WO2013172316A1 - 改質グラフェンライク炭素材料の製造方法、改質グラフェンライク炭素材料、及び改質グラフェンライク炭素材料を含む樹脂複合材料 - Google Patents

改質グラフェンライク炭素材料の製造方法、改質グラフェンライク炭素材料、及び改質グラフェンライク炭素材料を含む樹脂複合材料 Download PDF

Info

Publication number
WO2013172316A1
WO2013172316A1 PCT/JP2013/063344 JP2013063344W WO2013172316A1 WO 2013172316 A1 WO2013172316 A1 WO 2013172316A1 JP 2013063344 W JP2013063344 W JP 2013063344W WO 2013172316 A1 WO2013172316 A1 WO 2013172316A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
graphene
modified
modified graphene
hydroxyl group
Prior art date
Application number
PCT/JP2013/063344
Other languages
English (en)
French (fr)
Inventor
和田 拓也
坪川 紀夫
Original Assignee
積水化学工業株式会社
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社, 国立大学法人新潟大学 filed Critical 積水化学工業株式会社
Priority to EP13790270.6A priority Critical patent/EP2851341B1/en
Priority to CN201380011296.0A priority patent/CN104136369A/zh
Priority to JP2013526653A priority patent/JP5364866B1/ja
Priority to KR1020147015229A priority patent/KR101922755B1/ko
Priority to US14/386,955 priority patent/US9688594B2/en
Publication of WO2013172316A1 publication Critical patent/WO2013172316A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/54Ortho- or ortho- and peri-condensed systems containing more than five condensed rings

Definitions

  • the present invention relates to a method for producing a modified graphene-like carbon material into which a hydroxyl group is introduced, a modified graphene-like carbon material, and a resin composite material containing the modified graphene-like carbon material.
  • Graphite is a laminate in which exfoliated graphite is laminated.
  • a graphene-like carbon material such as exfoliated graphite or graphene having a smaller number of layers than graphite can be obtained. Since graphene-like carbon materials are excellent in conductivity and thermal conductivity, they are expected to be applied to conductive materials and thermal conductive materials.
  • Patent Document 1 discloses a modified carbon material in which a fragment obtained by radical decomposition of an azo radical polymerization initiator containing a carboxyl group is added to a carbon material having a graphene sheet structure.
  • the main object of the present invention is to provide a modified graphene-like carbon material having a hydroxyl group introduced therein.
  • the graphene-like carbon material and hydrogen peroxide are reacted to introduce a hydroxyl group into the graphene-like carbon material.
  • a hydroxyl group is introduced into the graphene-like carbon material in the presence of an iron catalyst.
  • the modified graphene-like carbon material of the present invention can be obtained by the above production method.
  • the modified graphene-like carbon material of the present invention has a hydroxyl group amount of 0.3 mmol / g to 10.0 mmol / g as measured by a quantitative method using 2,2′-diphenyl-1-picrylhydrazyl. is there.
  • the amount of carboxyl groups as measured by a quantitative method using NaHCO 3 is 1.0 mmol / g or less.
  • the resin composite material of the present invention is obtained by dispersing the modified graphene-like carbon material of the present invention in a resin.
  • a modified graphene-like carbon material into which a hydroxyl group has been introduced can be provided.
  • modified graphene-like carbon material manufacturing method the modified graphene-like carbon material, and the resin composite material including the modified graphene-like carbon material according to the present invention will be described in detail.
  • a hydroxyl group is introduced into the graphene-like carbon material by reacting the graphene-like carbon material with hydrogen peroxide.
  • the modified graphene-like carbon material of the present invention is obtained by introducing a hydroxyl group into a graphene-like carbon material that is a raw material.
  • Graphene-like carbon material refers to graphene or exfoliated graphite.
  • exfoliated graphite is a laminate of graphene sheets composed of one layer of graphene.
  • Exfoliated graphite is a laminate of graphene sheets that is thinner than the original graphite.
  • the number of graphene sheets laminated in exfoliated graphite is 2 or more, and usually 200 or less.
  • the exfoliated graphite is commercially available and can be produced by a conventionally known method. Exfoliated graphite can be obtained, for example, by exfoliating graphite.
  • Exfoliated graphite is, for example, a chemical treatment method in which ions such as nitrate ions are inserted between graphite layers, a heat treatment method, a physical treatment method such as applying ultrasonic waves to graphite, and electrolysis using graphite as a working electrode. It can be obtained by a method such as an electrochemical method.
  • Graphene-like carbon material has a shape with a large aspect ratio. Therefore, if the modified graphene-like carbon material is uniformly dispersed in the resin composite material described later, the reinforcing effect against the external force applied in the direction intersecting the laminated surface of the graphene-like carbon material can be effectively enhanced. Note that if the aspect ratio of the modified graphene-like carbon material is too small, the reinforcing effect against external force applied in the direction intersecting the laminated surface may not be sufficient. If the aspect ratio of the modified graphene-like carbon material is too large, the effect may be saturated and a further reinforcing effect may not be expected. Therefore, the aspect ratio of the graphene-like carbon material is preferably 50 or more, and more preferably 100 or more.
  • the aspect ratio of the graphene-like carbon material is preferably 5000 or less.
  • the aspect ratio of the graphene-like carbon material refers to the ratio of the maximum dimension in the stacking surface direction of the graphene-like carbon material to the thickness of the graphene-like carbon material.
  • the average particle size of the graphene-like carbon material is preferably about 1 ⁇ m to 5 ⁇ m, and more preferably about 3 ⁇ m to 5 ⁇ m.
  • the reaction between the graphene-like carbon material and hydrogen peroxide can be performed, for example, by mixing the graphene-like carbon material and hydrogen peroxide water.
  • the concentration of hydrogen peroxide in the hydrogen peroxide water can be about 10 mass% to 27 mass%.
  • the reaction temperature can be about 0 ° C. to 50 ° C.
  • the reaction time can be about 0.5 to 48 hours.
  • the reaction between the graphene-like carbon material and hydrogen peroxide may be performed in the air or in the presence of an inert gas such as argon or nitrogen.
  • the reaction between the graphene-like carbon material and hydrogen peroxide is preferably performed in the presence of an iron catalyst.
  • an iron catalyst examples include a method using a Fenton reagent (Fenton reagent).
  • the Fenton reagent is an aqueous solution of hydrogen peroxide and an iron catalyst (divalent iron ion).
  • the reaction between the graphene-like carbon material and hydrogen peroxide is more preferably performed by using a Fenton reagent. Thereby, the introduction of a hydroxyl group into the graphene-like carbon material can be performed more efficiently.
  • a modified graphene-like carbon material in which a hydroxyl group is introduced into a graphene-like carbon material is obtained by reacting the graphene-like carbon material with hydrogen peroxide.
  • modified graphene-like carbon material The modified graphene-like carbon material according to the present invention can be produced, for example, by the above-described method for producing a modified graphene-like carbon material according to the present invention.
  • the modified graphene-like carbon material according to the present invention is obtained by introducing a hydroxyl group into a graphene-like carbon material.
  • the modified graphene-like carbon material has a hydroxyl group amount of 0.3 mmol / g to 10.0 mmol / g as measured by a quantitative method using 2,2′-diphenyl-1-picrylhydrazyl.
  • the modified graphene-like carbon material preferably has a carboxyl group amount of 1.0 mmol / g or less as measured by a quantitative method using NaHCO 3 .
  • the aspect ratio of the modified graphene-like carbon material is the same as the aspect ratio of the graphene-like carbon material.
  • the average particle size of the modified graphene-like carbon material is the same as the average particle size of the graphene-like carbon material.
  • the number of stacked graphene sheets of the modified graphene-like carbon material is the same as the number of stacked graphene sheets of exfoliated graphite.
  • the resin composite material of the present invention is obtained by dispersing the modified graphene-like carbon material of the present invention in a resin.
  • the resin composite material preferably contains about 0.01 to 40 parts by mass, more preferably about 0.1 to 20 parts by mass of the modified graphene-like carbon material with respect to 100 parts by mass of the resin. . Thereby, the mechanical strength of the resin composite material can be effectively increased.
  • Resins include thermoplastic resins and thermosetting resins.
  • a thermoplastic resin is preferable.
  • thermoplastic resin is not particularly limited, and a known thermoplastic resin can be used.
  • specific examples of the thermoplastic resin include polyolefin, polystyrene, polyacrylate, polyacrylonitrile, polyester, polyamide, polyurethane, polyethersulfone, polyetherketone, polyimide, polydimethylsiloxane, and at least two kinds of these copolymers. Is mentioned.
  • the thermoplastic resin contained in the resin composite material may be one type or two or more types.
  • thermoplastic resin polyolefin is preferable.
  • Polyolefin is inexpensive and easy to mold under heating. For this reason, by using polyolefin as the thermoplastic resin, the manufacturing cost of the resin composite material can be reduced, and the resin composite material can be easily molded.
  • polystyrene resin examples include polyethylene, polypropylene, ethylene homopolymer, ethylene- ⁇ -olefin copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer, ethylene-acetic acid.
  • Polyethylene resins such as vinyl copolymers, propylene homopolymers, propylene- ⁇ -olefin copolymers, polypropylene resins such as propylene-ethylene random copolymers, propylene-ethylene block copolymers, butene homopolymers, Examples thereof include homopolymers or copolymers of conjugated dienes such as butadiene and isoprene.
  • a polypropylene resin is particularly preferable.
  • the amount of hydroxyl group measured by a quantitative method using 2,2′-diphenyl-1-picrylhydrazyl is 0.3 mmol / g to A modified graphene-like carbon material of 10.0 mmol / g can be easily produced. Since such a modified graphene-like carbon material has many hydroxyl groups introduced therein, it has a high affinity with a polar solvent and can be uniformly dispersed in the polar solvent. In addition, a hydroxyl group in the modified graphene-like carbon material can be used to form a urethane bond with a compound having an isocyanate group.
  • the graphite sheet having a density of 0.7 obtained as described above was cut into a size of 5 cm ⁇ 5 cm to obtain a graphite sheet as an electrode material.
  • two slits were formed by cutting with a cutter knife so that the length of the slit was 1 cm.
  • An electrode made of Pt was inserted into the graphite sheet on which the two slits were formed.
  • the graphite sheet thus prepared was immersed in a 60 wt% aqueous nitric acid solution as a working electrode (anode) together with a reference electrode (cathode) made of Pt and a reference electrode made of Ag / AgCl.
  • the graphite sheet portion from the lower end of the 5 cm ⁇ 5 cm graphite sheet to a position 4 cm high was immersed in the nitric acid aqueous solution, and the upper portion of the graphite sheet was not immersed in the nitric acid aqueous solution.
  • a DC voltage was applied to perform electrochemical treatment. In this way, the portion of the original graphite sheet used as the working electrode that was immersed in the aqueous nitric acid solution was used as expanded graphite.
  • the obtained expanded graphite was dried at a low temperature, cut into 1 cm squares, one of which was placed in a carbon crucible and subjected to electromagnetic induction heat treatment.
  • the induction heating device MU1700D manufactured by SK Medical Co., Ltd. was used, and the current was 14 A so that the maximum temperature reached 550 ° C. in an argon gas atmosphere.
  • the expanded graphite was exfoliated by electromagnetic induction heating, and the specific surface area of the obtained exfoliated graphite powder was measured using nitrogen gas with Shimadzu Corporation's specific surface area measuring device ASAP-2000. Showed a specific surface area of 640 m 2 / g.
  • Example 1 In the atmosphere, 0.5 g of exfoliated graphite obtained as described above, 2.8 ml of concentrated sulfuric acid, and 150 ml of pure water were added to a four-necked flask equipped with a nitrogen introduction tube, a thermometer, and two dropping funnels. The inside of the flask was replaced with nitrogen gas. Hydrogen peroxide water (27%) was added to one dropping funnel, and 27.8 g FeSO 4 / 7H 2 O, 5.6 ml concentrated sulfuric acid, and 57 ml pure water were added to the other dropping funnel.
  • the amount of hydroxyl group as measured by a quantitative method using 2,2′-diphenyl-1-picrylhydrazyl was 0.39 mmol / g. Further, when the amount of the carboxyl group was measured by a quantification method of the carboxyl group using NaHCO 3 , the carboxyl group was negligibly small.
  • the amount of hydroxyl group introduced was 0.28 mmol / g as measured by a quantitative method using 2,2′-diphenyl-1-picrylhydrazyl of the modified graphene-like carbon material into which a hydroxyl group was introduced.
  • the amount of carboxyl groups was measured by a quantification method of carboxyl groups using NaHCO 3 , the amount of carboxyl groups was 1.52 mmol / g.

Abstract

 水酸基が導入された改質グラフェンライク炭素材料を提供する。 グラフェンライク炭素材料と過酸化水素とを反応させて、グラフェンライク炭素材料に水酸基を導入する。

Description

改質グラフェンライク炭素材料の製造方法、改質グラフェンライク炭素材料、及び改質グラフェンライク炭素材料を含む樹脂複合材料
 本発明は、水酸基が導入された改質グラフェンライク炭素材料の製造方法、改質グラフェンライク炭素材料、及び改質グラフェンライク炭素材料を含む樹脂複合材料に関する。
 黒鉛は、薄片化黒鉛が積層されてなる積層体である。黒鉛を剥離することで、黒鉛よりも積層数が少ない薄片化黒鉛やグラフェンなどのグラフェンライク炭素材料が得られる。グラフェンライク炭素材料は、導電性や熱伝導性に優れるため、導電性材料や熱伝導性材料などへの応用が期待されている。
 また、グラフェンライク炭素材料と樹脂などとを複合化して、樹脂複合材料とすることも行われている。グラフェンライク炭素材料と樹脂との親和性を向上することなどを目的として、グラフェンライク炭素材料を改質することが知られている。例えば、特許文献1には、カルボキシル基を含有するアゾ系ラジカル重合開始剤をラジカル分解して得られたフラグメントが、グラフェンシート構造を有する炭素材料に付加された変性炭素材料が開示されている。
特開2007-169112号公報
 このような状況下、新規な改質グラフェンライク炭素材料が求められている。
 本発明の主な目的は、水酸基が導入された改質グラフェンライク炭素材料を提供することにある。
 本発明の改質グラフェンライク炭素材料の製造方法では、グラフェンライク炭素材料と過酸化水素とを反応させて、グラフェンライク炭素材料に水酸基を導入する。
 本発明の改質グラフェンライク炭素材料の製造方法のある特定の局面では、グラフェンライク炭素材料への水酸基の導入を鉄触媒の存在下に行う。
 本発明の改質グラフェンライク炭素材料は、上記の製造方法によって得られる。
 本発明の改質グラフェンライク炭素材料は、2,2’-ジフェニル-1-ピクリルヒドラジルを用いた定量法で測定したときの水酸基の量が0.3mmol/g~10.0mmol/gである。
 本発明の改質グラフェンライク炭素材料のある特定の局面では、NaHCOを用いた定量法で測定したときのカルボキシル基の量が、1.0mmol/g以下である。
 本発明の樹脂複合材料は、本発明の改質グラフェンライク炭素材料が樹脂中に分散されてなる。
 本発明によれば、水酸基が導入された改質グラフェンライク炭素材料を提供することができる。
 以下、本発明に係る改質グラフェンライク炭素材料の製造方法、改質グラフェンライク炭素材料、及び改質グラフェンライク炭素材料を含む樹脂複合材料の詳細を説明する。
 (グラフェンライク炭素材料の製造方法)
 本発明に係るグラフェンライク炭素材料の製造方法では、グラフェンライク炭素材料と過酸化水素とを反応させて、グラフェンライク炭素材料に水酸基を導入する。本発明の改質グラフェンライク炭素材料は、原料であるグラフェンライク炭素材料に水酸基が導入されたものである。
 グラフェンライク炭素材料とは、グラフェンまたは薄片化黒鉛をいう。本発明において、薄片化黒鉛とは、1層のグラフェンにより構成されたグラフェンシートの積層体である。薄片化黒鉛は、元の黒鉛よりも薄い、グラフェンシートの積層体である。薄片化黒鉛におけるグラフェンシートの積層数は、2以上であり、通常、200以下である。薄片化黒鉛は、市販品が入手可能であり、従来公知の方法により製造することもできる。薄片化黒鉛は、例えば、黒鉛を剥離処理することなどにより得られる。薄片化黒鉛は、例えば、黒鉛の層間に硝酸イオンなどのイオンを挿入した後に加熱処理する化学的処理方法、黒鉛に超音波を印加するなどの物理的処理方法、黒鉛を作用極として電気分解を行う電気化学的方法などの方法により得られる。
 グラフェンライク炭素材料は、アスペクト比の大きい形状を有する。そのため、後述の樹脂複合材料において、改質グラフェンライク炭素材料が均一に分散されていると、グラフェンライク炭素材料の積層面に交差する方向に加わる外力に対する補強効果を効果的に高められる。なお、改質グラフェンライク炭素材料のアスペクト比が小さすぎると、積層面に交差する方向に加わった外力に対する補強効果が充分でないことがある。改質グラフェンライク炭素材料のアスペクト比が大きすぎると、効果が飽和してそれ以上の補強効果を望めないことがある。よって、グラフェンライク炭素材料のアスペクト比は、50以上であることが好ましく、100以上であることがより好ましい。また、グラフェンライク炭素材料のアスペクト比は、5000以下であることが好ましい。なお、本発明においてグラフェンライク炭素材料のアスペクト比とは、グラフェンライク炭素材料の厚みに対するグラフェンライク炭素材料の積層面方向における最大寸法の比をいう。
 樹脂複合材料の機械的強度を高めるためには、グラフェンライク炭素材料の平均粒子径は、1μm~5μm程度であることが好ましく、3μm~5μm程度であることがより好ましい。
 グラフェンライク炭素材料と過酸化水素との反応は、例えば、グラフェンライク炭素材料と過酸化水素水とを混合することにより行うことができる。過酸化水素水中の過酸化水素の濃度は、10質量%~27質量%程度とすることができる。また、反応温度は、0℃~50℃程度とすることができる。反応時間は、0.5時間~48時間程度とすることができる。グラフェンライク炭素材料と過酸化水素との反応は、大気下で行ってもよいし、アルゴンや窒素などの不活性ガスの存在下で行ってもよい。
 グラフェンライク炭素材料と過酸化水素との反応は、鉄触媒の存在下に行うことが好ましい。これにより、グラフェンライク炭素材料への水酸基の導入を効率的に行うことができる。鉄触媒の存在下にグラフェンライク炭素材料と過酸化水素との反応を行う方法としては、例えば、フェントン試薬(Fenton試薬)を用いる方法が挙げられる。なお、フェントン試薬とは、過酸化水素と鉄触媒(2価の鉄イオン)の水溶液である。グラフェンライク炭素材料と過酸化水素との反応は、フェントン試薬を用いることにより行うことがより好ましい。これにより、グラフェンライク炭素材料への水酸基の導入をより効率的に行うことができる。
 以上のように、グラフェンライク炭素材料と過酸化水素とを反応させることにより、グラフェンライク炭素材料に水酸基が導入された、改質グラフェンライク炭素材料が得られる。
 (改質グラフェンライク炭素材料)
 本発明に係る改質グラフェンライク炭素材料は、例えば、上記の本発明に係る改質グラフェンライク炭素材料の製造方法によって製造することができる。
 本発明に係る改質グラフェンライク炭素材料は、グラフェンライク炭素材料に水酸基が導入されたものである。改質グラフェンライク炭素材料は、2,2’-ジフェニル-1-ピクリルヒドラジルを用いた定量法で測定したときの水酸基の量が、0.3mmol/g~10.0mmol/gである。改質グラフェンライク炭素材料と極性溶媒との親和性を高めるためには、改質グラフェンライク炭素材料を2,2’-ジフェニル-1-ピクリルヒドラジルを用いた定量法で測定したときの水酸基の量が、0.3mmol/g~5.0mmol/g程度であることが好ましく、0.35mmol/g~3.0mmol/g程度であることがより好ましい。
 改質グラフェンライク炭素材料は、NaHCOを用いた定量法で測定したときのカルボキシル基の量が、1.0mmol/g以下であることが好ましい。
 改質グラフェンライク炭素材料のアスペクト比は、上記のグラフェンライク炭素材料のアスペクト比と同様である。改質グラフェンライク炭素材料の平均粒子径は、上記のグラフェンライク炭素材料の平均粒子径と同様である。改質グラフェンライク炭素材料のグラフェンシートの積層数は、上記の薄片化黒鉛のグラフェンシートの積層数と同様である。
 (樹脂複合材料)
 本発明の樹脂複合材料は、本発明の改質グラフェンライク炭素材料が樹脂中に分散されてなる。
 樹脂複合材料は、樹脂100質量部に対して、改質グラフェンライク炭素材料を0.01質量部~40質量部程度含むことが好ましく、0.1質量部~20質量部程度含むことがより好ましい。これにより、樹脂複合材料の機械的強度を効果的に高めることができる。
 樹脂としては、熱可塑性樹脂及び熱硬化性樹脂が挙げられる。樹脂としては、熱可塑性樹脂が好ましい。
 熱可塑性樹脂としては、特に限定されず、公知の熱可塑性樹脂を用いることができる。熱可塑性樹脂の具体例としては、ポリオレフィン、ポリスチレン、ポリアクリレート、ポリアクリロニトリル、ポリエステル、ポリアミド、ポリウレタン、ポリエーテルスルホン、ポリエーテルケトン、ポリイミド、ポリジメチルシロキサン、これらのうち少なくとも2種の共重合体などが挙げられる。樹脂複合材料に含まれる熱可塑性樹脂は、1種類であってもよいし、2種類以上であってもよい。
 熱可塑性樹脂としては、ポリオレフィンが好ましい。ポリオレフィンは安価であり、加熱下の成形が容易である。このため、熱可塑性樹脂としてポリオレフィンを用いることにより、樹脂複合材料の製造コストを低減でき、樹脂複合材料を容易に成形することができる。
 ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、エチレン単独重合体、エチレン-α-オレフィン共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体などのポリエチレン系樹脂、プロピレン単独重合体、プロピレン-α-オレフィン共重合体、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体などのポリプロピレン系樹脂、ブテン単独重合体、ブタジエン、イソプレンなどの共役ジエンの単独重合体または共重合体などが挙げられる。熱可塑性樹脂としては、ポリプロピレン系樹脂が特に好ましい。
 従来、グラフェンライク炭素材料に対して、多くの水酸基を選択的に導入することは非常に困難であった。例えば、混酸(硝酸と硫酸との混合液)処理といった方法によって水酸基を導入する方法も存在するが、そのような方法では、水酸基と共にカルボキシル基も多量に導入されてしまうという問題がある。
 これに対して、本発明の製造方法によれば、例えば、2,2’-ジフェニル-1-ピクリルヒドラジルを用いた定量法で測定したときの水酸基の量が、0.3mmol/g~10.0mmol/gである改質グラフェンライク炭素材料を簡便に製造することができる。このような改質グラフェンライク炭素材料は、多くの水酸基が導入されているため、極性溶媒との親和性が高く、極性溶媒中に均一に分散させることができる。また、改質グラフェンライク炭素材料中の水酸基を利用して、イソシアネート基を有する化合物とウレタン結合を形成することができる。
 以下、本発明を具体的に実施例及び比較例を挙げることにより、本発明を明らかにする。なお、本発明は以下の実施例に限定されない。
 (薄片化黒鉛の製造)
 原料の黒鉛シートとして東洋炭素社製、品番:PF100-UHPを用意した。この黒鉛シートと同じ製法で、圧延処理時の圧延倍率を下げて密度0.7、厚み1mmの低密度黒鉛シートを用意した。
 上記のようにして得られた密度0.7の黒鉛シートを5cm×5cmの大きさに切断し、電極材料としての黒鉛シートを得た。この黒鉛シートに、2本のスリットを、スリットの長さが1cmとなるようにカッターナイフにより切削し、形成した。上記2本のスリットが形成された黒鉛シートに、Ptからなる電極を挿入した。このようにして用意した黒鉛シートを作用極(陽極)として、Ptからなる対照極(陰極)及び、Ag/AgClからなる参照極とともに60重量%濃度の硝酸水溶液中に浸漬した。浸漬に際しては、5cm×5cmの黒鉛シートの下端から4cmの高さの位置までの黒鉛シート部分を硝酸水溶液中に浸漬し、黒鉛シートの上方部分は硝酸水溶液中に浸漬させなかった。直流電圧を印加し電気化学処理を行った。このようにして、作用極として用いたもとの黒鉛シートの内、硝酸水溶液中に浸漬されていた部分を膨張化黒鉛とした。
 次に、得られた膨張化黒鉛を低温で乾燥し、1cm角に切断し、その1つをカーボンるつぼに入れて電磁誘導加熱処理を行った。誘導加熱装置はSKメディカル社製MU1700Dを用い、アルゴンガス雰囲気下で最高到達温度550℃となるように14Aの電流量で行った。電磁誘導加熱により膨張化黒鉛は薄片化され、得られた薄片化黒鉛の粉末を島津製作所(株)の比表面積測定装置ASAP-2000で窒素ガスを用いて比表面積を測定したところ、1回測定で640m/gの比表面積を示した。
 上記のようにして得た薄片化黒鉛を以下の実施例1及び比較例1で用いた。
 (実施例1)
 大気中において、窒素導入管、温度計と2つの滴下ロートを取り付けた四つ口フラスコに、上記のようにして得た薄片化黒鉛0.5g、濃硫酸2.8ml、純水150mlを加え、フラスコ内を窒素ガスで置換した。一方の滴下ロートに過酸化水素水(27%)を、他方の滴下ロートに、FeSO/7HO27.8g、濃硫酸5.6ml、純水57mlを加えた。氷水浴で四つ口フラスコを冷却しながら、二つの滴下ロートから過酸化水素水とFeSO溶液とを滴下すると、反応液の温度が急激に上昇したため、反応液の温度が20℃を超えないように滴下速度を調整しながら約30分にわたって滴下した。その後、反応液を20℃に保ちながら、48時間反応させた。反応後、反応液を水酸化ナトリウムで中和し、濾過により水酸基が導入された改質グラフェンライク炭素材料を得た。水酸基が導入された改質グラフェンライク炭素材料について、2,2’-ジフェニル-1-ピクリルヒドラジルを用いた定量法で測定したときの水酸基の量は、0.39mmol/gであった。また、NaHCOを用いたカルボキシル基の定量法によりカルボキシル基の量を測定したところ、カルボキシル基は無視できるほど少なかった。
 (比較例1)
 還流冷却器を取り付けた100mlナス型フラスコにスターラーバー、上記のようにして得た薄片化黒鉛0.2g、混酸(HNO/HSO=1/3(v/v))50mlを加え、マグネチックスターラーでかき混ぜながら40℃で10時間反応させた。反応後、反応生成物を大量の純水に注いで、濾過し、濾液が中性になるまで洗浄して、水酸基が導入された改質グラフェンライク炭素材料を得た。水酸基が導入された改質グラフェンライク炭素材料の2,2’-ジフェニル-1-ピクリルヒドラジルを用いた定量法で測定したときの水酸基の導入量は、0.28mmol/gであった。NaHCOを用いたカルボキシル基の定量法によりカルボキシル基の量を測定したところ、カルボキシル基の量は、1.52mmol/gであった。

Claims (6)

  1.  グラフェンライク炭素材料と過酸化水素とを反応させて、前記グラフェンライク炭素材料に水酸基を導入する、改質グラフェンライク炭素材料の製造方法。
  2.  前記グラフェンライク炭素材料への水酸基の導入を鉄触媒の存在下に行う、請求項1に記載の改質グラフェンライク炭素材料の製造方法。
  3.  請求項1または2に記載の製造方法によって得られる、改質グラフェンライク炭素材料。
  4.  2,2’-ジフェニル-1-ピクリルヒドラジルを用いた定量法で測定したときの水酸基の量が、0.3mmol/g~10.0mmol/gである、改質グラフェンライク炭素材料。
  5.  NaHCOを用いた定量法で測定したときのカルボキシル基の量が、1.0mmol/g以下である、請求項4に記載の改質グラフェンライク炭素材料。
  6.  請求項4または5に記載の改質グラフェンライク炭素材料が樹脂中に分散されてなる、樹脂複合材料。
PCT/JP2013/063344 2012-05-14 2013-05-14 改質グラフェンライク炭素材料の製造方法、改質グラフェンライク炭素材料、及び改質グラフェンライク炭素材料を含む樹脂複合材料 WO2013172316A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13790270.6A EP2851341B1 (en) 2012-05-14 2013-05-14 Modified-graphene-like carbon material, and resin composite material containing modified-graphene-like carbon material
CN201380011296.0A CN104136369A (zh) 2012-05-14 2013-05-14 改性石墨烯类碳材料的制造方法、改性石墨烯类碳材料以及含有改性石墨烯类碳材料的树脂复合材料
JP2013526653A JP5364866B1 (ja) 2012-05-14 2013-05-14 改質グラフェンライク炭素材料の製造方法、改質グラフェンライク炭素材料、及び改質グラフェンライク炭素材料を含む樹脂複合材料
KR1020147015229A KR101922755B1 (ko) 2012-05-14 2013-05-14 개질 그래핀 라이크 탄소 재료의 제조 방법, 개질 그래핀 라이크 탄소 재료, 및 개질 그래핀 라이크 탄소 재료를 포함하는 수지 복합 재료
US14/386,955 US9688594B2 (en) 2012-05-14 2013-05-14 Method for producing modified-graphene-like carbon material, modified-graphene-like carbon material, and resin composite material containing modified-graphene-like carbon material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012110402 2012-05-14
JP2012-110402 2012-05-14

Publications (1)

Publication Number Publication Date
WO2013172316A1 true WO2013172316A1 (ja) 2013-11-21

Family

ID=49583721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063344 WO2013172316A1 (ja) 2012-05-14 2013-05-14 改質グラフェンライク炭素材料の製造方法、改質グラフェンライク炭素材料、及び改質グラフェンライク炭素材料を含む樹脂複合材料

Country Status (6)

Country Link
US (1) US9688594B2 (ja)
EP (1) EP2851341B1 (ja)
JP (1) JP5364866B1 (ja)
KR (1) KR101922755B1 (ja)
CN (1) CN104136369A (ja)
WO (1) WO2013172316A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101580561B1 (ko) * 2014-02-17 2015-12-29 한국과학기술연구원 표면 기능화된 탄소재료 및 그 표면 기능화 방법
JP6958814B2 (ja) 2016-07-22 2021-11-02 積水化学工業株式会社 調光材料、調光フィルム及び調光積層体
CN107502011B (zh) * 2017-10-10 2019-12-17 张家港外星人新材料科技有限公司 防静电无机纳米涂料组合物、透明涂层及防静电制品
CN108640111B (zh) * 2018-05-24 2020-12-11 上海利物盛企业集团有限公司 一种可直接水洗涤氧化石墨的制备方法
CN114040889A (zh) * 2019-06-17 2022-02-11 堪萨斯州立大学研究基金会 石墨烯/氧化石墨烯核/壳颗粒及其制备和使用方法
CN110760159A (zh) * 2019-11-01 2020-02-07 嘉兴烯成新材料有限公司 一种“苍耳型”碳材料增强环氧树脂力学性能的制备方法
CN112960670A (zh) * 2021-04-23 2021-06-15 安徽工业大学 一种边缘羟基化改性石墨烯及其制备方法
CN115176800B (zh) * 2022-07-29 2024-03-08 雷索新材料(苏州)有限公司 一种石墨烯抗菌剂及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169112A (ja) 2005-12-22 2007-07-05 Tokyo Univ Of Science 変性炭素材料及びその製造方法
WO2010001686A1 (ja) * 2008-07-01 2010-01-07 日本電気株式会社 グラフェン・グラファイト膜を用いる半導体装置及びその製造方法
WO2010023934A1 (ja) * 2008-08-28 2010-03-04 国立大学法人名古屋大学 グラフェン/SiC複合材料の製造方法及びそれにより得られるグラフェン/SiC複合材料
JP2010275186A (ja) * 2009-05-26 2010-12-09 Belenos Clean Power Holding Ag 溶液中の単層および多層グラフェンの安定な分散系
WO2011074125A1 (ja) * 2009-12-18 2011-06-23 国立大学法人 北海道大学 酸化グラフェンシート及びこれを還元して得られるグラフェン含有物質を含有する物品、並びに、その製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5117081B2 (ja) * 2007-03-07 2013-01-09 株式会社カネカ グラファイトフィルムおよびその製造方法
JP5075180B2 (ja) * 2009-03-31 2012-11-14 コリア・インスティテュート・オブ・サイエンス・アンド・テクノロジー 導電性粒子及びこれを含む異方性導電フィルム
CA2762430A1 (en) * 2009-05-22 2011-02-10 William Marsh Rice University Highly oxidized graphene oxide and methods for production thereof
WO2011019095A1 (en) 2009-08-10 2011-02-17 N-Baro Tech Co., Ltd A method of producing nano-size graphene-based material and an equipment for producing the same
EP2647600A4 (en) * 2010-11-29 2015-10-28 Sekisui Chemical Co Ltd CARBON MATERIAL, PROCESS FOR PRODUCING CARBON MATERIAL, METHOD FOR PRODUCING GRAPHITE IN SEWERS, AND GRAPHITE IN FLAKES
CN102225759A (zh) 2011-04-14 2011-10-26 温州医学院 羟基功能化石墨烯的低温制备方法
CN102336404B (zh) * 2011-07-19 2013-04-03 上海交通大学 基于光催化氧化的氧化石墨烯量子点的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169112A (ja) 2005-12-22 2007-07-05 Tokyo Univ Of Science 変性炭素材料及びその製造方法
WO2010001686A1 (ja) * 2008-07-01 2010-01-07 日本電気株式会社 グラフェン・グラファイト膜を用いる半導体装置及びその製造方法
WO2010023934A1 (ja) * 2008-08-28 2010-03-04 国立大学法人名古屋大学 グラフェン/SiC複合材料の製造方法及びそれにより得られるグラフェン/SiC複合材料
JP2010275186A (ja) * 2009-05-26 2010-12-09 Belenos Clean Power Holding Ag 溶液中の単層および多層グラフェンの安定な分散系
WO2011074125A1 (ja) * 2009-12-18 2011-06-23 国立大学法人 北海道大学 酸化グラフェンシート及びこれを還元して得られるグラフェン含有物質を含有する物品、並びに、その製造方法

Also Published As

Publication number Publication date
EP2851341A4 (en) 2016-04-06
JP5364866B1 (ja) 2013-12-11
CN104136369A (zh) 2014-11-05
KR101922755B1 (ko) 2018-11-27
EP2851341B1 (en) 2018-07-04
JPWO2013172316A1 (ja) 2016-01-12
EP2851341A1 (en) 2015-03-25
KR20150020159A (ko) 2015-02-25
US20150080513A1 (en) 2015-03-19
US9688594B2 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
JP5364866B1 (ja) 改質グラフェンライク炭素材料の製造方法、改質グラフェンライク炭素材料、及び改質グラフェンライク炭素材料を含む樹脂複合材料
Wan et al. Barium titanate coated and thermally reduced graphene oxide towards high dielectric constant and low loss of polymeric composites
US9458295B2 (en) Composite material and method for producing same
WO2013080843A1 (ja) 官能基変成炭素材料及びその製造方法
Han et al. Preparation and characterization of graphite oxide/polypyrrole composites
Dao et al. Water-dispersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly (methyl methacrylate)/graphene core–shell microsphere exhibiting ultra-low percolation threshold of electrical conductivity
WO2012073861A1 (ja) 炭素質材料、炭素質材料の製造方法、薄片化黒鉛の製造方法及び薄片化黒鉛
Mural et al. A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites
Kowsari et al. Ultrasound and ionic-liquid-assisted synthesis and characterization of polyaniline/Y2O3 nanocomposite with controlled conductivity
Sharma et al. Design of MWCNT bucky paper reinforced PANI–DBSA–DVB composites with superior electrical and mechanical properties
TW201410597A (zh) 多層碳奈米管之精製方法
CN104988592B (zh) 聚乙烯醇/石墨烯复合纳米纤维材料及其制备方法
Gandhi et al. Synthesis and characterization of nano‐sized NiO and its surface catalytic effect on poly (vinyl alcohol)
KR20130077087A (ko) 그라펜이 분산된 비극성 폴리올레핀 복합재료
Jin et al. Three-dimensionalization of ultrathin nanosheets in a two-dimensional nano-reactor: macroporous CuO microstructures with enhanced cycling performance
CN107720742A (zh) 一种采用含过氧化氢催化体系的氧化石墨烯制备方法
WO2017206579A1 (zh) 一种具有网络结构的石墨烯微片及其制备方法
JP2016029003A (ja) 薄片化黒鉛、電極材料及び薄片化黒鉛−樹脂複合材料
CN108147393A (zh) 一种高强高韧高导电性石墨烯膜及其制备方法
Sasaki et al. Bottom‐up Synthesis of Nanosheets at Various Interfaces
JP5646962B2 (ja) 結晶性樹脂複合材料及びその製造方法
JP6279199B2 (ja) 樹脂複合材料及び樹脂複合材料の製造方法
CN105131322B (zh) 一种阳离子选择性隔膜的制备方法
JP2016029002A (ja) 薄片化黒鉛、電極材料及び薄片化黒鉛−樹脂複合材料
JP7432307B2 (ja) 炭素材料複合体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013526653

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13790270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147015229

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14386955

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013790270

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE