WO2013183636A1 - 成形用材料、その成形体、および該成形体の製造方法 - Google Patents

成形用材料、その成形体、および該成形体の製造方法 Download PDF

Info

Publication number
WO2013183636A1
WO2013183636A1 PCT/JP2013/065476 JP2013065476W WO2013183636A1 WO 2013183636 A1 WO2013183636 A1 WO 2013183636A1 JP 2013065476 W JP2013065476 W JP 2013065476W WO 2013183636 A1 WO2013183636 A1 WO 2013183636A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
mass
molding material
polybutylene terephthalate
parts
Prior art date
Application number
PCT/JP2013/065476
Other languages
English (en)
French (fr)
Inventor
松田 猛
横溝 穂高
一光 古川
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to EP13801414.7A priority Critical patent/EP2860214B1/en
Priority to US14/406,073 priority patent/US20150183984A1/en
Priority to JP2014520008A priority patent/JP6163485B2/ja
Priority to KR1020147034128A priority patent/KR20150024824A/ko
Priority to CN201380030247.1A priority patent/CN104364299A/zh
Publication of WO2013183636A1 publication Critical patent/WO2013183636A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a molding material in which polybutylene terephthalate is attached to an easily impregnated carbon fiber bundle, a molded body having excellent mechanical properties obtained from the molding material, and a method for producing the molded body.
  • the resin is a composite material reinforced with carbon fibers.
  • CFRTP carbon fiber reinforced thermoplastic resin
  • a production method in which a carbon fiber bundle is impregnated with a thermoplastic resin in a molten state having a relatively high viscosity to obtain a composite material.
  • the carbon fiber bundle in order to prevent the strength from being lowered in the molded product due to insufficient impregnation, the carbon fiber bundle is kept for a long time at an excessive pressure with the atmospheric temperature raised and the melt viscosity of the thermoplastic resin lowered. It is necessary to perform the impregnation treatment, and there is a problem that the manufacturing cost increases due to such a high-pressure impregnation treatment for a long time.
  • Patent Document 1 a method of impregnating a carbon fiber bundle with a low molecular weight molten resin and then impregnating a high molecular weight thermoplastic resin (Patent Document 2), and opening carbon fibers in a molten resin bath A method of impregnation (Patent Document 3) and the like are disclosed. Further, Patent Document 4 describes adjusting the carbon fiber converging agent to an agent having good wettability with the resin as a method for allowing the carbon fiber itself to be impregnated with the thermoplastic resin.
  • CFRTP products molded products
  • PBT polybutylene terephthalate
  • An object of the present invention is to enable a carbon fiber reinforced polybutylene terephthalate molded body having excellent physical properties and appearance, a method of manufacturing the molded body by a simple process without causing an increase in manufacturing cost, and the manufacturing method.
  • An object of the present invention is to provide a molding material.
  • a carbon fiber bundle containing a specific compound (hereinafter referred to as an easily impregnated carbon fiber bundle) is remarkably formed by plasticized polybutylene terephthalate. It was found to be easily impregnated. Furthermore, the present inventors used a material in which polybutylene terephthalate is attached to this easily impregnated carbon fiber bundle as a molding material, and this is used in a molding die in the state of plasticizing temperature of polybutylene terephthalate. It has been found that a surprising phenomenon occurs in which polybutylene terephthalate impregnates an easily impregnated carbon fiber bundle and spreads in the mold while releasing the carbon fiber bundle.
  • the glass transition temperature drop rate ( ⁇ Tg) defined by the following formula (A) is larger than 0.2 [° C./%] from the glass transition temperature Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
  • Impregnation aid blending ratio [%] 100 ⁇ impregnation aid blending amount [parts by mass] / polybutylene terephthalate amount [parts by mass] (B) Defined by 2.
  • the above molding material, wherein the impregnation aid is at least one selected from the group consisting of a phosphate ester and an aliphatic hydroxycarboxylic acid polyester. 3.
  • the phosphoric acid ester is an aromatic phosphoric acid ester having a boiling point of 340 ° C. or higher under normal pressure and a heating loss at 280 ° C. of 2% / min or lower in a nitrogen atmosphere. Molding material. 4).
  • the aliphatic hydroxycarboxylic acid polyester is a homopolymer of ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, and enanthlactone, and has a weight average molecular weight of 3000.
  • the molding material as described above which is one or more selected from the group consisting of those having a weight average molecular weight of 3,000 to 50,000, and a copolymer of two or more kinds of monomers. 6).
  • the molding material as described above which has a core-sheath structure in which the easily impregnable carbon fiber bundle is a core component and polybutylene terephthalate is a sheath component. 7).
  • the molding material as described above, wherein the molding material is in the form of pellets. 8).
  • the molding material as described above, wherein the length of the pellet in the longitudinal direction is 3 to 10 mm.
  • the molded object which consists of a molding material as described above. 10.
  • the molded article as described above, wherein carbon fibers derived from the easily impregnable carbon fiber bundle are dispersed with an average fiber length of 0.3 mm or more. 11.
  • the relationship between the carbon fiber content (% by mass) and the tensile strength of ISO527 standard 4 mm dumbbell is represented by the following formula (C) Carbon fiber content (mass%) ⁇ 3 + 90 ⁇ tensile strength (MPa) (C)
  • C Carbon fiber content (mass%) ⁇ 3 + 90 ⁇ tensile strength (MPa)
  • MPa ⁇ tensile strength
  • a carbon fiber reinforced polybutylene terephthalate molded body having excellent physical properties and appearance, a method for producing the molded body by a simple process without causing an increase in production cost, and molding that enables the production method Materials can be provided.
  • the present invention relates to an easily impregnable carbon fiber bundle containing 3 to 15 parts by mass of one or more impregnation aids that satisfy the following conditions 1 and 2 with respect to 100 parts by mass of carbon fibers.
  • the present invention relates to a molding material having butylene terephthalate attached thereto, a molded body obtained from the molding material, and a method for producing the molded body.
  • Condition 1 The viscosity of the liquid at 280 ° C. is 10 Pa ⁇ s or less.
  • the glass transition temperature drop rate ( ⁇ Tg) defined by the following formula (A) is larger than 0.2 [° C./%] from the glass transition temperature Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
  • Impregnation aid blending ratio [%] 100 ⁇ impregnation aid blending amount [parts by mass] / polybutylene terephthalate amount [parts by mass] (B) Defined by
  • the easily impregnable carbon fiber bundle in the present invention includes polybutylene terephthalate (3 to 15 parts by mass of one or more impregnation aids satisfying the following conditions 1 and 2 with respect to 100 parts by mass of carbon fiber.
  • the carbon fiber bundle is easily impregnated with plasticized polybutylene terephthalate.
  • Condition 1 The viscosity of the liquid at 280 ° C. is 10 Pa ⁇ s or less.
  • the glass transition temperature drop rate ( ⁇ Tg) defined by the following formula (A) is larger than 0.2 [° C./%] from the glass transition temperature Tg 0 [° C.] and the blending rate (%) of the impregnation aid.
  • the easily impregnable carbon fiber bundle may be a carbon fiber bundle that contains the impregnation aid in a predetermined amount with respect to the carbon fiber, and includes its production method and carbon fiber and impregnation aid. Regardless of form.
  • the impregnation aid used in the present invention satisfies the above-mentioned condition 1, which is in a low viscosity state at 280 ° C., which is a typical processing temperature of general-purpose polybutylene terephthalate, And it means that the viscosity as a liquid can be measured at 280 ° C.
  • the viscosity of the liquid at 280 ° C. of the impregnation aid is preferably 8 Pa ⁇ s or less, and more preferably 6 Pa ⁇ s or less.
  • a rotary viscometer is suitable as a method for measuring the viscosity of the impregnation aid as a liquid. Specifically, the method etc. which measure with a parallel plate with a high temperature tank can be illustrated.
  • the impregnation aid used in the present invention satisfies the above condition 2.
  • the impregnation aid has a glass transition temperature decrease rate ( ⁇ Tg)> 0.2 [° C./%] in the entire range of the blending amount of 1 to 100 parts by mass per 100 parts by mass of polybutylene terephthalate. It is not necessary, and any material that exhibits a glass transition temperature decrease rate ( ⁇ Tg) greater than 0.2 ° C./% in a part of the blending amount range may be used.
  • the glass transition temperature reduction rate ( ⁇ Tg) is greater than 0.2 ° C./%, it has an effect of promoting impregnation, and ⁇ Tg is more preferably greater than 0.3 ° C./%. That ⁇ Tg is 0.2 ° C./% or less is a state in which the impregnation aid is not compatible with polybutylene terephthalate, and therefore it is assumed that the Tg of polybutylene terephthalate is measured almost as it is.
  • examples of the method for measuring the glass transition temperature of polybutylene terephthalate or a resin composition of polybutylene terephthalate and an impregnation aid include a method by differential scanning calorimetry (DSC).
  • the impregnation aid preferably has a boiling point of 340 ° C. or higher under normal pressure and a heating loss of 2% / min or less at 280 ° C. in a nitrogen atmosphere.
  • boiling point under normal pressure is 340 ° C. or higher” means that the impregnating aid clearly remains boiling at 340 ° C. even if the boiling point under normal pressure cannot be clearly measured. If there is, it is understood that the condition is satisfied.
  • the loss on heating at 280 ° C. under a nitrogen atmosphere is 2% / min or less”
  • the impregnation aid decomposes violently at 280 ° C. in a nitrogen atmosphere, and the heat loss cannot be measured accurately.
  • the amount of the impregnation aid contained in the easily impregnated carbon fiber bundle is 3 to 15 parts by mass, preferably 5 to 12 parts by mass with respect to 100 parts by mass of the carbon fibers. If it is less than 3 parts by mass, the impregnation of polybutylene terephthalate into carbon fibers will be insufficient, and if it is more than 15 parts by mass, the impregnation of polybutylene terephthalate into carbon fibers will be excellent, but glass of polybutylene terephthalate, which is a matrix resin. It is not preferable because the heat resistance of the molded product is lowered due to the lowering of the transition temperature.
  • the easily impregnable carbon fiber bundle used in the present invention may contain a plurality of types of impregnation aids.
  • the impregnation aid used in the present invention include phosphate esters and aliphatic hydroxycarboxylic acid polyesters. It is preferable that it is at least one selected from the group consisting of, and naturally, it may contain both a phosphate ester and an aliphatic hydroxycarboxylic acid polyester. These phosphate esters and aliphatic hydroxycarboxylic acid polyesters used as impregnation aids will be described in detail later.
  • a typical method for producing an easily impregnated carbon fiber bundle is to impregnate a general-purpose carbon fiber bundle by at least one method selected from the group selected from a dipping method, a spray method, a roller transfer method, a slit coater method, and the like.
  • the method of including an auxiliary agent is exemplified.
  • the impregnation aid adheres mainly to the surface of the carbon fiber bundle, and a part of the impregnation aid also penetrates into the carbon fiber bundle. Seem.
  • the impregnation aid in producing the easily impregnable carbon fiber bundle it can be handled as an aqueous emulsion, an organic solvent diluted solution, or a heated viscous or molten liquid.
  • a preferable combination of the production method and the form of the impregnation aid is a dipping method or a roller transfer method in the case of an aqueous emulsion, but a drying step in an atmosphere of 100 ° C. or higher is necessary to sufficiently dry the water. It becomes.
  • a heated viscous liquid a general coating method such as a slit coater method can be used, and after an appropriate amount is attached to the carbon fiber bundle, it can be uniformly attached with a smoothing roll or the like.
  • the impregnation aid is adhered to the carbon fiber bundle as uniformly as possible.
  • the heat treatment is again performed at a temperature at which the viscosity of the impregnation aid is sufficiently lowered.
  • the heat treatment for example, hot air, a hot plate, a roller, an infrared heater or the like can be used, and a roller is preferably used.
  • the carbon fiber contained in the molding material of the present invention may be any carbon fiber such as polyacrylonitrile (PAN), petroleum / petroleum pitch, rayon, and lignin.
  • PAN polyacrylonitrile
  • the carbon fiber preferably has an average diameter of 3 to 12 ⁇ m, more preferably an average diameter of 5 to 10 ⁇ m, and still more preferably an average diameter of 5 to 7 ⁇ m.
  • a general carbon fiber is a carbon fiber filament in which 1000 to 50000 single fibers are bundled.
  • the carbon fiber bundle in the present invention includes such general carbon fiber filaments, and the carbon fiber filaments are further overlapped and combined, or the combined yarn is twisted into a twisted yarn. Is also included.
  • the carbon fiber contained in the molding material of the present invention one in which an oxygen-containing functional group is introduced to the surface by a surface treatment is preferable in order to enhance the adhesion between the carbon fiber and polybutylene terephthalate.
  • the carbon fiber bundle is stabilized in order to stabilize the step of uniformly attaching the impregnation aid to the carbon fiber bundle. Is preferably treated with a converging agent for imparting convergence.
  • the sizing agent those known for producing carbon fiber filaments can be used.
  • the term “surface treatment agent” may be used to mean a superordinate concept that includes an impregnation aid and other treatment agents such as the above-described sizing agent.
  • the phosphate ester used as the impregnation aid is not particularly limited as long as it satisfies the above conditions 1 and 2, but specifically, a phosphate ester monomer or a blend of oligomeric phosphate esters, etc.
  • aromatic phosphates typified by trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, and triphenyl phosphate. Trimethyl phosphate or aromatic phosphates are preferable.
  • the loss on heating is 2% / min or less in a nitrogen atmosphere, and the boiling point under normal pressure is 340 ° C.
  • the heating loss and boiling point are in the above ranges, so the phosphoric acid ester does not decompose or evaporate during kneading, so the resin is impregnated into the carbon fiber until the end of kneading, and the appearance of the molded body is further improved.
  • normal pressure means atmospheric pressure of about standard atmospheric pressure (1013 hPa) without intentional pressurization / decompression operation, generally 800 to 1050 hPa, usually 1000 to 1030 hPa, more usually Means an atmospheric pressure in the range of 1009 to 1017 hPa.
  • the aromatic phosphoric acid ester represented by the general formula (1) is preferably used in the present invention.
  • R 1 to R 12 are hydrogen atoms or methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl groups, etc. It is preferable to use an alkyl group having 1 to 4 carbon atoms because the melt fluidity and the light resistance of the molded product can be remarkably improved. Of these alkyl groups, an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group and / or an ethyl group are more preferable.
  • the aromatic phosphate represented by the general formula (1) includes an aromatic group in the formula Are each independently a phenyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2-propylphenyl group , 3-propylphenyl group, 4-propylphenyl group, 2-isopropylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2-butylphenyl group, 3-butylphenyl group, Among them, preferred is a phenyl group having two alkyl groups having 1 to 3 carbon atoms such as methyl, ethyl and propyl groups, and more preferred are two alkyl groups having 1 to 3 carbon atoms, Phenyl groups having 2 and 6 positions (for example, 2,6-dimethylphenyl group, 2,6-diethylpheny
  • n is 0 or an integer of 1, but is preferably 1.
  • X is a bond, —CH 2 —, —C (CH 3 ) 2 —, —S—, —SO 2 —, —O—, —CO— or —N ⁇ N—.
  • a bond, —CH 2 —, or —C (CH 3 ) 2 — is preferable, and —C (CH 3 ) 2 — is more preferable.
  • the repeating unit m is an integer of 0 to 5, but is preferably 1 or more, that is, the aromatic phosphate ester of the formula (1) is a so-called aromatic condensed phosphate ester, It is more preferably an integer of 1 to 3, further preferably 1 or 2, and particularly preferably 1.
  • triphenyl phosphate is more preferable.
  • aromatic phosphates selected from the group consisting of: Of the aromatic phosphates represented by the general formula (1), triphenyl phosphate or bisphenol A bis (diphenyl phosphate) is more preferable, and bisphenol A bis (diphenyl phosphate) is particularly preferable.
  • a condensed phosphate ester condensed via a polynuclear aromatic ring residue or a heterocyclic residue can also be used as a preferred phosphate ester impregnation aid in the present invention.
  • the amount of the phosphate ester contained in the easily impregnated carbon fiber bundle is 3 to 15 parts by mass, preferably 5 to 12 parts by mass with respect to 100 parts by mass of the carbon fiber. If it is less than 3 parts by mass, the impregnation of polybutylene terephthalate into carbon fibers will be insufficient, and if it is more than 15 parts by mass, the impregnation of polybutylene terephthalate into carbon fibers will be excellent, but glass of polybutylene terephthalate, which is a matrix resin. It is not preferable because the heat resistance of the molded product is lowered due to the lowering of the transition temperature. In addition, when an aliphatic hydroxycarboxylic acid-based polyester is used in combination with a phosphoric acid ester as an impregnation aid, it is only necessary that the total amount used falls within the above range.
  • the aliphatic hydroxycarboxylic acid-based polyester that can be used as an impregnation aid is a polyester composed of an aliphatic hydroxycarboxylic acid residue, and may be a monopolymerized polyester composed of a single aliphatic hydroxycarboxylic acid residue. It may be a copolyester containing a kind of aliphatic hydroxycarboxylic acid residue.
  • the aliphatic hydroxycarboxylic acid polyester may be a residue other than the aliphatic hydroxycarboxylic acid residue, such as a diol residue or dicarboxylic acid, in an amount of less than 50 mol% of the residues constituting the polymer.
  • a copolyester containing an acid residue or the like a homopolymer to which no copolymerization component is intentionally added is preferred because it is easily available.
  • the weight average molecular weight of the aliphatic hydroxycarboxylic acid polyester used in the present invention is preferably 3000 to 50000.
  • the weight average molecular weight is in the range of 3,000 to 50,000, the affinity with the polybutylene terephthalate resin is good and emulsification is easy.
  • it is in the range of 5000 to 20000, more preferably 8000 to 15000.
  • well-known methods such as a high temperature GPC method, can be used as a measuring method of a weight average molecular weight.
  • the aliphatic hydroxycarboxylic acid-based polyester that can be used as an impregnation aid is not particularly limited, but ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valero A homopolymer of lactone and enanthlactone, and a copolymer of two or more of these monomers are preferable, and ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -One or more kinds selected from the group consisting of homopolymers of valerolactone and enanthlactone having a weight average molecular weight of 3,000 to 50,000 and copolymers of these two or more monomers having a weight average molecular weight of 3,000 to 50,000.
  • the weight average molecular weight of each polymer is as described above. Particularly preferred is a homopolymer of ⁇ -caprolactone or ⁇ -caprolactone having a weight average molecular weight of 3,000 to 50,000.
  • the lactone polymer is not only a polymer obtained by ring-opening polymerization of a lactone but also an aliphatic hydroxycarboxylic acid or a derivative thereof, which is an equivalent of the lactone, as a raw material. A polymer having a similar structure is also included.
  • the amount of the aliphatic hydroxycarboxylic acid-based polyester attached to the easily impregnated carbon fiber bundle is 3 to 15 parts by mass, preferably 5 to 12 parts by mass with respect to 100 parts by mass of the carbon fiber. If it is less than 3 parts by mass, the easy impregnation of polybutylene terephthalate into carbon fibers becomes insufficient, and if it exceeds 15 parts by mass, the impregnation is excellent, but the glass transition temperature of polybutylene terephthalate, which is a matrix resin, decreases. Since the heat resistance of the obtained molded body is lowered, it is not preferable.
  • polybutylene terephthalate adheres to the above-mentioned easily impregnable carbon fiber bundle at 50 to 2000 parts by mass per 100 parts by mass of carbon fiber contained in the easily impregnable carbon fiber bundle. More preferably, it is adhered at 66 to 1900 parts by mass, and more preferably at 100 to 600 parts by mass.
  • the shape of the molding material of the present invention is not particularly limited, and examples thereof include a columnar shape, a plate shape, a granular shape, a lump shape, a thread shape (string shape), a net shape, and the like, and a plurality of types of molding materials having different shapes may be molded. Is possible.
  • a method of attaching polybutylene terephthalate to the above-described easily impregnable carbon fiber bundle and forming the molding material of the present invention a method of coating the surface of the easily impregnable carbon fiber bundle with polybutylene terephthalate in a molten state, easy impregnation A method of casting and laminating molten polybutylene terephthalate using a T-die, etc., after arranging the conductive carbon fiber bundles, and laminating and laminating film-like polybutylene terephthalate resin on the easily impregnated carbon fiber bundles arranged. And a method in which powdery polybutylene terephthalate is sprayed on an easily impregnated carbon fiber bundle.
  • an aggregate of easily impregnable fiber bundles cut to a predetermined length can be used in the same manner.
  • the molding material of the present invention preferably has a core-sheath structure in which an easily impregnated carbon fiber bundle is a core component and polybutylene terephthalate is a sheath component, particularly for the molding material of the present invention and for injection molding.
  • an easily impregnated carbon fiber bundle obtained by cutting a strand coated with polybutylene terephthalate around the easily impregnated carbon fiber bundle with a strand cutter is used as a core component, and polybutylene terephthalate as a sheath component.
  • the core-sheath structure is more preferably a pellet, and more preferably a pellet having a length in the longitudinal direction of about 3 to 10 mm (hereinafter sometimes referred to as a core-sheath pellet).
  • a core-sheath pellet a pellet having a length in the longitudinal direction of about 3 to 10 mm
  • limiting in particular in the diameter of this core-sheath-type pellet It is preferable that it is 1/10 or more and 2 times or less of pellet length, and it is more preferable that it is 1/4 or more of pellet length and is equal to or less than pellet length.
  • the polybutylene terephthalate resin used in the present invention is, for example, a polybutylene terephthalate single polymer obtained by polycondensation of 1,4-butanediol and terephthalic acid or a lower alcohol ester derivative thereof, or a polybutylene terephthalate as a main component. It is a copolymer.
  • the melting point of the polybutylene terephthalate single polymer is preferably 224 ° C.
  • the melting point of the polybutylene terephthalate copolymer is preferably 150 to 230 ° C., and more preferably 170 to 210 ° C.
  • the bifunctional or higher acid component monomer to be copolymerized includes components other than the terephthalic acid or its lower alcohol ester derivative, such as isophthalic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid, trimellit Examples thereof include aliphatic or aromatic polybasic acids such as acids and succinic acid, or derivatives capable of forming esters thereof; aromatic hydroxycarboxylic acids such as hydroxybenzoic acid and hydroxynaphthoic acid, or derivatives capable of forming esters thereof.
  • Bifunctional or higher polyhydroxy component monomers to be polycondensed with acid component monomers include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, hexamethylene glycol, neopentyl glycol as components other than 1,4-butanediol.
  • Lower alkylene glycols such as cyclohexanedimethanol and 1,3-octanediol; aromatic polyhydroxy compounds such as 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) and 4,4′-dihydroxybiphenyl; bisphenol Alkylene oxide adducts of aromatic polyhydroxy compounds such as ethylene oxide 2 mol adducts of A and propylene oxide 3 mol adducts of bisphenol A; glycerin, pentaerythritol Polyols, etc. and the like.
  • any kind of polybutylene terephthalate produced by polycondensation of the acid component monomer and the polyhydroxy component monomer as described above can be used.
  • Each of the above component monomers can be used alone or in admixture of two or more, but from the viewpoint of requiring the original physical properties of polybutylene terephthalate, a polybutylene terephthalate monopolymer is preferably used.
  • polybutylene terephthalate homopolymer or copolymer The production method of polybutylene terephthalate homopolymer or copolymer is not special and is generally known.
  • 1,4-butanediol, terephthalic acid and, if necessary, comonomer components are directly polymerized
  • the polymerization may be carried out by a method, (ii) a method in which these are transesterified and polymerized.
  • the polybutylene terephthalate homopolymer and copolymer are simply referred to as polybutylene terephthalate (resin) unless otherwise required.
  • the polybutylene terephthalate resin used in the present invention has its molecular chain end capped by reaction with an alkylating agent, acylating agent, silylating agent, oxazoline compound, epoxy compound, or carbodiimide compound.
  • an alkylating agent acylating agent, silylating agent, oxazoline compound, epoxy compound, or carbodiimide compound.
  • various polymers, fillers, stabilizers, pigments, etc. are blended within the range that does not impair the mechanical strength in order to increase fluidity, appearance gloss, flame retardancy, thermal stability, weather resistance, impact resistance, etc. May be.
  • a phosphate ester as a flame retardant to polybutylene terephthalate.
  • the molding material of the present invention is molded by the existing thermoplastic resin molding process without performing the treatment for impregnating the thermoplastic resin into the reinforcing fiber in an independent process as in the prior art.
  • polybutylene terephthalate is impregnated into the easily impregnated carbon fiber bundle, melted and flowed while unfolding the carbon fiber bundle, and a molded article having good physical properties is obtained. Is possible.
  • the invention of the molded body made of the molding material of the present invention, and the molding material are present in the mold at a temperature equal to or higher than the plasticizing temperature of the polybutylene terephthalate.
  • the easily impregnated carbon fiber bundle is impregnated with the polybutylene terephthalate, and the carbon fiber bundle of the easily impregnable carbon fiber bundle is molded while being dispersed and then cooled.
  • the invention of the manufacturing method of the molded article is also included.
  • “dissolving and dispersing the carbon fiber bundles of the easily impregnated carbon fiber bundles” means that the carbon fiber bundles are formed to such an extent that the carbon fibers do not become a lump in the molded body. It means that the fiber bundles such as carbon fiber filaments are defibrated and dispersed, and do not have to be completely unwound up to each of the thousands of tens of thousands of carbon fiber single yarns that make up the carbon fiber bundle. A molded article having excellent physical properties and appearance can be obtained.
  • the molding material can be used in various forms suitable for the molding method employed.
  • a strand shape in which a strand in which polybutylene terephthalate is coated around an easily impregnable carbon fiber bundle is cut with a strand cutter, preferably about 3 to 10 mm in length. It can be used as a molding material (core-sheath type pellet).
  • press molding is effective for obtaining a plate-like large molded body.
  • a plate-shaped molding material in which polybutylene terephthalate and easy-impregnated carbon fiber bundles are laminated is heated to a temperature equal to or higher than the plasticizing temperature of polybutylene terephthalate and placed in a press mold. Thereafter, it is possible to mold at a predetermined pressing pressure.
  • a method of molding using a preform body obtained by pre-heating the molding material according to the present invention is also effective.
  • the molding material and the carbon fiber content of the molding are naturally the same. Therefore, the amount of carbon fiber and polybutylene terephthalate contained in the molded article of the present invention and the preferred range thereof are those described above for the molding material.
  • the carbon fiber content of either the molding material or the obtained molded body ( Rate) is measured and this can be regarded as the other carbon fiber content (rate).
  • the calculation is performed based on the amount of addition, and the molding material or molded body of the present invention is calculated. From one carbon fiber content (rate), the other carbon fiber content (rate) can be obtained.
  • Conventional molded articles of carbon fiber reinforced thermoplastic resin are pellets obtained by melt-kneading thermoplastic resin and carbon fiber with a twin screw extruder or the like to make the carbon fiber uniformly dispersed in the thermoplastic resin. Is obtained as a material.
  • the carbon fibers are crushed in the extruder, and the carbon fiber length in the obtained molded body becomes less than 0.3 mm. Will fall.
  • the molded body of the molding material of the present invention is excellent in the impregnation property of polybutylene terephthalate into the carbon fiber bundle, it is not necessary to knead the carbon fiber bundle and the molten resin with high shear. For this reason, carbon fibers remain in the molded article obtained for a long time, and the mechanical strength is excellent.
  • the carbon fiber in which the easily impregnated carbon fiber bundle is unwound in the molded product is dispersed with an average fiber length of 0.3 mm or more, more preferably the carbon fiber is an average fiber. It is dispersed with a length of 0.4 mm or more.
  • the upper limit of the average fiber length of the remaining carbon fibers is not particularly limited, and depends on the application and the molding method employed.
  • the average fiber length of carbon fibers For example, for a compact obtained by injection molding using strands coated with polybutylene terephthalate around easy-impregnated carbon fiber bundles as pellets with a strand cutter, the average fiber length of carbon fibers A carbon fiber bundle having a degree of impregnation with a thermoplastic resin having a higher degree of impregnation with a thermoplastic resin is more likely to break during injection molding, and thus the average fiber length is often 2 mm or less.
  • the molded body of the present invention satisfies the relationship of the following formula (C) in a tensile test piece having an ISO 527 standard thickness of 4 mm.
  • MPa ⁇ tensile strength
  • the fact that the above formula (C) is satisfied means that in a molded article of carbon fiber reinforced thermoplastic resin, the tensile strength of the molded article is extremely high compared to the carbon fiber content, which is extremely preferable in terms of cost and performance. .
  • the heating loss (% / min) of the impregnation aid was increased from a room temperature of 10 ° C./min to 280 ° C. in a nitrogen atmosphere from a sample of the impregnation aid with an initial mass Wpre (g) using a differential thermobalance. Then, from the mass Wpost (g) of the sample after being kept at 280 ° C. for 15 minutes, the average value of the number of samples 3 calculated by the above formula (i).
  • the viscosity of the liquid at 280 ° C. of polycaprolactone is 8 Pa ⁇ s.
  • the glass transition temperature decrease rate ( ⁇ Tg) is 0.4 ° C./%, which is larger than 0.2 ° C./%.
  • Trimethyl phosphate The viscosity of the liquid at 280 ° C. of trimethyl phosphate is 2 mPa ⁇ s (2 ⁇ 10 ⁇ 3 Pa ⁇ s).
  • the glass transition temperature Tg 1 indicated by the resin composition obtained by blending 2 parts by mass of trimethyl phosphate per 100 parts by mass of polybutylene terephthalate (Tg 0 50 ° C.) is 49 ° C., and is defined by the formula (A).
  • the glass transition temperature reduction rate ( ⁇ Tg) is 0.5 ° C./%, which is greater than 0.2 ° C./%.
  • the boiling point under normal pressure is 193 ° C.
  • each measurement test method and evaluation method used in Examples and Comparative Examples are as follows.
  • the carbon fiber content is determined by placing a molding material such as pellets or a sample of the cut molded body into a crucible, putting it in a muffle furnace set at a furnace temperature of 600 ° C., and removing the resin component by combustion. It was determined from the mass of the carbon fiber.
  • what is shown as carbon fiber content (mass%) about a molding material or a molded object is not only carbon fiber and polybutylene terephthalate, but also the mass of carbon fiber relative to the total mass including an impregnation aid and the like. It is a ratio.
  • the amount of the surface treatment agent such as impregnation aid contained in the easily impregnable carbon fiber bundle or carbon fiber filament is put in a crucible with the carbon fiber bundle cut out in a length of 1 m, and the furnace temperature is 550 ° C.
  • the surface treatment agent component was burned and removed, and determined from the mass of the remaining carbon fiber.
  • a dumbbell test piece was prepared from the obtained molding material by an injection molding machine, and the tensile strength was measured according to ISO 527 (JIS K 7161).
  • Example 1 As an impregnation aid, aromatic condensed phosphate ester bisphenol A bis (diphenyl phosphate) (manufactured by Daihachi Chemical Co., Ltd .; CR-741) was used. After passing a PAN-based carbon fiber filament (STO40 24K equivalent, fiber diameter 7.0 ⁇ m, filament number 24,000, tensile strength 4000 MPa, manufactured by Toho Tenax Co., Ltd.) as a carbon fiber bundle, a solution excessively attached to the carbon fiber bundle is applied to the nip roll. Removed. Furthermore, the carbon fiber bundle to which the impregnation aid was adhered was dried by passing it through a hot air drying furnace heated to 180 ° C.
  • STO40 24K equivalent fiber diameter 7.0 ⁇ m, filament number 24,000, tensile strength 4000 MPa, manufactured by Toho Tenax Co., Ltd.
  • the easily impregnated carbon fiber bundle obtained above is polybutylene terephthalate (manufactured by Polyplastics Co., Ltd .: DURANEX (registered trademark) 2002) using an electric wire covering crosshead die having an outlet diameter of 3 mm.
  • C4 is a cavity, N is a nozzle) and injection molding is performed in a molding cycle of 35 seconds to obtain a dumbbell for tensile test having a thickness of 4 mm.
  • the resulting molded article had good appearance with no fibrous mass or bubbles due to poor dispersion, and exhibited excellent mechanical properties with a tensile strength of 185 MPa.
  • the average fiber length of the carbon fibers contained in the molded body was 1.3 mm. The results are shown in Table 1.
  • Example 2 By treating the carbon fiber filament with the concentration of the emulsified solution of bisphenol A bis (diphenyl phosphate), which is an impregnation aid, having a nonvolatile content of 25 mass%, the content of the impregnation aid is 10 mass% (per 100 mass parts of carbon fiber). (11.1 parts by mass) The same procedure as in Example 1 was performed except that the carbon fiber bundle was easily impregnated. The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 3 When an easily impregnated carbon fiber bundle is coated with polybutylene terephthalate (manufactured by Polyplastics Co., Ltd .: DURANEX (registered trademark) 2002) using an electric wire covering crosshead die having an outlet diameter of 3 mm, pellets obtained The same operation as in Example 2 was carried out except that the carbon fiber content of the molding material was 30% by mass (polybutylene terephthalate was 222.2 parts by mass per 100 parts by mass of carbon fiber). The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 4 Instead of bisphenol A bis (diphenyl phosphate), polycaprolactone (PLACCEL (registered trademark) H1P molecular weight 10,000, manufactured by Daicel Chemical Industries), which is an aliphatic hydroxycarboxylic acid polyester, is used as an impregnation aid, and this has a non-volatile content of 12% by mass.
  • the carbon fiber filaments were treated with the emulsion solution of the above to obtain an easily impregnable carbon fiber bundle having a polycaprolactone impregnation aid content of 5% by mass (5.3 parts by mass per 100 parts by mass of carbon fiber).
  • the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 5 The content of polycaprolactone impregnation aid is 10% by mass (100 parts by mass of carbon fiber) by treating the carbon fiber filament as an emulsion solution having a nonvolatile content of 25% by mass with the concentration of the emulsified solution of polycaprolactone as the impregnation aid.
  • the same operation as in Example 4 was performed except that the easily impregnated carbon fiber bundle was 11.1 parts by mass).
  • the obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 6> Instead of bisphenol A bis (diphenyl phosphate), trimethyl phosphate (TMP manufactured by Eighth Chemical Co., Ltd.) was used as the impregnation aid, and the carbon fiber filament was treated with an emulsion liquid having a nonvolatile content of 25% by mass.
  • TMP bisphenol A bis (diphenyl phosphate)
  • the carbon fiber filament was treated with an emulsion liquid having a nonvolatile content of 25% by mass.
  • the operation was performed in the same manner as in Example 1, except that the easily impregnable carbon fiber bundle was 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) of the trimethyl phosphate impregnation aid.
  • the obtained molded article showed sufficient tensile strength, and no lumps of fibrous material were confirmed on the appearance surface, but bubbles were observed. The results are shown in Table 1.
  • Example 7 The content of polycaprolactone impregnating aid is 3% by mass (100 parts by mass of carbon fiber) by treating the carbon fiber filament as an emulsion solution having a non-volatile content of 9% by mass of the emulsified solution of polycaprolactone as an impregnating aid.
  • the operation was carried out in the same manner as in Example 4 except that the easily impregnable carbon fiber bundle was 4.0 parts by mass.
  • the obtained molded article showed sufficient tensile strength, and no lumps of fibrous material were confirmed on the appearance surface, but bubbles were observed. The results are shown in Table 1.
  • Example 8> Instead of the emulsified solution of polycaprolactone, which is an impregnation aid, heated to 120 ° C. and melted into a liquid polycaprolactone was dropped onto the surface of the carbon fiber bundle, and then melted through a hot bar heated to 120 ° C. Was impregnated into a carbon bundle. The carbon fiber bundle was treated in this manner, so that it was an easily impregnated carbon fiber bundle having a polycaprolactone impregnation aid content of 8% by mass (8.7 parts by mass per 100 parts by mass of carbon fiber). The same operation as in 4 was performed. The obtained molded body showed good appearance and mechanical properties. The results are shown in Table 1.
  • Example 3 The same operation as in Example 2 was performed except that the resin covering the easily impregnated carbon fiber bundle was changed to polyamide 6 (so-called nylon 6, UBE nylon 1015B manufactured by Ube Industries) instead of polybutylene terephthalate.
  • the obtained molded article had low tensile strength and poor appearance.
  • ⁇ Comparative Example 4 100 parts by mass of carbon fiber and 233.3 parts by mass of polybutylene terephthalate are melt-kneaded in a twin screw extruder to form pellets having a carbon fiber content of 30% by mass.
  • the obtained molded article had a good dispersion state of carbon fibers, but the average fiber length of the carbon fibers in the molded article was as short as 0.20 mm, and the tensile strength was not satisfactory at 130 MPa.
  • Example 5 A carbon fiber bundle similar to that used in Example 1 was not treated with bisphenol A bis (diphenyl phosphate), which is an aromatic condensed phosphate ester as an impregnation aid, and a crosshead for covering an electric wire with an exit diameter of 3 mm.
  • bisphenol A bis (diphenyl phosphate) which is an aromatic condensed phosphate ester as an impregnation aid
  • a crosshead for covering an electric wire with an exit diameter of 3 mm.
  • polybutylene terephthalate Polyplastics Co., Ltd .: DURANEX (registered trademark) 2002
  • Pellets having a polybutylene terephthalate content of 394.7 parts by mass), a diameter of 3.2 mm, and a length of 6 mm were obtained.
  • the content of polycaprolactone impregnation aid is 1.5% by mass (carbon) by treating the carbon fiber filament as an emulsion liquid having a nonvolatile content of 4.5% by mass with the concentration of the emulsified solution of polycaprolactone as the impregnation aid.
  • the operation was performed in the same manner as in Example 4 except that the carbon fiber bundle was easily impregnated (2.0 parts by mass per 100 parts by mass of fiber).
  • the obtained molded article had low tensile strength and poor appearance. The results are shown in Table 1.
  • the content of the polycaprolactone impregnation aid is 18% by mass (100 parts by mass of carbon fiber) by treating the carbon fiber filament as an emulsion solution having a non-volatile content of 45% by mass with the concentration of the emulsified solution of polycaprolactone as the impregnation aid.
  • the same operation as in Example 4 was conducted except that the carbon fiber bundle was easily impregnated at 20.0 parts by mass).
  • the resulting molded article had a good appearance, but had a low tensile strength and poor heat resistance. The results are shown in Table 1.
  • the present inventors use the same easy-impregnating carbon fiber bundles and carbon fiber filaments as in the above-described examples and comparative examples, and a molding material in which sheet-like polybutylene terephthalate is placed on a metal plate.
  • the sample impregnated with polybutylene terephthalate, which is a matrix resin is obtained for a sample heated for a short time (hereinafter referred to as the matrix resin impregnation rate even when a thermoplastic resin other than polybutylene terephthalate is used), and the easy impregnation property is evaluated. did.
  • the results of evaluating the easy impregnation properties of the easily impregnable carbon fiber bundles of Examples 1 to 8 and Comparative Examples 1 to 7 are shown as Reference Examples AG and Comparative Reference Examples AF, respectively.
  • Example A A readily impregnable carbon fiber bundle (width 10 mm long) having a content of bisphenol A bis (diphenyl phosphate) of 5% by mass (5.3 parts by mass per 100 parts by mass of carbon fiber) obtained by the same operation as in Example 1.
  • the easily impregnated carbon fiber bundle and the sheet-like polybutylene terephthalate were heated for 2 minutes.
  • a portion where the easily impregnable carbon fiber bundle is impregnated with the polybutylene terephthalate melted by heating is in a wet state, and the carbon single fibers are fixed with polybutylene terephthalate.
  • the portion of the carbon fiber bundle that has not been impregnated with polybutylene terephthalate does not adhere to the polybutylene terephthalate between the carbon single fibers in a dry state, and the carbon single fibers are easily peeled off.
  • the carbon single fiber was peeled off from the portion of the sample after heating which was not impregnated with polybutylene terephthalate, the mass was measured, and the following formula (D) was used to facilitate The matrix resin impregnation rate into the impregnated carbon fiber bundle was calculated.
  • Matrix resin impregnation ratio (% by mass) 100 ⁇ (mass of carbon single fiber / mass of carbon fiber bundle not impregnated with polybutylene terephthalate as matrix resin) ⁇ 100 (D)
  • the matrix resin impregnation rate was as extremely high as 98% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 1 was very easily impregnated with polybutylene terephthalate.
  • ⁇ Reference Example B> A readily impregnable carbon fiber bundle (width) obtained by the same operation as in Examples 2 and 3 and having a bisphenol A bis (diphenyl phosphate) content of 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) The operation was performed in the same manner as in Reference Example A except that 10 mm and 20 mm in length were used. The matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the easily impregnable carbon fiber bundles used in Examples 2 and 3 were very easily impregnated with polybutylene terephthalate.
  • Example D A readily impregnable carbon fiber bundle (width 10 mm, length 20 mm) having a polycaprolactone impregnation aid content of 10% by mass (11.1 parts by mass per 100 parts by mass of carbon fiber) obtained in the same manner as in Example 5. ) was used in the same manner as in Reference Example A, except that The matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 5 was very easily impregnated with polybutylene terephthalate.
  • ⁇ Reference Example F> A readily impregnable carbon fiber bundle (width 10 mm, length 20 mm) having a polycaprolactone impregnation aid content of 3% by mass (4 parts by mass per 100 parts by mass of carbon fiber) obtained by the same operation as in Example 7. The same operation as in Reference Example A was performed except that it was used. The matrix resin impregnation rate was as high as 90% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 7 was easily impregnated with polybutylene terephthalate.
  • ⁇ Reference Example G> A readily impregnable carbon fiber bundle (width 10 mm, length 20 mm) having a polycaprolactone impregnation aid content of 8% by mass (5.3 parts by mass per 100 parts by mass of carbon fiber) obtained in the same manner as in Example 8. ) was used in the same manner as in Reference Example A, except that The matrix resin impregnation rate was as extremely high as 100% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Example 8 was very easily impregnated with polybutylene terephthalate.
  • Comparative Reference Example D instead of the easily impregnated carbon fiber bundle, as in Comparative Example 5, except that a carbon fiber bundle having a content of 1.2% by mass of the polycaprolactone impregnation aid obtained by post-adding the impregnation aid was used. The same operation as in Reference Example A was performed. The matrix resin impregnation rate was as extremely low as 2% by mass, and the carbon fiber filament used in Comparative Example 5 was very difficult to be impregnated with polybutylene terephthalate.
  • ⁇ Comparative Reference Example F> The same operation as in Reference Example A was performed, except that a carbon fiber bundle obtained by the same operation as in Comparative Example 7 and containing 18% by mass of the polycaprolactone impregnation aid was used.
  • the impregnation rate of the matrix resin was as extremely high as 100% by mass, and it was confirmed that the easily impregnable carbon fiber bundle used in Comparative Example 7 was very easily impregnated with polybutylene terephthalate.
  • the molding material of the present invention makes it possible to produce a molded article having excellent mechanical strength by a simple process, such as transportation equipment such as automobiles, ships, and aircraft, electrical / electronic equipment, and office use. It is extremely useful in various industrial fields such as interior / exterior materials and parts of equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

 優れた物性および外観を有する炭素繊維強化ポリブチレンテレフタレート成形体、製造コストの増大を招くことの無い簡素なプロセスで該成形体を製造する方法、並びに該製造方法を可能にする成形用材料を提供する。 炭素繊維100質量部と、特定の条件を満たす1種類以上の含浸助剤3~15質量部とを含む易含浸性炭素繊維束に、50~2000質量部のポリブチレンテレフタレートが付着していることを特徴とする成形用材料。

Description

成形用材料、その成形体、および該成形体の製造方法
 本発明は、易含浸性炭素繊維束にポリブチレンテレフタレートが付着している成形用材料、該成形用材料から得られる機械的特性に優れた成形体、および該成形体の製造方法に関する。
 高強度、かつ脆弱破壊が抑制された樹脂材料を得る手段として、樹脂を炭素繊維で強化された複合材料とすることが知られている。特に、マトリックス樹脂として熱可塑性樹脂を炭素繊維で強化した複合材料(炭素繊維強化熱可塑性樹脂とも言い、以下、CFRTPと略することがある)は、成形用材料として易加工性およびリサイクル性に優れており、様々な分野への応用が期待されている。
 炭素繊維と熱可塑性樹脂との複合材料を製造する方法として、炭素繊維束に比較的高粘度である溶融状態の熱可塑性樹脂を含浸させて複合材料とする製造方法が知られている。この製造方法では、含浸不足により、成形品において強度低下が起こることを防止する為、雰囲気温度を上げて熱可塑性樹脂の溶融粘度を下げた状態で、過大な圧力にて長時間、炭素繊維束に含浸処理を行う必要があり、そのような高圧で長時間の含浸処理により製造コストが増大するなどの問題があった。
 例えば、炭素繊維束への熱可塑性樹脂の含浸を進ませる手法としては、炭素繊維と熱可塑性樹脂繊維とをより合わせて繊維束を作製し、熱と圧力をかけ熱可塑性樹脂を溶融させながら含浸を進める方法(特許文献1)、炭素繊維束に低分子量の溶融樹脂を含浸させたのち高分子量の熱可塑性樹脂を含浸させる方法(特許文献2)、溶融樹脂浴中で炭素繊維を開繊させ含浸させる方法(特許文献3)などが開示されている。また、特許文献4には、炭素繊維自体に熱可塑性樹脂の含浸を進ませる方法として、炭素繊維の収束剤を樹脂との濡れ性が良い剤に調整することが記載されている。
 このように、従来の製造方法では、強化繊維束に熱可塑性樹脂を充分に含浸させるために、独立した含浸工程を設け、当該工程における特殊な条件での処理を必要としていた。そのため、優れた物性および外観のCFRTP製品(成形体)を、種々の用途において使用が促進されるような安価な製造コストにて提供するには至っておらず、各分野における、CFRTPへの期待に充分に応えられていない。特に、熱可塑性樹脂としてポリブチレンテレフタレート(以下、PBTと略称することがある)を用いたCFRTPについては、電子・電機部品や自動車部品など様々な機能部品に幅広く応用できることが期待され、上記課題の早急な解決が望まれていた。
日本国特開平3-121146号公報 日本国特開平3-181528号公報 日本国特開平5-112657号公報 日本国特開平6-166961号公報
 本発明の目的は、優れた物性および外観を有する炭素繊維強化ポリブチレンテレフタレート成形体、製造コストの増大を招くことの無い簡素なプロセスで該成形体を製造する方法、並びに該製造方法を可能にする成形用材料を提供することを目的とする。
 本発明者らは上記のような従来の課題の解決を検討するにおいて、特定の化合物を含む炭素繊維束(以後、易含浸性炭素繊維束と称する)が、可塑化されたポリブチレンテレフタレートによって著しく容易に含浸されることを見出した。更に、本発明者らは、この易含浸性炭素繊維束にポリブチレンテレフタレートを付着させたものを成形用材料として用い、これをポリブチレンテレフタレートの可塑化温度の状態で、成形用の金型内に存在させると、ポリブチレンテレフタレートが易含浸性炭素繊維束に含浸し、炭素繊維束を解きつつ金型内に広がるという驚くべき現象が起こることを見出した。そして、従来技術のように、独立した工程にて強化繊維に熱可塑性樹脂を含浸させる為の処理をすることなく、優れた物性および外観の複合材料の成形体を製造できることを見出し、本発明を完成させた。本発明の要旨を以下に示す。
1. 炭素繊維100質量部に対し、下記の条件1および条件2を満たす1種類以上の含浸助剤3~15質量部を含む易含浸性炭素繊維束に、50~2000質量部のポリブチレンテレフタレートが付着していることを特徴とする成形用材料。
 ・ 条件1:280℃における液体の粘度が10Pa・s以下である。
 ・ 条件2:ポリブチレンテレフタレート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該ポリブチレンテレフタレートのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が0.2[℃/%]より大きい。
 ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
 ここで、含浸助剤配合率[%]は、以下式(B)
 含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリブチレンテレフタレートの量[質量部]・・・(B)
にて定義される。
2. 含浸助剤が、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルからなる群より選ばれる1種類以上である上記の成形用材料。
3. リン酸エステルが、その常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下280℃での加熱減量が2%/分以下である芳香族リン酸エステルであることを特徴とする上記の成形用材料。
4. 前記芳香族リン酸エステルが、下記一般式(1)
Figure JPOXMLDOC01-appb-C000002

(上記一般式(1)において、R~R12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基であり、Xは、結合、-CH-、-C(CH-、-S-、-SO-、-O-、-CO-または-N=N-であり、nは0または1の整数であり、mは0から5の整数である)で表されるものであることを特徴とする上記の成形用材料。
5. 前記脂肪族ヒドロキシカルボン酸系ポリエステルが、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体で重量平均分子量3000~50000のもの、およびこれら2種以上のモノマーの共重合体で重量平均分子量3000~50000のものからなる群より選ばれる1種類以上のものである上記記載の成形用材料。
6. 前記易含浸性炭素繊維束を芯成分、ポリブチレンテレフタレートを鞘成分とする芯鞘型構造である上記記載の成形用材料。
7. 前記成形用材料の形態がペレットである上記記載の成形用材料。
8. 前記ペレットの長手方向の長さが3~10mmである、上記記載の成形用材料。
9. 上記に記載の成形用材料からなる成形体。
10. 前記の易含浸性炭素繊維束に由来する炭素繊維が平均繊維長0.3mm以上の長さで分散していることを特徴とする上記記載の成形体。
11. 炭素繊維含有率(質量%)とISO527規格4mmダンベルでの引張強度との関係が下記式(C)
炭素繊維含有率(質量%)×3+90 < 引張強度(MPa) (C)
の関係を満たす上記記載の成形体。
12. 前記の成形用材料を、前記ポリブチレンテレフタレートの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該ポリブチレンテレフタレートを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする上記記載の成形体の製造方法。
 本発明により、優れた物性および外観を有する炭素繊維強化ポリブチレンテレフタレート成形体、製造コストの増大を招くことの無い簡素なプロセスで該成形体を製造する方法、並びに該製造方法を可能にする成形用材料を提供できる。
 本発明は、炭素繊維100質量部に対し、下記の条件1および条件2を満たす1種類以上の含浸助剤3~15質量部を含む易含浸性炭素繊維束に、50~2000質量部のポリブチレンテレフタレートが付着していることを特徴とする成形用材料、該成形用材料から得られる成形体、および該成形体の製造方法に関するものである。
 ・ 条件1:280℃における液体の粘度が10Pa・s以下である。
 ・ 条件2:ポリブチレンテレフタレート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該ポリブチレンテレフタレートのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が0.2[℃/%]より大きい。
 ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
 ここで、含浸助剤配合率[%]は、以下式(B)、
 含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリブチレンテレフタレートの量[質量部]・・・(B)
にて定義される。
 以下に、本発明を実施するための形態につき詳細に説明する。尚、本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。
[易含浸性炭素繊維束]
 本発明における易含浸性炭素繊維束とは、炭素繊維100質量部に対し、下記の条件1および条件2を満たす1種類以上の含浸助剤3~15質量部を含むことにより、ポリブチレンテレフタレート(好ましくは可塑化されたポリブチレンテレフタレート)により容易に含浸されることを特徴とする炭素繊維束である。
 ・ 条件1:280℃における液体の粘度が10Pa・s以下である。
 ・ 条件2:ポリブチレンテレフタレート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該ポリブチレンテレフタレートのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が0.2[℃/%]より大きい。
 ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
 ここで、含浸助剤配合率[%]は、以下式(B)、
 含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリブチレンテレフタレートの量[質量部]・・・(B)
にて定義される。
 この易含浸性炭素繊維束は、炭素繊維に対し、該含浸助剤を所定の量にて含む炭素繊維束であれば良く、その製造方法や、炭素繊維と含浸助剤とが含まれている形態を問わない。
 本発明で用いる含浸助剤は、上記の条件1を満たすものであり、これは、該含浸助剤が汎用のポリブチレンテレフタレートの代表的な加工温度である280℃において、低粘度状態であり、かつ、280℃において液体としての粘度測定が可能なものであることを意味する。含浸助剤の280℃における液体の粘度は8Pa・s以下であることが好ましく、6Pa・s以下であることがより好ましい。
 なお、上記の条件1について、含浸助剤の液体としての粘度を測定する方法としては、回転式粘度計が適している。具体的には高温槽付きパラレルプレートにて測定する方法などを例示することができる。
 更に、本発明で用いる含浸助剤は、上記の条件2を満たすものである。この条件2において、含浸助剤は、ポリブチレンテレフタレート100質量部あたり、1~100質量部の配合量の範囲全域で、ガラス転移温度低下率(ΔTg)>0.2[℃/%]である必要は無く、当該配合量範囲の一部で、0.2℃/%より大きいガラス転移温度低下率(ΔTg)を示すものであれば良い。
 ガラス転移温度低下率(ΔTg)が0.2℃/%より大きいことにより、含浸を促進する効果を有するものであり、ΔTgが0.3℃/%より大きいものであるとより好ましい。ΔTgが0.2℃/%以下ということは、含浸助剤がポリブチレンテレフタレートと相溶化していない状態であり、そのため、ポリブチレンテレフタレートのTgが殆どそのまま計測されると推測している。
 ΔTgが0.2℃/%以下の含浸助剤を炭素繊維束に加え、これにポリブチレンテレフタレートを付着させたものを成形しても、含浸助剤による含浸促進効果は著しく低いもので、得られる成形体において炭素繊維の分散不良が発生する。また、上記の条件2について、ポリブチレンテレフタレートや、ポリブチレンテレフタレートと含浸助剤との樹脂組成物のガラス転移温度を測定する方法としては、示差走査熱量測定(DSC)による方法などが挙げられる。
 含浸助剤は、その常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下280℃での加熱減量が2%/分以下であることが好ましい。
 上記「常圧下での沸点が340℃以上」とは、その含浸助剤について、明確に常圧下での沸点を測定できなくても、340℃で明らかに沸騰がおこらず液体のままでいるのであれば当該条件を満たすものと解する。
 また、「窒素雰囲気下280℃での加熱減量が2%/分以下」に関して言うと、その含浸助剤が、窒素雰囲気下280℃では激しく分解してしまい、加熱減量を正確に測定できないような場合は、当該条件を満たさないものと解される。
 なお、上記の加熱減量としては、示差熱天秤を用いて、当初質量Wpre(g)の含浸助剤の試料を窒素雰囲気下、室温(5~35℃)から10℃/分で280℃まで昇温した後、更に、280℃で15分間保持した後の該試料の質量Wpost(g)から、下記式(i)によって算出されたものが好ましく、試料数3以上で測定および算出を行った平均値であるとより好ましい。
 加熱減量(%/分)=100×{Wpre(g)-Wpost(g)}/Wpre(g)/15(分) (i)
 本発明において、易含浸炭素繊維束に含まれる含浸助剤の量は、炭素繊維100質量部に対し3~15質量部であり、好ましくは5~12質量部である。
 3質量部未満では、炭素繊維へのポリブチレンテレフタレートの含浸性が不十分となり、15質量部より多いと炭素繊維へのポリブチレンテレフタレートの含浸性は優れるが、マトリクス樹脂であるポリブチレンテレフタレートのガラス転移温度が低下することにより成形品の耐熱性が低下するため好ましくない。
 本発明にて用いられる易含浸性炭素繊維束は、複数種の含浸助剤を含むものでも良く、また本発明において用いられる含浸助剤としては、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルからなる群より選ばれる1種類以上のものであると好ましく、当然、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルの双方を含むものであっても良い。含浸助剤として用いられるこれらのリン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルについては、後に詳細に記載する。
 易含浸性炭素繊維束の代表的な製法としては、ディッピング法、スプレー法、ローラー転写法、スリットコーター法などから選ばれる群より選ばれる1種類以上の方法にて、汎用の炭素繊維束に含浸助剤を含ませる方法が例示される。これらの方法において、炭素繊維束に含浸助剤を含ませた場合、含浸助剤は主に炭素繊維束の表面に付着し、一部は炭素繊維束の内部にも浸み込んでいるものと思われる。
 易含浸性炭素繊維束を製造する際における含浸助剤の形態としては、水性エマルジョン、有機溶媒希釈溶液、または加熱された粘調または溶融状態の液体として取り扱うことが可能である。製造方法と含浸助剤の形態との好ましい組合せとしては、水性エマルジョンの場合、ディッピング法、ローラー転写法であるが、十分に水分を乾燥させるために100℃以上の雰囲気下での乾燥工程が必要となる。また加熱粘調液体の場合、スリットコーター法などの一般的なコーティング手法が可能であり、適量を炭素繊維束に付着させた後にスムージングロールなどで均一に付着させることが可能である。
 本発明の成形用材料を用いて成形し、炭素繊維がポリブチレンテレフタレートに均質に分散した成形体を得るためには、炭素繊維束に含浸助剤をできるだけ均一に付着させるのが好ましい。炭素繊維束に含浸助剤をより均一に付着させる方法として、上記方法により含浸助剤を炭素繊維束に付着させた後、これら含浸助剤の粘度が十分に低下する温度以上に再度熱処理する方法が例示される。また、該熱処理には、例えば、熱風、熱板、ローラー、赤外線ヒーター等を使用することができ、ローラーを用いることが好ましい。
[炭素繊維]
 本発明の成形用材料に含まれる炭素繊維は、ポリアクリロニトリル(PAN)系、石油・石油ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維であっても良い。特に、PANを原料としたPAN系炭素繊維が、工場規模における生産性及び機械的特性に優れており好ましい。
 上記炭素繊維としては、平均直径3~12μmのものが好ましく、平均直径5~10μmのものがより好ましく使用でき、平均直径5~7μmのものが更に好ましく使用できる。なお、一般的な炭素繊維は、1000~50000本の単繊維が繊維束となった炭素繊維フィラメントである。本発明における炭素繊維束には、そのような一般的な炭素繊維フィラメントも含まれるが、該炭素繊維フィラメントを、更に重ね合わせて合糸したものや、合糸に撚りを掛け撚糸としたもの等も含まれる。
 本発明の成形用材料に含まれる炭素繊維としては、炭素繊維とポリブチレンテレフタレートとの接着性を高めるため、表面処理によって、表面に含酸素官能基を導入されたものも好ましい。
また、前述のように、炭素繊維束に含浸助剤を含ませることにより易含浸性炭素繊維束を作る場合、含浸助剤を炭素繊維束に均一に付着させる工程を安定させるため、炭素繊維束としては、収束性を持たせる為の収束剤で処理されたものであると好ましい。収束剤としては、炭素繊維フィラメント製造用に公知のものを使用することができる。また、炭素繊維束としては、製造時に滑り性を上げるために使用された油剤が残存したものであっても、本願発明において問題無く使用することができる。なお、以後、含浸助剤と、上記の収束剤といったその他の処理剤とを包含する上位概念の意味で、表面処理剤との表現をする場合がある。
[リン酸エステル]
 本発明において、含浸助剤として用いられるリン酸エステルは、前記条件1および条件2を満たすものであれば、特に限定されないが、リン酸エステルモノマー又はオリゴマー性リン酸エステルのブレンドなど、具体的には、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、及びトリフェニルホスフェートに代表される芳香族リン酸エステル類等が挙げられる。好ましくはトリメチルホスフェート、又は芳香族リン酸エステル類である。成形加工性の観点から、ポリブチレンテレフタレートの一般的な成形温度範囲の上限である280℃において、窒素雰囲気下、加熱減量が2%/分以下であり、かつ、常圧下での沸点が340℃以上であるものが好ましい。加熱減量及び沸点が上記範囲であると、混練中にリン酸エステルが分解や蒸発しないので、混練終了時まで樹脂が炭素繊維へ含浸するので好ましく、成形体外観がより向上する。
 本願において、常圧とは、特に注記無い限り、意図的に加圧・減圧操作をしない、標準大気圧(1013hPa)程度の気圧をいい、一般に800~1050hPa、通常には1000~1030hPa、より通常には、1009~1017hPaの範囲にある気圧をいう。
 そのような耐熱性を有するリン酸エステルとして、本発明において、前記一般式(1)で表される芳香族リン酸エステルが好適に用いられる。
 本願発明において、芳香族リン酸エステルとして、前記一般式(1)において、R~R12が水素原子、又はメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル基等の炭素数1~4のアルキル基であるものを用いると、溶融流動性および成形体の耐光性を顕著に改善できるので好ましい。これらのアルキル基のうち、炭素数1~3のアルキル基が好ましく、メチル基及び/又はエチル基がより好ましい。
 前記一般式(1)にて表される芳香族リン酸エステルとしては、当該式中の芳香族基
Figure JPOXMLDOC01-appb-C000003

が、それぞれ独立に、フェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2-プロピルフェニル基、3-プロピルフェニル基、4-プロピルフェニル基、2-イソプロピルフェニル基、3-イソプロピルフェニル基、4-イソプロピルフェニル基、2-ブチルフェニル基、3-ブチルフェニル基のいずれかであるものは、耐熱性が高いので好ましく、中でも、メチル、エチル、プロピル基などの炭素数1~3のアルキル基を2個有するフェニル基であるものがより好ましく、炭素数1~3のアルキル基を2個、2位及び6位に有するフェニル基(例えば、2,6-ジメチルフェニル基、2,6-ジエチルフェニル基、2-エチル-6-メチルフェニル基など)が極めて好ましい。なお、以後、特に注記無く、化合物名でキシレニルとある場合は、2,6-ジメチルフェニル基を意味する。
 前記一般式(1)において、nは0または1の整数であるが、1であることが好ましい。
 前記一般式(1)において、Xは、結合、-CH-、-C(CH-、-S-、-SO-、-O-、-CO-または-N=N-であるが、結合、-CH-、または-C(CH-が好ましく、-C(CH-がより好ましい。
 前記の一般式(1)において、繰返し単位mは0~5の整数であるが、1以上、つまり式(1)の芳香族リン酸エステルが、いわゆる芳香族縮合リン酸エステルであると好ましく、1~3の整数であるとより好ましく、1又は2であると更に好ましく、特に1であると好ましい。
 前記一般式(1)にて表される芳香族リン酸エステルのうち、より好ましいものとして、トリフェニルホスフェート
Figure JPOXMLDOC01-appb-C000004
トリキシレニルホスフェート
Figure JPOXMLDOC01-appb-C000005
1,3-フェニレン ビス(ジフェニルホスフェート)
Figure JPOXMLDOC01-appb-C000006
1,3-フェニレン ビス(ジキシレニルホスフェート)
Figure JPOXMLDOC01-appb-C000007
ビスフェノールA ビス(ジフェニルホスフェート)
Figure JPOXMLDOC01-appb-C000008
ビスフェノールA ビス(ジキシレニルホスフェート)
Figure JPOXMLDOC01-appb-C000009
1,4-フェニレン ビス(ジキシレニルホスフェート)
Figure JPOXMLDOC01-appb-C000010
1,4-フェニレン ビス(ジフェニルホスフェート)
Figure JPOXMLDOC01-appb-C000011
4,4’-ビフェニレン ビス(ジキシレニルホスフェート)、
Figure JPOXMLDOC01-appb-C000012
および、4,4’-ビフェニレン ビス(ジフェニルホスフェート)
Figure JPOXMLDOC01-appb-C000013

からなる群より選ばれる1種類以上の芳香族リン酸エステルが挙げられる。前記一般式(1)にて表される芳香族リン酸エステルのうち、トリフェニルホスフェート、又はビスフェノールA ビス(ジフェニルホスフェート)が更に好ましく、ビスフェノールA ビス(ジフェニルホスフェート)が特に好ましい。
 なお、前記一般式(1)には該当しないが、1,4-ナフタレンジオール ビス(ジキシレニルホスフェート)
Figure JPOXMLDOC01-appb-C000014
2,5-ピリジンジオール ビス(ジフェニルホスフェート)
Figure JPOXMLDOC01-appb-C000015

のように、多核芳香環残基や複素環残基を介して縮合している縮合リン酸エステルも、本発明におけるリン酸エステル含浸助剤の好ましいものとして使用することができる。
 易含浸炭素繊維束に含まれるリン酸エステルの量は、炭素繊維100質量部に対し3~15質量部であり、好ましくは5~12質量部である。3質量部未満では、炭素繊維へのポリブチレンテレフタレートの含浸性が不十分となり、15質量部より多いと炭素繊維へのポリブチレンテレフタレートの含浸性は優れるが、マトリクス樹脂であるポリブチレンテレフタレートのガラス転移温度が低下することにより成形品の耐熱性が低下するため好ましくない。なお、含浸助剤として、リン酸エステルと共に、脂肪族ヒドロキシカルボン酸系ポリエステルも併用する場合は、これらの使用量合計が上記範囲に該当していれば良い。
[脂肪族ヒドロキシカルボン酸系ポリエステル]
 本発明において、含浸助剤として使用できる脂肪族ヒドロキシカルボン酸系ポリエステルは、脂肪族ヒドロキシカルボン酸残基からなるポリエステルであり、単独の脂肪族ヒドロキシカルボン酸残基からなる単重合ポリエステルでもよく、複数種の脂肪族ヒドロキシカルボン酸残基を含む共重合ポリエステルでもよい。また、該脂肪族ヒドロキシカルボン酸系ポリエステルとしては、ポリマーを構成する残基のうち、50モル%未満の量にて、脂肪族ヒドロキシカルボン酸残基以外の残基、例えば、ジオール残基やジカルボン酸残基などを含む共重合ポリエステルであっても良いが、意図的に共重合成分を加えられていない単重合体が、入手し易い点で好ましい。
 本発明に用いられる脂肪族ヒドロキシカルボン酸系ポリエステルの重量平均分子量は、3000~50000であるのが好ましい。重量平均分子量が3000~50000の範囲であると、ポリブチレンテレフタレート樹脂との親和性がよく、また乳化も容易である。特に好ましくは5000~20000、更に好ましくは8000~15000の範囲である。なお、重量平均分子量の測定方法としては、高温GPC法など公知の方法を使用することができる。
 本発明において、含浸助剤として使用できる脂肪族ヒドロキシカルボン酸系ポリエステルは、特に限定されないが、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体、およびこれら2種以上のモノマーの共重合体であると好ましく、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体で重量平均分子量3000~50000のもの、およびこれら2種以上のモノマーの共重合体で重量平均分子量3000~50000のものからなる群より選ばれる1種類以上のものであるとより好ましい。各重合体の更に好ましい重量平均分子量の範囲は上記のとおりである。特に好ましくは、ε-カプロラクトン、又はδ-カプロラクトンの各単独重合体で重量平均分子量3000~50000のものである。
 なお、本願発明においてラクトン類の重合体というときは、実際に、ラクトン類を開環重合させた重合体だけでなく、該ラクトン類の等価体である脂肪族ヒドロキシカルボン酸やその誘導体を原料とする同様の構造の重合体も含まれる。
 易含浸性炭素繊維束に付着させる脂肪族ヒドロキシカルボン酸系ポリエステルの量は、炭素繊維100質量部に対し3~15質量部であり、好ましくは5~12質量部である。
 3質量部未満では、炭素繊維へのポリブチレンテレフタレートの易含浸性が不十分となり、15質量部より多いと含浸性は優れるが、マトリクス樹脂であるポリブチレンテレフタレートのガラス転移温度が低下することにより得られる成形体の耐熱性が低下するため好ましくない。
[成形用材料]
 本発明の成形用材料は、上記の易含浸性炭素繊維束に、ポリブチレンテレフタレートが、易含浸性炭素繊維束に含まれる炭素繊維100質量部あたり50~2000質量部にて付着しているものであり、66~1900質量部にて付着しているとより好ましく、100~600質量部にて付着していると更に好ましい。本発明の成形用材料の形状は特に限定されず、柱状、板状、粒状、塊状、糸状(紐状)、網状等が挙げられ、異なる形状の成形用材料を複数種用いて成形することも可能である。
 前記の易含浸性炭素繊維束にポリブチレンテレフタレートを付着させ、本発明の成形用材料とする方法としては、易含浸性炭素繊維束の表面に溶融状態のポリブチレンテレフタレートを被覆する方法、易含浸性炭素繊維束を引き並べた上にTダイなどを使って溶融状態のポリブチレンテレフタレートをキャストし積層化する方法、引き並べた易含浸性炭素繊維束にフィルム状ポリブチレンテレフタレート樹脂を積層ラミネートする方法、易含浸性炭素繊維束を引きそろえた上に粉末状ポリブチレンテレフタレートを吹きつける方法などが挙げられる。連続上に引き並べられた易含浸性炭素繊維束の替わりに、所定の長さに切断された易含浸性繊維束の集合体を同様に用いることも可能である。
 本発明の成形用材用は、易含浸性炭素繊維束を芯成分、ポリブチレンテレフタレートを鞘成分とする芯鞘型構造であることが好ましく、特に、本発明の成形用材用で、射出成形用のものとしては、易含浸性炭素繊維束の周囲にポリブチレンテレフタレートを被覆したストランドをストランドカッターにて切断するなどして得られる、易含浸性炭素繊維束を芯成分、ポリブチレンテレフタレートを鞘成分とする芯鞘型構造の、ペレットであることがより好ましく、長手方向の長さが3~10mm程度のペレット(以下、芯鞘型ペレットと称することがある)が更に好ましい。該芯鞘型ペレットの直径に特に制限は無いが、ペレット長さの1/10以上2倍以下であると好ましく、ペレット長さの1/4以上かつペレット長さと同等以下であるとより好ましい。
[ポリブチレンテレフタレート]
 本発明において使用するポリブチレンテレフタレート樹脂は、例えば1,4-ブタンジオールとテレフタル酸またはその低級アルコールエステル誘導体とを重縮合して得られるポリブチレンテレフタレート単一重合体、又はポリブチレンテレフタレートを主成分とする共重合体である。
 ポリブチレンテレフタレート単一重合体の融点は好ましくは224℃であり、ポリブチレンテレフタレート共重合体の融点は好ましくは150~230℃であり、さらに好ましくは170~210℃である。
 ポリブチレンテレフタレート共重合体では、共重合する二官能以上の酸成分モノマーとしては、上記テレフタル酸またはその低級アルコールエステル誘導体以外の成分として、イソフタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸、トリメリット酸、コハク酸等の脂肪族または芳香族多塩基酸、又はそのエステル形成可能な誘導体;ヒドロキシ安息香酸、ヒドロキシナフトエ酸等の芳香族ヒドロキシカルボン酸、又はそのエステル形成可能な誘導体等が挙げられる。酸成分モノマーと重縮合される二官能以上のポリヒドロキシ成分モノマーとしては、上記1,4-ブタンジオール以外の成分として、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、1,3-オクタンジオール等の低級アルキレングリコール;2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、4,4’-ジヒドロキシビフェニルなどの芳香族ポリヒドロキシ化合物;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体などの芳香族ポリヒドロキシ化合物のアルキレンオキサイド付加体;グリセリン、ペンタエリスリトール等のポリオール等が挙げられる。
 本発明では、上記の如き酸成分モノマー及びポリヒドロキシ成分モノマーを重縮合して生成する種類のポリブチレンテレフタレートはいずれも使用することができる。上記の各成分モノマーは単独で、又は2種以上混合して使用することができるが、ポリブチレンテレフタレート本来の物性を要求する観点から、好ましくはポリブチレンテレフタレート単一重合体が使用される。
 ポリブチレンテレフタレート単一重合体又は共重合体の製造方法としては、特殊なものではなく一般に知られている、(i)1,4-ブタンジオール、テレフタル酸及び必要に応じてコモノマー成分を直接重合させる方法、(ii)これらをエステル交換させて重合させる方法などにより重合させればよい。以後、区別の必要がある場合を除いて、ポリブチレンテレフタレート単一重合体及び共重合体を単にポリブチレンテレフタレート(樹脂)という。
 本発明において用いられるポリブチレンテレフタレート樹脂は、アルキル化剤、アシル化剤、シリル化剤、オキサゾリン化合物、エポキシ化合物、またはカルボジイミド化合物などとの反応により、その分子鎖の末端が封止されたものであってもよい。
また、流動性、外観光沢、難燃特性、熱安定性、耐候性、耐衝撃性などを上げる目的で、機械的強度を損なわない範囲で、各種ポリマー、充填剤、安定剤、顔料などを配合してもよい。
なお、難燃性を向上させる目的で、難燃剤としてリン酸エステルをポリブチレンテレフタレートに配合させることも可能である。
[成形体及びその製造方法]
 前述のとおり、本発明の成形用材料を、従来技術のように、独立した工程にて強化繊維に熱可塑性樹脂を含浸させる為の処理をすることなく、既存の熱可塑性樹脂成形プロセスにて成形することにより、成形用材料において、易含浸性炭素繊維束へポリブチレンテレフタレートが含浸し、炭素繊維束を解きつつ溶融流動して金型内に広がることにより、良好な物性の成形体を得ることが可能である。
 つまり、本願には、前記の本発明の成形用材料からなる成形体の発明、および該成形用材料を、前記ポリブチレンテレフタレートの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該ポリブチレンテレフタレートを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする成形体の製造方法の発明も包含される。
 本発明の成形体の製造方法において、“易含浸性炭素繊維束の炭素繊維束を解き分散させる”とは、成形体において炭素繊維が塊状物となることが無い程度にまで、炭素繊維束が解繊され分散されることを意味し、炭素繊維フィラメント等の炭素繊維束を、その構成する数千~数万本の炭素繊維単糸1本1本まで完全に解くまでしなくても、優れた物性および外観の成形体を得ることができる。
 本発明の成形体を製造するにおいて、前記の成形用材料を、採用する成形方法に適した種々の形態として用いることができる。
 例えば、射出成形にて成形する場合は、前述のとおり、易含浸性炭素繊維束の周囲にポリブチレンテレフタレートを被覆したストランドをストランドカッターにて、好ましくは長さ3~10mm程度に切断したペレット状の成形用材料(芯鞘型ペレット)として用いることができる。
 また、板状の大型成形体を得る場合には、プレス成形が有効である。プレス成形を行う場合には、ポリブチレンテレフタレートと易含浸性炭素繊維束とを積層した板状の成形用材料とし、これを、ポリブチレンテレフタレートの可塑化温度以上に加熱し、プレス型内に設置後、所定のプレス圧にて成形することも可能である。形状などによっては、予め本発明にかかる成形用材料を加熱プレスして得られるプリフォーム体を用いて成形する方法なども有効である。
 本発明の成形用材料を用い、他の成形用材料や添加剤を加えることなく、成形を行って成形体を得た場合、該成形用材料と該成形体の炭素繊維含有量(質量基準)、およびこれを割合にて表した炭素繊維含有率等の組成は当然同じである。よって本発明の成形体に含まれる炭素繊維やポリブチレンテレフタレートの量やその好ましい範囲については、成形用材料について前述したものである。
 なお、本発明の成形用材料を用いて、他の成形用材料や添加剤を加えることなく成形を行った場合は、成形用材料または得られた成形体のいずれか一方の炭素繊維含有量(率)を測定し、これを他方の炭素繊維含有量(率)とみなすことができる。また、本発明の成形用材料に、他の成形用材料や添加剤等を加えて成形を行った場合でも、それらの添加量を元に計算を行い、本発明の成形用材料または成形体のいずれか一方の炭素繊維含有量(率)から、他方の炭素繊維含有量(率)を求めることができる。
 従来の炭素繊維強化熱可塑性樹脂の成形体は、炭素繊維が熱可塑性樹脂に均質に分散した状態にするために、2軸押出機等にて熱可塑性樹脂と炭素繊維とを溶融混練したペレット等を材料として成形することによって得られている。しかしこの方法では、高いせん断をかけて混練するために、炭素繊維が押出機内で破砕され、得られる成形体中の炭素繊維長さが0.3mm未満となってしまうため、繊維による物性補強効果が低下してしまう。これに対し、本発明の成形用材料の成形体は、炭素繊維束へのポリブチレンテレフタレートの含浸性に優れるため、高いせん断で炭素繊維束と溶融樹脂とを混練する必要がない。このため得られる成形体中に炭素繊維が長いまま残存し、機械的強度に優れたものとなる。
 本発明の成形体は、成形体において、易含浸性炭素繊維束が解かれた炭素繊維が、平均繊維長0.3mm以上で分散しているものが好ましく、更に好ましくは該炭素繊維が平均繊維長0.4mm以上で分散しているものである。本発明の成形体において、残存する炭素繊維の平均繊維長の上限に特に制限は無く、用途や採用される成形方法による。例えば、易含浸性炭素繊維束の周囲にポリブチレンテレフタレートを被覆したストランドをストランドカッターにてペレット状にして成形用材料として用いて射出成形により得られた成形体については、炭素繊維の平均繊維長10mm以下程度が一般的であり、熱可塑性樹脂による含浸された度合が高い炭素繊維束ほど、射出成型時に折損が起きやすいことから、平均繊維長が2mm以下の場合も多い。
 更に、本発明の成形体は、ISO527規格肉厚4mmの引張試験片においては下式(C)の関係が成り立つものが好ましい。
 炭素繊維含有率(質量%)×3+90 < 引張強度(MPa) ・・・(C)
 上記式(C)が成り立つことは、炭素繊維強化熱可塑性樹脂の成形体において、炭素繊維含有率に比べて、成形体の引張強度が極めて高く、コストおよび性能の面で極めて好ましいことを意味する。
 以下、実施例により本発明を具体的に説明するが、本発明は以下の例に限定されるものではない。
各実施例、比較例において用いた含浸助剤について、以下に示す。なお、これら含浸助剤の液体の粘度は、レオメトリックス社粘弾性測定器(RDA2)を用いて、パラレルプレートにて、ひずみ速度1/s、280℃の条件にて測定されたものである。また、ポリブチレンテレフタレートや、これに含浸助剤を配合した樹脂組成物のガラス転移温度は、TAインスツルメント社製熱分析装置DSC-Q20を用いて、昇温速度20℃/minの条件にて測定されたものである。
 含浸助剤の加熱減量(%/分)は、示差熱天秤を用いて、当初質量Wpre(g)の該含浸助剤の試料を窒素雰囲気下、室温から10℃/分で280℃まで昇温した後、更に、280℃で15分間保持した後の該試料の質量Wpost(g)から、前記式(i)によって算出された、試料数3の平均値である。
1)ビスフェノールA ビス(ジフェニルホスフェート)
 ビスフェノールA ビス(ジフェニルホスフェート)の280℃における液体の粘度は5Pa・sである。ポリブチレンテレフタレート(Tg=50℃)100質量部あたり、ビスフェノールA ビス(ジフェニルホスフェート)を10質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、45℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0.5℃/%であり、0.2℃/%より大きい。また、常圧下の沸点は340℃以上であり、280℃における加熱減量は0.00% /分であり、2%/分以下である。
2)ポリカプロラクトン
 ポリカプロラクトンの280℃における液体の粘度は8Pa・sである。ポリブチレンテレフタレート(Tg=50℃)100質量部あたり、ポリカプロラクトンを5質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、48℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0.4℃/%であり、0.2℃/%より大きい。
3)トリメチルホスフェート
 トリメチルホスフェートの280℃における液体の粘度は2mPa・s(2×10-3Pa・s)である。ポリブチレンテレフタレート(Tg=50℃)100質量部あたり、トリメチルホスフェートを2質量部配合して得られる樹脂組成物が示すガラス転移温度Tgは、49℃であり、前記式(A)で定義されるガラス転移温度低下率(ΔTg)は0.5℃/%であり、0.2℃/%より大きい。また、常圧下の沸点は193℃である。
 また、実施例および比較例において用いた各測定試験法および評価方法は以下のとおりである。
(成形用材料または成形体などにおける炭素繊維の含有量、含有率)
 炭素繊維の含有量は、ペレット等の成形用材料または、切り出された成形体の試料をるつぼに入れ、炉内温度を600℃に設定したマッフル炉に投入して樹脂成分を燃焼除去し、残った炭素繊維の質量から求めた。なお、成形用材料や成形体について炭素繊維含有率(質量%)と示してあるものは、炭素繊維とポリブチレンテレフタレートとだけではなく含浸助剤等も含めた全体の質量に対する炭素繊維の質量の割合である。
(表面処理剤の含有量、含有率)
 易含浸性炭素繊維束や炭素繊維フィラメント等に含有されている含浸助剤等の表面処理剤の量は、1mの長さで切り出された炭素繊維束をるつぼに入れ、炉内温度を550℃に設定したマッフル炉に15分間投入し、表面処理剤成分を燃焼除去して、残った炭素繊維の質量から求めた。
(引張強度の測定)
 得られた成形用材料よりダンベル試験片を射出成型機により作成し、ISO 527(JIS K 7161)に準拠し引張強度の測定を行った。
(成形体の表面外観の評価)
 得られた成形体の表面外観を観察し、炭素繊維束へのポリブチレンテレフタレートの含浸が不十分だったことにより発生する直径3mm以上の繊維状物質の塊、および気泡が表面に確認されなかったものを○(良好)、繊維状物質の塊は確認されなかったものの気泡が確認されたものを△(やや良好)、繊維状物質の塊が確認されたものを×(不良)とした。
(成形体中の炭素繊維長の評価)
 得られた複合成形体から20mm×10mmの試験片を切出し、550℃にて1.5時間有酸素雰囲気下で加熱し樹脂成分を燃焼除去した。残った炭素繊維を界面活性剤入りの水に投入し、超音波振動により十分に攪拌させた。攪拌させた分散液を計量スプーンによりランダムに採取し評価用サンプルを得て、ニレコ社製画像解析装置Luzex APにて、繊維数3000本の長さを計測し、長さ平均を算出し、成型体中における炭素繊維の平均繊維長を求めた。
 以下に、実施例および比較例にて詳細を示す。
<実施例1>
 含浸助剤として、芳香族縮合リン酸エステルであるビスフェノールA ビス(ジフェニルホスフェート)(大八化学株式会社製;CR-741)を用い、これを不揮発分12質量%にエマルジョン化した溶液内に、炭素繊維束としてPAN系炭素繊維フィラメント(東邦テナックス社製STS40 24K相当 繊維直径7.0μm フィラメント本数24000本、引張強度4000MPa)を通過させた後、炭素繊維束に過剰に付着した溶液を、ニップロールにて取り除いた。更に、この含浸助剤が付着した炭素繊維束を180℃に加熱された熱風乾燥炉内を2分間かけて通過させることにより乾燥させ、易含浸炭素繊維束を得た。この易含浸炭素繊維束を200℃に加熱した直径60mmの2本の金属製ロールに沿わせ、再度の加熱処理を行い、炭素繊維束に、含浸助剤がより均一に付着した易含浸性炭素繊維束とした。この易含浸性炭素繊維束の含浸助剤の含有率は5質量%(炭素繊維100質量部あたり5.3質量部)であった。
 次に、上記で得られた易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリブチレンテレフタレート(ポリプラスチックス株式会社製:ジュラネックス(登録商標)2002)で被覆し、これを長さ6mmに切断し、炭素繊維含有率が20質量%(炭素繊維100質量部あたり、ポリブチレンテレフタレートが394.7質量部)、直径3.2mm、長さ6mmの射出成形に適した芯鞘型ペレットである成形用材料を得た。この成形用材料を、日本製鋼所製110ton電動射出成形機(J110AD)を用い、シリンダー温度C1/C2/C3/C4/N=260℃/280℃/280℃/280℃/270℃(C1~C4はキャビティ、Nはノズル)にて成形サイクル35秒で射出成形し、肉厚4mmの引張試験用ダンベルを得た。得られた成形体は、分散不良による繊維状物質の塊や気泡は見られず外観が良好なものであり、引張強度は185MPaと優れた機械物性を示した。また成形体中に含まれる炭素繊維の平均繊維長は1.3mmであった。結果を表1に示す。
<実施例2>
 含浸助剤であるビスフェノールA ビス(ジフェニルホスフェート)のエマルジョン化溶液の濃度を不揮発分25質量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
<実施例3>
 易含浸性炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリブチレンテレフタレート(ポリプラスチックス株式会社製:ジュラネックス(登録商標)2002)で被覆する際、得られるペレット状の成形用材料の炭素繊維含有率を30質量%(炭素繊維100質量部あたり、ポリブチレンテレフタレートが222.2質量部)とした以外は、実施例2と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
<実施例4>
 含浸助剤として、ビスフェノールA ビス(ジフェニルホスフェート)ではなく、脂肪族ヒドロキシカルボン酸系ポリエステルであるポリカプロラクトン(ダイセル化学工業製PLACCEL(登録商標)H1P 分子量10000)を用い、これを不揮発分12質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、ポリカプロラクトン含浸助剤の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
<実施例5>
 含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分25質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトン含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
<実施例6>
 含浸助剤として、ビスフェノールA ビス(ジフェニルホスフェート)ではなく、トリメチルホスフェート(第八化学株式会社製 TMP)を用い、これを不揮発分25質量%のエマルジョン液としたものにより、炭素繊維フィラメントを処理して、トリメチルホスフェート含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体は充分な引張強度を示し、その外観表面には繊維状物質の塊は確認されなかったが、気泡が見られた。結果を表1に示す。
<実施例7>
 含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分9質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトン含浸助剤の含有率3質量%(炭素繊維100質量部あたり4.0質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は充分な引張強度を示し、その外観表面には繊維状物質の塊は確認されなかったが、気泡が見られた。結果を表1に示す。
<実施例8>
 含浸助剤であるポリカプロラクトンのエマルジョン化溶液に替えて120℃に加熱し溶融し液体状となったポリカプロラクトンを炭素繊維束表面に滴下しさらには120℃に加熱したホットバーを通し溶融したカプロラクトンを炭素束に含浸させた。このように炭素繊維束を処理したことより、ポリカプロラクトン含浸助剤の含有率8質量%(炭素繊維100質量部あたり8.7質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、良好な外観および機械物性を示した。結果を表1に示す。
<比較例1>
 含浸助剤であるビスフェノールA ビス(ジフェニルホスフェート)のエマルジョン化溶液の濃度を不揮発分5質量%として炭素繊維フィラメントを処理することにより、含浸助剤の含有率2質量%(炭素繊維100質量部あたり2質量部)の炭素繊維束とした以外は、実施例1と同様に操作を行った。得られた成形体の表面には分散不良の繊維束の塊が存在しており、引張強度も低い値となった。結果を表1に示す。
<比較例2>
 含浸助剤を用いて易含浸性炭素繊維を作成することはせず、ウレタン・エポキシ系収束剤が1.2質量%含浸されたPAN系炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を用いて、これをポリブチレンテレフタレート(ポリプラスチックス株式会社製:ジュラネックス(登録商標)2002)で被覆する以降の操作を実施例1と同様に行った。得られた成形体の表面には分散不良の繊維束の塊が存在しており、引張強度も低い値となった。結果を表1に示す。
<比較例3>
 易含浸性炭素繊維束を被覆する樹脂をポリブチレンテレフタレートではなく、ポリアミド6(いわゆるナイロン6、宇部興産製 UBEナイロン1015B)に変更した以外は実施例2と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。
<比較例4>
 炭素繊維100質量部と、ポリブチレンテレフタレート233.3質量部とを二軸押出成形機内にて溶融混練し、炭素繊維含有率30質量%のペレットとしたものである炭素繊維強化ポリブチレンテレフタレート(ポリプラスチックス社製:ジュラネックス(登録商標)2002)を実施例1と同様の条件で射出成形を行った。得られた成形体は、炭素繊維の分散状態は良好であったが、成形体中における炭素繊維の平均繊維長は0.20mmと短く、引張強度も130MPaと満足できる値ではなかった。
<比較例5>
 実施例1で用いたのと同様の炭素繊維束を、含浸助剤である芳香族縮合リン酸エステルであるビスフェノールA ビス(ジフェニルホスフェート)で処理せずに、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリブチレンテレフタレート(ポリプラスチックス株式会社製:ジュラネックス(登録商標)2002)で被覆し、これを長さ6mmに切断し、炭素繊維含有率が20質量%(炭素繊維100質量部あたり、ポリブチレンテレフタレートが394.7質量部)、直径3.2mm、長さ6mmのペレットを得た。このペレットにポリカプロラクトンを5.3質量添加(後添加)し、射出成形に適した成形用材料を得た。この成形用材料を、実施例1と同様の条件で射出成形し、肉厚4mmの引張試験用ダンベルを得た。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
<比較例6>
 含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分4.5質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトン含浸助剤の含有率1.5質量%(炭素繊維100質量部あたり2.0質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、引張強度が低く、その外観も不良であった。結果を表1に示す。
<比較例7>
 含浸助剤であるポリカプロラクトンのエマルジョン化溶液の濃度を、不揮発分45質量%のエマルジョン液として炭素繊維フィラメントを処理することにより、ポリカプロラクトン含浸助剤の含有率18質量%(炭素繊維100質量部あたり20.0質量部)の易含浸性炭素繊維束とした以外は、実施例4と同様に操作を行った。得られた成形体は、外観は良好であったが、引張強度が低く、その耐熱性も劣るものであった。結果を表1に示す。
 上記の実施例1~8において、炭素繊維が良好に分散し、機械物性が優れた成形体が得られていることから、本発明の成形用材料を用いて成形を行う際、易含浸性炭素繊維束にポリブチレンテレフタレートが円滑に含浸していることは明らかであるが、本発明者らは、より直接的に、それぞれの易含浸性炭素繊維束の易含浸性の度合を確認することを試みた。しかし、例えば、射出成形において、成形用材料を可塑化し、易含浸性炭素繊維束にポリブチレンテレフタレートが含浸し始める段階で、成形機を急停止して試料を採取するような作業は、安全性に問題があり、かつ成形機に損傷を与える可能性があるため、実施困難であった。
 そこで、本発明者らは、上記実施例や比較例と同じ、易含浸性炭素繊維束や炭素繊維フィラメント等を用いて、これらにシート状ポリブチレンテレフタレートを乗せた成形用材料を、金属板上で短時間加熱した試料についてマトリックス樹脂であるポリブチレンテレフタレートの含浸率(以後、ポリブチレンテレフタレート以外の熱可塑性樹脂を用いた場合も含め、マトリックス樹脂含浸率と称する)を求め、易含浸性を評価した。以下、実施例1~8および比較例1~7の易含浸性炭素繊維束などの易含浸性を評価した結果を、それぞれ参考例A~Gおよび比較参考例A~Fとして示す。
<参考例A>
 実施例1と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)の上面に厚み300μm幅10mm長さ20mmのシート状ポリブチレンテレフタレート(ポリプラスチックス株式会社製 ジュラネックス(登録商標)2002)を乗せた状態で、280℃に加熱した熱板上に置き、易含浸性炭素繊維束およびシート状ポリブチレンテレフタレートを2分間加熱した。加熱により溶融したポリブチレンテレフタレートが易含浸性炭素繊維束に含浸した部分はウェット状態となり、炭素単繊維間がポリブチレンテレフタレートで固着する。一方、炭素繊維束における、ポリブチレンテレフタレートが含浸しなかった部分は、ドライ状態で炭素単繊維間におけるポリブチレンテレフタレートの固着はなく、炭素単繊維が剥離しやすい。そこで、加熱後の試料のポリブチレンテレフタレートが含浸しなかった部分から、炭素単繊維を剥離して質量を測定し、下記計算式(D)にて、マトリックス樹脂がポリブチレンテレフタレートである場合の易含浸性炭素繊維束へのマトリックス樹脂含浸率を算出した。
 マトリックス樹脂含浸率(質量%)=100-(マトリックス樹脂であるポリブチレンテレフタレートが未含浸の炭素単繊維質量/炭素繊維束質量)×100 ・・・(D)
 マトリックス樹脂含浸率は98質量%と極めて高く、実施例1において用いた易含浸性炭素繊維束が極めてポリブチレンテレフタレートに含浸されやすいことを確認できた。
<参考例B>
 実施例2および3と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例2および3において用いた易含浸性炭素繊維束が極めてポリブチレンテレフタレートに含浸されやすいことを確認できた。
<参考例C>
 実施例4と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率5質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は96質量%と極めて高く、実施例4において用いた易含浸性炭素繊維束が極めてポリブチレンテレフタレートに含浸されやすいことを確認できた。
<参考例D>
 実施例5と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例5において用いた易含浸性炭素繊維束が極めてポリブチレンテレフタレートに含浸されやすいことを確認できた。
<参考例E>
 実施例6と同様の操作にて得られた、トリメチルホスフェート含浸助剤の含有率10質量%(炭繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)をいる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は80質量%と高く、実例6において用いた易含浸性炭素繊維束が、ポリブチレンテレフタレートに含浸されやすいこと確認できた。
 <参考例F>
 実施例7と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率3質量%(炭素繊維100質量部あたり4質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は90質量%と高く、実施例7において用いた易含浸性炭素繊維束がポリブチレンテレフタレートに含浸されやすいことを確認できた。
 <参考例G>
 実施例8と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率8質量%(炭素繊維100質量部あたり5.3質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、実施例8において用いた易含浸性炭素繊維束が極めてポリブチレンテレフタレートに含浸されやすいことを確認できた。
<比較参考例A>
 比較例1と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)含浸助剤の含有率2質量%(炭素繊維100質量部あたり2質量部)の炭素繊維束(幅10mm長さ20mm)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は45質量%と低く、比較例1において用いた、含浸助剤の含有率2質量%の炭素繊維束は、ポリブチレンテレフタレートに含浸されやすいものでは無かった。
<比較参考例B>
 易含浸性炭素繊維束の代わりに、比較例2と同じウレタン・エポキシ系収束剤が1.2質量%含浸された炭素繊維フィラメント(東邦テナックス社製 STS40-F13 平均直径7μm フィラメント本数24000本)を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は6質量%と極めて低く、比較例2において用いた炭素繊維フィラメントは、極めてポリブチレンテレフタレートに含浸されにくいものであった。
<比較参考例C>
 実施例2および3と同様の操作にて得られた、ビスフェノールA ビス(ジフェニルホスフェート)の含有率10質量%(炭素繊維100質量部あたり11.1質量部)の易含浸性炭素繊維束(幅10mm長さ20mm)の上面に、厚み300μm幅10mm長さ20mmのシート状ポリブチレンテレフタレート(ポリプラスチックス式会社製 ジュラネックス(登録商標)2002)ではなく、同寸法のポリアミド6(宇部興産製 UBEナイロン1015B)のシート状物を用いて、参考例Aと同様に操作を行った。前記計算式(D)において、マトリックス樹脂をポリブチレンテレフタレートではなくポリアミド6として求めたマトリックス樹脂含浸率は4質量%と極めて低く、実施例2において用いた易含浸性炭素繊維束は、ポリアミド6には極めて含浸されにくいものであることが分かった。
 <比較参考例D>
 易含浸性炭素繊維束の代わりに、比較例5と同様に、含浸助剤を後添加して得られたポリカプロラクトン含浸助剤の含有率1.2質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は2質量%と極めて低く、比較例5において用いた炭素繊維フィラメントは、極めてポリブチレンテレフタレートに含浸されにくいものであった。
 <比較参考例E>
 比較例6と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率1.5質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は30質量%と低く、比較例6において用いた、含浸助剤の含有率1.5質量%の炭素繊維束は、ポリブチレンテレフタレートに含浸されやすいものでは無かった。
 <比較参考例F>
 比較例7と同様の操作にて得られた、ポリカプロラクトン含浸助剤の含有率18質量%の炭素繊維束を用いる以外は、参考例Aと同様に操作を行った。マトリックス樹脂含浸率は100質量%と極めて高く、比較例7において用いた易含浸性炭素繊維束が極めてポリブチレンテレフタレートに含浸されやすいことを確認できた。
Figure JPOXMLDOC01-appb-T000016
 本発明の成形用材料は、優れた機械強度を有する成形体を、簡素なプロセスにて製造することを可能とするものであり、自動車、船舶、航空機など輸送機器、電気・電子機器、事務用機器等の内外装材や部品といった種々の産業分野において極めて有用なものである。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2012年6月6日出願の日本特許出願(特願2012-128915)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (12)

  1.  炭素繊維100質量部と、下記の条件1および条件2を満たす1種類以上の含浸助剤3~15質量部とを含む易含浸性炭素繊維束に、50~2000質量部のポリブチレンテレフタレートが付着していることを特徴とする成形用材料。
     ・ 条件1:280℃における液体の粘度が10Pa・s以下である。
     ・ 条件2:ポリブチレンテレフタレート100質量部あたり、1~100質量部の間の量の含浸助剤を配合して得られる樹脂組成物が示すガラス転移温度Tg[℃]と、該ポリブチレンテレフタレートのガラス転移温度Tg[℃]、該含浸助剤の配合率(%)から以下式(A)で定義されるガラス転移温度低下率(ΔTg)が0.2[℃/%]より大きい。
     ガラス転移温度低下率(ΔTg)[℃/%]=(Tg[℃]-Tg[℃])/含浸助剤配合率[%]・・・(A)
     ここで、含浸助剤配合率[%]は、以下式(B)、
     含浸助剤配合率[%]=100×含浸助剤の配合量[質量部]/ポリブチレンテレフタレートの量[質量部]・・・(B)
    にて定義される。
  2.  含浸助剤が、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルからなる群より選ばれる1種類以上である請求項1に記載の成形用材料。
  3.  リン酸エステルが、その常圧下での沸点が340℃以上であり、かつ、窒素雰囲気下280℃での加熱減量が2%/分以下である芳香族リン酸エステルであることを特徴とする請求項2記載の成形用材料。
  4.  前記芳香族リン酸エステルが、下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001

    (上記一般式(1)において、R~R12は、それぞれ独立して、水素原子または炭素数1~4のアルキル基であり、Xは、結合、-CH-、-C(CH-、-S-、-SO-、-O-、-CO-または-N=N-であり、nは0または1の整数であり、mは0から5の整数である)
    で表されるものであることを特徴とする請求項3記載の成形用材料。
  5.  前記脂肪族ヒドロキシカルボン酸系ポリエステルが、ε-カプロラクトン、δ-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン、γ-バレロラクトン、エナントラクトンの各単独重合体で重量平均分子量3000~50000のもの、およびこれら2種以上のモノマーの共重合体で重量平均分子量3000~50000のものからなる群より選ばれる1種類以上のものである請求項2記載の成形用材料。
  6.  前記易含浸性炭素繊維束を芯成分、ポリブチレンテレフタレートを鞘成分とする芯鞘型構造である請求項1~5のいずれか1項に記載の成形用材料。
  7.  前記成形用材料の形態がペレットである請求項1~6のいずれか1項に記載の成形用材料。
  8.  前記ペレットの長手方向の長さが3~10mmである、請求項7に記載の成形用材料。
  9.  請求項1~8のいずれか1項に記載の成形用材料からなる成形体。
  10.  前記の易含浸性炭素繊維束に由来する炭素繊維が平均繊維長0.3mm以上の長さで分散していることを特徴とする請求項9記載の成形体。
  11.  炭素繊維含有率(質量%)とISO527規格4mmダンベルでの引張強度との関係が下記式(C)
    炭素繊維含有率(質量%)×3+90 < 引張強度(MPa) ・・・(C)
    の関係を満たす請求項9または10記載の成形体。
  12.  前記の成形用材料を、前記ポリブチレンテレフタレートの可塑化温度以上の温度の状態で金型内に存在させることにより、該成形用材料において、前記の易含浸性炭素繊維束に該ポリブチレンテレフタレートを含浸させて、該易含浸性炭素繊維束の炭素繊維束を解き分散させつつ成形した後、冷却することを特徴とする請求項9~11のいずれか1項に記載の成形体の製造方法。
PCT/JP2013/065476 2012-06-06 2013-06-04 成形用材料、その成形体、および該成形体の製造方法 WO2013183636A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13801414.7A EP2860214B1 (en) 2012-06-06 2013-06-04 Molding material, molded body of same, and method for producing molded body
US14/406,073 US20150183984A1 (en) 2012-06-06 2013-06-04 Material for Molding, Shaped Product Therefrom, and Method for Manufacturing Shaped Product
JP2014520008A JP6163485B2 (ja) 2012-06-06 2013-06-04 成形用材料、その成形体、および該成形体の製造方法
KR1020147034128A KR20150024824A (ko) 2012-06-06 2013-06-04 성형용 재료, 그 성형체, 및 그 성형체의 제조 방법
CN201380030247.1A CN104364299A (zh) 2012-06-06 2013-06-04 成型用材料、由其获得的成形制品以及该成形制品的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-128915 2012-06-06
JP2012128915 2012-06-06

Publications (1)

Publication Number Publication Date
WO2013183636A1 true WO2013183636A1 (ja) 2013-12-12

Family

ID=49712026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065476 WO2013183636A1 (ja) 2012-06-06 2013-06-04 成形用材料、その成形体、および該成形体の製造方法

Country Status (6)

Country Link
US (1) US20150183984A1 (ja)
EP (1) EP2860214B1 (ja)
JP (1) JP6163485B2 (ja)
KR (1) KR20150024824A (ja)
CN (1) CN104364299A (ja)
WO (1) WO2013183636A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10633535B2 (en) 2017-02-06 2020-04-28 Ticona Llc Polyester polymer compositions
US11446896B2 (en) * 2017-12-22 2022-09-20 Sabic Global Technologies B.V. Process for production of fiber reinforced tape
EP3749710A1 (en) 2018-02-08 2020-12-16 Celanese Sales Germany GmbH Polymer composite containing recycled carbon fibers
JP2024504273A (ja) * 2020-12-28 2024-01-31 ビーエーエスエフ ソシエタス・ヨーロピア ポリブチレンテレフタレート組成物及び成形品
CN113789045A (zh) * 2021-10-21 2021-12-14 广东粤港澳大湾区黄埔材料研究院 一种聚氨酯复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189248A (ja) * 1984-10-08 1986-05-07 Mitsubishi Rayon Co Ltd 炭素繊維強化ポリエステル樹脂組成物
JPH01271439A (ja) * 1988-04-23 1989-10-30 Toho Rayon Co Ltd 導電性プラスチック成形材料
JPH03121146A (ja) 1989-10-03 1991-05-23 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物の製造法
JPH03181528A (ja) 1989-12-08 1991-08-07 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法
JPH05112657A (ja) 1991-10-21 1993-05-07 Mitsubishi Kasei Corp 熱可塑性樹脂強化用炭素繊維強化樹脂組成物および炭素繊維強化熱可塑性樹脂複合材
JPH06166961A (ja) 1992-11-27 1994-06-14 Petoca:Kk セメント補強用炭素繊維及びセメント複合体
JP2013121988A (ja) * 2011-05-16 2013-06-20 Daicel Polymer Ltd 難燃性樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714642A (en) * 1983-08-30 1987-12-22 Basf Aktiengesellschaft Carbon fiber multifilamentary tow which is particularly suited for weaving and/or resin impregnation
US4737540A (en) * 1984-10-08 1988-04-12 Mitsubishi Rayon Co., Ltd. Carbon fiber reinforced polyester resin composition
US5091255A (en) * 1990-01-23 1992-02-25 American Cyanamid Company Molding granules, their manufacture and their use in the production of molded articles
GB9615995D0 (en) * 1996-07-30 1996-09-11 Kobe Steel Europ Ltd Fibre reinforced compositions and methods for their production

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189248A (ja) * 1984-10-08 1986-05-07 Mitsubishi Rayon Co Ltd 炭素繊維強化ポリエステル樹脂組成物
JPH01271439A (ja) * 1988-04-23 1989-10-30 Toho Rayon Co Ltd 導電性プラスチック成形材料
JPH03121146A (ja) 1989-10-03 1991-05-23 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物の製造法
JPH03181528A (ja) 1989-12-08 1991-08-07 Polyplastics Co 長繊維強化成形用ポリオレフィン樹脂組成物およびその製造法
JPH05112657A (ja) 1991-10-21 1993-05-07 Mitsubishi Kasei Corp 熱可塑性樹脂強化用炭素繊維強化樹脂組成物および炭素繊維強化熱可塑性樹脂複合材
JPH06166961A (ja) 1992-11-27 1994-06-14 Petoca:Kk セメント補強用炭素繊維及びセメント複合体
JP2013121988A (ja) * 2011-05-16 2013-06-20 Daicel Polymer Ltd 難燃性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2860214A4

Also Published As

Publication number Publication date
KR20150024824A (ko) 2015-03-09
EP2860214A1 (en) 2015-04-15
EP2860214B1 (en) 2017-07-26
US20150183984A1 (en) 2015-07-02
EP2860214A4 (en) 2015-07-01
JP6163485B2 (ja) 2017-07-12
JPWO2013183636A1 (ja) 2016-02-01
CN104364299A (zh) 2015-02-18

Similar Documents

Publication Publication Date Title
Long et al. Mechanical and thermal properties of bamboo fiber reinforced polypropylene/polylactic acid composites for 3D printing
KR101585824B1 (ko) 성형용 재료, 그 성형체, 및 그 성형체의 제조 방법
Rojo et al. Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites
JP6163485B2 (ja) 成形用材料、その成形体、および該成形体の製造方法
JP5634638B2 (ja) 成形体の製造方法
Franciszczak et al. Short-fibre hybrid polypropylene composites reinforced with PET and Rayon fibres–Effects of SSP and interphase tailoring
JP2013209629A (ja) ポリカーボネート樹脂成形材料、および成形品
JP2011162767A (ja) 炭素繊維強化ポリフェニレンスルフィド樹脂組成物、ならびにそれを用いた成形材料および成形品
WO2021200793A1 (ja) 繊維強化プラスチック成形材料
JP6060256B2 (ja) 複合材料の製造方法
JP2005307078A (ja) 生分解性樹脂複合材料の製造方法およびその成形方法
KR101864552B1 (ko) 탄소 섬유 사이징제, 이를 이용하여 제조된 탄소 섬유 및 탄소 섬유 강화 플라스틱
JP2013194175A (ja) 複合材料およびその製造方法
WO2018083978A1 (ja) 成形材料、成形材料の集合体、及びそれらの製造方法
JP5161731B2 (ja) 脂肪族ポリエステル樹脂ペレットおよびそれらを成形してなる成形体
TWI825450B (zh) 含有再循環及可再生聚合組成物之風扇單元
JP2005068225A (ja) 複合成形材料及びそれを用いた成形品
KR101880495B1 (ko) 폐실크피브로인/폐양모/pbs 하이브리드 바이오복합재
Bardi et al. Review of Enhancement of Polymer for Material Extrusion Process by Combining with Filler Material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801414

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014520008

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147034128

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14406073

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013801414

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013801414

Country of ref document: EP