WO2013180493A1 - 플로트 배스 및 플로트 유리 제조 방법 - Google Patents

플로트 배스 및 플로트 유리 제조 방법 Download PDF

Info

Publication number
WO2013180493A1
WO2013180493A1 PCT/KR2013/004774 KR2013004774W WO2013180493A1 WO 2013180493 A1 WO2013180493 A1 WO 2013180493A1 KR 2013004774 W KR2013004774 W KR 2013004774W WO 2013180493 A1 WO2013180493 A1 WO 2013180493A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten glass
float bath
float
glass
guiding part
Prior art date
Application number
PCT/KR2013/004774
Other languages
English (en)
French (fr)
Inventor
민경훈
임예훈
박수찬
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201380028993.7A priority Critical patent/CN104350015B/zh
Priority to EP13797058.8A priority patent/EP2837605B1/en
Priority to JP2015513949A priority patent/JP5948720B2/ja
Publication of WO2013180493A1 publication Critical patent/WO2013180493A1/ko
Priority to US14/480,217 priority patent/US9598302B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/16Construction of the float tank; Use of material for the float tank; Coating or protection of the tank wall
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon

Definitions

  • the present invention relates to a technique for manufacturing a float glass, and more particularly, a float bath that can improve the spreadability of the molten glass injected during the injection of molten glass, a float glass manufacturing apparatus comprising the same, and using the float bath A float glass manufacturing method and the float glass produced by this method.
  • flat glass very many kinds are used in various fields such as window glass, window screens of vehicles, mirrors and the like.
  • Such flat glass can be produced in various ways, a typical method of which is a production method using a float (float) method.
  • a typical method of which is a production method using a float (float) method.
  • float float
  • many thin glass planes or glass films for TFT displays and the like are manufactured by the float method, and the glass produced by the float method is also called float glass.
  • This float glass manufacturing method has attracted attention as a representative flat glass manufacturing method in that it includes a continuous process that is circulated, can be continuously and permanently operated, and can be operated for as many years as possible without interruption as much as possible.
  • float glass is generally molded using a float bath 10 in which molten metal M, such as molten tin or molten tin alloy, is stored and flowed.
  • molten metal M such as molten tin or molten tin alloy
  • the molten glass having a lower viscosity than the molten metal M and approximately 2/3 lighter than the molten metal M continuously floats through the spout lip 11 to the inlet of the float bath 10. It is supplied into the bath 10.
  • the molten glass G proceeds to the downstream side of the float bath 10 while floating and spreading on the molten metal M. In this process, the molten glass G reaches near the equilibrium thickness according to its surface tension and gravity to form a glass strip or ribbon that is somewhat solidified.
  • This molten glass is then drawn toward the slow cooling furnace by a lift out roller adjacent to the exit of the float bath to undergo a slow cooling process.
  • the adjustment and change of the forming means such as the amount of glass introduced through the inlet, the pulling speed determined by the rotational speed of the rollers, and the top rollers installed inside the float chamber can change the thickness of the glass produced.
  • Fig. 2 is a view of the spread form of the molten glass injected into the inlet of the conventional float bath as seen from the top of the float bath. Arrows in FIG. 2 indicate the moving direction of the molten glass.
  • molten metal M is received by the inner wall 12 of the float bath, and molten glass G is supplied from the spout lip 11 to the top of this molten metal M.
  • molten glass G moves to the downstream side direction of the float bath 10, it spreads gradually also in the width direction.
  • the molten glass G gradually spreads in the upper and lower directions (width direction) of the drawing while moving from the left to the right in the drawing.
  • the width direction edge part of molten glass G is as having shown by a in FIG.
  • the molten glass G spreads in the width direction while moving downstream in a state where the molten glass G is floated above the molten metal M.
  • the spread form and speed of the molten glass G may include a density of the glass and an atmosphere gas. , Molten metal, the viscosity of the glass and the interfacial tension between the glass and the like.
  • the high temperature operating condition system is used a lot in order to accelerate the spreading speed of such molten glass.
  • Such a high temperature operating condition method is a method in which the temperature of the molten glass is raised to increase the temperature of the upstream side of the float bath 10 so that the molten glass can be quickly spread.
  • the present invention was devised to solve the above problems, and it is possible to improve the spreading speed of the glass without high temperature operation so that the glass ribbon can be spread quickly enough in the width direction to expand the spreading area And it aims at providing the float glass manufacturing apparatus and method using the same.
  • the molten glass is injected into the upper portion of the molten metal so that the molten glass is floated and moved from the upstream side to the downstream side.
  • a guiding part provided at a portion into which the molten glass is injected, and guiding the side spread path of the molten glass so that the side spread of the injected molten glass is expanded by contacting the side surface of the injected molten glass.
  • the guiding part includes a left guiding part and a right guiding part, and the left guiding part and the right guiding part have a form symmetrical with each other.
  • the guiding part may have a lower surface the same as the upper surface height of the molten metal.
  • the guiding portion is lowered in height toward the end of the downstream side of the float bath.
  • the said guiding part is equipped with the expansion part which expands the side spread of the said molten glass from the upstream side of the said float bath, and the leaving part which isolate
  • the guiding part further includes a stabilizing part for stabilizing a spreading speed of the molten glass.
  • the said stabilization part is comprised so that the longitudinal direction of the part which may contact the side surface of the said molten glass may make an angle of 0 degrees-10 degrees with the advancing direction of the said molten glass.
  • At least a part of the portion in contact with the side surface of the molten glass is formed in a curved shape along the advancing direction of the molten glass.
  • the extension portion is configured such that the tangential direction of the portion where the injected molten glass first contacts is formed at an angle of 10 ° to 30 ° with the side length direction of the molten glass before contacting the extension portion. .
  • the expansion portion is configured to have a radius of curvature of 1 to 5 times the width of the molten glass at the shortest end of the guiding portion.
  • the float glass manufacturing apparatus which concerns on this invention for achieving the said objective contains the float bath mentioned above.
  • the float glass manufacturing method according to the present invention for achieving the above object is a method for producing a float glass using a float bath containing molten metal, the molten glass is injected into the upper portion of the molten metal Placing a guiding part for guiding the side spread path of the molten glass such that the side spread of the injected molten glass is extended by contacting a side of the injected molten glass; And injecting the molten glass into the upper portion of the molten metal in a portion where the guiding portion is disposed.
  • the left guiding part and the right guiding part are disposed on both sides of the float bath.
  • the lower surface of the guiding part may be disposed to have the same height as the upper surface of the molten metal.
  • the guiding part arrangement step may be arranged such that the height of the guiding part is lowered toward the end of the float bath downstream end.
  • the float glass which concerns on this invention for achieving the said objective is glass manufactured by the float glass manufacturing method mentioned above.
  • the spreading characteristic of the injected molten glass can be improved. That is, according to the present invention, the injected molten glass can be sufficiently spread in the left-right side direction (width direction) quickly from the upper part of the molten metal through the guiding part. In particular, according to the present invention, the spread area in the lateral direction of the molten glass can be expanded as compared with the conventional float bath.
  • the instability of the glass ribbon can be further increased by the fluctuation of the glass supply conditions or the fluctuation of the operating conditions.
  • the temperature can be lowered, so that the instability of the glass ribbon can be reduced.
  • higher quality float glass can be produced.
  • the molten glass can be quickly spread in the width direction, the length from the upstream side to the downstream side of the float bath can also be reduced.
  • Fig. 2 is a view of the spread form of the molten glass injected into the inlet of the conventional float bath as seen from the top of the float bath.
  • FIG. 3 is a view schematically showing a side view of the configuration of the float bath according to the embodiment of the present invention.
  • FIG. 4 is a perspective view schematically showing a configuration of a guiding part according to an embodiment of the present invention.
  • FIG. 5 is a perspective view schematically showing a configuration in which the guiding part of FIG. 4 is applied to a float bath.
  • Fig. 6 is a top view showing the spreading form of the molten glass in the float bath according to the embodiment of the present invention.
  • FIG. 7 is a top view illustrating the spread form of the molten glass in the float bath according to an embodiment of the present invention and the spread form of the molten glass in the conventional float bath.
  • FIG. 8 is a top view schematically illustrating the shape of a guiding part according to an exemplary embodiment of the present invention.
  • FIG. 9 is a flowchart schematically showing a float glass manufacturing method according to an embodiment of the present invention.
  • FIG. 3 is a view schematically showing a form viewed from the side with respect to the configuration of the float bath 100 according to an embodiment of the present invention.
  • the side wall of the float bath 100 is not displayed for convenience of description.
  • the float bath 100 may include various configurations, such as a top roller, a loop heater, and a vent. In FIG. 3, these configurations are not shown, and are mainly focused on the characteristic configuration of the present invention.
  • the float bath 100 receives molten metal M, such as molten tin or molten tin alloy. And molten glass G is inject
  • the upstream of the float bath 100 means a portion of the inlet (I) side of the float bath in which the molten glass (G) is injected, and the downstream of the float bath (100) is discharged in the form of a glass ribbon in the molten glass (G). It means the part of the exit O side of the float bath.
  • the left side of the float bath 100 is an upstream side portion, and the right side of the float bath 100 is a downstream side portion.
  • the float bath 100 includes a guiding part 110.
  • the guiding part 110 may guide the side spread path of the molten glass G injected by contacting the side surface of the molten glass G injected when the molten glass G is injected. Furthermore, the guiding part 110 guides such a side spread path when the injected molten glass G spreads in the lateral direction, so that the spread in the lateral direction of the molten glass G can be expanded. That is, the guiding part 110 is a member capable of determining the form in which the molten glass G is spread. To this end, the guiding part 110 may be provided at least at a portion into which the molten glass G is injected, that is, at the inlet (upstream) side of the float bath 100. The shape and function of the guiding unit 110 will be described in more detail with reference to FIGS. 4 and 5.
  • FIG. 4 is a perspective view schematically showing the configuration of the guiding unit 110 according to an embodiment of the present invention
  • Figure 5 is a perspective view schematically showing the configuration applied to the float bath 100 of Figure 4 to be.
  • the inner wall of the float bath 100 is not shown.
  • the guiding part 110 may include two guiding parts 110, that is, a left guiding part 111 and a right guiding part 112.
  • the left guiding part 111 and the right guiding part 112 may have symmetrical shapes with respect to the center line extending in the downstream direction from the upstream of the float bath 100. Therefore, the guiding part 110 may be provided at both sides at an upstream side of the float bath 100. That is, the left guiding part 111 may be provided on the left side upstream of the float bath 100, and the right guiding part 112 may be provided on the right side upstream of the float bath 100.
  • the concept of the left and the right is based on the view of the downstream side from the upstream of the float bath 100, but the concept of the left and the right may vary depending on the reference. The same may also apply to the following description.
  • an inner surface portion may contact the side surface of the molten glass G.
  • the side surface of molten glass G means that when molten glass G is supplied to the inlet side of the float bath 100 and spreads out in the state floating on the upper part of molten metal M, It means the left and right ends in the width direction.
  • the molten glass G is in contact with the inner surface of the guiding part 110. Since it can spread along the inner surface, the interfacial tension may not occur in the side portion of the molten glass (G). Therefore, according to this invention, the molten glass G injected from the inlet of the float bath 100 can spread quickly in the width direction, ie, the left-right direction of the float bath 100.
  • FIG. 6 is a top view which shows the spread form of the molten glass G in the float bath 100 which concerns on one Example of this invention.
  • the molten metal M is accommodated in the inner wall 102 of the float bath, and a spout lip is formed on the molten metal M.
  • the molten glass G is injected through 101.
  • the guiding part 110 is provided in the part into which molten glass G is injected. Accordingly, the side surface of the molten glass G denoted by c in the drawing is in contact with the inner side surface b of the guiding portion 110, and no interfacial tension is formed in the side portion of the molten glass G. Therefore, the molten glass G can spread along the inner side surface b of the guiding part 110. That is, in FIG.
  • the injected molten glass G is able to initially spread in the form of a solid line d1 at the top of the molten metal M. And molten glass G can spread sequentially to the position of d2 and d3 as shown by an arrow over time.
  • the side of the molten glass (G) is to show the process of spreading while in contact with the inner surface of the guiding portion 110 in time.
  • the specific spread form of the molten glass G may have another shape.
  • the side surface of the molten glass G contacts the inner surface of the guiding part 110. As it spreads, it can spread faster. This effect will be described in more detail with reference to FIG. 7.
  • FIG. 7 is a top view illustrating the spread form of the molten glass in the float bath 100 according to the exemplary embodiment of the present invention and the spread form of the molten glass in the conventional float bath. More specifically, in FIG. 7, the solid line e1 represents the spread form of the molten glass in the float bath 100 according to an embodiment of the present invention, and the dotted line e2 represents the spread form of the molten glass in the conventional float bath. .
  • the guiding part 110 is provided at a portion where the molten glass G is injected, the molten glass G is initially injected.
  • the solid line e1 it is possible to spread along the inner surface of the guiding part 110.
  • e1 represents the side part of molten glass G, and it can be seen that it shows the inner side surface of the guiding part 110.
  • the guiding part 110 is not provided at the inlet of the float bath. Therefore, the injected molten glass is prevented from spreading the side portion as widely as e1 according to the present invention, as indicated by e2 in FIG. 7 due to interfacial tension or the like formed at the free interface.
  • the guiding part 110 contacts the side of the molten glass injected into the float bath 100 to guide the side spread path of the molten glass, the side spread of the molten glass is increased by the difference between e1 and e2. Can expand and improve the spreading speed.
  • the inner surface shape of the guiding part 110 may have a width wider than the width of the molten glass that is naturally spread under the influence of interfacial tension or the like in the conventional float bath without the guiding part.
  • the inner side of the left guiding portion 111 is located to the left side than e2, such as e1 of the left side (upper side in Figure 7), the inner side of the right guiding portion 112 is Like e1 on the right side, it is better to be located on the right side than e2.
  • the inner surface shape of the guiding part 110 may be configured in various ways. Since the side surface of the molten glass spreads along the inner side surface of the guiding part 110, it can be seen that the spreading shape of the molten glass follows the inner side shape of the guiding part 110. Therefore, in order to obtain a desired spreading shape of the molten glass, it can be achieved by modifying the inner side shape of the guiding part 110.
  • the outer surface of the guiding part 110 is illustrated to have a shape similar to that of the inner wall 102 of the float bath so that the outer surface of the guiding part 110 is attached to the inner wall 102 of the float bath. Only the outer surface of the guiding unit 110 may be implemented in various forms.
  • the guiding part 110 may have a shape such that the molten glass has a wider width from the upstream side to the downstream side of the float bath 100. That is, as shown in FIGS. 6 and 7, the left guiding part 111 and the right guiding part 112 move from the left to the right direction, and the distance between each other, more precisely, the left guiding part 111 and the right side.
  • the distance between the inner surfaces of the guiding part 112 may have a shape that gradually increases.
  • these embodiments are merely examples and may be implemented in other forms.
  • the distance between the left guiding portion 111 and the right guiding portion 112 increases, and then a predetermined point. Since the distance between the left guiding part 111 and the right guiding part 112 may be maintained the same.
  • the height is preferably higher than the height of the molten glass floating on the molten metal (M). More specifically, as for the said guiding part 110, it is good that inner side height is higher than the side height of molten glass.
  • the inner side height of the guiding part 110 is lower than the side height of the molten glass, the side of the molten glass does not contact the inner side of the guiding part 110 properly, so that the guiding part 110 serves as a guide for spreading the molten glass. May not perform properly.
  • the guiding part 110 may have a lower surface disposed at the same height as the upper surface of the molten metal M. Referring to FIG. If at least a portion of the guiding part 110 is immersed in the molten metal M, the guiding part 110 may be damaged due to buoyancy caused by the molten metal M. On the other hand, if the lower surface of the guiding portion 110 is spaced a predetermined distance from the upper surface of the molten metal (M), the side of the molten glass does not contact the inner surface of the guiding portion 110 properly melted by the guiding portion 110 The effect of guiding the spreading path of the glass can be reduced. Therefore, as in the above embodiment, the bottom height of the guiding part 110 and the upper surface of the molten tin may be installed to match the height.
  • the guiding part 110 may have a shape in which the height of the guiding part 110 is lowered toward the end of the downstream side of the float bath 100.
  • the end height of the guiding part 110 refers to the vertical length when the guiding part 110 is viewed from the side. That is, as shown in FIG. 3, the right end portion of the guiding part 110 may have a pointed shape in a wedge shape. According to this embodiment, when the molten glass moves while spreading along the side of the guiding portion 110, and reaches the right end of the guiding portion 110 to leave the guiding portion 110, the contact area with the guiding portion 110 By reducing this, detachment of the molten glass can be made smoothly.
  • the guiding part 110 the length in the downstream direction from the upstream side of the float bath 100 may be 1m to 10m. That is, in FIG. 3, the length from the left end to the right end of the guiding part 110 may be 1 m to 10 m.
  • the length of this guiding part 110 allows the molten glass injected into the float bath 100 to be spread quickly and sufficiently.
  • the length of the guiding part 110 may be differently determined according to various conditions such as the size of the float bath 100, the internal temperature, the type of the molten glass, and the present invention may be applied to the specific length of the guiding part 110. It is not limited by.
  • the guiding part 110 may be formed to extend from the inlet side to the outlet side of the float bath 100.
  • the guiding part 110 may have a width of an end portion located downstream of the float bath 100 from 20 mm to 200 mm. In the width range of the guiding part 110, spreading of the molten glass may be performed more smoothly.
  • the present invention is not necessarily limited to this form, and the end width of the guiding part 110 may be variously configured.
  • the guiding part 110 may include an extension part and a departure part from an upstream side to a downstream side of the float bath 100. This will be described in more detail with reference to FIG. 8.
  • FIG 8 is a top view schematically illustrating the shape of the guiding unit 110 according to an embodiment of the present invention.
  • the guiding part 110 may be configured to include an expansion part F1 and a departure part F3.
  • the expansion part F1 is a portion located on the upstream side of the float bath 100 in the guiding part 110 and is in contact with the molten glass G injected into the float bath 100 for the first time. This expanded portion F1 expands the spread of the injected molten glass G in the lateral direction. That is, when the molten glass G expands in the lateral direction, the expansion part F1 may be expanded with a wider width than when the natural expansion without the guiding part 110 occurs.
  • the expansion part (F1) at least a portion of the portion in contact with the side of the molten glass (G) may be formed in a curved shape along the traveling direction of the molten glass (G).
  • the extension part F1 may be formed to be curved in a curved shape from the portion where the end of the spout lip 101 is located.
  • the tangential direction of the part which the injected molten glass G contacts initially is 10 degrees with the side length direction of the molten glass G before contacting the expansion part F1. It is preferably configured to achieve an angle of ⁇ 30 °.
  • H1 when the extension line with respect to the inner surface of the spout lip 101 for injecting the molten glass G into the float bath 100 is H1, this H1 is a guiding part ( It may be the same as the side length direction of the molten glass G before contacting the expanded part F1 of 110.
  • H2 when the tangential direction of the part which contacts the molten glass G for the first time in the expansion part F1 of the guiding part 110 is H2, the angle which H1 and H2 make can be called H3.
  • H3 may be referred to as an initial angle between the guiding part 110 and the spout lip 101, and the extension part F1 may be configured such that the angle is 10 ° to 30 °.
  • the molten glass G can spread as broadly as possible along the extension portion F1 of the guiding portion 110, while the molten glass G extends from the extension portion F1 of the guiding portion 110. This is because it is easy to prevent separation.
  • the radius of curvature of the portion formed in the curved form, between the guiding portion 110 and the spout lip 101 It can be determined according to the initial angle of H3 and the length of the expanded portion F1 (flow direction of the molten glass).
  • the radius of curvature of the inner surface of the expanded portion F1 is preferably 1 to 5 times the width of the molten glass at the shortest end of the guiding portion 110.
  • the shortest part of the guiding part 110 means the part located in the most downstream side of the float bath in the guiding part 110, ie, the end of the leaving part F3 from which the molten glass is separated. That is, the radius of curvature of the expanded portion F1 is equal to the width of the molten glass G (indicated by J in FIG. 8) when the molten glass G is separated from the guiding portion 110. It is better to have a size of 1 to 5 times.
  • the initial angle H3 must be larger than an appropriate range in order to widen the width of the desired guiding part 110.
  • the angle or step is formed at the connection point with the adjacent portion, such as stabilization portion (F2), there is a problem that the lateral spread of the molten glass (G) may not be made stable have. However, this problem may not occur in the range of the radius of curvature as described above.
  • the detachment part F3 is positioned at the shortest end of the guiding part 110 in the flow direction of the molten glass G so that the molten glass G is separated from the guiding part 110.
  • the length of the flow direction of the molten glass G of the detachment part F3 may be configured to be long enough so that the molten glass G may be slowly detached from the guiding part 110.
  • the length of the detaching part F3 may be configured to be 0.01 m to 0.1 m.
  • the length of the leaving part F3 may vary depending on various factors such as the entire length of the guiding part 110 or the float bath 100, the width of the molten glass G, and the temperature of the inside of the float bath 100. Of course.
  • the leaving portion (F3) may have a form that the height is lowered toward the downstream side of the float bath (100). That is, as shown in FIG. 3, the leaving part F3 positioned at the right end of the guiding part 110 may have a sharp shape toward the end. According to such an embodiment, when the molten glass G detaches from the detaching part F3, the contact area with the guiding part 110 can be reduced, and the molten glass G can be made to detach
  • the guiding part 110 may be configured to further include a stabilizing part F2 between the expansion part F1 and the leaving part F3.
  • the said stabilization part F2 can stabilize the spread of the molten glass G extended by the said expansion part F1. That is, the said stabilization part F2 can make the spreading
  • the stabilization portion (F2), the inner surface in contact with the molten glass (G) may be configured in a straight form.
  • the said stabilizing part F2 is comprised so that the longitudinal direction of the part which may contact the side surface of the molten glass G may make the angle of 0 degrees-10 degrees with the advancing direction of the said molten glass G. That is, referring to FIG. 8, when the advancing direction of the molten glass G is I1 and the longitudinal straight line of the inner surface of the stabilizing part F2 is I2, I3 is an angle formed by I1 and I2.
  • the stabilizer (F2) is preferably configured to be 0 ° to 10 °.
  • the stabilization part F2 is configured such that the longitudinal direction of the inner side coincides with the tangential direction of the expansion part F1 at the point where the expansion part F1 and the stabilization part F2 meet. That is, in FIG. 8, I2 preferably coincides with the tangent of the expansion section F1 at the shortest end of the expansion section F1. According to this embodiment, the expansion part F1 and the stabilization part F2 are stably connected without large change, and the side of the molten glass G is prevented from falling away from the guiding part 110 at the connection point between them. can do.
  • the stabilization part (F2) can be configured such that the length in the flow direction of the molten glass (G) is 0.5m ⁇ 2m.
  • the length of the stabilization part F2 may vary depending on the length of the guiding part 110 or the float bath 100, the width of the molten glass G, the internal temperature of the float bath 100, and the like.
  • the stabilizing part F2 when the stabilizing part F2 is provided in the guiding part 110, the leaving part F3 may be provided at a next position adjacent to the stabilizing part F2.
  • the inner surface of the leaving portion (F3) may also be formed in a straight shape, the straight line formed by the inner surface of the leaving portion (F3) and the straight line formed by the inner surface of the stabilizing portion (F2) can be configured to match each other.
  • the stabilization portion (F2) is configured in a form that the height is not constant or the difference is greater toward the downstream side of the float bath
  • the leaving portion (F3) is configured in the form that the height is lowered toward the downstream side of the float bath, Can be distinguished from one another.
  • the guiding part 110 is provided inside the high temperature float bath 100 and is in contact with the hot molten glass, the guiding part 110 is preferably a material having heat resistance such as refractory material, and the present invention provides such a guiding part ( It is not limited by the specific material of 110).
  • the float glass manufacturing apparatus which concerns on this invention can contain the float bath 100 mentioned above. That is, the float glass manufacturing apparatus which concerns on this invention may include the float bath 100 provided with the guiding part 110 in an upstream side. And the float glass manufacturing apparatus which concerns on this invention is a slow cooling process with respect to the glass ribbon drawn out from the molten-glass supply part which supplies the molten glass to the float bath 100, and the float bath 100 with such a float bath 100. It may further comprise a configuration such as a slow cooling furnace to perform a float glass.
  • FIG. 9 is a flowchart schematically showing a float glass manufacturing method according to an embodiment of the present invention.
  • the float glass manufacturing method according to the present invention includes a guiding part 110 arrangement step S110 and a molten glass injection step S120.
  • the guiding part 110 arrangement step (S110) is a step of arranging the guiding part 110 at the inlet side of the float bath.
  • the guiding part 110 is a member which contacts the side surface of a molten glass and guides the side spread path
  • the guiding part may be configured to expand the side spread of the molten glass as compared to the case where the molten glass is naturally spread without the guiding part in the float bath.
  • the molten glass injection step (S120) is a step of injecting the molten glass into the float bath.
  • the molten glass is injected into the upper portion of the molten metal M at the part where the guiding part 110 is disposed. .
  • the left guiding portion 111 and the right guiding portion 112 having a form symmetrical with each other may be disposed on both sides of the float bath.
  • the left guiding part 111 and the right guiding part 112 may be disposed such that the distance between the guiding part 111 gradually increases from the upstream side to the downstream side of the float bath.
  • the guiding part 110 may be disposed so that the bottom surface of the guiding part 110 is the same as the upper surface height of the molten metal.
  • the guiding part 110 may be disposed such that the height is lower as the downstream end of the float bath toward the end.
  • disposing the lower end of the guiding part 110 toward the end may be achieved through the shape itself of the guiding part 110. That is, the downstream end of the guiding part 110 may have a pointed shape, so that the height of the downstream end of the guiding part 110 toward the end may be lowered.
  • the glass ribbon formed in the float bath through the step S120 may be drawn out to the outlet of the float bath, and then introduced into the slow cooling furnace may undergo a slow cooling process.
  • the float glass which concerns on this invention is glass manufactured by the float glass manufacturing method mentioned above.
  • the float glass which concerns on this invention is glass manufactured using the float glass manufacturing apparatus mentioned above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

본 발명은, 용융 유리의 주입시 주입된 용융 유리의 퍼짐성을 개선할 수 있는 플로트 배스와 이를 포함하는 플로트 유리 제조 장치, 그리고 이러한 플로트 배스를 이용한 플로트 유리 제조 방법과 이 방법에 의해 생산된 플로트 유리를 개시한다. 본 발명에 따른 플로트 배스는, 용융 금속을 수용하고, 상기 용융 금속의 상부에 용융 유리가 주입되어 상류 측에서 하류 측으로 상기 용융 유리가 플로팅되어 이동하도록 하는 플로트 배스로서, 상기 용융 유리가 주입되는 부분에 구비되어, 주입된 용융 유리의 측면과 접촉함으로써 상기 주입된 용융 유리의 측면 퍼짐이 확장되도록 상기 용융 유리의 측면 퍼짐 경로를 가이드하는 가이딩부를 포함한다.

Description

플로트 배스 및 플로트 유리 제조 방법
본 발명은 플로트 유리를 제조하는 기술에 관한 것으로, 보다 상세하게는 용융 유리의 주입시 주입된 용융 유리의 퍼짐성을 개선할 수 있는 플로트 배스와 이를 포함하는 플로트 유리 제조 장치, 그리고 이러한 플로트 배스를 이용한 플로트 유리 제조 방법과 이 방법에 의해 생산된 플로트 유리에 관한 것이다.
본 출원은 2012년 5월 30일자로 출원된 한국 특허출원 번호 제10-2012-0057508호 및 2013년 5월 30일자로 출원된 한국 특허출원 번호 제10-2013-0061556호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
창유리, 차량의 윈도 스크린, 거울 등과 같이, 다양한 분야에서 매우 많은 종류의 평판 유리(flat glass)가 이용되고 있다. 이러한 평판 유리는 다양한 방식으로 제조될 수 있는데, 그 중 대표적인 방식이 플로트(float) 법을 이용한 생산 방식이다. 예를 들어, TFT 디스플레이 등을 위한 얇은 판유리(thin glass plane) 또는 유리 필름(glass film) 등이 플로트 법에 의해 많이 제조되고 있는데, 이와 같이 플로트 법에 의해 제조된 유리를 플로트 유리라고도 한다.
이와 같은 플로트 유리 제조 방법은 순환하는 연속적인 공정을 포함하고, 끊임없이 영구적으로 작동될 수 있으며, 가능한 거의 중단 없이 수년 이상 가동이 가능하다는 점에서 대표적인 평판 유리 제조 방법으로서 주목을 받고 있다.
도 1은, 종래 플로트 유리를 제조하는 장치의 일부 구성을 개략적으로 나타내는 도면이다.
도 1에 도시된 바와 같이, 플로트 유리는 일반적으로 용융 주석 또는 용융 주석 합금과 같은 용융 금속(M)이 저장되어 유동되는 플로트 배스(float bath)(10)를 이용하여 성형된다. 이때, 용융 금속(M)보다 낮은 점도를 가지며 용융 금속(M)보다 대략 2/3 정도 더 가벼운 용융 유리가 스파우트 립(spout lip)(11)을 통해 플로트 배스(10)의 입구로 연속적으로 플로트 배스(10) 내부로 공급된다. 플로트 배스(10) 내부에서 용융 유리(G)는 용융 금속(M) 위에서 플로팅 및 스프레딩되면서 플로트 배스(10)의 하류 측으로 진행된다. 이 과정에서, 용융 유리(G)는 자신의 표면 장력과 중력에 따라 평형 두께 부근에 도달하게 되어 어느 정도 응고된 유리 스트립 또는 리본이 형성된다.
이후, 이러한 용융 유리는 서냉 공정을 거치기 위해 플로트 배스의 출구에 인접한 리프트 아웃 롤러(lift out roller)에 의해 서냉로를 향해 끌어 당겨진다. 이때, 입구를 통해 투입되는 유리의 양, 롤러들의 회전 속도에 의해 결정되는 당김 속도 및 플로트 챔버 내부에 설치된 탑 롤러들과 같은 성형 수단의 조절 및 변화는 생산되는 유리의 두께를 변화시킬 수 있다.
도 2는, 종래 플로트 배스의 입구로 주입된 용융 유리의 퍼짐 형태를 플로트 배스의 상부에서 바라본 도면이다. 도 2에서 화살표는 용융 유리의 이동 방향을 나타낸다.
도 2를 참조하면, 용융 금속(M)이 플로트 배스의 내벽(12)에 의해 수용되어 있으며, 용융 유리(G)는 스파우트 립(11)으로부터 이러한 용융 금속(M)의 상부로 공급된다. 그리고, 공급된 용융 유리(G)는 플로트 배스(10)의 하류 측 방향으로 이동하면서, 폭 방향으로도 점차 퍼지게 된다. 즉, 도면을 기준으로 볼 때, 용융 유리(G)는 도면의 좌측에서 우측 방향으로 이동하면서, 도면의 상부와 하부 방향(폭 방향)으로 점차 퍼지게 된다. 이때, 용융 유리(G)의 폭 방향 끝 부분은 도 2에서 a로 표시된 바와 같다. 이처럼, 용융 유리(G)는 용융 금속(M) 상부에서 플로팅된 상태로 하류 측으로 이동하면서 폭 방향으로도 퍼지게 되는데, 이때, 용융 유리(G)의 퍼짐 형태 및 속도는, 유리의 밀도, 분위기 가스, 용융 금속, 유리의 점도 및 유리 간의 계면 장력 등에 의해 결정될 수 있다.
그런데, 용융 금속의 상부에서 주입된 용융 유리의 퍼짐 속도가 늦을 경우, 폭이 넓은 플로트 유리를 제조하기 위해서는 플로트 배스(10)의 길이가 충분히 길어져야 하는 문제가 있다. 따라서, 용융 유리는 가급적 빠른 속도로 퍼질 수 있는 것이 좋다.
종래에는, 이러한 용융 유리의 퍼짐 속도를 빠르게 하기 위해 고온 운전 조건 방식을 많이 이용하고 있다. 이러한 고온 운전 조건 방식은, 플로트 배스(10)의 상류 측 온도를 높임으로써, 용융 유리의 온도를 상승시켜 용융 유리가 빠르게 퍼질 수 있도록 하는 방식이다.
그러나, 이와 같이 고온을 이용하는 방식은 전력을 많이 필요로 하는 것은 물론이고, 플로트 배스(10)의 냉각 성능 또한 좋아야 한다. 그리고, 고온의 운전 조건은 플로트 배스(10)를 구성하는 내화물의 수명을 단축시킬 수 있기 때문에 장치의 관리 측면에서도 바람직하지 못하게 된다. 뿐만 아니라, 용융 유리가 퍼지는 플로트 배스(10) 상류에서는 용융 유리의 공급 조건이 변동되거나 운전 조건이 변동되는 경우 유리 리본의 형성이 불안정해질 수 있는데, 상기한 바와 같은 고온의 운전 방식은 이러한 불안정성을 더욱 악화시킬 수 있는 문제가 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 고온 운전에 의하지 않고도 유리의 퍼짐 속도를 개선하여 유리 리본이 폭 방향으로 충분히 빠르게 퍼질 수 있도록 함으로써 퍼지는 면적을 확장시킬 수 있는 플로트 배스 및 이를 이용한 플로트 유리 제조 장치 및 방법을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 플로트 배스는, 용융 금속을 수용하고, 상기 용융 금속의 상부에 용융 유리가 주입되어 상류 측에서 하류 측으로 상기 용융 유리가 플로팅되어 이동하도록 하는 플로트 배스로서, 상기 용융 유리가 주입되는 부분에 구비되어, 주입된 용융 유리의 측면과 접촉함으로써 상기 주입된 용융 유리의 측면 퍼짐이 확장되도록 상기 용융 유리의 측면 퍼짐 경로를 가이드하는 가이딩부를 포함한다.
바람직하게는, 상기 가이딩부는, 좌측 가이딩부 및 우측 가이딩부를 포함하고, 상기 좌측 가이딩부와 상기 우측 가이딩부는 서로 대칭되는 형태를 갖는다.
또한 바람직하게는, 상기 가이딩부는, 하면이 상기 용융 금속의 상면 높이와 동일하게 배치된다.
또한 바람직하게는, 상기 가이딩부는, 상기 플로트 배스의 하류 측 단부가 끝으로 갈수록 높이가 낮아진다.
또한 바람직하게는, 상기 가이딩부는, 상기 플로트 배스의 상류 측에서 하류 측 방향으로, 상기 용융 유리의 측면 퍼짐을 확장시키는 확장부 및 상기 용융 유리를 이탈시키는 이탈부를 구비한다.
더욱 바람직하게는, 상기 가이딩부는, 상기 용융 유리의 퍼짐 속도를 안정화시키는 안정화부를 더 구비한다.
또한 바람직하게는, 상기 안정화부는, 상기 용융 유리의 측면과 접촉하는 부분의 길이 방향이 상기 용융 유리의 진행 방향과 0° 내지 10°의 각도를 이루도록 구성된다.
또한 바람직하게는, 상기 확장부는, 상기 용융 유리의 측면과 접촉하는 부분의 적어도 일부가 상기 용융 유리의 진행 방향을 따라 곡선 형태로 형성된다.
또한 바람직하게는, 상기 확장부는, 상기 주입된 용융 유리가 최초 접촉하는 부분의 접선 방향이, 상기 확장부와 접촉하기 이전의 용융 유리의 측면 길이 방향과 10° 내지 30°의 각도를 이루도록 구성된다.
또한 바람직하게는, 상기 확장부는, 상기 가이딩부의 최단부에서의 용융 유리 폭의 1배 내지 5배의 곡률 반경을 갖도록 구성된다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 플로트 유리 제조 장치는, 상술한 플로트 배스를 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 플로트 유리 제조 방법은, 용융 금속을 수용하는 플로트 배스를 이용하여 플로트 유리를 제조하는 방법으로서, 상기 용융 금속의 상부로 용융 유리가 주입되는 부분에, 주입된 용융 유리의 측면과 접촉함으로써 상기 주입된 용융 유리의 측면 퍼짐이 확장되도록 상기 용융 유리의 측면 퍼짐 경로를 가이드하는 가이딩부를 배치하는 단계; 및 상기 가이딩부가 배치된 부분에서 상기 용융 금속의 상부로 상기 용융 유리를 주입하는 단계를 포함한다.
바람직하게는, 상기 가이딩부 배치 단계는, 서로 대칭되는 형태를 갖는 좌측 가이딩부와 우측 가이딩부를 상기 플로트 배스의 양 측면에 배치한다.
또한 바람직하게는, 상기 가이딩부 배치 단계는, 상기 가이딩부의 하면이 상기 용융 금속의 상면 높이와 동일하게 배치한다.
또한 바람직하게는, 상기 가이딩부 배치 단계는, 상기 가이딩부의 플로트 배스 하류 측 단부가 끝으로 갈수록 높이가 낮아지게 배치한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 플로트 유리는, 상술한 플로트 유리 제조 방법에 의해 제조된 유리이다.
본 발명에 의하면, 플로트 배스로 용융 유리를 주입할 때, 주입된 용융 유리의 퍼짐 특성을 개선할 수 있다. 즉, 본 발명에 의하면, 주입된 용융 유리가 가이딩부를 통해 용융 금속 상부에서 빠르게 좌우 측면 방향(폭 방향)으로 충분하게 퍼질 수 있도록 한다. 특히, 본 발명에 의하면, 종래 플로트 배스에 비해 용융 유리의 측면 방향으로의 퍼짐 면적이 확장될 수 있다.
따라서, 용융 유리가 빠르게 퍼지도록 하기 위한 목적으로 용융 유리를 고온 상태로 유지할 필요가 없다. 그러므로, 용융 유리의 고온 상태를 유지하기 위한 전력 소모나 냉각 공기량 등을 줄일 수 있어, 플로트 유리의 제조 비용 및 시간을 감소시킬 수 있다.
또한, 고온 상태에서는 유리 공급 조건의 변동이나 운전 조건 변동에 의해 유리 리본의 불안정성이 더욱 증가할 수 있는데, 본원 발명에 의하면 온도를 낮출 수 있으므로, 이러한 유리 리본의 불안정성을 줄일 수 있다. 따라서, 보다 고품질의 플로트 유리를 생산할 수 있다.
뿐만 아니라, 본 발명에 의하면, 용융 유리가 폭 방향으로 신속하게 퍼질 수 있으므로, 플로트 배스의 상류 측에서 하류 측 방향으로의 길이를 줄일 수도 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 종래 플로트 유리를 제조하는 장치의 일부 구성을 개략적으로 나타내는 도면이다.
도 2는, 종래 플로트 배스의 입구로 주입된 용융 유리의 퍼짐 형태를 플로트 배스의 상부에서 바라본 도면이다.
도 3은, 본 발명의 일 실시예에 따른 플로트 배스의 구성에 대하여 측면에서 바라본 형태를 개략적으로 나타내는 도면이다.
도 4는, 본 발명의 일 실시예에 따른 가이딩부의 구성을 개략적으로 나타내는 사시도이다.
도 5는, 도 4의 가이딩부가 플로트 배스에 적용된 구성을 개략적으로 나타내는 사시도이다.
도 6은, 본 발명의 일 실시예에 따른 플로트 배스에서 용융 유리의 퍼짐 형태를 나타내는 상면도이다.
도 7은, 본 발명의 일 실시예에 따른 플로트 배스에서 용융 유리의 퍼짐 형태와 종래의 플로트 배스에서 용융 유리의 퍼짐 형태를 비교하여 나타내는 상면도이다.
도 8은, 본 발명의 일 실시예에 따른 가이딩부의 형태를 설명하기 위해 개략적으로 나타내는 상면도이다.
도 9는, 본 발명의 일 실시예에 따른 플로트 유리 제조 방법을 개략적으로 나타내는 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 3은, 본 발명의 일 실시예에 따른 플로트 배스(100)의 구성에 대하여 측면에서 바라본 형태를 개략적으로 나타내는 도면이다. 다만, 도 3에서는, 설명의 편의를 위해 플로트 배스(100)의 측벽은 표시되지 않는다. 또한, 플로트 배스(100)에는, 탑 롤러, 루프 히터, 벤트와 같은 여러 구성이 포함될 수 있으나, 도 3에서는 이러한 구성들은 도시되지 않고 본 발명의 특징적 구성을 위주로 도시된다.
도 3을 참조하면, 플로트 배스(100)는 용융 주석이나 용융 주석 합금과 같은 용융 금속(M)을 수용한다. 그리고, 이러한 용융 금속(M)의 상부에 용융 유리(G)가 주입된다. 즉, 스파우트 립(101)을 통해 플로트 배스의 입구(I)로 용융 유리(G)가 주입되면, 주입된 용융 유리(G)는 용융 금속(M)의 상부에서 플로팅된 상태로 플로트 배스(100)의 상류 측에서 하류 측으로 이동한다. 여기서, 플로트 배스(100)의 상류란 용융 유리(G)가 주입되는 플로트 배스의 입구(I) 측 부분을 의미하며, 플로트 배스(100)의 하류란 용융 유리(G)가 유리 리본 형태로 배출되는 플로트 배스의 출구(O) 측 부분을 의미한다. 도 3에서는, 플로트 배스(100)의 좌측이 상류 측 부분이고, 플로트 배스(100)의 우측이 하류 측 부분이다.
특히, 본 발명에 따른 플로트 배스(100)는 가이딩부(110)를 포함한다.
상기 가이딩부(110)는, 용융 유리(G)가 주입될 때 주입된 용융 유리(G)의 측면과 접촉하여 주입된 용융 유리(G)의 측면 퍼짐 경로를 가이드할 수 있다. 더욱이, 상기 가이딩부(110)는, 주입된 용융 유리(G)가 측면 방향으로 퍼져 나갈 때, 이러한 측면 퍼짐 경로를 가이드함으로써, 용융 유리(G)의 측면 방향의 퍼짐이 확장될 수 있도록 한다. 즉, 상기 가이딩부(110)는 용융 유리(G)가 퍼져나가는 형태를 결정할 수 있는 부재이다. 이를 위해, 상기 가이딩부(110)는 적어도 용융 유리(G)가 주입되는 부분, 즉 플로트 배스(100)의 입구(상류) 측에 구비될 수 있다. 이러한 가이딩부(110)의 형태 및 기능에 대하여, 도 4 및 도 5를 참조하여 보다 상세하게 살펴보도록 한다.
도 4는 본 발명의 일 실시예에 따른 가이딩부(110)의 구성을 개략적으로 나타내는 사시도이고, 도 5는 도 4의 가이딩부(110)가 플로트 배스(100)에 적용된 구성을 개략적으로 나타내는 사시도이다. 다만, 도 5에서는, 설명의 편의를 위해, 플로트 배스(100)의 내벽 등은 도시하지 않도록 한다.
도 4 및 도 5를 참조하면, 상기 가이딩부(110)는 2개의 가이딩부(110), 즉 좌측 가이딩부(111) 및 우측 가이딩부(112)를 포함할 수 있다. 그리고, 이러한 좌측 가이딩부(111) 및 우측 가이딩부(112)는, 플로트 배스(100)의 상류에서 하류 방향으로 연장된 중심선을 기준으로, 서로 대칭되는 형태를 가질 수 있다. 따라서, 가이딩부(110)는 플로트 배스(100)의 상류 측에서 양측에 구비될 수 있다. 즉, 좌측 가이딩부(111)는 플로트 배스(100)의 상류에서 좌측에 구비되고, 우측 가이딩부(112)는 플로트 배스(100)의 상류에서 우측에 구비될 수 있다. 다만, 도 4 및 도 5에서는, 좌측 및 우측의 개념이 플로트 배스(100)의 상류에서 하류 측을 바라볼 때를 기준으로 한 것이나, 이러한 좌측과 우측의 개념이 기준에 따라 달라질 수 있음은 자명하며, 이하의 설명에서도 마찬가지일 수 있다.
상기 가이딩부(110)는, 도 4에서 b로 표시된 바와 같은 내측면 부분이 용융 유리(G)의 측면과 접촉할 수 있다. 여기서, 용융 유리(G)의 측면이란, 용융 유리(G)가 플로트 배스(100)의 입구 측에 공급되어 용융 금속(M)의 상부에서 플로팅된 상태로 퍼져나갈 때, 용융 유리(G)의 폭 방향 좌우 끝 부분을 의미한다. 이처럼, 용융 유리(G)가 플로트 배스(100) 내부로 주입되어 용융 금속(M) 상부에서 퍼져나갈 때, 용융 유리(G)의 측면이 가이딩부(110)의 내측면에 접촉된 상태에서 그러한 내측면을 따라 퍼질 수 있으므로, 용융 유리(G)의 측면 부분에서는 계면 장력이 발생하지 않을 수 있다. 따라서, 본 발명에 의하면, 플로트 배스(100)의 입구로부터 주입된 용융 유리(G)가 폭 방향, 즉 플로트 배스(100)의 좌우 방향으로 빠르게 퍼질 수 있다.
도 6은, 본 발명의 일 실시예에 따른 플로트 배스(100)에서 용융 유리(G)의 퍼짐 형태를 나타내는 상면도이다.
도 6을 참조하면, 본 발명의 일 실시예에 따른 플로트 배스(100)에서는, 용융 금속(M)이 플로트 배스의 내벽(102)에 수용되며, 이러한 용융 금속(M)의 상부로 스파우트 립(101)을 통해 용융 유리(G)가 주입된다. 그런데, 본 발명에 따르면, 용융 유리(G)가 주입되는 부분에 가이딩부(110)가 설치되어 있다. 따라서, 도면에서 c로 표시된 용융 유리(G)의 측면은, 이러한 가이딩부(110)의 내측면(b)과 접촉하며, 이러한 용융 유리(G)의 측면 부분에는 계면 장력이 형성되지 않는다. 따라서, 용융 유리(G)는 가이딩부(110)의 내측면(b)을 따라 퍼져나갈 수 있게 된다. 즉, 도 6에서, 주입된 용융 유리(G)는 용융 금속(M)의 상부에서 초기에 실선 d1과 같은 형태로 퍼져나갈 수 있게 된다. 그리고, 용융 유리(G)는, 시간이 지남에 따라 화살표로 표시된 바와 같이 d2 및 d3의 위치로 순차적으로 퍼져나갈 수 있게 된다. 다만, 도 6에서는, 본 발명의 일 실시예에 따른 플로트 배스(100)에서, 용융 유리(G)의 측면이 가이딩부(110)의 내측면에 접촉하면서 퍼져나가는 과정을 시간적으로 나타내기 위한 것일 뿐, 용융 유리(G)의 구체적인 퍼짐 형태는 다른 형상을 가질 수도 있다.
이처럼, 본 발명의 일 측면에 의하면, 플로트 배스(100)의 상류 측에서 주입된 용융 유리(G)가 퍼져나갈 때, 용융 유리(G)의 측면이 가이딩부(110)의 내측면에 접촉하면서 퍼져나가므로, 보다 빠르게 퍼질 수 있다. 이러한 효과에 대해서는 도 7을 참조하여 보다 상세하게 살펴보도록 한다.
도 7은, 본 발명의 일 실시예에 따른 플로트 배스(100)에서 용융 유리의 퍼짐 형태와 종래의 플로트 배스에서 용융 유리의 퍼짐 형태를 비교하여 나타내는 상면도이다. 보다 구체적으로, 도 7에서, 실선 e1은 본 발명의 일 실시예에 따른 플로트 배스(100)에서의 용융 유리의 퍼짐 형태를 나타내고, 점선 e2는 종래의 플로트 배스에서의 용융 유리의 퍼짐 형태를 나타낸다.
도 7을 참조하면, 본 발명의 일 실시예에 따른 플로트 배스(100)에서는, 용융 유리(G)가 주입되는 부분에 가이딩부(110)가 설치되어 있기 때문에, 주입 초기에 용융 유리(G)는, 실선 e1으로 표시된 바와 같이, 이러한 가이딩부(110)의 내측면을 따라 퍼져 나갈 수 있게 된다. 여기서, e1은 용융 유리(G)의 측면 부분을 나타냄과 동시에 가이딩부(110)의 내측면을 나타낸다고 볼 수 있다.
반면, 종래의 플로트 배스에서는, 도 1 및 도 2에 도시된 바와 같이, 플로트 배스의 입구에 이러한 가이딩부(110)가 설치되어 있지 않다. 따라서, 주입된 용융 유리는, 자유 계면에서 형성된 계면 장력 등에 의해, 도 7에서 e2로 표시된 바와 같이, 측면 부분이 본 발명에 의한 e1만큼 널리 퍼지지 못하게 된다.
즉, 본 발명에 의하면 가이딩부(110)가 플로트 배스(100)에 주입된 용융 유리의 측면과 접촉하여 용융 유리의 측면 퍼짐 경로를 가이드하므로, e1과 e2 사이의 차이만큼 용융 유리의 측면 퍼짐을 확장시키고 퍼짐 속도를 개선할 수 있다.
따라서, 본 발명에 따른 가이딩부(110)의 내측면 형태는, 가이딩부가 없는 종래 플로트 배스에서 계면 장력 등에 영향을 받으며 자연적으로 퍼져나가는 용융 유리의 폭보다 더 넓은 폭을 갖는 것이 좋다. 예를 들어, 도 7의 실시예에서, 좌측 가이딩부(111)의 내측면은 좌측(도 7에서는 상부 측)의 e1과 같이, e2보다 좌측에 위치하고, 우측 가이딩부(112)의 내측면은 우측의 e1과 같이, e2보다 우측에 위치하는 것이 좋다.
또한, 상기 가이딩부(110)의 내측면 형태는 다양하게 구성될 수 있다. 용융 유리는 측면이 가이딩부(110)의 내측면을 따라 퍼지기 때문에, 용융 유리의 퍼짐 형태는 가이딩부(110)의 내측면 형태를 따른다고 볼 수 있다. 따라서, 용융 유리의 원하는 퍼짐 형태를 얻기 위해서는, 가이딩부(110)의 내측면 형태를 변형시킴으로써 달성될 수 있다.
한편, 도 6 및 도 7에서는, 가이딩부(110)의 외측면이 플로트 배스의 내벽(102)에 부착되도록, 플로트 배스의 내벽(102) 형태와 유사한 형태를 갖는 것으로 도시되어 있으나, 이는 일례에 불과할 뿐 가이딩부(110)의 외측면은 다양한 형태로 구현될 수 있다.
바람직하게는, 상기 가이딩부(110)는, 플로트 배스(100)의 상류 측에서 하류 측으로 갈수록, 용융 유리가 넓은 폭을 갖도록 하는 형태를 가질 수 있다. 즉, 도 6 및 도 7에 도시된 바와 같이, 좌측 가이딩부(111)와 우측 가이딩부(112)는, 좌측에서 우측 방향으로 갈수록, 상호 간의 거리, 보다 정확하게는 좌측 가이딩부(111)와 우측 가이딩부(112)의 내측면 사이의 거리가 점차 멀어지는 형태를 가질 수 있다.
다만, 이러한 실시예는 일례에 불과할 뿐, 다른 형태로 구현될 수도 있다. 예를 들어, 상기 가이딩부(110)는, 플로트 배스(100)의 상류 측 부분에서부터 하류 측 부분으로 갈수록, 좌측 가이딩부(111)와 우측 가이딩부(112) 사이의 거리가 증가하다가, 소정 지점부터는 좌측 가이딩부(111)와 우측 가이딩부(112) 사이의 거리가 동일하게 유지될 수 있다.
한편, 상기 가이딩부(110)는, 도 3에 도시된 바와 같이, 그 높이가 용융 금속(M) 상부에서 플로팅된 용융 유리의 높이보다 높은 것이 좋다. 보다 구체적으로는, 상기 가이딩부(110)는, 내측면 높이가 용융 유리의 측면 높이보다 높은 것이 좋다. 가이딩부(110)의 내측면 높이가 용융 유리의 측면 높이보다 낮은 경우, 용융 유리의 측면이 가이딩부(110)의 내측면에 제대로 접촉하지 못해, 가이딩부(110)가 용융 유리의 퍼짐 가이드 역할을 제대로 수행하지 못할 수 있다.
또한 바람직하게는, 상기 가이딩부(110)는, 도 3에 도시된 바와 같이, 하면이 용융 금속(M)의 상면 높이와 동일하게 배치되는 것이 좋다. 만일, 가이딩부(110)의 적어도 일부분이 용융 금속(M)에 잠겨 있다면 용융 금속(M)에 의한 부력으로 인해 가이딩부(110)가 파손될 수 있다. 반면, 가이딩부(110)의 하면이 용융 금속(M)의 상면으로부터 소정 거리 이격되어 있다면, 용융 유리의 측면이 가이딩부(110)의 내측면에 제대로 접촉하지 못해 가이딩부(110)에 의한 용융 유리의 퍼짐 경로를 가이드하는 효과가 감소될 수 있다. 그러므로, 상기 실시예와 같이, 상기 가이딩부(110)의 하단 높이와 용융 주석의 상부 표면은 높이가 일치되도록 설치되는 것이 좋다.
또한, 상기 가이딩부(110)는, 플로트 배스(100)의 하류 측 단부가 끝으로 갈수록 높이가 낮아지는 형태를 가질 수 있다. 여기서, 가이딩부(110)의 단부 높이란 가이딩부(110)를 측면에서 바라보았을 때, 상하 길이를 의미한다. 즉, 도 3에 도시된 바와 같이, 가이딩부(110)의 오른쪽 끝 부분은 쐐기 모양으로 뾰족한 형태를 가지는 것이 좋다. 이러한 실시예에 의하면, 용융 유리가 가이딩부(110)의 측면을 따라 퍼지면서 이동하다가 가이딩부(110)의 우측 단부에 이르러 가이딩부(110)를 이탈할 때, 가이딩부(110)와의 접촉 면적을 줄임으로써, 용융 유리의 이탈이 원활하게 이루어지도록 할 수 있다.
한편, 상기 가이딩부(110)는, 플로트 배스(100)의 상류 측에서 하류 측 방향으로의 길이가 1m 내지 10m일 수 있다. 즉, 도 3에서 가이딩부(110)의 좌측 단부에서 우측 단부까지의 길이가 1m 내지 10m일 수 있다. 이러한 가이딩부(110)의 길이는 플로트 배스(100)로 주입된 용융 유리가 신속하고 충분하게 퍼질 수 있도록 한다. 다만, 이러한 가이딩부(110)의 길이는 플로트 배스(100)의 크기나 내부 온도, 용융 유리의 종류 등 여러 제반 조건에 따라 다르게 결정될 수 있으며, 본 발명이 이러한 가이딩부(110)의 구체적인 길이에 의해 제한되는 것은 아니다. 예를 들어, 상기 가이딩부(110)는 플로트 배스(100)의 입구 측에서부터 출구 측까지 길게 연장된 형태로 형성될 수도 있다.
또한, 상기 가이딩부(110)는, 플로트 배스(100)의 하류 측에 위치하는 단부의 폭이 20mm 내지 200mm일 수 있다. 이러한 가이딩부(110)의 폭 범위에서, 용융 유리의 퍼짐이 보다 원활하게 수행될 수 있다. 그러나, 본 발명이 반드시 이러한 형태로 한정되는 것은 아니며, 가이딩부(110)의 단부 폭은 다양하게 구성될 수 있다.
또한 바람직하게는, 상기 가이딩부(110)는, 플로트 배스(100)의 상류 측에서 하류 측 방향으로, 확장부 및 이탈부를 포함할 수 있다. 이에 대해서는, 도 8을 참조하여 보다 상세하게 설명하도록 한다.
도 8은, 본 발명의 일 실시예에 따른 가이딩부(110)의 형태를 설명하기 위해 개략적으로 나타내는 상면도이다.
도 8을 참조하면, 상기 가이딩부(110)는, 확장부(F1) 및 이탈부(F3)를 포함하도록 구성될 수 있다.
상기 확장부(F1)는, 가이딩부(110)에서 플로트 배스(100)의 상류 측에 위치하여, 플로트 배스(100)로 주입되는 용융 유리(G)와 최초로 접촉하는 부분이다. 이러한 확장부(F1)는, 주입된 용융 유리(G)가 측면 방향으로 퍼져 나가는 것을 확장시킨다. 즉, 상기 확장부(F1)는, 용융 유리(G)가 측면 방향으로 확장될 때, 가이딩부(110) 없이 자연적으로 확장하는 경우보다 더 넓은 폭을 갖고 확장될 수 있도록 한다.
이를 위해, 상기 확장부(F1)는, 용융 유리(G)의 측면과 접촉하는 부분의 적어도 일부가 용융 유리(G)의 진행 방향을 따라 곡선 형태로 형성될 수 있다. 예를 들어, 상기 확장부(F1)는, 도 8에 도시된 바와 같이, 내측면이 스파우트 립(101)의 단부가 위치하는 부분에서부터 전체적으로 곡선 형태로 굽어지게 형성될 수 있다.
이 경우, 상기 확장부(F1)는, 주입된 용융 유리(G)가 최초 접촉하는 부분의 접선 방향이, 확장부(F1)와 접촉하기 이전의 용융 유리(G)의 측면 길이 방향과 10° ~ 30°의 각도를 이루도록 구성되는 것이 좋다.
예를 들어, 도 8에 도시된 바를 참조하면, 플로트 배스(100)로 용융 유리(G)를 주입하는 스파우트 립(101)의 내측면에 대한 연장선을 H1이라 할 때, 이러한 H1은 가이딩부(110)의 확장부(F1)와 접촉하기 이전의 용융 유리(G)의 측면 길이 방향과 동일하다 할 수 있다. 그리고, 가이딩부(110)의 확장부(F1)에서 용융 유리(G)와 최초 접촉하는 부분의 접선 방향을 H2라 할 때, H1과 H2가 이루는 각도는 H3라 할 수 있다. 이 경우, H3는 가이딩부(110)와 스파우트 립(101) 사이의 초기 각도라 할 수 있는데, 이러한 각도는 10° 내지 30°가 되도록 확장부(F1)가 구성되는 것이 좋다. 이는, 이러한 각도 범위에서, 용융 유리(G)가 가이딩부(110)의 확장부(F1)를 따라 최대한 넓게 퍼질 수 있으면서도, 용융 유리(G)가 가이딩부(110)의 확장부(F1)로부터 분리되지 않도록 하는데 용이하기 때문이다.
한편, 상기 실시예와 같이, 확장부(F1)의 내측면 중 적어도 일부가 곡선 형태로 구성될 때, 곡선 형태로 구성되는 부분의 곡률 반경은, 가이딩부(110)와 스파우트 립(101) 사이의 초기 각도인 H3 및 확장부(F1)의 길이(용융 유리의 흐름 방향)에 따라 결정될 수 있다.
바람직하게는, 상기 확장부(F1)의 내측면에 대한 곡률 반경은, 가이딩부(110)의 최단부에서의 용융 유리의 폭의 1배 내지 5배가 되는 것이 바람직하다. 여기서, 가이딩부(110)의 최단부란, 가이딩부(110)에서 플로트 배스의 가장 하류 측에 위치한 부분, 다시 말해 용융 유리가 이탈되는 이탈부(F3)의 가장 끝 부분을 의미한다. 즉, 확장부(F1)의 곡률 반경은, 용융 유리(G)가 가이딩부(110)에서 이탈할 때, 그 이탈되는 순간에서의 용융 유리(G)의 폭(도 8에서 J로 표시)에 비해 1배 내지 5배의 크기를 갖는 것이 좋다. 만일, 확장부(F1)의 곡률 반경이 너무 작다면, 원하는 가이딩부(110) 폭으로 넓어지기 위해 초기 각도(H3)가 적정 범위보다 커져야 하는 문제점이 있다. 반면, 곡률 반경이 너무 크다면, 안정화부(F2)와 같이 인접하는 부분과의 연결 지점에서 각 또는 단차를 형성하여, 용융 유리(G)의 측면 방향 퍼짐이 안정적으로 이루어지지 않을 수 있는 문제점이 있다. 그러나, 상기와 같은 곡률 반경의 범위에서는 이러한 문제점이 발생하지 않을 수 있다.
상기 이탈부(F3)는, 용융 유리(G)의 흐름 방향으로 가이딩부(110)의 최단부에 위치하여, 용융 유리(G)가 가이딩부(110)에서 이탈되도록 한다. 여기서, 상기 이탈부(F3)의 용융 유리(G)의 흐름 방향 길이는, 용융 유리(G)가 가이딩부(110)에서 천천히 이탈될 수 있도록 충분히 길게 구성될 수 있다. 다만, 가이딩부(110)의 전체 길이나 제작의 용이성 등을 감안할 때, 상기 이탈부(F3)의 길이는, 0.01m ~ 0.1m가 되도록 구성되는 것이 좋다. 한편, 이러한 이탈부(F3)의 길이는 가이딩부(110)나 플로트 배스(100)의 전체 길이, 용융 유리(G)의 폭, 플로트 배스(100) 내부의 온도 등 다양한 요소에 따라 달라질 수 있음은 물론이다.
한편, 상기 이탈부(F3)는, 플로트 배스(100)의 하류측으로 갈수록 높이가 낮아지는 형태를 가질 수 있다. 즉, 도 3에 도시된 바와 같이, 가이딩부(110)의 오른쪽 끝 부분에 위치하는 이탈부(F3)는, 끝으로 갈수록 뾰족한 형태를 가질 수 있다. 이러한 실시예에 의하면, 용융 유리(G)가 이탈부(F3)에서 이탈할 때, 가이딩부(110)와의 접촉 면적을 줄임으로써, 용융 유리(G)의 이탈이 원활하게 이루어지도록 할 수 있다.
또한 바람직하게는, 상기 가이딩부(110)는, 확장부(F1)와 이탈부(F3) 사이에 안정화부(F2)를 더 포함하도록 구성될 수 있다.
상기 안정화부(F2)는, 상기 확장부(F1)에 의해 확장된 용융 유리(G)의 퍼짐을 안정화시킬 수 있다. 즉, 상기 안정화부(F2)는, 상기 용융 유리(G)의 퍼짐 속도가 안정적으로 유지되도록 할 수 있다. 또한, 상기 안정화부(F2)는, 용융 유리(G)의 온도가 흐름 방향을 따라 순차적으로 감소되도록 함으로써, 용융 유리(G)의 온도가 안정화되도록 할 수 있다.
이를 위해, 상기 안정화부(F2)는, 용융 유리(G)와 접촉하는 내측면이 직선 형태로 구성될 수 있다. 이 경우, 상기 안정화부(F2)는, 용융 유리(G)의 측면과 접촉하는 부분의 길이 방향이 상기 용융 유리(G)의 진행 방향과 0°~10°의 각도를 이루도록 구성되는 것이 좋다. 즉, 도 8에 도시된 바를 참조하면, 용융 유리(G)의 진행 방향을 I1이라 하고, 안정화부(F2)의 내측면의 길이 방향 직선을 I2라 할 때, I1과 I2가 이루는 각도인 I3는 0° 내지 10°가 되도록 상기 안정화부(F2)가 구성되는 것이 좋다.
또한, 상기 안정화부(F2)는, 내측면의 길이 방향이, 확장부(F1)와 안정화부(F2)가 만나는 지점에서의 확장부(F1)의 접선 방향과 일치하도록 구성되는 것이 좋다. 즉, 도 8에서 I2는, 확장부(F1)의 최단부에서 확장부(F1)의 접선과 일치하는 것이 좋다. 이러한 실시예에 의하면, 확장부(F1)와 안정화부(F2)가 큰 변화 없이 안정적으로 연결되어, 이들 사이의 연결 지점에서 용융 유리(G)의 측면이 가이딩부(110)로부터 떨어져 나가는 것을 방지할 수 있다.
상기 안정화부(F2)는, 용융 유리(G)의 흐름 방향으로의 길이가 0.5m ~ 2m가 되도록 구성될 수 있다. 다만, 이러한 안정화부(F2)의 길이는, 가이딩부(110)나 플로트 배스(100)의 길이, 용융 유리(G)의 폭, 플로트 배스(100)의 내부 온도 등에 따라 달라질 수 있다.
이처럼 가이딩부(110)에 안정화부(F2)가 구비된 경우, 안정화부(F2)에 인접하여 다음 위치에 이탈부(F3)가 구비될 수 있다. 이때, 이탈부(F3)의 내측면 역시 직선 형태로 형성될 수 있으며, 이러한 이탈부(F3)의 내측면이 이루는 직선과 안정화부(F2)의 내측면이 이루는 직선은 서로 일치되게 구성될 수 있다. 이 경우, 안정화부(F2)는 플로트 배스의 하류 측으로 갈수록 높이가 일정하거나 그 차이가 크지 않은 형태로 구성되고, 이탈부(F3)는 플로트 배스의 하류 측으로 갈수록 높이가 낮아지는 형태로 구성됨으로써, 상호 구별될 수 있다.
한편, 상기 가이딩부(110)는, 고온의 플로트 배스(100) 내부에 구비되며, 고온의 용융 유리와 접촉하기 때문에, 내화물과 같이 내열성 등을 갖춘 재질이면 바람직하며, 본 발명은 이러한 가이딩부(110)의 특정 재질에 의해 한정되지 않는다.
본 발명에 따른 플로트 유리 제조 장치는, 상술한 플로트 배스(100)를 포함할 수 있다. 즉, 본 발명에 따른 플로트 유리 제조 장치는, 상류 측에 가이딩부(110)가 구비된 플로트 배스(100)를 포함할 수 있다. 그리고, 본 발명에 따른 플로트 유리 제조 장치는, 이러한 플로트 배스(100)와 함께, 플로트 배스(100)로 용융 유리를 공급하는 용융 유리 공급부, 플로트 배스(100)로부터 인출된 유리 리본에 대하여 서냉 공정을 수행하는 서냉로 등의 구성을 더 포함하여 플로트 유리를 제조할 수 있다.
도 9는, 본 발명의 일 실시예에 따른 플로트 유리 제조 방법을 개략적으로 나타내는 흐름도이다.
도 9를 참조하면, 본 발명에 따른 플로트 유리 제조 방법은, 가이딩부(110) 배치 단계(S110) 및 용융 유리 주입 단계(S120)를 포함한다.
상기 가이딩부(110) 배치 단계(S110)는, 플로트 배스의 입구 측에 가이딩부(110)를 배치하는 단계이다. 여기서, 가이딩부(110)는 상술한 바와 같이, 용융 유리가 용융 금속(M)의 상부로 주입될 때, 용융 유리의 측면과 접촉하여 용융 유리의 측면 퍼짐 경로를 가이드하는 부재이다. 특히, 본 발명에 있어서, 상기 가이딩부는, 플로트 배스 내에서 가이딩부 없이 용융 유리가 자연적으로 퍼지는 경우에 비해 용융 유리의 측면 퍼짐을 확장시킬 수 있도록 구성될 수 있다.
다음으로, 상기 용융 유리 주입 단계(S120)는, 플로트 배스의 내부로 용융 유리를 주입하는 단계이다. 이때, 용융 유리가 주입되는 플로트 배스의 입구 측에는 상기 S110 단계를 통해 가이딩부(110)가 배치되어 있으므로, 용융 유리는 가이딩부(110)가 배치된 부분에서 용융 금속(M)의 상부로 주입된다.
바람직하게는, 상기 S110 단계에서, 서로 대칭되는 형태를 갖는 좌측 가이딩부(111)와 우측 가이딩부(112)가 플로트 배스의 양 측면에 배치될 수 있다.
여기서, 좌측 가이딩부(111)와 우측 가이딩부(112)는, 플로트 배스의 상류 측에서 하류 측으로 갈수록, 상호 간의 거리가 점차 멀어지도록 배치될 수 있다.
또한 바람직하게는, 상기 S110 단계는, 가이딩부(110)의 하면이 용융 금속의 상면 높이와 동일하도록 가이딩부(110)를 배치할 수 있다.
또한 상기 S110 단계에서, 가이딩부(110)는 플로트 배스의 하류 측 단부가 끝으로 갈수록 높이가 낮아지게 배치될 수 있다. 여기서, 가이딩부(110)의 하류 측 단부가 끝으로 갈수록 높이가 낮아지게 배치하는 것은, 가이딩부(110)의 형상 자체를 통해 달성될 수 있다. 즉, 가이딩부(110)의 하류 측 단부가 뾰족한 형상을 갖도록 하여, 가이딩부(110)의 하류측 단부가 끝으로 갈수록 높이가 낮아지게 할 수 있다. 또한, 가이딩부(110)의 하류 측 단부가 뾰족한 형상을 갖지 않더라도, 가이딩부(110)의 배치 조절을 통해서도 달성될 수 있다. 즉, 용융 금속의 상면에 대하여 가이딩부(110)의 높이가 점차 낮아지도록 가이딩부(110)를 배치함으로써, 가이딩부(110)의 하류측 단부가 끝으로 갈수록 높이가 낮아지게 할 수 있다.
한편, 상기 S120 단계를 거쳐 플로트 배스 내부에서 형성된 유리 리본은 플로트 배스의 출구로 인출된 후, 서냉로로 인입되어 서냉 공정 등을 거칠 수 있다.
본 발명에 따른 플로트 유리는, 상술한 플로트 유리 제조 방법에 의해 제조된 유리이다. 또한, 본 발명에 따른 플로트 유리는, 상술한 플로트 유리 제조 장치를 이용하여 제조된 유리이다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
한편, 본 명세서에서 상, 하, 좌, 우 등 방향을 가리키는 용어가 사용되었으나, 이는 상대적인 위치를 나타내는 것일 뿐, 관측자의 위치나 대상물의 놓인 형태 등에 따라 달라질 수 있다는 점은 본 발명이 속하는 기술 분야의 당업자에게 자명하다.

Claims (19)

  1. 용융 금속을 수용하고, 상기 용융 금속의 상부에 용융 유리가 주입되어 상류 측에서 하류 측으로 상기 용융 유리가 플로팅되어 이동하도록 하는 플로트 배스에 있어서,
    상기 용융 유리가 주입되는 부분에 구비되어, 주입된 용융 유리의 측면과 접촉함으로써 상기 주입된 용융 유리의 측면 퍼짐이 확장되도록 상기 용융 유리의 측면 퍼짐 경로를 가이드하는 가이딩부
    를 포함하는 것을 특징으로 하는 플로트 배스.
  2. 제1항에 있어서,
    상기 가이딩부는, 좌측 가이딩부 및 우측 가이딩부를 포함하고, 상기 좌측 가이딩부와 상기 우측 가이딩부는 서로 대칭되는 형태를 갖는 것을 특징으로 하는 플로트 배스.
  3. 제2항에 있어서,
    상기 좌측 가이딩부와 상기 우측 가이딩부는, 상기 플로트 배스의 상류 측에서 하류 측으로 갈수록, 상호 간의 거리가 점차 멀어지는 형태를 갖는 것을 특징으로 하는 플로트 배스.
  4. 제1항에 있어서,
    상기 가이딩부는, 하면이 상기 용융 금속의 상면 높이와 동일하게 배치되는 것을 특징으로 하는 플로트 배스.
  5. 제1항에 있어서,
    상기 가이딩부는, 상기 플로트 배스의 하류 측 단부가 끝으로 갈수록 높이가 낮아지는 형태를 갖는 것을 특징으로 하는 플로트 배스.
  6. 제1항에 있어서,
    상기 가이딩부는, 상기 플로트 배스의 상류 측에서 하류 측 방향으로의 길이가 1m 내지 10m인 것을 특징으로 하는 플로트 배스.
  7. 제1항에 있어서,
    상기 가이딩부는, 상기 용융 유리의 측면 퍼짐을 확장시키는 확장부 및 상기 용융 유리를 이탈시키는 이탈부를 구비하는 것을 특징으로 하는 플로트 배스.
  8. 제7항에 있어서,
    상기 가이딩부는, 상기 용융 유리의 퍼짐 속도를 안정화시키는 안정화부를 더 구비하는 것을 특징으로 하는 플로트 배스.
  9. 제8항에 있어서,
    상기 안정화부는, 상기 용융 유리의 측면과 접촉하는 부분의 길이 방향이 상기 용융 유리의 진행 방향과 0° 내지 10°의 각도를 이루는 것을 특징으로 하는 플로트 배스.
  10. 제7항에 있어서,
    상기 확장부는, 상기 용융 유리의 측면과 접촉하는 부분의 적어도 일부가 상기 용융 유리의 진행 방향을 따라 곡선 형태로 형성된 것을 특징으로 하는 플로트 배스.
  11. 제10항에 있어서,
    상기 확장부는, 상기 주입된 용융 유리가 최초 접촉하는 부분의 접선 방향이, 상기 확장부와 접촉하기 이전의 용융 유리의 측면 길이 방향과 10° 내지 30°의 각도를 이루는 것을 특징으로 하는 플로트 배스.
  12. 제10항에 있어서,
    상기 확장부는, 상기 가이딩부의 최단부에서의 용융 유리 폭의 1배 내지 5배의 곡률 반경을 갖는 것을 특징으로 하는 플로트 배스.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 플로트 배스를 포함하는 플로트 유리 제조 장치.
  14. 용융 금속을 수용하는 플로트 배스를 이용하여 플로트 유리를 제조하는 방법에 있어서,
    상기 용융 금속의 상부로 용융 유리가 주입되는 부분에, 주입된 용융 유리의 측면과 접촉함으로써 상기 주입된 용융 유리의 측면 퍼짐이 확장되도록 상기 용융 유리의 측면 퍼짐 경로를 가이드하는 가이딩부를 배치하는 단계; 및
    상기 가이딩부가 배치된 부분에서 상기 용융 금속의 상부로 상기 용융 유리를 주입하는 단계
    를 포함하는 것을 특징으로 하는 플로트 유리 제조 방법.
  15. 제14항에 있어서,
    상기 가이딩부 배치 단계는, 서로 대칭되는 형태를 갖는 좌측 가이딩부와 우측 가이딩부를 상기 플로트 배스의 양 측면에 배치하는 것을 특징으로 하는 플로트 유리 제조 방법.
  16. 제15항에 있어서,
    상기 좌측 가이딩부와 상기 우측 가이딩부는, 상기 플로트 배스의 상류 측에서 하류 측으로 갈수록, 상호 간의 거리가 점차 멀어지는 것을 특징으로 하는 플로트 유리 제조 방법.
  17. 제14항에 있어서,
    상기 가이딩부 배치 단계는, 상기 가이딩부의 하면이 상기 용융 금속의 상면 높이와 동일하게 배치하는 것을 특징으로 하는 플로트 유리 제조 방법.
  18. 제14항에 있어서,
    상기 가이딩부 배치 단계는, 상기 가이딩부의 플로트 배스 하류 측 단부가 끝으로 갈수록 높이가 낮아지게 배치하는 것을 특징으로 하는 플로트 유리 제조 방법.
  19. 제14항 내지 제18항 중 어느 한 항에 따른 플로트 유리 제조 방법에 의해 제조된 플로트 유리.
PCT/KR2013/004774 2012-05-30 2013-05-30 플로트 배스 및 플로트 유리 제조 방법 WO2013180493A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380028993.7A CN104350015B (zh) 2012-05-30 2013-05-30 金属液槽及制造浮法玻璃的方法
EP13797058.8A EP2837605B1 (en) 2012-05-30 2013-05-30 Float bath and method for manufacturing float glass
JP2015513949A JP5948720B2 (ja) 2012-05-30 2013-05-30 フロート槽及びフロートガラスの製造方法
US14/480,217 US9598302B2 (en) 2012-05-30 2014-09-08 Float bath and method for manufacturing float glass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0057508 2012-05-30
KR20120057508 2012-05-30
KR10-2013-0061556 2013-05-30
KR1020130061556A KR101504220B1 (ko) 2012-05-30 2013-05-30 플로트 배스 및 플로트 유리 제조 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/480,217 Continuation US9598302B2 (en) 2012-05-30 2014-09-08 Float bath and method for manufacturing float glass

Publications (1)

Publication Number Publication Date
WO2013180493A1 true WO2013180493A1 (ko) 2013-12-05

Family

ID=49982584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004774 WO2013180493A1 (ko) 2012-05-30 2013-05-30 플로트 배스 및 플로트 유리 제조 방법

Country Status (6)

Country Link
US (1) US9598302B2 (ko)
EP (1) EP2837605B1 (ko)
JP (1) JP5948720B2 (ko)
KR (1) KR101504220B1 (ko)
CN (1) CN104350015B (ko)
WO (1) WO2013180493A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145617A (zh) * 2015-04-03 2016-11-23 旭硝子株式会社 浮法玻璃的制造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116661A (en) * 1977-10-07 1978-09-26 Ppg Industries, Inc. Submerged dam barriers for selective diversion of molten metal flow in a glass forming chamber
US4152135A (en) * 1978-03-20 1979-05-01 Ppg Industries, Inc. Device for positioning a glass edge guide in a glass forming chamber
KR20070050359A (ko) * 2005-11-10 2007-05-15 쇼오트 아게 평판 글라스 제조 공정, 특히 플로트 글라스로 개조 가능한평판 글라스
KR20100091949A (ko) * 2007-10-25 2010-08-19 아사히 가라스 가부시키가이샤 판유리의 제조 방법
KR20100092709A (ko) * 2009-02-13 2010-08-23 주식회사 엘지화학 유리판 제조 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL131098C (ko) * 1962-11-09
NL135446C (ko) * 1963-04-16
GB1103276A (en) * 1964-03-13 1968-02-14 Pilkington Brothers Ltd Improvements in or relating to the manufacture of flat glass
GB1158958A (en) * 1966-12-05 1969-07-23 Nippon Sheet Glass Co Ltd Method and Apparatus for Making Glass.
US3468651A (en) * 1967-05-10 1969-09-23 Ford Motor Co Process using stationary blades to laterally stretch glass during float glass manufacturing
BE782139A (fr) * 1971-04-16 1972-07-31 Vetreria Di Vernante Spa Perfectionnements au cote d'entree d'un tunnel pour la fabrication en continu de plaques de verre suivant la methode de flottage
GB1393118A (en) * 1971-09-16 1975-05-07 Pilkington Brothers Ltd Manufacture of flat glass
GB1421910A (en) * 1972-10-31 1976-01-21 Pilkington Brothers Ltd Manufacture of flat glass
US4013438A (en) * 1975-10-06 1977-03-22 Libbey-Owens-Ford Company Apparatus for manufacture of float glass
US4055407A (en) 1976-11-01 1977-10-25 Ppg Industries, Inc. Apparatus for the manufacture of flat glass having a glass refractory delivery piece and method of installation
JPH06227830A (ja) * 1993-02-05 1994-08-16 Asahi Glass Co Ltd フロートガラスの製造装置
FR2747119B1 (fr) * 1996-04-05 1998-05-07 Saint Gobain Vitrage Procede de fabrication de verre en feuille par flottage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116661A (en) * 1977-10-07 1978-09-26 Ppg Industries, Inc. Submerged dam barriers for selective diversion of molten metal flow in a glass forming chamber
US4152135A (en) * 1978-03-20 1979-05-01 Ppg Industries, Inc. Device for positioning a glass edge guide in a glass forming chamber
KR20070050359A (ko) * 2005-11-10 2007-05-15 쇼오트 아게 평판 글라스 제조 공정, 특히 플로트 글라스로 개조 가능한평판 글라스
KR20100091949A (ko) * 2007-10-25 2010-08-19 아사히 가라스 가부시키가이샤 판유리의 제조 방법
KR20100092709A (ko) * 2009-02-13 2010-08-23 주식회사 엘지화학 유리판 제조 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145617A (zh) * 2015-04-03 2016-11-23 旭硝子株式会社 浮法玻璃的制造装置
CN106145617B (zh) * 2015-04-03 2020-10-30 Agc株式会社 浮法玻璃的制造装置

Also Published As

Publication number Publication date
EP2837605A4 (en) 2015-11-04
EP2837605A1 (en) 2015-02-18
JP2015520107A (ja) 2015-07-16
JP5948720B2 (ja) 2016-07-06
KR101504220B1 (ko) 2015-03-19
KR20130135128A (ko) 2013-12-10
CN104350015B (zh) 2017-09-01
CN104350015A (zh) 2015-02-11
US20140378293A1 (en) 2014-12-25
US9598302B2 (en) 2017-03-21
EP2837605B1 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
KR101383603B1 (ko) 플로트 유리 제조 장치 및 방법
JP5387920B2 (ja) 板ガラスの製造装置及び板ガラスの製造方法
KR101347774B1 (ko) 유리판 제조용 플로트 배스 시스템 및 유리판 제조용 플로트 배스 냉각 방법
KR20070117712A (ko) 유리기재로 플랫시트를 제조하는 공정 및 장치
US10570046B2 (en) Method of manufacturing glass sheet
KR20110131432A (ko) 플로트 유리 리본 서냉 장치 및 방법
WO2018008813A1 (ko) 가스터빈 블레이드
KR20120121877A (ko) 유리 필름의 제조 방법
WO2013154331A1 (ko) 플로트 배스 및 이를 포함하는 유리 제조 장치
CN109311719A (zh) 用于冷却玻璃带边缘的方法和设备
WO2013180493A1 (ko) 플로트 배스 및 플로트 유리 제조 방법
WO2015034259A1 (ko) 이질 유리 제거 장치 및 이를 포함하는 유리 제조 장치
JP4280977B2 (ja) 板ガラスの成形装置
JPS598612A (ja) 多結晶質シリコン・ストリツプの製法
WO2011078452A1 (ko) 충격 보증용 빔블랭크의 연속 주조 방법
CN102124150B (zh) 控制气载污染物跨晶带表面的转移
JP5664375B2 (ja) ガラス板製造装置、及びガラス板製造方法
CA1162047A (en) Method of forming thin sheet glass by float process
JP2556567B2 (ja) ガラス板の製造装置
US8266925B2 (en) Apparatus for manufacturing float glass
WO2019151782A1 (ko) 플로트 유리 제조 장치
CA1192747A (en) Pressure sizing of float glass
JP3844164B2 (ja) 板ガラスの製造方法および製造装置
KR20060123615A (ko) 구조물 및 플로트 판유리 제조 장치, 그리고 기포 부상억제 방법 및 플로트 판유리 제조 방법
CN220926556U (zh) 玻璃制造设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013797058

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015513949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE