WO2013179904A1 - 搬送機構、搬送方法及び処理システム - Google Patents

搬送機構、搬送方法及び処理システム Download PDF

Info

Publication number
WO2013179904A1
WO2013179904A1 PCT/JP2013/063673 JP2013063673W WO2013179904A1 WO 2013179904 A1 WO2013179904 A1 WO 2013179904A1 JP 2013063673 W JP2013063673 W JP 2013063673W WO 2013179904 A1 WO2013179904 A1 WO 2013179904A1
Authority
WO
WIPO (PCT)
Prior art keywords
processed
lid
pick
wafer
transport mechanism
Prior art date
Application number
PCT/JP2013/063673
Other languages
English (en)
French (fr)
Inventor
真士 若林
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2013179904A1 publication Critical patent/WO2013179904A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • H01L21/67781Batch transfer of wafers

Definitions

  • the present invention relates to a transport mechanism, a transport method, and a processing system.
  • Etching and film formation are often performed in a vacuum atmosphere by evacuating the gas in the processing chamber.
  • the processed wafer processed in the vacuum processing chamber is transferred from the load lock module to the atmospheric transfer chamber.
  • reaction products generated during the process remain as residues on the wafer after the process has been performed.
  • the residue on the wafer causes a chemical reaction with moisture in the air in the atmospheric transfer chamber.
  • acidic gas is generated from the wafer.
  • an acid-resistant coating such as Teflon (registered trademark) is used to apply an acid-resistant coating to the equipment, thereby preventing corrosion of the equipment in the atmosphere transfer chamber.
  • Patent Document 1 a technique is proposed in which an airflow is formed in the load lock module to remove deposits on the processed wafer, and then the processed wafer is carried out to the atmospheric transfer chamber.
  • Patent Document 1 since the time during which a wafer stays in the load lock module is extremely limited in consideration of the throughput, even if an air flow is formed in the load lock module in such a short time, the processed wafer is processed. It is difficult to effectively remove the deposits on the top.
  • An object of one aspect of the present invention is to provide a transfer mechanism, a transfer method, and a processing system capable of preventing the generation of acid gas when a processed wafer is transferred into an atmospheric transfer chamber.
  • a transport mechanism that is disposed in an atmospheric transport chamber and transports an object to be processed has at least one joint, and the joint is pivoted.
  • a transfer arm that is movable, a pick that is attached to the tip of the transfer arm and that mounts the object to be processed, and that is attached to the transfer arm and covers the object to be processed that is placed on the pick.
  • a transport mechanism including a movable lid and a gas supply unit that supplies dry air or inert gas into the lid.
  • a transport method for transporting an object to be processed using a transport mechanism disposed in an atmospheric transport chamber wherein the transport mechanism includes at least A transfer arm that has one joint and is movable around the joint; a pick that is attached to the tip of the transfer arm and places a workpiece; and is attached to the transfer arm and the pick A lid that is movable so as to cover the object to be processed placed thereon, and a gas supply unit that supplies dry air or inert gas into the lid, and loads the processed object to be processed A step of moving the lid to a position covering the upper surface of the object to be processed on the pick, and a step of supplying dry air or an inert gas into the lid when taking out from the lock module into the atmospheric transfer chamber; Including Conveying method is provided.
  • a processing chamber for processing an object to be processed, a load lock chamber, and an atmospheric transfer chamber are disposed and processed in the processing chamber.
  • a transfer mechanism that takes out the object to be processed from the load lock chamber and transfers the object to be transferred into the atmospheric transfer chamber, the transfer mechanism having at least one joint portion, and a transfer arm movable around the joint portion;
  • a pick that is attached to the tip of the transfer arm and places the object to be processed;
  • a lid that is attached to the transfer arm and is movable to cover the object to be processed that is placed on the pick;
  • a gas supply unit that supplies dry air or an inert gas into the lid.
  • generation of acidic gas can be prevented when a processed wafer is transferred into the atmospheric transfer chamber.
  • FIG. 1 is an overall configuration diagram of a processing system according to an embodiment.
  • FIG. 3 is a diagram illustrating the configuration and operation of a transport mechanism according to an embodiment. The perspective view which showed the cover body and gas supply part which concern on one Embodiment.
  • Explanatory drawing of operation movement at the time of the wafer carrying in to the atmospheric transfer chamber which concerns on one Embodiment.
  • Explanatory drawing of operation at the time of wafer loading into storage according to one embodiment 6 is a flowchart showing wafer transfer processing from a load lock module to a FOUP according to an embodiment.
  • FIG. 6 is an experimental diagram for examining the time lapse of the residual ion amount of a processed wafer according to an embodiment. The graph which shows the experimental result of the time passage of the residual ion amount which concerns on one Embodiment.
  • a single wafer processing system is constructed in which semiconductor wafers (hereinafter referred to as wafers) W, which are objects to be processed, are conveyed one by one and subjected to predetermined plasma processing.
  • wafers semiconductor wafers
  • the processing system 2 includes a substantially hexagonal transfer module (TM) 20, two process modules (PM) 30 a and 30 b disposed on one vertical side surface of the transfer module 20, and the other vertical side surface of the transfer module 20.
  • Two process modules 30c, 30d arranged, two load lock modules (LLM) 40a, 40b arranged on the lower slope of the transfer module 20, and load lock modules 40a, 40b on the opposite side of the transfer module 20
  • an atmospheric transfer chamber 50 connected thereto.
  • the process modules 30a to 30d include stages 31a to 31d for placing a wafer in the vacuum processing chamber, electrodes for plasma generation (not shown), and processing of hydrogen bromide (HBr) gas or the like in the vacuum processing chamber. And a processing gas supply unit (not shown) for supplying gas.
  • plasma is generated from the processing gas by applying high-frequency power to the electrodes, and the wafer W is subjected to plasma processing such as etching processing or film formation processing by the generated plasma.
  • the generation of acid gas from the wafer W can be suitably prevented by applying it to the wafer W plasma-treated with a halogen-based gas such as hydrogen bromide (HBr) gas. it can.
  • a halogen-based gas such as hydrogen bromide (HBr) gas.
  • the generation of acid gas from the wafer W can be suitably prevented by applying it to the wafer W plasma-treated with a sulfur-based gas.
  • process gases include bromide (Br) gas systems such as hydrogen bromide (HBr) gas, chlorine (Cl) gas systems such as chlorine (Cl 2 ) gas, and fluorine such as tetrafluoromethane (CF 4 ).
  • F gas system, sulfur hexafluoride (SF 6) or the like of the sulfur (S) gas systems include carbonyl sulfide (COS) gas.
  • Gate valves G1, G2, G3, and G4 are provided at a connecting portion between the transfer module 20 and the process modules 30a to 30d.
  • the transfer module 20 is provided with a transfer arm unit 21 including two SCARA arm type transfer arms in a vacuum transfer chamber.
  • the transfer arm unit 21 moves along the guide rail 22 disposed in the transfer module 20 so as to transfer the wafer W to the process modules 30a to 30d and the load lock modules 40a and 40b via the transfer module 20. It has become.
  • Gate valves G5 and G6 are provided at a connecting portion between the transfer module 20 and the load lock modules 40a and 40b.
  • the load lock modules 40a and 40b are provided with stages 41a and 41b for mounting wafers.
  • the load lock modules 40a and 40b switch the internal pressure between a predetermined vacuum atmosphere and an air atmosphere using, for example, nitrogen (N2) gas, and transfer the wafer W from the vacuum space to the air space or from the air space to the vacuum space.
  • N2 nitrogen
  • the atmospheric transfer chamber 50 is formed in a box shape whose longitudinal direction is the longitudinal direction.
  • Load lock modules 40a and 40b are connected to one side surface in the longitudinal direction of the atmospheric transfer chamber 50, and three FOUP (Front-Opening Unified Pod) mounting tables 70a, 70b and 70c are connected to the other side surface.
  • Gate valves G7 and G8 are provided at a connecting portion between the load lock modules 40a and 40b and the atmospheric transfer chamber 50.
  • a transfer mechanism 151 is arranged in the atmospheric transfer chamber 50.
  • the transfer mechanism 151 includes a guide rail 152, a support base 153, and a transfer arm 154, and transfers the wafer in the atmospheric transfer chamber 50.
  • the guide rail 152 is disposed in the longitudinal direction in the atmospheric transfer chamber 50.
  • the support base 153 supports the transfer arm 154 and slides on the guide rail 152 in the longitudinal direction.
  • the transfer arm 154 has a joint portion, and can rotate around the joint portion.
  • the three arm portions 154a, 154b, and 154c are connected by two joint portions, and can be rotated about each joint portion.
  • a pick P for mounting the wafer W is attached to the tip of the transfer arm 154.
  • any number of joint portions of the transfer arm 154 may be used as long as at least one joint portion is provided.
  • the pick P at the distal end is moved by rotating the arm portion around the joint portion as an axis.
  • the present invention is not limited thereto, and the pick at the distal end portion is expanded and contracted by using the joint portion as a starting point. P may be moved.
  • a lid C capable of covering the wafer W placed on the pick P is further attached to the transfer arm 154 according to the present embodiment.
  • the lid C is attached to a joint portion of the transport arm 154 and is rotatable about the joint portion.
  • the lid C can be moved to a position above the wafer W on the pick P to cover the wafer W.
  • the lid C is moved to the position above the wafer W on the pick P by rotating the lid C around the joint, but the present invention is not limited to this.
  • the lid C may be moved to a position above the wafer W on the pick P by expanding and contracting the arm portion of the lid C.
  • the atmospheric transfer chamber 50 is provided with a storage 160 for temporarily storing the processed wafers W.
  • the storage 160 is provided with a wafer storage unit 161 that can store a plurality of wafers W in a shelf shape.
  • An exhaust pipe (not shown) is connected to the floor surface of the storage 160, and the exhaust pipe is connected to a factory exhaust system equipped with a detoxifying device. As a result, the acid gas generated from the temporarily stored wafer W is exhausted to the factory exhaust system through the exhaust pipe together with the cleaning air flowing into the storage 160.
  • the wafer W is returned to one of the FOUPs (Front-Opening Unified Pod) placed on the FOUP mounting tables 70a, 70b, and 70c.
  • the FOUP mounting tables 70a, 70b, and 70c are tables on which a FOUP that is a transport container capable of storing, for example, 25 wafers W in a shelf shape.
  • the processed wafer W on the pick P is transferred from the load lock module 40a or the load lock module 40b to the storage 160 by sliding the support base 153 using the guide rail 152. During the transfer, the processed wafer W is held in a state of being covered by the lid C. Further, while the processed wafer W on the pick P is transported from the storage 160 to any one of the FOUP mounting tables 70a, 70b, and 70c by the sliding of the support table 153, the processed wafer W is covered with the cover C. It is conveyed in the state where it was done.
  • an orienter (ORT) 71 for aligning the position of the wafer W carried into the atmospheric transfer chamber 50 from the FOUP mounting tables 70a, 70b, 70c is also arranged.
  • the control device 100 controls each part attached to the processing system 2, for example, the drive timing of the support base 153, the transfer arm 154, and the cover C of the transfer mechanism 151, the opening and closing of the gate valves G1 to G8, the supply timing of dry air, and the like. To do.
  • the control device 100 is also connected to a host computer (not shown) or the like, and transmits / receives desired data to / from the host computer.
  • the control device 100 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory) (not shown), and the CPU performs plasma processing according to various recipes stored in these storage areas.
  • the recipe includes process time, process chamber temperature, pressure (gas exhaust), high frequency power and voltage, various process gas flow rates, heat transfer gas flow rates, transfer timing, etc., which are process module control information for process conditions. .
  • the FOUP storing the wafer W from the outside is mounted on, for example, the FOUP mounting table 70a.
  • the lid of the FOUP is removed, and the unprocessed wafer W is taken out by the transfer arm 154 through the wafer carry-in / out port and loaded into the atmospheric transfer chamber 50.
  • the unprocessed wafer W is transferred to the orienter 71 through the atmospheric transfer chamber 50, and the position of the wafer W is aligned by the orienter 71.
  • the wafer W positioned from the orienter 71 is taken out by the transfer arm 154.
  • the wafer W is transferred from the orienter 71 to the load lock module (for example, the load lock module 40a) by sliding the support base 153.
  • the load lock module for example, the load lock module 40a
  • the transfer arm 154 places a pick in the load lock module 40a and places the unprocessed wafer W on the wafer placement table 41a.
  • the transfer arm unit 21 of the transfer module 20 takes out the unprocessed wafer W on the wafer mounting table 41 a and loads it into the transfer module 20.
  • the unprocessed wafer W is transferred to, for example, the process module 30a through the transfer module 20, and is subjected to plasma processing such as etching processing or film formation processing by plasma CVD (Chemical Vapor Deposition) in the process module 30a.
  • plasma processing such as etching processing or film formation processing by plasma CVD (Chemical Vapor Deposition) in the process module 30a.
  • the transfer arm unit 21 takes out the processed wafer W from the process module 30a, transfers it to the load lock module (for example, the load lock module 40b), and places it on the stage 41b of the load lock module 40b. Subsequently, an inert gas such as nitrogen (N 2 ) gas is allowed to flow into the load lock module 40b, and the load lock module 40b is switched from a vacuum atmosphere to an air atmosphere. Thereafter, the gate valve G8 is opened, and the processed wafer W is taken out from the load lock module 40b by the transfer arm 154 and transferred to the storage 160. The processed wafer W is temporarily stored in the storage 160, the gas generated from the wafer W is exhausted to the factory exhaust system, and then taken out by the transfer arm 154 and returned to the FOUP.
  • N 2 nitrogen
  • FIG. 2 is a diagram illustrating the configuration and operation of the transport mechanism according to the present embodiment
  • FIG. 3 is a perspective view illustrating the lid and the gas supply unit according to the present embodiment.
  • the upper side of FIG. 2 shows the side surface of the transport mechanism 151 in the state SA.
  • the transfer mechanism 151 includes a transfer arm 154 (arm portions 154a, 154b, 154c), and transfers the wafer W.
  • the transfer arm 154 has a multi-joint, and the arm portions 154a, 154b, and 154c are rotatable about each joint portion as an axis.
  • the transport mechanism 151 has three joint portions ma, mb, and mc.
  • the arm portion 154a of the transport arm 154 is supported by the support base 153 via the joint portion ma, and is rotatable about the joint portion ma.
  • the arm part 154b is connected to the arm part 154a via the joint part mb.
  • the arm part 154b can rotate around the joint part mb.
  • two arm portions 154c1 are connected to the arm portion 154b in parallel in the vertical direction via a joint portion mc.
  • Picks P1 and P2 are attached to the tips of the two arms 154c1, respectively, and the wafer W is placed on each pick.
  • the two arm portions 154c1 can rotate independently about the joint portion mc as an axis.
  • the wafer W is placed on the pick P1, but the wafer W may be placed on the pick P2.
  • the unprocessed wafer W is always placed on the other of the picks P1 and P2, and the processed wafer W is not picked up. It is not placed on both P1 and pick P2.
  • an arm portion 154c2 is connected to the upper portion of the two arm portions 154c1 in parallel with the vertical direction.
  • a lid C is attached to the tip of the arm 154c2.
  • the arm portion 154c2 can be rotated independently of the two picks P1 and P2 with the joint portion mc as an axis, and the arm portion 154c2 is placed on one of the picks by the lid C by rotating the arm portion 154c2.
  • a lid can be placed on the processed wafer W.
  • a state SA in FIG. 2 shows a state in which the arm portion 154c2 and the lid body C are raised, the pick P1 is moved, and the wafer W can be unloaded or loaded.
  • the state SB in the lower diagram of FIG. 2 shows a state in which the arm portion 154c2 and the lid C are lowered and the wafer W on the pick P1 is covered with the lid C.
  • the arm portion 154c2 and the lid C are lowered to the position where the wafer W on the pick P1 is covered with the lid C.
  • the processed wafer W is placed on the pick P2. If it is, the arm portion 154c2 and the lid C are further lowered to a position where the wafer W on the pick P2 is covered with the lid C.
  • the lid C has a lid shape in which a ring-shaped member is attached to the edge of a disk-shaped member having a diameter slightly larger than the diameter of the wafer W.
  • the lid C is provided with a gas introduction pipe 155 that penetrates the lid C at the center position.
  • the gas introduction pipe 155 is connected to a gas supply source (not shown) and is a part of a gas supply unit that supplies an inert gas such as dry air (air not containing moisture) or nitrogen (N 2 ) gas into the lid C. It is.
  • the gas supply unit blows dry air or an inert gas toward the upper surface of the wafer W placed on the pick.
  • the gas introduction pipe 155 is not limited to a mode of penetrating the lid C at the center position of the lid C, and may be constituted by a plurality of pipes connected to a plurality of through holes provided in the lid C, for example. Good.
  • the gas supply method by a gas supply part is not necessarily restricted to the gas introduction pipe 155, For example, the gas path formed in the inside of the member which comprises the cover body C may be sufficient.
  • the cover C that can be rotated and raised is attached to the structure of the normal transfer arm, and the cover W can cover the wafer W. I did it.
  • a gas supply unit is provided in the lid C so that dry air or inert gas can be supplied into the lid C.
  • FIG. 4 is an operation explanatory diagram when the processed wafer W is carried into the atmospheric transfer chamber from the load lock module.
  • FIG. 5 is an operation explanatory diagram when the processed wafer W is carried into the storage from the atmospheric transfer chamber.
  • FIG. 6 shows a flowchart when the wafer W is transferred along the path. Each operation of the flowchart is controlled by the control device 100. 4 to 6, the pick P1 or the pick P2 on which the processed wafer W is placed is represented by the pick P.
  • FIG. 4 the pick P1 or the pick P2 on which the processed wafer W is placed is represented by the pick P.
  • step S60 the control device 100 puts the pick P in the load lock module (here, the load lock module 40b), and the processed process in the load lock module 40b is completed.
  • the wafer W is placed on the pick P.
  • the lid C is retracted to the atmosphere transfer chamber 50 side.
  • step S61 the control device 100 pulls the processed wafer W from the load lock module 40b by pulling the pick P from the load lock module 40b to the atmospheric transfer chamber 50 side.
  • the pick C is rotated from the load lock module 40b toward the atmospheric transfer chamber 50 and simultaneously the cover C is rotated so that the pick P comes out of the load lock module 40b.
  • the lid C is moved to above the pick P.
  • step S62 the control device 100 lowers the lid C and covers the processed wafer W on the pick P.
  • the position C of the lid C relative to the wafer W on the pick P before the lid C is lowered is shown in the state SA in FIG. 2, and the position of the lid C relative to the wafer W on the pick P after the lid C is lowered. Is shown in the state SB of FIG.
  • step S63 the control device 100 supplies dry air into the lid C and purges the inside of the lid C.
  • the control device 100 slides the transport mechanism 151 to the storage 160 in step S64.
  • the conveyance state at that time is shown from state SF in FIG. 5 to state SG in FIG.
  • step S65 the control apparatus 100 raises the lid C and positions the lid C above the processed wafer W on the pick P.
  • the position of the lid C relative to the wafer W on the pick P before raising the lid C is shown in the state SB of FIG. 2, and the position of the lid C relative to the wafer W on the pick P after raising the lid C Is shown in state SA of FIG.
  • step S66 the control device 100 stops the supply of dry air and stops the purging of the lid C.
  • control device 100 stores the processed wafer W in the storage 160 and stores the wafer W in the temporary storage 160 in step S67.
  • the acid gas generated from the temporarily stored wafer W is exhausted to the factory exhaust system through the exhaust pipe together with the cleaning air flowing into the storage 160.
  • step S68 the control device 100 takes out the processed wafer W stored in the storage 160 again, transports it to the FOUP mounting table, and stores it in the FOUP.
  • a state SH in FIG. 5 shows a state in which the processed wafer W taken out from the storage 160 is being transferred to the FOUP mounting table by the transfer mechanism 151. Dry air is blown onto the wafer W even in the FOUP.
  • start timing of the process of supplying the dry air into the cover body C performed in step S63 may be before the process of lowering the cover body C in step S62. Further, after the temporary storage in the storage in step S67, it is preferable to purge the cover C similarly when the wafer W is transferred from the storage 160 to the FOUP mounting table 70 in step S68.
  • FIG. 7 is a simplified configuration diagram of an experimental apparatus for examining the elapsed time of the residual ion amount of the processed wafer according to the present embodiment.
  • FIG. 8 is a graph showing experimental results over time of the residual ion amount according to the present embodiment.
  • HBr hydrogen bromide
  • HCl hydrogen chloride
  • TiCl 4 titanium tetrachloride
  • a bromide (Br) gas system such as hydrogen bromide (HBr) gas, a chlorine (Cl) gas system such as chlorine (Cl 2 ) gas, and tetrafluoromethane (CF 4 ) and other fluorine (F) gas systems, sulfur (S) gas systems such as sulfur hexafluoride (SF 6 ), and carbonyl sulfide (COS) gas are used.
  • the transfer mechanism 151 the cover C that can be rotated and raised is attached to the configuration of the normal transfer arm so that the wafer W can be covered by the cover C. Further, a mechanism capable of supplying dry air or inert gas was provided in the lid C. According to this configuration, a chemical reaction between the residue of the processed wafer W and moisture is not generated during the transfer in the atmospheric transfer chamber 50 by the lid C and dry air (or inert gas). Further, the generation of acid gas in the atmospheric transfer chamber 50 can be prevented. As a result, acid-resistant materials and coatings are not required for the equipment in the atmospheric transfer chamber 50 and the equipment in the clean room, and the cost for countermeasures against corrosion can be reduced.
  • Secondary reaction (1) HBr + NH 3 ⁇ NH 4 Br Secondary reaction (2): HCl + NH 3 ⁇ NH 4 Cl Secondary reaction (3): HF + NH 3 ⁇ NH 4 F
  • the first term (HBr, HCl, HF) before the reactions in the secondary reactions (1) to (3) is an acidic gas generated in the primary reaction, and the second term (NH 3 ) is ammonia in the clean room. is there.
  • the post-reaction terms (NH 4 Br, NH 4 Cl, NH 4 F) in the secondary reactions (1) to (3) are halogenated ammonium.
  • the substances in the first and second terms before the reactions in the secondary reactions (1) to (3) are gases, but the substances after the reactions in the secondary reactions (1) to (3) are solid.
  • ammonium halide is a solid, which becomes a deposit and causes trouble.
  • the optical sensor becomes cloudy and functions as an optical sensor due to the adhesion of the optical sensor, or if the adhesion occurs on the wafer before processing, it is mounted on the process module. For example, when each part is driven by attaching the adherent to the movable parts or the parts of the transport system, the adherent is peeled off from the part to become particles.
  • FIG. 7 shows a simplified diagram of the experimental apparatus.
  • the experimental apparatus has a stage S, a lid C, a gas supply mechanism, and an exhaust mechanism.
  • the processed wafer W is placed on the stage S.
  • the wafer W on the stage S is covered with a lid C on the upper side and the periphery.
  • a purge gas of N 2 or air (Air) is supplied into the lid C, and the gas is exhausted from below the stage S.
  • FIG. 8 shows the experimental results.
  • the horizontal axis of the graph in FIG. 8 indicates the processing time (minutes), and the vertical axis indicates the amount of residual ions (ng / cm 2 ) per unit area of the processed wafer.
  • the decrease characteristic per unit area of the amount of fluorine (F) remaining on the wafer W as the amount of residual ions is shown, but a wafer processed by using other halogen-based gas is also applicable. .
  • the broken line A in the graph shows the change in the amount of fluorine (F) remaining on the wafer W when purged with nitrogen (N 2 ) gas in the air atmosphere of FIG. 7, and the broken line B in the graph These show changes in the amount of fluorine (F) remaining on the wafer W when purging with air (Air) in the air atmosphere of FIG.
  • the amount of residual ions is most sharply reduced immediately after opening to the atmosphere.
  • the residue attached to the pattern formed on the wafer W the residue attached to the relatively flat pattern portion first reacts with moisture, and the residue attached to the deep pattern portion such as a groove or a hole. Reacts with moisture later than the flat residue. That is, the deposit on the shallow part of the pattern reacts with moisture at an earlier timing than the deposit on the deep part of the pattern. For this reason, normally, the amount of residual ions decreases most rapidly immediately after opening to the atmosphere due to the reaction between deposits and moisture in a shallow part of a pattern that remains in a relatively wide range, and the pattern that remains relatively locally remains deep. It is considered that the amount of residual ions gradually decreases due to the reaction between the deposits of the part and moisture.
  • the processed wafer W immediately after being unloaded from the load lock module is immediately after being released to the atmosphere, and the generation of acid gas is the highest. Therefore, in the transfer method using the transfer mechanism 151 according to the present embodiment, the processed wafer W immediately after being unloaded from the load lock module is covered with the lid C almost simultaneously with unloading, and purged with dry air or the like, Water is removed from the wafer W being transferred.
  • the wafer W is continuously covered with the lid C so that the oxidation is not performed in the transfer path from the load lock module to the storage.
  • the transfer mechanism 151 By operating the transfer mechanism 151 in this manner, the wafer W can be transferred to the storage without generating acidic gas, and the wafer W can be temporarily held in the storage.
  • the acidic gas generated from the wafer is exhausted by the purge gas that flows in, and the corrosive gas generated from the wafer W is removed from the wafer W.
  • the processed wafer W is covered with the cover C and purged with dry air or the like to remove moisture from the transported wafer W.
  • the wafer W can be transferred to the FOUP without generating an acidic gas, and the wafer W can be stored in the FOUP.
  • the generation of acid gas during the atmospheric transfer can be prevented by removing moisture from the transferred wafer W. . Further, since no acid gas is generated, there is no occurrence of residue adhesion due to ammonium halide, and there is no trouble associated with residue adhesion.
  • plasma etching and plasma CVD have been described as examples of the plasma processing executed in the plasma processing apparatus.
  • the transport mechanism, the transport method, and the processing system according to the present invention can be applied to ashing processing.
  • the processing apparatus according to the present invention is not limited to a plasma processing apparatus, and can be applied to a processing apparatus that does not use plasma such as thermal CVD.
  • the present invention relates to the generation of a titanium (Ti) / titanium nitride (TiN) film using titanium tetrachloride (TiCl 4 ) gas in metal CVD, or tungsten (W) using tungsten hexafluoride (WF 6 ) gas. ) It can be applied to a processing apparatus that executes a process using a halogen-based process gas such as film formation.
  • the object to be processed in the present invention is not limited to a semiconductor wafer, and is, for example, a large substrate for a flat panel display (FPD: Flat Panel Display), a substrate for an EL element, or a solar cell. Also good.
  • FPD Flat Panel Display
  • a substrate for an EL element or a solar cell. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 大気搬送室(50)に配置され、被処理体(W)を搬送する搬送機構(151)であって、少なくとも一つの関節部(ma,mb,mc)を有し、該関節部を軸として可動可能な搬送アーム(154)と、前記搬送アームの先端部に取り付けられ、被処理体を載置するピック(P)と、前記搬送アームに取り付けられ、前記ピック上に載置された被処理体を覆うことが可能な蓋体(C)と、前記蓋体内にドライエアーまたは不活性ガスを供給するガス供給部(155)と、を備えることを特徴とする搬送機構である。

Description

搬送機構、搬送方法及び処理システム
 本発明は、搬送機構、搬送方法及び処理システムに関する。
 エッチングや成膜等の処理は、処理室内のガスを真空引きし、真空雰囲気にて行われることが多い。真空処理室にて処理された処理済のウエハは、ロードロックモジュールから大気搬送室に搬送される。
 プロセスを行った後のウエハ上には、プロセス中に生成された反応生成物が残留物として残る場合がある。その状態で、処理済のウエハが大気搬送室に搬送されると、ウエハ上の残留物は、大気搬送室内の空気中の水分と化学反応を起こす。その結果、ウエハから酸性のガスが発生する。
 発生した酸性ガスは大気搬送室内の機器を腐食させる。このため、テフロン(登録商標)等の耐酸性材料を用いて機器に耐酸性コーティングを施し、これにより、大気搬送室内の機器の腐食を防止する腐食対策が提案されている。
 また、特許文献1では、ロードロックモジュール内に気流を形成して処理済のウエハ上の付着物を除去してから、処理済のウエハを大気搬送室に搬出する技術が提案されている。
特開2005-50852号公報
 しかしながら、塗装によるテフロン(登録商標)コーティング等、機器の腐食対策で使用される耐酸性材料及び耐酸性コーティングは、一般的に高価である。また、腐食対策が不要な装置と腐食対策が必要な装置とを共有したシステム設計が難しいこともコスト上の課題となっている。
 また、特許文献1では、ロードロックモジュール内にウエハが滞在する時間はスループットを考慮すると極めて限られているため、そのような短時間ではロードロックモジュール内に気流を形成しても処理済のウエハ上の付着物を効果的に除去するのは困難である。
 一側面によれば、大気搬送室内に処理済のウエハを搬送する際に酸性ガスの発生を防止することが可能な搬送機構、搬送方法及び処理システムを提供することを目的とする。
 上記課題を解決するために、本発明のある観点によれば、大気搬送室に配置され、被処理体を搬送する搬送機構であって、少なくとも一つの関節部を有し、該関節部を軸として可動可能な搬送アームと、前記搬送アームの先端部に取り付けられ、被処理体を載置するピックと、前記搬送アームに取り付けられ、前記ピック上に載置された被処理体を覆うように可動可能な蓋体と、前記蓋体内にドライエアーまたは不活性ガスを供給するガス供給部と、を備えることを特徴とする搬送機構が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、大気搬送室に配置された搬送機構を用いて被処理体を搬送する搬送方法であって、前記搬送機構は、少なくとも一つの関節部を有し、該関節部を軸として可動可能な搬送アームと、前記搬送アームの先端部に取り付けられ、被処理体を載置するピックと、前記搬送アームに取り付けられ、前記ピック上に載置された被処理体を覆うように可動可能な蓋体と、前記蓋体内にドライエアーまたは不活性ガスを供給するガス供給部と、を有し、処理済の被処理体をロードロックモジュールから前記大気搬送室内に取り出す際、前記ピック上の被処理体の上面を覆う位置まで前記蓋体を可動させるステップと、前記蓋体内にドライエアーまたは不活性ガスを供給するステップと、を含む搬送方法が提供される。
 また、上記課題を解決するために、本発明の別の観点によれば、被処理体を処理する処理室と、ロードロック室と、大気搬送室に配置され、前記処理室にて処理された被処理体を前記ロードロック室から取り出し、該大気搬送室内を搬送する搬送機構とを備え、前記搬送機構は、少なくとも一つの関節部を有し、該関節部を軸として可動可能な搬送アームと、前記搬送アームの先端部に取り付けられ、被処理体を載置するピックと、前記搬送アームに取り付けられ、前記ピック上に載置された被処理体を覆うように可動可能な蓋体と、前記蓋体内にドライエアーまたは不活性ガスを供給するガス供給部と、を有することを特徴とする処理システムが提供される。
 一態様によれば、大気搬送室内に処理済のウエハを搬送する際に酸性ガスの発生を防止することができる。
一実施形態に係る処理システムの全体構成図。 一実施形態に係る搬送機構の構成及び動作説明図。 一実施形態に係る蓋体及びガス供給部を示した斜視図。 一実施形態に係る大気搬送室へのウエハ搬入時の動作説明図。 一実施形態に係るストレージへのウエハ搬入時の動作説明図 一実施形態に係るロードロックモジュールからFOUPまでのウエハ搬送処理を示すフローチャート。 一実施形態に係る処理後のウエハの残留イオン量の時間経過を調べる実験図。 一実施形態に係る残留イオン量の時間経過の実験結果を示すグラフ。
 2               処理システム
 20              トランスファモジュール(TM)
 30a、30b、30c、30d プロセスモジュール(PM)
 40a、40b         ロードロックモジュール(LLM)
 50              大気搬送室
 70a、70b、70c     FOUP載置台
 100             制御装置
 151             搬送機構
 153             支持台
 154             搬送アーム
 154a、154b、154c  腕部
 154             搬送アーム
 155             ガス供給部
 160             ストレージ
 c               蓋体
 ma、mb、mc        関節部
 P、P1、P2         ピック
 以下に添付図面を参照しながら、本発明の実施形態について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 [処理システムの全体構成]
 まず、本発明の一実施形態に係る処理システムの全体構成について、図1を参照しながら説明する。図1の処理システム2では、被処理体である半導体ウエハ(以下、ウエハという。)Wを一枚ずつ搬送して所定のプラズマ処理を施す枚葉式の処理システムが構築される。
 処理システム2は、略6角形のトランスファモジュール(TM)20と、トランスファモジュール20の一方の縦側面に配置された2つのプロセスモジュール(PM)30a,30bと、トランスファモジュール20の他方の縦側面に配置された2つのプロセスモジュール30c,30dと、トランスファモジュール20の下側斜面に配置された2つのロードロックモジュール(LLM)40a、40bと、トランスファモジュール20と反対側でロードロックモジュール40a、40bに連結された大気搬送室50と、を有している。
 プロセスモジュール30a~30dは、真空処理室内にウエハを載置するためのステージ31a~31dと、プラズマ生成用の電極(図示せず)と、真空処理室内に臭化水素(HBr)ガス等の処理ガスを供給する処理ガス供給部(図示せず)と、を有している。プロセスモジュール30a~30dでは、電極に高周波電力を印加することにより処理ガスからプラズマを生成し、生成されたプラズマによりウエハWにエッチング処理や成膜処理等のプラズマ処理を施す。
 本実施形態に係る搬送方法では、臭化水素(HBr)ガス等のハロゲン系のガスによりプラズマ処理されたウエハWに適用することにより、好適にウエハWからの酸性ガスの発生を防止することができる。また、硫黄系のガスによりプラズマ処理されたウエハWに適用することによっても、好適にウエハWからの酸性ガスの発生を防止することができる。プロセスガスの一例としては、臭化水素(HBr)ガス等の臭化(Br)ガス系、塩素(Cl)ガス等の塩素(Cl)ガス系、四フッ化メタン(CF)等のフッ素(F)ガス系、六フッ化硫黄(SF)等の硫黄(S)ガス系、硫化カルボニル(COS)ガスが挙げられる。
 トランスファモジュール20とプロセスモジュール30a~30dとの連結部分には、ゲートバルブG1、G2、G3、G4が設けられている。トランスファモジュール20には、真空搬送室内に2つのスカラアームタイプの搬送アームからなる搬送アームユニット21が設けられている。搬送アームユニット21は、トランスファモジュール20内に配設されたガイドレール22に沿って移動し、トランスファモジュール20を介してプロセスモジュール30a~30dやロードロックモジュール40a、40bにウエハWを搬送するようになっている。トランスファモジュール20とロードロックモジュール40a、40bとの連結部分には、ゲートバルブG5、G6が設けられている。
 ロードロックモジュール40a、40bには、ウエハを載置するためのステージ41a、41bが設けられている。ロードロックモジュール40a、40bは、内部の圧力を所定の真空雰囲気と、例えば窒素(N2)ガスによる大気雰囲気との間で切り替え、ウエハWを真空空間から大気空間、又は大気空間から真空空間へ搬送する。
 大気搬送室50は、横方向が長手方向の箱状に形成されている。大気搬送室50の長手方向の一方の側面にはロードロックモジュール40a、40bが連結され、他方の側面には3つのFOUP(Front-Opening Unified Pod)載置台70a、70b、70cが連結されている。ロードロックモジュール40a、40bと大気搬送室50との連結部分には、ゲートバルブG7、G8が設けられている。
 大気搬送室50内には、搬送機構151が配置されている。搬送機構151は、ガイドレール152と支持台153と搬送アーム154とを有し、大気搬送室50内にてウエハを搬送する。ガイドレール152は、大気搬送室50内に長手方向に配置されている。支持台153は、搬送アーム154を支持し、ガイドレール152上を長手方向にスライド移動する。
 搬送アーム154は、関節部を有し、該関節部を軸として回転可能である。本実施形態に係る搬送アーム154では、3つの腕部分154a、154b、154cが2つの関節部により連結され、各関節部を軸として回転可能となっている。また、搬送アーム154の先端部には、ウエハWを載置するためのピックPが取り付けられている。
 なお、搬送アーム154の関節部は少なくとも一つ有していればいくつでもよい。また、本実施形態では、関節部を軸として腕部分を回転させることにより先端部のピックPを可動させるが、これに限らず、関節部を起点として腕部分を伸縮させることにより先端部のピックPを可動させてもよい。
 本実施形態に係る搬送アーム154には、更にピックP上に載置されたウエハWを覆うことが可能な蓋体Cが取り付けられている。蓋体Cは、搬送アーム154の関節部に取り付けられ、該関節部を軸として回転可能となっている。これにより、蓋体CをピックP上のウエハWの上方位置まで移動させ、ウエハWに蓋をすることができる。なお、本実施形態では、関節部を軸として蓋体Cを回転させることにより蓋体Cを、ピックP上のウエハWの上方位置まで移動させたが、これに限られず、例えば関節部を起点として蓋体Cの腕部分を伸縮させることにより蓋体Cを、ピックP上のウエハWの上方位置まで移動させてもよい。
 大気搬送室50には、処理済のウエハWを一時保管するストレージ160が設けられている。ストレージ160には、複数枚のウエハWを棚状に保管することができるウエハ保管部161が設けられている。ストレージ160の床面には、排気管(図示せず)が連結され、排気管は除害装置を備えた工場排気系に接続されている。これにより、一時保管されたウエハWから発生した酸性ガスは、ストレージ160に流入される洗浄空気とともに排気管を介して工場排気系へ排気される。
 ストレージ160にて一時保管された後、ウエハWはFOUP載置台70a、70b、70c上に置かれたいずれかのFOUP(Front-Opening Unified Pod)に戻される。FOUP載置台70a、70b、70cは、たとえば25枚のウエハWを棚状に収納可能な運搬容器であるFOUPを載置する台である。
 ピックP上の処理済のウエハWは、ガイドレール152を使用して支持台153をスライド移動させることによりロードロックモジュール40a又はロードロックモジュール40bからストレージ160まで搬送される。搬送中、処理済のウエハWは蓋体Cにより蓋をされた状態に保持される。また、支持台153の摺動によりピックP上の処理済のウエハWをストレージ160からFOUP載置台70a、70b、70cのいずれかまで搬送する間、処理済のウエハWは蓋体Cにより蓋をされた状態で搬送される。
 大気搬送室50には、また、FOUP載置台70a、70b、70cから大気搬送室50内に搬入されたウエハWの位置をアライメントするオリエンタ(ORT)71が配置されている。
 制御装置100は、処理システム2に取り付けられた各部、たとえば搬送機構151の支持台153や搬送アーム154や蓋体Cの駆動タイミング、ゲートバルブG1~G8の開閉、ドライエアーの供給タイミング等を制御する。制御装置100は、ホストコンピュータ(図示せず)等とも接続され、ホストコンピュータと所望のデータの送受信を行う。
 制御装置100は、図示しないCPU(Central Processing Unit),ROM(Read Only Memory)、RAM(Random Access Memory)を有し、CPUはこれらの記憶領域に格納された各種レシピに従ってプラズマ処理を行う。レシピにはプロセス条件に対するプロセスモジュールの制御情報であるプロセス時間、処理室内温度、圧力(ガスの排気)、高周波電力や電圧、各種プロセスガス流量、伝熱ガス流量、搬送タイミングなどが記載されている。
 かかる構成の処理システム2において、まず、外部からウエハWを収納したFOUPが例えばFOUP載置台70aに載置される。次に、FOUPの蓋が外され、ウエハ搬出入口を介して搬送アーム154により処理前のウエハWが取り出され、大気搬送室50内に搬入される。処理前のウエハWは、大気搬送室50内を通ってオリエンタ71に搬送され、オリエンタ71にてウエハWの位置のアライメントが行われる。続いて、搬送アーム154によりオリエンタ71から位置決めされたウエハWを取り出す。当該ウエハWは、支持台153をスライド移動させることにより、オリエンタ71からロードロックモジュール(例えば、ロードロックモジュール40a)に搬送される。
 続いて、搬送アーム154は、ロードロックモジュール40a内にピックを入れ、ウエハ載置台41aに処理前のウエハWを載置する。トランスファモジュール20の搬送アームユニット21は、ウエハ載置台41a上の処理前のウエハWを取り出し、トランスファモジュール20内に搬入する。処理前のウエハWは、トランスファモジュール20内を通って例えばプロセスモジュール30aに搬送され、プロセスモジュール30aにてエッチング処理やプラズマCVD(Chemical Vapor Deposition)による成膜処理等のプラズマ処理が施される。
 プラズマ処理後、搬送アームユニット21は、プロセスモジュール30aから処理済のウエハWを取り出し、ロードロックモジュール(例えば、ロードロックモジュール40b)まで搬送し、ロードロックモジュール40bのステージ41bに載置する。続いてロードロックモジュール40b内に窒素(N)ガス等の不活性ガスを流入させ、ロードロックモジュール40b内を真空雰囲気から大気雰囲気に切り替える。その後、ゲートバルブG8を開き、搬送アーム154によってロードロックモジュール40bから処理済のウエハWを取り出してストレージ160に搬送する。処理済のウエハWは、ストレージ160にて一時保管され、ウエハWから発生するガスを工場排気系へ排気してから、搬送アーム154により取り出され、FOUPに戻される。
 以上、本実施形態に係る処理システム2の全体構成及び動作について説明した。次に、搬送機構151の構成及び動作の詳細について、図2及び図3を参照しながら説明する。図2は、本実施形態に係る搬送機構の構成及び動作説明図であり、図3は、本実施形態に係る蓋体及びガス供給部を示した斜視図である。
 [搬送機構の詳細]
 図2の上図に状態SAの搬送機構151の側面を示す。搬送機構151は搬送アーム154(腕部154a、154b、154c)を有し、ウエハWの搬送を行う。前述のように、搬送アーム154は多関節であり、各関節部を軸として腕部154a、154b、154cが回転可能となっている。搬送機構151は、3つの関節部ma、mb、mcを有する。搬送アーム154の腕部154aは、関節部maを介して支持台153に支持され、関節部maを軸として回転可能である。更に、腕部154aには、関節部mbを介して腕部154bが連結されている。腕部154bは、関節部mbを軸として回転可能である。
 さらに、腕部154bには、関節部mcを介して2本の腕部154c1が鉛直方向に並行に連結されている。2本腕部154c1の先端には、それぞれピックP1及びピックP2が取り付けられ、それぞれのピックにウエハWを載置するようになっている。2本の腕部154c1は、関節部mcを軸としてそれぞれ独立して回転可能である。図2の状態SAでは、ピックP1にウエハWが載置されているが、ピックP2にウエハWが載置されていてもよい。ただし、ピックP1又はピックP2の一方に処理済のウエハWが載置されている場合、ピックP1又はピックP2の他方には必ず未処理のウエハWが載置され、処理済のウエハWはピックP1及びピックP2の両方に同時に載置されない。
 さらに、2本の腕部154c1の上部には、鉛直方向に並行して腕部154c2が連結されている。腕部154c2の先端には、蓋体Cが取り付けられている。腕部154c2は、関節部mcを軸として2本のピックP1,2と独立して回転可能であり、腕部154c2を回転させることによって、蓋体Cによって、いずれかのピック上に載置された処理済のウエハWの上に蓋をすることができる。
 また、ピックP1,2及び蓋体Cは、腕部154c1及び腕部154c2とともに、図示しない駆動機構を用いて上下に昇降可能である。図2の状態SAは、腕部154c2及び蓋体Cを上昇させ、ピックP1を可動させてウエハWを搬出又は搬入可能な状態を示す。図2の下図の状態SBは、腕部154c2及び蓋体Cを下降させ、ピックP1上のウエハWを蓋体Cにて覆った状態を示す。図2の状態SBでは、ピックP1上のウエハWを蓋体Cにて覆う位置まで腕部154c2及び蓋体Cを下降させているが、ピックP2上に処理済のウエハWが載置されている場合には、ピックP2上のウエハWを蓋体Cにて覆う位置まで更に腕部154c2及び蓋体Cを下降させる。
 図2及び図3に示したように、蓋体Cは、ウエハWの径より若干大きな径を有する円板状の部材の縁にリング状部材を取り付けた蓋状である。蓋体Cには、その中央位置にて蓋体Cを貫通するガス導入パイプ155が設けられている。ガス導入パイプ155は、図示しないガス供給源と接続され、蓋体C内にドライエアー(水分を含まない空気)または窒素(N)ガス等の不活性ガスを供給するガス供給部の一部である。ガス供給部は、ピック上に載置されたウエハWの上面に向けてドライエアーまたは不活性ガスを吹き付ける。なお、ガス導入パイプ155は、蓋体Cの中央位置にて蓋体Cを貫通する態様に限られず、例えば蓋体Cに設けられた複数の貫通孔と連結する複数のパイプから構成されてもよい。また、ガス供給部によるガス供給方法は、必ずしもガス導入パイプ155に限られず、例えば蓋体Cを構成する部材の内部に形成されたガス経路であってもよい。
 以上に詳細を説明したように、本実施形態に係る搬送機構151では、通常の搬送アームの構成に回動及び昇降可能な蓋体Cを取り付け、蓋体CによりウエハWをカバーすることができるようにした。また、蓋体Cにガス供給部を設け、蓋体C内にドライエアーまたは不活性ガスを供給可能にした。
 以下では、大気搬送室50内を搬送中、処理後のウエハWの残留物と水分との化学反応を発生させないようにするための搬送機構151の動作について説明する。
 [大気搬送室内のウエハ搬送]
 処理済のウエハWが、経路の一例であるロードロックモジュール40a→大気搬送室50→ストレージ160→大気搬送室50→FOUP載置台70aを搬送される様子を、図4~図6を参照しながら説明する。図4は、処理済のウエハWがロードロックモジュールから大気搬送室に搬入されるときの動作説明図である。図5は、処理済のウエハWが大気搬送室からストレージに搬入されるときの動作説明図である。図6は、前記経路をウエハWが搬送されるときのフローチャートを示す。フローチャートの各動作は、制御装置100により制御される。なお、図4~図6では、ピックP1又はピックP2のうち、処理済のウエハWを載置しているピックをピックPで表す。
 図6の搬送機構151による搬送処理が開始すると、ステップS60にて、制御装置100は、ロードロックモジュール(ここでは、ロードロックモジュール40b)にピックPを入れ、ロードロックモジュール40b内の処理済のウエハWをピックP上に置く。このとき、図4の状態SCに示したように、蓋体Cは、大気搬送室50側に退避している。
 次に、ステップS61にて、制御装置100は、ピックPをロードロックモジュール40bから大気搬送室50側に引くことにより、処理済のウエハWをロードロックモジュール40bから取り出す。その際、図4の状態SDに示したように、ピックPをロードロックモジュール40bから大気搬送室50側に引く動作と同時に蓋体Cを回転させて、ピックPがロードロックモジュール40bから出てくるとほぼ同時にピックPの上方まで蓋体Cを移動させる。
 その結果、図4の状態SEに示したように、処理済のウエハWがロードロックモジュール40bから取り出されたとき、蓋体CはピックP上のウエハWの上面を覆う位置に移動している。この状態で、ステップS62にて、制御装置100は、蓋体Cを下降させ、ピックP上の処理済のウエハWに蓋をする。蓋体Cを下降させる前のピックP上のウエハWに対する蓋体Cの位置を図2の状態SAに示し、蓋体Cを下降させた後のピックP上のウエハWに対する蓋体Cの位置を図2の状態SBに示す。
 次に、ステップS63にて、制御装置100は、ドライエアーを蓋体C内に供給し、蓋体C内をパージする。その状態で制御装置100は、ステップS64にて、ストレージ160まで搬送機構151をスライド移動させる。その際の搬送状態を、図5の状態SFから図5の状態SGに示す。
 次に、ステップS65にて、制御装置100は、蓋体Cを上昇させ、蓋体CをピックP上の処理済のウエハWの上方に位置させる。蓋体Cを上昇させる前のピックP上のウエハWに対する蓋体Cの位置を図2の状態SBに示し、蓋体Cを上昇させた後のピックP上のウエハWに対する蓋体Cの位置を図2の状態SAに示す。
 また、ステップS66にて、制御装置100は、ドライエアーの供給を停止し、蓋体Cのパージを止める。
 この状態で、制御装置100は、ステップS67にて、ストレージ160に処理済のウエハWを収納し、ウエハWを一時ストレージ160内に保管する。一時保管されたウエハWから発生した酸性ガスは、ストレージ160に流入される洗浄空気とともに排気管を介して工場排気系へ排気される。
 所定時間後、制御装置100は、ステップS68にて、ストレージ160に保管されていた処理済のウエハWを再び取り出し、FOUP載置台まで搬送し、FOUP内に保管する。図5の状態SHは、ストレージ160から取り出された処理済のウエハWを、搬送機構151によりFOUP載置台まで搬送している途中の状態を示す。FOUP内でもウエハWにはドライエアーを吹き付ける。
 なお、ステップS63で行われるドライエアーを蓋体C内に供給する処理の開始タイミングは、ステップS62の蓋体Cを下降させる処理の前であってもよい。また、ステップS67のストレージへの一時保管後、ステップS68にてストレージ160からFOUP載置台70へウエハWを搬送する際も同様に蓋体Cをパージすることが好ましい。
 [処理後のウエハの残留イオン量の時間経過]
 以上に説明した構成の搬送機構151による、処理済ウエハからの酸性ガスの発生抑制効果を立証するために、初めに酸性ガス発生のメカニズムを説明する。その後、処理後のウエハの残留イオン量の時間経過についての実験とその結果について、図7及び図8を参照しながら説明する。図7は、本実施形態に係る処理後のウエハの残留イオン量の時間経過を調べるための実験装置の簡略構成図である。図8は、本実施形態に係る残留イオン量の時間経過の実験結果を示すグラフである。
(酸性ガス発生のメカニズム)
 ここでは、酸性ガスが発生するメカニズムについて反応モデルを用いて説明する。シリコンのエッチングやメタル膜のエッチングでは、臭化水素(HBr)ガスや塩化水素(HCl)を用いる。また、CVDによりウエハW上にチタン膜を付ける成膜処理では、四塩化チタン(TiCl)ガスを用いる。このように、エッチング処理や成膜処理では、臭化水素(HBr)ガス等の臭化(Br)ガス系、塩素(Cl)ガス等の塩素(Cl)ガス系、四フッ化メタン(CF)等のフッ素(F)ガス系、六フッ化硫黄(SF)等の硫黄(S)ガス系、硫化カルボニル(COS)ガスが使用される。
 プロセス処理中に生成される残留物(SiBr等)は、その多くがプロセスモジュールから排気されるが、一部、プロセスモジュールから排気されずにウエハ上に形成されたホールや溝に付着物(残留物、残渣)として残ってしまう場合がある。ウエハ上に形成されたホールや溝に付着物は、空気中の水分と化学反応を起こす。これにより生じる一次反応及び二次反応について説明する。
(一次反応)
 一次反応の反応モデル例を以下に示す。
一次反応(1):SiBr+2HO→SiO+4HBr
一次反応(2):SiCl+2HO→SiO+4HCl
一次反応(3):SiF+2HO→SiO+4HF
 一次反応(1)~(3)の反応前の第一項(SiBr、SiCl、SiF)は、ウエハ上の残留物であり、ウエハ上に形成されたホールや溝に付着している。反応前の第二項(HO)は、空気中の水分である。一次反応(1)~(3)の反応後の第一項(SiO)は二酸化ケイ素であり、第二項(4HBr、4HCl、4HF)は、腐食性のある酸性ガスである。
 このように一次反応では、プロセス処理中に生成された残留物が空気中の水分と反応し、腐食性の酸性ガスが発生することがわかる。
 以上から、処理済のウエハWを大気中で搬送する際に、酸性ガスを発生させないためには、搬送中のウエハWから水分を排除することが重要であることがわかる。したがって、本実施形態に係る搬送機構151では、通常の搬送アームの構成に回動及び昇降可能な蓋体Cを取り付け、蓋体CによりウエハWをカバーすることができるようにした。また、蓋体C内にドライエアーまたは不活性ガスを供給可能な機構を設けた。かかる構成によれば、蓋体C及びドライエアー(または不活性ガス)によって大気搬送室50内を搬送中に処理後のウエハWの残留物と水分との化学反応を発生させないようにし、これにより、大気搬送室50内での酸性ガスの発生を防止することができる。この結果、大気搬送室50内の機器やクリーンルーム内の機器に対して耐酸性材料やコーティングが不要となり、腐食対策コストを低減させることができる。
 この結果、大気搬送室50内をはじめ、クリーンルーム環境への酸性ガスの放出をなくすことができ、腐食対策された機器がおかれたクリーンルームの床等の金属が錆びることを防止できる。
 更に、ウエハWの上面にプロセス中に発生した残留物が付着しているため、窒素(N)ガスまたはドライエアーはウエハWの上面に吹き付ける。これにより、大気搬送室50を搬送中の処理済ウエハW上の残留物と水分との化学反応をより効果的に発生させないようにすることができる。
(二次反応)
 次に、上記一次反応(1)~(3)の後に生じる二次反応(1)~(3)の反応モデル例を以下に示す。
二次反応(1):HBr+NH→NHBr
二次反応(2):HCl+NH→NHCl
二次反応(3):HF+NH→NH
 二次反応(1)~(3)の反応前の第一項(HBr、HCl、HF)は、一次反応で発生した酸性ガスであり、第二項(NH)は、クリーンルーム中のアンモニアである。二次反応(1)~(3)の反応後の項(NHBr、NHCl、NHF)は、ハロゲン系アンモニウムである。二次反応(1)~(3)の反応前の第一項及び第二項の物質は気体であるが、二次反応(1)~(3)の反応後の物質は固体である。
 このように二次反応では、酸性ガスがクリーンルーム中に漂うアンモニアの気体と反応し、ハロゲン化アンモニウムを生成する。ハロゲン化アンモニウムは固体であり、これが付着物となり、トラブルを発生させる。残留物の付着に伴うトラブルの一例としては、光学センサに付着物が付くことにより、光学部分がくもって光学センサとして機能しなくなる場合、処理前のウエハに付着物がつく場合、プロセスモジュールに装着された可動式パーツや搬送系のパーツに付着物が付くことにより各パーツが駆動する際にパーツから付着物が剥離してパーティクルとなる場合等が挙げられる。
 これに対して、本実施形態に係る搬送機構151では、酸性ガスが発生しないため、ハロゲン化アンモニウムによる残留物の付着の発生もなく、残留物の付着に伴う上記トラブルも発生しない。
(処理後のウエハの残留イオン量の時間経過についての実験)
 最後に、発明者により行われた、処理後のウエハの残留イオン量の時間経過の実験について説明する。図7には、実験装置の簡略図が示されている。実験装置は、ステージS、蓋体C、ガス供給機構、排気機構を有する。実験装置では、プロセス処理後のウエハWをステージS上に置く。ステージS上のウエハWは、蓋体Cで上方及び周縁部を覆われている。この状態で、N又はエアー(Air)のパージガスを蓋体C内に供給し、ステージSの下方からガスを排気する。
 上記実験装置を用いて、処理後のウエハの残留イオン量の時間経過について調べた。図8に実験結果を示す。図8のグラフの横軸は、処理時間(分)を示し、縦軸は、処理済のウエハの単位面積当たりの残留イオン量(ng/cm)を示す。ここでは、残留イオン量としてウエハWに残留しているフッ素(F)量の単位面積当たりの減少特性を示すが、他のハロゲン系のガスを用いてプロセス処理したウエハも同様に適用可能である。
 グラフ中のAの折れ線は、図7の大気雰囲気中にて窒素(N)ガスでパージした場合にウエハWに残留しているフッ素(F)量の変化を示し、グラフ中のBの折れ線は、図7の大気雰囲気中にてエアー(Air)でパージした場合にウエハWに残留しているフッ素(F)量の変化を示す。
 この結果を考察すると、大気雰囲気で窒素(N)ガスを封入すると、ウエハWが大気開放されず、ウエハWに残留しているフッ素(F)量と水分との反応がほとんど促進されない。このため、グラフ中のAの折れ線では、ウエハWに残留しているフッ素(F)量はほとんど減少しておらず、ハロゲン系ガスは放出されない。
 一方、大気雰囲気でエアー(Air)を封入すると、ウエハWが大気開放され、ウエハWの上面が水分に触れ、ウエハWに残留しているフッ素(F)量と水分との反応が促進される。このため、グラフ中のBの折れ線では、ウエハWに残留しているフッ素(F)量は減少し、ハロゲン系ガスが放出される。
 更に図8を考察すると、Bの折れ線(大気雰囲気でエアー(Air)ガスを封入した場合)では、大気開放した直後が最も残留イオン量の減り方が急峻である。これは、ウエハWに形成されたパターンに付着した残留物のうち、比較的平坦なパターン部分に付着した残留物から先に水分と反応し、溝やホール等の深いパターン部分に付着した残留物は平坦な部分の残留物より遅れて水分と反応する。つまり、パターンの浅い部分の付着物はパターンの深い部分の付着物より早いタイミングに水分と反応する。このため、通常、比較的広範囲に残留するパターンの浅い部分の付着物と水分との反応によって大気開放した直後が最も残留イオン量の減少が急峻になり、比較的局所的に残留するパターンの深い部分の付着物と水分との反応によって、その後なだらかに残留イオン量が減少すると考察される。
 以上の結果から、ロードロックモジュールから搬出した直後の処理済のウエハWは大気開放した直後であり、最も酸性ガスの発生が高いことが予想される。よって、本実施形態にかかる搬送機構151を用いた搬送方法では、ロードロックモジュールから搬出された直後の処理済のウエハWを搬出とほぼ同時に蓋体Cでカバーし、ドライエアー等でパージし、搬送中のウエハWから水分を排除する。
 また、ロードロックモジュールからストレージまでの搬送経路でも上記酸化が行われないようにウエハWを蓋体Cで引き続きカバーし続ける。このように搬送機構151を動作させることにより、ストレージまで酸性ガスを発生させずにウエハWを搬送し、そのウエハWをストレージに一時保持することができる。ストレージ内では流入させるパージガスによりウエハから発生する酸性ガスを排気して、ウエハWから発生する腐食性のガスをウエハWから取り除く。
 その後、ストレージから搬出されたウエハWをFOUPに搬送する際にも処理済のウエハWを蓋体Cでカバーし、ドライエアー等でパージすることにより、搬送中のウエハWから水分を排除する。これにより、FOUPまで酸性ガスを発生させずにウエハWを搬送し、そのウエハWをFOUPに収納することができる。
 以上、本実施形態によれば、処理済のウエハWを大気中で搬送する際に、搬送中のウエハWから水分を排除することにより、大気搬送中の酸性ガスの発生を防止することができる。また、酸性ガスが発生しないため、ハロゲン化アンモニウムによる残留物の付着の発生もなく、残留物の付着に伴うトラブルも発生しない。
 以上、添付図面を参照しながら本発明に係る搬送機構、搬送方法及び処理システムの好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明に係る搬送機構、搬送方法及び処理システムの技術的範囲に属するものと了解される。
 以上ではプラズマ処理装置で実行されるプラズマ処理としてプラズマエッチングやプラズマCVDを例に挙げて説明したが、本発明に係る搬送機構、搬送方法及び処理システムはアッシング処理にも適用可能である。例えば、エッチング処理後にアッシング処理が実行される場合、本発明を適用することにより、FOUPからロードロックモジュールへ処理済みウエハWの大気搬送過程において酸性ガスの発生を防止することができる。更に、本発明に係る処理装置は、プラズマ処理装置に限られず、熱CVD等のプラズマを用いない処理装置にも適用可能である。例えば、本発明は、メタルCVDにおいて四塩化チタン(TiCl)ガスを用いたチタン(Ti)/窒化チタン(TiN)膜の生成や、六フッ化タングステン(WF)ガスを用いたタングステン(W)膜の生成等、ハロゲン系のプロセスガスを使用したプロセスを実行する処理装置に適用可能である。
 また、本発明においてプラズマ処理を施される被処理体は、半導体ウエハに限られず、例えば、フラットパネルディスプレイ(FPD:Flat Panel Display)用の大型基板、EL素子又は太陽電池用の基板であってもよい。
 本国際出願は、2012年5月28日に出願された日本国特許出願2012-121033号に基づく優先権を主張するものであり、その全内容を本国際出願に援用する。

Claims (11)

  1.  大気搬送室に配置され、被処理体を搬送する搬送機構であって、
     少なくとも一つの関節部を有し、該関節部を軸として可動可能な搬送アームと、
     前記搬送アームの先端部に取り付けられ、被処理体を載置するピックと、
     前記搬送アームに取り付けられ、前記ピック上に載置された被処理体を覆うように可動可能な蓋体と、
     前記蓋体内にドライエアーまたは不活性ガスを供給するガス供給部と、
     を備えることを特徴とする搬送機構。
  2.  前記ガス供給部は、
     前記ピック上に載置された被処理体の上面に向けてドライエアーまたは不活性ガスを吹き付けることを特徴とする請求項1に記載の搬送機構。
  3.  前記蓋体は、
     前記搬送アームの関節部に取り付けられ、該関節部を軸として可動可能であることを特徴とする請求項1に記載の搬送機構。
  4.  前記ピックを用いて処理済の被処理体をロードロックモジュールから前記大気搬送室内に取り出す際、前記関節部を軸として蓋体を前記処理済の被処理体の上方の位置まで回転させることを特徴とする請求項1に記載の搬送機構。
  5.  前記蓋体は、
     前記ピック上の被処理体の上方に位置した後、下降して前記処理済の被処理体に蓋をすることを特徴とする請求項4に記載の搬送機構。
  6.  前記搬送アームを支持し、摺動可能な支持台を更に備え、
     前記支持台の摺動により前記ピック上の処理済の被処理体を前記ロードロックモジュールから処理済の被処理体を一時保管するストレージまで前記大気搬送室内を搬送中、前記蓋体により前記処理済の被処理体に蓋をすることを特徴とする請求項5に記載の搬送機構。
  7.  前記ピックを用いて処理済の被処理体を前記ストレージから再び前記大気搬送室に取り出す際、前記蓋体により前記処理済の被処理体に再び蓋をすることを特徴とする請求項6に記載の搬送機構。
  8.  前記支持台の摺動により前記ピック上の処理済の被処理体を前記ストレージからFOUP載置台まで前記大気搬送室内を搬送中、前記蓋体により前記処理済の被処理体に蓋をすることを特徴とする請求項7に記載の搬送機構。
  9.  前記処理済の被処理体は、
     ハロゲン系のガス又は硫黄系のガスにより処理された被処理体であることを特徴とする請求項8に記載の搬送機構。
  10.  大気搬送室に配置された搬送機構を用いて被処理体を搬送する搬送方法であって、
     前記搬送機構は、
     少なくとも一つの関節部を有し、該関節部を軸として可動可能な搬送アームと、
     前記搬送アームの先端部に取り付けられ、被処理体を載置するピックと、
     前記搬送アームに取り付けられ、前記ピック上に載置された被処理体を覆うように可動可能な蓋体と、
     前記蓋体内にドライエアーまたは不活性ガスを供給するガス供給部と、を有し、
     処理済の被処理体をロードロックモジュールから前記大気搬送室内に取り出す際、前記ピック上の被処理体の上面を覆う位置まで前記蓋体を可動させるステップと、
     前記蓋体内にドライエアーまたは不活性ガスを供給するステップと、
     を含む搬送方法。
  11.  被処理体を処理する処理室と、
     ロードロック室と、
     大気搬送室に配置され、前記処理室にて処理された被処理体を前記ロードロック室から取り出し、該大気搬送室内を搬送する搬送機構とを備え、
     前記搬送機構は、
     少なくとも一つの関節部を有し、該関節部を軸として可動可能な搬送アームと、
     前記搬送アームの先端部に取り付けられ、被処理体を載置するピックと、
     前記搬送アームに取り付けられ、前記ピック上に載置された被処理体を覆うように可動可能な蓋体と、
     前記蓋体内にドライエアーまたは不活性ガスを供給するガス供給部と、
     を有することを特徴とする処理システム。
PCT/JP2013/063673 2012-05-28 2013-05-16 搬送機構、搬送方法及び処理システム WO2013179904A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-121033 2012-05-28
JP2012121033A JP2013247283A (ja) 2012-05-28 2012-05-28 搬送機構、搬送方法及び処理システム

Publications (1)

Publication Number Publication Date
WO2013179904A1 true WO2013179904A1 (ja) 2013-12-05

Family

ID=49673107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063673 WO2013179904A1 (ja) 2012-05-28 2013-05-16 搬送機構、搬送方法及び処理システム

Country Status (2)

Country Link
JP (1) JP2013247283A (ja)
WO (1) WO2013179904A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019155842A1 (ja) * 2018-02-06 2019-08-15 ローツェ株式会社 薄板状基板保持装置、及び保持装置を備える搬送ロボット
CN110335838A (zh) * 2019-07-05 2019-10-15 北京北方华创微电子装备有限公司 传输装置、传输腔室及防止机械手腐蚀的方法
WO2020012669A1 (ja) * 2018-07-13 2020-01-16 ローツェ株式会社 局所パージ機能を有する搬送装置
US11107722B2 (en) * 2017-05-11 2021-08-31 Rorze Corporation Thin-plate substrate holding finger and transfer robot provided with said finger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597765B2 (ja) * 2017-12-20 2019-10-30 シンフォニアテクノロジー株式会社 Efem
US11139183B2 (en) * 2018-05-24 2021-10-05 Taiwan Semiconductor Manufacturing Co., Ltd. Systems and methods for dry wafer transport
JP7061031B2 (ja) * 2018-06-28 2022-04-27 株式会社日立ハイテク 半導体ワーク搬送装置
JP2023006718A (ja) 2021-06-30 2023-01-18 株式会社荏原製作所 搬送装置、および基板処理装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243741A (ja) * 1990-09-24 1992-08-31 Machine Technol Inc ウエファ−移送方法と装置
JPH09330972A (ja) * 1996-06-13 1997-12-22 Dainippon Screen Mfg Co Ltd 基板搬送装置
JP2001308005A (ja) * 2000-02-16 2001-11-02 Tokyo Electron Ltd 基板処理方法及び基板処理装置
JP2003092335A (ja) * 2001-09-18 2003-03-28 Toshiba Corp 基板搬送装置、これを用いた基板処理装置および基板処理方法
JP2003282666A (ja) * 2002-03-25 2003-10-03 Dainippon Screen Mfg Co Ltd 基板搬送装置および基板処理装置
JP2008053550A (ja) * 2006-08-25 2008-03-06 Tokyo Electron Ltd 基板処理装置、基板処理方法及び記憶媒体
JP2008258188A (ja) * 2007-03-30 2008-10-23 Tokyo Electron Ltd 基板処理装置、基板処理方法及び記憶媒体
JP2009170740A (ja) * 2008-01-18 2009-07-30 Rorze Corp 搬送装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243741A (ja) * 1990-09-24 1992-08-31 Machine Technol Inc ウエファ−移送方法と装置
JPH09330972A (ja) * 1996-06-13 1997-12-22 Dainippon Screen Mfg Co Ltd 基板搬送装置
JP2001308005A (ja) * 2000-02-16 2001-11-02 Tokyo Electron Ltd 基板処理方法及び基板処理装置
JP2003092335A (ja) * 2001-09-18 2003-03-28 Toshiba Corp 基板搬送装置、これを用いた基板処理装置および基板処理方法
JP2003282666A (ja) * 2002-03-25 2003-10-03 Dainippon Screen Mfg Co Ltd 基板搬送装置および基板処理装置
JP2008053550A (ja) * 2006-08-25 2008-03-06 Tokyo Electron Ltd 基板処理装置、基板処理方法及び記憶媒体
JP2008258188A (ja) * 2007-03-30 2008-10-23 Tokyo Electron Ltd 基板処理装置、基板処理方法及び記憶媒体
JP2009170740A (ja) * 2008-01-18 2009-07-30 Rorze Corp 搬送装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107722B2 (en) * 2017-05-11 2021-08-31 Rorze Corporation Thin-plate substrate holding finger and transfer robot provided with said finger
JP2019140130A (ja) * 2018-02-06 2019-08-22 ローツェ株式会社 薄板状基板保持装置、及び保持装置を備える搬送ロボット
TWI776016B (zh) * 2018-02-06 2022-09-01 日商樂華股份有限公司 薄板狀基板保持裝置及具備保持裝置之搬送機器人
WO2019155842A1 (ja) * 2018-02-06 2019-08-15 ローツェ株式会社 薄板状基板保持装置、及び保持装置を備える搬送ロボット
JP7037379B2 (ja) 2018-02-06 2022-03-16 ローツェ株式会社 薄板状基板保持装置、及び保持装置を備える搬送ロボット
CN111727500A (zh) * 2018-02-06 2020-09-29 日商乐华股份有限公司 薄板状衬底保持装置以及具有保持装置的运送机器人
US11227784B2 (en) 2018-02-06 2022-01-18 Rorze Corporation Thin plate substrate-holding device and transfer robot provided with this holding device
EP3734651A4 (en) * 2018-02-06 2021-08-25 Rorze Corporation HOLDING DEVICE FOR THIN PLATE-SHAPED SUBSTRATES AND A HOLDING DEVICE EQUIPPED WITH A TRANSPORT ROBOT
WO2020012669A1 (ja) * 2018-07-13 2020-01-16 ローツェ株式会社 局所パージ機能を有する搬送装置
CN112424923A (zh) * 2018-07-13 2021-02-26 日商乐华股份有限公司 具有局部清洗功能的运送装置
JP2020013814A (ja) * 2018-07-13 2020-01-23 ローツェ株式会社 局所パージ機能を有する搬送装置
JP7136612B2 (ja) 2018-07-13 2022-09-13 ローツェ株式会社 局所パージ機能を有する搬送装置
CN110335838A (zh) * 2019-07-05 2019-10-15 北京北方华创微电子装备有限公司 传输装置、传输腔室及防止机械手腐蚀的方法

Also Published As

Publication number Publication date
JP2013247283A (ja) 2013-12-09

Similar Documents

Publication Publication Date Title
WO2013179904A1 (ja) 搬送機構、搬送方法及び処理システム
US20200035470A1 (en) Focus ring replacement method and plasma processing system
JP3247270B2 (ja) 処理装置及びドライクリーニング方法
US9818633B2 (en) Equipment front end module for transferring wafers and method of transferring wafers
US7736942B2 (en) Substrate processing apparatus, substrate processing method and storage medium
WO2015194380A1 (ja) 基板処理システム及び基板処理方法
US20080045030A1 (en) Substrate processing method, substrate processing system and storage medium
KR20140123479A (ko) 기판 수용 용기의 퍼지 장치 및 퍼지 방법
US11538706B2 (en) System and method for aligning a mask with a substrate
KR20230010799A (ko) 시스템 생산성을 개선하기 위한 플랫폼 아키텍처
CN112530800A (zh) 蚀刻方法和基板处理系统
JP2019197903A (ja) 処理装置
US20030191551A1 (en) Substrate processing system and method
US20220051921A1 (en) Method for mask and substrate alignment
WO2017022086A1 (ja) 半導体装置の製造方法、エッチング方法、及び基板処理装置並びに記録媒体
JP2009263764A (ja) 半導体製造装置及び半導体装置の製造方法
US20220199398A1 (en) Vapor deposition method and vapor deposition device
JPH02320A (ja) 処理装置及び方法
US9275884B2 (en) Systems and methods for inhibiting oxide growth in substrate handler vacuum chambers
JPH0786187A (ja) マルチチャンバー処理装置のクリーニング方法
TW202319127A (zh) 用於斜角處理的整合濕法清潔
KR20240007263A (ko) 후면 입자들을 감소시키기 위한 챔버 프로세스들
US20220364228A1 (en) Cleaning method and substrate processing apparatus
JP3200460B2 (ja) 成膜処理装置
JPH02319A (ja) 処理装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797144

Country of ref document: EP

Kind code of ref document: A1