WO2013183592A1 - 1,4-ブタンジオールの製造方法 - Google Patents

1,4-ブタンジオールの製造方法 Download PDF

Info

Publication number
WO2013183592A1
WO2013183592A1 PCT/JP2013/065367 JP2013065367W WO2013183592A1 WO 2013183592 A1 WO2013183592 A1 WO 2013183592A1 JP 2013065367 W JP2013065367 W JP 2013065367W WO 2013183592 A1 WO2013183592 A1 WO 2013183592A1
Authority
WO
WIPO (PCT)
Prior art keywords
butanediol
containing liquid
raw material
purified
producing
Prior art date
Application number
PCT/JP2013/065367
Other languages
English (en)
French (fr)
Inventor
宇都宮 賢
雄輔 井澤
範和 小西
幸太 田中
真一郎 松園
鈴木 隆行
ミカエル ジャプス
マーク バーク
ウォーレン クラーク
Original Assignee
三菱化学株式会社
ジェノマティカ・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社, ジェノマティカ・インコーポレイテッド filed Critical 三菱化学株式会社
Priority to EP20203034.2A priority Critical patent/EP3786144B1/en
Priority to EP13801148.1A priority patent/EP2857377B1/en
Priority to EP19161247.2A priority patent/EP3517521B1/en
Priority to BR112014030247-2A priority patent/BR112014030247B1/pt
Priority to CA2874084A priority patent/CA2874084C/en
Priority to AU2013272715A priority patent/AU2013272715B2/en
Priority to CN201380036694.8A priority patent/CN104640830B/zh
Publication of WO2013183592A1 publication Critical patent/WO2013183592A1/ja
Priority to US14/560,714 priority patent/US10487032B2/en
Priority to AU2017268624A priority patent/AU2017268624B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/84Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by extractive distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/001Processes specially adapted for distillation or rectification of fermented solutions
    • B01D3/002Processes specially adapted for distillation or rectification of fermented solutions by continuous methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/88Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
    • C07C29/90Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound using hydrogen only
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric

Definitions

  • the present invention relates to a method for producing 1,4-butanediol. Specifically, the present invention relates to a method for producing crude 1,4-butanediol having a high purity by purifying crude 1,4-butanediol obtained from biomass resources.
  • 1,4-butanediol (hereinafter sometimes abbreviated as “1,4BG”) is a very useful substance used as a raw material for various solvents and derivatives.
  • 1,4BG 1,4-butanediol
  • a process for producing 1,4BG by obtaining diacetoxybutene as an intermediate by acetoxylation reaction using acetic acid and oxygen using butadiene as a raw material, and hydrogenating and hydrolyzing the diacetoxybutene; maleic acid, A method in which succinic acid, maleic anhydride and / or fumaric acid are used as raw materials to hydrogenate them to obtain a crude hydrogenated product containing 1,4BG; butynediol obtained by contacting acetylene with a formaldehyde aqueous solution as hydrogen And a process for producing 1,4BG.
  • Patent Document 3 describes a purification method for 1,3-propanediol derived from biomass resources. Further, Patent Document 4 describes a general purification method as a method for purifying 1,4BG derived from biomass resources.
  • Patent Document 4 does not describe a detailed purification condition or a method for removing a substance that deteriorates quality and removes it, and it is difficult to apply it to an industrially large-scale process. .
  • 1,4BG derived from biomass resources is used as a raw material for PBT production.
  • various impurities generated in the process of fermenting biomass resources such as impurities derived from raw materials and sugars may be mixed.
  • 1,4BG derived from conventional fossil fuels such as petroleum is used as a raw material.
  • the color tone may be worse than that of PBT.
  • the present invention has been made in view of the above-mentioned present situation, and can efficiently purify by removing various impurities that are mixed when manufacturing 1,4BG derived from biomass resources on an industrial scale, It is an object of the present invention to provide a method for producing 1,4BG derived from high-quality biomass resources that can be a PBT raw material having a good color tone.
  • 1,4-butanediol is biologically produced in an organic fermentation medium capable of producing 1,4-butanediol, and at least one of each of cells, salt and water is produced from the fermentation medium.
  • the crude 1,4-butanediol-containing liquid is passed through one or more of the following steps (a) to (c)
  • the purified 1,4-butanediol-containing liquid is purified through the following step (d) to obtain purified 1,4-butanediol, thereby producing 1,4-butanediol.
  • Step (a) The purified raw material 1,4-butanediol-containing liquid is distilled in a distillation column, and a component having a boiling point higher than 1,4-butanediol contained in the purified raw material 1,4-butanediol-containing liquid is removed.
  • Step (b) of removing The purified raw material 1,4-butanediol-containing liquid is distilled in a distillation column, and has a lighter boiling point than 1,4-butanediol contained in the purified raw material 1,4-butanediol-containing liquid
  • the crude 1,4 The step of distilling the butanediol-containing liquid in a distillation column and extracting the purified 1,4-butanediol from the side distillation ⁇ 2>
  • the number of carbon atoms in the purified 1,4-butanediol obtained in the step (d) is 5 or 6 rings
  • the concentration of carbonyl compound is at most 12 mass ppm, the production method of 1,4-butanediol according to ⁇ 1>.
  • ⁇ 3> A method for producing 1,4-butanediol through at least step (a) among steps (a) to (c), wherein the method further includes step (e), ⁇ 1> or The method for producing 1,4-butanediol according to ⁇ 2>.
  • Step (e) Step of distilling a component having a boiling point higher than that of 1,4-butanediol separated in the step (a) in a distillation column, and separating and recovering 1,4-butanediol ⁇ 4>
  • a method for producing 1,4-butanediol through at least step (c) among (a) to (c), and a purified raw material 1,4-butanediol-containing solution after passing through step (f) below The method for producing 1,4-butanediol according to any one of ⁇ 1> to ⁇ 3>, wherein is introduced into step (c).
  • Step (f) Step of bringing the purified raw material 1,4-butanediol-containing liquid into contact with a base ⁇ 5> Purification immediately before going through any of the steps (a) to (c) or step (f)
  • the 1,4-butanediol-containing liquid has a water concentration of 0.01 to 20% by mass and a pH of 5 or more, according to any one of the above ⁇ 1> to ⁇ 4>.
  • the method for producing 1,4-butanediol according to 1. ⁇ 7> The method for producing 1,4-butanediol according to any one of ⁇ 4> to ⁇ 6>, wherein the base in the step (f) is a solid base.
  • the component having a lighter boiling point than 1,4-butanediol in the step (b) contains 1-acetoxy-4-hydroxybutane, and the component having a lighter boiling point than the 1,4-butanediol is 1 in any one of ⁇ 1> to ⁇ 7> above, wherein the 1-acetoxy-4-hydroxybutane concentration in the removed crude 1,4-butanediol-containing liquid is 0.1 to 50 mass ppm.
  • the method for producing 1,4-butanediol according to any one of ⁇ 1> to ⁇ 10>, wherein the concentration of 2-pyrrolidone in the 4-butanediol-containing liquid is 20 ppm by mass or less.
  • the heating source of the distillation column in the step (a) substantially contacts only the bottom liquid and does not involve contact with the gas phase part, and any one of the above ⁇ 1> to ⁇ 11> Of 1,4-butanediol.
  • the concentration of gamma butyrolactone in the top distillate of the distillation column in the step (d) is higher than the concentration of gamma butyrolactone in purified 1,4-butanediol extracted from the side distillation,
  • the carbonyl value in the purified raw material 1,4-butanediol-containing liquid immediately before passing through any of the steps (a) to (c) or step (f) is controlled to 2.5 mgKOH / g or less.
  • the method for producing 1,4-butanediol according to any one of ⁇ 1> to ⁇ 13> comprising the step of: ⁇ 15> Any one of the above items ⁇ 1> to ⁇ 14>, wherein the carbonyl value in the purified raw material 1,4-butanediol-containing liquid is reduced in at least one of the steps (b) to (d).
  • high-quality biomass resources that can be effectively purified to remove various impurities mixed in the production of 1,4BG derived from biomass resources on an industrial scale and become a PBT raw material with good color tone Origin 1,4BG can be produced.
  • FIG. 1 is a system diagram of steps (a) to (f) showing a preferred embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the total C 5 and C 6 cyclic carbonyl concentration in 1,4BG and the color tone b value of PBT obtained using 1,4BG.
  • FIG. 3 is a graph showing the relationship between the total C 5 and C 6 cyclic carbonyl concentration in 1,4BG and the polycondensation rate when PBT is produced using the 1,4BG.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the lower limit value or the upper limit value in this specification means a range including the value of the lower limit value or the upper limit value.
  • wt%”, “wt ppm”, and “weight ratio” are synonymous with “mass%”, “mass ppm”, and “mass ratio”, respectively. When “ppm” is simply described, it indicates “ppm by weight”.
  • the purification process in the method for producing 1,4BG according to the present invention is suitably applied to a composition containing 1,4BG derived from biomass resources.
  • Biomass resources are those that are stored by converting the light energy of the sun into forms such as starch and cellulose by the photosynthetic action of plants, animals that grow by eating plants, and plants and animals that are processed. Products that can be produced. Specifically, wood, rice straw, rice bran, old rice, corn, sugar cane, cassava, sago palm, okara, corn cob, tapioca cass, bagasse, vegetable oil scum, buckwheat, soy, fat, waste paper, paper residue, marine product residue, Examples include livestock excrement, sewage sludge, and food waste.
  • plant resources such as wood, rice straw, old rice, corn, sugar cane, cassava, sago palm, okara, corn cob, tapioca cass, bagasse, vegetable oil residue, rice cake, buckwheat, soybeans, fats and oils, waste paper, papermaking residue, etc. are preferred, more Preferred examples include wood, rice straw, old rice, corn, sugar cane, cassava, sago palm, straw, fats and oils, waste paper, papermaking residue and the like, and most preferred are corn, sugar cane, cassava and sago palm.
  • Biomass resources generally contain many alkali metals and alkaline earth metals such as elemental nitrogen, Na, K, Mg, and Ca.
  • the method of these biomass resources is not particularly limited.
  • the biomass resources are subjected to known pretreatment and saccharification processes such as chemical treatment with acids and alkalis, biological treatment using microorganisms, physical treatment, and the like. Induced to carbon source.
  • the process often includes a refinement process by pretreatment such as chipping, scraping, or crushing biomass resources, and further includes a grinding process by a grinder or a mill as necessary.
  • the refined biomass resources are usually guided to a carbon source through further pretreatment and saccharification steps.
  • Specific methods include chemical methods such as acid treatment with strong acids such as sulfuric acid, nitric acid, hydrochloric acid, and phosphoric acid, alkali treatment, ammonia freeze steaming explosion method, solvent extraction, supercritical fluid treatment, oxidizing agent treatment; Examples thereof include physical methods such as pulverization, steam explosion, microwave treatment, and electron beam irradiation; biological treatments such as hydrolysis by microorganisms and enzyme treatment.
  • Carbon sources derived from the above biomass resources usually include hexoses such as glucose, mannose, galactose, fructose, sorbose, tagatose; pentoses such as arabinose, xylose, ribose, xylulose, ribulose; pentose, saccharose, starch, cellulose Disaccharides and polysaccharides such as butyric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid, linoleic acid, rirenonic acid, monoctinic acid, arachidic acid, eicosene Fats and oils such as acid, arachidonic acid, behenic acid, erucic acid, docosapentaenoic acid, docosahexaenoic acid, lignoceric acid and ceracolonic acid; poly
  • hexoses such as glucose, fructose, xylose and saccharose, pentose or disaccharides are preferable, and glucose is particularly preferable.
  • cellulose which is a main component of paper is also preferable.
  • 1,4BG In a method for producing 1,4BG directly from a carbon source such as glucose by fermentation, E. coli, corynebacterium, yeast, etc., in which the genes are modified can be used.
  • 1,4BG can be biologically produced from a fermentation medium of an organism by the method described in Japanese National Publication 2010-521182.
  • a 1,4BG-containing composition biologically produced from an organism fermentation medium capable of producing 1,4BG in this way is disclosed in, for example, US Patent Application Publication No. 2011/0003355.
  • a purified raw material 1,4BG-containing liquid can be obtained by removing at least part of the water in the composition from the 1,4BG-containing composition.
  • the “1,4BG-containing composition” refers to a product obtained by removing cells and salt from the fermentation medium that produced 1,4BG, and water from this 1,4BG-containing composition. The removed product is referred to as “purified raw material 1,4BG-containing liquid”.
  • the method for removing water contained in the 1,4BG-containing composition after separating and removing the cells and salt from the fermentation medium is not particularly limited, but it is preferably removed by continuous or batch distillation.
  • the distillation column used for distilling off the water it is preferable to use a distillation column having 2 or more and 100 or less theoretical plates, more preferably 5 or more and 50 or less.
  • the reflux ratio is arbitrary, but is preferably 0.01 or more and 100 or less, more preferably 0.1 or more and 50 or less, and particularly preferably 0.2 or more and 20 or less.
  • the reboiler which is the heating part of the distillation column is not particularly limited, but is preferably a forced circulation type reboiler or a thin film flow down type reboiler.
  • a shorter residence time at the site of contact with the heating source at the bottom of the column is preferable from the viewpoint of avoiding contamination, and a structure in which the heating source does not contact the gas phase part or a structure in which the contact amount is minimized is preferable.
  • the top pressure of this distillation column is preferably 1 kPa or more and 200 kPa or less as an absolute pressure, more preferably 2 kPa or more and 100 kPa or less, and particularly preferably 5 kPa or more and 50 kPa or less.
  • the temperature in the distillation is determined by the composition and pressure, but the temperature at the highest temperature at the bottom of the column is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 140 ° C. or higher and 190 ° C. or lower. Preferably they are 150 degreeC or more and 180 degrees C or less.
  • the temperature at the top of the column is preferably 40 ° C. or higher and 100 ° C. or lower, more preferably 40 ° C. or higher and 80 ° C.
  • the cooling cost can be suppressed by setting the tower top temperature to be equal to or higher than the above lower limit, and the side reaction in the tower can be suppressed by being set to the upper limit or lower.
  • the preferred distribution ratio at the top of this distillation column (column top distillate flow rate / feed flow rate) ⁇ 100) varies depending on the water concentration in the 1,4BG-containing composition, but preferably 2 to 40%. More preferably, it is 5 to 30%, particularly preferably 8 to 25%. If the distribution at the top of the tower is increased too much, the loss of 1,4BG will increase. Brought in.
  • the pH at the bottom of the column is preferably controlled to 4 to 9, particularly preferably 5 to 8. If the pH is too low, the amount of THF by-product increases in the distillation column, making operation difficult. If the pH is too high, side reactions such as high boiling are promoted.
  • the bottoms obtained in the distillation tower for removing water that is, the liquid containing the purified raw materials 1,4BG is fed to the next purification step. Further, the distillate containing a large amount of water and light-boiling components may be discarded as it is, but it may be used for washing in other processes.
  • the purified raw material 1,4BG-containing liquid obtained by removing water from the 1,4BG-containing composition is extracted from the bottom of the distillation tower.
  • This refined raw material 1,4BG-containing liquid contains 1,4BG, a component having a higher boiling point than that of 1,4BG, and a component having a light boiling point.
  • Components other than 1,4BG contained in the purified raw material 1,4BG-containing liquid are gamma butyrolactone, 1-acetoxy-4-hydroxybutane, tetrahydrofuran, acetic acid, butanol, butyraldehyde, butyric acid, 1,3-butanediol, , 3-butanediol, 2-hydroxytetrahydrofuran, 2- (4-hydroxybutyloxy) tetrahydrofuran, water, amino acid and protein-derived nitrogen-containing components, sugars and their degradation products.
  • the purified raw material 1,4BG-containing liquid can be converted into 1,4BG derived from high-quality biomass resources that can be a PBT raw material having a good color tone by the purification according to the present invention, but it becomes a PBT raw material having a good color tone.
  • the carbonyl value of the purified raw material 1,4BG-containing liquid is preferably 2.5 mgKOH / g or less, more preferably 2.0 mgKOH / g or less, and particularly preferably 1.5 mgKOH / g or less. The lower the carbonyl value, the lower the purification cost of the present invention, which is economically desirable.
  • the purified raw material 1 and 4BG-containing liquid here refers to the purified raw material 1 and 4BG immediately before passing through the steps (a) to (c), and when passing through the step (f) described later, the step (f ) Shows purified raw material 1,4BG immediately before passing through.
  • the method of reducing the carbonyl value in the purified raw material 1,4BG-containing liquid is not particularly limited, but the method of reducing 1,4BG biologically from the fermentation medium of the organism or the microorganism from the fermentation medium Examples thereof include a method of reducing the carbonyl component together with water in the step of removing water contained in the 1,4BG-containing composition after separating and removing the salt.
  • the method for measuring the carbonyl value is as described in the Examples section below.
  • the water concentration of this refined raw material 1 and 4BG containing liquid is not specifically limited, Usually, as an upper limit, it is 20 mass% or less, Preferably it is 18 mass% or less, More preferably, it is 15 mass% or less.
  • the lower limit is usually 0.01% by mass or more, preferably 0.02% by mass or more, and more preferably 0.03% by mass or more. If the water concentration of the purified raw material 1 and 4BG-containing liquid is too high, the steam recovery temperature from the tower top portion is lowered in the subsequent step, which is inappropriate. On the other hand, in order to excessively reduce the water concentration of the purified raw material 1 and 4BG-containing liquid, the distillation load for removing the water increases, which is not preferable.
  • the purified raw material 1 and 4BG-containing liquid here refers to the purified raw material 1 and 4BG immediately before passing through the steps (a) to (c), and when passing through the step (f) described later, the step (f ) Shows purified raw material 1,4BG immediately before passing through.
  • transduced into the process (a) mentioned later is 1.5 mass% or less, It is more preferable that it is 1 mass% or less, 0.5
  • the content is more preferably not more than mass%, particularly preferably not more than 0.2 mass%. For this reason, when the water concentration after removing water from the 1,4BG-containing composition is higher than the upper limit, it is preferable to further repeat the same distillation to reduce the water concentration.
  • the pH of the purified raw material 1,4BG-containing liquid is preferably 5 or more, more preferably 5.0 to 9.0, and particularly preferably 5.2 to 8.0.
  • the low pH of the purified raw material 1,4BG-containing liquid means that the pH of the bottom liquid of the distillation column for removing water is low, and there is a problem of THF as a by-product as described above.
  • the pH of the purified raw material 1,4BG-containing liquid is too high, that is, if the pH of the bottom liquid of the distillation column for removing water is too high, side reactions such as high boiling are promoted.
  • the 1,4BG concentration of the purified raw material 1,4BG-containing liquid is not particularly limited, but is usually 80% by mass or more, preferably 82% by mass or more, and more preferably 85% by mass or more as the lower limit.
  • the upper limit is usually 99.5% by mass or less, preferably 99.0% by mass or less, and more preferably 98.0% by mass or less.
  • 1,4BG in the purified raw material 1,4BG-containing liquid is supplied from such purified raw material 1,4BG-containing liquid via one or more of the following steps (a) to (c).
  • a crude 1,4BG-containing liquid is obtained by passing through at least one of a method for removing components having higher boiling points, a method for removing light boiling components, and a method for converting unsaturated compounds into hydrides.
  • the crude 1,4BG-containing liquid is purified through the following step (d) to obtain purified 1,4BG with high purity.
  • the following step (e) may be further performed, and the following step (f) may be performed prior to the step (c).
  • the distillation operation in the distillation column is either a batch type or a continuous type unless otherwise specified.
  • a continuous distillation operation is preferable from the viewpoint of productivity.
  • single distillation or multistage distillation may be used, multistage distillation is preferable from the viewpoint of separation performance, and either a plate or a regular and / or irregular packing can be used for the distillation column.
  • Steps (a) to (c) above are the previous steps for introducing the purified raw material 1,4BG-containing liquid into step (d), and the purified raw material 1,4BG-containing liquid is one of these steps (a) to (c). After passing through one process, two processes, or all processes, the process is introduced into the process (d).
  • the order of the steps is not particularly limited. From the viewpoint of suppressing coloring of PBT obtained when producing PBT using the purified 1,4BG obtained in step (d) as a raw material, the purified raw material 1,4BG-containing liquid is added to all of steps (a) to (c). It is preferable to introduce into the step (d) after passing through the step. At that time, the order of the respective steps may be changed, but the order of the step (a) ⁇ the step (c) ⁇ the step (b) ⁇ the step (d) is preferable.
  • FIG. 1 is a system diagram showing a process sequence in a case where all of the steps (a) to (f), which is a preferred embodiment of the present invention, is adopted.
  • the operation of each process will be described with reference to this system diagram.
  • the present invention is not limited to the embodiment shown in FIG. 1, and one or two processes out of the processes (a) to (c). Any one or more of the steps (e) and (f) may be omitted, and another step may be added.
  • Step (a) Distillation step for removing components having a boiling point higher than 1,4BG>
  • a component having a boiling point higher than 1,4BG (high boiling component) from the purified raw material 1,4BG-containing liquid is referred to as a distillation column (hereinafter sometimes referred to as “distillation column (a)”).
  • a crude 1,4BG-containing liquid from which the high boiling point component has been removed is obtained as a top distillate from the distillation column (a).
  • the water concentration of the purified raw material 1,4BG-containing liquid introduced into the distillation column (a) is preferably 1.5% by mass or less, more preferably 1% by mass or less.
  • the content is more preferably 5% by mass or less, and particularly preferably 0.2% by mass or less.
  • step (a) removal of components having a boiling point higher than 1,4BG specific to fermentation methods such as nitrogen-containing components derived from amino acids and proteins, sugars and decomposition products thereof is performed.
  • Nitrogen-containing components such as amino acids are lightly boiled to amides by heating, and in particular, amides having 4 carbon atoms such as 2-pyrrolidone may be included. Since these amides are also coloring factors during the production of PBT, it is preferable to separate them at the same time in the main distillation operation.
  • the concentration of 2-pyrrolidone in the crude 1,4BG-containing liquid that is a distillate from the distillation column Is preferably 100 ppm by mass or less, more preferably 20 ppm by mass or less, and particularly preferably 10 ppm by mass or less until the high boiling point component is removed.
  • the lower limit of the 2-pyrrolidone concentration of the distillate is preferably as low as possible, but is usually 0.01 mass ppm or more, preferably 0.05 mass ppm or more, and particularly preferably 0.1 mass ppm or more.
  • the concentration of the nitrogen atom-containing compound such as 2-pyrrolidone can be controlled by the nitrogen atom concentration, and the nitrogen atom concentration of the distillate is not particularly limited, but is preferably 50 ppm by mass or less, more preferably 30 The mass ppm or less, particularly preferably 20 mass ppm or less.
  • distillation column (a) it is preferable to use a distillation column having 3 or more and 100 or less theoretical plates, and more preferably 5 or more and 50 or less.
  • the reflux ratio is arbitrary, but is preferably 0.01 or more and 100 or less, more preferably 0.1 or more and 50 or less.
  • a reflux ratio of 0.2 or more and 20 or less is particularly preferable.
  • the reboiler which is the heating part of the distillation column (a) is not particularly limited, but is preferably a forced circulation type reboiler or a thin film flow down type reboiler.
  • a shorter residence time at the site of contact with the heating source at the bottom of the column is preferable from the viewpoint of avoiding contamination, and a structure in which the heating source does not contact the gas phase part or a structure in which the contact amount is minimized is preferable. It is also possible to recover steam from the cooling condenser at the top of the distillation column (a).
  • the column top pressure of the distillation column (a) is preferably 1 kPa or more and 200 kPa or less as an absolute pressure, more preferably 2 kPa or more and 100 kPa or less, and particularly preferably 5 kPa or more and 50 kPa or less.
  • the lower the pressure at the top of the tower the lower the temperature in the tower, and it can be avoided that new impurities are generated from components derived from biomass resources such as amino acids and sugars. Further, the higher the tower top pressure, the more suitable the steam recovery from the tower top part is, and the capacity of the tower itself can be further reduced.
  • the temperature in the distillation column (a) is determined by the composition and pressure, and the temperature at the highest temperature of the column bottom is preferably 150 ° C. or higher and 200 ° C. or lower, more preferably 160 ° C. or higher and 195 ° C. or lower. It is particularly preferably 165 ° C. or higher and 190 ° C. or lower.
  • the temperature at the top of the column is preferably 140 ° C. or higher and 190 ° C. or lower, more preferably 150 ° C. or higher and 185 ° C. or lower, and particularly preferably 155 ° C. or higher and 180 ° C. or lower.
  • the distillate obtained in the distillation column (a) that removes components having a boiling point higher than 1,4BG is brought into the next step.
  • the bottoms containing a component having a higher boiling point than 1,4BG can be discarded as it is, but it is preferable to send it to the distillation step (e) for recovering 1,4BG.
  • Distillation column (a) which removes components having a higher boiling point than 1,4BG by maintaining a high 1,4BG concentration in the bottoms of distillation column (a) containing a higher boiling component than 1,4BG.
  • the bottoms extracted from the bottom of the distillation column (a) preferably contains 1,4BG to some extent, and preferably the 1,4BG concentration in the bottoms is 40 to 99.2% by mass. More preferably, it is 50 to 99.0% by mass, and particularly preferably 55 to 98.8% by mass.
  • step (e) In addition to the above steps (a) to (d), in addition to the above steps (a) to (d), it is possible to further recover 1,4BG contained in components having a boiling point higher than 1,4BG separated in step (a). It is preferable to further include a step (e).
  • Step (e) Step of separating and recovering 1,4BG from components having a boiling point higher than 1,4BG separated in step (a)>
  • a component having a boiling point higher than 1,4BG separated in the step (a) that is, the bottoms of the distillation column (a) is converted into a distillation column (hereinafter referred to as “distillation column (e)”). 1) and 4BG are separated and recovered.
  • the distillation column (e) used in the step (e) is preferably a distillation column having 2 or more and 50 or less theoretical plates, more preferably 5 or more and 30 or less.
  • the reflux ratio is arbitrary, but is preferably 0.01 or more and 100 or less, more preferably 0.1 or more and 50 or less.
  • a reflux ratio of 0.2 or more and 20 or less is particularly preferable. It is also possible to recover the vapor from the cooling condenser at the top of the distillation column (e).
  • the reboiler which is the heating part of the distillation column (e) is not particularly limited, but is preferably a forced circulation type reboiler or a thin film flow down type reboiler.
  • a shorter residence time at the site of contact with the heating source at the bottom of the column is preferable from the viewpoint of avoiding contamination, and a structure in which the heating source does not contact the gas phase part or a structure in which the contact amount is minimized is preferable.
  • the inside of the distillation column (e) in the step (e) was contaminated even when the steps (a) to (d) were in the middle of continuous operation. In this case, it is possible to temporarily stop only the distillation column (e) and perform bypass operation during that time.
  • the top pressure of the distillation column (e) is preferably from 0.1 kPa to 100 kPa as an absolute pressure, more preferably from 0.2 kPa to 50 kPa, and particularly preferably from 1 kPa to 20 kPa.
  • capacitance of tower itself can be reduced, so that tower top pressure is high.
  • the temperature at the bottom of the distillation column (e) is preferably 150 ° C. or higher and 200 ° C. or lower. More preferably, it is 160 degreeC or more and 195 degrees C or less, Most preferably, it is 165 degreeC or more and 190 degrees C or less.
  • a by-product Prevents the amount of product from increasing or causing dirt.
  • the temperature at the top of the column is preferably 140 ° C. or higher and 190 ° C. or lower, more preferably 150 ° C. or higher and 185 ° C.
  • the tower top temperature is set to the above lower limit or higher, it is prevented that the temperature is too low to recover steam from the top part of the tower, and by making it lower than the above upper limit, the amount of by-products increases. To prevent that.
  • the distillate containing 1,4BG separated in the distillation column (e) is preferably circulated to the distillation column (a) to recover 1,4BG.
  • the bottoms containing a higher amount of high boiling point components concentrated in the distillation column (e) are discarded as they are, but it is preferable to recover the heat by incineration.
  • most high-boiling components can be discharged by this distillation operation, more high-boiling components including 2-pyrrolidone can be further discarded by performing the theoretical stage of the distillation column (e) within the above range. Is possible. Further, it is possible to discharge a large amount of nitrogen and sulfur in the high boiling point component.
  • Step (c) Step of hydrogenating unsaturated compound contained in purified raw material 1,4BG-containing liquid>
  • components that cause coloring of the purified 1,4BG and / or components that cause coloring when the purified 1,4BG is used as a raw material to produce PBT are eliminated.
  • carbonyl compounds such as ketones, aldehydes, and esters, and unsaturated compounds having an olefin moiety are converted to hydrides by hydrogenation reaction, and are included in the structure of compounds of these color-causing components. Eliminate carbonyl bonds and olefinic sites.
  • the obtained hydride can be removed by distillation as alcohol or the like.
  • cyclic carbonyl compounds such as ketones and / or aldehydes having 5 or 6 carbon atoms have a significant effect on the deterioration of color tone during the production of PBT. Then, it is preferable to reduce the concentration of the cyclic carbonyl compound having 5 or 6 carbon atoms by converting it into a hydride, and thereby a remarkable effect can be obtained in improving the color tone during the production of PBT.
  • the “cyclic carbonyl compound having 5 or 6 carbon atoms” refers to both a cyclic carbonyl compound having 5 carbon atoms and a cyclic carbonyl compound having 6 carbon atoms.
  • the total amount of these carbonyl compounds can also be managed as a carbonyl value, and the carbonyl value can be reduced in the step (c).
  • cyclic carbonyl compounds having 5 or 6 carbon atoms preferably have a 5-membered or 6-membered ring structure, and particularly have a cyclic skeleton containing an oxygen atom.
  • Specific examples include one or more compounds selected from the group consisting of compounds having a structure represented by the following formula (I), formula (II) and formula (III).
  • R 1 to R 4 each independently represents a hydrogen atom, a methyl group, a formyl group or an acetyl group, and any one of R 1 to R 4 is a formyl group or an acetyl group, And the total number of carbon atoms contained in each of R 1 to R 4 is 2 or less.
  • a plurality of Xs each independently represent a carbon atom or an oxygen atom, the total number of oxygen atoms contained in the plurality of Xs is 1, and R 5 to R 9 are each independently Represents a methyl group or a hydrogen atom, and the total number of carbon atoms contained in each of R 5 to R 9 is 1 or less.
  • R 10 to R 13 each independently represents a methyl group or a hydrogen atom, and the total number of carbon atoms contained in each group of R 10 to R 13 is 1 or less. .
  • examples of the compound having the structure represented by the above formula (I) include compounds having 5 carbon atoms such as tetrahydro-2-furaldehyde, tetrahydro-3-furaldehyde, and the like.
  • Compounds having 6 atoms include 2-acetyltetrahydrofuran [1- (tetrahydrofuran-2-yl) ethanone], 3-acetyltetrahydrofuran [1- (tetrahydrofuran-3-yl) ethanone], 5-methyltetrahydro-2-furaldehyde 4-methyltetrahydro-2-furaldehyde, 3-methyltetrahydro-2-furaldehyde, 2-methyltetrahydro-3-furaldehyde, 4-methyltetrahydro-3-furaldehyde, 5-methyltetrahydro-3-furaldehyde 2- (Tetrahydrofuran-2-yl) acetate Aldehyde, such
  • Examples of the compound having the structure represented by the above formula (II) include tetrahydro-4H-pyran-4-one as the compound having 5 carbon atoms, and 3-methyl compound as the compound having 6 carbon atoms.
  • Examples include tetrahydro-4H-pyran-4-one, 2-methyltetrahydro-4H-pyran-4-one, 2-formyl-tetrahydropyran, 3-formyl-tetrahydropyran, 4-formyl-tetrahydropyran and the like.
  • Examples of the compound having the structure represented by the above formula (III) include dihydro-2H-pyran-3 (4H) -one as the compound having 5 carbon atoms, and the compound having 6 carbon atoms as 2-methyldihydro-2H-pyran-3 (4H) -one, 4-methyldihydro-2H-pyran-3 (4H) -one, 5-methyldihydro-2H-pyran-3 (4H) -one, 6 -Methyldihydro-2H-pyran-3 (4H) -one and the like.
  • a compound having 5 carbon atoms is tetrahydro-2-furaldehyde
  • a compound having 6 carbon atoms is 2-acetyltetrahydrofuran [ 1- (tetrahydrofuran-2-yl) ethanone], 3-acetyltetrahydrofuran [1- (tetrahydrofuran-3-yl) ethanone], 5-methyltetrahydro-2-furaldehyde.
  • a compound having 5 carbon atoms is tetrahydro-4H-pyran-4-one, and a compound having 6 carbon atoms is 2-methyltetrahydro-4H— Pyran-4-one, 2-formyl-tetrahydropyran.
  • a compound having a structure represented by the above formula (III) a compound having 5 carbon atoms is dihydro-2H-pyran-3 (4H) -one, and a compound having 6 carbon atoms is 2-methyldihydro- 2H-pyran-3 (4H) -one, 4-methyldihydro-2H-pyran-3 (4H) -one, 5-methyldihydro-2H-pyran-3 (4H) -one, 6-methyldihydro-2H- Pyran-3 (4H) -one.
  • the compound having the structure represented by the above formula (I) is tetrahydro-2-furaldehyde, and the compound having 6 carbon atoms is 2-acetyltetrahydrofuran [1- (Tetrahydrofuran-2-yl) ethanone], a compound having the structure represented by the above formula (II), a compound having 5 carbon atoms is tetrahydro-4H-pyran-4-one, a compound having 6 carbon atoms Is 2-methyltetrahydro-4H-pyran-4-one, and examples of the compound having the structure represented by the above formula (III) include dihydro-2H-pyran-3 (4H) -one
  • the compounds having 6 carbon atoms are 2-methyldihydro-2H-pyran-3 (4H) -one, 4-methyldihydro-2H-pyran-3 (4H) -one, 5- Chirujihidoro -2H- pyran -3 (4H) -
  • cyclic carbonyl compounds having 5 or 6 carbon atoms are considered to be derived from the sugar used as a raw material for fermentation, and are derived from polyhydric alcohols having 5 or 6 carbon atoms derived from pentose and / or hexose. It is presumed to be produced in the fermentation process and / or the purification process by cyclization.
  • the concentration of the cyclic carbonyl compound having 5 or 6 carbon atoms is preferably 0.001% by mass or more and 2% by mass or less, more preferably as the concentration in the liquid introduced into the hydrogenation step (c). Is 0.01% by mass or more and 1% by mass or less, and particularly preferably 0.02% by mass or more and 0.5% by mass or less.
  • concentration of the cyclic carbonyl compound having 5 or 6 carbon atoms in the liquid introduced into the hydrogenation step (c) is not more than the above upper limit, the deterioration of the color tone during the production of PBT is prevented.
  • it is a desirable form when it is less than a lower limit since it is necessary to make reaction conditions severe, it is preferable that it is more than the said lower limit economically.
  • step (c) When at least part of these cyclic carbonyl compounds having 5 or 6 carbon atoms is hydrogenated in the step (c), the UV absorption value is lowered and the carbonyl value is also lowered.
  • step (c) at least 10% or more of these cyclic carbonyl compounds having 5 or 6 carbon atoms are preferably hydrogenated, and this ratio is more preferably 20% or more, and particularly preferably. 40% or more.
  • concentration in the exit liquid of a hydrogenation process (c) these C5-C6 cyclic carbonyl compounds are 0.1 mass% or less in total, and 0.08 mass% or less is especially preferable.
  • the above-mentioned coloring cause component of 5 or 6 carbon atoms can be hydrogenated in presence of various hydrogenation catalysts.
  • the hydrogenation catalyst may be any catalyst as long as it can hydrogenate cyclic carbonyl compounds such as ketones and aldehydes.
  • the amount of metals such as Ni, Pd, Ru, Pt, and Cu in the hydrogenation catalyst is preferably 5% by mass or more and 80% by mass or less, more preferably 15% by mass or more and 80% by mass or less, and particularly preferably. It is 50 mass% or more and 80 mass% or less.
  • the form of the metal contained in the hydrogenation catalyst may be a metal itself or a metal oxide. When the metal oxide ratio is high, it is possible to perform reduction activation treatment with hydrogen gas in advance before starting the reaction, but the reaction may be started as it is.
  • the solid catalyst preferably contains a support, and examples of the support include silica, alumina, zirconia, diatomaceous earth and the like. In particular, it preferably contains at least one of silica and diatomaceous earth.
  • the content of the carrier in the catalyst is preferably 5% by mass or more and 95% by mass or less, more preferably 7% by mass or more and 80% by mass or less, and particularly preferably 10% by mass or more and 60% by mass or less. is there.
  • the solid catalyst in the present invention may contain other metals and metal oxides as long as it contains a metal such as Ni, Pd, Ru, Pt, or Cu.
  • a metal such as Ni, Pd, Ru, Pt, or Cu.
  • it may contain chromium, manganese, zinc, magnesium, sodium, rhenium, calcium, etc., and a catalyst containing chromium and magnesium is particularly preferable.
  • These metals may also be contained in various salt states such as metals themselves, oxides, hydroxides, and the like.
  • the content of magnesium oxide in the catalyst is preferably 0.1% by mass or more and 20% by mass or less, more preferably 0.5% by mass or more and 15% by mass or less, and particularly preferably 1% by mass or more and 10% by mass. % Or less.
  • These catalysts may be used individually by 1 type, and may mix and use 2 or more types.
  • the reaction temperature during the hydrogenation in the step (c) is not particularly limited, but is preferably in the range of 0 to 200 ° C, more preferably 30 to 150 ° C, and further preferably 40 to 120 ° C. If this temperature is too high, catalyst deterioration is promoted. Furthermore, the amount of high boiling by-products increases. If the reaction temperature is too low, the reaction hardly proceeds.
  • the hydrogen pressure in hydrogenation is not particularly limited, but there is no problem with a gauge pressure in the range of 0.1 to 100 MPa, preferably 0.5 to 10 MPa, more preferably 1 to 6 MPa. If this pressure is too low, the reaction rate is slow and productivity is lowered. If the pressure is too high, a large amount of reactor material is used and the compressor load increases, resulting in a significant increase in construction costs.
  • the hydrogenation reaction is preferably performed by adding a purified raw material 1,4BG-containing liquid (in FIG. 1, 1,4BG-containing distillate from step (a)) to a reactor in which a packed bed of a solid catalyst as described above is formed. It is preferable to carry out the reaction in the step (f), and the reaction time at that time is preferably 5 minutes or more, more preferably 10 minutes or more in terms of the residence time based on the empty column. Especially preferably, it is 30 minutes or more. Moreover, 100 hours or less are preferable, More preferably, it is 50 hours or less, Especially preferably, it is 10 hours or less. If this residence time is too short, the reaction hardly proceeds. On the other hand, if it is too long, the catalyst packed bed becomes very long, and the economic efficiency is greatly deteriorated due to the increase in the equipment cost of the reactor and the increase in the amount of catalyst.
  • the catalyst filling amount is preferably 0.05 volume times or more, more preferably 0.1 volume times or more, particularly preferably with respect to the flow rate of the introduced liquid per minute. Is 0.5 capacity times or more. Moreover, 100 volume times or less is preferable, More preferably, it is 50 volume times or less, Especially preferably, it is 10 volume times or less. If the catalyst loading is too small, the reaction hardly proceeds. Moreover, when there are too many catalyst packed layers, catalyst cost will increase and economical efficiency will deteriorate significantly.
  • the reaction mode can be any of a general packed bed type hydrogenation reactor using various solid catalysts such as fixed bed, trickle bed, suspension bed (slurry), and multi-tubular type, but preferably fixed bed. Either a reactor or a trickle bed reactor. One reactor or a plurality of reactors can be used. Moreover, it is preferable to install a filter selected so that the catalyst powder is not brought into a subsequent process at the outlet of the hydrogenation reactor. When a large amount of hydrogenated catalyst powder or eluted metal is brought into the subsequent process, the dehydrogenation reaction of 1,4BG proceeds at the heating site, etc., and 2-hydroxytetrahydrofuran or 2- (4-hydroxybutyloxy) tetrahydrofuran May generate.
  • step (c) there is concern about catalyst deterioration due to long-term continuous operation.
  • impurities in the 1,4BG-containing composition produced by fermentation include components containing chlorine, sulfur and the like.
  • the hydrogenation step (c) it is preferable to provide the hydrogenation step (c) in order to remove the cyclic carbonyl compound having 5 or 6 carbon atoms, which is a color causing component, but the hydrogenation catalyst is a strong acid such as hydrochloric acid or sulfuric acid. This accelerates catalyst degradation.
  • the crude 1,4BG-containing composition produced by the fermentation method may contain a chlorine content such as hydrochloric acid or a sulfur content such as sulfuric acid. Therefore, it is preferable to provide a step (f) of removing a solid base or a soluble base such as an amine in contact with the purified raw material 1,4BG-containing liquid in a step before passing through the step (c). .
  • a base that can be dissolved in a purified raw material 1,4BG-containing liquid or a crude 1,4BG-containing liquid such as various amines may be used.
  • the step (f) separation is easier after contact with the purified raw material 1,4BG-containing liquid or the crude 1,4BG-containing liquid than the base dissolved in the purified raw material 1,4BG-containing liquid or the crude 1,4BG-containing liquid described above.
  • a solid base that can be used.
  • the solid base is effective and usable as long as it is a solid compound having basicity, but preferably an anion exchange resin, a triazine ring-containing compound having an amino group or a substituted amino group, polyamide, and Examples include at least one selected from inorganic bases.
  • the anion exchange resin as a solid base is not particularly limited, and a commercially available product can be used. Further, the type of structure is not particularly limited, and any of gel type, MR type (macroreticular) type, porous type and high porous type can be used, and in particular, it has a quaternary ammonium salt as a functional group. Styrenic or acrylic resins are preferred.
  • the triazine ring-containing compound having an amino group or a substituted amino group is preferably a melamine resin or CTU guanamine (3,9-bis [2- (3,5-diamino-2,4-6-triazaphenyl)].
  • polyamide examples include nylon 6, nylon 12, nylon 4/6, nylon 6/6, nylon 6/10, nylon 6/12 and the like. Two or more of these may be used in combination.
  • the inorganic base examples include alkali or alkaline earth metal compounds. Specifically, metal oxides such as CaO and MgO, metal hydroxides such as Ca (OH) 2 and Mg (OH) 2 , Na 2 CO 3 , metal carbonates such as K 2 CO 3 , CaCO 3 , and MgCO 3, and metal inorganic acid salts such as borates and phosphates thereof. These may be used in combination of two or more. .
  • a triazine ring-containing compound having an amino group or a substituted amino group and an anion exchange resin are more preferred, and an anion exchange resin is particularly preferred.
  • the temperature at the time of contacting the base and the purified raw material 1,4BG-containing liquid or crude 1,4BG-containing liquid in step (f) is preferably ⁇ 20 to 200 ° C., more preferably 0 to 120 ° C., and particularly preferably 30 to 100 ° C. If the temperature is too low, a special device such as a freezer is required, and the process competitiveness is lowered. If the temperature is too high, the deterioration of the solid base proceeds.
  • the contact time is preferably 1 minute to 100 hours, more preferably 10 minutes to 20 hours, and particularly preferably 20 minutes to 10 hours. If the contact time is too short, it is difficult to sufficiently remove the catalyst deterioration component, and if it is too long, the process becomes inefficient.
  • the solid base to be brought into contact with the purified raw material 1,4BG-containing liquid or crude 1,4BG-containing liquid is used in a mass ratio of 0.01 to 100 with respect to the purified raw material 1,4BG-containing liquid or crude 1,4BG-containing liquid. More preferably, it is 0.1-20, and particularly preferably 0.2-10.
  • the contact method between the purified raw material 1,4BG-containing liquid or the crude 1,4BG-containing liquid and the solid base may be either batch or continuous, but the continuous flow method is particularly preferable from the viewpoint of easy operation.
  • Step (b) Distillation step for removing components having a lighter boiling point than 1,4BG>
  • the purified raw material 1,4BG-containing liquid (the treatment liquid in step (c) in FIG. 1) is distilled in a distillation column (hereinafter sometimes referred to as “distillation column (b)”).
  • a distillation column (hereinafter sometimes referred to as “distillation column (b)”).
  • Components having a lighter boiling point than 1,4BG are removed.
  • the component having a lighter boiling point than 1,4BG removed in the distillation column (b) contains a color-causing component.
  • the purpose of this step (b) is to sufficiently remove light-boiling components in order to obtain high-purity 1,4BG and to remove a trace amount of coloring-causing components.
  • the color-causing component itself and a hydrogenated product of the color-causing component acetic acid, butyric acid, water, tetrahydrofuran, 2-hydroxytetrahydrofuran, gammabutyrolactone, 1-acetoxy-4-hydroxybutane, 1,3-butane Components having a lighter boiling point than 1,4BG such as diol, 2,3-butanediol, and 2- (4-hydroxybutyloxy) tetrahydrofuran are removed or reduced.
  • the cyclic carbonyl compound having 5 or 6 carbon atoms which is the color-causing component shown in the hydrogenation step of the step (c)
  • the concentration of the cyclic carbonyl compound having 5 or 6 carbon atoms in the bottoms of the distillation column (b) is preferably 100 ppm or less, more preferably 20 ppm or less, still more preferably It is preferable to remove to a concentration of 10 ppm or less, particularly a concentration below the lower limit of detection.
  • the value below the lower limit of detection means a value detectable by general gas chromatography. Specifically, it is preferable to remove to 2 ppm or less.
  • the total amount of these carbonyl compounds can also be managed as a carbonyl value, and the carbonyl value can be reduced in the step (b).
  • 1-acetoxy-4-hydroxybutane a crude 1,4BG-containing liquid from which components having a light boiling point were separated from the distillation column in step (b), that is, in the bottoms of the distillation column (b)
  • concentration of is preferably 50 mass ppm or less, particularly 30 mass ppm or less, particularly 20 mass ppm or less, and 0.1 mass ppm or more, particularly 0.2 mass ppm or more, particularly 0.5 mass ppm or more. Setting the 1-acetoxy-4-hydroxybutane concentration below the upper limit prevents deterioration of the color tone during PBT production, and increasing the 1-acetoxy-4-hydroxybutane concentration above the lower limit increases the reflux ratio. Therefore, it is economically advantageous because high-level purification such as is not necessary.
  • the distillation column (b) for removing components having a lighter boiling point than 1,4BG is preferably a distillation column having a theoretical plate of 5 or more and 100 or less, more preferably 10 or more and 50 or less. is there.
  • the reflux ratio is arbitrary, but is preferably 0.01 or more and 100 or less, more preferably 0.1 or more and 50 or less. A reflux ratio of 0.2 or more and 20 or less is particularly preferable.
  • the reboiler which is a heating part of the distillation column (b) is not particularly limited, it is preferably a forced circulation reboiler or a thin-film reboiler.
  • a shorter residence time at the site of contact with the heating source at the bottom of the column is preferable from the viewpoint of avoiding contamination, and a structure in which the heating source does not contact the gas phase part or a structure in which the contact amount is minimized is preferable.
  • Steam can also be recovered from the cooling condenser at the top of the distillation column (b).
  • the top pressure of the distillation column (b) is preferably 1 kPa or more and 200 kPa or less as an absolute pressure, more preferably 2 kPa or more and 100 kPa or less, and particularly preferably 5 kPa or more and 50 kPa or less.
  • the lower the pressure at the top of the column the lower the temperature in the column, and the generation of new impurities due to the reaction of impurities in the column can be avoided.
  • the higher the tower top pressure the better the steam recovery from the tower top site, and the capacity of the tower itself can be further reduced.
  • the temperature in the distillation column (b) is determined by the composition and pressure, but the temperature at the bottom of the column that is the highest is preferably 200 ° C. or less, more preferably 180 ° C. or less, particularly preferably 170 ° C. or less, preferably 120 ° C. ° C or higher, more preferably 130 ° C or higher, particularly preferably 140 ° C or higher. If the tower bottom temperature is too high, 1,4BG and a small amount of impurities react at the tower bottom, and the contamination rate increases. If the bottom temperature is too low, a high vacuum is required, which is economically undesirable.
  • column top part used as the lowest temperature is 40 degreeC or more, More preferably, it is 50 degreeC or more, Especially preferably, it is 60 degreeC or more. If the temperature at the top of the column is too low, the cooling cost will be significant. Further, when the temperature is high at the top and the top of the column, the cyclic carbonyl compound having 5 or 6 carbon atoms, which is a color-causing component, is high-boiling with 1,4BG, and the number of carbon atoms having high boiling is 5 or 6 This cyclic carbonyl compound is brought into the next step in a high boiling form. Further, when the temperature is high, the light boiling point component tends to increase even in the bottom liquid. Therefore, the temperature at the top of the column is preferably 160 ° C. or lower, more preferably 140 ° C. or lower, and particularly preferably 130 ° C. or lower.
  • the bottoms obtained in the distillation column (b) that removes components having lighter boiling points than 1,4BG are brought into the next step.
  • the distillate in the distillation column (b) containing more light-boiling components than 1,4BG may be discarded as it is, and 1,4-BG is recovered by further separating the light-boiling components from this distillate. You may send to the distillation process.
  • step (d) Distillation step for obtaining purified 1,4-butanediol>
  • the crude 1,4BG-containing liquid obtained through at least one of steps (a) to (c) may be referred to as a distillation column (hereinafter referred to as “distillation column (d)”).
  • the purified 1,4-butanediol is withdrawn from the side distillate as a product.
  • steps (e) and (f) may be passed.
  • step (d) purified 1,4BG is obtained as a side stream of the distillation column (d).
  • Acetic acid, butyric acid, water, tetrahydrofuran, 2-hydroxytetrahydrofuran, gamma-butyrolactone, 1% are obtained from the top of the distillation column (d).
  • -Distilling 1,4BG containing a trace amount of light-boiling components such as acetoxy-4-hydroxybutane, 1,3-butanediol, 2,3-butanediol, 2- (4-hydroxybutyloxy) tetrahydrofuran, 1,4BG containing a very small amount of high boiling point components is discharged from the bottom.
  • the column top distillate and the column bottom distillate of these distillation columns (d) are collected individually or mixed and recovered in the previous step.
  • the color-causing component such as a cyclic carbonyl compound having 5 or 6 carbon atoms that greatly affects the quality of the purified 1,4BG is a light-boiling component, so that it has a higher concentration in the overhead distillate than in the side distillation. Discharged. It is important in terms of reducing the color-causing component that the concentration of gamma butyrolactone in the top distillate of the distillation column (d) is higher than the concentration of gamma butyrolactone in the purified 1,4BG extracted from the side distillation. .
  • the concentration of gamma butyrolactone in the top distillate is preferably about 1.1 to 500 times the concentration of gamma butyrolactone in the purified 1,4BG of the side distillation.
  • the total amount of carbonyl compounds can also be managed as the carbonyl value, and the carbonyl value can be reduced in step (d).
  • the concentration of the cyclic carbonyl compound having 5 or 6 carbon atoms in the purified 1,4BG extracted as a side stream is preferably 20 mass ppm or less, more preferably 12 mass ppm or less, and particularly preferably 8 mass ppm or less. is there.
  • the water concentration in the side distillation is 500 ppm by mass or less, and the 1,4BG purity is 99.5% by mass or more.
  • distillation column (d) if it is a distillation column that can satisfy these quality items, it is possible to obtain purified 1,4BG by performing distillation at an arbitrary number of stages and conditions.
  • the distillation column (d) to be obtained is preferably a distillation column having 5 or more and 100 or less theoretical plates, more preferably 10 or more and 50 or less.
  • the side distillation extraction position is preferably located above the raw material liquid feed stage, and further in the height direction of the distillation tower (b), the distillation tower (b) Withdrawing the side distillation from a position above 50% of the height, for example, from the position of 50% to 90% of the theoretical plate from the bottom of the distillation column (b) with respect to the theoretical plate of the distillation column (b).
  • the distance between the raw material liquid feed stage and the side distilling position is 2 or more theoretically, preferably 3 or more, for example, 3 to 20 stages.
  • the number of theoretical plates from the top of the column to the side distillation position is preferably 1 or more and 50 or less, more preferably 2 or more and 20 or less, and particularly preferably 3 or more and 10 or less.
  • the reflux ratio of the distillation column (d) is arbitrary, but is preferably 0.01 or more and 100 or less, more preferably 0.1 or more and 50 or less. A reflux ratio of 0.2 or more and 20 or less is particularly preferable.
  • the reboiler that is the heating part of the distillation column (d) is not particularly limited, but is preferably a forced circulation reboiler or a thin film flow down reboiler.
  • a shorter residence time at the site of contact with the heating source at the bottom of the column is preferable from the viewpoint of avoiding contamination, and a structure in which the heating source does not contact the gas phase part or a structure in which the contact amount is minimized is preferable.
  • Steam can also be recovered from the cooling condenser at the top of the distillation column (d).
  • the top pressure of the distillation column (d) is preferably 1 kPa or more and 200 kPa or less as an absolute pressure, more preferably 2 kPa or more and 100 kPa or less, and particularly preferably 2 kPa or more and 50 kPa or less.
  • the lower the pressure at the top of the column the lower the temperature in the column, and the generation of new impurities due to the reaction of impurities in the column can be avoided.
  • the higher the tower top pressure the better the steam recovery from the tower top site, and the capacity of the tower itself can be further reduced.
  • the temperature in the distillation column (d) is determined by the composition and pressure, but the temperature at the highest column bottom is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 130 ° C. or higher and 180 ° C. or lower. Particularly preferably, it is 140 ° C. or higher and 170 ° C. or lower.
  • column top part used as the lowest temperature is 40 degreeC or more, More preferably, it is 50 degreeC or more, Especially preferably, it is 60 degreeC or more. If the tower bottom temperature is too high, 1,4BG and a small amount of impurities may react at the tower bottom, and the quality of the purified 1,4BG may deteriorate. If the bottom temperature is too low, a high vacuum is required, which is economically undesirable.
  • the temperature at the top and the top of the column is high, components such as acetal in which the cyclic carbonyl compound having 5 or 6 carbon atoms, which is a color-causing component, has been heated to 1,4BG are decomposed, and purified 1,
  • the concentration of the cyclic carbonyl compound having 5 or 6 carbon atoms in 4BG may increase.
  • the temperature at the top of the distillation column (d) is preferably 160 ° C. or lower, more preferably 150 ° C. or lower, and particularly preferably 145 ° C. or lower. If the temperature at the top of the column is too low, the cooling cost will be significant.
  • the order of passing through all the steps (a) to (c) in the present invention is not particularly limited, but from the viewpoint of suppressing coloration when producing PBT using purified 1,4BG as a raw material, FIG.
  • the step (f) is not particularly limited as long as it is before the step (c), but is preferably just before the step (c).
  • the step (e) is preferably used together with the step (a).
  • the loss of 1,4BG can be reduced by circulating the column top distillate of a process (d) to the front
  • 1,4-butanediol (1,4BG), tetrahydrofuran (THF), gamma butyrolactone (hereinafter referred to as “GBL”), 1-acetoxy-4-hydroxybutane (hereinafter referred to as “14HAB”). ), 2- (4-hydroxybutyloxy) tetrahydrofuran (hereinafter referred to as “BGTF”), 2-pyrrolidone (hereinafter referred to as “2P”), 2-hydroxytetrahydrofuran (hereinafter referred to as “OTF”).
  • the sample was injected into the gas chromatograph without diluting the sample with a solvent. Further, the amount of the cyclic carbonyl compound having 5 or 6 carbon atoms was calculated from the ratio of the area value of 1,4BG and the area value of the cyclic carbonyl compound without performing correction with the effective carbon coefficient.
  • a cyclic ketone and / or aldehyde having 5 or 6 carbon atoms can be detected by GC-MS and / or GC-IR, and can be distinguished from other components in purified 1,4BG. These are presumed to be 2-acetyltetrahydrofuran and 2-methyldihydro-2H-pyran-3 (4H) -one.
  • GC-MS EI: 86, 71, 43, 29 GC-IR: 2980, 2885, 1734, 1454, 1360, 1176, 1080, 925 cm ⁇ 1
  • MHPO 2-methyldihydro-2H-pyran-3 (4H) -one
  • GC-MS EI: 114, 71, 42, 29 GC-IR: 2956, 2851, 1742, 1240, 1115 cm ⁇ 1
  • total C 5 , C 6 cyclic carbonyl a component having a boiling point higher than 1,4BG is referred to as a “high boiling component”, and a component having a lighter boiling point than 1,4BG is referred to as a “light boiling component”.
  • the concentration of nitrogen-containing compounds in the sample is converted to a nitrogen atom (Mitsubishi Chemical Analytech Co., Ltd.) by burning the sample in an argon / oxygen atmosphere and burning the generated combustion gas using a combustion / decompression chemiluminescence method. It was obtained by analysis according to “TN-10 type”.
  • the sulfur and chlorine concentration analysis in the sample is performed by collecting the sample in a platinum boat and heating it in a quartz tube furnace (“AQF-100 type” manufactured by Mitsubishi Chemical Corporation), and then analyzing the chlorine content and sulfur in the combustion gas.
  • the fraction was absorbed with a 0.03% aqueous hydrogen peroxide solution, and the chloride ion and sulfate ion in the absorption solution were measured by an ion chromatograph (“ICS-1000 type” manufactured by Dionex).
  • absorbance The absorbance of the sample at a measurement wavelength of 260 nm (hereinafter, simply referred to as “absorbance”) was measured by “UV-2400” manufactured by Shimadzu Corporation by visible / ultraviolet spectroscopy (synthesis with an optical path length of 1 mm and an optical path width of 10 mm). Quartz closed cells are used). Note that pure water was used for the blank measurement.
  • the carbonyl value of the sample was quantified by reacting the carbonyl compound with hydroxylamine hydrochloride (25 ° C., 1 hour), neutralizing and titrating the produced hydrochloric acid with N / 10 methanolic KOH, and calculating by the following formula.
  • an automatic titrator (automatic titrator AUT-501 manufactured by Toa DKK) was used.
  • Carbonyl value (mgKOH / g) (AB) ⁇ f ⁇ 5.6 / S
  • A is a 0.1 mol / L potassium hydroxide titration (mL) in this test
  • B is a 0.1 mol / L potassium hydroxide titration (mL) in the blank test
  • f is 0.
  • the factor of 1 mol / L potassium hydroxide, S is the sample amount (g).
  • a biologically 1,4BG-containing composition was produced from a fermentation medium of an organism based on the description in Japanese Patent Special Publication 2010-521182. After the 1,4BG-containing composition is removed by filtration, centrifugation, and ion exchange resin to remove the total amount of bacterial cells and salt or at least a part of each by the method described in US Patent Application Publication No. 2011/0003355. Water was removed by distillation. The composition of the 1,4BG-containing composition at this time is shown in Table 1. The pH of this 1,4BG-containing composition was 6.3.
  • a crude 1,4BG-containing liquid dehydrated at 95 mL / hour from the bottom of the tower was continuously withdrawn as a bottoms.
  • the water concentration in the purified raw material 1,4BG-containing liquid was 0.025 mass% (250 mass ppm).
  • the composition of the resulting purified raw material 1,4BG-containing liquid is shown in Table 1.
  • the pH of the purified raw material 1,4BG-containing liquid was 5.5.
  • Examples include a state in which the heat medium contacts in a region below the gas-liquid interface, and a state in which the vapor phase is eliminated by spraying the tower bottom, but is not limited thereto.
  • the top pressure is 15.7 kPa
  • the reflux ratio is 1.0
  • the top temperature is 176 ° C.
  • the bottom temperature is constant at 184 ° C.
  • the refined raw material 1,4BG is placed 10 positions from the bottom.
  • the liquid contained was continuously introduced at a flow rate of 86 mL / hour, continuously distilled from the top of the column at 74 mL / hour, and continuously extracted from the bottom of the column at 12 mL / hour.
  • the continuous operation for 210 hours could be carried out stably without the generation of solids.
  • Table 2 shows the compositions of the bottom bottom effluent and the top distillate (crude 1,4BG-containing liquid) of the distillation column (a).
  • the column top pressure of the distillation column (a) may be reduced and separated by distillation at temperatures lower than the above column bottom temperature and column top temperature.
  • heat recovery can be carried out from the tower top.
  • the recovered heat can be used for a heat source such as another distillation column.
  • continuous distillation is preferable, multistage distillation is preferably performed, and reflux is appropriately performed. preferable.
  • the bottom bottom can liquid extracted from the bottom of the column in the above step (a)
  • the column of “Liquid” was charged with 252.4 g, batch-type simple distillation was performed at a pressure of 4.9 kPa and a flask temperature of 153-169 ° C.
  • weakly basic anion exchange resin registered trademark: Diaion, model WA20, styrene resin having a quaternary ammonium salt as a functional group
  • WA20 weakly basic anion exchange resin
  • the contact treatment was carried out by continuously flowing in the upward flow.
  • the contact temperature between the anion exchange resin and the distillate was 40 ° C., and the pressure was normal pressure.
  • Table 4 shows the results of measuring the chloride ion concentration (total chlorine concentration) and sulfide ion concentration (total sulfur concentration) of the distillate by ion chromatography.
  • “WA20” refers to the weakly basic anion exchange resin described above.
  • Table 4 shows that the sulfur concentration and chlorine concentration in the crude 1,4BG-containing liquid can be reduced by the step (f).
  • the catalyst deterioration rate of the catalyst used in the hydrogenation reaction of the next step (c) can be reduced, and the effect of improving the catalyst life can be expected.
  • the diatomaceous earth-supported nickel-chromium catalyst was filled in the reactor in the order of a stainless steel filter, a glass bead layer, a catalyst layer, a glass bead layer, and a stainless steel filter from the inlet to the outlet of the flow reactor.
  • the reaction conditions for the hydrogenation reaction were a reaction temperature of 80 ° C. and a hydrogen pressure of 2.0 MPa (gauge pressure).
  • the crude 1,4BG-containing liquid after the hydrogenation reaction was sampled over time from the reactor outlet and analyzed by gas chromatography and absorbance. The results are shown in Table-5.
  • the cyclic carbonyl compound having 5 or 6 carbon atoms is converted to the corresponding alcohol by hydrogenation by passing the crude 1,4BG-containing liquid through step (c).
  • the cyclic carbonyl compound having 5 or 6 carbon atoms has a correlation with the color component of 1,4BG, particularly the color tone b value at the time of producing PBT. It can be seen that the concentration can be reduced.
  • Step (c-2) Hydrogenation reaction catalyst Case of silica-supported nickel catalyst (batch reactor) Silica-supported nickel catalyst formed into a pellet in a stainless steel autoclave with a reaction capacity of 100 mL (supported amount is the sum of nickel and nickel oxide) 2 g) and 40 g of the crude 1,4BG-containing liquid after contact with the anion exchange resin obtained from the reactor outlet in the above step (f) was added, and then the hydrogen pressure was 0.99 MPa ( (Gauge pressure) was enclosed and shaken in an oil bath at 110 ° C. for 4 hours. After completion of the reaction, the crude 1,4BG-containing liquid after the hydrogenation reaction in the flask was collected and analyzed by gas chromatography and absorbance. The results are shown in Table-6.
  • an Oldershaw distillation column having 30 theoretical plates was used. Then, light-boiling components were separated by distillation under the following three distillation conditions.
  • Step (b-1) Standard distillation conditions
  • the top pressure is 4.0 kPa
  • the reflux ratio is 50.0
  • the top temperature is controlled to a constant temperature of 139 ° C.
  • the bottom temperature is 163 ° C.
  • the flow rate is 110 mL / hour.
  • the crude 1,4BG-containing liquid (carbonyl value 1.8 mgKOH / g) hydrogenated in the case of the above step (c-1) was continuously introduced into the 20th stage from the bottom of the column. Continuous distillation was performed from the top of the column at 1.3 mL / hour, and continuous extraction was performed from the bottom of the column at 108.7 mL / hour to remove light boiling components in the crude 1,4BG-containing liquid.
  • Table 7 shows the composition of the liquid distilled from the top of the tower (column top distillate) and the bottom liquid from the bottom of the tower (column bottom bottom liquid).
  • Step (b-2) Light Boiling Component Removal Enhancement Condition-1
  • the top pressure is 4.0 kPa
  • the reflux ratio is 50.0
  • the top temperature is controlled at a constant temperature of 143 ° C. and the bottom temperature is 164 ° C.
  • the position is 20 stages from the bottom with a flow rate of 110 mL / hour.
  • the crude 1,4BG-containing liquid hydrogenated in the case of the above step (c-1) carbonyl value 1.8 mgKOH / g
  • was continuously introduced into the column and continuous distillation was performed from the top of the column at 5.4 mL / hour. From the bottom of the tower, continuous extraction was carried out at 104.6 mL / hour to remove light boiling components in the crude 1,4BG-containing liquid.
  • Table 7 shows the composition of the liquid distilled from the top of the tower (column top distillate) and the bottom liquid from the bottom of the tower (column bottom bottom liquid).
  • Step (b-3) Light Boiling Component Removal Enhancement Condition-2
  • the top pressure is 4.0 kPa
  • the reflux ratio is 50.0
  • the top temperature is controlled to a constant temperature of 145 ° C.
  • the bottom temperature is 165 ° C.
  • the position is 20 stages from the bottom with a flow rate of 110 mL / hour.
  • the crude 1,4BG-containing liquid hydrogenated in the case of the above step (c-1) carbonyl value 1.8 mgKOH / g
  • was continuously introduced into the column and continuous distillation was performed from the top of the column at 10.1 mL / hour. From the bottom of the tower, continuous extraction was performed at 100.2 mL / hour to remove light boiling components in the crude 1,4BG-containing liquid.
  • Table 7 shows the composition of the liquid distilled from the top of the tower (column top distillate) and the bottom liquid from the bottom of the tower (column bottom bottom liquid).
  • Step (b-4) High temperature condition
  • the top pressure is 18.1 kPa
  • the reflux ratio is 50.0
  • the top temperature is controlled to a constant temperature of 178 ° C.
  • the bottom temperature is 186 ° C.
  • the crude 1,4BG-containing liquid (carbonyl value 1.8 mgKOH / g) hydrogenated in the case of the above step (c-1) was continuously introduced into the 20th stage from the bottom of the tower at a flow rate, and 10 mL / At that time, continuous distillation was performed, and continuous extraction was performed from the bottom of the column at 95 mL / hour to remove light boiling components in the crude 1,4BG-containing liquid.
  • Table 7 shows the composition of the liquid distilled from the top of the tower (column top distillate) and the bottom liquid from the bottom of the tower (column bottom bottom liquid).
  • the cyclic carbonyl compound having 5 or 6 carbon atoms is regenerated from a part of the light-boiling component and the high-boiling component in the bottoms of the bottom of Table-7.
  • a cyclic carbonyl compound having 5 or 6 carbon atoms that is not present in the bottoms is mixed into the purified 1,4BG (Table-8 to Table-12). For this reason, it is required not to bring light-boiling components and high-boiling components into the step (d). From Table 7, it can be seen that the light boiling component in the bottom bottom can be sufficiently removed by increasing the amount of the light boiling component distilled off in steps (b-2) and (b-3).
  • the high boiling point component is considered to increase greatly at the top of the column and at the top of the column under high temperature conditions, and a higher concentration of high boiling point is obtained by distillation under the high temperature conditions in step (b-4).
  • the components remain in the bottom bottom effluent.
  • These high-boiling components are considered to be acetals, ketals, and hemiacetals of the cyclic carbonyl compounds having 5 or 6 carbon atoms. For this reason, it can be said that distillation separation of light boiling components at a lower temperature is preferable.
  • the crude 1,4BG-containing liquid obtained in step (b-1) of the above-mentioned step (b) (the liquid composition is the bottom bottom liquid from step (b-1) in Table-7 above) is distilled.
  • an Oldershaw distillation column having 25 theoretical plates was used as a distillation column.
  • the top pressure is 2.5 kPa
  • the reflux ratio is 10.0
  • the top temperature is controlled to a constant temperature of 137 ° C.
  • the bottom temperature is 157 ° C.
  • the crude 1,4BG-containing liquid was continuously introduced.
  • Example 1 In Example 1, it carried out in the same manner except that the side distillation in step (d) was not carried out and purified 1,4BG was withdrawn from the top of the column. The flow rate of the column top distillate was 73 mL / hour. The results are shown in Table-8.
  • step (d) the tower top temperature is controlled to a constant temperature of 137 ° C. and the tower bottom temperature is 158 ° C., and a crude 1,4BG-containing liquid is continuously introduced at 10 stages from the tower bottom at a flow rate of 78 mL / hour,
  • a crude 1,4BG-containing liquid is continuously introduced at 10 stages from the tower bottom at a flow rate of 78 mL / hour.
  • the same procedure as in Example 1 was conducted, except that continuous distillation was performed at 12 mL / hour from the top of the column, continuous extraction was performed at 64 mL / hour from the 20th stage side fraction from the bottom, and 2 mL / hour from the bottom.
  • Table 9 shows the composition and absorbance of the top distillate, side distillate (refined 1,4BG), and bottom bottom bottoms.
  • step (d) The raw material of step (d) is the bottom bottom effluent of step (b-2) of step (b) (the liquid composition is the bottom bottom effluent of step (b-2) of Table-7).
  • the distillation was carried out in the same manner as in Example 1 except that high-purity purified 1,4BG was obtained.
  • Table-10 shows the composition and absorbance of the column top distillate, side distillate (purified 1,4BG) and column bottom distillate.
  • step (d) The raw material of step (d) is the bottom bottom effluent of step (b-3) of step (b) (the liquid composition is the bottom bottom effluent of step (b-3) of Table-7).
  • the distillation was carried out in the same manner as in Example 1 except that high-purity purified 1,4BG was obtained.
  • Table 11 shows the composition of the column top distillate, side distillate (refined 1,4BG), and column bottom bottoms.
  • step (d) is the bottom bottom effluent of step (b-3) of step (b) (the liquid composition is the bottom bottom effluent of step (b-3) of Table-7).
  • step (b-3) of step (b) the liquid composition is the bottom bottom effluent of step (b-3) of Table-7.
  • Using 650 g it was separated into a plurality of fractions by batch distillation under the condition of a tower top pressure of 0 to 0.9 kPa, and 3 lots of purified 1,4-butanediol were obtained. Among these, the composition of the lot (Fr.1, 147 g) obtained first is shown in Table-12.
  • Terminal carboxyl group concentration (AB) ⁇ 0.1 ⁇ f / W (equivalent / ton)
  • A is the amount ( ⁇ L) of 0.01N sodium hydroxide benzyl alcohol solution required for titration
  • B is 0.01 mol / L sodium hydroxide benzyl alcohol solution required for titration with a blank.
  • W is the amount of PBT sample (g)
  • f is the titer of 0.01 mol / L sodium hydroxide.
  • ⁇ Color tone b value> A pellet-shaped PBT is packed into a cylindrical powder measurement cell having an inner diameter of 30 mm and a depth of 12 mm, and a color measuring color difference meter Color Meter ZE2000 (Nippon Denshoku Industries Co., Ltd.) is used for the measurement cell by the reflection method.
  • a color measuring color difference meter Color Meter ZE2000 Nippon Denshoku Industries Co., Ltd.
  • the color tone was evaluated by the b value in the L, a, b color system. A lower value indicates less yellowing and a better color tone.
  • PBT was produced by the following method using the purified 1,4BG obtained in Example 1 (the liquid composition was the side fraction of Example 1 in Table-8) as 1,4BG.
  • a reaction vessel equipped with a stirrer, a nitrogen inlet, a heating device, a thermometer, a distillation tube, and an exhaust port for decompression terephthalic acid 113 g, 1,4 BG 183 g and tetrabutyl titanate as a catalyst were dissolved in advance by 6 mass%. Then, 0.7 g of the 1,4BG solution was charged, and the inside of the system was put into a nitrogen atmosphere by nitrogen-vacuum displacement. Next, the system was heated to 150 ° C.
  • the pressure was reduced to 0.07 kPa over 1.5 hours from the start of polymerization, and a polycondensation reaction was performed for 0.8 hours under the same reduced pressure, and the reaction system was returned to normal pressure to complete the polycondensation.
  • the obtained PBT was extracted as a strand from the bottom of the reaction vessel, submerged in water at 10 ° C., and then the strand was cut with a cutter to obtain a pellet-like PBT.
  • the polycondensation time was defined as the polycondensation time from the start of decompression to the end of polycondensation after the addition of magnesium acetate, and the polycondensation rate was defined as intrinsic viscosity / polycondensation time.
  • the polycondensation rate was 0.37 dL / g / hour.
  • the THF conversion rate was 57.0 mol% when the amount of THF was analyzed for the distillate in the esterification reaction collected by cooling with a dry ice strap and expressed in mol% per terephthalic acid charged.
  • the color tone b value of PBT was 2.7.
  • Production Example 3 In Production Example 2, the same procedure was used except that the purified 1,4BG obtained in Example 2 (the composition is the side fraction in Table-9) was used instead of the purified 1,4BG obtained in Example 1. PBT was manufactured by the method. The color tone b value of the obtained PBT was 2.2.
  • Production Example 4 In Production Example 2, the same procedure was used except that the purified 1,4BG obtained in Example 3 (the composition is a side fraction in Table-10) was used instead of the purified 1,4BG obtained in Example 1. PBT was produced by this method. The obtained PBT had a color tone b value of 1.7.
  • Production Example 5 In Production Example 2, the same procedure was used except that the purified 1,4BG obtained in Example 4 (the composition is a side fraction in Table-11) was used instead of the purified 1,4BG obtained in Example 1. PBT was produced by this method. The color tone b value of the obtained PBT was 1.6.
  • the total C 5 and C 6 cyclic carbonyl concentration (total concentration of the cyclic carbonyl compounds having 5 or 6 carbon atoms) in the raw material 1,4-BG is 13 ppm or more, and the color tone b value of PBT is It was confirmed that it increased greatly. That is, removal of these cyclic carbonyl compounds having 5 or 6 carbon atoms is important for producing PBT with good color tone.
  • the polycondensation rate (dL / g / hour) decreases as the concentration of all C 5 and C 6 cyclic carbonyls in the raw material 1,4-BG (the total concentration of cyclic carbonyl compounds having 5 or 6 carbon atoms) decreases. You can see that it is improving.
  • Examples 5 to 7 The same experiment as in Production Example 1 was performed three times, and each of these was subjected to dehydration distillation to produce 3 lots of purified raw material 1,4BG-containing liquid (referred to as “crude 1,4BG” in Table-14). The purification was performed in the same manner as in Example 1 except that these 3 lots were used as raw materials.
  • Table 14 shows the transition of carbonyl value and absorbance in each step, and the color tone of PBT produced in the same manner as in Production Example 2 using purified 1,4BG as a raw material.
  • the carbonyl value of purified 1,4BG can be reduced by lowering the carbonyl value of crude 1,4BG, and the color tone of PBT obtained by using purified 1,4BG having a lower carbonyl value can be reduced. It can be seen that the b value can be suppressed to an appropriate range. It can also be seen that the carbonyl number of 1,4BG can be reduced by hydrogenation or distillation purification. Furthermore, it can be seen that when the carbonyl value of 1,4BG is reduced, the UV absorbance indicating the coloration of 1,4BG can also be reduced.
  • the liquid level of the oil bath is kept higher than the bottom liquid stored in the bottom of the distillation tower, and added to the bottom liquid. What is necessary is just to hold
  • the introduced liquid is a purified raw material 1,4BG-containing liquid having the composition shown in Table 1.
  • solids can be obtained by using a low temperature condition such as 145 ° C. or a condition in which the gas phase part is not heated even at a high temperature as compared with the case where the gas phase part is heated at a high temperature.
  • the amount of precipitation can be greatly reduced.
  • a forced circulation type reboiler or a thin film flow down type reboiler as a heat source for the distillation column in step (a) of the industrial scale process. It is.
  • a back pressure valve at the outlet of the heat exchanger, thereby increasing the pressure inside the heat exchanger and maintaining the liquid phase more completely.
  • an anion exchange resin treatment (WA20) corresponding to the step (f) is applied to a liquid having a total chlorine concentration of 79 mass ppm and a total sulfur concentration of 0.1 mass ppm, the amount of ion exchange resin used is 300 mL, and the treatment flow rate.
  • the total chlorine concentration was 0.1 mass ppm and the total sulfur concentration was less than 0.1 mass ppm (below the detection limit).
  • Table-16 shows that no catalyst deterioration was confirmed.
  • the first-stage hydrogenation reaction for saturating the carbon-carbon double bond is performed at a pressure of 2 MPa and at a temperature of 40 to 70 ° C.
  • the second-stage hydrogenation reaction for performing hydrogenation of an aldehyde group and hydrogenolysis of an acetal compound is performed at a pressure of 2 MPa and a temperature of 90 Performed at ⁇ 110 ° C.
  • the hydrogenated reactant obtained above is mixed with water. The mixture was passed through at 40 to 60 ° C. to cause hydrolysis reaction.
  • the obtained hydrolysis reaction liquid was continuously distilled at a tower bottom temperature of 158 ° C. and a tower top pressure of 15 kPa to distill water and acetic acid from the tower top to obtain a tower bottom liquid from the tower bottom.
  • This column bottom liquid was continuously distilled at a column bottom temperature of 191 ° C., a column top pressure of 21 kPa, and a reflux ratio of 30 using a distillation column having a theoretical plate number of 100 to obtain a column top liquid, a side distillate, and a column bottom liquid. Divided into 3 fractions.
  • the bottom fraction obtained above is continuously supplied together with hydrogen at a pressure of 0.9 MPa and a temperature of 100 ° C. into a reactor packed with palladium-supported catalyst on activated carbon to obtain hydrogen such as an acetal compound.
  • Chemical decomposition was performed.
  • the reaction product was supplied to the third stage from the top of the tower, and water and tetrahydrofuran were distilled from the top of the tower to obtain a bottom liquid containing 1,4-butanediol and a high-boiling product from the bottom of the tower.
  • the tower bottom liquid was supplied to the 12th stage from the top of the tower, 1,4-butanediol was distilled from the top of the tower, and a high boiling point product was discharged from the bottom of the tower as a mixture with 1,4-butanediol.
  • the weight ratio of the column top distillate and the column bottom distillate was 98: 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

 本発明はバイオマス資源由来の1,4BGを工業的規模で製造する際に混入する不純物を効率的に除去して精製し、色調が良好なPBT原料となり得る高品質な1,4BGを製造することを目的とする。本発明は発酵培地から菌体、塩分及び水を除去して得られた精製原料1,4BGを、蒸留により高沸点成分及び/若しくは低沸点成分を除去する工程、並びに/又は、不飽和化合物を水素化物に変換する工程を経て粗1,4BG含有液を得、更に蒸留工程の側留から得られる精製1,4BGの製造方法に関する。

Description

1,4-ブタンジオールの製造方法
 本発明は1,4-ブタンジオールの製造方法に関する。詳しくは、バイオマス資源から得られる粗1,4-ブタンジオールを精製して高純度の精製1,4-ブタンジオールを製造する方法に関する。
 1,4-ブタンジオール(以下、「1,4BG」と略記することがある。)は様々な溶剤や誘導体の原料として使用される極めて有用な物質である。
 従来、1,4BGを石油などの化石燃料を原料として工業的に製造する方法は種々知られている。例えば、ブタジエンを原料として、酢酸及び酸素を用いたアセトキシ化反応により中間体としてジアセトキシブテンを得、そのジアセトキシブテンを水添、加水分解することで1,4BGを製造する方法;マレイン酸、コハク酸、無水マレイン酸及び/又はフマル酸を原料として、それらを水素化して1,4BGを含む粗水素化生成物を得る方法;アセチレンを原料としてホルムアルデヒド水溶液と接触させて得られるブチンジオールを水素化して1,4BGを製造する方法;などが挙げられる。
 また、最近は、従来の石油などの化石燃料を原料とする1,4BGの製造方法以外にも、バイオマス資源を原料として、バイオマス資源由来の1,4BGを製造する方法も開発されている。例えば、糖の発酵法により得たコハク酸を水添し、1,4BGを得る方法(特許文献1)や、糖などのバイオマス資源を発酵して直接1,4BGを得る方法が知られている(特許文献2)。
 石油などの化石燃料から製造される石油化学製品と同等の製品を、バイオマス資源から製造するにあたっては、生産量や品質を安定的に維持するために工業的規模(大規模プロセス)での精製プロセスが必要となる。しかしながら、例えば、バイオマス資源として糖などを原料とする場合、それらを菌体で発酵させて目的とする生成物を得ているが、これまでの石油などの化石燃料から製造するプロセスから得られる製品と同等の品質を維持するには、原料中に含まれる不純物や発酵過程で発生する様々な副生物を、これまで以上に高度に除去できる精製技術が必要とされる。
 そのような精製技術の例として、特許文献3に、バイオマス資源由来の1,3-プロパンジオールに関する精製方法が記載されている。
 また、バイオマス資源由来の1,4BGを精製する方法として一般的な精製方法は特許文献4に記載されている。
日本国特開2009-077719号公報 日本国特表2010-521182号公報 日本国特表2007-502325号公報 米国特許出願公開第2011/0003355号明細書
 しかしながら、特許文献4には、詳細な精製条件や品質低下の物質を特定し、それを除去する方法などは記載されておらず、工業的に大規模なプロセスに適用することは困難であった。
 また、1,4BGの主要な用途の一つであるポリブチレンテレフタレート(以下、「PBT」と略記することがある。)を製造する際に、バイオマス資源由来の1,4BGをPBT製造の原料に用いた場合、原料由来の不純物や糖などのバイオマス資源を発酵する過程において発生する様々な不純物が混入することがあり、その結果、従来の石油などの化石燃料由来の1,4BGを原料とするPBTよりも色調が悪化することがあった。
 本発明は、上記の現状に鑑みてなされたものであり、バイオマス資源由来の1,4BGを工業的規模で製造する際に混入する種々の不純物を効率的に除去して精製することができ、色調が良好なPBT原料となり得る高品質なバイオマス資源由来の1,4BGを製造する方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した。この結果、バイオマス資源由来の1,4BGを工業的規模で製造する際の精製工程に用いる蒸留塔において、固形物析出による汚れが進行し、テトラヒドロフラン(以下、「THF」と略記することがある。)及び水分の生成による1,4BGの品質低下が進行すること;この品質低下は、特定の精製工程を経由する精製プロセスを採用することにより解決することができること;また、バイオマス資源由来の1,4BGを用いてPBTを製造する際には、原料の1,4BG中に含まれる炭素原子数5又は6の環状カルボニル化合物の濃度がPBTの着色と相関があり、バイオマス資源由来の1,4BGの精製工程においてこの環状カルボニル化合物を除去してその濃度を特定の範囲に制御することで、得られるPBTの色調を良好なものとすることができること;を見出し、本発明を完成するに至った。
 即ち、本発明の要旨は以下の<1>~<15>に存する。
<1> 1,4-ブタンジオールを生産することができる有機体の発酵培地で生物学的に1,4-ブタンジオールを生産し、前記発酵培地から、菌体、塩分及び水の各々少なくとも一部を除去して得られた精製原料1,4-ブタンジオール含有液から、下記工程(a)~(c)のいずれか1つ以上の工程を経由して粗1,4-ブタンジオール含有液を得、前記粗1,4-ブタンジオール含有液を下記工程(d)を経由して精製することにより精製1,4-ブタンジオールを得る、1,4-ブタンジオールの製造方法。
工程(a) 前記精製原料1,4-ブタンジオール含有液を蒸留塔で蒸留し、前記精製原料1,4-ブタンジオール含有液中に含まれる1,4-ブタンジオールよりも高沸点の成分を除去する工程
工程(b) 前記精製原料1,4-ブタンジオール含有液を蒸留塔で蒸留し、前記精製原料1,4-ブタンジオール含有液中に含まれる1,4-ブタンジオールよりも軽沸点の成分を除去する工程
工程(c) 前記精製原料1,4-ブタンジオール含有液中に含まれる不飽和化合物の少なくとも一部を水素化物に変換する水素化工程
工程(d) 前記粗1,4-ブタンジオール含有液を蒸留塔で蒸留し、側留より精製1,4-ブタンジオールを抜き出す工程
<2> 前記工程(d)で得られる精製1,4-ブタンジオール中の炭素原子数5又は6の環状カルボニル化合物の濃度が12質量ppm以下である、前記<1>に記載の1,4-ブタンジオールの製造方法。
<3> 前記工程(a)~(c)のうち少なくとも工程(a)を経由する1,4-ブタンジオールの製造方法であって、下記工程(e)を更に経由する、前記<1>又は<2>に記載の1,4-ブタンジオールの製造方法。
工程(e) 前記工程(a)で分離された1,4-ブタンジオールよりも高沸点の成分を蒸留塔で蒸留し、1,4-ブタンジオールを分離して回収する工程
<4> 前記工程(a)~(c)のうち少なくとも工程(c)を経由する1,4-ブタンジオールの製造方法であって、下記工程(f)を経由した後の精製原料1,4-ブタンジオール含有液を前記工程(c)に導入する、前記<1>ないし<3>のいずれか1に記載の1,4-ブタンジオールの製造方法。
工程(f) 前記精製原料1,4-ブタンジオール含有液と塩基とを接触させる工程
<5> 前記工程(a)~(c)のいずれかの工程又は工程(f)を経由する直前の精製原料1,4-ブタンジオール含有液の水分濃度が0.01~20質量%であり、且つpHが5以上である、前記<1>ないし<4>のいずれか1に記載の1,4-ブタンジオールの製造方法。
<6> 前記工程(c)の水素化工程において、ニッケルを含む金属を珪藻土及びシリカの少なくともいずれか一方に担持した固体触媒を用いて水素化する、前記<1>ないし<5>のいずれか1に記載の1,4-ブタンジオールの製造方法。
<7> 前記工程(f)における塩基が固体塩基である、前記<4>ないし<6>のいずれか1に記載の1,4-ブタンジオールの製造方法。
<8> 前記工程(b)における1,4-ブタンジオールよりも軽沸点の成分が、1-アセトキシ-4-ヒドロキシブタンを含み、且つ、前記1,4-ブタンジオールよりも軽沸点の成分が除去された粗1,4-ブタンジオール含有液中の1-アセトキシ-4-ヒドロキシブタン濃度が0.1~50質量ppmである、前記<1>ないし<7>のいずれか1に記載の1,4-ブタンジオールの製造方法。
<9> 前記工程(b)における蒸留塔の塔底温度が120~200℃である、前記<1>ないし<8>のいずれか1に記載の1,4-ブタンジオールの製造方法。
<10> 前記工程(a)における蒸留塔の塔底温度が150~200℃である、前記<1>ないし<9>のいずれか1に記載の1,4-ブタンジオールの製造方法。
<11> 前記工程(a)における1,4-ブタンジオールよりも高沸点の成分が2-ピロリドンを含み、且つ、前記1,4-ブタンジオールよりも高沸点の成分が除去された粗1,4-ブタンジオール含有液中の2-ピロリドンの濃度が20質量ppm以下である、前記<1>ないし<10>のいずれか1に記載の1,4-ブタンジオールの製造方法。
<12> 前記工程(a)における蒸留塔の加熱源が実質的に塔底液のみと接触し、気相部への接触を伴わない、前記<1>ないし<11>のいずれか1に記載の1,4-ブタンジオールの製造方法。
<13> 前記工程(d)における蒸留塔の塔頂留出液中のガンマブチロラクトンの濃度が、側留から抜き出される精製1,4-ブタンジオール中のガンマブチロラクトンの濃度よりも高い、前記<1>ないし<12>のいずれか1に記載の1,4-ブタンジオールの製造方法。
<14> 前記工程(a)~(c)のいずれかの工程又は工程(f)を経由する直前の精製原料1,4-ブタンジオール含有液中のカルボニル価を2.5mgKOH/g以下に制御する工程を含む、前記<1>ないし<13>のいずれか1に記載の1,4-ブタンジオールの製造方法。
<15> 前記工程(b)~(d)の少なくとも一つの工程において、前記精製原料1,4-ブタンジオール含有液中のカルボニル価を低減する、前記<1>ないし<14>のいずれか1に記載の1,4-ブタンジオールの製造方法。
 本発明によれば、バイオマス資源由来の1,4BGを工業的規模で製造する際に混入する種々の不純物を効率的に除去して精製し、色調が良好なPBT原料となり得る高品質なバイオマス資源由来の1,4BGを製造することができる。
図1は、本発明の好ましい実施形態を示す工程(a)~(f)の系統図である。 図2は、1,4BG中の全C,C環状カルボニル濃度と、前記1,4BGを用いて得られるPBTの色調b値との関係を示すグラフである。 図3は、1,4BG中の全C,C環状カルボニル濃度と、前記1,4BGを用いてPBTを製造する際の重縮合速度との関係を示すグラフである。
 以下、本発明をより詳細に説明するが、以下に記載する各構成要件の説明は、本発明の実施態様の代表例であり、本発明はこれらに限定されるものではない。
 尚、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、本明細書における、下限値又は上限値は、その下限値又は上限値の値を含む範囲を意味する。
 また、“重量%”、“重量ppm”及び“重量比”と、“質量%”及び“質量ppm”及び“質量比”とはそれぞれ同義である。単に“ppm”と記載した場合には、“重量ppm”のことを示す。
 本発明の1,4BGの製造方法における精製プロセスは、バイオマス資源由来の1,4BG含有組成物に好適に適用される。
 バイオマス資源とは、植物の光合成作用で太陽の光エネルギーがデンプンやセルロースなどの形に変換されて蓄えられたもの、植物体を食べて成育する動物の体や、植物体や動物体を加工してできる製品等が含まれる。具体的には、木材、稲わら、米ぬか、古米、とうもろこし、サトウキビ、キャッサバ、サゴヤシ、おから、コーンコブ、タピオカカス、バガス、植物油カス、芋、そば、大豆、油脂、古紙、製紙残渣、水産物残渣、家畜排泄物、下水汚泥、食品廃棄物等が挙げられる。この中でも、木材、稲わら、古米、とうもろこし、サトウキビ、キャッサバ、サゴヤシ、おから、コーンコブ、タピオカカス、バガス、植物油カス、芋、そば、大豆、油脂、古紙、製紙残渣等の植物資源が好ましく、より好ましくは木材、稲わら、古米、とうもろこし、サトウキビ、キャッサバ、サゴヤシ、芋、油脂、古紙、製紙残渣等が挙げられ、最も好ましくはとうもろこし、さとうきび、キャッサバ、サゴヤシが挙げられる。
 バイオマス資源は、一般に、窒素元素やNa、K、Mg、Ca等の多くのアルカリ金属及びアルカリ土類金属を含有する。
 これらのバイオマス資源は、その方法は特に限定はされないが、例えば、酸やアルカリ等の化学処理、微生物を用いた生物学的処理、物理的処理等の公知の前処理・糖化の工程などを経て炭素源へと誘導される。その工程には、バイオマス資源をチップ化する、削る、磨り潰すなどの前処理による微細化工程が含まれることが多く、必要に応じて、更にグラインダーやミルによる粉砕工程も含まれる。
 こうして微細化されたバイオマス資源は、通常、更に前処理・糖化の工程を経て炭素源へと誘導される。その具体的な方法としては、硫酸、硝酸、塩酸、リン酸などの強酸による酸処理、アルカリ処理、アンモニア凍結蒸煮爆砕法、溶媒抽出、超臨界流体処理、酸化剤処理などの化学的方法;微粉砕、蒸煮爆砕法、マイクロ波処理、電子線照射等の物理的方法;微生物や酵素処理による加水分解等の生物学的処理などが挙げられる。
 上記のバイオマス資源から誘導される炭素源としては、通常、グルコース、マンノース、ガラクトース、フルクトース、ソルボース、タガトースなどのヘキソース;アラビノース、キシロース、リボース、キシルロース、リブロース等のペントース;ペントサン、サッカロース、澱粉、セルロース等の2糖・多糖類;酪酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、パルミトレイン酸、ステアリン酸、オレイン酸、リノール酸、リレノン酸、モノクチン酸、アラキジン酸、エイコセン酸、アラキドン酸、ベヘニン酸、エルカ酸、ドコサペンタエン酸、ドコサヘキサエン酸、リグノセリン酸、セラコレン酸等の油脂;グリセリン、マンニトール、キシリトール、リビトール等のポリアルコール類等の発酵性糖質が用いられる。このうち、グルコース、フルクトース、キシロース、サッカロース等のヘキソース、ペントース又は2糖類が好ましく、特にグルコースが好ましい。より広義の植物資源由来の炭素源としては、紙の主成分であるセルロースも好ましい。
 グルコース等の炭素源から発酵法により直接1,4BGを製造する方法には、遺伝子を組み替えた大腸菌、コリネ菌、酵母などが使用可能である。例えば、日本国特表2010-521182号公報に記載された方法で、有機体の発酵培地から生物学的に1,4BGを生産することができる。
 また、このようにして、1,4BGを生産することができる有機体の発酵培地から生物学的に生産された1,4BG含有組成物は、例えば米国特許出願公開第2011/0003355号明細書の記載を元に、発酵培地から、濾過、遠心分離及びイオン交換樹脂のいずれか1又は2以上の分離手段により、菌体と塩分の全量又は少なくとも一部を分離除去することにより得ることができ、更にこの1,4BG含有組成物から組成物中の少なくとも一部の水を除去して精製原料1,4BG含有液を得ることができる。
 本発明において、「1,4BG含有組成物」とは、1,4BGを生産した発酵培地から菌体と塩分を除去した後のものをさし、また、この1,4BG含有組成物から水を除去したものを「精製原料1,4BG含有液」と称す。
 発酵培地から菌体と塩分を分離除去した後の1,4BG含有組成物に含まれている水を除去する方法は、特に制限されないが、連続又は回分蒸留により除去することが好ましい。この水の蒸留除去に用いる蒸留塔としては、理論段として2段以上、100段以下の蒸留塔を用いることが好ましく、この理論段はより好ましくは5段以上、50段以下である。
 還流比は任意であるが、0.01以上、100以下が好ましく、この還流比はより好ましくは0.1以上、50以下であり、特に0.2以上、20以下の還流比が好ましい。
 この蒸留塔の加熱部位であるリボイラーは特に限定されるものではないが、好ましくは強制循環型リボイラー又は薄膜流下式のリボイラーである。特に塔底での加熱源との接触部位での滞留時間は短いほど汚れ回避の観点から好ましく、更に加熱源が気相部と接触しない構造あるいは接触量を最小化した構造が好ましい。
 この蒸留塔の塔頂圧力は好ましくは絶対圧として1kPa以上、200kPa以下であり、より好ましくは2kPa以上、100kPa以下であり、特に好ましくは5kPa以上、50kPa以下である。塔頂圧力が低いほど、塔内温度を低減してアミノ酸や糖などのバイオマス資源由来の成分から新たな不純物が生成することを回避できるが、低すぎると冷却が非効率となる。また、塔頂圧力が高いほど、塔自体の容量を低減することができるが、高すぎると塔底温度が上昇して不純物が生成しやすくなる。
 この蒸留内の温度は組成と圧力により決められるが、最も高温となる塔底の温度は120℃以上、200℃以下であることが好ましく、より好ましくは140℃以上、190℃以下であり、特に好ましくは150℃以上、180℃以下である。この蒸留塔の塔底の温度を上記下限よりも高くすることにより、塔頂温度も高く冷却コストを抑えることができる。上記上限よりも低くすることにより、バイオマス資源由来成分の副反応による不純物を減少することができる。
 また、塔頂の温度は40℃以上、100℃以下であることが好ましく、より好ましくは40℃以上、80℃以下であり、特に好ましくは40℃以上、60℃以下である。塔頂温度を上記下限以上にすることにより冷却コストを抑えることができ、上記上限以下にすることで塔内の副反応を抑制できる。
 また、この蒸留塔での好ましい塔頂分配率(=(塔頂留出液流量/フィード流量)×100)は1,4BG含有組成物中の水分濃度により変化するが、好ましくは2~40%であり、更に好ましくは5~30%、特に好ましくは8~25%である。塔頂分配率を上げすぎると1,4BGのロスが多くなり、少なすぎると次工程に送られる1,4BG含有液、即ち精製原料1,4BG含有液に相当量の水分及び軽沸の酸が持ち込まれる。
 本蒸留塔において、塔底のpHは4~9に管理されることが好ましく、特に好ましくは、5~8である。pHが低すぎると蒸留塔内でTHFの副生が多くなり、運転が困難となる。pHが高過ぎると高沸化などの副反応が促進される。
 水分除去のための蒸留塔で得られた缶出液、即ち精製原料1,4BG含有液は次の精製工程に送給される。また、水及び軽沸点の成分を多く含む留出液はそのまま廃棄しても差し支えないが、他工程の洗浄等に用いてもよい。
 このような蒸留操作で、1,4BG含有組成物から水を除去して得られる精製原料1,4BG含有液は、上記の蒸留塔の塔底から抜き出される。この精製原料1,4BG含有液は、1,4BGと、1,4BGよりも高沸点の成分と軽沸点の成分を含む。
 精製原料1,4BG含有液中に含まれる1,4BG以外の成分は、ガンマブチロラクトン、1-アセトキシ-4-ヒドロキシブタン、テトラヒドロフラン、酢酸、ブタノール、ブチルアルデヒド、酪酸、1,3-ブタンジオール、2,3-ブタンジオール、2-ヒドロキシテトラヒドロフラン、2-(4-ヒドロキシブチルオキシ)テトラヒドロフラン、水、アミノ酸及び蛋白由来の窒素含有成分、糖及びその分解物などである。
 この精製原料1,4BG含有液は本発明による精製により、色調が良好なPBT原料となり得る高品質なバイオマス資源由来の1,4BGへと変換することができるが、色調が良好なPBT原料となる1,4BGを得るためには、この精製原料1,4BG含有液のカルボニル価を低減しておくことが望ましい。
 精製原料1,4BG含有液のカルボニル価の値は、2.5mgKOH/g以下であることが好ましく、更に好ましくは、2.0mgKOH/g以下、特に好ましくは1.5mgKOH/g以下である。カルボニル価の値が低いほど、本発明の精製コストを低減することができ、経済的に望ましい。
 ここでの精製原料1,4BG含有液とは、工程(a)~(c)を経由する直前の精製原料1,4BGを示し、後述する工程(f)を経由する場合には、工程(f)を経由する直前の精製原料1,4BGを示す。
 精製原料1,4BG含有液中のカルボニル価を低減する方法は、特に限定されないが、有機体の発酵培地から生物学的に1,4BGを生産する工程で低減する方法や発酵培地から菌体と塩分を分離除去した後の1,4BG含有組成物に含まれている水を除去する工程において水とともにカルボニル成分を低減する方法などが挙げられる。本発明においては、後述する工程(b)~(d)の少なくとも1の工程において、精製原料1,4BG含有液中のカルボニル価を低減することが好ましい。
 なお、カルボニル価の測定方法は、後掲の実施例の項に記載される通りである。
 この精製原料1,4BG含有液の水分濃度は、特に限定されないが、通常、上限としては、20質量%以下、好ましくは18質量%以下、更に好ましくは、15質量%以下である。また、一方で下限としては、通常0.01質量%以上であり、好ましくは0.02質量%以上、更に好ましくは0.03質量%以上である。精製原料1,4BG含有液の水分濃度が高過ぎると後工程で塔頂部位からの蒸気回収温度が下がり、不適となる。一方、精製原料1,4BG含有液の水分濃度を過度に低くするためには、水分除去のための蒸留の負荷が大きくなり好ましくない。
 ここでの精製原料1,4BG含有液とは、工程(a)~(c)を経由する直前の精製原料1,4BGを示し、後述する工程(f)を経由する場合には、工程(f)を経由する直前の精製原料1,4BGを示す。
 なお、後述する工程(a)に導入される精製原料1,4BG含有液の水分濃度は、1.5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが更に好ましく、0.2質量%以下であることが特に好ましい。このため、1,4BG含有組成物から水分を除去した後の水分濃度が上記上限よりも高い場合には、更に上記と同様の蒸留を繰り返し行って水分濃度を低減することが好ましい。
 また、精製原料1,4BG含有液のpHは、5以上であることが好ましく、より好ましくは5.0~9.0、特に好ましくは5.2~8.0である。精製原料1,4BG含有液のpHが低いことは、水分除去のための蒸留塔の塔底液のpHが低いことを意味し、前述の如く、THFの副生の問題がある。また、前述の如く、精製原料1,4BG含有液のpHが高過ぎる、即ち、水分除去のための蒸留塔の塔底液のpHが高過ぎると高沸化などの副反応が促進される。
 精製原料1,4BG含有液の1,4BG濃度は、特に限定されないが、通常、下限としては、80質量%以上、好ましくは82質量%以上、更に好ましくは、85質量%以上である。また、一方で上限としては、通常99.5質量%以下であり、好ましくは99.0質量%以下、更に好ましくは98.0質量%以下である。混入する不純物の種類にもよるので一概には言えないものの、上記上限以下であることにより、発酵工程の負荷が下がり、全体としてより高品質の1,4BGを得られる可能性がある。
 本発明においては、このような精製原料1,4BG含有液から以下の工程(a)~(c)のいずれか1つ以上の工程を経由して精製原料1,4BG含有液中の1,4BGよりも高沸点の成分を除去する方法、軽沸点の成分を除去する方法、及び不飽和化合物を水素化物に変換する方法のうち少なくとも1の方法を経由することにより粗1,4BG含有液を得、この粗1,4BG含有液を以下の工程(d)を経由して精製することにより高純度の精製1,4BGを得る。
 また、本発明においては、更に、以下の工程(e)を行ってもよく、前記工程(c)に先立ち、以下の工程(f)を行ってもよい。
工程(a) 前記精製原料1,4BG含有液を蒸留塔で蒸留し、前記精製原料1,4BG含有液中に含まれる1,4BGよりも高沸点の成分を除去する工程
工程(b) 前記精製原料1,4BG含有液を蒸留塔で蒸留し、前記精製原料1,4BG含有液中に含まれる1,4BGよりも軽沸点の成分を除去する工程
工程(c) 前記精製原料1,4BG含有液中に含まれる不飽和化合物の少なくとも一部を水素化物に変換する水素化工程
工程(d) 前記粗1,4BG含有液を蒸留塔で蒸留し、側留より精製1,4BGを抜き出す工程
工程(e) 前記工程(a)で分離された1,4BGよりも高沸点の成分を蒸留塔で蒸留し、1,4BGを分離して回収する工程
工程(f) 前記精製原料1,4BG含有液と塩基とを接触させる工程
 以下に、本発明に係る上記工程(a)~(f)について詳細に説明するが、以下の各工程の説明において、特に記載の無い限り、蒸留塔における蒸留操作は回分式、連続式のいずれでも差し支えなく、生産性の観点から連続式の蒸留操作が好ましい。また単蒸留でも多段蒸留でも差し支えないが、分離性能の観点から多段蒸留が好ましく、蒸留塔には、棚段あるいは規則及び/又は不規則充填物のいずれもが使用可能である。
 上記工程(a)~(c)は精製原料1,4BG含有液を工程(d)に導入する前工程であり、精製原料1,4BG含有液をこれら工程(a)~(c)のいずれか1つの工程、2つの工程又は全ての工程を経由させた後に、工程(d)に導入する。工程(a)~(c)の中で2以上の工程を行う場合、工程の順序は特に限定されない。
 工程(d)で得られる精製1,4BGを原料としてPBTを製造する際に得られるPBTの着色を抑制できる観点から、精製原料1,4BG含有液を工程(a)~(c)の全ての工程を経由させた後に、工程(d)に導入することが好ましい。なお、その際、各工程の順序は入れ替わってもよいが、工程(a)→工程(c)→工程(b)→工程(d)の順序が好ましい。
 図1は、本発明の好ましい実施形態である、工程(a)~(f)をすべて採用する場合の工程順序を示す系統図である。
 以下、この系統図に沿って各工程の操作について説明するが、本発明は何ら図1に示す実施形態に限定されるものではなく、工程(a)~(c)のうち1又は2の工程、工程(e)及び工程(f)のうちのいずれか1以上の工程が省略されていてもよく、更に他の工程が付加されていてもよい。
<工程(a) 1,4BGよりも高沸点の成分を除去する蒸留工程>
 工程(a)では、精製原料1,4BG含有液から、1,4BGよりも沸点が高い成分(高沸成分)を蒸留塔(以下、「蒸留塔(a)」と称す場合がある。)で除去して高沸成分が除去された粗1,4BG含有液を蒸留塔(a)の塔頂留出液として得る。
 前述の如く、蒸留塔(a)に導入される精製原料1,4BG含有液の水分濃度は、1.5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることが更に好ましく、0.2質量%以下であることが特に好ましい。蒸留塔(a)に導入される精製原料1,4BG含有液の水分濃度を上記上限以下にすることにより、蒸留塔の塔頂温度が低下しすぎて冷却コンデンサーから蒸気が回収できなくなることを防ぐことができるため、好ましい。従って、精製原料1,4BG含有液の水分濃度が上記上限よりも多い場合には、更に蒸留を繰り返すことなどにより水分を除去した後、精製原料1,4BG含有液を蒸留塔(a)に導入することが好ましい。
 工程(a)では、特にアミノ酸及び蛋白由来の窒素含有成分、糖及びその分解物などの発酵法特有の1,4BGよりも沸点の高い成分の除去が行われる。
 アミノ酸などの窒素含有成分は加熱によりアミド類などに軽沸化し、特に2-ピロリドンなどの炭素原子数4のアミド類が含まれることがある。これらのアミド類も、PBT製造時の着色要因となるため、本蒸留操作で同時に分離することが好ましい。
 特にPBT原料の1,4BGが2-ピロリドンを含む場合には、PBT製造時の着色が顕著となるので、蒸留塔(a)の留出液である粗1,4BG含有液の2-ピロリドン濃度が好ましくは100質量ppm以下、更に好ましくは20質量ppm以下、特に好ましくは10質量ppm以下となるまで高沸点成分を除去する。一方、この留出液の2-ピロリドン濃度の下限としては、低い程好ましいが、通常0.01質量ppm以上、好ましくは0.05質量ppm以上、特に好ましくは0.1質量ppm以上である。
 2-ピロリドン等の窒素原子含有化合物濃度は、窒素原子濃度で管理することが可能であり、留出液の窒素原子濃度としては、特に限定されないが、好ましくは50質量ppm以下、更に好ましくは30質量ppm以下、特に好ましくは20質量ppm以下である。
 蒸留塔(a)としては、好ましくは理論段として3段以上、100段以下の蒸留塔の使用が好ましく、更に好ましくは5段以上、50段以下である。
 還流比は任意であるが、0.01以上、100以下が好ましく、更に好ましくは0.1以上、50以下である。特に0.2以上、20以下の還流比が好ましい。
 蒸留塔(a)の加熱部位であるリボイラーは特に限定されるものではないが、好ましくは強制循環型リボイラー又は薄膜流下式のリボイラーである。特に塔底での加熱源との接触部位での滞留時間は短いほど汚れ回避の観点から好ましく、更に加熱源が気相部と接触しない構造あるいは接触量を最小化した構造が好ましい。蒸留塔(a)の塔頂の冷却コンデンサーからは蒸気を回収することも可能である。
 蒸留塔(a)の塔頂圧力は好ましくは絶対圧として1kPa以上、200kPa以下であり、より好ましくは2kPa以上、100kPa以下であり、特に好ましくは5kPa以上、50kPa以下である。塔頂圧力が低いほど、塔内温度を低減してアミノ酸や糖などのバイオマス資源由来の成分から新たな不純物が生成することを回避できる。また、塔頂圧力が高いほど、塔頂部位からの蒸気回収が好適となり、更に塔自体の容量を低減することができる。
 蒸留塔(a)内の温度は組成と圧力により決められるが、最も高温となる塔底の温度は150℃以上、200℃以下であることが好ましく、より好ましくは160℃以上、195℃以下であり、特に好ましくは165℃以上、190℃以下である。蒸留塔(a)の塔底温度を上記下限以上とすることで、温度が低すぎて塔頂部位からの蒸気回収が不適となることを防ぎ、上記上限以下とすることで副生成物の生成量が増加することを防ぐ。
 また、塔頂の温度は140℃以上、190℃以下であることが好ましく、より好ましくは150℃以上、185℃以下であり、特に好ましくは155℃以上、180℃以下である。塔頂温度を上記下限以上とすることで塔頂部位からの蒸気回収が不適となることを防ぎ、上記上限以下とすることで副生成物の生成量が増加することを防ぐ。
 1,4BGよりも高沸点の成分を除去する蒸留塔(a)で得られた留出液は次工程に持ち込まれる。また1,4BGよりも高沸点の成分を多く含む缶出液はそのまま廃棄しても差し支えないが、1,4BGを回収する蒸留工程(e)に送給することが好ましい。
 1,4BGよりも高沸点の成分を多く含む蒸留塔(a)の缶出液中の1,4BG濃度を高く保持することで、1,4BGよりも高沸点の成分を除去する蒸留塔(a)の塔底の汚れ速度を大幅に低減できる。これは、過度の高沸点の成分の濃縮は塩、アミノ酸、蛋白、又は糖などの固形成分の析出を促進するためである。そのため、蒸留塔(a)の塔底から抜き出される缶出液は、1,4BGをある程度含むことが好ましく、好ましくは該缶出液中の1,4BG濃度は40~99.2質量%であり、更に好ましくは50~99.0質量%であり、特に好ましくは55~98.8質量%である。
 尚、蒸留塔(a)での塔頂分配率(=(塔頂留出液流量/フィード流量)×100)は好ましくは50~98%であり、更に好ましくは60~95%、特に好ましくは70~90%である。
 なお、工程(a)で分離された1,4BGよりも高沸点の成分中に含まれる1,4BGを更に回収できる、という観点から、上記工程(a)~(d)に加えて、下記の工程(e)を更に有することが好ましい。
<工程(e) 工程(a)で分離された1,4BGよりも高沸点の成分から1,4BGを分離回収する工程>
 工程(e)では、工程(a)で分離された1,4BGよりも高沸点の成分、即ち、蒸留塔(a)の缶出液を、蒸留塔(以下、「蒸留塔(e)」と称す場合がある。)で蒸留して1,4BGを分離して回収する。
 工程(e)で使用する蒸留塔(e)としては、好ましくは理論段として2段以上、50段以下の蒸留塔の使用が好ましく、更に好ましくは5段以上、30段以下である。
 還流比は任意であるが、0.01以上、100以下が好ましく、更に好ましくは0.1以上、50以下である。特に0.2以上、20以下の還流比が好ましい。この蒸留塔(e)の塔頂の冷却コンデンサーからは蒸気を回収することも可能である。
 蒸留塔(e)の加熱部位であるリボイラーは特に限定されるものではないが、好ましくは強制循環型リボイラー又は薄膜流下式のリボイラーである。特に塔底での加熱源との接触部位での滞留時間は短いほど汚れ回避の観点から好ましく、更に加熱源が気相部と接触しない構造あるいは接触量を最小化した構造が好ましい。尚、前記の工程(a)の蒸留塔(a)と異なり、工程(a)~(d)が連続運転の最中であっても、工程(e)の蒸留塔(e)内が汚れた場合は、蒸留塔(e)のみを一旦停止して、その間バイパス運転することも可能である。
 蒸留塔(e)の塔頂圧力は好ましくは絶対圧として0.1kPa以上、100kPa以下であり、より好ましくは0.2kPa以上、50kPa以下であり、特に好ましくは1kPa以上、20kPa以下である。塔頂圧力が低いほど、塔内温度を低減してアミノ酸や糖などのバイオマス資源由来の成分から新たな不純物が生成することを回避でき、且つ塔底での重合進行による閉塞などを回避することができる。また、塔頂圧力が高いほど、塔自体の容量を低減することができる。
 蒸留塔(e)の塔底の温度は150℃以上、200℃以下であることが好ましい。より好ましくは160℃以上、195℃以下であり、特に好ましくは165℃以上、190℃以下である。蒸留塔(a)の塔底温度を上記下限以上とすることで、温度が低すぎて塔頂部位から蒸気回収をする場合に不適となることを防ぎ、上記上限以下とすることで副生成物の生成量が増加したり、汚れの原因となることを防ぐ。
 また、塔頂の温度は140℃以上、190℃以下であることが好ましく、より好ましくは150℃以上、185℃以下であり、特に好ましくは155℃以上、180℃以下である。塔頂温度を上記下限以上とすることで、温度が低すぎて塔頂部位から蒸気回収をする場合に不適となることを防ぎ、上記上限以下とすることで副生成物の生成量が増加することを防ぐ。
 蒸留塔(e)で分離された1,4BGを含む留出液は前記蒸留塔(a)に循環して1,4BGを回収することが好ましい。蒸留塔(e)で濃縮した高沸点の成分を更に多く含む缶出液はそのまま廃棄されるが、焼却により熱回収することが好ましい。
 本蒸留操作により、ほとんどの高沸点成分を排出可能であるが、蒸留塔(e)の理論段を上記範囲内で行うことにより、2-ピロリドンを含むより多くの高沸点成分を更に廃棄することが可能である。また、高沸点の成分中の窒素分や硫黄分を多く排出することが可能である。
<工程(c) 精製原料1,4BG含有液中に含まれる不飽和化合物を水素化する工程>
 工程(c)では、精製1,4BGの着色原因となる成分、及び/又は精製1,4BGを原料として使用してPBTを製造する際に着色原因となる成分を消失させる。具体的には、ケトン、アルデヒド、エステルなどのカルボニル化合物や、オレフィン部位を有する不飽和化合物などを水素化反応させて水素化物に変換し、これらの着色原因成分の化合物群の構造中に含まれるカルボニル結合とオレフィン部位を消失させる。得られた水素化物は、アルコールなどとして蒸留により除去することが可能である。
 これらの着色原因成分のうち、特に炭素原子数5又は6のケトン及び/又はアルデヒドなどの環状カルボニル化合物は、PBT製造の際に、甚大な色調悪化への影響があることから、工程(c)では水素化物に変換することにより炭素原子数5又は6の環状カルボニル化合物濃度を低減することが好ましく、これにより、PBT製造時の色調改善に顕著な効果が得られる。なお、ここで、「炭素原子数5又は6の環状カルボニル化合物」とは、炭素原子数5の環状カルボニル化合物と炭素原子数6の環状カルボニル化合物の両方をさす。
 また、これらカルボニル化合物の総量はカルボニル価として管理することもでき、工程(c)においてカルボニル価を低減することができる。
 これらの炭素原子数5又は6の環状カルボニル化合物は、好ましくは5員環又は6員環の構造を有し、特に酸素原子を含む環状骨格を有するものである。具体的には下記式(I)、式(II)及び式(III)で表される構造を有する化合物からなる群より選ばれる1以上の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(上記式(I)において、R~Rはそれぞれ独立して水素原子、メチル基、ホルミル基又はアセチル基を表し、R~Rのいずれか一つがホルミル基又はアセチル基であり、且つR~Rのそれぞれの基に含まれる炭素原子数を合計した数が2以下である。)
Figure JPOXMLDOC01-appb-C000002
(上記式(II)において、複数存在するXはそれぞれ独立して炭素原子又は酸素原子を表し、複数のXに含まれる合計の酸素原子数は1であり、R~Rはそれぞれ独立してメチル基又は水素原子を表し、且つR~Rのそれぞれの基に含まれる炭素原子数を合計した数が1以下である。)
Figure JPOXMLDOC01-appb-C000003
(上記式(III)において、R10~R13はそれぞれ独立してメチル基又は水素原子を表し、且つ、R10~R13のそれぞれの基に含まれる炭素原子数を合計した数が1以下である。)
 より具体的には、上記式(I)で表される構造を有する化合物の例として、炭素原子数5の化合物は、テトラヒドロ-2-フルアルデヒド、テトラヒドロ-3-フルアルデヒドなどが挙げられ、炭素原子数6の化合物は、2-アセチルテトラヒドロフラン[1-(テトラヒドロフラン-2-イル)エタノン]、3-アセチルテトラヒドロフラン[1-(テトラヒドロフラン-3-イル)エタノン]、5-メチルテトラヒドロ-2-フルアルデヒド、4-メチルテトラヒドロ-2-フルアルデヒド、3-メチルテトラヒドロ-2-フルアルデヒド、2-メチルテトラヒドロ-3-フルアルデヒド、4-メチルテトラヒドロ-3-フルアルデヒド、5-メチルテトラヒドロ-3-フルアルデヒド、2-(テトラヒドロフラン-2-イル)アセトアルデヒド、3-(テトラヒドロフラン-2-イル)アセトアルデヒドなどが挙げられる。
 上記式(II)で表される構造を有する化合物の例として、炭素原子数5の化合物は、テトラヒドロ-4H-ピラン-4-オンなどが挙げられ、炭素原子数6の化合物は、3-メチルテトラヒドロ-4H-ピラン-4-オン、2-メチルテトラヒドロ-4H-ピラン-4-オン、2-ホルミル-テトラヒドロピラン、3-ホルミル-テトラヒドロピラン、4-ホルミル-テトラヒドロピランなどが挙げられる。
 上記式(III)で表される構造を有する化合物の例としては、炭素原子数5の化合物は、ジヒドロ-2H-ピラン-3(4H)-オンなどが挙げられ、炭素原子数6の化合物は、2-メチルジヒドロ-2H-ピラン-3(4H)-オン、4-メチルジヒドロ-2H-ピラン-3(4H)-オン、5-メチルジヒドロ-2H-ピラン-3(4H)-オン、6-メチルジヒドロ-2H-ピラン-3(4H)-オンなどが挙げられる。
 更に好ましくは、上記式(I)で表される構造を有する化合物の例としては、炭素原子数5の化合物は、テトラヒドロ-2-フルアルデヒド、炭素原子数6の化合物は、2-アセチルテトラヒドロフラン[1-(テトラヒドロフラン-2-イル)エタノン]、3-アセチルテトラヒドロフラン[1-(テトラヒドロフラン-3-イル)エタノン]、5-メチルテトラヒドロ-2-フルアルデヒドである。また上記式(II)で表される構造を有する化合物としては、炭素原子数5の化合物は、テトラヒドロ-4H-ピラン-4-オン、炭素原子数6の化合物は、2-メチルテトラヒドロ-4H-ピラン-4-オン、2-ホルミル-テトラヒドロピランである。さらに上記式(III)で表される構造を有する化合物としては、炭素原子数5の化合物はジヒドロ-2H-ピラン-3(4H)-オン、炭素原子数6の化合物は、2-メチルジヒドロ-2H-ピラン-3(4H)-オン、4-メチルジヒドロ-2H-ピラン-3(4H)-オン、5-メチルジヒドロ-2H-ピラン-3(4H)-オン、6-メチルジヒドロ-2H-ピラン-3(4H)-オンである。
 特に好ましくは、上記式(I)で表される構造を有する化合物としては、炭素原子数5の化合物は、テトラヒドロ-2-フルアルデヒド、炭素原子数6の化合物は、2-アセチルテトラヒドロフラン[1-(テトラヒドロフラン-2-イル)エタノン]、上記式(II)で表される構造を有する化合物としては、炭素原子数5の化合物は、テトラヒドロ-4H-ピラン-4-オン、炭素原子数6の化合物は、2-メチルテトラヒドロ-4H-ピラン-4-オン、上記式(III)で表される構造を有する化合物としては、炭素原子数5の化合物はジヒドロ-2H-ピラン-3(4H)-オン、炭素原子数6の化合物は、2-メチルジヒドロ-2H-ピラン-3(4H)-オン、4-メチルジヒドロ-2H-ピラン-3(4H)-オン、5-メチルジヒドロ-2H-ピラン-3(4H)-オンである。
 これらの炭素原子数5又は6の環状カルボニル化合物は、発酵の原料に使用する糖に由来するものであると考えられ、ペントース及び/又はヘキソース由来の炭素原子数5又は6の多価アルコール類の環化により、発酵工程及び/又は精製工程で生成するものと推測される。
 これらの炭素原子数5又は6の環状カルボニル化合物の濃度は、水素化工程(c)に導入される液中の濃度として、好ましくは0.001質量%以上、2質量%以下であり、更に好ましくは0.01質量%以上、1質量%以下であり、特に好ましくは0.02質量%以上、0.5質量%以下である。水素化工程(c)に導入される液中の炭素原子数5又は6の環状カルボニル化合物の濃度が上記上限以下であることによりPBT製造時の色調の悪化を防ぐ。また、下限よりも少ない場合には望ましい形態であるが、反応条件を厳しくする必要があるため経済的には上記下限以上であることが好ましい。
 工程(c)でこれらの炭素原子数5又は6の環状カルボニル化合物の少なくとも一部が水素化されると、UV吸収値が低下し、カルボニル価も低下する。尚、工程(c)では、これらの炭素原子数5又は6の環状カルボニル化合物のうち少なくとも10%以上が水素化されることが好ましく、この割合は更に好ましくは20%以上であり、特に好ましくは40%以上である。また、水素化工程(c)の出口液中の濃度として、これらの炭素原子数5又は6の環状カルボニル化合物はその合計で0.1質量%以下、特に0.08質量%以下が好ましい。
 工程(c)における水素化の方法としては特に制限はないが、前述のケトン、エステル、アルデヒドなどの炭素原子数5又は6の着色原因成分は各種水添触媒の存在下で水素化が可能である。水添触媒はケトン、アルデヒドなどの環状カルボニル化合物を水添できる触媒であれば任意であるが、特にニッケル(Ni)、パラジウム(Pd)、ルテニウム(Ru)、白金(Pt)、銅(Cu)などの金属の1種又は2種以上を少なくとも含む固体触媒を用いることが望ましく、Niを含有する触媒が最も好ましい。
 水添触媒中のNi、Pd、Ru、Pt、Cuなどの金属量は5質量%以上、80質量%以下であることが好ましく、更に好ましくは15質量%以上、80質量%以下、特に好ましくは50質量%以上、80質量%以下である。なお、水添触媒に含まれる金属の形態は、金属そのものであっても、金属酸化物であっても差し支えない。金属酸化物比率が高い場合には、反応を開始する前に水素ガスで事前に還元活性化処理を行うことも可能であるが、そのまま反応を開始しても差し支えない。
 該固体触媒は担体を含むことが好ましく、担体にはシリカ、アルミナ、ジルコニア、珪藻土などが挙げられる。特に、シリカ及び珪藻土の少なくともいずれか一方を含有していることが好ましい。
 触媒中の担体の含有量は、5質量%以上、95質量%以下であることが好ましく、更に好ましくは7質量%以上、80質量%以下、特に好ましくは10質量%以上、60質量%以下である。
 本発明における固体触媒は、Ni、Pd、Ru、Pt、Cuなどの金属を含有していれば、その他の金属及び金属酸化物を含んでいても差し支えない。例えば、クロム、マンガン、亜鉛、マグネシウム、ナトリウム、レニウム、カルシウムなどを含んでいても差し支えなく、特にクロム、マグネシウムを含有した触媒が好ましい。
 これらの金属も金属そのもの、酸化物、水酸化物、など各種塩の状態で含有していても差し支えない。例えば、触媒中の酸化マグネシウムの含有量は0.1質量%以上、20質量%以下が好ましく、更に好ましくは0.5質量%以上、15質量%以下、特に好ましくは1質量%以上、10質量%以下である。これらの触媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 工程(c)の水素化を行う際の反応温度は特に限定されないが、好ましくは0~200℃、より好ましくは30~150℃、更に好ましくは40~120℃の範囲である。この温度が高すぎると、触媒劣化が促進されてしまう。更に高沸副生物の量が増大してしまう。反応温度が低すぎると反応はほとんど進行しない。
 水素化における水素圧力は特に限定されないが、ゲージ圧力で0.1~100MPaの範囲で問題なく、好ましくは0.5~10MPa、更に好ましくは1~6MPaの範囲である。この圧力が低すぎると、反応速度が遅く生産性が低下する。圧力が高すぎた場合には反応器材質の多量使用、コンプレッサー負荷が増大し、建設費が大幅に増加してしまう。
 水素化反応は、好ましくは、上述のような固体触媒の充填層が形成された反応器に、精製原料1,4BG含有液(図1では、工程(a)からの1,4BG含有留出液を更に工程(f)で処理した液)を通液して行うことが好ましく、その際の反応時間は、空塔基準の滞留時間で、5分以上が好ましく、より好ましくは10分以上であり、特に好ましくは30分以上である。また、100時間以下が好ましく、更に好ましくは50時間以下、特に好ましくは10時間以下である。この滞留時間が短すぎると反応はほとんど進行しない。また、長すぎた場合には触媒充填層が長大となり反応器の設備費増加及び触媒量増加により経済性が大幅に悪化してしまう。
 空塔基準の滞留時間から求められるように、触媒充填量は1分あたりの導入液流量に対して、0.05容量倍以上が好ましく、より好ましくは0.1容量倍以上であり、特に好ましくは0.5容量倍以上である。また、100容量倍以下が好ましく、更に好ましくは50容量倍以下、特に好ましくは10容量倍以下である。触媒充填量が少なすぎると反応はほとんど進行しない。また、触媒充填層が多すぎた場合には触媒コストが増大して経済性が大幅に悪化してしまう。
 反応形式は固定床、トリクルベッド、懸濁床(スラリー)、多管式など種々の固体触媒による一般的な充填層型の水素化用反応器の全てが使用可能であるが、好ましくは固定床反応器ならびにトリクルベッド反応器のいずれかである。この反応器は一機、あるいは複数機使用することが可能である。また、水添反応器の出口には触媒粉が後工程に持ち込まれないように選定したフィルターを設置することが好ましい。
 水添触媒粉や溶出金属が多量に後工程に持ち込まれた場合には、加熱部位などで1,4BGの脱水素反応が進行し、2-ヒドロキシテトラヒドロフランや2-(4-ヒドロキシブチルオキシ)テトラヒドロフランが生成する場合がある。
 工程(c)では長期連続運転により触媒の劣化が懸念される。特に発酵法で製造した1,4BG含有組成物中の不純物には塩素、硫黄などを含有する成分が含まれる。これらの塩素、硫黄成分を除去するために、工程(c)を行う前に、以下の工程(f)を予め行うことが好ましい。
<工程(f) 精製原料1,4BG含有液と塩基とを接触させる工程>
 本発明では着色原因成分である炭素原子数5又は6の環状カルボニル化合物を除去するために上記の水素化工程(c)を設けることが好ましいが、上記の水添触媒は塩酸、硫酸などの強酸により触媒劣化が加速してしまう。一方で発酵法で製造した粗1,4BG含有組成物は、塩酸などの塩素分や、硫酸などの硫黄分を含むことがある。そのため、上記の工程(c)を経由する前の段階で固体塩基又はアミンなどの溶解性塩基を精製原料1,4BG含有液と接触させて、これらを除去する工程(f)を設けることが好ましい。
 この工程(f)で使用可能な塩基としては、各種アミンなどの精製原料1,4BG含有液又は粗1,4BG含有液に溶解する塩基を使用しても良く、このような塩基としては、具体的にはトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリデカニルアミン、トリフェニルアミン、ジフェニルメチルアミン、ジフェニルエチルアミン、ジフェニルブチルアミン、ジメチルフェニルアミン、ジエチルフェニルアミン、ジブチルフェニルアミン、トリシクロペンチルアミン、トリシクロヘキシルアミン、トリシクロヘプチルアミン、ピリジン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]-7-ウンデカン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、2,5-ジアザビシクロ[2.2.1]ヘプタンなどが好ましく、更に好ましくはトリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、ジメチルフェニルアミン、トリシクロヘキシルアミン、ピリジン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]-7-ウンデカン、1,5-ジアザビシクロ[4.3.0]-5-ノネンであり、特に好ましくはトリオクチルアミン、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデカン、1,4-ジアザビシクロ[2.2.2]オクタンである。
 ただし、工程(f)では、上述の精製原料1,4BG含有液又は粗1,4BG含有液に溶解する塩基よりも精製原料1,4BG含有液又は粗1,4BG含有液と接触後に容易に分離できる固体塩基を用いることが好ましい。この固体塩基とは、塩基性を有する固体状の化合物であれば効果を発揮し使用可能であるが、好ましくは陰イオン交換樹脂、アミノ基又は置換アミノ基を有するトリアジン環含有化合物、ポリアミド、及び無機塩基より選ばれる少なくとも1種が挙げられる。
 固体塩基としての陰イオン交換樹脂は特に限定されるものではなく、市販品を使用することができる。また、構造の種類は特に限定されるものではないが、ゲル型、MR型(macroreticular)型、ポーラス型、ハイポーラス型のいずれも用いることができるが、特に4級アンモニウム塩を官能基に持つスチレン系又はアクリル系の樹脂が好ましい。
 また、アミノ基又は置換アミノ基を有するトリアジン環含有化合物としては、好ましくはメラミン樹脂、CTUグアナミン(3,9-ビス[2-(3,5-ジアミノ-2,4-6-トリアザフェニル)エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン)、CMTUグアナミン(3,9-ビス[1-(3,5-ジアミノ-2,4,6-トリアザフェニル)メチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン)などが挙げられる。これらは2種以上を併用しても差し支えない。
 ポリアミドとしては、例えばナイロン6、ナイロン12、ナイロン4/6、ナイロン6/6、ナイロン6/10、ナイロン6/12などが挙げられる。これらは2種以上を併用しても差し支えない。
 無機塩基としては、アルカリ又はアルカリ土類金属化合物が挙げられ、具体的にはCaO、MgOなどの金属酸化物、Ca(OH)、Mg(OH)などの金属水酸化物、NaCO、KCO、CaCO、MgCOなどの金属炭酸塩やそれらのホウ酸塩やリン酸塩などの金属無機酸塩などが挙げられ、これらは2種以上を併用しても差し支えない。
 上記、固体塩基の中でより好ましくはアミノ基又は置換アミノ基を有するトリアジン環含有化合物、及び陰イオン交換樹脂であり、特に好ましくは陰イオン交換樹脂である。
 工程(f)における塩基と精製原料1,4BG含有液又は粗1,4BG含有液とを接触する際の温度は-20~200℃が好ましく、より好ましくは0~120℃であり、特に好ましくは30~100℃である。温度が低すぎると冷凍器など特殊装置が必要となりプロセス競争力が低下し、高すぎると固体塩基の劣化が進行する。
 また、接触時間は1分~100時間が好ましく、より好ましくは10分~20時間であり、特に好ましくは20分~10時間である。接触時間が短すぎると触媒劣化成分を十分に除去することが困難であり、長すぎると効率の悪いプロセスとなってしまう。
 また、精製原料1,4BG含有液又は粗1,4BG含有液と接触させる固体塩基は、精製原料1,4BG含有液又は粗1,4BG含有液に対する質量比で0.01~100の範囲で使用することが可能であり、より好ましくは0.1~20であり、特に好ましくは0.2~10である。
 精製原料1,4BG含有液又は粗1,4BG含有液と固体塩基との接触方法は回分、連続のいずれでも差し支えないが、運転の簡便さから連続流通式が特に好ましい。
<工程(b) 1,4BGよりも軽沸点の成分を除去する蒸留工程>
 工程(b)では、精製原料1,4BG含有液(図1では工程(c)の処理液)を蒸留塔(以下、「蒸留塔(b)」と称す場合がある。)で蒸留することで、1,4BGよりも軽沸点の成分を除去する。蒸留塔(b)で除去される1,4BGよりも軽沸点の成分には着色原因成分が含まれる。
 本工程(b)の目的は、高純度の1,4BGを得るために軽沸点の成分を十分に除去することと、微量の着色原因成分の除去を行うことの両方にある。この操作では、特に着色原因成分そのもの及び着色原因成分の水素化体、更には酢酸、酪酸、水、テトラヒドロフラン、2-ヒドロキシテトラヒドロフラン、ガンマブチロラクトン、1-アセトキシ-4-ヒドロキシブタン、1,3-ブタンジオール、2,3-ブタンジオール、2-(4-ヒドロキシブチルオキシ)テトラヒドロフランなどの1,4BGよりも軽沸点の成分の除去あるいは低減が行われる。
 特に、工程(c)の水素化工程で示した着色原因成分である炭素原子数5又は6の環状カルボニル化合物は、工程(b)に先立ち工程(c)を実施した場合は、工程(b)の蒸留でそのほとんどを除去する必要があり、蒸留塔(b)の缶出液の炭素原子数5又は6の環状カルボニル化合物の濃度が、好ましくは100ppm以下、より好ましくは20ppm以下、更に好ましくは10ppm以下、特に検出下限以下の濃度まで除去することが好ましい。ここでの検出下限以下とは一般的なガスクロマトグラフィーにより検出可能な値を意味する。具体的には2ppm以下まで除去することが好ましい。
 また、これらカルボニル化合物の総量はカルボニル価として管理することもでき、工程(b)においてカルボニル価を低減することができる。
 また、特に1-アセトキシ-4-ヒドロキシブタンについては、工程(b)で蒸留塔よりも軽沸点の成分が分離された粗1,4BG含有液、即ち、蒸留塔(b)の缶出液中の濃度が50質量ppm以下、特に30質量ppm以下、とりわけ20質量ppm以下で、0.1質量ppm以上、特に0.2質量ppm以上、とりわけ0.5質量ppm以上であることが好ましい。この1-アセトキシ-4-ヒドロキシブタン濃度を上記上限以下とすることによりPBT製造時の色調の悪化を防ぎ、1-アセトキシ-4-ヒドロキシブタン濃度を上記下限以上とすることにより還流比を増加させるなどの高度の精製は必要とならないために、経済的に有利となる。
 1,4BGよりも軽沸点の成分を除去する蒸留塔(b)は、好ましくは理論段として5段以上、100段以下の蒸留塔の使用が好ましく、更に好ましくは10段以上、50段以下である。
 還流比は任意であるが、0.01以上、100以下が好ましく、更に好ましくは0.1以上、50以下である。特に0.2以上、20以下の還流比が好ましい。
 蒸留塔(b)の加熱部位であるリボイラーは特に限定されるものではないが、好ましくは強制循環型リボイラー又は薄膜流下式のリボイラーである。特に塔底での加熱源との接触部位での滞留時間は短いほど汚れ回避の観点から好ましく、更に加熱源が気相部と接触しない構造あるいは接触量を最小化した構造が好ましい。蒸留塔(b)の塔頂の冷却コンデンサーからは蒸気を回収することも可能である。
 蒸留塔(b)の塔頂圧力は好ましくは絶対圧として1kPa以上、200kPa以下であり、より好ましくは2kPa以上、100kPa以下であり、特に好ましくは5kPa以上、50kPa以下である。塔頂圧力が低いほど、塔内温度を低減して、塔内での不純物の反応による新たな不純物の生成を回避できる。一方、塔頂圧力が高いほど、塔頂部位からの蒸気回収が好適となり、更に塔自体の容量を低減することができる。
 蒸留塔(b)内の温度は組成と圧力により決められるが、最も高温となる塔底部の温度は好ましくは200℃以下、更に好ましくは180℃以下、特に好ましくは170℃以下で、好ましくは120℃以上、更に好ましくは130℃以上、特に好ましくは140℃以上である。塔底温度が高過ぎると、塔底で1,4BG並びに微量の不純物が反応してしまい、汚れ速度が増大する。塔底温度が低過ぎる場合には、高度の真空を必要として経済的に好ましくない。
 また、最も低温となる塔頂部は40℃以上であり、更に好ましくは50℃以上であり、特に好ましくは60℃以上である。塔頂部位の温度が低すぎると冷却コストが甚大となってしまう。更に、塔頂部及び塔上部でも温度が高い場合には、着色原因成分である炭素原子数5又は6の環状カルボニル化合物が1,4BGと高沸化され、高沸化した炭素原子数5又は6の環状カルボニル化合物は次工程に高沸の形で持ち込まれることになる。また、温度が高い場合には、塔底液でも軽沸点成分が増加する傾向にある。そのため、塔頂部の温度も160℃以下、更に140℃以下、特に130℃以下が好ましい。
 1,4BGよりも軽沸点の成分を除去する蒸留塔(b)で得られた缶出液は次工程に持ち込まれる。また1,4BGよりも軽沸点の成分を多く含む蒸留塔(b)の留出液はそのまま廃棄してもよく、また、この留出液から軽沸点成分を更に分離して1,4BGを回収する蒸留工程に送給してもよい。
<工程(d) 精製1,4-ブタンジオールを得る蒸留工程>
 工程(d)では、工程(a)~(c)のうち少なくとも1の工程を経由して得られた粗1,4BG含有液を蒸留塔(以下、「蒸留塔(d)」と称す場合がある。)で蒸留して、側留から精製1,4-ブタンジオールを製品として抜き出す。場合によっては、工程(a)~(c)に加えて、さらに工程(e)及び(f)の少なくともいずれか一方の工程を経由している場合もある。
 工程(d)では、蒸留塔(d)の側留として精製1,4BGを得るが、蒸留塔(d)の塔頂からは酢酸、酪酸、水、テトラヒドロフラン、2-ヒドロキシテトラヒドロフラン、ガンマブチロラクトン、1-アセトキシ-4-ヒドロキシブタン、1,3-ブタンジオール、2,3-ブタンジオール、2-(4-ヒドロキシブチルオキシ)テトラヒドロフランなどの微量の軽沸点成分を含む1,4BGを留出させ、塔底から微量の高沸点成分を含む1,4BGを排出する。
 これら蒸留塔(d)の塔頂留出液並びに塔底缶出液は、それぞれ個別あるいは混合して、前工程に回収することが好ましい。特に精製1,4BGの品質に大きな影響を与える炭素原子数5又は6の環状カルボニル化合物などの着色原因成分は、軽沸点成分であることから、側留よりも塔頂留出液により高い濃度で排出される。
 この蒸留塔(d)の塔頂留出液中のガンマブチロラクトン濃度は、側留から抜き出される精製1,4BG中のガンマブチロラクトン濃度よりも高いことが、着色原因成分低減の点で重要である。塔頂留出液中のガンマブチロラクトン濃度は、側留の精製1,4BG中のガンマブチロラクトン濃度の1.1~500倍程度であることが好ましい。また、カルボニル化合物の総量はカルボニル価として管理することもでき、工程(d)においてカルボニル価を低減することができる。
 また、側留として抜き出される精製1,4BG中の炭素原子数5又は6の環状カルボニル化合物濃度は、好ましくは20質量ppm以下、更に好ましくは12質量ppm以下、特に好ましくは8質量ppm以下である。
 また、水分濃度や1,4BG純度も管理する必要があり、好ましくは側留中の水分濃度は500質量ppm以下であり、1,4BG純度は99.5質量%以上である。
 蒸留塔(d)としては、これらの品質項目を満たすことができる蒸留塔であれば、任意の段数及び条件で蒸留を行って、精製1,4BGを得ることができるが、精製1,4BGを得る蒸留塔(d)は、好ましくは理論段として5段以上、100段以下の蒸留塔の使用が好ましく、更に好ましくは10段以上、50段以下である。
 側留として精製1,4BGを得る場合の側留抜出位置は、原料液フィード段よりも上部に位置することが好ましく、更に蒸留塔(b)の高さ方向において、蒸留塔(b)の高さの50%よりも上方の位置、例えば、蒸留塔(b)の理論段に対して、蒸留塔(b)の塔底から理論段の50%~90%の位置から側留を抜き出すことが好ましい。
 特に原料液フィード段と側留抜出位置の間隔は理論段として2段以上、好ましくは3段以上、例えば3~20段であることが望ましい。尚、塔頂部分から側留抜出位置までの理論段数は1段以上、50段以下が好ましく、更に好ましくは2段以上、20段以下であり、特に好ましくは3段以上、10段以下である。
 蒸留塔(d)の還流比は任意であるが、0.01以上、100以下が好ましく、更に好ましくは0.1以上、50以下である。特に0.2以上、20以下の還流比が好ましい。
 また、蒸留塔(d)の加熱部位であるリボイラーは特に限定されるものではないが、好ましくは強制循環型リボイラー又は薄膜流下式のリボイラーである。特に塔底での加熱源との接触部位での滞留時間は短いほど汚れ回避の観点から好ましく、更に加熱源が気相部と接触しない構造あるいは接触量を最小化した構造が好ましい。蒸留塔(d)の塔頂の冷却コンデンサーからは蒸気を回収することも可能である。
 蒸留塔(d)の塔頂圧力は好ましくは絶対圧として1kPa以上、200kPa以下であり、より好ましくは2kPa以上、100kPa以下であり、特に好ましくは2kPa以上、50kPa以下である。塔頂圧力が低いほど、塔内温度を低減して、塔内での不純物の反応による新たな不純物の生成を回避できる。一方、塔頂圧力が高いほど、塔頂部位からの蒸気回収が好適となり、更に塔自体の容量を低減することができる。
 蒸留塔(d)内の温度は組成と圧力により決められるが、最も高温となる塔底の温度は好ましくは120℃以上、200℃以下であり、更に好ましくは130℃以上、180℃以下であり、特に好ましくは140℃以上、170℃以下である。
 また、最も低温となる塔頂部は40℃以上であり、更に好ましくは50℃以上であり、特に好ましくは60℃以上である。塔底温度が高過ぎると塔底で1,4BG並びに微量の不純物が反応してしまい、精製1,4BGの品質が低下することがある。塔底温度が低過ぎる場合には、高度の真空を必要として経済的に好ましくない。
 更に、塔頂部及び塔上部でも温度が高い場合には、着色原因成分である炭素原子数5又は6の環状カルボニル化合物が1,4BGと高沸化したアセタールなどの成分が分解し、精製1,4BG中の炭素原子数5又は6の環状カルボニル化合物の濃度が増加することがある。また、温度が高い場合には、塔底液でも軽沸点成分が増加する傾向にある。そのため、蒸留塔(d)の塔頂部の温度も160℃以下、更に150℃以下、特に145℃以下とすることが好ましい。塔頂部位の温度は低すぎると冷却コストが甚大となってしまう。
 前述の如く、本発明における工程(a)~(c)をすべて経由する際の順序は特に限定されないが、精製1,4BGを原料としてPBTを製造する際に着色を抑制できる観点から、図1に示すように、精製原料1,4BG含有液を工程(a)、(c)、(b)の順に精製した後に、工程(d)に導入することが好ましい。工程(f)は工程(c)の前であれば特に限定されないが、工程(c)の直前が好ましい。工程(e)は工程(a)と共に用いられることが好ましい。なお、工程(d)の塔頂留出液を工程(f)の前段に循環し、塔底缶出液は工程(e)に循環することにより、1,4BGのロスを低減することができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
 なお、以下において、1,4-ブタンジオール(1,4BG)、テトラヒドロフラン(THF)、ガンマブチロラクトン(以下「GBL」と記す。)、1-アセトキシ-4-ヒドロキシブタン(以下「14HAB」と記す。)、2-(4-ヒドロキシブチルオキシ)テトラヒドロフラン(以下「BGTF」と記す。)、2-ピロリドン(以下「2P」と記す。)、2-ヒドロキシテトラヒドロフラン(以下「OTF」と記す。)の分析は島津製作所製ガスクロマト分析装置「島津GC-2014型」にて、GLサイエンス社製PEG-20Mカラム(極性)を用い、ガスクロマトグラフィーにより行った。
 1,4BG、THF、GBL、14HAB、BGTF、2P、OTFの濃度は有効炭素係数より算出した修正面積百分率法により、カールフィッシャー法(三菱化学社製「CA-03」で測定)にて水分量で補正することにより算出した。
 なお、炭素原子数5又は6の環状カルボニル化合物の量は微量であるために、溶媒によるサンプルの希釈を行わずにガスクロマト分析装置に注入した。また、炭素原子数5又は6の環状カルボニル化合物の量は有効炭素係数での補正は実施せず、1,4BGのエリア値と該環状カルボニル化合物のエリア値の比率から算出した。
 炭素原子数5又は6の環状のケトン及び/又はアルデヒドは、GC-MS及び/又はGC-IRにて検出が可能であり、精製1,4BG中の他成分と区別することができる。これらは2-アセチルテトラヒドロフラン、2-メチルジヒドロ-2H-ピラン-3(4H)-オンと推定される。
・2-アセチルテトラヒドロフラン(以下「ATF」と記す。)
  GC-MS(EI):86、71、43、29
  GC-IR:2980、2885、1734、1454、1360、1176、1080、925cm-1
・2-メチルジヒドロ-2H-ピラン-3(4H)-オン(以下「MHPO」と記す。)
  GC-MS(EI):114、71、42、29
  GC-IR:2956、2851、1742、1240、1115cm-1
 以下、ATFとMHPOとの合計を炭素原子数5又は6の環状カルボニル化合物の合計とし、「全C,C環状カルボニル」と記す。また、1,4BGよりも高沸点の成分を「高沸点成分」と記し、1,4BGよりも軽沸点の成分を「軽沸点成分」と記す。
 また、試料中の窒素含有化合物の窒素原子換算の濃度は、試料をアルゴン・酸素雰囲気内で燃焼させ、発生した燃焼ガスを燃焼・減圧化学発光法を用いた微量窒素計(三菱化学アナリテック社製「TN-10型」)により分析して求めた。
 また、試料中の硫黄及び塩素濃度分析は、試料を白金製ボートに採取して、石英製管状炉(三菱化学社製「AQF-100型」)で加熱し、燃焼ガス中の塩素分、硫黄分を0.03%の過酸化水素水溶液で吸収後、吸収液中の塩化物イオン、硫酸イオンをイオンクロマトグラフ(Dionex社製「ICS-1000型」)で測定して求めた。
 試料の測定波長260nmにおける吸光度(以下、単に「吸光度」と記す。)は、可視・紫外分光法により、島津製作所製「UV-2400」を用いて測定した(光路長1mm、光路幅10mmの合成石英製密閉セルを使用)。なお、ブランク測定には純水を用いた。
 試料のカルボニル価は、カルボニル化合物を塩酸ヒドロキシルアミンで反応(25℃、1時間)させ、生成した塩酸をN/10メタノール性KOHで中和滴定して定量し、以下に示す式により算出した。滴定には、自動的滴定装置(東亜DKK製自動滴定装置AUT-501)を用いた。
   カルボニル価(mgKOH/g)=(A-B)×f×5.6/S
 但し、Aは本試験に於ける0.1mol/L水酸化カリウムの滴定量(mL)、Bは空試験に於ける0.1mol/L水酸化カリウムの滴定量(mL)、fは0.1mol/L水酸化カリウムのファクター、Sは試料量(g)である。
〔精製原料1,4BG含有液の製造〕
[製造例1]
 日本国特表2010-521182号公報の記載を元に有機体の発酵培地からの生物学的に1,4BG含有組成物を生産した。この1,4BG含有組成物を米国特許出願公開第2011/0003355号明細書に記載の方法で、濾過、遠心分離及びイオン交換樹脂により菌体と塩分の全量又は各々の少なくとも一部を除去した後、蒸留により水を除去した。このときの1,4BG含有組成物の組成を表-1に示す。この1,4BG含有組成物のpHは6.3であった。
 この1,4BG含有組成物から、更に水を分離するために、理論段30段のオルダーショウ蒸留塔を使用して蒸留による脱水を実施した。なお、この蒸留塔の塔頂圧力は10.8kPa、還流比を1.0とし、塔頂温度は48℃、塔底温度は175℃で一定となるように制御して、上記の1,4BG含有組成物を105mL/時の流量で塔底から20段の位置に連続的に導入し、塔頂部から10mL/時の流量で水分を留出させた。水分の留出と同時に、塔底から95mL/時で脱水された粗1,4BG含有液(精製原料1,4BG含有液)を缶出液として連続的に抜き出した。この精製原料1,4BG含有液中の水分濃度は0.025質量%(250質量ppm)であった。得られた精製原料1,4BG含有液の組成を表-1に示す。尚、精製原料1,4BG含有液のpHは5.5であった。
Figure JPOXMLDOC01-appb-T000004
〔精製原料1,4BG含有液の精製〕
[実施例1]
<工程(a):高沸点成分の蒸留分離>
 上記製造例1の脱水蒸留後に連続的に得られた精製原料1,4BG含有液に対し、精製原料1,4BG含有液中に含まれる1,4BGよりも高沸点の成分を蒸留塔で除去した。
 工程(a)の蒸留塔として、理論段30段のオルダーショウ蒸留塔を使用した。このオルダーショウ蒸留塔は、加熱源が実質的に塔底液のみと接触し、気相部への接触を伴わない蒸留塔であるが、実質的に塔底液のみと接触するとは、例えば塔底の気液界面よりも下の領域で熱媒が接触するという状態や、塔底にスプレーを降らせて気相部をなくした状態等が挙げられるが、これらの態様には限定されない。
 塔頂圧力は15.7kPa、還流比を1.0、塔頂温度は176℃、塔底温度は184℃で一定となるように制御し、塔底から10段の位置に精製原料1,4BG含有液を86mL/時の流量で連続導入し、塔頂部から74mL/時で連続留出を行い、塔底から12mL/時で連続抜き出しを行なった。210時間の連続運転を固形物の生成無く、安定して実施することができた。塔頂から1,4BGよりも高沸点の成分を除去した粗1,4BG含有液を得た(塔頂留出液)。表-2に蒸留塔(a)の塔底缶出液、塔頂留出液(粗1,4BG含有液)のぞれぞれの組成を示す。
Figure JPOXMLDOC01-appb-T000005
 なお、工程(a)では、蒸留塔(a)の塔頂圧力を低減して、上記の塔底温度、塔頂温度それぞれの温度よりも低い温度で蒸留分離しても差し支えないが、塔底温度、塔頂温度を高くすることにより、塔頂部から熱回収を実施することが可能となる。特に加圧スチームとして留出液の凝縮熱を回収することが好ましい。回収熱は、他の蒸留塔などの熱源に使用することができる。
<工程(e):工程(a)で分離した高沸点成分からの1,4BGの回収蒸留>
 以下に単蒸留での例を示すが、より効率のよい1,4BG回収及び高沸点成分分離のためには、連続蒸留が好ましく、更に多段蒸留を行うことが好ましく、還流を適宜実施することも好ましい。
 留出のためのガラス製の冷却管を設置したガラス製の500mLフラスコに、上記工程(a)の塔底から抜き出された塔底缶出液(液組成は表-2の「塔底缶出液」の欄)を252.4g仕込み、圧力を4.9kPa、フラスコ内温度153~169℃にて回分式の単蒸留を実施した。その結果、235.2gの1,4BGを含む留出液を分離して回収した。フラスコの中には、15.5gの高沸点成分濃縮液を釜残液として得た。分離回収した留出液と釜残液の組成を表-3に示す。
Figure JPOXMLDOC01-appb-T000006
<工程(f):粗1,4BG含有液と塩基との接触工程>
 容積100mLのステンレス製反応器に、弱塩基性陰イオン交換樹脂(登録商標:ダイヤイオン、型式WA20、4級アンモニウム塩を官能基に持つスチレン系樹脂)(以降、単に「WA20」と略記する場合がある。)を85mL充填し、この反応器下部より、上述の工程(a)で得られた留出液(液組成:表-2の「塔頂留出液」の欄)を170mL/時の上向流で連続的に流通させて接触処理を実施した。なお、陰イオン交換樹脂と留出液の接触温度は40℃、圧力は常圧とした。
 陰イオン交換樹脂と接触前の留出液中の塩化物イオン濃度(全塩素濃度)及び硫化物イオン濃度(全硫黄濃度)と、反応器出口から得られる陰イオン交換樹脂と接触させた後の留出液の塩化物イオン濃度(全塩素濃度)及び硫化物イオン濃度(全硫黄濃度)をイオンクロマトグラフによって測定した結果を表-4に示す。なお、表中「WA20」とは、上述した弱塩基性陰イオン交換樹脂のことを示す。
Figure JPOXMLDOC01-appb-T000007
 表-4から、工程(f)によって、粗1,4BG含有液中の硫黄濃度及び塩素濃度の低減が可能であることがわかる。この工程(f)により、次の工程(c)の水素化反応で使用する触媒の触媒劣化速度を低減でき、触媒寿命向上の効果が期待できる。
<工程(c):粗1,4BG含有液の水素化工程>
工程(c-1)水素化反応触媒:珪藻土担持ニッケル-クロム触媒(連続流通反応器)のケース
 反応容量120mLのステンレス製流通反応器にペレット状に成型した珪藻土担持ニッケル-クロム触媒(担持量はニッケル12質量%、クロム1.5質量%)を60mL充填し、反応器下部より上記工程(f)の反応器出口から得られた陰イオン交換樹脂と接触後の粗1,4BG含有液を30mL/時で流通させて粗1,4BG含有液中の不飽和化合物の水素化反応を行った。
 なお、珪藻土担持ニッケル-クロム触媒は反応器に、流通反応器の入口から出口方向に、ステンレス製フィルター、ガラスビーズ層、触媒層、ガラスビーズ層、ステンレス製フィルターの順で設けることにより充填した。水素化反応の反応条件は、反応温度80℃、水素圧2.0MPa(ゲージ圧)とした。
 水素化反応後の粗1,4BG含有液を反応器出口から経時サンプリングして、ガスクロマトグラフィー及び吸光度により分析した。結果を表-5に示す。
Figure JPOXMLDOC01-appb-T000008
 上記表-5から、粗1,4BG含有液を工程(c)を経由させることにより、炭素原子数5又は6の環状カルボニル化合物は水添により相当するアルコールに変換されることがわかる。また、吸光度の低下もあることから、炭素原子数5又は6の環状カルボニル化合物が1,4BGの着色成分、特にPBT製造時の色調b値と相関があり、水素化反応によって、この着色成分の濃度が低減可能であることが分かる。
工程(c-2)水素化反応触媒:シリカ担持ニッケル触媒(回分式反応器)のケース
 反応容量100mLのステンレス製オートクレーブにペレット状に成型したシリカ担持ニッケル触媒(担持量はニッケル及び酸化ニッケルの合計で52質量%)を2g充填し、上記工程(f)の反応器出口から得られた陰イオン交換樹脂と接触後の粗1,4BG含有液を40g入れた後、水素圧を0.99MPa(ゲージ圧)封入し、110℃のオイルバス中で4時間振盪させた。反応終了後、フラスコ内の水素化反応後の粗1,4BG含有液を採取し、ガスクロマトグラフィー及び吸光度により分析した。結果を表-6に示す。
<工程(b):軽沸点成分の蒸留分離>
 上記工程(c-1)のケースで水素化反応させた粗1,4BG含有液から軽沸点成分を分離するにあたり、理論段30段のオルダーショウ蒸留塔を使用した。そして、以下の3つの蒸留条件のケースで軽沸点成分の蒸留分離を実施した。
工程(b-1) 標準蒸留条件
 塔頂圧力を4.0kPa、還流比を50.0として、塔頂温度を139℃、塔底温度を163℃の一定の温度に制御し、110mL/時流量で塔底から20段の位置に上記工程(c-1)のケースで水素化反応させた粗1,4BG含有液(カルボニル価1.8mgKOH/g)を連続導入した。塔頂部から1.3mL/時で連続留出を行い、塔底から108.7mL/時で連続抜き出しを行い、粗1,4BG含有液中の軽沸点成分の除去を行った。塔頂から留出した液(塔頂留出液)及び塔底部からの缶出液(塔底缶出液)の組成を表-7に示す。
工程(b-2) 軽沸点成分除去強化条件-1
 塔頂圧力を4.0kPa、還流比を50.0として、塔頂温度を143℃、塔底温度を164℃の一定の温度に制御し、110mL/時の流量で塔底から20段の位置に上記工程(c-1)のケースで水素化反応させた粗1,4BG含有液(カルボニル価1.8mgKOH/g)を連続導入し、塔頂部から5.4mL/時で連続留出を行い、塔底から104.6mL/時で連続抜き出しを行い、粗1,4BG含有液中の軽沸点成分の除去を行った。塔頂から留出した液(塔頂留出液)及び塔底部からの缶出液(塔底缶出液)の組成を表-7に示す。
工程(b-3) 軽沸点成分除去強化条件-2
 塔頂圧力を4.0kPa、還流比を50.0として、塔頂温度を145℃、塔底温度を165℃の一定の温度に制御し、110mL/時の流量で塔底から20段の位置に上記工程(c-1)のケースで水素化反応させた粗1,4BG含有液(カルボニル価1.8mgKOH/g)を連続導入し、塔頂部から10.1mL/時で連続留出を行い、塔底から100.2mL/時で連続抜き出しを行い、粗1,4BG含有液中の軽沸点成分の除去を行った。塔頂から留出した液(塔頂留出液)及び塔底部からの缶出液(塔底缶出液)の組成を表-7に示す。
工程(b-4) 高温度条件
 塔頂圧力を18.1kPa、還流比を50.0として、塔頂温度を178℃、塔底温度を186℃の一定の温度に制御し、105mL/時の流量で塔底から20段の位置に上記工程(c-1)のケースで水素化反応させた粗1,4BG含有液(カルボニル価1.8mgKOH/g)を連続導入し、塔頂部から10mL/時で連続留出を行い、塔底から95mL/時で連続抜き出しを行ない、粗1,4BG含有液中の軽沸点成分の除去を行った。塔頂から留出した液(塔頂留出液)及び塔底部からの缶出液(塔底缶出液)の組成を表-7に示す。
Figure JPOXMLDOC01-appb-T000010
 上記表-7より明らかなように、軽沸点成分の蒸留分離を行うことで、粗1,4BG含有液から炭素原子数5又は6の環状カルボニル化合物を除去することができ、吸光度及びカルボニル価も低減させることが可能である。
 以下に示す工程(d)においては、炭素原子数5又は6の環状カルボニル化合物は表-7の塔底缶出液中の軽沸点成分及び高沸点成分の一部から再生するため、該塔底缶出液には存在しない炭素原子数5又は6の環状カルボニル化合物が精製1,4BG中に混入する(表-8~表-12)。
 そのため、軽沸点成分及び高沸点成分を工程(d)に持ち込まないことが求められる。表-7から工程(b-2)、工程(b-3)で軽沸点成分の留去量を増加させることで、塔底缶出液中の軽沸点成分を十分に除去できることが分かる。また、高沸点成分は、高温条件下の場合に、塔上部及び塔頂部にて大きく増加するものと思われ、工程(b-4)の高温度条件での蒸留で、より高濃度の高沸点成分が塔底缶出液に残存する。これら高沸点成分は該炭素原子数5又は6の環状カルボニル化合物のアセタール、ケタール、ヘミアセタール類と考えられる。そのようなことから、より低温度での軽沸成分の蒸留分離が好ましいと言える。
<工程(d):高純度1,4-ブタンジオールの精製蒸留>
 上述の工程(b)の工程(b-1)で得られた粗1,4BG含有液(液組成は、上記表-7の工程(b-1)の塔底缶出液)を蒸留して高純度の精製1,4BGを得るにあたり、蒸留塔として、理論段25段のオルダーショウ蒸留塔を使用した。塔頂圧力を2.5kPa、還流比を10.0として、塔頂温度を137℃、塔底温度を157℃の一定温度に制御し、76mL/時の流量で塔底から10段の位置に粗1,4BG含有液を連続導入した。この際、塔頂部から1mL/時で連続留出を行い、塔底から20段目の側留から73mL/時、塔底から2mL/時で連続抜き出しを行い、55時間の連続運転を実施した。塔頂留出液、側留(精製1,4BG)及び塔底缶出液の組成と吸光度を表-8に示す。
[比較例1]
 実施例1において、工程(d)における側留の抜き出しを行わず、塔頂から精製1,4BGを抜き出した以外は、全て同様に実施した。この塔頂留出液の流量は73mL/時であった。結果を表-8に示す。
Figure JPOXMLDOC01-appb-T000011
[実施例2]
 工程(d)において塔頂温度を137℃、塔底温度を158℃の一定温度に制御し、78mL/時の流量で塔底から10段の位置に粗1,4BG含有液を連続導入し、塔頂部から12mL/時で連続留出を行い、塔底から20段目の側留から64mL/時、塔底から2mL/時で連続抜き出しを行った以外は実施例1と同様にした。頂留出液、側留(精製1,4BG)及び塔底缶出液の組成と吸光度を表-9に示す。
Figure JPOXMLDOC01-appb-T000012
[実施例3]
 工程(d)の原料に上述の工程(b)の工程(b-2)の塔底缶出液(液組成は、上記表-7の工程(b-2)の塔底缶出液)を用いて蒸留し、高純度の精製1,4BGを得た以外は実施例1と同様に実施した。塔頂留出液、側留(精製1,4BG)及び塔底缶出液の組成と吸光度を表-10に示す。
Figure JPOXMLDOC01-appb-T000013
[実施例4]
 工程(d)の原料に上述の工程(b)の工程(b-3)の塔底缶出液(液組成は、上記表-7の工程(b-3)の塔底缶出液)を用いて蒸留し、高純度の精製1,4BGを得た以外は実施例1と同様に実施した。塔頂留出液、側留(精製1,4BG)及び塔底缶出液の組成を表-11に示す。
Figure JPOXMLDOC01-appb-T000014
[参考例1]
 工程(d)の原料に上述の工程(b)の工程(b-3)の塔底缶出液(液組成は、上記表-7の工程(b-3)の塔底缶出液)を650g用い、塔頂圧0~0.9kPaの条件で回分蒸留により複数のフラクションに分離し、精製1,4-ブタンジオールを3ロット得た。この内、初めに得られたロット(Fr.1、147g)の組成を表-12に示す。
Figure JPOXMLDOC01-appb-T000015
〔PBTの製造〕
 以下のPBTの製造においては、以下の方法により各種分析を実施した。
<THF・水の分析>
 エステル化反応における留出液について、カールフィッシャー法(三菱化学(株)製「CA-03」で測定)にて水分量を求め、水分以外は有機成分とした。有機成分中のTHF量を、前記のガスクロマトグラフィー法により求め、THF生成量とした。THF生成量をテレフタル酸に対するモル%で表し、転化率とした。
<PBTの固有粘度(IV)>
 ウベローデ型粘度計を使用して以下の手順で求めた。すなわち、フェノール/テトラクロロエタン(質量比1/1)の混合溶媒を使用し、30℃において、濃度1.0g/dLのPBT溶液及び溶媒のみの落下秒数を測定し、以下の式より求めた。
  IV=((1+4Kηsp0.5-1)/(2KC)
 但し、ηsp=(η/η)-1であり、ηはPBT溶液落下秒数、ηは溶媒の落下秒数、CはPBT溶液のPBT濃度(g/dL)、Kはハギンズの定数である。Kは0.33を採用した。
<PBTの末端カルボキシル基濃度(当量/トン)>
 ベンジルアルコール25mLにPBT0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定し、下記式で算出した。
  末端カルボキシル基濃度=(A-B)×0.1×f/W(当量/トン)
 ここで、Aは、滴定に要した0.01Nの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、Bはブランクでの滴定に要した0.01モル/Lの水酸化ナトリウムのベンジルアルコール溶液の量(μL)、WはPBT試料の量(g)、fは0.01モル/Lの水酸化ナトリウムの力価である。
<色調b値>
 ペレット状のPBTを内径30mm、深さ12mmの円柱状の粉体測定用セルに充填し、測色色差計Color Meter ZE2000(日本電色工業(株))を使用して、反射法により測定セルを90度ずつ回転させて4箇所測定した値の単純平均値として求めた。色調は、L、a、b表色系におけるb値で評価した。値が低いほど黄ばみが少なく色調が良好であることを示す。
[製造例2]
 1,4BGとして、上記の実施例1で得られた精製1,4BG(液組成は表-8の実施例1の側留)を用い、以下の方法でPBTを製造した。
 攪拌装置、窒素導入口、加熱装置、温度計、留出管、及び減圧用排気口を備えた反応容器に、テレフタル酸113g、1,4BGを183g及び触媒としてテトラブチルチタネートを予め6質量%溶解させた1,4BG溶液0.7gを仕込み、窒素-減圧置換によって系内を窒素雰囲気にした。
 次に、系内を攪拌しながら150℃まで加温後、大気圧下、220℃に1時間で昇温させて、さらに2時間生成する水を留出させつつエステル化反応を行った。
 次に、酢酸マグネシウム4水塩を水に溶解し、さらに1,4BGに溶解させた酢酸マグネシウム4水塩1質量%の1,4BG溶液(酢酸マグネシウム4水塩、水、1,4BGの質量比1:2:97)1.3gを添加した。
 次に、220℃で0.25時間保持後、0.75時間かけて245℃まで保持した。一方、圧力は重合開始から1.5時間かけて0.07kPaになるように減圧し、同減圧下で0.8時間重縮合反応を行い、反応系を常圧に戻し重縮合を終了した。得られたPBTを反応槽の底部からストランドとして抜き出し、10℃の水中を潜らせた後、カッターでストランドをカットすることによりペレット状のPBTを得た。
 酢酸マグネシウム添加後の減圧開始から重縮合終了までを重縮合時間として、固有粘度/重縮合時間を重縮合速度とした。重縮合速度は0.37dL/g/時であった。THF転化率は、エステル化反応中の留出液をドライアイストラップで冷却採取したものについてTHF量を分析し、仕込みテレフタル酸あたりのモル%で表したところ、57.0モル%であった。PBTの色調b値は2.7であった。
[製造例3]
 上記製造例2において、実施例1で得られた精製1,4BGの代わりに、実施例2で得られた精製1,4BG(組成は、表-9の側留)を用いた以外は全て同様の方法でPBTを製造した。得られたPBTの色調b値は2.2であった。
[製造例4]
 上記製造例2において、実施例1で得られた精製1,4BGの代わりに、実施例3で得られた精製1,4BG(組成は表-10の側留)を用いた以外は全て同様の方法でPBTを製造した。得られたPBTの色調b値は1.7であった。
[製造例5]
 上記製造例2において、実施例1で得られた精製1,4BGの代わりに、実施例4で得られた精製1,4BG(組成は表-11の側留)を用いた以外は全て同様の方法でPBTを製造した。得られたPBTの色調b値は1.6であった。
[製造例6]
 上記製造例2において、実施例1で得られた精製1,4BGの代わりに、比較例1で得られた精製1,4BG(組成は表-8の比較例1の塔頂留出液)を用いた以外は全て同様の方法でPBTを製造した。得られたPBTの色調b値は3.0であった。
[製造例7]
 上記製造例2において、実施例1で得られた精製1,4BGの代わりに、参考例1で得られた精製1,4BG(組成は表-12の参考例1のFr.1留出液)を用いた以外は全て同様の方法でPBTを製造した。得られたPBTの色調b値は4.9であった。
 製造例2~製造例7の各種分析結果を、使用した精製1,4BGの組成とともに表-13にまとめた。また、図2及び図3には、原料1,4BG中の全C,C環状カルボニル濃度と、得られたPBT製造時の色調b値及び重縮合速度との相関をそれぞれ示した。
Figure JPOXMLDOC01-appb-T000016
 表-13及び図2から原料1,4-BG中の全C,C環状カルボニル濃度(炭素原子数5又は6の環状カルボニル化合物の合計濃度)が13ppm以上で、PBTの色調b値が大きく増加することが確認できた。即ち、これらの炭素原子数5又は6の環状カルボニル化合物の除去が色調の良いPBT製造に重要である。
 図3から、原料1,4-BG中の全C,C環状カルボニル濃度(炭素原子数5又は6の環状カルボニル化合物の合計濃度)が低いほど重縮合速度(dL/g/時)も改善していることがわかる。
[実施例5~7]
 前記製造例1と同様の実験を3回行い、それぞれ脱水蒸留を行って、精製原料1,4BG含有液を3ロット製造した(表-14において、「粗1,4BG」と記載する。)。この3ロットを原料とした他はそれぞれ実施例1と同様に精製を行った。各工程でのカルボニル価と吸光度の推移、及び精製1,4BGを原料として、前記製造例2と同様にして製造したPBTの色調を表-14に示す。
Figure JPOXMLDOC01-appb-T000017
 表-14から、粗1,4BGのカルボニル価を低くすることで、精製1,4BGのカルボニル価を低減することができ、カルボニル価の低い精製1,4BGを用いることにより、得られるPBTの色調b値を適切な範囲に抑えることができることがわかる。また、水添や蒸留精製によって1,4BGのカルボニル価を低減できることが分かる。更には、1,4BGのカルボニル価を低減すると、1,4BGの着色を示すUV吸光度も低減できることが分かる。
〔工程(a)の蒸留塔の蒸留実験〕
[参考例2]
 実施例1の工程(a)のオルダーショウ蒸留塔の塔底部位では固形物の析出による汚れが進行することがある。この回避には145℃程度の比較的低温度での蒸留を行うか、加熱部位である塔底において、気相部を加熱しないことが望ましい。具体的には、この蒸留塔の熱源として使用したオイルバスの液面を蒸留塔の塔底部に溜まる塔底液の液面よりも低い位置に保つようにすればよい。一方、固形物析出を促進する気相部の加熱の仕方としては、例えば、オイルバスの液面を蒸留塔の塔底部に溜まる塔底液よりも高く保持して、塔底液に加えて、塔底部の気相部の壁温度を熱源に近い温度に保持すればよい。
 以下、実施例1の工程(a)の蒸留塔の塔底部の熱源であるオイルバスの液面の位置を変えて、気相部を高温度(245℃)で加熱したケース、145℃の低温度条件で加熱したケース、高温度(245℃)で加熱するが、気相部は加熱しないケースの3つのケースで蒸留実験を行った。結果を表-15に示す。なお、導入した液は表-1に示す組成の精製原料1,4BG含有液である。
Figure JPOXMLDOC01-appb-T000018
 表-15より明らかなように、気相部を高温度で加熱した場合に比較して、145℃などの低温度条件あるいは、高温度でも気相部を加熱しない条件にすることにより、固形物析出量を大きく低減することができる。
 なお、工業的規模のプロセスの工程(a)の蒸留塔としては、気相部を加熱しないようにするには、好ましくは、強制循環型のリボイラーや薄膜流下形式のリボイラーを熱源として使用することである。特に強制循環型のリボイラーの場合には、熱交換器出口に背圧弁を用いることで、熱交換器内部の圧力を上昇させ、より完全に液相を保持することが可能であるので、更に好ましい。
〔塩素含有液の水素化反応〕
[参考例3]
 三菱化学(株)製1,4BG中にTCI製の試薬1,4-ジヒドロキシ-2-ブテンを10質量%溶解した。本液中の全塩素濃度は79質量ppmであり、全硫黄濃度は0.1質量ppmであった。本液を用いて反応温度100℃、水素圧3.5MPa(ゲージ圧)とした以外は実施例1の工程(c-1)と同様の反応条件で水素化実験を行った結果、以下の表-16(WA20処理無)に示すように非常に速い触媒劣化の進行を確認した。
 一方、この全塩素濃度79質量ppm、全硫黄濃度0.1質量ppmの液に対して、工程(f)に相当する陰イオン交換樹脂処理(WA20)を、使用イオン交換樹脂量300mL、処理流量215g/時、接触温度55℃で行った液では、全塩素濃度0.1質量ppm、全硫黄濃度<0.1質量ppm(検出限界以下)となり、この処理液について、上記と同じ水素化条件で水素化実験を行ったところ、表-16(WA20処理有)に示すように、触媒劣化は確認されなかった。
 流通評価途中での液中のNi濃度をICP-OESにより分析比較した結果、WA20処理を行った液では反応後も液中のNi濃度は検出下限以下であったのに対して、WA20処理を実施していない液では、5質量ppmのNi濃度を検出した。
 表-5の水素化反応前溶液では塩素濃度は0.4質量ppm程度ではあるが、長期運転を考えた場合には、WA20などの陰イオン交換樹脂や固体塩基、あるいは各種アミンなどの溶解性塩基類を加えて、酸による触媒成分の溶出を回避することが好ましいことが分かる。
Figure JPOXMLDOC01-appb-T000019
[石化法の側留効果]
[参考例4]
 シリカにパラジウム及びテルルを担持させた触媒の存在下に、ブタンジエン、酢酸及び酸素を圧力6MPa、温度60~99℃で連続的に反応させた。酸素としては窒素で希釈した空気(酸素濃度21体積%)を用いた。反応液を蒸留して酢酸及び高沸点物を除去して、主としてジアセトキシブテンから成る反応物を得た。
 この反応物を水素と共に、活性炭にパラジウムを担持した触媒が充填されている前段水添反応器、及びシリカにルテニウムを担持した触媒が充填されている後段水添反応器に連続的に供給して、水素添加した。炭素-炭素二重結合を飽和させる前段水素添加反応は圧力2MPa、温度40~70℃で行い、アルデヒド基の水素添加やアセタール化合物の水素化分解を行わせる後段水素添加反応は圧力2MPa、温度90~110℃で行った。
 ダイヤイオンSK1B(三菱化学社製品、スルホン酸型陽イオン交換樹脂、ダイヤイオンは同社の登録商標)が充填されている加水分解反応器に、上記で得た水素添加された反応物を水との混合液として40~60℃で通液し、加水分解反応を行わせた。得られた加水分解反応液は塔底温度158℃、塔頂圧力15kPaで連続的に蒸留して塔頂から水及び酢酸を留出させ、塔底から塔底液を取得した。この塔底液を理論段数100段の蒸留塔を用いて、塔底温度191℃、塔頂圧力21kPa、還流比30で連続的に蒸留して、塔頂液、側留液、塔底液の3つの留分に分割した。
 活性炭にパラジウムを担持した触媒が充填されている反応器に、上記で得られた塔底留分を水素と共に、圧力0.9MPa、温度100℃で連続的に供給して、アセタール化合物などの水素化分解を行った。この反応液を、理論段数10段の充填塔を用いて、塔底温度181℃、塔頂圧力20kPa、還流比0.62で連続的に蒸留した(=第2蒸留)。
 反応物は塔頂から3段目に供給し、塔頂から水及びテトラヒドロフランを留出させ、塔底から1,4-ブタンジオール及び高沸点物を含む塔底液を得た。この塔底液は、次いで理論段数20段の充填塔を用いて、塔底温度160℃、塔頂圧力5.7kPa、還流比0.65で連続的に蒸留した(=第3蒸留)。
 塔底液は塔頂から12段目に供給し、塔頂から1,4-ブタンジオールを留出させ、塔底から高沸点物を1,4-ブタンジオールとの混合物として流出させた。塔頂留出液と塔底留出液の重量比率は98:2であった。理論段数20段の充填塔の塔頂から9段目に上記で得た1,4-ブタンジオールを連続的に供給し、塔底温度160℃、塔頂圧力5.7kPa、還流比63で蒸留して、塔頂から1,4-ブタンジオールモノアセテートを含む1,4-ブタンジオールを留出させ、側留から高純度の精製1,4-ブタンジオールを製品として取得し、塔底から高沸点成分を含む1,4-ブタンジオールを抜き出した(=第4蒸留)。塔頂留出液と側留液の重量比率は1:99であった。
[参考例5]
 上記製造例2において、実施例1で得られた精製1,4BGの代わりに、参考例4で得られた精製1,4BG(側留液)を用いた以外は全て同様の方法でPBTを製造した。得られたPBTの色調b値は1.4であった。
[参考例6]
 上記製造例2において、実施例1で得られた精製1,4BGの代わりに、参考例4で得られた精製1,4BG(側留液)に第4蒸留の塔頂液を1%添加した1,4BGを用いた以外は全て同様の方法でPBTを製造した。得られたPBTの色調b値は2.0であった。
 参考例5、6と上記実施例からバイオ法1,4BGの製造でも、側留抜出することにより、石化法と同等レベルのPBTの色調を達成可能となることが分かる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2012年6月5日出願の日本特許出願(特願2012-128065)及び2013年2月27日出願の日本特許出願(特願2013-037301)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (15)

  1.  1,4-ブタンジオールを生産することができる有機体の発酵培地で生物学的に1,4-ブタンジオールを生産し、前記発酵培地から、菌体、塩分及び水の各々少なくとも一部を除去して得られた精製原料1,4-ブタンジオール含有液から、下記工程(a)~(c)のいずれか1つ以上の工程を経由して粗1,4-ブタンジオール含有液を得、前記粗1,4-ブタンジオール含有液を下記工程(d)を経由して精製することにより精製1,4-ブタンジオールを得る、1,4-ブタンジオールの製造方法。
    工程(a) 前記精製原料1,4-ブタンジオール含有液を蒸留塔で蒸留し、前記精製原料1,4-ブタンジオール含有液中に含まれる1,4-ブタンジオールよりも高沸点の成分を除去する工程
    工程(b) 前記精製原料1,4-ブタンジオール含有液を蒸留塔で蒸留し、前記精製原料1,4-ブタンジオール含有液中に含まれる1,4-ブタンジオールよりも軽沸点の成分を除去する工程
    工程(c) 前記精製原料1,4-ブタンジオール含有液中に含まれる不飽和化合物の少なくとも一部を水素化物に変換する水素化工程
    工程(d) 前記粗1,4-ブタンジオール含有液を蒸留塔で蒸留し、側留より精製1,4-ブタンジオールを抜き出す工程
  2.  前記工程(d)で得られる精製1,4-ブタンジオール中の炭素原子数5又は6の環状カルボニル化合物の濃度が12質量ppm以下である、請求項1に記載の1,4-ブタンジオールの製造方法。
  3.  前記工程(a)~(c)のうち少なくとも工程(a)を経由する1,4-ブタンジオールの製造方法であって、下記工程(e)を更に経由する、請求項1又は2に記載の1,4-ブタンジオールの製造方法。
    工程(e) 前記工程(a)で分離された1,4-ブタンジオールよりも高沸点の成分を蒸留塔で蒸留し、1,4-ブタンジオールを分離して回収する工程
  4.  前記工程(a)~(c)のうち少なくとも工程(c)を経由する1,4-ブタンジオールの製造方法であって、下記工程(f)を経由した後の精製原料1,4-ブタンジオール含有液を前記工程(c)に導入する、請求項1ないし3のいずれか1項に記載の1,4-ブタンジオールの製造方法。
    工程(f) 前記精製原料1,4-ブタンジオール含有液と塩基とを接触させる工程
  5.  前記工程(a)~(c)のいずれかの工程又は工程(f)を経由する直前の精製原料1,4-ブタンジオール含有液の水分濃度が0.01~20質量%であり、且つpHが5以上である、請求項1ないし4のいずれか1項に記載の1,4-ブタンジオールの製造方法。
  6.  前記工程(c)の水素化工程において、ニッケルを含む金属を珪藻土及びシリカの少なくともいずれか一方に担持した固体触媒を用いて水素化する、請求項1ないし5のいずれか1項に記載の1,4-ブタンジオールの製造方法。
  7.  前記工程(f)における塩基が固体塩基である、請求項4ないし6のいずれか1項に記載の1,4-ブタンジオールの製造方法。
  8.  前記工程(b)における1,4-ブタンジオールよりも軽沸点の成分が、1-アセトキシ-4-ヒドロキシブタンを含み、且つ、前記1,4-ブタンジオールよりも軽沸点の成分が除去された粗1,4-ブタンジオール含有液中の1-アセトキシ-4-ヒドロキシブタン濃度が0.1~50質量ppmである、請求項1ないし7のいずれか1項に記載の1,4-ブタンジオールの製造方法。
  9.  前記工程(b)における蒸留塔の塔底温度が120~200℃である、請求項1ないし8のいずれか1項に記載の1,4-ブタンジオールの製造方法。
  10.  前記工程(a)における蒸留塔の塔底温度が150~200℃である、請求項1ないし9のいずれか1項に記載の1,4-ブタンジオールの製造方法。
  11.  前記工程(a)における1,4-ブタンジオールよりも高沸点の成分が2-ピロリドンを含み、且つ、前記1,4-ブタンジオールよりも高沸点の成分が除去された粗1,4-ブタンジオール含有液中の2-ピロリドンの濃度が20質量ppm以下である、請求項1ないし10のいずれか1項に記載の1,4-ブタンジオールの製造方法。
  12.  前記工程(a)における蒸留塔の加熱源が実質的に塔底液のみと接触し、気相部への接触を伴わない、請求項1ないし11のいずれか1項に記載の1,4-ブタンジオールの製造方法。
  13.  前記工程(d)における蒸留塔の塔頂留出液中のガンマブチロラクトンの濃度が、側留から抜き出される精製1,4-ブタンジオール中のガンマブチロラクトンの濃度よりも高い、請求項1ないし12のいずれか1項に記載の1,4-ブタンジオールの製造方法。
  14.  前記工程(a)~(c)のいずれかの工程又は工程(f)を経由する直前の精製原料1,4-ブタンジオール含有液中のカルボニル価を2.5mgKOH/g以下に制御する工程を含む、請求項1ないし13のいずれか1項に記載の1,4-ブタンジオールの製造方法。
  15.  前記工程(b)~(d)の少なくとも一つの工程において、前記精製原料1,4-ブタンジオール含有液中のカルボニル価を低減する、請求項1ないし14のいずれか1項に記載の1,4-ブタンジオールの製造方法。
PCT/JP2013/065367 2012-06-05 2013-06-03 1,4-ブタンジオールの製造方法 WO2013183592A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP20203034.2A EP3786144B1 (en) 2012-06-05 2013-06-03 Production method for 1,4-butanediol
EP13801148.1A EP2857377B1 (en) 2012-06-05 2013-06-03 Production method for 1, 4-butanediol
EP19161247.2A EP3517521B1 (en) 2012-06-05 2013-06-03 Production method for 1,4-butanediol
BR112014030247-2A BR112014030247B1 (pt) 2012-06-05 2013-06-03 Método de produção de 1,4-butanodiol e uso de 1,4-butanodiol derivado de biomassa obtenível pelo mesmo
CA2874084A CA2874084C (en) 2012-06-05 2013-06-03 Production method for 1,4-butanediol
AU2013272715A AU2013272715B2 (en) 2012-06-05 2013-06-03 Production method for 1, 4-butanediol
CN201380036694.8A CN104640830B (zh) 2012-06-05 2013-06-03 1,4-丁二醇的制造方法
US14/560,714 US10487032B2 (en) 2012-06-05 2014-12-04 Production method for 1,4-butanediol
AU2017268624A AU2017268624B2 (en) 2012-06-05 2017-11-30 Production method for 1, 4-butanediol

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-128065 2012-06-05
JP2012128065 2012-06-05
JP2013-037301 2013-02-27
JP2013037301 2013-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/560,714 Continuation US10487032B2 (en) 2012-06-05 2014-12-04 Production method for 1,4-butanediol

Publications (1)

Publication Number Publication Date
WO2013183592A1 true WO2013183592A1 (ja) 2013-12-12

Family

ID=49711984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065367 WO2013183592A1 (ja) 2012-06-05 2013-06-03 1,4-ブタンジオールの製造方法

Country Status (9)

Country Link
US (1) US10487032B2 (ja)
EP (3) EP3786144B1 (ja)
JP (1) JP6186901B2 (ja)
CN (2) CN109574803A (ja)
AU (2) AU2013272715B2 (ja)
BR (1) BR112014030247B1 (ja)
CA (1) CA2874084C (ja)
TW (1) TWI677577B (ja)
WO (1) WO2013183592A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3050970A1 (en) 2015-01-28 2016-08-03 Metabolic Explorer Modified microorganism for optimized production of 1,4-butanediol
JP2016167997A (ja) * 2015-03-12 2016-09-23 日立造船株式会社 廃棄物由来バイオマスの反応装置
US20230227389A1 (en) * 2021-05-18 2023-07-20 Kh Neochem Co., Ltd. Product 1,3-butylene glycol

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199511B1 (en) 2009-06-04 2020-01-29 Genomatica, Inc. Process of separating components of a fermentation broth
KR102145640B1 (ko) 2012-06-05 2020-08-18 게노마티카 인코포레이티드 폴리에스터 및 폴리우레탄의 제조 방법
EP2857435B1 (en) 2012-06-05 2017-07-26 Mitsubishi Chemical Corporation Production method for polybutylene terephthalate
EP2970068B1 (en) * 2013-03-15 2021-07-28 Genomatica, Inc. Process and systems for obtaining 1,4-butanediol from fermentation broths
US9533931B2 (en) * 2013-04-12 2017-01-03 Toray Industries, Inc. Process of producing 1,4-butanediol
BR112017010654A2 (pt) * 2014-11-26 2018-02-14 Visolis Inc processos para conversão de ácido mevalônico biologicamente derivado
CN105418367A (zh) * 2015-11-10 2016-03-23 中国石化长城能源化工(宁夏)有限公司 一种1,4-丁二醇的脱色方法
CN105418371A (zh) * 2015-11-10 2016-03-23 中国石化长城能源化工(宁夏)有限公司 一种1,4-丁二醇催化加氢脱色方法
CN107952401B (zh) * 2016-10-17 2020-02-04 北京华石联合能源科技发展有限公司 一种悬浮床加氢冷壁反应器
US20210101855A1 (en) * 2017-03-31 2021-04-08 Genomatica, Inc. Process and systems for obtaining 1,3-butanediol from fermentation broths
KR101969530B1 (ko) * 2017-08-02 2019-04-16 지에스칼텍스 주식회사 다가 알코올의 탈색 및 탈취 방법
KR101995009B1 (ko) * 2017-09-13 2019-07-02 주식회사 한농화성 알칸디올의 정제방법
CN115160545B (zh) * 2017-11-27 2024-05-17 诺瓦蒙特股份公司 用于生产来自可再生资源的1,4-丁二醇的方法和由其获得的聚酯
US20230046811A1 (en) * 2019-12-28 2023-02-16 Daicel Corporation Method for manufacturing 1,3-butylene glycol
CN111841557A (zh) * 2020-08-29 2020-10-30 朱丽英 一种用于生产1,4-丁炔二醇的催化剂及其制备方法
CN117085348A (zh) * 2023-10-19 2023-11-21 万华化学集团股份有限公司 用于1,4-丁二醇分离纯化的系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502325A (ja) 2003-05-06 2007-02-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 生物学的に生産された1,3−プロパンジオールの精製
JP2009077719A (ja) 2005-04-22 2009-04-16 Mitsubishi Chemicals Corp ポリエステル及びその製造方法
JP2010521182A (ja) 2007-03-16 2010-06-24 ジェノマティカ・インコーポレイテッド 1,4−ブタンジオールおよびその前駆体の生合成のための組成物および方法
WO2010141780A1 (en) * 2009-06-04 2010-12-09 Genomatica, Inc. Process of separating components of a fermentation broth
JP2012504404A (ja) * 2008-10-03 2012-02-23 メタボリック エクスプローラー 流下液膜式蒸発器、拭き取り膜式蒸発器、薄膜蒸発器、または短経路蒸発器を用いて発酵ブロスからアルコールを精製するための方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213000A (en) * 1979-05-29 1980-07-15 E. I. Du Pont De Nemours And Company Reducing color formers in 1,4-butanediol
US4371723A (en) * 1980-04-16 1983-02-01 Gaf Corporation Process of producing a distilled butanediol product of high quality in high yield
JPH0635404B2 (ja) * 1985-02-27 1994-05-11 三菱化成株式会社 粗1,4−ブタンジオ−ルの精製方法
US5209825A (en) * 1988-10-04 1993-05-11 E. I. Du Pont De Nemours And Company Preparation of purified concentrated BDO
JP3175360B2 (ja) * 1992-12-10 2001-06-11 三菱化学株式会社 1,4−ブタンジオールの精製方法
JPH10265418A (ja) * 1997-01-23 1998-10-06 Mitsubishi Chem Corp 粗1,4−ブタンジオールの精製方法
KR20090110879A (ko) * 2007-02-15 2009-10-22 바스프 에스이 매우 순수한 1,4-부탄디올의 제조 방법
CN101898935A (zh) * 2010-07-09 2010-12-01 华东理工大学 从发酵液中萃取分离1,3-丙二醇的方法
JP5673060B2 (ja) 2010-12-14 2015-02-18 富士通株式会社 光半導体装置及びその製造方法
JP6040597B2 (ja) 2011-07-04 2016-12-07 三菱化学株式会社 1,4−ブタンジオールの製造方法
EP2730555B1 (en) 2011-07-08 2018-09-05 Mitsubishi Chemical Corporation Composition containing 1,4-butanediol
JP2013037301A (ja) 2011-08-11 2013-02-21 Canon Inc 露光装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007502325A (ja) 2003-05-06 2007-02-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 生物学的に生産された1,3−プロパンジオールの精製
JP2009077719A (ja) 2005-04-22 2009-04-16 Mitsubishi Chemicals Corp ポリエステル及びその製造方法
JP2010521182A (ja) 2007-03-16 2010-06-24 ジェノマティカ・インコーポレイテッド 1,4−ブタンジオールおよびその前駆体の生合成のための組成物および方法
JP2012504404A (ja) * 2008-10-03 2012-02-23 メタボリック エクスプローラー 流下液膜式蒸発器、拭き取り膜式蒸発器、薄膜蒸発器、または短経路蒸発器を用いて発酵ブロスからアルコールを精製するための方法
WO2010141780A1 (en) * 2009-06-04 2010-12-09 Genomatica, Inc. Process of separating components of a fermentation broth
US20110003355A1 (en) 2009-06-04 2011-01-06 Genomatica, Inc Process of separating components of a fermentation broth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3050970A1 (en) 2015-01-28 2016-08-03 Metabolic Explorer Modified microorganism for optimized production of 1,4-butanediol
JP2016167997A (ja) * 2015-03-12 2016-09-23 日立造船株式会社 廃棄物由来バイオマスの反応装置
US20230227389A1 (en) * 2021-05-18 2023-07-20 Kh Neochem Co., Ltd. Product 1,3-butylene glycol
US12091379B2 (en) * 2021-05-18 2024-09-17 Kh Neochem Co., Ltd. Product 1,3-butylene glycol

Also Published As

Publication number Publication date
US20150087038A1 (en) 2015-03-26
US10487032B2 (en) 2019-11-26
TWI677577B (zh) 2019-11-21
BR112014030247A2 (pt) 2017-06-27
EP2857377A1 (en) 2015-04-08
AU2017268624A1 (en) 2017-12-21
CN109574803A (zh) 2019-04-05
EP3517521B1 (en) 2020-12-09
JP2014193837A (ja) 2014-10-09
BR112014030247A8 (pt) 2020-09-24
CA2874084C (en) 2020-08-25
EP3517521A1 (en) 2019-07-31
AU2017268624B2 (en) 2019-08-08
CA2874084A1 (en) 2013-12-12
EP2857377A4 (en) 2015-05-27
AU2013272715A1 (en) 2015-01-15
JP6186901B2 (ja) 2017-08-30
EP3786144B1 (en) 2023-09-06
AU2013272715B2 (en) 2017-11-02
CN104640830A (zh) 2015-05-20
BR112014030247B1 (pt) 2021-07-13
CN104640830B (zh) 2019-02-01
TW201402821A (zh) 2014-01-16
EP2857377B1 (en) 2019-05-08
EP3786144A1 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
JP6186901B2 (ja) 1,4−ブタンジオールの製造方法
JP5529128B2 (ja) 再生可能な材料からのプロピオン酸ビニルの製造と、得られたプロピオン酸ビニルと、その使用
Blanc et al. Starch-derived polyols for polymer technologies: preparation by hydrogenolysis on metal catalysts
US20080274019A1 (en) Preparation of Derivative of Polyhydric Alcohols
CA2972303C (en) Process for preparing tetrahydrofuran, butane-1,4-diol or gamma-butyrolactone
EP4086243A1 (en) Catalyst and process for producing 2,5-furandicarboxylic acid from hydroxymethylfurfural in water
JP7416177B2 (ja) アルコールの製造方法
US8394973B2 (en) Manufacture of maleic anhydride from renewable materials, maleic anhydride obtained, and uses thereof
CN110914228B (zh) 多元醇的脱色和除臭方法
JP6900801B2 (ja) カルボン酸エステル又はカルボン酸の製造方法
WO2011055051A2 (fr) Glutaraldehyde bioressource et ses procedes de fabrication
WO2015193423A1 (en) Process for producing ethanol
TW201242935A (en) Process to recover alcohol with secondary reactors for hydrolysis of acetal
KR101632483B1 (ko) 호모세린계 화합물의 처리 공정
EP4267542A1 (en) Process for purification of a mixture including diols and acetals
JPS6254778B2 (ja)
TW201302683A (zh) 在醇類生產製程中藉由酯化在蒸餾塔內減少酸之製程

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13801148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2874084

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013801148

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013272715

Country of ref document: AU

Date of ref document: 20130603

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014030247

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014030247

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141203