WO2013183170A1 - フェロコークスを用いた高炉操業方法 - Google Patents
フェロコークスを用いた高炉操業方法 Download PDFInfo
- Publication number
- WO2013183170A1 WO2013183170A1 PCT/JP2012/065056 JP2012065056W WO2013183170A1 WO 2013183170 A1 WO2013183170 A1 WO 2013183170A1 JP 2012065056 W JP2012065056 W JP 2012065056W WO 2013183170 A1 WO2013183170 A1 WO 2013183170A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ore
- coke
- ferro
- blast furnace
- ore layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/006—Automatically controlling the process
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/008—Composition or distribution of the charge
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/244—Binding; Briquetting ; Granulating with binders organic
- C22B1/245—Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
Definitions
- the present invention relates to a method of operating a blast furnace when using ferro-coke produced by briquetting and carbonizing a mixture of coal and iron ore.
- ferro-coke In order to reduce the reducing material ratio of the blast furnace, it is effective to use ferro-coke as a blast furnace raw material, and to utilize the effect of lowering the temperature of the thermal preservation zone of the blast furnace by using ferro-coke (for example, (See Patent Document 1).
- Ferro-coke produced by dry distillation of a molded material obtained by mixing coal and iron ore promotes reduction of sintered ore due to its high reactivity, and is partially reduced iron ore Is contained, the temperature of the blast furnace's heat preservation zone can be lowered, and the reducing material ratio can be lowered.
- Patent Document 1 As a blast furnace operating method using ferro-coke, as disclosed in Patent Document 1, there is a method of mixing ore and ferro-coke and charging the blast furnace.
- Ferro-coke is characterized by high reactivity with CO 2 gas represented by the following formula (a), compared with conventional metallurgical coke produced by dry distillation of coal in a coke oven or the like.
- the metallurgical coke is hereinafter referred to as “conventional coke” to be distinguished from ferro-coke.
- the reaction of the following formula (a) can be said to be a reaction for regenerating CO 2 produced by the reduction of the ore shown in the following formula (b) into CO gas having reducing power.
- the region where the CO 2 gas concentration is high in the blast furnace is closely related to the gas distribution in the radial direction.
- Control of gas flow in the radial direction of the blast furnace is an important operation item that affects the permeability, reducibility, and furnace heat load.
- Iron raw materials such as sintered ore, lump ore, and pellets are smaller in particle size than conventional furnace furnace coke produced by the furnace type, and are fused at a high temperature. Therefore, a portion having a large amount of ore, that is, a portion having a large amount of ore / coke, has a high ventilation resistance, and gas hardly flows. Therefore, the control of the gas flow in the radial direction is performed by adding a deviation to the amount of ore / coke in the radial direction.
- iron raw materials such as sintered ores, lump ores, and pellets are referred to as “ores”.
- Non-Patent Document 1 a part of the CO in the reducing gas rising from below changes to CO 2 due to the reduction of the ore.
- the CO 2 concentration increases (see, for example, Non-Patent Document 1).
- ferro-coke is selectively disposed in a region where these CO 2 concentrations are high, the ferro-coke gasification reaction is further promoted, and as a result, an improvement in the reduction rate and a reduction in the reducing material ratio can be expected.
- ferro-coke When ferro-coke is used in blast furnace operation, ferro-coke is concentrated in a region with high CO 2 concentration in order to express the highly reactive characteristics of ferro-coke, that is, rapid conversion of CO 2 gas to CO gas. It is considered better to arrange them.
- the radial gas distribution of the blast furnace is generally controlled by adjusting the ore / coke quantity in the radial direction.
- the location where the amount of ore / coke is large corresponds to a region where the CO 2 concentration is high.
- the object of the present invention is to solve such problems of the prior art, and when ferrocoke is mixed with ore and used in a blast furnace, the ferrocoke possesses the reducing power of CO 2 produced by ore reduction.
- An object of the present invention is to provide a method for operating a blast furnace using ferro-coke, which makes it possible to more effectively express the function of regenerating CO gas.
- the features of the present invention for solving such problems are as follows. (1) In a blast furnace operation method in which a coke layer and an ore layer are formed in the blast furnace, The ore is divided into two or more batches and charged into a blast furnace to form an ore layer. Mixing ferro-coke in at least one batch of ore layers of the ore layers formed from the plurality of batches; Avoid mixing ferrocoke in at least one other batch of ore, A blast furnace operating method using ferro-coke characterized by the above. (2) The ore is charged so that the charging positions of the plurality of batches differ in the furnace radial direction, and the ore layer thickness ratio defined by ore layer thickness / (ore layer thickness + coke layer thickness) is set to the furnace radius.
- the ore is divided into two batches in the height direction of the ore layer and charged to form an ore layer located at the top and an ore layer located at the bottom; Do not mix ferro-coke with the ore layer located at the bottom, A method for operating a blast furnace using the ferro-coke as described in (1).
- the ore is divided into three batches in the height direction of the ore layer and charged to form an ore layer located in the upper part, an ore layer located in the middle part and a batch ore layer located in the lower part, Do not mix ferro-coke in the batch ore layer located at the bottom, A method for operating a blast furnace using the ferro-coke as described in (1).
- ferro-coke can be concentrated at a high CO 2 concentration location in the blast furnace, and the reduction of ore is promoted through the gasification reaction of ferro-coke, thereby reducing the reducing agent ratio (reducing agent rate). ) Can be reduced.
- FIG. 1A is a graph showing the ore layer thickness ratio in the radial direction when the ore batch is divided into two in the radial direction
- FIG. 1B is a schematic longitudinal sectional view of the blast furnace when the ore layer thickness ratio in the middle part is large.
- FIG. 2A is a graph showing the ore layer thickness ratio in the radial direction when the ore batch is divided into two in the radial direction
- FIG. 2B is a schematic longitudinal sectional view of the blast furnace when the ore layer thickness ratio in the peripheral portion is large.
- FIG. 3A is a graph showing the ore layer thickness ratio in the radial direction when the ore batch is divided into two in the layer height direction
- FIG. 3A is a graph showing the ore layer thickness ratio in the radial direction when the ore batch is divided into two in the layer height direction
- FIG. 3B is a schematic longitudinal sectional view of the blast furnace.
- the graph which shows the relationship between a ferro-coke use ratio and a sinter reduction rate.
- the graph which shows the relationship between iron content in ferro-coke, and reaction start temperature. It is a schematic diagram which shows the shape of ferro-coke, FIG. 6A is a top view, and FIG. 6B is a front view.
- chamber furnace coke and ore are charged alternately from the top of the furnace to form a state in which coke layers and ore layers are alternately stacked in the furnace.
- a method is known in which ore is charged into a furnace to form an ore layer, and divided into several batches. This is used as a means of controlling the particle size distribution in the radial direction by adding a particle size deviation between batches in addition to the case where it must be divided into a plurality of due to the capacity of the furnace top bunker. Case etc.
- the ore layer when ore layer is formed, the ore charge is divided into a plurality of batches, and the ferro-coke mixing ratio is set in the radial direction and the layer height direction by providing a difference in the mixing amount of ferro-coke for each batch.
- the ferro-coke ratio By controlling and increasing the ferro-coke ratio at a predetermined location, it is possible to increase the ferro-coke ratio in a region where the CO 2 concentration is high. That is, when forming a coke layer and an ore layer in a blast furnace, the ore layer is formed as a plurality of batches of ore layers divided into two or more batches, and at least one ore layer of the plurality of batches of ore layers is formed. It is a blast furnace operation method using ferro-coke in which ferro-coke is mixed and at least another batch of ore layer is not mixed.
- Ferro-coke is mixed into the batch ore layer in the radial position of the furnace. When multiple batches are 2 batches, ferro-coke is mixed with the batch with the larger ore layer thickness ratio. When multiple batches are 3 batches or more, ferro-coke is mixed at least with the batch with the largest ore layer thickness ratio, and ferro-coke is not mixed with the batch with the smallest ore layer thickness ratio.
- the place which raises a ferro-coke ratio into the upper part of an ore layer By increasing the ferro-coke ratio in the upper part of the ore layer, it is possible to increase the ferro-coke ratio in the region where the CO 2 concentration is high, and to further increase the mixing effect of the ferro-coke.
- the operation of dividing the ore layer into two or more batches in the height direction of the ore layer is performed, and at least the ferro-coke is not mixed with the ore layer of the batch located at the lowest part.
- Figure 1 shows an example of a large ore layer thickness ratio in the middle part.
- the ore layer 2 and the ore layer 3 are charged in two batches.
- the ferrocoke can be selectively mixed in a portion having a high ore layer thickness in the radial direction.
- FIG. 2 shows an example in which the ore layer thickness ratio in the peripheral part is large, but by mixing ferrocoke into the batch of the second ore layer 5 corresponding to the high layer thickness ratio part, the ore layer thickness in the radial direction is mixed. Ferro-coke can be selectively mixed in a portion having a large ratio.
- the ferrocoke can be selectively mixed in the upper layer of the ore by mixing the ferrocoke into a batch of the ore layer 7 corresponding to the upper part of the entire ore layer.
- the above example is the case where the ore layer is charged as 2 batches. However, in order to divide the ore layer into 3 batches and selectively mix ferrocoke in a predetermined region, only a predetermined batch (1 or more) The ferro-coke may be mixed in a batch having a batch number of at least one smaller than the total batch number).
- the mixing amount of the chamber furnace coke was 6% by mass.
- the amount of ferrocoke mixed with the ore has an effect of increasing the reduction rate of the sintered ore at 1.0% by mass or more, and saturates at about 9% by mass.
- the mixing amount is desirably 1.0% by mass or more and 9% by mass or less.
- FIG. 5 shows the relationship between the iron content of ferrocoke and the reaction start temperature when ferrocoke is reacted with a CO 2 —CO mixed gas.
- the iron content in the ferro-coke is preferably 5 to 40% by mass, more preferably 10 to 40% by mass.
- a blast furnace operation test using the method of the present invention was conducted.
- the ferro-coke used was produced by molding a mixture of coal and iron ore with a briquette machine, charging it into a vertical shaft furnace, and dry distillation.
- the shape of the ferro-coke is shown in FIG.
- the upper view of FIG. 6 is a plan view, and the lower view is a front view.
- the iron content in ferro coke was 30 mass%.
- sintered ore was used as the ore.
- the raw material was charged into the blast furnace by first forming a coke layer of only the chamber furnace coke, and then charging the ore in two batches as shown in FIG.
- the average ferro-coke mixing amount is 100 kg / t, and the operation of the case where ferro-coke is mixed at the same rate in each of two ore batches, and the case where ferro-coke is mixed only in one ore batch (ore layer 2) did. For comparison, an operation without mixing ferro-coke was also performed.
- Case a is a comparative example, and is a case where ferro-coke is not mixed in any of the ore layers 2 and 3 in the distribution control shown in FIG.
- Case b is also a comparative example, and is a case where ferro-coke is mixed in both ore layers 2 and 3 in the distribution control shown in FIG.
- Case c is an example of the present invention, in which ferro-coke is mixed only in the ore layer 2 in the distribution control shown in FIG. Case b and case c using ferro-coke have a reduced reducing material ratio compared to case a, but case c in which ferro-coke is mixed only in ore layer 2 has a higher gas utilization rate than case b.
- the reducing material ratio is low. This is presumed to be the result of the ferrocoke gasification being promoted by the selective mixing of ferrocoke into a portion having a high ore layer thickness ratio, and the reduction of the ore proceeded.
- the ore was charged in two batches as shown in FIG.
- the average ferrocoke mixing amount was 100 kg / t, and the ferrocoke was mixed at the same rate in each of the two ore batches, or the ferrocoke was mixed only in one of the ore batches.
- the operation was carried out. There was also an operation without mixing ferro-coke.
- Case d is a comparative example, and when ferro-coke is not mixed in any of the ore layers 4 and 5 in the distribution control shown in FIG. 2, case e is also a comparative example, and the ore layer in the distribution control shown in FIG.
- case f is an example of the present invention, and ferro-coke is mixed only in the ore layer 5 in the distribution control shown in FIG.
- Case e and case f using ferro-coke have a reduced reducing agent ratio compared to case d, but case f in which ferro-coke is mixed only in ore layer 5 has a higher gas utilization rate than case e.
- the reducing material ratio is low. This is presumed to be the result of the ferrocoke gasification being promoted by the selective mixing of ferrocoke into a portion having a high ore layer thickness ratio, and the reduction of the ore proceeded.
- the ore was charged in two batches as shown in FIG.
- the average ferrocoke mixing amount was 100 kg / t, and the ferrocoke was mixed at the same rate in each of the two ore batches, or the ferrocoke was mixed only in one of the ore batches.
- the operation was carried out. There was also an operation without mixing ferro-coke.
- Case g is a comparative example, and when ferro-coke is not mixed in any of the ore layers 6 and 7 in the distribution control shown in FIG. 3, case h is also a comparative example, and the ore layer in the distribution control shown in FIG.
- case i is an example of the present invention, and ferro-coke is mixed only in the ore layer 7 in the distribution control shown in FIG.
- Case h and case i using ferro-coke have a reduced reducing agent ratio compared to case g, but case i in which ferro-coke is mixed only in ore layer 7 has a higher gas utilization rate than case h.
- the reducing material ratio is low. This is presumed to be the result of the ferrocoke gasification being promoted by the selective mixing of ferrocoke into the upper layer of the ore layer and the reduction of the ore proceeding.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
Abstract
Description
CO2+C → 2CO ・・・ (a)
FeO+CO → Fe+CO2 ・・・ (b)
従って、上記式(b)の反応によってCO2ガス濃度が高められた領域において上記式(a)の反応が速やかに起これば、CO2ガスが還元力を有するCOガスに再生され、鉱石の還元が促進される。
(1)高炉内にコークス層と鉱石層とを形成させて操業する高炉操業方法において、
鉱石を2バッチ以上の複数バッチに分割して高炉に装入し、鉱石層を形成し、
該複数バッチから形成された鉱石層の内、少なくとも1バッチの鉱石層中にフェロコークスを混合し、
少なくとも他の1バッチの鉱石層中にフェロコークスを混合しないようにする,
ことを特徴とするフェロコークスを用いた高炉操業方法。
(2)前記複数バッチのそれぞれの装入位置が炉半径方向に異なるように鉱石を装入し、鉱石層厚/(鉱石層厚+コークス層厚)で定義される鉱石層厚比を炉半径方向で変更し、
且つ
前記鉱石層厚比が相対的に大きいバッチの鉱石層にフェロコークスを混合する、
ことを特徴とする(1)に記載のフェロコークスを用いた高炉操業方法。
(3)前記鉱石を該鉱石層の高さ方向に2バッチ以上に分割して装入し、
少なくとも最下部に位置するバッチの鉱石層にフェロコークスを混合しないことを特徴とする(1)に記載のフェロコークスを用いた高炉操業方法。
(4)前記鉱石を該鉱石層の高さ方向に2バッチに分割して装入し、上部に位置する鉱石層と下部に位置する鉱石層を形成し、
下部に位置する鉱石層にフェロコークスを混合しない、
ことを特徴とする(1)に記載のフェロコークスを用いた高炉操業方法。
(5)前記鉱石を該鉱石層の高さ方向に3バッチに分割して装入し、上部に位置する鉱石層、中部に位置する鉱石層と下部に位置するバッチの鉱石層を形成し、
下部に位置するバッチの鉱石層にフェロコークスを混合しない、
ことを特徴とする(1)に記載のフェロコークスを用いた高炉操業方法。
(6)前記鉱石層中の前記フェロコークスが、前記鉱石に対して、1質量%以上の混合比率を有することを特徴とする(1)から(3)のいずれか1つに記載のフェロコークスを用いた高炉操業方法。
(7)前記混合比率が1質量%以上、9質量%以下である(6)に記載のフェロコークスを用いた高炉操業方法。
(8)前記フェロコークスの鉄分含有量が、5~40質量%であることを特徴とする(1)から(3)のいずれか1つに記載のフェロコークスを用いた高炉操業方法。
(9)前記フェロコークスの鉄分含有量が、10~40質量%であることを特徴とする(8)に記載のフェロコークスを用いた高炉操業方法。
れば、フェロコークス中の鉄分含有量が増えるに従い、反応性が向上し反応開始温度が低下する効果が発現するが、鉄分含有量5質量%から大きな効果が発現し、40質量%以上では効果が飽和することから、5~40質量%が望ましい鉄分含有量であると言える。したがって、フェロコークス中の鉄分含有量は5~40質量%が好ましく、さらに好ましくは10~40質量%である。
2 鉱石層(1バッチ目)
3 鉱石層(2バッチ目)
4 鉱石層(1バッチ目)
5 鉱石層(2バッチ目)
6 鉱石層(1バッチ目)
7 鉱石層(2バッチ目)
Claims (9)
- 高炉内にコークス層と鉱石層とを形成させて操業する高炉操業方法において、
鉱石を2バッチ以上の複数バッチに分割して高炉に装入し、鉱石層を形成し、
該複数バッチから形成された鉱石層の内、少なくとも1バッチの鉱石層中にフェロコークスを混合し、
少なくとも他の1バッチの鉱石層中にフェロコークスを混合しないようにする,
ことを特徴とするフェロコークスを用いた高炉操業方法。 - 前記複数バッチのそれぞれの装入位置が炉半径方向に異なるように鉱石を装入し、鉱石層厚/(鉱石層厚+コークス層厚)で定義される鉱石層厚比を炉半径方向で変更し、
且つ
前記鉱石層厚比が相対的に大きいバッチの鉱石層にフェロコークスを混合する、
ことを特徴とする請求項1に記載のフェロコークスを用いた高炉操業方法。 - 前記鉱石を該鉱石層の高さ方向に2バッチ以上に分割して装入し、
少なくとも最下部に位置するバッチの鉱石層にフェロコークスを混合しないことを特徴とする請求項1に記載のフェロコークスを用いた高炉操業方法。 - 前記鉱石を該鉱石層の高さ方向に2バッチに分割して装入し、上部に位置する鉱石層と下部に位置する鉱石層を形成し、
下部に位置する鉱石層にフェロコークスを混合しない、
ことを特徴とする請求項1に記載のフェロコークスを用いた高炉操業方法。 - 前記鉱石を該鉱石層の高さ方向に3バッチに分割して装入し、上部に位置する鉱石層、中部に位置する鉱石層と下部に位置するバッチの鉱石層を形成し、
下部に位置するバッチの鉱石層にフェロコークスを混合しない、
ことを特徴とする請求項1に記載のフェロコークスを用いた高炉操業方法。 - 前記鉱石層中の前記フェロコークスが、前記鉱石に対して、1質量%以上の混合比率を有することを特徴とする請求項1から請求項3のいずれか1つに記載のフェロコークスを用いた高炉操業方法。
- 前記混合比率が1質量%以上、9質量%以下である請求項6に記載のフェロコークスを用いた高炉操業方法。
- 前記フェロコークスの鉄分含有量が、5~40質量%であることを特徴とする請求項1から請求項3のいずれか1つに記載のフェロコークスを用いた高炉操業方法。
- 前記フェロコークスの鉄分含有量が、10~40質量%であることを特徴とする請求項8に記載のフェロコークスを用いた高炉操業方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12878418.8A EP2840152B1 (en) | 2012-06-06 | 2012-06-06 | Blast furnace operation method using ferrocoke |
BR112014028858-5A BR112014028858B1 (pt) | 2012-06-06 | 2012-06-06 | método para operação de alto-forno usando composto de ferro carbono |
AU2012382225A AU2012382225B2 (en) | 2012-06-06 | 2012-06-06 | Method for operating blast furnace using carbon iron composite |
PCT/JP2012/065056 WO2013183170A1 (ja) | 2012-06-06 | 2012-06-06 | フェロコークスを用いた高炉操業方法 |
CN201280073677.7A CN104334748B (zh) | 2012-06-06 | 2012-06-06 | 使用铁焦的高炉作业方法 |
KR1020147034246A KR101611121B1 (ko) | 2012-06-06 | 2012-06-06 | 페로코크스를 사용한 고로 조업 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/065056 WO2013183170A1 (ja) | 2012-06-06 | 2012-06-06 | フェロコークスを用いた高炉操業方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013183170A1 true WO2013183170A1 (ja) | 2013-12-12 |
Family
ID=49711586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/065056 WO2013183170A1 (ja) | 2012-06-06 | 2012-06-06 | フェロコークスを用いた高炉操業方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2840152B1 (ja) |
KR (1) | KR101611121B1 (ja) |
CN (1) | CN104334748B (ja) |
AU (1) | AU2012382225B2 (ja) |
BR (1) | BR112014028858B1 (ja) |
WO (1) | WO2013183170A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103882167A (zh) * | 2014-03-21 | 2014-06-25 | 济钢集团有限公司 | 一种高炉料层结构 |
WO2017073053A1 (ja) * | 2015-10-28 | 2017-05-04 | Jfeスチール株式会社 | 高炉への原料装入方法 |
CN115896365A (zh) * | 2021-09-22 | 2023-04-04 | 宝山钢铁股份有限公司 | 一种碳铁复合炉料的制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63210207A (ja) * | 1987-02-25 | 1988-08-31 | Nkk Corp | 高炉操業法 |
JPH08134517A (ja) * | 1994-11-07 | 1996-05-28 | Kawasaki Steel Corp | 高炉操業方法 |
JP2006028594A (ja) | 2004-07-16 | 2006-02-02 | Jfe Steel Kk | 高炉の操業方法 |
JP2006028593A (ja) * | 2004-07-16 | 2006-02-02 | Jfe Steel Kk | 高炉の操業方法 |
JP2008056985A (ja) * | 2006-08-31 | 2008-03-13 | Jfe Steel Kk | 高炉の操業方法 |
JP2008111176A (ja) * | 2006-10-31 | 2008-05-15 | Jfe Steel Kk | フェロコークス使用時の高炉操業方法 |
JP2011162845A (ja) * | 2010-02-10 | 2011-08-25 | Jfe Steel Corp | フェロコークスを用いた高炉操業方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1596315B (zh) * | 2002-08-29 | 2011-03-23 | 杰富意钢铁株式会社 | 无料钟高炉的原料装入方法 |
JP4697340B2 (ja) * | 2009-05-29 | 2011-06-08 | Jfeスチール株式会社 | 高炉操業方法 |
JP4793501B2 (ja) * | 2009-08-10 | 2011-10-12 | Jfeスチール株式会社 | フェロコークスを用いた高炉操業方法 |
-
2012
- 2012-06-06 CN CN201280073677.7A patent/CN104334748B/zh active Active
- 2012-06-06 WO PCT/JP2012/065056 patent/WO2013183170A1/ja active Application Filing
- 2012-06-06 BR BR112014028858-5A patent/BR112014028858B1/pt not_active IP Right Cessation
- 2012-06-06 KR KR1020147034246A patent/KR101611121B1/ko active IP Right Grant
- 2012-06-06 AU AU2012382225A patent/AU2012382225B2/en not_active Ceased
- 2012-06-06 EP EP12878418.8A patent/EP2840152B1/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63210207A (ja) * | 1987-02-25 | 1988-08-31 | Nkk Corp | 高炉操業法 |
JPH08134517A (ja) * | 1994-11-07 | 1996-05-28 | Kawasaki Steel Corp | 高炉操業方法 |
JP2006028594A (ja) | 2004-07-16 | 2006-02-02 | Jfe Steel Kk | 高炉の操業方法 |
JP2006028593A (ja) * | 2004-07-16 | 2006-02-02 | Jfe Steel Kk | 高炉の操業方法 |
JP2008056985A (ja) * | 2006-08-31 | 2008-03-13 | Jfe Steel Kk | 高炉の操業方法 |
JP2008111176A (ja) * | 2006-10-31 | 2008-05-15 | Jfe Steel Kk | フェロコークス使用時の高炉操業方法 |
JP2011162845A (ja) * | 2010-02-10 | 2011-08-25 | Jfe Steel Corp | フェロコークスを用いた高炉操業方法 |
Non-Patent Citations (1)
Title |
---|
ZAIRYO TO PUROSESU, vol. 13, 2000, pages 893 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103882167A (zh) * | 2014-03-21 | 2014-06-25 | 济钢集团有限公司 | 一种高炉料层结构 |
WO2017073053A1 (ja) * | 2015-10-28 | 2017-05-04 | Jfeスチール株式会社 | 高炉への原料装入方法 |
JPWO2017073053A1 (ja) * | 2015-10-28 | 2017-11-02 | Jfeスチール株式会社 | 高炉への原料装入方法 |
CN115896365A (zh) * | 2021-09-22 | 2023-04-04 | 宝山钢铁股份有限公司 | 一种碳铁复合炉料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20150006472A (ko) | 2015-01-16 |
BR112014028858B1 (pt) | 2018-11-13 |
CN104334748B (zh) | 2016-10-26 |
EP2840152A4 (en) | 2015-11-18 |
EP2840152B1 (en) | 2018-10-17 |
AU2012382225A1 (en) | 2014-11-20 |
BR112014028858A2 (pt) | 2017-06-27 |
EP2840152A1 (en) | 2015-02-25 |
AU2012382225B2 (en) | 2016-01-28 |
CN104334748A (zh) | 2015-02-04 |
KR101611121B1 (ko) | 2016-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4793501B2 (ja) | フェロコークスを用いた高炉操業方法 | |
JP4807103B2 (ja) | 高炉操業方法 | |
KR20120123482A (ko) | 야금용 페로 코크스의 제조 방법 | |
JP6041072B1 (ja) | 高炉への原料装入方法 | |
JP5299446B2 (ja) | フェロコークスを用いた高炉操業方法 | |
JP4971815B2 (ja) | 高炉操業方法 | |
JP4910640B2 (ja) | 高炉の操業方法 | |
WO2013183170A1 (ja) | フェロコークスを用いた高炉操業方法 | |
JP6119700B2 (ja) | 高炉操業方法 | |
JP4899726B2 (ja) | 高炉の操業方法 | |
US20190055616A1 (en) | Method for producing metal from metal oxide by carbothermic reduction and holed cake used therefor | |
JP2011252200A (ja) | 高炉操業方法 | |
JP2011162845A (ja) | フェロコークスを用いた高炉操業方法 | |
JP5768563B2 (ja) | 高炉操業方法 | |
JP6070131B2 (ja) | 還元鉄の製造方法 | |
JP4792753B2 (ja) | 高炉操業方法 | |
JP6269549B2 (ja) | 高炉操業方法 | |
JP6638764B2 (ja) | 高炉の操業方法 | |
JP5400600B2 (ja) | 高炉操業方法 | |
JP5565143B2 (ja) | 高炉操業方法 | |
JP4923872B2 (ja) | 高炉の操業方法 | |
JP4941122B2 (ja) | 高炉操業方法 | |
JP5626072B2 (ja) | 竪型溶解炉の操業方法 | |
KR20110108991A (ko) | 소결광의 제조방법 | |
JP2014019882A (ja) | 溶融還元炉の操業方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12878418 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012878418 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2012382225 Country of ref document: AU Date of ref document: 20120606 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20147034246 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014028858 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
ENP | Entry into the national phase |
Ref document number: 112014028858 Country of ref document: BR Kind code of ref document: A2 Effective date: 20141119 |