WO2013186830A1 - ガス絶縁開閉装置 - Google Patents

ガス絶縁開閉装置 Download PDF

Info

Publication number
WO2013186830A1
WO2013186830A1 PCT/JP2012/064891 JP2012064891W WO2013186830A1 WO 2013186830 A1 WO2013186830 A1 WO 2013186830A1 JP 2012064891 W JP2012064891 W JP 2012064891W WO 2013186830 A1 WO2013186830 A1 WO 2013186830A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
current transformer
insulated switchgear
gas
outlet
Prior art date
Application number
PCT/JP2012/064891
Other languages
English (en)
French (fr)
Inventor
輝 前野
治 木佐貫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/064891 priority Critical patent/WO2013186830A1/ja
Priority to JP2012556330A priority patent/JP5220246B1/ja
Publication of WO2013186830A1 publication Critical patent/WO2013186830A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B5/00Non-enclosed substations; Substations with enclosed and non-enclosed equipment
    • H02B5/06Non-enclosed substations; Substations with enclosed and non-enclosed equipment gas-insulated

Definitions

  • This invention relates to a gas insulated switchgear.
  • Conventional gas-insulated switchgear has a configuration in which devices such as instrument current transformers are respectively stacked on two branch outlets provided at the top of a horizontal so-called horizontal circuit breaker. .
  • Patent Document 1 two branch outlets are provided in the upper part of a horizontal circuit breaker, and a disconnect switch, a ground switch, an instrument current transformer, and a bushing are stacked on each branch outlet. .
  • the conventional gas-insulated switchgear has a problem in that since the devices are integrated and arranged on the upper part of the circuit breaker, the height of the center of gravity increases as a whole and the earthquake resistance decreases.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a gas-insulated switchgear capable of reducing the layer of equipment connected to a circuit breaker and improving seismic resistance.
  • the gas insulated switchgear according to the present invention is drawn upward at the upper part of the side surface of one end of a cylindrical circuit breaker tank body arranged with the axis line horizontal. And a shut-off portion is disposed inside the circuit breaker tank provided with the second lead-out port that is horizontally drawn along the axial direction at the other end of the tank body.
  • a circuit breaker having a substantially L-shaped energization path, a bus-side device group connected to the circuit breaker via the first outlet, and the circuit breaker connected to the circuit breaker via the second outlet.
  • a track-side device group is drawn upward at the upper part of the side surface of one end of a cylindrical circuit breaker tank body arranged with the axis line horizontal.
  • a shut-off portion is disposed inside the circuit breaker tank provided with the second lead-out port that is horizontally drawn along the axial direction at the other end of the tank body.
  • FIG. 1 is a side view of a gas insulated switchgear according to Embodiment 1.
  • FIG. 2 is a diagram of the gas insulated switchgear according to Embodiment 1 as viewed from the line side.
  • FIG. 3 is a view of the gas insulated switchgear according to Embodiment 1 as viewed from the busbar side.
  • FIG. 4 is a top view of the gas-insulated switchgear according to the first embodiment.
  • FIG. 5 is a single-line connection diagram of the gas-insulated switchgear according to Embodiment 1.
  • FIG. 6 is a diagram showing an internal configuration of the main device in FIG.
  • FIG. 7 is a side view of the gas insulated switchgear according to the second embodiment.
  • FIG. 8 is a diagram of the gas insulated switchgear according to Embodiment 2 as viewed from the line side.
  • FIG. 9 is a view of the gas insulated switchgear according to Embodiment 2 as viewed from the busbar side.
  • FIG. 10 is a top view of the gas-insulated switchgear according to the second embodiment.
  • FIG. 11 is a single line connection diagram of the gas insulated switchgear according to the second embodiment.
  • FIG. 12 is a diagram showing an internal configuration of the main device in FIG.
  • FIG. 13 is a side view of the gas-insulated switchgear according to the third embodiment.
  • FIG. 14 is a diagram of the gas-insulated switchgear according to Embodiment 3 as viewed from the line side.
  • FIG. 15 is a diagram of the gas insulated switchgear according to Embodiment 3 as viewed from the busbar side.
  • FIG. 16 is a top view of the gas-insulated switchgear according to the third embodiment.
  • FIG. 17 is a single-line diagram of a gas insulated switchgear according to Embodiment 3.
  • FIG. 18 is a side view of the gas-insulated switchgear according to the fourth embodiment.
  • FIG. 19 is a view of the gas-insulated switchgear according to Embodiment 4 as viewed from the line side.
  • FIG. 20 is a view of the gas insulated switchgear according to Embodiment 4 as viewed from the busbar side.
  • FIG. 21 is a top view of the gas-insulated switchgear according to the fourth embodiment.
  • FIG. 22 is a single line connection diagram of the gas insulated switchgear according to the fourth embodiment.
  • FIG. 23 is a side view of a conventional gas insulated switchgear.
  • FIG. 24 is a view of a conventional gas insulated switchgear as viewed from the busbar side.
  • FIG. 25 is a view of a conventional gas insulated switchgear as viewed from the line side.
  • FIG. 26 is a diagram showing a part of the energization path in the gas insulated switchgear according to Embodiment 1.
  • FIG. 27 is a diagram showing a part of the energization path in a conventional gas insulated switchgear.
  • FIG. 1 is a side view of a gas-insulated switchgear according to the present embodiment
  • FIG. 2 is a view of the gas-insulated switchgear according to the present embodiment as viewed from the line side
  • FIG. FIG. 4 is a top view of the gas insulated switchgear according to the present embodiment
  • the configuration of the gas-insulated switchgear according to the present embodiment will be described with reference to FIGS.
  • the gas insulated switchgear is for a circuit breaker 1, a bus-side bushing 6 connected to the circuit breaker 1, and a bus-side instrument arranged between the circuit breaker 1 and the bushing 6.
  • this gas insulated switchgear comprises an operating device 10 for the circuit breaker 1, an operating device 8 for the disconnecting switch 4 with a grounding switch, and an operating device 9 for the grounded switch 5 to constitute a gas insulated switchgear.
  • Various devices such as the circuit breaker 1 are mounted on the gantry 30, and the gantry 30 is mounted on the installation surface 40.
  • the gas-insulated switchgear according to the present embodiment is, for example, a three-phase separation type.
  • devices such as the circuit breaker 1 exist for each phase.
  • symbol is attached
  • the bushing 6 and the current transformer 2 for the instrument, the bushing 7 and the grounding switch 5 and the like should be illustrated in an accurately inclined manner (see FIGS. 2 to 4). However, such description is omitted for the sake of simplicity (the same applies to FIGS. 7, 13, and 18 described later).
  • the circuit breaker 1 has a substantially L shape.
  • the tank of the circuit breaker 1 (the circuit breaker tank) has a cylindrical tank body that is arranged with its axis horizontal and extends in the horizontal direction, and an outlet that is drawn upward at the upper part of one side of the tank body. 1a (first outlet) and an outlet 1b (second outlet) that is drawn horizontally along the axial direction coaxially with the tank body at the other end of the tank body. .
  • the outlet 1a constitutes one side of the L shape
  • the portion between the outlets 1a and 1b and the outlet 1b of the tank main body constitute the other side of the L shape.
  • a circuit breaker 1c is provided inside the circuit breaker 1.
  • a conductor 35a extending vertically through the outlet 1a is connected to the blocking portion 1c, and a conductor 35b extending horizontally through the outlet 1b is connected (FIG. 6).
  • blocking part 1c, and the conductor 35b comprise the electricity supply path
  • An insulating gas such as sulfur hexafluoride gas is sealed in the circuit breaker 1.
  • the operating device 10 is arranged on the side where the outlet 1a is provided. In the operating device 10, the part below the axis of the tank body of the circuit breaker 1 is larger than the upper part, and the center of gravity is located below the axis. The operating device 10 is used for opening and closing the blocking unit 1c.
  • the bus-side current transformer 2 (first current transformer) is connected to the outlet 1a of the circuit breaker 1. That is, the instrument current transformer 2 is arranged on the upper part of the circuit breaker 1.
  • the instrument current transformer 2 is configured to include an annular coil that circulates around the conductor 35a, and measures the current flowing through the conductor 35a.
  • a bus-side bushing 6 (first bushing) is connected to the upper part of the instrument current transformer 2 and is arranged on the upper part of the instrument current transformer 2.
  • the bushing 6 is connected to a main bus (not shown).
  • the instrument current transformer 2 and the bushing 6 constitute a busbar side device group.
  • an L-shaped energization path 45 is superimposed on the current transformer 2 for the instrument, the outlet 1 a, and the circuit breaker 1.
  • the line-side instrument current transformer 3 (second instrument current transformer) is connected to the outlet 1b of the circuit breaker 1. That is, the instrument current transformer 3 is horizontally connected to the circuit breaker 1 at substantially the same height as the tank body of the circuit breaker 1, and is disposed horizontally on the circuit breaker 1.
  • the measuring instrument current transformer 3 includes an annular coil that circulates around the conductor 35b, and measures the current flowing through the conductor 35b.
  • a disconnecting switch 4 with a ground switch is connected to the current transformer 3 on the side opposite to the side to which the circuit breaker 1 is connected. In other words, the disconnect switch 4 with the ground switch is placed laterally with respect to the current transformer 3 for the instrument.
  • the disconnecting switch 4 with a grounding switch is configured such that a grounding switch for grounding a circuit breaker and a disconnecting switch main body are integrally formed.
  • the disconnect switch 4 with a ground switch enables operation of two devices, the ground switch for grounding the circuit breaker and the disconnect switch main body, with a single operating device 8. When these two devices are configured separately, an operation device for operating each of them is required, whereas in this embodiment, the number of operation devices can be reduced by one. .
  • the operation of the operating device 8 can turn on and off the disconnecting switch body and turn on and off the grounding switch for grounding the breaker.
  • the on / off of the disconnector main body and the on / off of the earthing switch for grounding the circuit breaker can be realized, for example, by operating a movable contact that operates in the vertical (vertical) direction.
  • a line-side bushing 7 (second bushing) is connected to the upper part of the disconnecting switch 4 with a ground switch.
  • the bushing 7 is connected to a power transmission line (not shown).
  • a ground switch 5 for grounding on the line side is disposed at a height position between the disconnecting switch 4 with the ground switch and the bushing 7.
  • the ground switch 5 is used for grounding a transmission line (not shown).
  • the current transformer 3 for an instrument, the disconnect switch 4 with a ground switch, the ground switch 5 and the bushing 7 constitute a line side device group.
  • the circuit breaker 1 is substantially L-shaped, and the current transformer 3 and the grounding switch are attached to the outlet 1b drawn along the horizontal axis of the tank body of the circuit breaker 1.
  • the disconnectors 4 are sequentially connected, and these are arranged horizontally with respect to the circuit breaker 1, thereby lowering the arrangement of the devices.
  • the unit length A of the gas insulated switchgear can be made equal to, for example, the unit height B or larger than the unit height B (see FIGS. 1 and 2).
  • the unit length A is the length of the gas insulated switchgear in the horizontal axis direction of the tank body of the circuit breaker 1.
  • FIG. 23 is a side view of a conventional gas-insulated switchgear
  • FIG. 24 is a view of the conventional gas-insulated switchgear from the bus side
  • FIG. 25 is a view of the conventional gas-insulated switchgear from the line side.
  • a conventional gas-insulated switchgear is connected to a so-called horizontal breaker 101 arranged with its axis horizontal, and one branch outlet provided on the upper side of one end of the breaker 101.
  • the bus-side instrument current transformer 102 arranged on the bus-side, the bus-side bushing 106 connected to the upper part of the instrument current transformer 102, and the other provided on the upper side of the other end of the circuit breaker 101.
  • the disconnector 112, the earthing switch 113 for grounding the breaker connected to the lower part of the disconnector 112, the connection tank 151 connected horizontally to the disconnector 112, and the lower part of the connection tank 151 Line side ground connection A switch 105, and a bushing 107 connected line-side to the top of the connecting tank 151.
  • this conventional gas-insulated switchgear includes an operating device 110 for the circuit breaker 101, an operating device 115 for the disconnect switch 112, an operating device 114 for the ground switch 113, and an operating device 109 for the ground switch 105.
  • Various devices such as the circuit breaker 101 constituting the conventional gas-insulated switchgear are mounted on the mount 130, and the mount 130 is mounted on the installation surface 40.
  • the instrument current transformer 102 and the bushing 106 are stacked on the circuit breaker 101, and the instrument current transformer 103 and the connection tank 150 are also stacked. That is, the current transformer 103 and the connection tank 150 are connected to the upper part of the circuit breaker 101 not only on the bus side but also on the line side, and thereby the disconnector 112 and the connection tank 151 connected to the connection tank 150. Is disposed above the circuit breaker 101. Therefore, in the conventional gas insulated switchgear, the device arrangement is increased as a whole, and the height of the center of gravity is higher than that of the present embodiment.
  • the instrument current transformer 103 is connected to the connection tank 150 via a flange.
  • the instrument current transformer 103 is connected between the tank and the connection tank 150. It is necessary to connect to an insulating material such as a horizontal spacer. This is because if a current induced by a conductor (not shown) arranged in these tanks flows between these tanks, it leads to an error in measuring the current flowing through the conductor by the current transformer 103 for the instrument. This is to ensure measurement accuracy by the instrumental current transformer 103 by insulatingly mounting the tank of the instrumental current transformer 103 and the connection tank 150.
  • the instrument current transformer 3 is connected horizontally to the circuit breaker 1, and the disconnector 4 with a ground switch is connected horizontally to the instrument current transformer 3. Therefore, it is possible to reduce the number of connection tanks, and it is not necessary to insulate the instrument current transformer 3 from the connection tank, and there is no need to provide a horizontal spacer.
  • FIG. 26 shows a part of the energization path in the gas insulated switchgear according to the present embodiment.
  • the bushing 6, the instrument current transformer 2, the circuit breaker 1, and the instrument current transformer are shown.
  • An approximately L-shaped energization path 45 is shown for the device 3.
  • a part of the energization path in the conventional gas-insulated switchgear is indicated by an arrow.
  • the bushing 106, the instrument current transformer 102, the circuit breaker 101, and the instrument current transformer 103 are shown. Is a schematic U-shaped energization path.
  • the circuit breaker 1 by making the circuit breaker 1 substantially L-shaped, it is possible to realize a low-layer arrangement of devices connected to the circuit breaker 1 and to improve earthquake resistance. it can. *
  • connection tank 150 there is no need to insulate the current transformer 103 and the connection tank 150 from each other unlike the conventional gas insulated switchgear. This eliminates the need for a connection tank, reduces the number of parts, simplifies the fastening structure, and reduces the number of horizontal spacers used. In addition, when a metal foreign substance mixes in the tank, there is a risk of creeping flashing in the horizontal spacer, so it is more preferable that the number of horizontal spacers used is small.
  • the disconnecting switch 4 with a grounding switch since the disconnecting switch 4 with a grounding switch is used, the number of operation devices installed is reduced as compared with the case where the grounding switch for grounding the breaker is configured separately.
  • the exterior is simplified.
  • the disconnect switch 4 with a ground switch can use the type whose movable part operates to the up-down direction (vertical operation
  • FIG. FIG. 7 is a side view of the gas-insulated switchgear according to the present embodiment
  • FIG. 8 is a view of the gas-insulated switchgear according to the present embodiment as viewed from the line side
  • FIG. FIG. 10 is a top view of the gas-insulated switchgear according to the present embodiment
  • FIG. 11 is a single-line connection diagram of the gas-insulated switchgear according to the present embodiment.
  • 12 is a diagram showing an internal configuration of the main device in FIG. 7 to 12, the same components as those in FIGS. 1 to 6 are denoted by the same reference numerals.
  • FIGS. 7 to 12 the description will mainly focus on differences from the first embodiment.
  • Schematic L-shaped circuit breaker 1 is the same as that of the first embodiment.
  • the bus-side current transformer 2 (first current transformer) is connected to the outlet 1a (first outlet) of the circuit breaker 1, and the line side is connected to the upper part of the current transformer 2
  • the bushing 6 (first bushing) is connected in the same manner as in the first embodiment.
  • connection structure of the line side equipment is different from that of the first embodiment, and the disconnecting switch 4 with a grounding switch is connected to the outlet 1b (second branch outlet) of the circuit breaker 1.
  • the line-side instrument current transformer 11 (second instrument current transformer) is connected to the upper part of the disconnecting switch 4 with a ground switch.
  • the disconnect switch 4 with the ground switch is disposed laterally with respect to the circuit breaker 1.
  • a line-side bushing 7 (second bushing) is connected immediately above the instrument current transformer 11.
  • the line-side grounding switch 5 is arranged at a height below the instrument current transformer 11.
  • the circuit breaker 1 is substantially L-shaped, and the disconnecting switch 4 with a grounding switch is connected to the outlet 1b drawn along the horizontal axis of the tank body of the circuit breaker 1.
  • the disconnecting switch 4 with the earthing switch is arranged side by side with respect to the circuit breaker 1, and the current transformer 11 for the instrument is arranged above the disconnecting switch 4 with the earthing switch.
  • the instrument current transformer 11 is arranged directly below the bushing 7. Since the bushing 7 includes an insulator that is an insulator, it is possible to suppress an induced current that may flow through the tank of the current transformer 11 for an instrument. As described in the first embodiment, in the conventional gas-insulated switchgear, in order to ensure the measurement accuracy of the instrument current transformer 103, a horizontal is provided between the tank of the instrument current transformer 103 and the connection tank 150. Although it is necessary to connect via an insulator such as a spacer, in this embodiment, since the bushing 7 serves as an insulator, there is no need to separately provide an insulator such as a connection tank and a horizontal spacer. This eliminates the need for a connection tank, reduces the number of parts, simplifies the fastening structure, and reduces the number of horizontal spacers used.
  • the instrument current transformer 3 since the instrument current transformer 3 is connected adjacent to the circuit breaker 1, a combination of the current transformer 2 with the instrument current transformer 2 causes a flashing accident or the like in the circuit breaker 1. Can occur, it can be specified that it has actually occurred in the circuit breaker 1.
  • the circuit breaker 1 and the disconnecting switch 4 with a ground switch are also arranged between the current transformer 11 and the current transformer 2, an accident occurs. Although it is difficult to determine whether the generation position is in the circuit breaker 1 using the measured values of the current transformers 11 and 2, the low-layer arrangement of the equipment and simplification of the insulation mounting, etc. Has the effect described. Other configurations and operational effects of the present embodiment are the same as those of the first embodiment.
  • FIG. 13 is a side view of the gas-insulated switchgear according to the present embodiment
  • FIG. 14 is a view of the gas-insulated switchgear according to the present embodiment as viewed from the line side
  • FIG. FIG. 16 is a top view of the gas insulated switchgear according to the present embodiment
  • FIG. 17 is a single line connection diagram of the gas insulated switchgear according to the present embodiment. It is.
  • FIGS. 13 to 17 the same components as those in FIGS. 1 to 5 are denoted by the same reference numerals. In the following, with reference to FIGS. 13 to 17, the description will mainly focus on differences from the first embodiment.
  • the disconnecting switch 4 with the ground switch is connected to the current transformer 3 for the measuring instrument at substantially the same height.
  • the disconnector 12 is connected to the instrument current transformer 3 at substantially the same height, and the disconnector 12 is connected to a ground switch 13 for grounding the breaker. That is, in this embodiment, the ground switch 13 is configured separately from the disconnect switch 12. Therefore, an operating device 14 for the disconnect switch 12 is provided, and an operating device 15 for the ground switch 13 is also provided.
  • FIG. 18 is a side view of the gas-insulated switchgear according to the present embodiment
  • FIG. 19 is a view of the gas-insulated switchgear according to the present embodiment as viewed from the line side
  • FIG. 20 is a diagram of the present embodiment
  • FIG. 21 is a top view of the gas insulated switchgear according to the present embodiment
  • FIG. 22 is a single line connection diagram of the gas insulated switchgear according to the present embodiment. It is. 18 to 22, the same components as those in FIGS. 7 to 11 are denoted by the same reference numerals. Hereinafter, with reference to FIGS. 18 to 22, the description will mainly focus on the differences from the second embodiment.
  • the disconnecting switch 4 with the ground switch is connected to the circuit breaker 1 at substantially the same height.
  • a disconnect switch 12 is connected to the circuit breaker 1 at substantially the same height, and a ground switch 13 for grounding the circuit breaker is connected to the disconnect switch 12. That is, in this embodiment, the ground switch 13 is configured separately from the disconnect switch 12. Therefore, an operating device 14 for the disconnect switch 12 is provided, and an operating device 15 for the ground switch 13 is also provided.
  • the above-described substantially L-shaped circuit breaker 1 is provided, and the bus side device group is connected to the outlet 1a, and the line side device group is connected to the outlet 1b.
  • the bus side device group is connected to the outlet 1a
  • the line side device group is connected to the outlet 1b.
  • the present invention is useful as a gas insulated switchgear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

 軸線を水平にして配置された筒状の遮断器タンク本体の一端部の側面上部にて上方に引き出された引出口1aが設けられると共に前記タンク本体の他端部にて軸線方向に沿って水平に引き出された引出口1bが設けられた遮断器タンクの内部に遮断部が配置されて通電経路が概略L形を成す遮断器1と、引出口1aを介して遮断器1と接続された母線側機器群と、引出口1bを介して遮断器1と接続された線路側機器群とを備えたガス絶縁開閉装置を提供する。これにより、遮断器1に接続される機器の低層化を図り、耐震性を向上させることができる。

Description

ガス絶縁開閉装置
 この発明は、ガス絶縁開閉装置に関するものである。
 従来のガス絶縁開閉装置では、水平配置されたいわゆる横形の遮断器の上部に設けられた二つの分岐引出口にそれぞれ計器用変流器等の機器を積層配置する構成のものが知られている。
 例えば特許文献1では、横形の遮断器の上部に二つの分岐引出口が設けられ、それぞれの分岐引出口には断路器、接地開閉器、計器用変流器、及びブッシングが積層配置されている。
実開平4-33237号公報
 しかしながら、上記従来のガス絶縁開閉装置では、遮断器の上部に機器が集積配置されるので、重心の高さが全体として高くなり、耐震性が低下するという問題があった。
 この発明は、上記に鑑みてなされたものであって、遮断器に接続される機器の低層化を図り、耐震性を向上させることが可能なガス絶縁開閉装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るガス絶縁開閉装置は、軸線を水平にして配置された筒状の遮断器タンク本体の一端部の側面上部にて上方に引き出された第1の引出口が設けられると共に前記タンク本体の他端部にて軸線方向に沿って水平に引き出された第2の引出口が設けられた遮断器タンクの内部に遮断部が配置されて通電経路が概略L形を成す遮断器と、前記第1の引出口を介して前記遮断器と接続された母線側機器群と、前記第2の引出口を介して前記遮断器と接続された線路側機器群と、を備えることを特徴とする。
 本発明によれば、遮断器に接続される機器の低層化を図り、耐震性を向上させことができる、という効果を奏する。
図1は、実施の形態1に係るガス絶縁開閉装置の側面図である。 図2は、実施の形態1に係るガス絶縁開閉装置を線路側からみたときの図である。 図3は、実施の形態1に係るガス絶縁開閉装置を母線側からみたときの図である。 図4は、実施の形態1に係るガス絶縁開閉装置の上面図である。 図5は、実施の形態1に係るガス絶縁開閉装置の単線結線図である。 図6は、図1における主要機器の内部構成を示した図である。 図7は、実施の形態2に係るガス絶縁開閉装置の側面図である。 図8は、実施の形態2に係るガス絶縁開閉装置を線路側からみたときの図である。 図9は、実施の形態2に係るガス絶縁開閉装置を母線側からみたときの図である。 図10は、実施の形態2に係るガス絶縁開閉装置の上面図である。 図11は、実施の形態2に係るガス絶縁開閉装置の単線結線図である。 図12は、図7における主要機器の内部構成を示した図である。 図13は、実施の形態3に係るガス絶縁開閉装置の側面図である。 図14は、実施の形態3に係るガス絶縁開閉装置を線路側からみたときの図である。 図15は、実施の形態3に係るガス絶縁開閉装置を母線側からみたときの図である。 図16は、実施の形態3に係るガス絶縁開閉装置の上面図である。 図17は、実施の形態3に係るガス絶縁開閉装置の単線結線図である。 図18は、実施の形態4に係るガス絶縁開閉装置の側面図である。 図19は、実施の形態4に係るガス絶縁開閉装置を線路側からみたときの図である。 図20は、実施の形態4に係るガス絶縁開閉装置を母線側からみたときの図である。 図21は、実施の形態4に係るガス絶縁開閉装置の上面図である。 図22は、実施の形態4に係るガス絶縁開閉装置の単線結線図である。 図23は、従来のガス絶縁開閉装置の側面図である。 図24は、従来のガス絶縁開閉装置を母線側からみたときの図である。 図25は、従来のガス絶縁開閉装置を線路側からみたときの図である。 図26は、実施の形態1に係るガス絶縁開閉装置における通電経路の一部を示した図である。 図27は、従来のガス絶縁開閉装置における通電経路の一部を示した図である。
 以下に、本発明に係るガス絶縁開閉装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本実施の形態に係るガス絶縁開閉装置の側面図、図2は、本実施の形態に係るガス絶縁開閉装置を線路側からみたときの図、図3は、本実施の形態に係るガス絶縁開閉装置を母線側からみたときの図、図4は、本実施の形態に係るガス絶縁開閉装置の上面図、図5は、本実施の形態に係るガス絶縁開閉装置の単線結線図、図6は、図1における主要機器の内部構成を示した図である。以下、図1~図6を参照して、本実施の形態に係るガス絶縁開閉装置の構成について説明する。
 本実施の形態に係るガス絶縁開閉装置は、遮断器1と、この遮断器1に接続された母線側のブッシング6と、遮断器1とブッシング6との間に配置された母線側の計器用変流器2と、遮断器1に接続された接地開閉器付の断路器4と、遮断器1と接地開閉器付の断路器4との間に配置された線路側の計器用変流器3と、接地開閉器付の断路器4と接続された線路側のブッシング7と、接地開閉器付の断路器4とブッシング7との間に接続された線路側接地用の接地開閉器5とを備えている。さらに、このガス絶縁開閉装置は、遮断器1の操作装置10、接地開閉器付の断路器4の操作装置8、及び接地開閉器5の操作装置9を備えており、ガス絶縁開閉装置を構成する遮断器1等の各種機器は架台30上に搭載され、架台30は設置面40上に載置されている。
 なお、図示例のように、本実施の形態のガス絶縁開閉装置は例えば3相分離形であり、例えば遮断器1等の機器は各相について存在する。以下では、各相を区別することなく三相について共通の符号を付して説明する。また、図1では、ブッシング6及び計器用変流器2並びにブッシング7及び接地開閉器5等については、正確には手前側に傾斜した態様で図示すべきであるが(図2~図4参照)、簡単のためそのような記載を省略している(後述の図7、図13、図18等についても同様)。
 遮断器1は、概略L形の形状を有する。遮断器1のタンク(遮断器タンク)は、その軸線を水平にして配置され水平方向に延伸する円筒状のタンク本体と、このタンク本体の一端部の側面上部にて上方に引き出された引出口1a(第1の引出口)と、タンク本体の他端部にてタンク本体と同軸的に軸線方向に沿って水平に引き出された引出口1b(第2の引出口)とを有している。上記L形の形状との対応では、引出口1aがL形の一辺を構成し、タンク本体部分のうち引出口1a,1b間の部分および引出口1bがL形の他辺を構成する。遮断器1の内部には、遮断部1cが設けられている。遮断部1cには、引出口1aを通って上下に延伸する導体35aが接続されるとともに、引出口1bを通って水平に延伸する導体35bが接続されている(図6)。導体35a、遮断部1c、導体35bは遮断器1内の通電経路を構成し、この通電経路も概略L形となっている。つまり、遮断器1は、遮断部1cを含む通電経路が概略L形であることから、これに応じてそのタンク形状も上記のように概略L形となっている。遮断器1内には、例えば六フッ化硫黄ガス等の絶縁ガスが封入されている。操作装置10は例えば引出口1aが設けられた側に配置されている。操作装置10は、遮断器1のタンク本体の軸線よりも下の部分が上の部分よりも大きく、その重心は当該軸線よりも下に位置している。操作装置10は、遮断部1cの開閉操作に用いられる。
 遮断器1の引出口1aには母線側の計器用変流器2(第1の計器用変流器)が接続されている。すなわち、計器用変流器2は遮断器1の上部に配置されている。計器用変流器2は、導体35aを周回する環状のコイルを備えて構成され、導体35aを通流する電流を計測する。計器用変流器2の上部には母線側のブッシング6(第1のブッシング)が接続されて計器用変流器2の上部に配置されている。ブッシング6は図示しない主母線に接続される。計器用変流器2及びブッシング6は母線側機器群を構成する。
 なお、図1では、計器用変流器2、引出口1a、及び遮断器1について、L形の通電経路45をこれらに重ねて示している。
 遮断器1の引出口1bには線路側の計器用変流器3(第2の計器用変流器)が接続されている。すなわち、計器用変流器3は、遮断器1のタンク本体と略同じ高さで遮断器1に水平に接続され、遮断器1に横置に配置されている。計器用変流器3は、導体35bを周回する環状のコイルを備えて構成され、導体35bを通流する電流を計測する。また、計器用変流器3には、遮断器1が接続された側と反対側に接地開閉器付の断路器4が接続されている。すなわち、接地開閉器付の断路器4は、計器用変流器3に対して横置されている。
 接地開閉器付の断路器4は、遮断器接地用の接地開閉器と断路器本体とが一体的に構成されたものである。接地開閉器付の断路器4は、一台の操作装置8で、遮断器接地用の接地開閉器および断路器本体の二つの機器の操作を可能とする。これらの二つの機器が別体で構成されている場合は、それぞれを操作するための操作装置が必要となるのに対し、本実施の形態では操作装置の設置台数を一台削減することができる。接地開閉器付の断路器4では、操作装置8の操作により、断路器本体の入切、遮断器接地用の接地開閉器の入切を行うことができる。なお、断路器本体の入切および遮断器接地用の接地開閉器の入切は、例えば上下(縦)方向に動作する可動接触子を動作させることで実現することができる。
 接地開閉器付の断路器4の上部には線路側のブッシング7(第2のブッシング)が接続され配置されている。ブッシング7は、図示しない送電線に接続される。また、接地開閉器付の断路器4とブッシング7との間の高さ位置には、線路側接地用の接地開閉器5が配置されている。接地開閉器5は、送電線(図示せず)の接地に利用される。計器用変流器3、接地開閉器付の断路器4、接地開閉器5及びブッシング7は線路側機器群を構成する。
 このように、本実施の形態では、遮断器1を概略L形とし、遮断器1のタンク本体の水平な軸線に沿って引き出された引出口1bに計器用変流器3および接地開閉器付の断路器4を順次接続し、これらを遮断器1に対して横置で配置する構成とすることにより、機器の配置を低層化している。
 また、機器の低層配置に応じて、ガス絶縁開閉装置のユニット長Aを例えばユニット高さBに等しくし、あるいはユニット高さB以上とすることができる(図1及び図2参照)。ここで、ユニット長Aは、遮断器1のタンク本体の水平な軸線方向におけるガス絶縁開閉装置の長さである。
 次に、本実施の形態の構成と対比するため、従来のガス絶縁開閉装置の構成例について説明する。図23は、従来のガス絶縁開閉装置の側面図、図24は、従来のガス絶縁開閉装置を母線側からみたときの図、図25は、従来のガス絶縁開閉装置を線路側からみたときの図である。
 従来のガス絶縁開閉装置は、軸線を水平にして配置されたいわゆる横形の遮断器101と、遮断器101の一端部の側面上部に設けられた一方の分岐引出口に接続され遮断器1の上部に配置された母線側の計器用変流器102と、計器用変流器102の上部に接続された母線側のブッシング106と、遮断器101の他端部の側面上部に設けられた他方の分岐引出口に接続され遮断器1の上部に配置された線路側の計器用変流器103と、計器用変流器103の上部に接続された接続タンク150と、接続タンク150に水平に接続された断路器112と、断路器112の下部に接続された遮断器接地用の接地開閉器113と、断路器112に水平に接続された接続タンク151と、接続タンク151の下部に接続された線路側接地用の接地開閉器105と、接続タンク151の上部に接続された線路側のブッシング107とを備えている。さらに、この従来のガス絶縁開閉装置は、遮断器101の操作装置110、断路器112の操作装置115、接地開閉器113の操作装置114及び接地開閉器105の操作装置109を備えている。従来のガス絶縁開閉装置を構成する遮断器101等の各種機器は架台130上に搭載され、架台130は設置面40上に載置されている。
 この従来のガス絶縁開閉装置では、遮断器101の上部に計器用変流器102及びブッシング106が積層配置されるとともに計器用変流器103および接続タンク150も積層配置されている。すなわち、母線側のみならず、線路側においても、遮断器101の上部に計器用変流器103および接続タンク150が接続され、これにより接続タンク150に接続された断路器112および接続タンク151等が遮断器101よりも上方に配置されている。そのため、従来のガス絶縁開閉装置では、機器配置が全体として高層化され、本実施の形態に比べて重心の高さが高くなる。
 また、この従来のガス絶縁開閉装置では、計器用変流器103は、接続タンク150にフランジを介して接続されるが、この場合、計器用変流器103のタンクと接続タンク150との間に水平スペーサ等の絶縁物を介して接続する必要がある。これは、これらのタンク内に配置された導体(図示せず)により誘導された電流がこれらのタンク間にわたって流れると、計器用変流器103による導体の通流電流の計測誤差につながることから、計器用変流器103のタンクと接続タンク150とを絶縁取付することにより、計器用変流器103による計測精度を確保するためである。
 これに対し、本実施の形態では、計器用変流器3は遮断器1に水平に接続され、さらに計器用変流器3には接地開閉器付の断路器4が水平に接続されているので、接続タンクを削減することができるとともに、計器用変流器3と接続タンクとの絶縁取付も不要となり、水平スペーサも設ける必要がない。
 なお、図26では、本実施の形態に係るガス絶縁開閉装置における通電経路の一部を示しており、詳細には、ブッシング6、計器用変流器2、遮断器1、及び計器用変流器3について、概略L形の通電経路45を示している。他方、図27では、従来のガス絶縁開閉装置における通電経路の一部を矢印で示しており、詳細には、ブッシング106、計器用変流器102、遮断器101、及び計器用変流器103について、概略U形の通電経路を示している。
 以上説明したように、本実施の形態によれば、遮断器1を概略L形とすることにより、遮断器1に接続される機器の配置の低層化が実現され、耐震性を向上させことができる。   
 また、本実施の形態では、従来のガス絶縁開閉装置のように計器用変流器103と接続タンク150とを絶縁取付する必要がない。これにより、接続タンクが不要となって部品点数が削減され、締結構造が簡素化され、水平スペーサの使用個数が削減されるといった効果がある。なお、タンク内に金属異物が混入した場合、水平スペーサにて沿面閃絡発生のおそれもあるので、水平スペーサの使用個数は少ないほうがより好ましい。
 また、本実施の形態では、接地開閉器付の断路器4を用いているので、遮断器接地用の接地開閉器を別体で構成する場合に比べて、操作装置の設置台数が削減され、外装が簡素化される。なお、接地開閉器付の断路器4は、例えばその可動部が上下方向に動作する(縦動作)タイプのものを使用することができる。
実施の形態2.
 図7は、本実施の形態に係るガス絶縁開閉装置の側面図、図8は、本実施の形態に係るガス絶縁開閉装置を線路側からみたときの図、図9は、本実施の形態に係るガス絶縁開閉装置を母線側からみたときの図、図10は、本実施の形態に係るガス絶縁開閉装置の上面図、図11は、本実施の形態に係るガス絶縁開閉装置の単線結線図、図12は、図7における主要機器の内部構成を示した図である。なお、図7~図12では、図1~図6と同一の構成要素には同一の符号を付している。以下では、図7~図12を参照して、主に実施の形態1との相違点を中心に説明する。
 概略L形の遮断器1については実施の形態1と同様である。遮断器1の引出口1a(第1の引出口)に母線側の計器用変流器2(第1の計器用変流器)が接続され、この計器用変流器2の上部に線路側のブッシング6(第1のブッシング)が接続されている点も実施の形態1と同様である。
 一方、本実施の形態では、線路側機器の接続構造は実施の形態1と異なり、遮断器1の引出口1b(第2の分岐引出口)には接地開閉器付の断路器4が接続され、この接地開閉器付の断路器4の上部に線路側の計器用変流器11(第2の計器用変流器)が接続されている。このように、接地開閉器付の断路器4は遮断器1に対して横置に配置されている。さらに、計器用変流器11の直上に線路側のブッシング7(第2のブッシング)が接続されている。線路側接地用の接地開閉器5は、計器用変流器11より下の高さ位置に配置されている。
 このように、本実施の形態では、遮断器1を概略L形とし、遮断器1のタンク本体の水平な軸線に沿って引き出された引出口1bに接地開閉器付の断路器4を接続し、接地開閉器付の断路器4を遮断器1に対して横置で配置する構成とし、接地開閉器付の断路器4の上部に計器用変流器11を配置している。これにより、図23~図25に示す従来のガス絶縁開閉装置の構成と比較して、遮断器1に接続される機器の配置の低層化が実現され、耐震性を向上させることができる。
 また、本実施の形態では、計器用変流器11がブッシング7の直下に配置されている。ブッシング7は、絶縁物である碍子を備えて構成されているので、計器用変流器11のタンクに流れる可能性のある誘導電流を抑制することが可能となる。実施の形態1で説明したように、従来のガス絶縁開閉装置では、計器用変流器103の計測精度を確保するために、計器用変流器103のタンクと接続タンク150との間に水平スペーサ等の絶縁物を介して接続する必要があるが、本実施の形態では、ブッシング7が絶縁物の役割を果たすので、別途接続タンク及び水平スペーサ等の絶縁物を設ける必要がない。これにより、接続タンクが不要となって部品点数が削減され、締結構造が簡素化され、水平スペーサの使用個数が削減される。
 なお、実施の形態1では、計器用変流器3は遮断器1に隣接して接続されているので、計器用変流器2との組合せにより、遮断器1内で万が一の閃絡事故等が発生した場合に、それが実際に遮断器1内で発生したことを特定することができる。これに対して、本実施の形態では、計器用変流器11と計器用変流器2との間に遮断器1の他、接地開閉器付の断路器4も配置されているので、事故発生位置が遮断器1内であるかどうかの判定を計器用変流器11,2の計測値を用いて行うことは困難となるものの、機器の低層配置及び絶縁取付の簡素化等、上記で説明した効果を有している。本実施の形態のその他の構成および作用効果は実施の形態1と同様である。
実施の形態3.
 図13は、本実施の形態に係るガス絶縁開閉装置の側面図、図14は、本実施の形態に係るガス絶縁開閉装置を線路側からみたときの図、図15は、本実施の形態に係るガス絶縁開閉装置を母線側からみたときの図、図16は、本実施の形態に係るガス絶縁開閉装置の上面図、図17は、本実施の形態に係るガス絶縁開閉装置の単線結線図である。なお、図13~図17では、図1~図5と同一の構成要素には同一の符号を付している。以下では、図13~図17を参照して、主に実施の形態1との相違点を中心に説明する。
 実施の形態1では、計器用変流器3に略同じ高さで接地開閉器付の断路器4が接続されていた。本実施の形態では、計器用変流器3に略同じ高さで断路器12が接続され、この断路器12には遮断器接地用の接地開閉器13が接続されている。つまり、本実施の形態では、接地開閉器13は、断路器12と別体で構成されている。そのため、断路器12の操作装置14が設けられると共に、接地開閉器13の操作装置15も設けられている。
 本実施の形態は、断路器12と接地開閉器13が個別に設けられ、これに応じて操作装置14と操作装置15が個別に設けられていることを除けば、その他の構成および作用効果は、実施の形態1と同様である。
実施の形態4.
 図18は、本実施の形態に係るガス絶縁開閉装置の側面図、図19は、本実施の形態に係るガス絶縁開閉装置を線路側からみたときの図、図20は、本実施の形態に係るガス絶縁開閉装置を母線側からみたときの図、図21は、本実施の形態に係るガス絶縁開閉装置の上面図、図22は、本実施の形態に係るガス絶縁開閉装置の単線結線図である。なお、図18~図22では、図7~図11と同一の構成要素には同一の符号を付している。以下では、図18~図22を参照して、主に実施の形態2との相違点を中心に説明する。
 実施の形態2では、遮断器1に略同じ高さで接地開閉器付の断路器4が接続されていた。本実施の形態では、遮断器1に略同じ高さで断路器12が接続され、この断路器12には遮断器接地用の接地開閉器13が接続されている。つまり、本実施の形態では、接地開閉器13は、断路器12と別体で構成されている。そのため、断路器12の操作装置14が設けられると共に、接地開閉器13の操作装置15も設けられている。
 本実施の形態は、断路器12と接地開閉器13が個別に設けられ、これに応じて操作装置14と操作装置15が個別に設けられていることを除けば、その他の構成および作用効果は、実施の形態2と同様である。
 なお、実施の形態1~4に限らず、一般に、上記の概略L形の遮断器1を設け、引出口1aに母線側機器群を接続するとともに、引出口1bには線路側機器群を接続する構成とすることにより、少なくとも引出口1bに直接される機器は遮断器1と略同じ高さに配置されることとなるので、上記従来のガス絶縁開閉装置と比較した場合には、機器の配置の低層化が実現され、耐震性を向上させことができる。
 以上のように、本発明は、ガス絶縁開閉装置として有用である。
1,101 遮断器
1a,1b 引出口
1c 遮断部
2,3,11,102,103 計器用変流器
4 接地開閉器付の断路器
5,13,105,113 接地開閉器
6,7,106,107 ブッシング
8,9,10,14,15,109,110,114,115 操作装置
12,112 断路器
30,130 架台
35a,35b 導体
40 設置面
45 通電経路
150,151 接続タンク

Claims (5)

  1.  軸線を水平にして配置された筒状の遮断器タンク本体の一端部の側面上部にて上方に引き出された第1の引出口が設けられると共に前記タンク本体の他端部にて軸線方向に沿って水平に引き出された第2の引出口が設けられた遮断器タンクの内部に遮断部が配置されて通電経路が概略L形を成す遮断器と、
     前記第1の引出口を介して前記遮断器と接続された母線側機器群と、
     前記第2の引出口を介して前記遮断器と接続された線路側機器群と、
     を備えることを特徴とするガス絶縁開閉装置。
  2.  前記母線側機器群には、前記第1の引出口に接続され前記遮断器の上部に配置された第1の計器用変流器と、この第1の計器用変流器に接続され当該第1の計器用変流器の上部に配置された第1のブッシングとが含まれ、
     前記線路側機器群には、前記第2の引出口に接続され前記遮断器に対して横置に配置された第2の計器用変流器と、この第2の計器用変流器に接続され当該第2の計器用変流器に対して横置に配置された断路器と、この断路器に接続され当該断路器の上部に配置された第2のブッシングとが含まれることを特徴とする請求項1に記載のガス絶縁開閉装置。
  3.  前記母線側機器群には、前記第1の引出口に接続され前記遮断器の上部に配置された第1の計器用変流器と、この第1の計器用変流器に接続され当該第1の計器用変流器の上部に配置された第1のブッシングとが含まれ、
     前記線路側機器群には、前記第2の引出口に接続され前記遮断器に対して横置に配置された断路器と、この断路器に接続され当該断路器の上部に配置された第2の計器用変流器と、この第2の計器用変流器に接続され当該計器用変流器の直上に配置された第2のブッシングとが含まれることを特徴とする請求項1に記載のガス絶縁開閉装置。
  4.  前記軸線方向における前記ガス絶縁開閉装置の長さは前記ガス絶縁開閉装置の高さ以上であることを特徴とする請求項2又は3に記載のガス絶縁開閉装置。
  5.  前記線路側機器群には、遮断器接地用の接地開閉器と、前記第2のブッシングに接続される送電線接地用の接地開閉器とが含まれ、
     前記断路器は、断路器本体と前記遮断器接地用の接地開閉器とが一体的に構成されたものであることを特徴とする請求項2又は3に記載のガス絶縁開閉装置。
PCT/JP2012/064891 2012-06-11 2012-06-11 ガス絶縁開閉装置 WO2013186830A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/064891 WO2013186830A1 (ja) 2012-06-11 2012-06-11 ガス絶縁開閉装置
JP2012556330A JP5220246B1 (ja) 2012-06-11 2012-06-11 ガス絶縁開閉装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064891 WO2013186830A1 (ja) 2012-06-11 2012-06-11 ガス絶縁開閉装置

Publications (1)

Publication Number Publication Date
WO2013186830A1 true WO2013186830A1 (ja) 2013-12-19

Family

ID=48778739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064891 WO2013186830A1 (ja) 2012-06-11 2012-06-11 ガス絶縁開閉装置

Country Status (2)

Country Link
JP (1) JP5220246B1 (ja)
WO (1) WO2013186830A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5546697B1 (ja) * 2013-08-22 2014-07-09 三菱電機株式会社 ガス絶縁開閉装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271650A (en) * 1975-12-11 1977-06-15 Toshiba Corp Gas-insulated switcher
JPS5798105U (ja) * 1980-12-05 1982-06-16

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625314A (en) * 1979-08-06 1981-03-11 Mitsubishi Electric Corp Composite switch unit
JPS61135437U (ja) * 1985-02-13 1986-08-23
JPH02138828U (ja) * 1989-04-25 1990-11-20
JPH03293910A (ja) * 1990-04-11 1991-12-25 Nissin Electric Co Ltd ガス絶縁開閉装置
JPH05101748A (ja) * 1991-10-08 1993-04-23 Toshiba Corp ガス遮断器
JPH1196862A (ja) * 1997-09-24 1999-04-09 Mitsubishi Electric Corp 相分離の3相一括操作形ガス遮断器
JP2000067713A (ja) * 1998-08-20 2000-03-03 Meidensha Corp 開閉装置
JP2002051415A (ja) * 2000-08-02 2002-02-15 Toshiba Corp 複合形ガス絶縁開閉装置
JP2002315120A (ja) * 2001-02-07 2002-10-25 Hitachi Ltd ガス絶縁開閉装置
JP2003009318A (ja) * 2001-06-19 2003-01-10 Hitachi Ltd 遮断器及びその分解輸送方法
JP4818972B2 (ja) * 2007-03-29 2011-11-16 三菱電機株式会社 ガス遮断器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5271650A (en) * 1975-12-11 1977-06-15 Toshiba Corp Gas-insulated switcher
JPS5798105U (ja) * 1980-12-05 1982-06-16

Also Published As

Publication number Publication date
JPWO2013186830A1 (ja) 2016-02-01
JP5220246B1 (ja) 2013-06-26

Similar Documents

Publication Publication Date Title
US6759616B2 (en) Gas insulated switchgear
JP4512648B2 (ja) スイッチギヤ
JP4969657B2 (ja) ガス絶縁開閉装置
WO2000025401A1 (fr) Appareillage de commutation avec gaz isolant
KR101109065B1 (ko) 가스절연개폐장치
JP4058907B2 (ja) ガス絶縁開閉装置
KR101489939B1 (ko) 가스절연 개폐장치
KR20130017612A (ko) 가스절연 개폐장치
JP5220246B1 (ja) ガス絶縁開閉装置
US9077161B2 (en) Integral current transforming electric circuit interrupter
JP5114319B2 (ja) ガス絶縁開閉装置
JP2002315120A (ja) ガス絶縁開閉装置
JP5269273B1 (ja) ガス絶縁開閉装置
KR101231766B1 (ko) 가스절연 개폐장치
KR101231765B1 (ko) 가스절연 개폐장치
JP2000050437A (ja) ガス絶縁開閉装置
KR200271011Y1 (ko) 가스절연 개폐장치의 각 유니트 일체화 구조
JP4966163B2 (ja) ガス絶縁開閉装置
KR20130107523A (ko) 부싱 지지용 탱크
JP4397671B2 (ja) ガス絶縁開閉装置
JP4346172B2 (ja) ガス絶縁開閉装置
CN105244795A (zh) 负荷开关-熔断器组合电器单相模块
JP4842629B2 (ja) ガス絶縁装置
JP2004266969A (ja) ガス絶縁開閉装置
JP2017005838A (ja) ガス絶縁開閉装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012556330

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878822

Country of ref document: EP

Kind code of ref document: A1