensel, Inc. | Human-computer interface system |
JP6728386B2 (ja) | 2016-03-31 | 2020-07-22 | センセル インコーポレイテッドSensel,Inc. | 人間コンピュータインタフェースシステム |
US10866642B2 (en) | 2016-03-31 | 2020-12-15 | Sensel Inc. | System and method for detecting and responding to touch inputs with haptic feedback |
US11460926B2 (en) | 2016-03-31 | 2022-10-04 | Sensel, Inc. | Human-computer interface system |
US10564839B2 (en) | 2016-03-31 | 2020-02-18 | Sensel Inc. | Method for detecting and characterizing inputs on a touch sensor surface |
KR20220159484A (ko) * | 2018-03-08 | 2022-12-02 | 센셀, 인크. | 인간-컴퓨터 인터페이스 시스템 |
US11880506B2 (en) | 2020-10-06 | 2024-01-23 | Sensel, Inc. | Haptic keyboard system |
JP2023039801A (ja) * | 2021-09-09 | 2023-03-22 | 京セラ株式会社 | 電気機器及び振動制御方法 |
US12118154B2 (en) | 2022-08-11 | 2024-10-15 | Sensel, Inc. | Human-computer system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11212725A (ja) * | 1998-01-26 | 1999-08-06 | Idec Izumi Corp | 情報表示装置および操作入力装置 |
WO2010103693A1 (ja) * | 2009-03-09 | 2010-09-16 | シコー株式会社 | 振動モータ及び電子機器 |
JP2010287232A (ja) * | 2009-06-09 | 2010-12-24 | Immersion Corp | アクチュエータを用い触覚効果を生成する方法及び装置 |
JP2012020284A (ja) * | 2004-11-30 | 2012-02-02 | Immersion Corp | 振動触覚ハプティック効果を発生させるための共振装置を制御するためのシステムおよび方法 |
-
2012
- 2012-06-11 JP JP2014520830A patent/JP5822022B2/ja not_active Expired - Fee Related
- 2012-06-11 WO PCT/JP2012/064945 patent/WO2013186844A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11212725A (ja) * | 1998-01-26 | 1999-08-06 | Idec Izumi Corp | 情報表示装置および操作入力装置 |
JP2012020284A (ja) * | 2004-11-30 | 2012-02-02 | Immersion Corp | 振動触覚ハプティック効果を発生させるための共振装置を制御するためのシステムおよび方法 |
WO2010103693A1 (ja) * | 2009-03-09 | 2010-09-16 | シコー株式会社 | 振動モータ及び電子機器 |
JP2010287232A (ja) * | 2009-06-09 | 2010-12-24 | Immersion Corp | アクチュエータを用い触覚効果を生成する方法及び装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013186844A1 (ja) | 2016-02-01 |
WO2013186844A1 (ja) | 2013-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5822022B2 (ja) | 電子機器、及び駆動制御プログラム | |
JP5831635B2 (ja) | 駆動装置、電子機器、及び駆動制御プログラム | |
JP5962757B2 (ja) | プログラム及び電子機器 | |
JP5822023B2 (ja) | 電子機器、振動発生プログラム、及び振動パターン利用システム | |
JP6142928B2 (ja) | 駆動装置、電子機器、駆動制御プログラム、及び駆動信号の生成方法 | |
JP6032364B2 (ja) | 駆動装置、電子機器及び駆動制御プログラム | |
JP6478535B2 (ja) | 触覚変換を行うためのシステム及び方法 | |
JP6032362B2 (ja) | 駆動装置、電子機器及び駆動制御プログラム | |
US20170108931A1 (en) | Multiple mode haptic feedback system | |
JP5935885B2 (ja) | 駆動装置、電子機器及び駆動制御プログラム | |
JP2018125021A (ja) | コンテキスト依存ハプティック確認システム | |
US20140247227A1 (en) | Haptic device with linear resonant actuator | |
KR20120115159A (ko) | 택타일 피드백 방법 및 장치 | |
JP5907260B2 (ja) | 駆動装置、電子機器及び駆動制御プログラム | |
JP5910741B2 (ja) | プログラム及び電子機器 | |
WO2015136835A1 (ja) | 電子機器 | |
JP5962756B2 (ja) | 電子機器及び振動提供方法 | |
WO2012102026A1 (ja) | 入力装置 | |
JP5907261B2 (ja) | 駆動装置、電子機器及び駆動制御プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5822022 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |