WO2013172295A1 - ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト - Google Patents

ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト Download PDF

Info

Publication number
WO2013172295A1
WO2013172295A1 PCT/JP2013/063274 JP2013063274W WO2013172295A1 WO 2013172295 A1 WO2013172295 A1 WO 2013172295A1 JP 2013063274 W JP2013063274 W JP 2013063274W WO 2013172295 A1 WO2013172295 A1 WO 2013172295A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
component
rosin
acid
weight
Prior art date
Application number
PCT/JP2013/063274
Other languages
English (en)
French (fr)
Inventor
靖 舟越
中谷 隆
吉本 哲也
Original Assignee
荒川化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荒川化学工業株式会社 filed Critical 荒川化学工業株式会社
Priority to JP2013557308A priority Critical patent/JP5545421B2/ja
Priority to KR1020147029717A priority patent/KR101991355B1/ko
Priority to EP13789975.3A priority patent/EP2851396A4/en
Priority to US14/390,207 priority patent/US20150075676A1/en
Priority to CN201380026017.8A priority patent/CN104321387B/zh
Publication of WO2013172295A1 publication Critical patent/WO2013172295A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/924Significant dispersive or manipulative operation or step in making or stabilizing colloid system
    • Y10S516/925Phase inversion

Definitions

  • the present invention relates to a base resin for soldered flux, soldered flux and solder paste.
  • solder paste which is a mixture of flux and solder powder
  • the electrodes on the circuit board are usually supplied to the electrodes on the circuit board by screen printing, dispenser discharge, etc., and electronic components such as capacitors are mounted on it. Thereafter, the circuit board is heated in a reflow furnace to melt the solder powder, and the electronic component and the electrode are joined.
  • natural rosin has been awarded as a base resin for flux, but natural rosin contains a large amount of abietanic resin acid having a conjugated double bond in its molecule (such as abietic acid, levopimaric acid, and parastolic acid). Therefore, it is very easily oxidized and is inferior in thermal stability, such as easily discolored under heating. For this reason, when natural rosin is used as the base resin for the flux, the residue generated at the solder joint is strongly colored, making subsequent inspection or cleaning difficult, or causing cracks to induce a migration phenomenon. Such a problem becomes particularly serious when a lead-free solder powder having a high melting point is used.
  • the present invention provides a new base resin for soldered flux that improves the flowability of soldered flux and the viscosity stability and adhesiveness of solder paste, and also has good color tone and crack resistance of the flux residue.
  • the main task is to do.
  • the present invention relates to the following solder base resin for flux.
  • solder base resin for flux At least 15% by weight of pimarane type resin acid (a-1), at least 1% by weight of labdane type resin acid (a-2), and at least at least abiethane type resin acid (a-3) having no conjugated double bond
  • a base resin for soldered flux comprising 50% by weight of rosin (A).
  • Item 3 A soldered flux containing the soldering flux base resin according to Item 1 or 2, the fluxing solvent (B), and optionally an activator (C). 4). Furthermore, the soldered flux of said claim
  • a post flux comprising the soldered flux according to Item 3.
  • the fluidity of the soldered flux and the viscosity stability and adhesiveness of the solder paste are improved. Further, the base resin is excellent in thermal stability, and the color tone and crack resistance of the flux residue are also improved.
  • the soldered flux of the present invention maintains its fluidity even after being stored at room temperature for a long time, thereby improving the viscosity stability and adhesiveness of the solder paste and the solderability (wetting property). .
  • the color tone of the flux residue generated after soldering is good, for example, inspection work is facilitated, and the cleaning process can be omitted.
  • cracks are unlikely to occur in the flux residue, problems relating to the electrical reliability of the circuit, such as migration accompanying adhesion of moisture, are also unlikely to occur.
  • solder paste of the present invention is excellent in viscosity stability with time, is not only suitable for long-term storage, but also has good adhesive strength, and its change over time is small. Moreover, solderability (wetting property) is also good, and the color tone and crack resistance of the flux residue generated after soldering are also good.
  • the rosins (A) according to the present invention are not only used as a flux base resin for solder paste, but also as a flux base in pre-flux or post-flux (dip soldering flux), solder containing solder, yarn solder, etc. It is also useful as a resin.
  • the post-flux containing the base resin of the present invention has excellent temporal stability, good solderability, and good color tone of the flux residue generated after soldering.
  • the solder flux base resin of the present invention comprises at least 15% by weight of pimarane type resin acid (a-1) (hereinafter referred to as “component (a-1)”), labdane type resin acid (a-2) ( Hereinafter, “(a-2) component”) is at least 1% by weight and abiethane type resin acid (a-3) having no conjugated double bond (hereinafter referred to as “(a-3) component”). ) -Containing rosins (A) (hereinafter referred to as “component (A)”).
  • the component (a-1) pimaran type resin acid refers to a resin acid having a pimaran skeleton or an isopimaran skeleton, and specifically, a resin acid represented by the following structural formula (1).
  • X represents —CH 2 CH 3 or —CH ⁇ CH 2, and the bond according to the broken line portion may be a carbon-carbon double bond.
  • Examples of the resin acid represented by structural formula (1) include pimaric acid, isopimaric acid, sandaracopimalic acid, and their hydrides. In addition, these may be mixed in the component (A).
  • the labdan-type resin acid as component (a-2) refers to a resin acid having a labdan skeleton, specifically a resin acid represented by the following structural formula (2).
  • Y represents —CH 2 CH ⁇ C (CH 3 ) —CH ⁇ CH 2 , —CH 2 CH 2 —CH (CH 3 ) —CH ⁇ CH 2 , —CH 2 CH 2 —CH.
  • Examples of the resin acid represented by the structural formula (2) include a resin acid derived from komonic acid and a resin acid derived from agatic acid.
  • Examples of the resin acid derived from comunic acid include cis-comic acid, trans-comic acid, and mirceo-comic acid, and hydrides thereof.
  • Examples of the resin acid derived from agatic acid include agatic acid and dihydroagatic acid, and hydrides thereof. In addition, these may be mixed in the component (A).
  • the component (a-3) refers to an abiethane type resin acid having an abietan skeleton and having no conjugated double bond in the molecule.
  • Examples of the component (a-3) include dehydroabietic acid, dihydroabietic acid, and tetrahydroabietic acid. In addition, these may be mixed in the component (A).
  • the content of the component (a-1) in the component (A) is at least 15% by weight, preferably about 15 to 25% by weight, and the content of the component (a-2) is at least 1% by weight, preferably 1
  • the content of the component (a-3) is at least 50% by weight, preferably about 65 to 84% by weight. If the content of each component in the component (A) does not satisfy the numerical value, the effect of the present invention is hardly achieved.
  • the component (A) may contain a resin acid other than the components (a-1) to (a-3). In this case, the content of the other resin acid is usually less than 5% by weight.
  • the component (A) is preferably composed of only the components (a-1) to (a-3).
  • the components (a-1) to (a-3) and other resin acids in the component (A) can be quantified by various known analytical methods such as gas chromatography.
  • the manufacturing method of a component is not specifically limited, Various well-known methods are employable. Specifically, for example, the following methods [1] to [3] can be shown.
  • a predetermined amount of components (a-1) to (a-3) are obtained by hydrogenation reaction and / or disproportionation reaction And (A) component containing method.
  • the raw material rosin it is preferable to use a material containing the components (a-1) and (a-2) to some extent, and such materials are specified with reference to known academic literature at the time of filing this application. be able to.
  • a rosin containing a predetermined amount of the component (a-3) is prepared by further hydrogenation reaction and / or disproportionation reaction.
  • the raw material rosin may previously contain the component (a-1) and the component (a-2).
  • component (a-1) to component (a-3), which are separately obtained or prepared by known methods, are added to the raw material rosin and mixed to form component (A).
  • the component (a-2) can be a commercially available product.
  • the purification step various known methods such as a distillation method, an extraction method, and a recrystallization method can be employed.
  • the distillation method can be carried out, for example, usually at a temperature of about 200 to 300 ° C. and a reduced pressure of about 0.01 to 3 kPa.
  • the extraction method the raw material rosin is made into an alkaline aqueous solution, and the insoluble unsaponified product is extracted with various organic solvents, and then the aqueous layer is neutralized.
  • the recrystallization method there is a method in which the raw material rosin is dissolved in an organic solvent as a good solvent, and then the solvent is distilled off to form a concentrated solution, and further an organic solvent as a poor solvent is added.
  • the raw material rosin may be hydrogenated in the presence of a hydrogenation catalyst.
  • the reaction temperature is usually about 100 to 300 ° C.
  • the hydrogen pressure is about 1 to 25 MPa
  • the reaction time is about 1 to 10 hours.
  • the hydrogenation catalyst include a supported catalyst in which palladium, rhodium, ruthenium, platinum or the like is supported on carbon, alumina, silica, silica alumina, zeolite or the like; metal powder such as nickel or platinum; iodine such as iodine or iron iodide. And the like.
  • the amount of the hydrogenation catalyst used is usually about 0.01 to 10% by weight based on the raw material rosin.
  • the disproportionation reaction various known methods can be employed. Specifically, the raw material rosin may be subjected to a disproportionation reaction in the presence of a disproportionation catalyst.
  • the reaction temperature is usually about 100 to 300 ° C., and the reaction pressure may be normal pressure or less than 1 MPa.
  • the disproportionation catalyst the same hydrogenation catalyst as described above can be used, and the amount used is usually about 0.01 to 10% by weight based on the raw material rosin.
  • the color tone of the component (A) is not particularly limited, but it is preferable that the Gardner color tone is 2 or less in consideration of the temporal stability of the flux and solder paste, the color tone (transparency) of the flux residue, and the like.
  • the acid value (JIS K 5902) is usually about 150 to 190 mgKOH / g, and the softening point (JIS K 5902) is usually about 70 to 90 ° C.
  • the flux of the present invention comprises the base resin of the present invention (component (A)), a flux solvent (B) (hereinafter referred to as “component (B)”) and, if necessary, an activator (C) (hereinafter referred to as “ (C) component ”)).
  • ether alcohols such as diethylene glycol monohexyl ether, diethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monoethyl hexyl ether; 2-propanol, octanediol, benzyl alcohol, 1,3-butanediol , 1,4-butanediol, 2- (2-n-butoxyethoxy) ethanol, terpineol, and other non-ether alcohols; isopropyl acetate, ethyl propionate, butyl benzoate, diethyl adipate, and the like; n- And hydrocarbons such as hexane, dodecane and tetradecene; pyrrolidones such as N-methyl-2-pyrrolidone and the like.
  • ether alcohols such as diethylene glycol monohexyl ether, diethylene glycol monobutyl ether,
  • the ether alcohol having a high boiling point is preferable in consideration of the reflow temperature (usually 230 to 260 ° C.), and the boiling point is particularly about 230 to 260 ° C.
  • ether type alcohols are preferred.
  • Non-ether alcohols are preferred when the flux is used for post-flux applications.
  • component (C) examples include monocarboxylic acids such as palmitic acid, stearic acid, benzoic acid, and picolinic acid; dicarboxylic acids such as succinic acid, adipic acid, glutaric acid, azelaic acid, sebacic acid, dodecanedioic acid, and dimer acid.
  • monocarboxylic acids such as palmitic acid, stearic acid, benzoic acid, and picolinic acid
  • dicarboxylic acids such as succinic acid, adipic acid, glutaric acid, azelaic acid, sebacic acid, dodecanedioic acid, and dimer acid.
  • Bromoalkanes Bromoalkenes such as 1-bromo-3-methyl-1-butene, 1,4-dibromobutene, 1-bromo-1-propene, 2,3-dibromopropene, 1,2-dibromostyrene; 4-stearoyloxybenzyl bromide, 4-stearyloxybenzyl bromide, 4-stearylbenzyl bromide, 4-bromomethylbenzyl stearate, 4-stearoylaminobenzyl bromide, 2,4-bisbromomethylbenzyl stearate, 4-palmitoyloxy Benzyl bromide, 4-myristoyloxybenzyl bromide Benzyl bromides such as 4-lauroyloxybenzyl bromide, 4-undecanoyloxybenzyl bromide; N, N′-bis (4-aminobutyl) -1,2-ethanediamine, triethylenetetramine, N, N And polyamines
  • the flux of the present invention may further include a thixotropic agent (D) (hereinafter referred to as “component (D)”) and a base resin (E) other than the component (A) (hereinafter referred to as “(E)” as necessary. Or an additive (hereinafter referred to as “component (F)”).
  • component (D) thixotropic agent
  • component (E) base resin
  • component (F) additive
  • the component (D) can be preferably used for the purpose of adjusting screen printing suitability when the flux of the present invention is used for solder paste.
  • Specific examples of component (D) include animal and plant thixotropic agents such as castor oil, hydrogenated castor oil, beeswax and carnauba wax; amide thixotropic agents such as stearic acid amide and 12-hydroxystearic acid ethylenebisamide, and the like. Can be mentioned. These can be used alone or in combination of two or more.
  • synthetic resins such as epoxy resins, acrylic resins, polyimide resins, polyamide resins (nylon resins), polyester resins, polyacrylonitrile resins, vinyl chloride resins, vinyl acetate resins, polyolefin resins, fluorine resins, ABS resins, etc. Can be mentioned.
  • component (F) examples include additives such as antioxidants, antifungal agents, and matting agents.
  • the content of each component in the flux can be appropriately set according to the usage mode of the flux.
  • the content of each component is, for example, as follows.
  • Component (E) about 0 to 20% by weight, preferably 0 to 10% by weight
  • Component (F) about 0 to 10% by weight, preferably 1 to 5% by weight
  • each component is as follows, for example.
  • the flux of the present invention can be used as it is or after diluting with a solvent such as isopropyl alcohol or benzyl alcohol as a post flux or a dip soldered flux. Moreover, it can be mixed with various lead-free solder alloy powders and used as a lead-free solder paste, and can also be used for various types of thread soldering.
  • the solder paste of the present invention contains the flux of the present invention and solder powder.
  • the content of each is not particularly limited, but usually the former is about 5 to 20% by weight and the latter is about 80 to 95% by weight.
  • the solder paste can be produced by various known means (such as a planetary mill).
  • solder powder conventional lead eutectic solder powder such as Sn—Pb solder powder; Sn solder powder, Sn—Ag solder powder, Sn—Cu solder powder, Sn—Zn solder powder, Sn—Sb solder powder Solder powder, Sn-Ag-Cu solder powder, Sn-Ag-Bi solder powder, Sn-Ag-Cu-Bi solder powder, Sn-Ag-Cu-In solder powder, Sn-Ag-Cu-S And lead-free solder powders such as Sn solder powder and Sn—Ag—Cu—Ni—Ge solder powder.
  • the average primary particle size of the solder powder is not particularly limited, but is usually about 1 to 50 ⁇ m, preferably about 20 to 40 ⁇ m.
  • Part and % are both based on weight.
  • the resin acid composition ratios shown in Tables 1 and 2 are values determined using commercially available gas chromatograph mass spectrometers (product names “Agilent 6890”, “Agilent 5973N”; manufactured by Agilent Technologies). A commercial product (product name “Advanced-DS”, manufactured by Shinwa Kako Co., Ltd.) was also used for the column.
  • Production Example 2 In Production Example 1, rosin (A2) was obtained in the same manner except that Indonesian gum rosin (raw material 2) was used as the raw material rosin.
  • rosin (A3) was obtained in the same manner except that gum rosin (raw material 3) from Guangxizhou, China was used as the raw material rosin.
  • Production Example 4 In Production Example 1, the same procedure as in Production Example 1 except that a 1: 1 (weight ratio) mixture of Argentine gum rosin (raw material 1) and Yunnan gum rosin (raw material 4) as in Production Example 1 was used. A4) Obtained.
  • Production Example 5 250 g of the same Argentine gum rosin (raw material 1) as in Production Example 1 was placed in a vacuum distillation vessel and distilled under a vacuum of 0.4 kPa under a nitrogen seal to obtain a purified rosin. Next, 200 g of the purified rosin and 0.4 g of 5% palladium carbon (water content 50%) are charged into a 0.5 liter flask, heated to 260 ° C. in a nitrogen atmosphere, and subjected to a disproportionation reaction at the same temperature for 3 hours. As a result, rosin (A5) was obtained.
  • Comparative production example 1 In Production Example 1, the same rosin (P1) was obtained except that the same gum rosin produced in Yunnan, China (raw material 4) was used as the raw material rosin.
  • Comparative production example 2 The same Argentine gum rosin (raw material 1) as in Production Example 1 was charged into a vacuum distillation vessel and distilled under a vacuum of 0.4 kPa under a nitrogen seal to obtain rosin (P2).
  • Comparative production example 3 250 g of the same gum rosin (raw material 4) from Yunnan, China as in Production Example 4 was placed in a vacuum distillation vessel and distilled under a vacuum of 0.4 kPa under a nitrogen seal to obtain a purified rosin. 200 g of the obtained purified rosin and 0.08 g of 3.5% palladium carbon (water content 50%) were charged into a 0.5 liter flask, heated to 280 ° C. in a nitrogen atmosphere, and disproportionated at that temperature for 3 hours. By reacting, rosin (P3) was obtained.
  • Comparative production example 4 250 g of commercially available Chinese hydrogenated rosin (product name “Hyper CH”, manufactured by Arakawa Chemical Industries, Ltd., raw material 5) was charged in a vacuum distillation vessel, distilled under a vacuum of 0.4 kPa under a nitrogen seal, and purified water Obtained rosin was obtained. 200 g of the purified hydrogenated rosin and 0.06 g of 5% palladium carbon (water content 50%) were charged into a 0.5 liter flask, heated to 260 ° C. in a nitrogen atmosphere, and disproportionated at that temperature for 1 hour. By reacting, rosin (P4) was obtained.
  • Flux for solder paste is prepared by placing 50 parts of component (A1) obtained in Production Example 1, 5 parts of 12-hydroxystearic acid ethylene bisamide and 45 parts of diethylene glycol monohexyl ether into a beaker and heating and melting under stirring. did. Next, 10 parts of the flux and 90 parts of lead-free solder powder (Sn—Ag—Cu alloy; 96.5 wt% / 3 wt% / 0.5 wt%, average particle size 25 to 38 ⁇ m) are stirred and mixed. A solder paste was prepared. For the rosins obtained in Production Examples 2 to 5 and Comparative Production Examples 1 to 4, solder paste fluxes and solder pastes were similarly prepared.
  • Example 1 a solder paste flux and a solder paste were prepared in the same manner as in Example 1 except that the above-described high pale CH (raw material 5; indicated as (P5) in Table 3) was used instead of the component (A1).
  • solderability For the solder pastes of Examples 1 to 5 and Comparative Examples 1 to 5, solderability (wetting property) was evaluated in accordance with “JIS Z3284 Annex 10 Wetting Effect and Dewetting Test”. All the solder pastes had the result of good solderability (spreading degree category 1 or 2) (this result was not shown in Table 3).
  • Examples 6 to 10 and Comparative Examples 6 to 9 Post flux production> A post flux was prepared by putting 50 parts of the component (A1) obtained in Production Example 1 and 50 parts of isopropyl alcohol into a beaker and heating and melting them under stirring. Post fluxes were similarly prepared for the rosins obtained in Production Examples 2 to 5 and Comparative Production Examples 1 to 4.
  • Example 6 a post flux was prepared in the same manner as in Example 6 except that the above-described high pale CH (raw material 5; indicated as (P5) in Table 4) was used instead of the component (A1).
  • solderability Using the post fluxes of Examples 6 to 10 and Comparative Examples 6 to 10, solderability (wetability) was evaluated according to “JIS Z3197 Solder Spreading Method”, and the spreading rate was calculated. The larger the value, the better the solderability. The results are shown in Table 4. 1: Spreading ratio is 65% or more 2: Spreading ratio is less than 65%
  • the solder paste flux containing the component (A) as a base resin has good stability over time, and the solder paste using this flux also has excellent viscosity stability over time and adhesiveness. I understood it.
  • the solder paste also had good solderability (wetability), color tone of the flux residue, and crack resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 本発明の課題は、フラックスの流動性ならびにソルダペーストの粘度安定性および粘着性を改善し、かつフラックス残渣の色調および耐クラック性も良好なものとする、新規なハンダ付フラックス用ベース樹脂を提供することである。本発明は、ピマラン型樹脂酸(a-1)を少なくとも15重量%、ラブダン型樹脂酸(a-2)を少なくとも1重量%、および共役二重結合を有さないアビエタン型樹脂酸(a-3)を少なくとも50重量%含むロジン類(A)からなるハンダ付フラックス用ベース樹脂である。

Description

ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト
 本発明はハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペーストに関する。
 回路基板の表面実装は通常、回路基板上の電極に、フラックスとハンダ粉末との混合物であるソルダペーストをスクリーン印刷、ディスペンサー吐出等の方法で供給し、その上にコンデンサー等の電子部品を搭載した後、当該回路基板をリフロー炉内で加熱してハンダ粉末を溶融させ、電子部品と電極とを接合することにより行われる。
 フラックスのベース樹脂としては従来天然ロジンが賞用されてきたが、天然ロジンは分子内に共役二重結合を有するアビエタン型樹脂酸(アビエチン酸、レボピマル酸、パラストリン酸等)を多量に含んでいるため非常に酸化されやすく、加熱下に容易に変色するなど熱安定性に劣る。そのため、天然ロジンをフラックスのベース樹脂とした場合、ハンダ接合部に生ずる残渣に強い着色が生じて後の検品または洗浄が困難になったり、クラックが発生してマイグレーション現象が誘発されたりする。なお、こうした問題は、融点が高い鉛フリーハンダ粉末を使用する場合において特に深刻化する。
 フラックス残渣に関する前記諸問題を解消する手段として、例えば特許文献1~3では、天然ロジンに代えて、共役二重結合性のアビタン酸型樹脂酸の含有量を30重量%以下に低減させたロジン(不均化ロジンまたは水素化ロジン)をベース樹脂として用いることが提案されている。しかし、当該ロジンを用いたフラックスは経時的に流動性が失われやすい。また、該フラックスを用いたソルダペーストは増粘しやすいうえ、粘着力、即ちリフロー炉における電子部品の保持力も経時で失われやすいことが判明した。
特開平6-246482号公報 特開2008-62239号公報 特開2011-173173号公報
 本発明は、ハンダ付フラックスの流動性ならびにソルダペーストの粘度安定性および粘着性を改善し、かつフラックス残渣の色調および耐クラック性も良好なものとする、新規なハンダ付フラックス用ベース樹脂を提供することを主たる課題とする。
 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、特定の樹脂酸を一定の比率で含有するロジンが前記課題を解決可能なベース樹脂足りえることを見出した。
 即ち本発明は、以下のハンダ付フラックス用ベース樹脂等に関する。
1.ピマラン型樹脂酸(a-1)を少なくとも15重量%、ラブダン型樹脂酸(a-2)を少なくとも1重量%、および共役二重結合を有さないアビエタン型樹脂酸(a-3)を少なくとも50重量%含むロジン類(A)からなるハンダ付フラックス用ベース樹脂。
2.前記(A)成分のガードナー色調が2以下である、上記項1に記載のハンダ付フラックス用ベース樹脂。
3.上記項1または2に記載のハンダ付フラックス用ベース樹脂、フラックス用溶剤(B)および必要に応じて活性剤(C)を含有するハンダ付フラックス。
4.さらにチキソトロピック剤(D)を含有する上記項3に記載のハンダ付フラックス。
5.上記項4に記載のハンダ付フラックスおよびハンダ粉末を含有するソルダペースト。
6.上記項3に記載のハンダ付フラックスからなるポストフラックス。
 本発明のベース樹脂によれば、ハンダ付フラックスの流動性ならびにソルダペーストの粘度安定性および粘着性が改善される。また、当該ベース樹脂は熱安定性に優れており、フラックス残渣の色調および耐クラック性も改善される。
 また、本発明のハンダ付フラックスは、室温で長時間保存した後も流動性が保たれており、これによりソルダペーストの粘度安定性および粘着性、ならびにハンダ付け性(濡れ性)も良好となる。また、ハンダ付け後に生ずるフラックス残渣の色調も良好であるため、例えば検品作業が容易となり、洗浄工程を省略することも可能となる。また、フラックス残渣にクラックが生じ難いことから、水分の付着に伴うマイグレーション等、回路の電気信頼性に関わる問題も生じ難くなる。
 また、本発明のソルダペーストは経時の粘度安定性に優れており、長期保存に適しているだけでなく、その粘着力も良好であり、しかもその経時的な変化幅が小さい。また、ハンダ付け性(濡れ性)も良好であり、ハンダ付け後に生ずるフラックス残渣の色調および耐クラック性も良好である。
 なお、本発明に係るロジン類(A)は、ソルダペースト用のフラックスのベース樹脂としてのみならず、プレフラックスまたはポストフラックス(ディップハンダ付用フラックス)、ヤニ入りハンダ、糸ハンダ等におけるフラックスのベース樹脂としても有用である。特に、本発明のベース樹脂を含むポストフラックスは、経時安定性に優れ、ハンダ付け性が良好であり、ハンダ付け後に生ずるフラックス残渣の色調が良好である。
 本発明のハンダ付フラックス用ベース樹脂は、ピマラン型樹脂酸(a-1)(以下、「(a-1)成分」という。)を少なくとも15重量%、ラブダン型樹脂酸(a-2)(以下、「(a-2)成分」という。)を少なくとも1重量%、および共役二重結合を有さないアビエタン型樹脂酸(a-3)(以下、「(a-3)成分」という。)を少なくとも50重量%含むロジン類(A)(以下、「(A)成分」という。)である。
 (a-1)成分であるピマラン型樹脂酸とは、ピマラン骨格またはイソピマラン骨格を有する樹脂酸のことをいい、具体的には下記構造式(1)で示される樹脂酸である。
Figure JPOXMLDOC01-appb-C000001
 
 (式(1)中、Xは-CHCH又は-CH=CHを表す。また、破線部に係る結合は炭素-炭素二重結合であってよいことを意味する。)
 構造式(1)で表される樹脂酸としては、例えば、ピマル酸、イソピマル酸およびサンダラコピマル酸等、ならびにそれらの水素化物等が挙げられる。なお、これらは複数種が(A)成分中で混在していてよい。
 (a-2)成分であるラブダン型樹脂酸とは、ラブダン骨格を有する樹脂酸のことをいい、具体的には下記構造式(2)で示される樹脂酸である。
Figure JPOXMLDOC01-appb-C000002
 
(式(2)中、Yは、-CHCH=C(CH)-CH=CH、-CHCH-CH(CH)-CH=CH、-CHCH-CH(CH)-CH-CH、-CHCH=CH(CH)-CH-CH、-CHCH-CH(CH)-CH-COOHまたは-CHCH-C(CH)=CH-COOHを表す。また、破線部に係る結合は炭素-炭素二重結合であってよいことを意味する。) 
 構造式(2)で表される樹脂酸としては、例えば、コムン酸由来の樹脂酸およびアガチン酸由来の樹脂酸等が挙げられる。コムン酸由来の樹脂酸として、例えば、cis-コムン酸、trans-コムン酸およびmirceo-コムン酸等、ならびにそれらの水素化物等が挙げられる。アガチン酸由来の樹脂酸として、例えば、アガチン酸およびジヒドロアガチン酸等、ならびにそれらの水素化物等が挙げられる。なお、これらは複数種が(A)成分中で混在していてよい。
 (a-3)成分は、アビエタン骨格を有し、かつ分子内に共役二重結合を有さないアビエタン型樹脂酸をいう。(a-3)成分として、例えば、デヒドロアビエチン酸、ジヒドロアビエチン酸、およびテトラヒドロアビエチン酸等が挙げられる。なお、これらは複数種が(A)成分中で混在していてよい。
 (A)成分中における(a-1)成分の含有量は少なくとも15重量%、好ましくは15~25重量%程度であり、(a-2)成分の含有量は少なくとも1重量%、好ましくは1~10重量%程度であり、(a-3)成分の含有量は少なくとも50重量%、好ましくは65~84重量%程度である。(A)成分中の各成分の含有量が当該数値を満たさないと本発明の効果が奏され難くなる。なお、(A)成分は(a-1)成分~(a-3)成分以外の樹脂酸を含んでもよく、その場合、他の樹脂酸の含有量は通常5重量%未満である。(A)成分は、(a-1)成分~(a-3)成分のみで構成されることが好ましい。
 (A)成分中の(a-1)成分~(a-3)成分および他の樹脂酸は、各種公知の分析方法、例えばガスクロマトグラフィー法により定量することができる。
 (A)成分の製造法は特に限定されず、各種公知の方法を採用できる。具体的には、例えば下記[1]~[3]の方法を示すことができる。
[1]原料ロジン(ガムロジン、ウッドロジン、トール油ロジン等)を精製した後、水素化反応および/または不均化反応させることにより、所定量の(a-1)成分~(a-3)成分を含む(A)成分となす方法。この場合、原料ロジンとしては(a-1)成分と(a-2)成分をある程度含むものを使用するのが好ましく、そのようなものは、本願出願時に公知の学術文献を参照し、特定することができる。
[2]原料ロジンを精製した後、更に水素化反応および/または不均化反応させることにより所定量の(a-3)成分を含むロジンを調製し、これにそれぞれ別途入手ないし公知の方法で調製した(a-1)成分および(a-2)成分を所定量加え、(A)成分となす方法。なお、原料ロジンに(a-1)成分および(a-2)成分が予め含まれていてもよい。
[3]それぞれ別途入手ないし公知の方法で調製した(a-1)成分~(a-3)成分を混合することにより、(A)成分となす方法。
[4]別途入手ないし公知の方法で調製した(a-1)成分~(a-3)成分を前記原料ロジンに添加し、混合することにより、(A)成分となす方法。
 なお、(a-1)成分は市販品を使用できる他、例えばJ.Am.Chem.Soc.70,2079(1948)、J.Org.Chem.23,25-26(1958)、Can.J.Chem.38 663-667(1960)等に記載の方法により得ることもできる。
 (a-2)成分は市販品を使用できる他、例えばJ.Am.Chem.Soc.,77,2823(1955)、Weissman Holzforshung 28,186-188(1974)、特開昭51-131899号公報等に記載の方法により得ることもできる。
 (a-3)成分は市販品を使用できる他、例えばJ.Org.Chem.31,4246-4248(1966)、J.Org.Chem.31,4128(1966)、J.Org.Chem.34,1550(1969)、特開昭51-149256等に記載の方法により得ることもできる。
 前記精製工程としては、各種公知の方法、例えば蒸留法、抽出法、再結晶法等を採用することができる。蒸留法は、例えば、通常200~300℃程度の温度、0.01~3kPa程度の減圧下で実施することができる。また、抽出法では、原料ロジンをアルカリ水溶液とし、不溶性の不ケン化物を各種の有機溶媒により抽出した後に水層を中和すればよい。また、再結晶法では、原料ロジンを良溶媒としての有機溶媒に溶解し、ついで溶媒を留去して濃厚な溶液となし、更に貧溶媒としての有機溶媒を添加する方法が挙げられる。
 前記水素化反応としては、各種公知の方法を採用することができる。具体的には、水素化触媒の存在下で原料ロジンを水素化反応させればよい。なお、反応温度は通常100~300℃程度であり、水素圧は1~25MPa程度であり、反応時間は1~10時間程度である。また、水素化触媒としては例えばパラジウム、ロジウム、ルテニウム、白金等をカーボン、アルミナ、シリカ、シリカアルミナ、ゼオライト等に担持した担持触媒;ニッケル、白金等の金属粉末;ヨウ素、ヨウ素化鉄等のヨウ素化物;等が挙げられる。水素化触媒の使用量は原料ロジンに対して通常0.01~10重量%程度である。
 前記不均化反応としては、各種公知の方法を採用することができる。具体的には、不均化触媒の存在下で原料ロジンを不均化反応させればよい。なお、反応温度は通常100~300℃程度であり、反応圧力は常圧または1MPa未満であればよい。また、不均化触媒としては前記した水素化触媒と同じものを用いることができ、その使用量は原料ロジンに対して通常0.01~10重量%程度である。
 (A)成分の色調は特に限定されないが、フラックス及びソルダペーストの経時安定性、フラックス残渣の色調(透明性)等を考慮すると、ガードナー色調が2以下であるのが好ましい。
 (A)成分の他の物性は特に限定されないが、例えば酸価(JIS K 5902)が通常150~190mgKOH/g程度、軟化点(JIS K 5902)が通常70~90℃程度である。
 本発明のフラックスは、本発明のベース樹脂((A)成分)、フラックス用溶剤(B)(以下、「(B)成分」という。)および必要に応じて活性剤(C)(以下、「(C)成分」という。)を含む組成物である。
 (B)成分としては、各種公知のものを特に制限なく使用することができる。具体的には、例えば、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノエチルヘキシルエーテル等のエーテル系アルコール類;2-プロパノール、オクタンジオール、ベンジルアルコール、1,3-ブタンジオール、1,4-ブタンジオール、2-(2-n-ブトキシエトキシ)エタノール、テルピネオール等の非エーテル系アルコール類;酢酸イソプロピル、プロピオン酸エチル、安息香酸ブチル、アジピン酸ジエチル等のエステル類;n-ヘキサン、ドデカン、テトラデセン等の炭化水素類;N-メチル-2-ピロリドン等のピロリドン類などが挙げられる。これらの中でも、フラックスをソルダペースト用途に供する場合には、リフロー時の温度(通常230~260℃)を考慮すると、高沸点である前記エーテル系アルコール類が好ましく、特に沸点が230~260℃程度のエーテル系アルコール類が好ましい。フラックスをポストフラックス用途に供する場合には、非エーテル系アルコール類が好ましい。
 (C)成分としては、例えば、パルミチン酸、ステアリン酸、安息香酸、ピコリン酸等のモノカルボン酸類;コハク酸、アジピン酸、グルタル酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸等のジカルボン酸類;1-ブロモ-2-ブタノール、1-ブロモ-2-プロパノール、3-ブロモ-1-プロパノール、3-ブロモ-1,2-プロパンジオール、1,4-ジブロモ-2-ブタノール、1,3-ジブロモ-2-プロパノール、2,3-ジブロモ-1-プロパノール、1,4-ジブロモ-2,3-ブタンジオール、2,3-ジブロモ-1,4-ブテンジオール、2,3-ジブロモ-2-ブテン-1,4-ジオール、2,2-ビス(ブロモメチル)-1,3-プロパンジオール等のブロモジオール類;エチルアミン臭化水素酸塩、ジエチルアミン臭化水素酸塩、メチルアミン臭化水素酸塩等の有機アミンのハロゲン化水素酸塩類;1,2,3,4-テトラブロモブタン、1,2-ジブロモ-1-フェニルエタン等のブロモアルカン類;1-ブロモ-3-メチル-1-ブテン、1,4-ジブロモブテン、1-ブロモ-1-プロペン、2,3-ジブロモプロペン、1,2-ジブロモスチレン等のブロモアルケン類;4-ステアロイルオキシベンジルブロマイド、4-ステアリルオキシベンジルブロマイド、4-ステアリルベンジルブロマイド、4-ブロモメチルベンジルステアレート、4-ステアロイルアミノベンジルブロマイド、2,4-ビスブロモメチルベンジルステアレート、4-パルミトイルオキシベンジルブロマイド、4-ミリストイルオキシベンジルブロマイド、4-ラウロイルオキシベンジルブロマイド、4-ウンデカノイルオキシベンジルブロマイド等のベンジルブロマイド類;N,N’-ビス(4-アミノブチル)-1,2-エタンジアミン、トリエチレンテトラミン、N,N’-(3-アミノプロピル)エチレンジアミン、N,N’-ビス(3-アミノプロピル)ピペラジン等のポリアミン類;ジエチルアミン塩酸塩等の塩素系活性剤等が挙げられる。これらは1種を単独で、または2種以上を組み合わせて用いることができる。
 また、本発明のフラックスには必要に応じてさらにチキソトロピック剤(D)(以下、「(D)成分」という。)、(A)成分以外のベース樹脂(E)(以下、「(E)成分」という。)、または添加剤(以下、「(F)成分」という。)を含めてもよい。
 (D)成分は、本発明のフラックスをソルダペースト用途に供する場合において、スクリーン印刷適性を調整する目的で好ましく使用することができる。(D)成分として、具体的には、例えば、ひまし油、硬化ひまし油、蜜ロウ、カルナバワックス等動植物系チキソトロピック剤;ステアリン酸アミド、12-ヒドロキシステアリン酸エチレンビスアミド等のアミド系チキソトロピック剤などが挙げられる。これらは1種を単独で、または2種以上を組み合わせて用いることができる。
 (E)成分としては、前記原料ロジン、その精製物(精製ロジン類)、これらを原料とする不均化ロジン、水素化ロジン、ホルミル化ロジン、重合ロジン等の(A)成分以外のロジン系ベース樹脂の他、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂(ナイロン樹脂)、ポリエステル樹脂、ポリアクリロニトリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリオレフイン樹脂、フッ素系樹脂、ABS樹脂等の合成樹脂が挙げられる。
 (F)成分としては、例えば、酸化防止剤、防黴剤、艶消し剤等の添加剤が挙げられる。
 フラックスにおける各成分の含有量は、該フラックスの利用態様に応じて適宜に設定することができる。例えば該フラックスをソルダペースト用途に供する場合には、各成分の含有量は例えば以下の通りである。
 (A)成分:20~60重量%程度、好ましくは30~60重量%
 (B)成分:60~20重量%程度、好ましくは55~30重量%
 (C)成分:0~20重量%程度、好ましくは1~10重量%
 (D)成分:0~20重量%程度、好ましくは1~10重量%
 (E)成分:0~20重量%程度、好ましくは0~10重量%
 (F)成分:0~10重量%程度、好ましくは1~5重量%
 また、該フラックスをポストフラックス用途に供する場合には、各成分の含有量は例えば以下の通りである。
 (A)成分:20~60重量%程度、好ましくは25~50重量%
 (B)成分:80~40重量%程度、好ましくは70~45重量%
 (C)成分:0~10重量%程度、好ましくは1~5重量%
 (E)成分:0~10重量%程度、好ましくは0~5重量%
 (F)成分:0~10重量%程度、好ましくは1~5重量%
 本発明のフラックスは、そのままで、或いはイソプロピルアルコール、ベンジルアルコール等の溶剤で希釈してポストフラックス又はディップハンダ付用のフラックス等として利用することができる。また、各種の鉛フリーはんだ合金粉末と混合し、鉛フリーソルダペーストとしても利用できる他、各種糸はんだ用途にも供することができる。
 本発明のソルダペーストは、本発明のフラックス及びハンダ粉末を含有するものである。それぞれの含有量は特に限定されないが、通常は前者が5~20重量%程度、および後者が80~95重量%程度である。当該ソルダペーストは、各種公知の手段(プラネタリーミル等)で製造することができる。
 ハンダ粉末としては、Sn-Pb系ハンダ粉末等の従来の鉛共晶ハンダ粉末;Snハンダ粉末、Sn-Ag系ハンダ粉末、Sn-Cu系ハンダ粉末、Sn-Zn系ハンダ粉末、Sn-Sb系ハンダ粉末、Sn-Ag-Cu系ハンダ粉末、Sn-Ag-Bi系ハンダ粉末、Sn-Ag-Cu-Bi系ハンダ粉末、Sn-Ag-Cu-In系ハンダ粉末、Sn-Ag-Cu-S系ハンダ粉末、Sn-Ag-Cu-Ni-Ge系ハンダ粉末等の鉛フリーハンダ粉末が挙げられる。なお、ハンダ粉末の平均一次粒子径は特に限定されないが、通常は1~50μm程度であり、好ましくは20~40μm程度である。
 以下、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明の範囲がそれらにより限定されないことはもとよりである。なお、「部」および「%」はいずれも重量基準である。
 また、表1および2で示す樹脂酸組成比は、市販のガスクロマトグラフ質量分析装置(製品名「Agilent6890」、「Agilent5973N」;Agilent technologies製)を用いて決定した値である。なお、カラムにも市販品(製品名「Advance-DS」、信和化工(株)製)を用いた。
(ロジン類(A)の調製)
製造例1
 アルゼンチン産ガムロジン(表1中、「原料1」と示す。以下、同様。)185gを減圧蒸留容器に仕込み、窒素シール下に0.4kPaの減圧下で蒸留し、精製ロジンを得た。次いで、当該精製ロジン150gおよび5%パラジウムカーボン(含水率50%)0.7gを0.3リットル回転式オートクレーブに仕込み、系内の酸素を除去した後、水素にて10MPaに加圧し、220℃まで昇温し、同温度で3時間水素化反応させることにより、ロジン(A1)を得た。表1に原料ロジン(原料1)の樹脂酸組成比を、表2にロジン(A1)の樹脂酸組成比および物性を示す(以下、同様)。
製造例2
 製造例1において、原料ロジンとしてインドネシア産ガムロジン(原料2)を用いた他は同様にしてロジン(A2)得た。
製造例3
 製造例1において、原料ロジンとして中国広西省産ガムロジン(原料3)を用いた他は同様にしてロジン(A3)得た。
製造例4
 製造例1において、原料ロジンとして製造例1と同じアルゼンチン産ガムロジン(原料1)と中国雲南省産ガムロジン(原料4)の1:1(重量比)混合物を用いた他は同様にして、ロジン(A4)得た。
製造例5
 製造例1と同じアルゼンチン産ガムロジン(原料1)250gを減圧蒸留容器に仕込み、窒素シール下に0.4kPaの減圧下で蒸留し、精製ロジンを得た。次いで、当該精製ロジン200gおよび5%パラジウムカーボン(含水率50%)0.4gを0.5リットルフラスコに仕込み、窒素雰囲気下で260℃まで昇温し、同温度で3時間不均化反応させることにより、ロジン(A5)を得た。
比較製造例1
 製造例1において、原料ロジンとして製造例4と同じ中国雲南省産ガムロジン(原料4)を用いた他は同様にしてロジン(P1)を得た。
比較製造例2
 製造例1と同じアルゼンチン産ガムロジン(原料1)を減圧蒸留容器に仕込み、窒素シール下に0.4kPaの減圧下で蒸留し、ロジン(P2)を得た。
比較製造例3
 製造例4と同じ中国雲南省産ガムロジン(原料4)250gを減圧蒸留容器に仕込み、窒素シール下に0.4kPaの減圧下で蒸留し、精製ロジンを得た。得られた精製ロジン200gおよび3.5%パラジウムカーボン(含水率50%)0.08gを0.5リットルフラスコに仕込み、窒素雰囲気下で280℃まで昇温し、同温度で3時間不均化反応させることによりロジン(P3)を得た。
比較製造例4
 市販の中国製水添ロジン(製品名「ハイペールCH」、荒川化学工業(株)製、原料5)250gを減圧蒸留容器に仕込み、窒素シール下に0.4kPaの減圧下で蒸留し、精製水添ロジンを得た。得られた精製水添ロジン200gおよび5%パラジウムカーボン(含水率50%)0.06gを0.5リットルフラスコに仕込み、窒素雰囲気下で260℃まで昇温し、同温度で1時間不均化反応させることにより、ロジン(P4)を得た。
実施例1~5および比較例1~4
<ソルダペースト用フラックスおよびソルダペーストの製造>
 製造例1で得られた(A1)成分50部、12-ヒドロキシステアリン酸エチレンビスアミド5部、およびジエチレングリコールモノヘキシルエーテル45部をビーカーに入れ、撹拌下に加熱溶融させることによりソルダペースト用フラックスを調製した。次いで、当該フラックス10部および鉛フリーハンダ粉末(Sn-Ag-Cu合金;96.5重量%/3重量%/0.5重量%、平均粒子径25~38μm)90部を撹拌混合することによりソルダペーストを調製した。製造例2~5および比較製造例1~4で得られたロジンについても同様にしてソルダペースト用フラックスおよびソルダペーストを調製した。
比較例5
 実施例1において、(A1)成分に代えて前記ハイペールCH(原料5。表3では(P5)と示す。)を使用した他は同様にして、ソルダペースト用フラックスおよびソルダペーストを調製した。
<ソルダペースト用フラックス試験>
(経時安定性)
 実施例1~5および比較例1~5のソルダペースト用フラックスを室温で1ヶ月保管した後、流動性を以下の基準で評価した。結果を表3に示す。
1:室温で流動する。
2:室温で流動しないが、柔らかく撹拌が容易である。
3:室温で固化しており、撹拌も困難である。
<ソルダペースト試験>
(経時安定性)
 実施例1~5および比較例1~5のソルダペーストを40℃で7日間保存した後、自動粘度測定装置PCU-205((株)マルコム製)により粘度を測定し、ペースト調製時(0日目)からの粘度変化を確認した。粘度変化が小さいほど、経時安定性に優れる。結果を表3に示す。
1:粘度変化が20Pa・S未満
2:粘度変化が20Pa・S以上40Pa・S未満
3:粘度変化が40Pa・S以上
(粘着性)
 実施例1~5および比較例1~5のソルダペーストを銅板上に印刷し、タッキネステスターTK-1((株)マルコム製)により粘着力を測定した。数値が大きいほど、粘着性に優れる。結果を表3に示す。
1:測定値が80gf以上
2:測定値が30gf以上80gf未満
3:測定値が30gf未満
(ハンダ付け性)
 実施例1~5および比較例1~5のソルダペーストについて、「JIS Z3284 附属書10 ぬれ効力およびディウェッティング試験」に準拠し、ハンダ付け性(濡れ性)を評価した。いずれのソルダペーストもハンダ付け性良好(広がり度合いの区分1または2)という結果であった(表3には、この結果を記載しなかった)。
(フラックス残渣の色調)
 実施例1~5および比較例1~5のソルダペーストを銅基板上に印刷し、ハンダ付部位を顕微鏡VW-6000((株)キーエンス製:30倍)で観察することによって、フラックス残渣の色調を以下の基準で確認した。
1:無色透明
2:若干の着色有り
3:着色有り
(フラックス残渣のクラック)
 フラックス残渣の色調の評価と併せ、クラックの発生の有無を確認した。実施例1~5および比較例1~5のソルダペーストには、いずれもクラックが認められなかった(表3には、この結果を記載しなかった)。
実施例6~10および比較例6~9
<ポストフラックスの製造>
 製造例1で得られた(A1)成分50部、およびイソプロピルアルコール50部をビーカーに入れ、撹拌下に加熱溶融させることによりポストフラックスを調製した。製造例2~5および比較製造例1~4で得られたロジンについても同様にしてポストフラックスを調製した。
比較例10
 実施例6において、(A1)成分に代えて前記ハイペールCH(原料5。表4では(P5)と示す。)を使用した他は同様にして、ポストフラックスを調製した。
<ポストフラックス試験>
(経時安定性)
 実施例6~10および比較例6~10のポストフラックスを室温で1週間保管した後、沈殿物の発生具合を以下の基準で評価した。沈殿物の発生が少ないほど、経時安定性に優れる。結果を表4に示す。
1:沈殿物が全く発生していない。
2:沈殿物が僅かに発生している。
3:沈殿物がかなり発生している。
(ハンダ付け性)
 実施例6~10および比較例6~10のポストフラックスを用いて、「JIS Z3197 はんだ広がり法」に準拠し、ハンダ付け性(濡れ性)を評価し、広がり率を計算した。数値が大きいほど、ハンダ付け性に優れる。結果を表4に示す。
1:広がり率が65%以上
2:広がり率が65%未満
(フラックス残渣の色調)
 また、ハンダ付部位を顕微鏡VW-6000((株)キーエンス製:30倍)で観察することによって、フラックス残渣の色調を以下の基準で確認した。
1:無色透明
2:若干の着色有り
3:着色有り
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 なお、表1および2における樹脂酸含有量(%=重量%)は、0%の場合を除き、小数点以下一桁を四捨五入した値である。また、0%とは、検出限界以下であったことを意味する。
 実施例1~5の結果より、(A)成分をベース樹脂とするソルダペースト用フラックスは経時安定性が良好であり、またこのフラックスを用いたソルダペーストも粘度の経時安定性および粘着性に優れることがわかった。また、当該ソルダペーストはハンダ付け性(濡れ性)ならびにフラックス残渣の色調および耐クラック性も良好であった。
 一方、比較例1および3~5の結果より、ベース樹脂中に(a-3)成分が50重量%以上含まれていても、(a-1)成分の含有量が15重量%に満たず、また(a-2)成分が含まれていない場合には、フラックスの経時安定性ならびにソルダペーストの粘度安定性および粘着性が不良になることがわかった。また、比較例5の場合には、フラックス残渣の色調も良くなかった。
 また、比較例2の結果より、ベース樹脂中に(a-1)成分および(a-2)成分が所定量含まれていても、(a-3)成分の含有量が所定量未満であると、ソルダペーストの粘度安定性および粘着性が不良となり、色調も良くないことがわかった。
 実施例6~10の結果より、(A)成分をベース樹脂とするポストフラックスは経時安定性が良好であり、またこのフラックスを用いた際のハンダ付け性(濡れ性)ならびにフラックス残渣の色調も良好であった。
 一方、比較例6および8~10の結果より、ベース樹脂中に(a-3)成分が50重量%以上含まれていても、(a-1)成分の含有量が15重量%に満たず、また(a-2)成分が含まれていない場合には、ポストフラックスの経時安定性が不良になることがわかった。また、比較例9の場合にはハンダ付け性(濡れ性)も不良であり、比較例10の場合にはフラックス残渣の色調も不良であった。
 また、比較例7の結果より、ベース樹脂中に(a-1)成分および(a-2)成分が所定量含まれていても、(a-3)成分の含有量が所定量未満であると、フラックス残渣の色調が良くないことがわかった。
 

Claims (6)

  1. ピマラン型樹脂酸(a-1)を少なくとも15重量%、ラブダン型樹脂酸(a-2)を少なくとも1重量%、および共役二重結合を有さないアビエタン型樹脂酸(a-3)を少なくとも50重量%含むロジン類(A)からなるハンダ付フラックス用ベース樹脂。
  2. 前記(A)成分のガードナー色調が2以下である、請求項1に記載のハンダ付フラックス用ベース樹脂。
  3. 請求項1または2に記載のハンダ付フラックス用ベース樹脂、フラックス用溶剤(B)および必要に応じて活性剤(C)を含有するハンダ付フラックス。
  4. さらにチキソトロピック剤(D)を含有する請求項3に記載のハンダ付フラックス。
  5. 請求項4に記載のハンダ付フラックスおよびハンダ粉末を含有するソルダペースト。
  6. 請求項3に記載のハンダ付フラックスからなるポストフラックス。
PCT/JP2013/063274 2012-05-18 2013-05-13 ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト WO2013172295A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013557308A JP5545421B2 (ja) 2012-05-18 2013-05-13 ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト
KR1020147029717A KR101991355B1 (ko) 2012-05-18 2013-05-13 납땜 플럭스용 베이스 수지, 납땜 플럭스 및 납땜 페이스트
EP13789975.3A EP2851396A4 (en) 2012-05-18 2013-05-13 BASE RESIN FOR FLUX FOR SOFT BRAZING, FLOW FOR SOLDERING AND SOLDERING PULP
US14/390,207 US20150075676A1 (en) 2012-05-18 2013-05-13 Base resin for soldering flux, soldering flux and solder paste
CN201380026017.8A CN104321387B (zh) 2012-05-18 2013-05-13 助焊剂用基础树脂、助焊剂以及焊膏

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012114904 2012-05-18
JP2012-114904 2012-05-18

Publications (1)

Publication Number Publication Date
WO2013172295A1 true WO2013172295A1 (ja) 2013-11-21

Family

ID=49583700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063274 WO2013172295A1 (ja) 2012-05-18 2013-05-13 ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト

Country Status (7)

Country Link
US (1) US20150075676A1 (ja)
EP (1) EP2851396A4 (ja)
JP (1) JP5545421B2 (ja)
KR (1) KR101991355B1 (ja)
CN (1) CN104321387B (ja)
TW (1) TWI579097B (ja)
WO (1) WO2013172295A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014867A (ja) * 2012-06-13 2014-01-30 Arakawa Chem Ind Co Ltd ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト
JP2020192579A (ja) * 2019-05-28 2020-12-03 千住金属工業株式会社 新規なロジン化合物及びその製造方法、フラックス、はんだペースト

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6402213B2 (ja) * 2016-03-31 2018-10-10 株式会社タムラ製作所 はんだ組成物および電子基板
CN105728987B (zh) * 2016-04-27 2018-07-24 乐星汽车电子(青岛)有限公司 一种助焊剂
JP7111957B2 (ja) 2018-06-14 2022-08-03 日亜化学工業株式会社 半導体装置及びその製造方法
JP2021091008A (ja) * 2019-12-11 2021-06-17 荒川化学工業株式会社 鉛フリーはんだフラックス用ロジン系ベース樹脂、鉛フリーはんだフラックス、鉛フリーソルダペースト
JP6836090B1 (ja) * 2020-04-02 2021-02-24 千住金属工業株式会社 フラックス組成物、及びそれを用いたはんだペースト
CN116140860B (zh) * 2022-11-25 2024-07-26 卢世雄 一种半导体测试探针卡专用焊锡及其制作方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131899A (en) 1975-05-06 1976-11-16 Arakawa Chem Ind Co Ltd Method of purifying rosin
JPS51149256A (en) 1975-06-14 1976-12-22 Nippon Shinyaku Co Ltd A process for preparing 13beta -delta 8- dihydroabietic acid
JPH06246482A (ja) 1993-02-23 1994-09-06 Harima Chem Inc ソルダーペースト
JP2002096193A (ja) * 2000-09-21 2002-04-02 Advantest Corp Pbを含まないSn合金系ハンダ用活性化ロジンフラックスの製造方法
JP2002096194A (ja) * 2000-09-21 2002-04-02 Advantest Corp Pbを含まないSn合金系ハンダ用フラックス
JP2007111735A (ja) * 2005-10-20 2007-05-10 Arakawa Chem Ind Co Ltd ハンダフラックス用ベース樹脂、ロジン系ハンダフラックス、およびソルダーペースト
JP2008062239A (ja) 2006-09-04 2008-03-21 Harima Chem Inc はんだ付け用フラックスおよびはんだペースト組成物
WO2010098240A1 (ja) * 2009-02-27 2010-09-02 荒川化学工業株式会社 ロジン変性フェノール樹脂、その製造方法および印刷インキ
JP2011173173A (ja) 2011-05-25 2011-09-08 Harima Chemicals Inc はんだ付け用フラックスおよびはんだペースト組成物
WO2011145187A1 (ja) * 2010-05-19 2011-11-24 荒川化学工業株式会社 ロジン変性フェノール樹脂、その製造方法、印刷インキ用ワニス、および印刷インキ
JP2012086269A (ja) * 2010-09-24 2012-05-10 Arakawa Chem Ind Co Ltd ハンダ付用ロジン系フラックスおよびソルダーペースト

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539851B2 (ja) * 1987-09-26 1996-10-02 荒川化学工業株式会社 無色ロジンの製造法
JP2539811B2 (ja) * 1987-01-29 1996-10-02 荒川化学工業株式会社 ロジンエステルの製造法
US5176749A (en) * 1991-06-20 1993-01-05 Argus International Preflux coating composition for copper
JP3371985B2 (ja) * 1993-06-25 2003-01-27 荒川化学工業株式会社 無色ロジンエステルの製造法
JP2003338682A (ja) * 2002-01-11 2003-11-28 Nec Infrontia Corp はんだ付け方法及びはんだ接合体
TW200633810A (en) * 2004-12-28 2006-10-01 Arakawa Chem Ind Lead-free solder flux and solder paste
CN101508061B (zh) * 2009-03-30 2012-10-03 汕头市骏码凯撒有限公司 用于SnAgCu合金焊锡粉的助焊剂及其制备方法
JP2012089750A (ja) * 2010-10-21 2012-05-10 Hitachi Chem Co Ltd 半導体封止充てん用熱硬化性樹脂組成物及び半導体装置
CN102218624B (zh) * 2011-04-14 2013-03-27 深圳市宝力科技有限公司 无铅焊锡膏用助焊剂及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51131899A (en) 1975-05-06 1976-11-16 Arakawa Chem Ind Co Ltd Method of purifying rosin
JPS51149256A (en) 1975-06-14 1976-12-22 Nippon Shinyaku Co Ltd A process for preparing 13beta -delta 8- dihydroabietic acid
JPH06246482A (ja) 1993-02-23 1994-09-06 Harima Chem Inc ソルダーペースト
JP2002096193A (ja) * 2000-09-21 2002-04-02 Advantest Corp Pbを含まないSn合金系ハンダ用活性化ロジンフラックスの製造方法
JP2002096194A (ja) * 2000-09-21 2002-04-02 Advantest Corp Pbを含まないSn合金系ハンダ用フラックス
JP2007111735A (ja) * 2005-10-20 2007-05-10 Arakawa Chem Ind Co Ltd ハンダフラックス用ベース樹脂、ロジン系ハンダフラックス、およびソルダーペースト
JP2008062239A (ja) 2006-09-04 2008-03-21 Harima Chem Inc はんだ付け用フラックスおよびはんだペースト組成物
WO2010098240A1 (ja) * 2009-02-27 2010-09-02 荒川化学工業株式会社 ロジン変性フェノール樹脂、その製造方法および印刷インキ
WO2011145187A1 (ja) * 2010-05-19 2011-11-24 荒川化学工業株式会社 ロジン変性フェノール樹脂、その製造方法、印刷インキ用ワニス、および印刷インキ
JP2012086269A (ja) * 2010-09-24 2012-05-10 Arakawa Chem Ind Co Ltd ハンダ付用ロジン系フラックスおよびソルダーペースト
JP2011173173A (ja) 2011-05-25 2011-09-08 Harima Chemicals Inc はんだ付け用フラックスおよびはんだペースト組成物

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CAN. J. CHEM., vol. 38, 1960, pages 663 - 667
J. AM. CHEM. SOC., vol. 70, 1948, pages 2079
J. AM. CHEM. SOC., vol. 77, 1955, pages 2823
J. ORG. CHEM., vol. 23, 1958, pages 25 - 26
J. ORG. CHEM., vol. 31, 1966, pages 4128
J. ORG. CHEM., vol. 31, 1966, pages 4246 - 4248
J. ORG. CHEM., vol. 34, 1969, pages 1550
See also references of EP2851396A4
WEISSMAN, HOLZFORSHUN, vol. 28, 1974, pages 186 - 188

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014867A (ja) * 2012-06-13 2014-01-30 Arakawa Chem Ind Co Ltd ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト
JP2020192579A (ja) * 2019-05-28 2020-12-03 千住金属工業株式会社 新規なロジン化合物及びその製造方法、フラックス、はんだペースト

Also Published As

Publication number Publication date
CN104321387A (zh) 2015-01-28
EP2851396A1 (en) 2015-03-25
JPWO2013172295A1 (ja) 2016-01-12
TWI579097B (zh) 2017-04-21
JP5545421B2 (ja) 2014-07-09
US20150075676A1 (en) 2015-03-19
KR20150016218A (ko) 2015-02-11
EP2851396A4 (en) 2016-01-06
TW201400226A (zh) 2014-01-01
CN104321387B (zh) 2016-10-12
KR101991355B1 (ko) 2019-06-20

Similar Documents

Publication Publication Date Title
JP5545421B2 (ja) ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト
JP5246452B2 (ja) ハンダ付用ロジン系フラックスおよびソルダーペースト
JP6191896B2 (ja) 鉛フリーはんだペースト用フラックス及び鉛フリーはんだペースト
JP5423789B2 (ja) 鉛フリーはんだ用フラックス組成物及び鉛フリーはんだ組成物
JP6402213B2 (ja) はんだ組成物および電子基板
JP5019057B2 (ja) はんだフラックスおよびクリームはんだ
JP6160861B2 (ja) ハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペースト
JP6204007B2 (ja) フラックス組成物、ソルダーペースト組成物及びプリント配線基板
US9314879B2 (en) Lead-free solder flux and lead-free solder paste
JP5916674B2 (ja) ジェットディスペンサー用はんだ組成物
JP2016026882A (ja) クリアランスレジスト用鉛フリーはんだ向けフラックス及びクリアランスレジスト用鉛フリーはんだペースト
JP6120139B2 (ja) 鉛フリーはんだ用フラックス、鉛フリーソルダペーストおよび鉛フリー糸はんだ
JP2022037999A (ja) 鉛フリーはんだフラックス用ロジン系ベース樹脂、鉛フリーはんだフラックス、鉛フリーソルダペースト
CN104439758A (zh) 钎焊助焊剂用松香及使用其的钎焊助焊剂
JP6370324B2 (ja) はんだ組成物および電子基板の製造方法
JP2018161674A (ja) はんだ組成物および電子基板
JP2021091008A (ja) 鉛フリーはんだフラックス用ロジン系ベース樹脂、鉛フリーはんだフラックス、鉛フリーソルダペースト
JP5481753B2 (ja) フラックス組成物及びはんだペースト組成物
JP2021016871A (ja) 鉛フリーはんだフラックス用ロジン系ベース樹脂、鉛フリーはんだフラックス、鉛フリーソルダペースト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013557308

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13789975

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14390207

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147029717

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013789975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013789975

Country of ref document: EP