WO2013183777A1 - ヒトes細胞用培養容器 - Google Patents

ヒトes細胞用培養容器 Download PDF

Info

Publication number
WO2013183777A1
WO2013183777A1 PCT/JP2013/065891 JP2013065891W WO2013183777A1 WO 2013183777 A1 WO2013183777 A1 WO 2013183777A1 JP 2013065891 W JP2013065891 W JP 2013065891W WO 2013183777 A1 WO2013183777 A1 WO 2013183777A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
culture
well
culture vessel
human
Prior art date
Application number
PCT/JP2013/065891
Other languages
English (en)
French (fr)
Inventor
笹井芳樹
六車恵子
塚田亮平
田中速雄
Original Assignee
独立行政法人理化学研究所
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所, 住友ベークライト株式会社 filed Critical 独立行政法人理化学研究所
Priority to EP13801374.3A priority Critical patent/EP2860239B1/en
Priority to US14/406,370 priority patent/US10487310B2/en
Priority to JP2014520076A priority patent/JPWO2013183777A1/ja
Publication of WO2013183777A1 publication Critical patent/WO2013183777A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/06Bioreactors or fermenters specially adapted for specific uses for in vitro fertilization
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/06Plates; Walls; Drawers; Multilayer plates

Definitions

  • the present disclosure relates to a method for culturing a culture vessel for human ES cells.
  • Embryonic stem cells have multipotency to differentiate into various tissue cells. For this reason, various studies have been conducted for application in the field of so-called regenerative medicine, in which cells lost due to illness or accidents are repaired and tissues are repaired (for example, Patent Document 1).
  • ES cells have a variety that can be differentiated into various cells. It involves the interrelationship between cells, one of which is the formation of a cell mass called an embryonic body (EB).
  • EB embryonic body
  • This cell mass is formed by suspension culture of ES cells, iPS cells, and the like, and when cultured for about 2 weeks in a state where the cell mass is formed, differentiation into various cell types is observed. For this reason, embryoid bodies are used as one of the general methods for examining the pluripotency of cells.
  • the hanging drop culture is a method of culturing cells in a culture solution suspended in a water droplet shape.
  • this method has problems such as a low success rate of embryoid body formation, inability to observe with a microscope, and complicated operation.
  • a culture container in which a water-insoluble cured film obtained by curing a water-soluble resin film on the inner surface of the container has been proposed (for example, Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-99662
  • Patent Document 2 Japanese Patent Laid-Open No. 2008-178367
  • mouse ES cells are often used in ES cell research. From the perspective of clinical application, research and development using human ES cells is required, but human ES cells are more susceptible to cell death than mouse ES cells, and it is difficult to obtain embryoid bodies. There is. Therefore, there is a need for a culture vessel that can form embryoid bodies more efficiently from human ES cells.
  • the present disclosure provides a culture container capable of efficiently forming an embryoid body from human ES cells.
  • the present disclosure relates to a container for culturing human ES cells in one or a plurality of embodiments.
  • the human ES cell culture vessel has two or more wells.
  • the well has a cylindrical body and a funnel-shaped bottom provided at one end of the body, the center of the bottom is a concave curved surface, and the opening angle of the bottom is 60 to 100 degrees.
  • the culture container according to the present disclosure can efficiently form embryoid bodies from human ES cells.
  • FIG. 1 is a cross-sectional view of a well in a culture container according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view of the culture vessel in the first embodiment.
  • FIG. 3 is a photomicrograph of the shape of cell aggregates during human ES cell culture in Example 1.
  • FIG. 4 is a photomicrograph of the shape of cell aggregates during human ES cell culture in Comparative Example 1.
  • the shape of the well bottom is formed into a funnel shape having an opening angle of 60 to 100 degrees, and the central portion thereof has a concave round shape, whereby an embryoid body can be efficiently obtained from human ES cells. Based on the knowledge that it can be formed.
  • the culture container according to the present disclosure is suitable for culturing human ES cells, and the reason why an embryoid body can be efficiently formed from human ES cells by using the culture container according to the present disclosure is not necessarily clear, but is as follows. Is estimated. Since the bottom of the well has an inclined surface with an opening angle of 60 to 100 degrees, when the cells in a single cell dispersed state are dispensed into the well, the area of the cell assembly observed from the top is reduced. It is considered that the cell density at the end of the gathering part is high, which makes it easy to form a single cell aggregate. In addition, it is considered that the central portion of the well bottom is a concave curved surface, so that cells near the bottom of the well are easily incorporated into the aggregate and a single cell aggregate is easily formed. However, the present disclosure is not limited to these mechanisms.
  • a container for culturing human embryonic stem cells (human ES cells), Have two or more wells, The well has a cylindrical barrel, and a funnel-shaped bottom provided at one end of the barrel, The center of the bottom is a concave curved surface, A culture vessel for human ES cells, wherein the opening angle of the bottom is 60 to 100 degrees; [2] The culture vessel according to [1], wherein a radius of curvature of the inner surface of the central portion of the bottom is 0.5 to 1.5 mm; [3] The inner surface of at least the bottom of the well is formed with a coating layer formed using a water-soluble resin represented by the following formula (Ia) or (Ib): [1] or [2] The described culture vessel, (In the formula (Ia), R represents an alkyl group having a carbonyl and an amine, r1 represents 1 to 1000, r2 represents 40 to 4995, r3 represents 0 to 4000,
  • the cross-sectional shape passing through the center line of the body portion is such that the body portion is rectangular, the bottom portion is substantially V-shaped, and the center portion of the bottom portion is arcuate.
  • the culture vessel according to any one of [5]; [7] The culture container according to any one of [1] to [6], which is a 96-well plate; [8] A method of culturing human embryonic stem cells using a culture vessel,
  • the culture vessel has two or more wells;
  • the well has a cylindrical body and a funnel-shaped bottom provided at one end of the body, The center of the bottom is a concave curved surface, A culture method in which the opening angle of the bottom is 60 to 100 degrees;
  • the present disclosure relates to a container for culturing human ES cells.
  • the human ES cell culture vessel has two or more wells. According to the culture container concerning this indication, an embryoid body can be efficiently formed from a human ES cell. Further, the culture container according to the present disclosure is suitable for culturing human ES cells among ES cells because it can efficiently form embryoid bodies. For example, it is suitable for culturing human ES cells compared to mouse ES cells. ing.
  • the well has a cylindrical body part and a funnel-shaped bottom part provided at one end of the body part, and the center part of the bottom part is a curved surface. That is, the bottom portion can be said to be an inverted conical shape having a partially spherical vertex.
  • the body portion may be substantially cylindrical.
  • the cross-sectional shape passing through the center line of the well is a substantially V shape in which the body is rectangular and the bottom is arc-shaped in the center.
  • the connecting portion between the body portion and the bottom portion is preferably a curved surface.
  • the well includes a side wall surface in which the side wall inner surface is substantially parallel, an inclined surface in which the side wall inner surface formed at one end of the side wall surface is reduced in diameter toward the bottom surface, and one end of the inclined surface.
  • the shape which has the partial spherical center part formed in this may be sufficient.
  • the opening angle of the bottom is 60 to 100 degrees, and is preferably greater than 60 degrees and less than or equal to 100 degrees, and more preferably 70 to 100 degrees, because the area of the cell assembly site observed from the upper part at the time of cell seeding is narrowed. More preferably, it is 80 to 90 degrees.
  • the “open angle” in the present disclosure refers to an angle formed by the inclined surfaces facing each other at the bottom of the well, for example, an angle indicated by ⁇ in FIG.
  • the radius of curvature at the inner surface of the central portion of the bottom is preferably 0.5 to 1.5 mm because cells near the bottom of the well are easily incorporated into the aggregate. Ease of observation of the cell aggregate by observation with an optical microscope is preferable. Therefore, 0.7 to 1.2 mm is more preferable, and 0.9 to 1.1 mm is more preferable.
  • the “curvature radius of the inner surface of the central portion” in the present disclosure refers to a curved surface at the tip of the well bottom, for example, a curvature indicated by R in FIG.
  • the radius of curvature of the inner surface of the central portion can be measured by a laser distance meter or actual measurement of a cut section of a molded product.
  • the inner surface of the bottom of the well is subjected to a low cell adhesion treatment.
  • the “cell low adhesion treatment” in the present disclosure refers to a treatment for reducing the adhesion of the well inner surface to cells.
  • the reduction in adhesion includes, for example, that it becomes difficult for the inner surface of the well and the cell to adhere, and that the inner surface of the well and the cell do not adhere.
  • Examples of the cell low adhesion treatment include hydrophilic treatment on the inner surface of the well.
  • Examples of the hydrophilization treatment include formation of a coating layer using a water-soluble resin and formation of a coating layer using a hydrophilic resin.
  • the “water-soluble resin” in the present disclosure is one that is hydrated by an ionic bond or hydrogen bond with a water molecule and dissolved in water, and can be dissolved in 1.0 g or more in 100 g of water at 25 ° C. Say.
  • Examples of the water-soluble resin include those having a necessary and sufficient amount of ionic or polar side chains with respect to the main chain in the molecule in order to dissolve in water.
  • water-soluble resins examples include saponified polyvinyl acetate, polyvinyl pyrrolidone, polyethylene glycol, polyacrylamide, polymethacrylamide, polyhydroxyethyl methacrylate, polypentaerythritol triacrylate, polypentaerythritol tetraacrylate, polydiethylene glycol diacrylate. And a copolymer of monomers constituting them, a copolymer of 2-methacryloyloxyethyl phosphorylcholine and another monomer (such as butyl methacrylate), and the like.
  • a structure comprising at least one selected from saponified products of polyvinyl acetate, polyvinyl pyrrolidone, and polyethylene glycol and a functional group described later is preferable.
  • stimulation with respect to various cells can be suppressed, and the formation speed of a cell aggregate, a formation rate, and the quality of the formed cell aggregate can be improved.
  • Examples of the saponified product of polyvinyl acetate include polyvinyl alcohol or a copolymer of vinyl alcohol and other compounds, hydrophilic group modification, hydrophobic group modification, anion modification, cation modification, amide group modification or acetoacetyl group. Examples thereof include a saponified product of a modified vinyl acetate modified with a reactive group and vinyl alcohol.
  • the average degree of polymerization of the polymer is not particularly limited, but is preferably from 100 to 10,000, more preferably from 200 to 5,000, from the viewpoint that a uniform film is easily formed on the inner surface of the culture vessel and the workability is good. More preferred.
  • the saponification degree of the saponified product of polyvinyl acetate is not particularly limited, but is preferably 20 to 100 mol%, more preferably 50 to 95 mol% of the whole polyvinyl acetate.
  • the water-soluble resin is preferably a water-soluble resin having a functional group for curing in the side chain.
  • the functional group for curing include radiation-reactive, photosensitive, and heat-reactive functional groups.
  • the photosensitive functional group include a diazo group, an azide group, and a simmonyl group.
  • thermally reactive and radiation reactive functional groups include vinyl groups and epoxy groups.
  • a water-soluble resin having a photosensitive functional group is preferable from the viewpoint that curing treatment can be performed quickly and curing can be performed with simple equipment.
  • the water-soluble resin is preferably a water-soluble resin having an azide group, because a uniform coating layer can be formed at a wavelength of 300 to 500 nm, and the amount of cell adhesion can be reduced to improve the formation efficiency of cell aggregates.
  • it is a water-soluble resin represented by the following formula (Ia) or (Ib).
  • R represents an alkyl group having a carbonyl and an amine, and a group represented by the following formula (II) is preferable from the viewpoint of easy synthesis of a polar side chain.
  • r1 is 1 to 1000, r2 is 40 to 4995, r3 is 0 to 4000, and n is 1, 2 or 3.
  • r1 is 1 to 1000, r2 is 40 to 4995, and r3 is 0 to 4000.
  • the hydrophilic resin is not particularly limited, and examples thereof include poly-2-hydroxyethyl methacrylate (poly-HEMA), a phosphorylcholine group-containing polymer compound, and a polyethylene glycol chain-containing polymer compound.
  • the thickness of the coating layer is not particularly limited, but the amount of protein taken into the coating layer is reduced to reduce the physical stimulation that the cell receives from the substrate (well), and the cell is passed through the protein.
  • the thickness is preferably from 100 to 5,000 nm, more preferably from 150 to 1,000 nm, from the point that the adhesion to the well can be suppressed and the cell aggregate formation efficiency can be further improved.
  • the material of the culture vessel according to the present disclosure is not particularly limited, but a resin is preferable from the viewpoint that the culture vessel can be a disposable type and can be easily molded.
  • the resin include polyolefin resins such as polypropylene resin, polyethylene resin, and ethylene-propylene copolymer or cyclic polyolefin resins, polystyrene resins such as polystyrene and acrylonitrile-butadiene-styrene resins, polycarbonate resins, and polyethylene terephthalate resins.
  • Methacrylic resins such as polymethyl methacrylate resin, vinyl chloride resin, polybutylene terephthalate resin, polyarylate resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyetherimide resin, polytetrafluoroethylene, etc.
  • acrylic resins such as fluorine resins, polymethylpentene resins and polyacrylonitrile, and fibrous resins such as propionate resins.
  • polystyrene resin is preferable from the viewpoints of moldability and sterility required for the culture container.
  • Examples of the culture container according to the present disclosure include containers such as a multiwell plate, a petri dish (dish), and a flask. Any other form may be used as long as it can be installed and used in an environment where cells can be cultured. For example, a sheet-like molded article may be used.
  • multi-well plates and petri dishes used in bioreactor generation or medicinal and toxicological evaluations, artificial organ development research, etc. can improve the accuracy of evaluation and research using cell aggregates. preferable.
  • the number of wells in the multi-well plate is not particularly limited, and is, for example, 6, 12, 24, 48, 96, or 384.
  • the culture container according to the present disclosure can be manufactured as follows.
  • the use of the culture vessel is for measuring a labeling substance using luminescence or fluorescence
  • the method for example, a method of molding with a colored resin, a method of molding with a transparent resin, and then coating a container with an impermeable paint, a method of forming a metal film by plating or vapor deposition, etc. From the viewpoint of easy operation, a method of molding with a colored resin is preferable.
  • the pigment may be kneaded and molded by adding a pigment to the transparent resin, or may be molded using a molded resin material in which the transparent resin and the pigment are kneaded.
  • the transparent resin and the pigment It is preferable to mold using a molded resin material kneaded with.
  • the pigment is not particularly limited, and can be appropriately determined according to the color to be colored, and examples thereof include white pigments, black pigments, etc., and better measurement sensitivity can be obtained, and the state of cell aggregates can be confirmed.
  • white pigments are preferred from the viewpoint of easy confirmation of the presence or absence of the culture medium.
  • white pigments include titanium oxide.
  • the black pigment include carbon black.
  • the amount of the pigment is preferably 7 to 15% by weight in the case of titanium oxide and 3 to 10% by weight in the case of carbon black from the viewpoint of obtaining a resin molded product exhibiting sufficient light shielding properties and sufficient strength.
  • the degree of light shielding is preferably small if the light transmittance to adjacent wells is small, for example, 1% or less, preferably 0.1%, more preferably 0.01% or less.
  • the above-mentioned water-soluble resin is brought into contact with the inner surface of the well.
  • the contact method include spin coating, dipping, and dispensing a water-soluble resin solution to the well surface.
  • the water-soluble resin is preferably brought into contact with the water-soluble resin dissolved in a solvent.
  • the solvent include water, a mixture of water and an organic solvent, and the like.
  • the concentration of the water-soluble resin to be contacted is not particularly limited, but a uniform coating layer can be obtained, a sufficient cell low adhesion effect can be obtained, and a good cell aggregate can be formed. 0.01 to 30 wt% is preferable, and 0.1 to 10 wt% is more preferable.
  • the water-soluble resin After drying the water-soluble resin, the water-soluble resin is cured. Thereby, the resin coating layer which has a high density ionic or polar side chain is formed.
  • the ionic or polar side chain constructed on this surface hydrates with water molecules by electrostatic interaction or hydrogen bonding when in contact with the culture solution, and the surface of the culture vessel is substantially dense with water molecules. This becomes a hydrated layer, and this hydrated layer suppresses the stimulation from the surface of the substrate to the cells, and a qualitatively good cell aggregate is rapidly formed. By doing so, it is possible to prevent the water-soluble resin coating layer from being dissolved and released when the culture solution is brought into contact, and to obtain water resistance necessary for the culture vessel.
  • a poly-HEMA layer when forming a coating layer using a hydrophilic resin, for example, a poly-HEMA layer can be formed by dispensing 100 ⁇ L of a 2% ethanol solution of poly-HEMA into a well and evaporating ethanol. . After evaporation, excess poly-HEMA molecules not adsorbed on the container surface can be removed by washing with ultrapure water or a buffer solution.
  • Sterilization includes, for example, ethylene oxide gas sterilization, dry heat sterilization, steam sterilization, radiation sterilization, etc., and radiation sterilization using ⁇ rays or electron beams is preferable. And ⁇ -ray sterilization is more preferable.
  • the present disclosure relates to a method of culturing human ES cells using a culture container.
  • a culture vessel used in the culture method according to the present disclosure has two or more wells, and the well has a cylindrical body and a funnel-shaped bottom provided at one end of the body, and the bottom The center part of this is a concave curved surface, and the opening angle of the bottom part is 60 to 100 degrees.
  • this indication is related with the method of culture
  • embryoid bodies can be efficiently formed from human ES cells.
  • the radius of curvature of the inner surface of the center of the bottom is 0.5 to 1.5 mm.
  • FIG. 1 is a cross-sectional view of the well of the culture container according to the first embodiment
  • FIG. 2 is a perspective view of the culture container (96-well multiwell plate) according to the first embodiment.
  • the well 1 of the culture container according to the first embodiment has a substantially cylindrical body portion 2 and a bottom portion 3 having a funnel shape, and a central portion 4 of the bottom portion 3 is hemispherical.
  • the bottom 3 has an inclined surface with an opening angle ( ⁇ ) of 85 degrees, and the radius of curvature of the inner surface of the bottom center is 1.0 mm.
  • the opening angle ( ⁇ ) can be obtained by measuring the angle formed by the opposed inclined surfaces of the bottom 3.
  • the diameter of the well opening is preferably, for example, 4.0 mm or more from the viewpoint of excellent operability when using a multi-dispenser, and is preferably 11.0 mm or less from the viewpoint of increasing the number of wells per culture vessel. preferable.
  • the volume per well is not particularly limited, but is preferably 80 to 500 ⁇ L from the viewpoint that a sufficient amount of medium can be added to form embryoid bodies. 80 to 200 ⁇ L is more preferable from the viewpoint of reducing the amount.
  • Example 1 [Manufacture of culture vessels] A 96-well multiwell plate (width: 127.6 mm, length: 85.8 mm, height: 14.0 mm) was molded by injection molding using polystyrene resin (manufactured by PS Japan, trade name: HF77). The shape of each well was the shape shown in FIG. 1, the opening angle of the bottom ( ⁇ in FIG. 1) was 85 degrees, and the radius of curvature of the inner surface at the center of the bottom was 1.0 mm.
  • the obtained plate was subjected to plasma treatment (oxygen plasma for 10 minutes) using a plasma treatment apparatus (SERIES7000, manufactured by BRANSON / IPC). This imparted wettability to the plate surface.
  • the culture solution was D-MEM / F12 (Sigma D6421) with a final concentration of 20% KSR (Invitrogen / Gibco-BRL), 1 ⁇ NEAA (non-essential amino acid; Invitrogen / Gibco BRL), 2 mM L-glutamic acid, 0.1 mM. What added 2-mercaptoethanol and 5 ng / ml bFGF (Upstate) was used. Planting was carried out every 3-4 days.
  • Human ES cells were dissociated from the feeder layer, dispersed into small cell masses (about 10-20 cells) by pipetting, and then seeded on the feeder layer formed by seeding MEF the day before.
  • Human embryonic stem cells are human blastocyst-derived embryonic stem cells (KhES-1, KhES-2 and KhES-3) established in the Institute of Regenerative Medicine, Kyoto University. Were used according to the government guidelines regarding (mainly KhES-1).
  • ROCK inhibitor Y-27632 was added at a concentration of 10 ⁇ M to the human ES cells cultured as described above, and then the human ES cells were dissociated from the feeder cells as small cell clusters. .
  • the dissociated small cell mass was placed on a cell-adhesive culture plate (0.1% gelatin coated), and cultured in a maintenance culture solution at 37 ° C. for 1 hour. The contaminating feeder cells were adsorbed to the culture plate.
  • Human ES cell mass from which feeder cells have been removed is dispersed into single cells by TrypLE Express containing 0.05 mg / ml DnaseI (Roche) and ROCK inhibitor Y-27632 at 10 ⁇ M, and 9 ⁇ 10 3 cells per well are dispersed.
  • the culture vessel was subjected to surface treatment in a state of being suspended in 100 ⁇ l of differentiation medium so that an aggregate was rapidly formed, and then incubated at 37 ° C. and 5% CO 2 for 6 days to reaggregate. The state of the cell mass was evaluated.
  • the differentiation medium was G-MEM (Invitrogen) with a final concentration of 20% KSR, 20 ⁇ M Y-27632, 1 ⁇ NEAA, 1 mM pyruvic acid, 0.1 mM 2-mercaptoethanol, 100 U / ml penicillin, 100 ⁇ g / ml streptomycin. The added one was used.
  • Example 2 A multiwell plate was obtained in the same manner as in Example 1 except that a commercially available multiwell plate (MS-9096M, manufactured by Sumitomo Bakelite Co., Ltd., U bottom, opening angle: 19 degrees, bottom radius of curvature: 2.0 mm) was used. Using it, cell aggregate formation and evaluation were performed. The results are shown in Table 1 below.
  • MS-9096M manufactured by Sumitomo Bakelite Co., Ltd., U bottom, opening angle: 19 degrees, bottom radius of curvature: 2.0 mm
  • Example 1 As shown in FIG. 3, in Example 1, a single aggregate was observed from 18 hours after the start of culture, and finally a single aggregate was formed in the well. On the other hand, in Comparative Example 1, as shown in FIG. 4, a plurality of small-sized aggregates were observed around the large aggregate. Although the figure of the comparative example 2 is not presented, a small agglomerate equivalent to that in FIG. 4 was observed.
  • the present disclosure is useful in medical fields such as human ES cell research and regenerative medicine.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Reproductive Health (AREA)
  • Clinical Laboratory Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

ヒト胚性幹細胞から効率よく胚様体を形成可能な培養容器、及びそれを用いたヒト胚性幹細胞の培養方法を提供する。 2個以上のウェル1を有するヒト胚性幹細胞を培養するための容器であって、ウェル1は、筒状の胴部2と、胴部2の一端に設けられた漏斗形状の底部3とを有し、底部3の中心部4は、凹曲面であり、底部3の開き角度(θ)は、60~100度であるヒト胚性幹細胞用培養容器に関する。また、該ヒト胚性幹細胞用培養容器を用いてヒト胚性幹細胞を培養する方法に関する。

Description

ヒトES細胞用培養容器
 本開示は、ヒトES細胞用培養容器の培養方法に関する。
 胚性幹細胞(ES細胞)は、様々な組織細胞に分化する多分化能を有する。このため、病気や事故等で失われた細胞を補修し、組織を修復する、いわゆる再生医療の分野での応用に向けて様々な研究が行われている(例えば、特許文献1)。
 ES細胞は種々の細胞に分化しうる多様性を持つ。それには細胞間の相互関係が関係しており、その一つとして胚様体(embryonic body:EB)と呼ばれる細胞塊の形成がある。この細胞塊は、ES細胞やiPS細胞などを浮遊培養することにより形成され、細胞塊が形成された状態で2週間程度培養すると様々な細胞種への分化が観察される。このため、胚様体は、細胞の分化多能性を調べる一般的な方法の一つとして用いられている。
 ES細胞を浮遊状態で培養する方法としては、最も広く用いられている方法としてハンギングドロップ培養がある。ハンギングドロップ培養は、水滴状に垂れ下げた培養液の中で細胞を培養する方法である。しかしながらこの方法は、胚様体形成の成功率が低い、顕微鏡観察ができない、操作が煩雑である等といった問題がある。この問題を解決するために、例えば、容器内面に水溶性樹脂被膜を硬化させた非水溶性硬化被膜が形成された培養容器が提案されている(例えば、特許文献2)。
 上述の特許文献1(特開2008-99662号公報)、及び特許文献2(特開2008-178367号公報)は、参照により本明細書に組み込まれる。
特開2008-99662号公報 特開2008-178367号公報
 ES細胞の研究では、現在、マウスES細胞が用いられている場合が多い。臨床応用を視野に入れると、ヒトES細胞を用いた研究及び開発が必要となるが、ヒトES細胞は、マウスES細胞と比較して細胞死を起こしやすく、胚様体が得られにくいという問題がある。このため、ヒトES細胞からより効率よく胚様体を形成可能な培養容器が求められている。
 本開示は、一又は複数の実施形態において、ヒトES細胞から効率よく胚様体を形成可能な培養容器を提供する。
 本開示は、一又は複数の実施形態において、ヒトES細胞を培養するための容器に関する。前記ヒトES細胞用培養容器は、2個以上のウェルを有する。前記ウェルは、筒状の胴部と、前記胴部の一端に設けられた漏斗形状の底部とを有し、前記底部の中心部は、凹曲面であり、前記底部の開き角度は、60~100度である。
 本開示にかかる培養容器によれば、ヒトES細胞から効率よく胚様体を形成することができる。
図1は、実施形態1における培養容器におけるウェルの断面図である。 図2は、実施形態1における培養容器の斜視図である。 図3は、実施例1におけるヒトES細胞培養時の細胞凝集塊形状の顕微鏡写真である。 図4は、比較例1におけるヒトES細胞培養時の細胞凝集塊形状の顕微鏡写真である。
 本開示にかかる培養容器は、ウェル底部の形状を開き角度が60~100度である漏斗形状とし、かつその中心部を凹状の丸みを持たせることによって、ヒトES細胞から効率よく胚様体を形成できる、という知見に基く。
 本開示にかかる培養容器がヒトES細胞の培養に適しており、本開示にかかる培養容器を用いることによってヒトES細胞から効率よく胚様体を形成できる理由は必ずしも明らかではないが、以下のように推定される。ウェル底部が、開き角度が60~100度の傾斜面を有しているため、単細胞分散状態の細胞をウェルに分注した場合、上部から観察した細胞集合箇所の面積が狭くなることから、細胞集合部の端部での細胞密度が濃く、それにより単一の細胞凝集体が形成しやすくなると考えられる。また、ウェル底部の中心部が、凹曲面であることで、ウェル最底部付近の細胞が凝集体に組み込まれやすく単一の細胞凝集体が形成しやすくなると考えられる。但し、本開示はこれらのメカニズムに限定されない。
 すなわち、本開示は、以下の一又は複数の実施形態に関しうる;
[1] ヒト胚性幹細胞(ヒトES細胞)を培養するための容器であって、
2個以上のウェルを有し、
前記ウェルは、筒状の胴部と、前記胴部の一端に設けられた漏斗形状の底部とを有し、
前記底部の中心部は、凹曲面であり、
前記底部の開き角度は、60~100度である、ヒトES細胞用培養容器;
[2] 前記底部の中心部内面の曲率半径は、0.5~1.5mmである[1]記載の培養容器;
[3] 前記ウェルの少なくとも底部の内面は、下記式(Ia)又は(Ib)で表される水溶性樹脂を用いて形成された被覆層が形成されている、[1]又は[2]に記載の培養容器、
Figure JPOXMLDOC01-appb-C000003
(式(Ia)中、Rはカルボニルとアミンとを有するアルキル基、r1は1~1000、r2は40~4995、r3は0~4000、nは1、2又は3を示す。)
Figure JPOXMLDOC01-appb-C000004
(式(Ib)中、Rはカルボニルとアミンとを有するアルキル基、r1は1~1000、r2は40~4995、r3は0~4000を示す。)
[4] 前記ウェルは、側壁内面が略平行となる側壁面と、前記側壁面の一端に形成された側壁内面が底面に向かって縮径する傾斜面と、前記傾斜面の一端に形成された部分球状の中心部とを有する、[1]から[3]のいずれかに記載の培養容器;
[5] 前記筒部は、略円筒状である、[1]から[4]のいずれかに記載の培養容器;
[6] 前記ウェルにおいて、前記胴部の中心線を通る断面形状は、前記胴部が矩形であり、前記底部が略V字形状であって前記底部の中心部が弧状である、[1]から[5]のいずれかに記載の培養容器;
[7] 96ウェルプレートである、[1]から[6]のいずれかに記載の培養容器;
[8] 培養容器を用いて、ヒト胚性幹細胞を培養する方法であって、
前記培養容器は、2個以上のウェルを有し、
前記ウェルは、筒状の胴部と前記胴部の一端に設けられた漏斗状の底部とを有し、
前記底部の中心部は、凹曲面であり、
前記底部の開き角度は、60~100度である、培養方法;
[9] 前記底部の中心部内面の曲率半径は、0.5~1.5mmである、[8]記載の培養方法;
[10] [1]から[7]のいずれかに記載の培養容器を用いてヒト胚性幹細胞を培養する方法。
 [培養容器]
 本開示は、一又は複数の実施形態において、ヒトES細胞を培養するための容器に関する。前記ヒトES細胞用培養容器は、2個以上のウェルを有する。本開示にかかる培養容器によれば、ヒトES細胞から効率よく胚様体を形成することができる。また、本開示にかかる培養容器は、効率よく胚様体を形成できる点から、ES細胞の中でもヒトES細胞の培養に適しており、例えばマウスES細胞と比較してヒトES細胞の培養に適している。
 ウェルは、筒状の胴部と、胴部の一端に設けられた漏斗形状の底部とを有し、底部の中心部は曲面である。すなわち、底部は、頂点部分が部分球状の逆円錐形ということができる。胴部は、例えば、略円筒状であってもよい。ウェルの一又は複数の実施形態において、ウェルの中心線を通る断面形状は、胴部が矩形であり、底部が中心部が弧状の略V字形状であるということもできる。ウェルの一又は複数の実施形態において、胴部と底部との接続部分は、曲面であることが好ましい。
 また、ウェルは、一又は複数の実施形態において、側壁内面が略平行となる側壁面と、側壁面の一端に形成された側壁内面が底面に向かって縮径する傾斜面と、傾斜面の一端に形成された部分球状の中心部とを有する形状であってもよい。
 底部の開き角度は、60~100度であり、細胞播種時の上部から観察した細胞集合箇所の面積を狭くするという理由から、60度を超え100度以下が好ましく、70~100度がより好ましく、さらに好ましくは80~90度である。本開示における「開き角度」とは、ウェルの底部の対向する傾斜面がなす角をいい、例えば、図1においてθで示す角度である。
 底部の中心部内面における曲率半径は、ウェル最底部付近の細胞が凝集体に組み込まれやすくなると理由から、0.5~1.5mmが好ましく、細胞凝集体の光学顕微鏡観察における観察のしやすさという理由から、0.7~1.2mmがより好ましく、より好ましくは0.9~1.1mmである。本開示における「中心部内面の曲率半径」とは、ウェル底部の先端部の曲面をいい、例えば、図1においてRで示す曲率である。中心部内面の曲率半径は、レーザー距離計、または成型品の切断断面の実測により測定できる。
 一又は複数の実施形態において、ウェルの少なくとも底部の内面は、細胞低接着性処理が行われていることが好ましい。本開示における「細胞低接着性処理」とは、細胞に対するウェル内面の接着性が低減するための処理をいう。接着性が低減するとは、例えば、ウェル内面と細胞とが接着しにくくなること、及びウェル内面と細胞とが接着しなくなることを含む。
 細胞低接着性処理としては、例えば、ウェル内面の親水化処理が挙げられる。親水化処理としては、例えば、水溶性樹脂を用いた被覆層の形成、及び親水性樹脂を用いた被覆層の形成等が挙げられる。本開示における「水溶性樹脂」とは、水分子とのイオン結合又は水素結合により水和して水に溶解するものであって、25℃の水100gに対して1.0g以上溶解可能なものをいう。また、水溶性樹脂としては、水に溶解するために分子内の主鎖に対して必要充分な量のイオン性又は極性の側鎖を有するものが挙げられる。
 水溶性樹脂としては、例えば、ポリ酢酸ビニルのケン化物、ポリビニルピロリドン、ポリエチレングリコール、ポリアクリルアミド、ポリメタアクリルアミド、ポリヒドロキシエチルメタアクリレート、ポリペンタエリスリトールトリアクリレート、ポリペンタエリスリトールテトラアクリレート、ポリジエチレングリコールジアクリレート、及びそれらを構成するモノマー同士の共重合体、2-メタクリロイルオキシエチルホスホリルコリンと他のモノマー(例えばブチルメタクリレート等)との共重合体等が挙げられる。これらの中でもポリ酢酸ビニルのケン化物、ポリビニルピロリドン、ポリエチレングリコールの中から選ばれる1種以上と後述する官能基とからなる構造が好ましい。これにより、種々の細胞に対する刺激を抑制し、細胞凝集塊の形成速度、形成率、及び形成した細胞凝集塊の質を向上することができる。
 ポリ酢酸ビニルのケン化物としては、例えば、ポリビニルアルコール又はビニルアルコールと他の化合物との共重合体、親水基変性、疎水基変性、アニオン変性、カチオン変性、アミド基変性又はアセトアセチル基のような反応基変性させた変性酢酸ビニルとビニルアルコールとのケン化物等が挙げられる。重合体の平均重合度は、特に限定されないが、培養容器の内面に均一な被膜が形成しやすく、かつ作業性が良好となる点から、100~10,000が好ましく、200~5,000がより好ましい。ポリ酢酸ビニルのケン化物のケン化度は、特に限定されないが、該ポリ酢酸ビニル全体の20~100mol%が好ましく、50~95mol%がより好ましい。
 水溶性樹脂は、硬化させるための官能基を側鎖に有する水溶性樹脂が好ましい。硬化させるための官能基としては、例えば、放射線反応性、感光性、熱反応性の官能基等が挙げられる。感光性の官能基としては、例えば、ジアゾ基、アジド基、シンモナイル基等が挙げられる。熱反応性及び放射線反応性の官能基としては、例えば、ビニル基、エポキシ基等を挙げることができる。これらの中でも硬化処理を迅速におこなうことができ、簡易な設備で硬化させることができる点から、感光性の官能基を有する水溶性樹脂が好ましい。
 水溶性樹脂としては、300~500nmの波長で均一な被覆層が形成でき、細胞の接着量を低減して細胞凝集塊の形成効率を向上できることから、アジド基を有する水溶性樹脂が好ましく、より好ましくは下記式(Ia)又は(Ib)で表される水溶性樹脂である。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 式(Ia)及び(Ib)において、Rはカルボニルとアミンとを有するアルキル基を示し、極性の側鎖の合成が容易となる点から、下記式(II)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(Ia)において、r1は1~1000、r2は40~4995、r3は0~4000、nは1、2又は3を示す。式(Ib)においてr1は1~1000、r2は40~4995、r3は0~4000を示す。
 親水性樹脂としては、特に限定されるものではないが、例えば、ポリ-2-ヒドロキシエチルメタクリレート(ポリ-HEMA)、ホスホリルコリン基含有高分子化合物、ポリエチレングリコール鎖含有高分子化合物等が挙げられる。
 被覆層の厚みとしては、特に限定されるものではないが、細胞が基材(ウェル)から受ける物理的な刺激を低減しつつ、被覆層に取り込まれるタンパク質量を低減してタンパク質を介して細胞のウェルへの接着を抑制し細胞凝集塊形成効率をさらに向上できる点から、例えば、100~5,000nmが好ましく、150~1,000nmがより好ましい。
 本開示にかかる培養容器の材質は特に制限されるものではないが、培養容器をディスポーザルタイプとすることができ、かつ成形が容易である点から、樹脂が好ましい。樹脂としては、例えば、ポリプロピレン樹脂、ポリエチレン樹脂、エチレン-プロピレン共重合体等のポリオレフィン系樹脂または環状ポリオレフィン系樹脂、ポリスチレン、アクリロニトリル-ブタジエン-スチレン系樹脂等のポリスチレン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリメチルメタクリレート樹脂等のメタクリル系樹脂、塩化ビニル樹脂、ポリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリメチルペンテン樹脂、ポリアクリロニトリル等のアクリル系樹脂、プロピオネート樹脂等の繊維素系樹脂等が挙げられる。これらの中でも、培養容器に求められる成形性、及び滅菌性の点から、ポリスチレン樹脂が好ましい。
 本開示にかかる培養容器の形態としては、例えば、マルチウェルプレート、シャーレ(ディッシュ)、及びフラスコ等の容器類が挙げられる。その他の形態としては、細胞が培養できる環境下に設置して使用できるものであればよく、例えば、シート状の成形品であってもよい。これらの中でも、細胞凝集塊を用いた評価、研究の精度を向上させることができる点から、バイオリアクターの生成または薬効や毒物の評価、人工臓器の開発研究等で用いられるマルチウェルプレートやシャーレが好ましい。マルチウェルプレートにおけるウェルの数は特に制限されるものではないが、例えば、6、12、24、48、96、又は384個である。
 本開示にかかる培養容器は、以下のようにして製造することができる。
 まず、上述の樹脂材料を用いて、射出成形、ブロー成形、インジェクションブロー成形等によって所望の形状に成形する。
 培養容器の用途が、発光又は蛍光現象を用いた標識物質を測定用である場合、ウェル間を遮光し、発光又は蛍光が隣接するウェルに漏れないようにすることが好ましい。その方法としては、例えば、着色樹脂で成形する方法、透明樹脂で成形した後、容器を不透過性塗料等で塗装する方法、鍍金や蒸着により金属皮膜を形成し不透過性を付与する方法等があり、操作が簡便である点から、着色樹脂で成形する方法が好ましい。また、透明樹脂に顔料を加えて混練、成形してもよいし、透明樹脂と顔料とを混練した成形樹脂材料を用いて成形してもよく、顔料の分散性の点から、透明樹脂と顔料とを混練した成形樹脂材料を用いて成形することが好ましい。顔料としては、特に限定されるものではなく、着色する色に応じて適宜決定でき、例えば、白色顔料、黒色顔料等が挙げられ、より良好な測定感度が得られ、細胞凝集塊の状態の確認や培養液の有無の確認が容易となる点からは、白色顔料が好ましい。白色顔料としては、例えば、酸化チタン等が挙げられる。黒色顔料としては、例えば、カーボンブラック等が挙げられる。顔料の量としては、充分な遮光性と充分な強度を示す樹脂成形品を得る点から、酸化チタンの場合は7~15重量%が好ましく、カーボンブラックの場合は3~10重量%が好ましい。遮光の程度は、隣接するウェルへの光透過率が少なければ少ないことが好ましく、例えば、1%以下であり、好ましくは0.1%、より好ましくは0.01%以下である。
 次に、成形した容器に細胞低接着性処理を行う。
 水溶性樹脂を用いた被覆層を形成する場合、まず、上述の水溶性樹脂をウェル内面に接触させる。接触させる方法としては、例えば、スピンコート、ディッピング、水溶性樹脂溶液をウェル面に分注すること等が挙げられる。水溶性樹脂は、水溶性樹脂を溶媒に溶解した状態で接触させることが好ましい。溶媒としては、水、水と有機溶媒との混合物等が挙げられる。接触させる水溶性樹脂の濃度は、特に制限されるものではないが、均一な被覆層が得られ、充分な細胞低接着性効果が得られ、良好な細胞凝集塊が形成される点から、例えば、0.01~30重量%が好ましく、より好ましくは0.1~10重量%である。
 水溶性樹脂を乾燥させた後、水溶性樹脂を硬化させる。これにより、密度の高いイオン性又は極性の側鎖を有する樹脂被覆層を形成される。この表面に構築されたイオン性もしくは極性の側鎖は、培養液と接触した際に、静電相互作用もしくは水素結合により水分子と水和し、培養容器表面は実質的に水分子の密な水和層となり、この水和層は細胞に対する基材表面からの刺激を抑制し、質的に良好な細胞凝集塊が迅速に形成されることとなる。こうすることで、培養液を接触させた際に、水溶性樹脂の被覆層が溶解、遊離することを防ぎ、培養容器として必要な耐水性を獲得することができる。
 一方、親水性樹脂を用いて被覆層を形成する場合、例えば、ポリ-HEMAの2%エタノール溶液をウェル内に100μL分注しエタノールを蒸発させることによってポリ-HEMAの層を形成させることができる。蒸発後、超純水や緩衝液で洗浄することで、容器表面に吸着していない余分なポリ-HEMA分子を除去することができる。
 そして、上述の細胞低接着性処理を行った後、滅菌する。滅菌は、例えば、エチレンオキサイドガス滅菌、乾熱滅菌、蒸気滅菌、放射線滅菌等が挙げられ、γ線又は電子線を用いた放射線滅菌が好ましく、大量生産を行う点からは、放射線透過性の点でγ線滅菌がより好ましい。
 [培養方法]
 本開示は、一又は複数の実施形態において、培養容器を用いたヒトES細胞を培養する方法に関する。本開示にかかる培養方法に用いる培養容器は、2個以上のウェルを有し、ウェルは、筒状の胴部と前記胴部の一端に設けられた漏斗状の底部とを有し、前記底部の中心部は、凹曲面であり、底部の開き角度は、60~100度である。また、本開示は、一又は複数の実施形態において、本開示にかかる培養容器を用いてヒト胚性幹細胞を培養する方法に関する。本開示にかかる培養方法によれば、上記の培養容器を用いるため、ヒトES細胞から胚様体を効率よく形成することができる。
 本開示にかかる培養容器において、底部中心部内面の曲率半径は、0.5~1.5mmであることが好ましい。
 以下に、本開示にかかる培養容器を好適な実施形態を示しながら詳細に説明する。但し、本開示は、以下の実施形態に限定されないことはいうまでもない。
 (実施形態1)
 図1は、実施形態1にかかる培養容器のウェルの断面図であり、図2は実施形態1にかかる培養容器(96ウェルマルチウェルプレート)の斜視図である。図1に示すように、実施形態1にかかる培養容器のウェル1は、略円筒状の胴部2と、漏斗形状である底部3とを有し、底部3の中心部4は半球状である。底部3は開き角度(θ)は85度である傾斜面を有し、底部中心部内面の曲率半径は1.0mmである。開き角度(θ)は、図1に示すように、底部3の対向する傾斜面がなす角を測定することにより得ることができる。
 ウェルの開口部の直径は、マルチディスペンサーを使用する場合の操作性に優れる点から、例えば、4.0mm以上が好ましく、培養容器一つ当たりのウェルの数を増やす点から、11.0mm以下が好ましい。
 ウェル1個当たりの容量は、特に制限されるものではないが、胚様体を形成するのに十分な量の培地を添加できる点から、例えば、80~500μLが好ましく、培地や試薬の使用量を低減する点から、80~200μLがより好ましい。
 以下、本開示を以下の実施例及び比較例に基いて説明するが、本開示はこれに限定されるものではない。
 (実施例1)
 [培養容器の製造]
 ポリスチレン樹脂(PSジャパン社製、商品名:HF77)を用いて、射出成形により96ウェルマルチウェルプレート(横:127.6mm、縦:85.8mm、高さ:14.0mm)を成形した。各ウェルの形状は図1に示す形状とし、底部の開き角度(図1におけるθ)は85度、底部中心部における内面の曲率半径は1.0mmとした。
 得られたプレートにプラズマ処理装置(BRANSON/IPC社製 SERIES7000)を用いてプラズマ処理(酸素プラズマ10分)を行った。これにより、プレート表面に濡れ性を付与した。
 (水溶性樹脂を用いた表面処理)
 ウェルの表面処理を行うために、水溶性樹脂として側鎖にアジド基を有するポリビニルアルコール(東洋合成工業社製 AWP(Azide-unit pendant Water soluble Photopolymer、r1=1~1000、r2=4~4995、r3=0~4000、n=1,2、または3、Rはカルボニルとアミンを有するアルキル基):下記式(Ia)で表される化合物(水溶性樹脂の平均重合度1600、感光基の導入率0.65mol%))を着色樹脂にて遮光したポリプロプレン容器中で、25容量%エタノール水溶液に溶解し、0.3重量%の水溶性樹脂溶液を調製した。
Figure JPOXMLDOC01-appb-C000008
 プラズマ処理したプレートに、自動分注機(BioTec社製、オートセラウォッシャーAMW-96SX)を使用して、1ウェルにつき200μLの調製した水溶性樹脂溶液を加えて1分間浸漬した後、プレートを裏返して溶液を充分廃棄した。ついで、25℃で17時間一次乾燥した後、UVランプで250nmのUV光を1.0mW/cm×30秒間照射して水溶性樹脂を硬化させた。超純水で3回繰り返し洗浄し、乾燥させた後、γ線を吸収線量5.8kGyで照射(ラジエ工業株式会社製装置)して培養容器(プレート)を得た。
 [単一分散させたヒトES細胞を用いたSFEBq法による細胞凝集塊形成]
 Suemoriら, Biochem Biophys Res Commun. 345, 926-32 (2006)に記載された方法に従い、細胞のフィーダー層としてマウス胎児線維芽細胞(マイトマイシン処理で不活化、MEF)を蒔いたプラスチック培養皿の上で未分化ヒト胚性幹細胞を37℃、2% CO下で培養した。なお、Suemoriら, Biochem Biophys Res Commun. 345, 926-32 (2006)は、参照により本明細書に組み込まれる。培養液は、D-MEM/F12(Sigma D6421)に最終濃度20%のKSR(Invitrogen/Gibco-BRL)、1×NEAA(非必須アミノ酸;Invitrogen/Gibco BRL)、2mM L-グルタミン酸、0.1mM 2-メルカプトエタノール及び5ng/ml bFGF(Upstate)を添加したものを使用した。植え継ぎは3-4日毎に行った。解離液(リン酸バッファー緩衝生理学的食塩水に0.25%トリプシン、1mg/mlコラゲナーゼIV液、1mM CaCl、最終濃度20%のKSRを添加したもの;全てInvtrogen/Gibco-BRL)を用いて、ヒトES細胞をフィーダー層から解離し、ピペッティングで小細胞塊(約10-20個)に分散した後、前日にMEFを播種し形成させたフィーダー層の上に蒔いた。なお、ヒト胚性幹細胞は、京都大学再生医科学研究所中辻憲夫研究室で樹立したヒト胚盤胞由来の胚性幹細胞(KhES-1、KhES-2及びKhES-3)を、ヒト胚性幹細胞に関する政府指針に従い分与を受け、使用した(主にKhES-1)。
 単一細胞分散後のヒト胚性幹細胞の再凝集に対するウェル形状の効果は、下記のように検討した。細胞をフィーダー層から分離する1時間前に、上記のように培養したヒトES細胞にROCK阻害剤Y-27632を10μMの濃度で添加した後、フィーダー細胞からヒトES細胞を小細胞塊として解離した。さらに混入するフィーダー細胞を除去するために、解離した小細胞塊を細胞接着性の培養プレート(0.1% ゼラチンコート)に配置し、維持培養液中で37℃、1時間培養し、これにより、混入するフィーダー細胞を培養プレートに吸着させた。フィーダー細胞を除去したヒトES細胞塊を、0.05mg/ml DnaseI(Roche)とROCK阻害剤Y-27632とを10μM含むTrypLE Expressによって単一細胞に分散させ、1ウェルあたり9×10細胞になるように100μlの分化培地に浮遊させた状態で表面処理を行った培養容器配置し、凝集塊を速やかに形成させた後、37℃、5%COで6日間インキュベーションを行い、再凝集した細胞塊の状態を評価した。分化培地は、G-MEM(Invitrogen)に最終濃度20%のKSR、20μM Y-27632を、1×NEAA、1mM ピルビン酸、0.1mM 2-メルカプトエタノール、100U/mlペニシリン、100μg/mlストレプトマイシンを添加したものを使用した。
 評価は、下記A~Cの基準に分けて行った。その結果を下記表1に示す。なお、評価は、n=5~10で行った。また、ヒトES細胞培養して形成された細胞凝集塊を顕微鏡観察して得られた写真を図3に示す。図3に示す顕微鏡写真は、左から順に0.5時間、18時間、6日間培養した後の細胞塊の形状を示す写真である。
A:ウェル内に単一の凝集塊が形成
B:凝集塊が形成するも周囲に小さな凝集塊が複数形成
C:凝集塊が形成されない
 (比較例1)
 市販品のU底のマルチウェルプレートを使用した以外は、実施例1と同様にしてマルチウェルプレートを得て、それを用いて細胞凝集塊形成及び評価を行った。その結果を下記表1に示す。市販品のマルチウェルプレートは、住友ベークライト社製 MS-309URを使用した(横:127.6mm、縦:85.8mm、高さ:14.0mm、ウェルの開口部直径:7.0mm、ウェルの深さ:10.0mm、底部内面の曲率半径:3.2mm)。なお、評価は、n=5~10で行った。また、形成された細胞凝集塊を顕微鏡観察して得られた写真を図4に示す(培養時間:2日間)。
 (比較例2)
 市販のマルチウェルプレート(住友ベークライト社製 MS-9096M、U底、開き角度:19度、底面曲率半径:2.0mm)を使用した以外は、実施例1と同様にしてマルチウェルプレートを得て、それを用いて細胞凝集塊形成及び評価を行った。その結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000009
 表1に示すように、実施例1の培養容器においては、全てのウェルで単独の凝集塊の形成が認められた。一方、比較例1及び2のプレートでは凝集塊の形成効率が大幅に落ち、それぞれ42%-73%及び18-52%のウェルで、複数の凝集塊が形成した。
 図3に示すように、実施例1においては培養開始後18時間から単一の凝集塊が認められ、最終的にはウェル内に単一の凝集塊が形成された。一方、比較例1においては図4に示すように、大きな凝集塊の周囲にサイズの小さな凝集塊が複数観察された。比較例2の図は提示しないが、図4と同等の小さな凝集塊が認められた。
 本開示は、例えば、ヒトES細胞の研究、再生医療等といった医療分野等で有用である。
 本発明は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、これらに限定はされない。本開示の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。
 

Claims (10)

  1. ヒト胚性幹細胞(ヒトES細胞)を培養するための容器であって、
    2個以上のウェルを有し、
    前記ウェルは、筒状の胴部と、前記胴部の一端に設けられた漏斗形状の底部とを有し、
    前記底部の中心部は、凹曲面であり、
    前記底部の開き角度は、60~100度である、ヒトES細胞用培養容器。
  2. 前記底部の中心部内面の曲率半径は、0.5~1.5mmである、請求項1記載の培養容器。
  3. 前記ウェルの少なくとも底部の内面は、下記式(Ia)又は(Ib)で表される水溶性樹脂を用いて形成された被覆層が形成されている、請求項1又は2に記載の培養容器。
    Figure JPOXMLDOC01-appb-C000001
    (式(Ia)中、Rはカルボニルとアミンとを有するアルキル基、r1は1~1000、r2は40~4995、r3は0~4000、nは1、2又は3を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(Ib)中、Rはカルボニルとアミンとを有するアルキル基、r1は1~1000、r2は40~4995、r3は0~4000を示す。)
  4. 前記ウェルは、側壁内面が略平行となる側壁面と、前記側壁面の一端に形成された側壁内面が底面に向かって縮径する傾斜面と、前記傾斜面の一端に形成された部分球状の中心部とを有する、請求項1から3のいずれかに記載の培養容器。
  5. 前記胴部は、略円筒状である、請求項1から4のいずれかに記載の培養容器。
  6. 前記ウェルにおいて、前記胴部の中心線を通る断面形状は、前記胴部が矩形であり、前記底部が略V字形状であって前記底部の中心部が弧状である、請求項1から5のいずれかに記載の培養容器。
  7. 96ウェルプレートである、請求項1から6のいずれかに記載の培養容器。
  8. 培養容器を用いて、ヒト胚性幹細胞を培養する方法であって、
    前記培養容器は、2個以上のウェルを有し、
    前記ウェルは、筒状の胴部と前記胴部の一端に設けられた漏斗状の底部とを有し、
    前記底部の中心部は、凹曲面であり、
    前記底部の開き角度は、60~100度である、培養方法。
  9. 前記底部の中心部内面の曲率半径は、0.5~1.5mmである、請求項8記載の培養方法。
  10. 請求項1から7のいずれかに記載の培養容器を用いてヒトES細胞を培養する方法。
     
PCT/JP2013/065891 2012-06-08 2013-06-07 ヒトes細胞用培養容器 WO2013183777A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13801374.3A EP2860239B1 (en) 2012-06-08 2013-06-07 Vessel for culturing human es cells
US14/406,370 US10487310B2 (en) 2012-06-08 2013-06-07 Vessel for culturing human ES cells
JP2014520076A JPWO2013183777A1 (ja) 2012-06-08 2013-06-07 ヒトes細胞用培養容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012131430 2012-06-08
JP2012-131430 2012-06-08

Publications (1)

Publication Number Publication Date
WO2013183777A1 true WO2013183777A1 (ja) 2013-12-12

Family

ID=49712163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065891 WO2013183777A1 (ja) 2012-06-08 2013-06-07 ヒトes細胞用培養容器

Country Status (4)

Country Link
US (1) US10487310B2 (ja)
EP (1) EP2860239B1 (ja)
JP (3) JPWO2013183777A1 (ja)
WO (1) WO2013183777A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178413A1 (ja) * 2014-05-22 2015-11-26 住友ベークライト株式会社 細胞塊用培養容器
JP2016047902A (ja) * 2014-08-28 2016-04-07 住友ベークライト株式会社 高分子化合物、コーティング材、コーティング材を被覆した成形体、並びにその製造方法
WO2017057126A1 (ja) * 2015-09-29 2017-04-06 住友ベークライト株式会社 細胞塊用培養容器
WO2019131981A1 (ja) * 2017-12-27 2019-07-04 積水化学工業株式会社 幹細胞培養用足場材料及びそれを用いた幹細胞培養方法
US10954487B2 (en) 2016-01-21 2021-03-23 Osaka University Cell culturing method
WO2022124298A1 (ja) 2020-12-07 2022-06-16 株式会社カネカ 多能性幹細胞集団を製造する製造方法
US11414637B2 (en) * 2016-03-31 2022-08-16 Toyo Seikan Group Holdings, Ltd. Cell culture vessel, support jig for cell culture vessel and cell culture method
WO2022259998A1 (ja) 2021-06-07 2022-12-15 日産化学株式会社 コーティング膜形成用組成物、コーティング膜、及び細胞培養容器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023027079A1 (ja) * 2021-08-24 2023-03-02

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254622A (ja) * 2003-02-26 2004-09-16 Yamanashi Tlo:Kk 胚性幹細胞(es細胞)の胚様体(eb)形成のための培養容器及び培養方法
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
JP2008178367A (ja) 2007-01-26 2008-08-07 Sumitomo Bakelite Co Ltd 胚様体形成用培養容器と、その製造方法、及び胚様体形成方法。
JP2010094045A (ja) * 2008-10-14 2010-04-30 Sumitomo Bakelite Co Ltd マルチウェルプレート
JP2011000131A (ja) * 2009-02-09 2011-01-06 Dainippon Printing Co Ltd 細胞培養容器
WO2011083768A1 (ja) * 2010-01-08 2011-07-14 住友ベークライト株式会社 細胞凝集塊形成用培養容器
JP2012210166A (ja) * 2011-03-30 2012-11-01 Sumitomo Bakelite Co Ltd 胚様体形成用培養容器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716646B2 (ja) * 1993-05-21 1998-02-18 住友ベークライト株式会社 細胞凝集体の形成方法
JP3442357B2 (ja) * 2000-08-25 2003-09-02 株式会社日立製作所 両生類卵母細胞試料導入装置、両生類卵母細胞試料導入システム、両生類卵母細胞試料導入方法、両生類卵母細胞の製造方法、両生類卵母細胞及びそれを販売又は譲渡する方法、スクリーニング用のセンサーとして用いる方法、容器、及び解析方法
JP5067949B2 (ja) * 2006-11-09 2012-11-07 独立行政法人国立国際医療研究センター 霊長類動物胚性幹細胞の培養及び継代方法、並びにその分化誘導方法
JP2009050194A (ja) * 2007-08-27 2009-03-12 Sumitomo Bakelite Co Ltd 細胞凝集塊形成培養用容器
JP4724854B2 (ja) 2009-02-09 2011-07-13 大日本印刷株式会社 細胞培養容器
US20110083768A1 (en) * 2009-10-09 2011-04-14 Environmental Packaging Technologies Limited Methods, systems, and kits for shipping and/or off-loading granular products
US9790465B2 (en) * 2013-04-30 2017-10-17 Corning Incorporated Spheroid cell culture well article and methods thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254622A (ja) * 2003-02-26 2004-09-16 Yamanashi Tlo:Kk 胚性幹細胞(es細胞)の胚様体(eb)形成のための培養容器及び培養方法
JP2008099662A (ja) 2006-09-22 2008-05-01 Institute Of Physical & Chemical Research 幹細胞の培養方法
JP2008178367A (ja) 2007-01-26 2008-08-07 Sumitomo Bakelite Co Ltd 胚様体形成用培養容器と、その製造方法、及び胚様体形成方法。
JP2010094045A (ja) * 2008-10-14 2010-04-30 Sumitomo Bakelite Co Ltd マルチウェルプレート
JP2011000131A (ja) * 2009-02-09 2011-01-06 Dainippon Printing Co Ltd 細胞培養容器
WO2011083768A1 (ja) * 2010-01-08 2011-07-14 住友ベークライト株式会社 細胞凝集塊形成用培養容器
JP2012210166A (ja) * 2011-03-30 2012-11-01 Sumitomo Bakelite Co Ltd 胚様体形成用培養容器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2860239A4
SUEMORI ET AL., BIOCHEM BIOPHYS RES COMMUN., vol. 345, 2006, pages 926 - 32

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178413A1 (ja) * 2014-05-22 2015-11-26 住友ベークライト株式会社 細胞塊用培養容器
JP5950055B2 (ja) * 2014-05-22 2016-07-13 住友ベークライト株式会社 細胞塊用培養容器
KR20160117631A (ko) 2014-05-22 2016-10-10 스미또모 베이크라이트 가부시키가이샤 세포 덩어리용 배양 용기
EP3112454A4 (en) * 2014-05-22 2017-02-22 Sumitomo Bakelite Co.,Ltd. Cell mass culture vessel
US10472598B2 (en) 2014-05-22 2019-11-12 Sumitomo Bakelite Co., Ltd. Cell mass culture vessel
JPWO2015178413A1 (ja) * 2014-05-22 2017-04-20 住友ベークライト株式会社 細胞塊用培養容器
KR101756051B1 (ko) 2014-05-22 2017-07-07 스미또모 베이크라이트 가부시키가이샤 세포 덩어리용 배양 용기
JP2016047902A (ja) * 2014-08-28 2016-04-07 住友ベークライト株式会社 高分子化合物、コーティング材、コーティング材を被覆した成形体、並びにその製造方法
JPWO2017057126A1 (ja) * 2015-09-29 2017-10-05 住友ベークライト株式会社 細胞塊用培養容器
WO2017057126A1 (ja) * 2015-09-29 2017-04-06 住友ベークライト株式会社 細胞塊用培養容器
US10954487B2 (en) 2016-01-21 2021-03-23 Osaka University Cell culturing method
US11414637B2 (en) * 2016-03-31 2022-08-16 Toyo Seikan Group Holdings, Ltd. Cell culture vessel, support jig for cell culture vessel and cell culture method
WO2019131981A1 (ja) * 2017-12-27 2019-07-04 積水化学工業株式会社 幹細胞培養用足場材料及びそれを用いた幹細胞培養方法
JPWO2019131981A1 (ja) * 2017-12-27 2020-04-02 積水化学工業株式会社 細胞培養用足場材料、細胞培養用容器、細胞培養用担体、細胞培養用繊維及び細胞の培養方法
TWI744587B (zh) * 2017-12-27 2021-11-01 日商積水化學工業股份有限公司 幹細胞培養用支架材料及使用其之幹細胞培養方法
WO2022124298A1 (ja) 2020-12-07 2022-06-16 株式会社カネカ 多能性幹細胞集団を製造する製造方法
WO2022259998A1 (ja) 2021-06-07 2022-12-15 日産化学株式会社 コーティング膜形成用組成物、コーティング膜、及び細胞培養容器
KR20240017812A (ko) 2021-06-07 2024-02-08 닛산 가가쿠 가부시키가이샤 코팅막 형성용 조성물, 코팅막, 및 세포 배양 용기

Also Published As

Publication number Publication date
JP6443707B2 (ja) 2018-12-26
EP2860239B1 (en) 2019-11-13
EP2860239A1 (en) 2015-04-15
EP2860239A4 (en) 2016-01-27
JP2018130120A (ja) 2018-08-23
JP2019022527A (ja) 2019-02-14
JP6678934B2 (ja) 2020-04-15
US10487310B2 (en) 2019-11-26
US20150140652A1 (en) 2015-05-21
JPWO2013183777A1 (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
JP6443707B2 (ja) 単一細胞凝集塊形成用培養容器
JP6365717B2 (ja) 細胞凝集塊形成用培養容器
US10072241B2 (en) Conical devices for three-dimensional aggregate(s) of eukaryotic cells
JP5950055B2 (ja) 細胞塊用培養容器
WO2012133514A1 (ja) 胚様体形成用培養容器
JP2009050194A (ja) 細胞凝集塊形成培養用容器
JP2008061609A (ja) 細胞培養容器の製造方法および細胞培養容器。
US10625234B2 (en) Method of fabricating cell arrays and uses thereof
JPWO2012124353A1 (ja) 培養方法、成熟脂肪細胞群及び薬物スクリーニング方法
WO2013047655A1 (ja) iPS細胞用培養容器
JP5151892B2 (ja) マルチウェルプレート
US5023026A (en) Method for hydrophilication treatment of synthetic resin object, and culture devices and inspection apparatus treated by same
JP2012235749A (ja) マイクロチップの製造方法、物理マスク、及びマイクロチップ
JP2008220205A (ja) 神経幹細胞凝集塊形成用容器、その製造方法、及び神経幹細胞凝集塊の作成方法。
WO2019084622A1 (en) Cell culture system
JP6338015B2 (ja) 細胞塊用培養容器
JP2008178367A (ja) 胚様体形成用培養容器と、その製造方法、及び胚様体形成方法。
WO2020255905A1 (ja) 培養基材および/または培地溶液の評価方法、並びに当該評価方法の利用
Dai et al. Bioinspired conical micropattern modulates cell behaviors
JP2023178108A (ja) 細胞培養基材
JP2024067168A (ja) 細胞培養基材及びその製造方法
JPS63109769A (ja) 培養器具または検査用器具及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801374

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014520076

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14406370

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013801374

Country of ref document: EP