WO2013168646A1 - Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board - Google Patents

Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board Download PDF

Info

Publication number
WO2013168646A1
WO2013168646A1 PCT/JP2013/062658 JP2013062658W WO2013168646A1 WO 2013168646 A1 WO2013168646 A1 WO 2013168646A1 JP 2013062658 W JP2013062658 W JP 2013062658W WO 2013168646 A1 WO2013168646 A1 WO 2013168646A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
printed wiring
wiring board
treated copper
present
Prior art date
Application number
PCT/JP2013/062658
Other languages
French (fr)
Japanese (ja)
Inventor
新井 英太
敦史 三木
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to KR1020147034840A priority Critical patent/KR101704892B1/en
Priority to KR1020167030318A priority patent/KR101822325B1/en
Priority to CN201380024196.1A priority patent/CN104271813B/en
Publication of WO2013168646A1 publication Critical patent/WO2013168646A1/en
Priority to PH12014502509A priority patent/PH12014502509B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0692Regulating the thickness of the coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/12Electroforming by electrophoresis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/12Electroforming by electrophoresis
    • C25D1/14Electroforming by electrophoresis of inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/58Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Definitions

  • the present invention relates to a surface-treated copper foil and a laminate using the same, a copper foil, a printed wiring board, an electronic device, and a method for producing a printed wiring board, and in particular, the remaining resin transparent after etching the copper foil.
  • the present invention relates to a surface-treated copper foil suitable for a field where properties are required, a laminated board using the copper foil, a copper foil, a printed wiring board, an electronic device, and a method for manufacturing a printed wiring board.
  • FPCs flexible printed wiring boards
  • the signal transmission speed has been increased, and impedance matching has become an important factor in FPC.
  • a resin insulation layer for example, polyimide
  • processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer
  • the visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.
  • a copper clad laminate that is a laminate of a copper foil and a resin insulating layer can be manufactured using a rolled copper foil having a roughened plating surface.
  • This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness.
  • Patent Document 1 a polyimide film and a low-roughness copper foil are laminated, and a light transmittance at a wavelength of 600 nm of the film after copper foil etching is 40% or more, a haze value.
  • An invention relating to a copper clad laminate having (HAZE) of 30% or less and an adhesive strength of 500 N / m or more is disclosed.
  • Patent Document 2 has an insulating layer in which a conductive layer made of electrolytic copper foil is laminated, and the light transmittance of the insulating layer in the etching region when the circuit is formed by etching the conductive layer is 50% or more.
  • the electrolytic copper foil includes a rust-proofing layer made of a nickel-zinc alloy on an adhesive surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesive surface ) Is 0.05 to 1.5 ⁇ m, and the specular gloss at an incident angle of 60 ° is 250 or more.
  • Patent Document 3 discloses a method for treating a copper foil for a printed circuit, in which a cobalt-nickel alloy plating layer is formed on the surface of the copper foil after a roughening treatment by copper-cobalt-nickel alloy plating, and further zinc-nickel.
  • An invention relating to a method for treating a copper foil for printed circuit, characterized by forming an alloy plating layer is disclosed.
  • JP 2004-98659 A WO2003 / 096776 Japanese Patent No. 2849059
  • Patent Document 1 a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency. Moreover, in patent document 2, the roughening process is not made and the adhesive strength of copper foil and resin is low and inadequate in uses other than the flexible printed wiring board for COF. Further, in the treatment method described in Patent Document 3, it was possible to finely process the copper foil with Cu—Co—Ni, but the resin after bonding the copper foil to the resin and removing it by etching was excellent. Transparency is not realized.
  • the present invention provides a surface-treated copper foil that adheres well to a resin and is excellent in the transparency of a resin after the copper foil is removed by etching, and a laminate using the same.
  • the present inventors have found that the copper foil in which the roughened particles are formed on the surface by the roughening treatment, the surface average roughness Rz on the side adhered to the resin substrate, the glossiness, and the roughness. It has been found that the ratio of the surface area of the roughened particles and the area obtained when the roughened particles are planarly viewed from the copper foil surface side affects the resin transparency after the copper foil is removed by etching.
  • roughened particles are formed on the surface of the copper foil by the roughening treatment, and the average roughness Rz of the TD on the roughened treatment surface is 0.20 to 0.80 ⁇ m.
  • the surface roughness A of the roughened particles and the area obtained when the roughened particles are viewed in plan from the copper foil surface side, the 60 degree glossiness of MD on the roughened surface is 76 to 350%.
  • a surface-treated copper foil having a ratio A / B to B of 1.90 to 2.40.
  • the 60 ° glossiness of the MD is 90 to 250%.
  • the average roughness Rz of the TD is 0.30 to 0.60 ⁇ m.
  • the A / B is 2.00 to 2.20.
  • the copper foil is bonded to both surfaces of a 50 ⁇ m thick resin substrate from the roughened surface side, and then the copper foils on both sides are etched. When removed, the resin substrate has a haze value of 20 to 70%.
  • roughened particles are formed on the surface of the copper foil by a roughening treatment, and the copper foil is bonded to both surfaces of a 50 ⁇ m thick resin substrate from the roughening treatment surface side, and then etched.
  • the surface-treated copper foil has a haze value of 20 to 70% when the resin substrate is removed.
  • the present invention is a laminated plate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.
  • the present invention is a copper foil before roughening used for the surface-treated copper foil of the present invention.
  • the 60 degree gloss of MD is 500 to 800%.
  • the present invention is a copper foil having an MD 60 degree gloss of 501 to 800%.
  • the present invention is a printed wiring board using the surface-treated copper foil of the present invention.
  • the present invention is an electronic device using the printed wiring board of the present invention.
  • the present invention is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards of the present invention.
  • the present invention includes a step of connecting at least one printed wiring board of the present invention and another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention, This is a method for manufacturing a printed wiring board in which two or more printed wiring boards are connected.
  • the present invention is an electronic device using one or more printed wiring boards to which at least one printed wiring board of the present invention is connected.
  • the present invention is a method for manufacturing a printed wiring board, including at least a step of connecting the printed wiring board of the present invention and a component.
  • the step of connecting at least one printed wiring board of the present invention to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention, and the present invention A method of manufacturing a printed wiring board having two or more printed wiring boards connected, comprising at least a step of connecting a printed wiring board of the present invention or two or more printed wiring boards of the present invention and a component. .
  • the present invention it is possible to provide a surface-treated copper foil that adheres well to a resin and is excellent in the transparency of a resin after the copper foil is removed by etching, and a laminate using the same.
  • the copper foil used in the present invention is useful for a copper foil used by making a laminate by bonding to a resin substrate and removing it by etching.
  • the copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil.
  • the surface of the copper foil that adheres to the resin substrate that is, the roughened surface, has a fist-like electric surface on the surface of the copper foil after degreasing in order to improve the peel strength of the copper foil after lamination.
  • a roughening process is carried out to wear.
  • the electrolytic copper foil has irregularities at the time of manufacture, the irregularities are further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment.
  • this roughening treatment can be performed by copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, or the like.
  • Ordinary copper plating or the like may be performed as a pretreatment before roughening, and ordinary copper plating or the like may be performed as a finishing treatment after roughening in order to prevent electrodeposits from dropping off.
  • the content of treatment may be somewhat different between the rolled copper foil and the electrolytic copper foil.
  • known treatments related to copper foil roughening are included as necessary, and are collectively referred to as roughening treatment.
  • the rolled copper foil according to the present invention includes a copper alloy foil containing one or more elements such as Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, and V. It is. When the concentration of the above elements increases (for example, 10% by mass or more in total), the conductivity may decrease.
  • the conductivity of the rolled copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more.
  • the copper-cobalt-nickel alloy plating as the roughening treatment is, as a result of electrolytic plating, an amount of adhesion of 15 to 40 mg / dm 2 of copper—100 to 3000 ⁇ g / dm 2 of cobalt—100 to 1500 ⁇ g / dm 2 of nickel. It can be carried out so as to form a ternary alloy layer. If the amount of deposited Co is less than 100 ⁇ g / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate.
  • the amount of Co deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. If the Ni adhesion amount is less than 100 ⁇ g / dm 2 , the heat resistance may deteriorate. On the other hand, when the Ni adhesion amount exceeds 1500 ⁇ g / dm 2 , the etching residue may increase.
  • a preferable Co adhesion amount is 1000 to 2500 ⁇ g / dm 2
  • a preferable nickel adhesion amount is 500 to 1200 ⁇ g / dm 2 .
  • the etching stain means that Co remains without being dissolved when etched with copper chloride
  • the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.
  • Plating bath composition Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L pH: 1 to 4 Temperature: 30-50 ° C Current density D k : 20 to 30 A / dm 2 Plating time: 1-5 seconds
  • cobalt nickel cobalt -100 ⁇ 700 ⁇ g / dm 2 weight deposited on the roughened surface is 200 ⁇ 3000 ⁇ g / dm 2 - can form a nickel alloy plating layer.
  • This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
  • This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered. If the amount of cobalt adhesion is less than 200 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated.
  • the treated surface becomes reddish, which is not preferable.
  • the amount of cobalt deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching spots may occur, and acid resistance and chemical resistance may deteriorate.
  • a preferable cobalt adhesion amount is 500 to 2500 ⁇ g / dm 2 .
  • the nickel adhesion amount is less than 100 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated.
  • nickel exceeds 1300 microgram / dm ⁇ 2 > alkali etching property will worsen.
  • a preferable nickel adhesion amount is 200 to 1200 ⁇ g / dm 2 .
  • Plating bath composition Co 1-20 g / L, Ni 1-20 g / L pH: 1.5-3.5 Temperature: 30-80 ° C Current density D k : 1.0 to 20.0 A / dm 2 Plating time: 0.5-4 seconds
  • a zinc plating layer having an adhesion amount of 30 to 250 ⁇ g / dm 2 is further formed on the cobalt-nickel alloy plating. If the zinc adhesion amount is less than 30 ⁇ g / dm 2 , the heat deterioration rate improving effect may be lost. On the other hand, when the zinc adhesion amount exceeds 250 ⁇ g / dm 2 , the hydrochloric acid deterioration rate may be extremely deteriorated.
  • the zinc coating weight is 30 ⁇ 240 ⁇ g / dm 2, more preferably 80 ⁇ 220 ⁇ g / dm 2.
  • Plating bath composition Zn 100 to 300 g / L pH: 3-4 Temperature: 50-60 ° C Current density D k : 0.1 to 0.5 A / dm 2 Plating time: 1 to 3 seconds
  • a zinc alloy plating layer such as zinc-nickel alloy plating may be formed in place of the zinc plating layer, and a rust prevention layer may be formed on the outermost surface by chromate treatment or application of a silane coupling agent. Good.
  • the average roughness Rz of TD is more than 0.80 ⁇ m, the unevenness of the resin surface after the copper foil is removed by etching increases, and as a result, the haze value of the resin increases.
  • the TD average roughness Rz of the roughened surface is preferably 0.30 to 0.70 ⁇ m, more preferably 0.35 to 0.60 ⁇ m, still more preferably 0.35 to 0.55 ⁇ m, and more preferably 0.35 to Even more preferred is 0.50 ⁇ m.
  • the TD average roughness Rz of the roughened surface is preferably 0.20 to 0.70 ⁇ m, 0 More preferred is .25 to 0.60 ⁇ m, even more preferred is 0.30 to 0.55 ⁇ m, and even more preferred is 0.30 to 0.50 ⁇ m.
  • the glossiness at an incident angle of 60 degrees in the rolling direction (MD) of the roughened surface of the surface-treated copper foil greatly affects the haze value of the resin. That is, the haze value of the above-mentioned resin becomes smaller as the copper foil has a higher glossiness on the roughened surface.
  • the surface-treated copper foil of the present invention has a glossiness of the roughened surface of 76 to 350%, preferably 80 to 350%, preferably 90 to 300%, and 90 to 250%. Is more preferable, and 100 to 250% is more preferable.
  • the TD surface roughness (Rz) of the copper foil before the surface treatment is 0.30 to 0.80 ⁇ m, preferably 0.30 to 0.50 ⁇ m, and the incident angle 60 in the rolling direction (MD) is 60.
  • the glossiness at 350 degrees is 350 to 800%, preferably 500 to 800%, the current density is higher than the conventional roughening treatment and the roughening treatment time is shortened.
  • the glossiness of the surface-treated copper foil is 76 to 350% at an incident angle of 60 degrees in the rolling direction (MD).
  • Such a copper foil can be produced by adjusting the oil film equivalent of rolling oil (high gloss rolling), or by chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution.
  • Can do. If the surface roughness (Rz) after the surface treatment is desired to be smaller (for example, Rz 0.20 ⁇ m), the TD roughness (Rz) of the treated surface of the copper foil before the surface treatment is 0.18.
  • the glossiness at an incident angle of 60 degrees in the rolling direction (MD) is 350 to 800%, preferably 500 to 800%.
  • the current density is made higher than the roughening treatment, and the roughening treatment time is shortened.
  • the copper foil before the roughening treatment preferably has a 60 degree gloss of MD of 500 to 800%, more preferably 501 to 800%, and still more preferably 510 to 750%. . If the 60-degree glossiness of MD of the copper foil before the roughening treatment is less than 500%, the haze value may be higher than the case of 500% or more, and if it exceeds 800%, it is difficult to produce. Problems may arise.
  • the high gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13000 to 24000.
  • high gloss rolling should have an oil film equivalent defined by the following formula of 12000 to 24000.
  • Oil film equivalent ⁇ (rolling oil viscosity [cSt]) ⁇ (sheet feeding speed [mpm] + roll peripheral speed [mpm]) ⁇ / ⁇ (roll biting angle [rad]) ⁇ (yield stress of material [kg / mm 2 ]) ⁇
  • the rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
  • a known method such as using a low viscosity rolling oil or slowing a sheet passing speed may be used.
  • Chemical polishing is performed with an etching solution such as sulfuric acid-hydrogen peroxide-water system or ammonia-hydrogen peroxide-water system at a lower concentration than usual and for a long time.
  • the surface-treated copper foil of the present invention is controlled in the average roughness Rz and glossiness of the roughened surface as described above. Therefore, after being bonded to the resin substrate, the portion of the resin substrate where the copper foil is removed The haze value decreases.
  • the haze value (%) is a value calculated by (diffuse transmittance) / (total light transmittance) ⁇ 100.
  • the surface-treated copper foil of the present invention has a haze value of the resin substrate when the copper foil is removed by etching after being bonded to both surfaces of a 50 ⁇ m thick resin substrate from the roughened surface side. It is preferably 20 to 70%, more preferably 30 to 55%.
  • the ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side greatly affects the haze value of the resin. That is, if the surface roughness Rz is the same, the haze value of the above-described resin decreases as the copper foil having a smaller ratio A / B. Therefore, in the surface-treated copper foil of the present invention, the ratio A / B is 1.90 to 2.40, and preferably 2.00 to 2.20.
  • the form and formation density of the particles are determined, and the surface roughness Rz, glossiness, and particle area ratio A / B can be controlled.
  • the surface-treated copper foil of the present invention has a ratio A / B of 1.90 between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side. It is controlled to ⁇ 2.40, and the surface unevenness is large. Further, since the average TD roughness Rz of the roughened surface is controlled to 0.20 to 0.80 ⁇ m, there is no extremely rough portion on the surface. On the other hand, the glossiness of the roughened surface is as high as 76 to 350%. Considering these, it can be seen that in the surface-treated copper foil of the present invention, the particle size of the roughened particles on the roughened surface is controlled to be small.
  • the particle size of the roughened particles affects the transparency of the resin after the copper foil is etched away, but the surface-treated copper foil of the present invention has a surface average roughness on the side bonded to the resin substrate in this way. Controlling the ratio of the surface roughness Rz, the glossiness, and the surface area of the roughened particles to the area obtained when the roughened particles are planarly viewed from the copper foil surface side is within the scope of the present invention. This means that the diameter is reduced within an appropriate range. For this reason, the resin transparency after removing the copper foil by etching becomes good, and the peel strength also becomes good.
  • the etching factor is preferably 1.8 or more, preferably 2.0 or more, preferably 2.2 or more, and 2.3 or more. Preferably, it is 2.4 or more.
  • the surface roughness (Rz), particle area ratio (A / B), and gloss of the copper circuit or copper foil surface can be obtained by dissolving and removing the resin. The degree can be measured.
  • Transmission loss When the transmission loss is small, attenuation of the signal when performing signal transmission at a high frequency is suppressed, so that a stable signal transmission can be performed in a circuit that transmits the signal at a high frequency. Therefore, a smaller transmission loss value is preferable because it is suitable for use in a circuit for transmitting a signal at a high frequency.
  • the transmission loss at a frequency of 20 GHz is preferably less than 5.0 dB / 10 cm, and more preferably less than 4.1 dB / 10 cm. Preferably, less than 3.7 dB / 10 cm is even more preferable.
  • the surface-treated copper foil of the present invention can be bonded to a resin substrate from the roughened surface side to produce a laminate.
  • the resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board or the like.
  • a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin for rigid PWB Glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin and glass cloth base material epoxy resin, etc. are used, polyester film, polyimide film, liquid crystal polymer (LCP) film, fluorine for FPC Resin etc. can be used.
  • the peel strength between the film and the surface-treated copper foil tends to be smaller than when a polyimide film is used. Therefore, when a liquid crystal polymer (LCP) film or a fluororesin film is used, the copper circuit is covered with a coverlay after the copper circuit is formed, so that the film and the copper circuit are not easily peeled off, and the peel strength is reduced. The film can be prevented from peeling off from the copper circuit.
  • a liquid crystal polymer (LCP) film or a fluororesin film has a small dielectric loss tangent
  • a copper-clad laminate using a liquid crystal polymer (LCP) film or a fluororesin film and the surface-treated copper foil according to the present invention printed wiring Boards and printed circuit boards are suitable for high-frequency circuits (circuits that transmit signals at high frequencies).
  • the surface-treated copper foil according to the present invention has a small surface roughness Rz and a high glossiness, so that the surface is smooth and suitable for high-frequency circuit applications.
  • a prepreg in which a base material such as glass cloth is impregnated with a resin and the resin is cured to a semi-cured state is prepared. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing.
  • FPC it is laminated on a copper foil under high temperature and high pressure without using an adhesive on a substrate such as a polyimide film, or a polyimide precursor is applied, dried, cured, etc.
  • a laminated board can be manufactured by performing.
  • the laminate of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited.
  • PWB printed wiring boards
  • the single-sided PWB, the double-sided PWB, and the multilayer PWB 3
  • rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material.
  • a laminate of a surface-treated copper foil and a resin substrate is prepared.
  • a specific example of the laminate of the surface-treated copper foil and the resin substrate according to the present invention at least one of a main substrate, an attached circuit substrate, and a resin substrate such as polyimide used for electrically connecting them.
  • a laminated board manufactured by accurately positioning the flexible printed circuit board and crimping it to the wiring ends of the main circuit board and the attached circuit board Is mentioned.
  • the laminate is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding.
  • the laminated board has a mark formed of a part of the copper wiring and a separate material.
  • the position of the mark is not particularly limited as long as it can be photographed by photographing means such as a CCD camera through the resin constituting the laminated plate.
  • the mark refers to a mark used to detect, position, or align the position of a laminated board, printed wiring board, or the like.
  • the position of the mark when the above-mentioned mark is photographed by the photographing means through the resin, the position of the mark can be detected well. And the position of the said mark can be detected in this way, and based on the position of the said detected mark, the positioning of the laminated board of surface-treated copper foil and a resin substrate can be performed favorably.
  • the photographing means can detect the position of the mark well by such a positioning method, and the printed wiring board can be positioned more accurately.
  • the connection failure is reduced and the yield is improved.
  • a method of connecting one printed wiring board and another printed wiring board soldering, connection through an anisotropic conductive film (Anisotropic Conductive Film, ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used.
  • the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which components are mounted.
  • a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to the present invention, and at least one printed wiring board according to the present invention.
  • One printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention can be connected, and an electronic apparatus can be manufactured using such a printed wiring board.
  • “copper circuit” includes copper wiring.
  • the printed wiring board of the present invention may be connected to a component to produce a printed wiring board.
  • at least one printed wiring board of the present invention is connected to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention.
  • a printed wiring board in which two or more printed wiring boards are connected may be manufactured by connecting two or more printed wiring boards and components.
  • “components” include connectors, LCDs (Liquid Crystal Display), electronic components such as glass substrates used in LCDs, ICs (Integrated Circuits), LSIs (Large Scale Integrated Circuits), VLSIs (Very Large Circuits). ), Electronic components including semiconductor integrated circuits such as ULSI (Ultra-Large Scale Integration) (for example, IC chips, LSI chips, VLSI chips, ULSI chips), components for shielding electronic circuits and covers on printed wiring boards Examples include parts necessary for fixing.
  • the positioning method according to the embodiment of the present invention may include a step of moving a laminated board (including a laminated board of copper foil and a resin substrate and a printed wiring board).
  • a laminated board including a laminated board of copper foil and a resin substrate and a printed wiring board.
  • it may be moved by a conveyor such as a belt conveyor or a chain conveyor, may be moved by a moving device provided with an arm mechanism, or may be moved by floating a laminated plate using gas.
  • a moving means a moving device or moving means (including a roller or a bearing) that moves a laminated plate by rotating an object such as a substantially cylindrical shape, a moving device or moving means that uses hydraulic pressure as a power source, Moving devices and moving means powered by air pressure, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. It may be moved by a moving device or moving means having a stage. Moreover, you may perform the movement process by a well-known moving means. In the step of moving the laminated plate, the laminated plate can be moved for alignment.
  • the positioning method according to the embodiment of the present invention may be used for a surface mounter or a chip mounter.
  • the printed wiring board which has the circuit provided on the resin board and the said resin board may be sufficient as the laminated board of the surface treatment copper foil and the resin board which are positioned in this invention. In that case, the mark may be the circuit.
  • positioning includes “detecting the position of a mark or an object”.
  • alignment includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.
  • Examples 1 to 24 and Comparative Examples 1 to 13 various copper foils were prepared, and plating treatment was performed on one surface under the conditions described in Tables 1 to 8 as a roughening treatment. After performing the above-described rough plating treatment, the following plating treatment for forming the heat-resistant layer and the rust-preventing layer was carried out for Examples 1 to 13, 15 to 20, 22 to 24 and Comparative Examples 2, 4, and 7 to 10. went. The conditions for forming the heat-resistant layer 1 are shown below.
  • Liquid composition Nickel 5-20 g / L, Cobalt 1-8 g / L pH: 2-3 Liquid temperature: 40-60 ° C Current density: 5 to 20 A / dm 2 Coulomb amount: 10-20 As / dm 2 A heat-resistant layer 2 was formed on the copper foil provided with the heat-resistant layer 1. In Comparative Examples 3, 5, and 6, the rough plating treatment was not performed, and the heat-resistant layer 2 was directly formed on the prepared copper foil. The conditions for forming the heat-resistant layer 2 are shown below.
  • Liquid composition Nickel 2-30 g / L, Zinc 2-30 g / L pH: 3-4 Liquid temperature: 30-50 ° C Current density: 1 to 2 A / dm 2 Coulomb amount: 1 to 2 As / dm 2 On the copper foil which gave the said heat-resistant layers 1 and 2, the antirust layer was further formed. The conditions for forming the rust preventive layer are shown below.
  • Liquid composition potassium dichromate 1-10 g / L, zinc 0-5 g / L pH: 3-4 Liquid temperature: 50-60 ° C Current density: 0-2A / dm 2 (for immersion chromate treatment) Coulomb amount: 0 to 2 As / dm 2 (for immersion chromate treatment)
  • the weathering layer was further formed. The formation conditions are shown below.
  • silane coupling agent having an amino group N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (Example 17), N-2- (aminoethyl) -3-aminopropyltriethoxysilane (Example) Examples 1 to 13, 15, 16, 24), N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (Example 18), 3-aminopropyltrimethoxysilane (Example 19), 3-amino Propyltriethoxysilane (Example 20), 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (Example 22), N-phenyl-3-aminopropyltrimethoxysilane (Example 23) ) Was applied and dried to form a weather resistant layer.
  • These silane coupling agents can be used in combination of two or more.
  • the rolled copper foil was manufactured as follows. A copper ingot having the composition shown in Table 9 was manufactured and hot-rolled, and then the annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled plate having a thickness of 1 to 2 mm. This rolled sheet was annealed in a continuous annealing line at 300 to 800 ° C. and recrystallized, and finally cold-rolled to the thickness shown in Table 9 to obtain a copper foil. “Tough pitch copper” in the “Type” column of Table 9 indicates tough pitch copper standardized in JIS H3100 C1100, and “Oxygen-free copper” indicates oxygen-free copper standardized in JIS H3100 C1020.
  • “Tough pitch copper + Ag: 100 ppm” means that 100 mass ppm of Ag is added to tough pitch copper.
  • the electrolytic copper foil used was an electrolytic copper foil HLP foil manufactured by JX Nippon Mining & Metals. When electrolytic polishing was performed, the plate thickness after electrolytic polishing was described. Table 9 shows the points of the copper foil preparation process before the surface treatment. “High gloss rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the value of the oil film equivalent. “Normal rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the oil film equivalent value described. “Chemical polishing” and “electropolishing” mean the following conditions.
  • “Chemical polishing” was performed using an etching solution of 1 to 3% by mass of H 2 SO 4 , 0.05 to 0.15% by mass of H 2 O 2 , and the remaining water, and the polishing time was 1 hour.
  • “Electropolishing” is a condition of phosphoric acid 67% + sulfuric acid 10% + water 23%, voltage 10 V / cm 2 , and the time shown in Table 9 (when electropolishing for 10 seconds, the polishing amount is 1 to 2 ⁇ m. ).
  • the copper foil was laminated on both sides of a polyimide film with a thermosetting adhesive for lamination (thickness 50 ⁇ m, Ube Industries Upilex), and the copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film.
  • the haze value of the sample film was measured using a haze meter HM-150 manufactured by Murakami Color Research Laboratory based on JIS K7136 (2000).
  • Peel strength (adhesive strength);
  • the normal peel strength was measured with a tensile tester Autograph 100, and the normal peel strength of 0.7 N / mm or more could be used for laminated substrates.
  • solder heat resistance evaluation The copper foil was bonded to both surfaces of a polyimide film with a thermosetting adhesive for laminating (thickness 50 ⁇ m, Upilex manufactured by Ube Industries). About the obtained double-sided laminated board, the test coupon based on JISC6471 was created. The prepared test coupon was exposed to high temperature and high humidity of 85 ° C. and 85% RH for 48 hours, and then floated in a solder bath at 300 ° C. to evaluate solder heat resistance.
  • the circuit width was set such that the bottom width of the circuit cross section was 20 ⁇ m.
  • Equipment Spray type small etching equipment
  • Spray pressure 0.2 MPa
  • Etching solution Ferric chloride aqueous solution (specific gravity 40 Baume)
  • Liquid temperature 50 ° C
  • the photosensitive resist film was peeled off by dipping in a 45 ° C. NaOH aqueous solution for 1 minute.
  • Etching factor (Ef) (2 ⁇ T) / (Wb ⁇ Wa) (10) Measurement of transmission loss For each sample with a thickness of 18 ⁇ m, after bonding with a commercially available liquid crystal polymer resin (Vecstar CTZ-50 ⁇ m manufactured by Kuraray Co., Ltd.), a microstrip line is formed so that the characteristic impedance becomes 50 ⁇ by etching. The transmission coefficient was measured using a network analyzer HP8720C manufactured by HP, and transmission loss at a frequency of 20 GHz and a frequency of 40 GHz was obtained.
  • ⁇ ⁇ less than 3.7 dB / 10 cm, ⁇ 3.7 dB / 10 cm or more and less than 4.1 dB / 10 cm, ⁇ 4 4.1 dB / 10 cm or more and less than 5.0 dB / 10 cm, ⁇ , 5.0 dB / 10 cm or more was defined as x.
  • the conditions and evaluation of each test are shown in Tables 1-10.
  • Examples 1 to 24 all had good haze values, visibility and peel strength. The solder heat resistance evaluation was also good. Comparative Examples 1 to 2, 4, 7 to 11 and 13 had a very high haze value and a large surface roughness, so that the visibility was poor. In Comparative Examples 3, 5, 6, and 12, the visibility was excellent, but the peel strength was insufficient and the substrate adhesion was poor. In Comparative Examples 1 to 13, the solder heat resistance evaluation was poor. Further, in Example 5, the 60 degree glossiness of Rz and MD and the surface area ratio A / B are substantially the same values as in Example 15, but the 60 degree glossiness of MD and TD of the roughened surface of Example 5 are the same.
  • FIG. 1 shows (a) Comparative Example 1, (b) Comparative Example 2, (c) Comparative Example 3, (d) Comparative Example 4, (e) Example 1, and (f) in the Rz evaluation. The SEM observation photograph of the copper foil surface of Example 2 is shown, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Metal Rolling (AREA)

Abstract

Provided are: a surface-treated copper foil which can adhere satisfactorily to a resin and which has an advantage in that, when the foil has been removed by etching, the resulting resin exhibits high transparency; and a laminate using the foil. This surface-treated copper foil has roughening particles on the surface, said particles being formed by roughening treatment. In the surface-treated copper foil, the surface which has undergone roughening treatment exhibits a TD average roughness (Rz) of 0.20 to 0.80μm and an MD glossiness at 60°of 76 to 350%, and the A/B ratio is 1.90 to 2.40 [wherein A is the surface area of the roughening particles and B is the area of the roughening particles as observed in the planar view from the surface side of the copper foil.]

Description

表面処理銅箔及びそれを用いた積層板、銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
 本発明は、表面処理銅箔及びそれを用いた積層板、銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法に関し、特に、銅箔をエッチングした後の残部の樹脂の透明性が要求される分野に好適な表面処理銅箔及びそれを用いた積層板、銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法に関する。 The present invention relates to a surface-treated copper foil and a laminate using the same, a copper foil, a printed wiring board, an electronic device, and a method for producing a printed wiring board, and in particular, the remaining resin transparent after etching the copper foil. The present invention relates to a surface-treated copper foil suitable for a field where properties are required, a laminated board using the copper foil, a copper foil, a printed wiring board, an electronic device, and a method for manufacturing a printed wiring board.
 スマートフォンやタブレットPCといった小型電子機器には、配線の容易性や軽量性からフレキシブルプリント配線板(以下、FPC)が採用されている。近年、これら電子機器の高機能化により信号伝送速度の高速化が進み、FPCにおいてもインピーダンス整合が重要な要素となっている。信号容量の増加に対するインピーダンス整合の方策として、FPCのベースとなる樹脂絶縁層(例えば、ポリイミド)の厚層化が進んでいる。一方、FPCは液晶基材への接合やICチップの搭載などの加工が施されるが、この際の位置合わせは銅箔と樹脂絶縁層との積層板における銅箔をエッチングした後に残る樹脂絶縁層を透過して視認される位置決めパターンを介して行われるため、樹脂絶縁層の視認性が重要となる。 For small electronic devices such as smartphones and tablet PCs, flexible printed wiring boards (hereinafter referred to as FPCs) are employed because of their ease of wiring and light weight. In recent years, with the enhancement of functions of these electronic devices, the signal transmission speed has been increased, and impedance matching has become an important factor in FPC. As a measure for impedance matching with respect to an increase in signal capacity, a resin insulation layer (for example, polyimide) serving as a base of an FPC has been increased in thickness. On the other hand, processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer The visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.
 また、銅箔と樹脂絶縁層との積層板である銅張積層板は、表面に粗化めっきが施された圧延銅箔を使用しても製造できる。この圧延銅箔は、通常タフピッチ銅(酸素含有量100~500重量ppm)又は無酸素銅(酸素含有量10重量ppm以下)を素材として使用し、これらのインゴットを熱間圧延した後、所定の厚さまで冷間圧延と焼鈍とを繰り返して製造される。 Also, a copper clad laminate that is a laminate of a copper foil and a resin insulating layer can be manufactured using a rolled copper foil having a roughened plating surface. This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness.
 このような技術として、例えば、特許文献1には、ポリイミドフィルムと低粗度銅箔とが積層されてなり、銅箔エッチング後のフィルムの波長600nmでの光透過率が40%以上、曇価(HAZE)が30%以下であって、接着強度が500N/m以上である銅張積層板に係る発明が開示されている。
 また、特許文献2には、電解銅箔による導体層を積層された絶縁層を有し、当該導体層をエッチングして回路形成した際のエッチング領域における絶縁層の光透過性が50%以上であるチップオンフレキ(COF)用フレキシブルプリント配線板において、前記電解銅箔は、絶縁層に接着される接着面にニッケル-亜鉛合金による防錆処理層を備え、該接着面の表面粗度(Rz)は0.05~1.5μmであるとともに入射角60°における鏡面光沢度が250以上であることを特徴とするCOF用フレキシブルプリント配線板に係る発明が開示されている。
 また、特許文献3には、印刷回路用銅箔の処理方法において、銅箔の表面に銅-コバルト-ニッケル合金めっきによる粗化処理後、コバルト-ニッケル合金めっき層を形成し、更に亜鉛-ニッケル合金めっき層を形成することを特徴とする印刷回路用銅箔の処理方法に係る発明が開示されている。
As such a technique, for example, in Patent Document 1, a polyimide film and a low-roughness copper foil are laminated, and a light transmittance at a wavelength of 600 nm of the film after copper foil etching is 40% or more, a haze value. An invention relating to a copper clad laminate having (HAZE) of 30% or less and an adhesive strength of 500 N / m or more is disclosed.
Further, Patent Document 2 has an insulating layer in which a conductive layer made of electrolytic copper foil is laminated, and the light transmittance of the insulating layer in the etching region when the circuit is formed by etching the conductive layer is 50% or more. In a flexible printed wiring board for chip-on-flex (COF), the electrolytic copper foil includes a rust-proofing layer made of a nickel-zinc alloy on an adhesive surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesive surface ) Is 0.05 to 1.5 μm, and the specular gloss at an incident angle of 60 ° is 250 or more. An invention relating to a flexible printed wiring board for COF is disclosed.
Patent Document 3 discloses a method for treating a copper foil for a printed circuit, in which a cobalt-nickel alloy plating layer is formed on the surface of the copper foil after a roughening treatment by copper-cobalt-nickel alloy plating, and further zinc-nickel. An invention relating to a method for treating a copper foil for printed circuit, characterized by forming an alloy plating layer is disclosed.
特開2004-98659号公報JP 2004-98659 A WO2003/096776WO2003 / 096776 特許第2849059号公報Japanese Patent No. 2849059
 特許文献1において、黒化処理又はめっき処理後の有機処理剤により接着性が改良処理されて得られる低粗度銅箔は、銅張積層板に屈曲性が要求される用途では、疲労によって断線することがあり、樹脂透視性に劣る場合がある。
 また、特許文献2では、粗化処理がなされておらず、COF用フレキシブルプリント配線板以外の用途においては銅箔と樹脂との密着強度が低く不十分である。
 さらに、特許文献3に記載の処理方法では、銅箔へのCu-Co-Niによる微細処理は可能であったが、当該銅箔を樹脂と接着させてエッチングで除去した後の樹脂について、優れた透明性を実現できていない。
 本発明は、樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板を提供する。
In Patent Document 1, a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency.
Moreover, in patent document 2, the roughening process is not made and the adhesive strength of copper foil and resin is low and inadequate in uses other than the flexible printed wiring board for COF.
Further, in the treatment method described in Patent Document 3, it was possible to finely process the copper foil with Cu—Co—Ni, but the resin after bonding the copper foil to the resin and removing it by etching was excellent. Transparency is not realized.
The present invention provides a surface-treated copper foil that adheres well to a resin and is excellent in the transparency of a resin after the copper foil is removed by etching, and a laminate using the same.
 本発明者らは鋭意研究を重ねた結果、表面に粗化処理により粗化粒子が形成された銅箔において、樹脂基板に接着している側の表面平均粗さRz、光沢度、及び、粗化粒子の表面積と粗化粒子を銅箔表面側から平面視したときに得られる面積との比が、銅箔をエッチング除去した後の樹脂透明性に影響を及ぼすことを見出した。 As a result of intensive research, the present inventors have found that the copper foil in which the roughened particles are formed on the surface by the roughening treatment, the surface average roughness Rz on the side adhered to the resin substrate, the glossiness, and the roughness. It has been found that the ratio of the surface area of the roughened particles and the area obtained when the roughened particles are planarly viewed from the copper foil surface side affects the resin transparency after the copper foil is removed by etching.
 以上の知見を基礎として完成された本発明は一側面において、銅箔表面に粗化処理により粗化粒子が形成され、粗化処理表面のTDの平均粗さRzが0.20~0.80μmであり、粗化処理表面のMDの60度光沢度が76~350%であり、前記粗化粒子の表面積Aと、前記粗化粒子を前記銅箔表面側から平面視したときに得られる面積Bとの比A/Bが1.90~2.40である表面処理銅箔である。 In one aspect of the present invention completed based on the above knowledge, roughened particles are formed on the surface of the copper foil by the roughening treatment, and the average roughness Rz of the TD on the roughened treatment surface is 0.20 to 0.80 μm. The surface roughness A of the roughened particles and the area obtained when the roughened particles are viewed in plan from the copper foil surface side, the 60 degree glossiness of MD on the roughened surface is 76 to 350%. A surface-treated copper foil having a ratio A / B to B of 1.90 to 2.40.
 本発明に係る表面処理銅箔の一実施形態においては、前記MDの60度光沢度が90~250%である。 In one embodiment of the surface-treated copper foil according to the present invention, the 60 ° glossiness of the MD is 90 to 250%.
 本発明に係る表面処理銅箔の別の実施形態においては、前記TDの平均粗さRzが0.30~0.60μmである。 In another embodiment of the surface-treated copper foil according to the present invention, the average roughness Rz of the TD is 0.30 to 0.60 μm.
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記A/Bが2.00~2.20である。 In still another embodiment of the surface-treated copper foil according to the present invention, the A / B is 2.00 to 2.20.
 本発明に係る表面処理銅箔の更に別の実施形態においては、粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80~1.40である。 In still another embodiment of the surface-treated copper foil according to the present invention, the ratio C of 60 ° gloss of MD and 60 ° gloss of TD on the roughened surface (C = (60 ° gloss of MD)) / (60 degree gloss of TD)) is 0.80 to 1.40.
 本発明に係る表面処理銅箔の更に別の実施形態においては、粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.90~1.35である。 In still another embodiment of the surface-treated copper foil according to the present invention, the ratio C of 60 ° gloss of MD and 60 ° gloss of TD on the roughened surface (C = (60 ° gloss of MD)) / (60 degree gloss of TD)) is 0.90 to 1.35.
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記銅箔を、粗化処理表面側から厚さ50μmの樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去したとき、前記樹脂基板のヘイズ値が20~70%となる。 In still another embodiment of the surface-treated copper foil according to the present invention, the copper foil is bonded to both surfaces of a 50 μm thick resin substrate from the roughened surface side, and then the copper foils on both sides are etched. When removed, the resin substrate has a haze value of 20 to 70%.
 本発明は別の一側面において、銅箔表面に粗化処理により粗化粒子が形成され、前記銅箔を、粗化処理表面側から厚さ50μmの樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去したとき、前記樹脂基板のヘイズ値が20~70%となる表面処理銅箔である。 In another aspect of the present invention, roughened particles are formed on the surface of the copper foil by a roughening treatment, and the copper foil is bonded to both surfaces of a 50 μm thick resin substrate from the roughening treatment surface side, and then etched. When the copper foil on both sides is removed, the surface-treated copper foil has a haze value of 20 to 70% when the resin substrate is removed.
 本発明は更に別の側面において、本発明の表面処理銅箔と樹脂基板とを積層して構成した積層板である。 In yet another aspect, the present invention is a laminated plate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.
 本発明は更に別の側面において、本発明の表面処理銅箔に使用される粗化処理前の銅箔である。 In yet another aspect, the present invention is a copper foil before roughening used for the surface-treated copper foil of the present invention.
 本発明の粗化処理前の銅箔は一実施形態において、MDの60度光沢度が500~800%である。 In the embodiment of the copper foil before the roughening treatment of the present invention, the 60 degree gloss of MD is 500 to 800%.
 本発明は更に別の側面において、MDの60度光沢度が501~800%である銅箔である。 In yet another aspect, the present invention is a copper foil having an MD 60 degree gloss of 501 to 800%.
 本発明は更に別の側面において、本発明の表面処理銅箔を用いたプリント配線板である。 In yet another aspect, the present invention is a printed wiring board using the surface-treated copper foil of the present invention.
 本発明は更に別の側面において、本発明のプリント配線板を用いた電子機器である。 In yet another aspect, the present invention is an electronic device using the printed wiring board of the present invention.
 本発明は更に別の側面において、本発明のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。 In yet another aspect, the present invention is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards of the present invention.
 本発明は更に別の側面において、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続する工程を含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。 In yet another aspect, the present invention includes a step of connecting at least one printed wiring board of the present invention and another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention, This is a method for manufacturing a printed wiring board in which two or more printed wiring boards are connected.
 本発明は更に別の側面において、本発明のプリント配線板が少なくとも1つ接続したプリント配線板を1つ以上用いた電子機器である。 In yet another aspect, the present invention is an electronic device using one or more printed wiring boards to which at least one printed wiring board of the present invention is connected.
 本発明は更に別の側面において、本発明のプリント配線板と、部品とを接続する工程を少なくとも含む、プリント配線板を製造する方法である。 In yet another aspect, the present invention is a method for manufacturing a printed wiring board, including at least a step of connecting the printed wiring board of the present invention and a component.
 本発明は更に別の側面において、本発明のプリント配線板を少なくとも1つと、もう一つの本発明プリント配線板又は本発明プリント配線板に該当しないプリント配線板とを接続する工程、および、本発明のプリント配線板又は本発明のプリント配線板が2つ以上接続したプリント配線板と、部品とを接続する工程を少なくとも含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。 In still another aspect of the present invention, the step of connecting at least one printed wiring board of the present invention to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention, and the present invention A method of manufacturing a printed wiring board having two or more printed wiring boards connected, comprising at least a step of connecting a printed wiring board of the present invention or two or more printed wiring boards of the present invention and a component. .
 本発明によれば、樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた表面処理銅箔及びそれを用いた積層板を提供することができる。 According to the present invention, it is possible to provide a surface-treated copper foil that adheres well to a resin and is excellent in the transparency of a resin after the copper foil is removed by etching, and a laminate using the same.
Rz評価の際の、(a)比較例1の銅箔表面のSEM観察写真である。It is a SEM observation photograph of the copper foil surface of (a) comparative example 1 in the case of Rz evaluation. Rz評価の際の、(b)比較例2の銅箔表面のSEM観察写真である。It is a SEM observation photograph of the copper foil surface of (b) comparative example 2 in the case of Rz evaluation. Rz評価の際の、(c)比較例3の銅箔表面のSEM観察写真である。It is a SEM observation photograph on the surface of copper foil of (c) comparative example 3 in the case of Rz evaluation. Rz評価の際の、(d)比較例4の銅箔表面のSEM観察写真である。It is a SEM observation photograph on the surface of copper foil of (d) comparative example 4 in the case of Rz evaluation. Rz評価の際の、(e)実施例1の銅箔表面のSEM観察写真である。(E) It is a SEM observation photograph of the copper foil surface of Example 1 in the case of Rz evaluation. Rz評価の際の、(f)実施例2の銅箔表面のSEM観察写真である。(F) It is a SEM observation photograph of the copper foil surface of Example 2 in the case of Rz evaluation.
 〔表面処理銅箔の形態及び製造方法〕
 本発明において使用する銅箔は、樹脂基板と接着させて積層体を作製し、エッチングにより除去することで使用される銅箔に有用である。
 本発明において使用する銅箔は、電解銅箔或いは圧延銅箔いずれでも良い。通常、銅箔の、樹脂基板と接着する面、即ち粗化面には積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を行う粗化処理が施される。電解銅箔は製造時点で凹凸を有しているが、粗化処理により電解銅箔の凸部を増強して凹凸を一層大きくする。本発明においては、この粗化処理は銅-コバルト-ニッケル合金めっきや銅-ニッケル-りん合金めっき等により行うことができる。粗化前の前処理として通常の銅めっき等が行われることがあり、粗化後の仕上げ処理として電着物の脱落を防止するために通常の銅めっき等が行なわれることもある。圧延銅箔と電解銅箔とでは処理の内容を幾分異にすることもある。本発明においては、こうした前処理及び仕上げ処理をも含め、銅箔粗化と関連する公知の処理を必要に応じて含め、総称して粗化処理と云うものとする。
 なお、本願発明に係る圧延銅箔にはAg、Sn、In、Ti、Zn、Zr、Fe、P、Ni、Si、Te、Cr、Nb、V等の元素を一種以上含む銅合金箔も含まれる。上記元素の濃度が高くなる(例えば合計で10質量%以上)と、導電率が低下する場合がある。圧延銅箔の導電率は、好ましくは50%IACS以上、より好ましくは60%IACS以上、更に好ましくは80%IACS以上である。
[Form and manufacturing method of surface-treated copper foil]
The copper foil used in the present invention is useful for a copper foil used by making a laminate by bonding to a resin substrate and removing it by etching.
The copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil. Usually, the surface of the copper foil that adheres to the resin substrate, that is, the roughened surface, has a fist-like electric surface on the surface of the copper foil after degreasing in order to improve the peel strength of the copper foil after lamination. A roughening process is carried out to wear. Although the electrolytic copper foil has irregularities at the time of manufacture, the irregularities are further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment. In the present invention, this roughening treatment can be performed by copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, or the like. Ordinary copper plating or the like may be performed as a pretreatment before roughening, and ordinary copper plating or the like may be performed as a finishing treatment after roughening in order to prevent electrodeposits from dropping off. The content of treatment may be somewhat different between the rolled copper foil and the electrolytic copper foil. In the present invention, including such pretreatment and finishing treatment, known treatments related to copper foil roughening are included as necessary, and are collectively referred to as roughening treatment.
The rolled copper foil according to the present invention includes a copper alloy foil containing one or more elements such as Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, and V. It is. When the concentration of the above elements increases (for example, 10% by mass or more in total), the conductivity may decrease. The conductivity of the rolled copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more.
 粗化処理としての銅-コバルト-ニッケル合金めっきは、電解めっきにより、付着量が15~40mg/dm2の銅-100~3000μg/dm2のコバルト-100~1500μg/dm2のニッケルであるような3元系合金層を形成するように実施することができる。Co付着量が100μg/dm2未満では、耐熱性が悪化し、エッチング性が悪くなることがある。Co付着量が3000μg/dm2 を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じ、また、耐酸性及び耐薬品性の悪化がすることがある。Ni付着量が100μg/dm2未満であると、耐熱性が悪くなることがある。他方、Ni付着量が1500μg/dm2を超えると、エッチング残が多くなることがある。好ましいCo付着量は1000~2500μg/dm2であり、好ましいニッケル付着量は500~1200μg/dm2である。ここで、エッチングシミとは、塩化銅でエッチングした場合、Coが溶解せずに残ってしまうことを意味しそしてエッチング残とは塩化アンモニウムでアルカリエッチングした場合、Niが溶解せずに残ってしまうことを意味するものである。 The copper-cobalt-nickel alloy plating as the roughening treatment is, as a result of electrolytic plating, an amount of adhesion of 15 to 40 mg / dm 2 of copper—100 to 3000 μg / dm 2 of cobalt—100 to 1500 μg / dm 2 of nickel. It can be carried out so as to form a ternary alloy layer. If the amount of deposited Co is less than 100 μg / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate. When the amount of Co deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. If the Ni adhesion amount is less than 100 μg / dm 2 , the heat resistance may deteriorate. On the other hand, when the Ni adhesion amount exceeds 1500 μg / dm 2 , the etching residue may increase. A preferable Co adhesion amount is 1000 to 2500 μg / dm 2 , and a preferable nickel adhesion amount is 500 to 1200 μg / dm 2 . Here, the etching stain means that Co remains without being dissolved when etched with copper chloride, and the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.
 このような3元系銅-コバルト-ニッケル合金めっきを形成するための一般的浴及びめっき条件の一例は次の通りである:
 めっき浴組成:Cu10~20g/L、Co1~10g/L、Ni1~10g/L
 pH:1~4
 温度:30~50℃
 電流密度Dk:20~30A/dm2
 めっき時間:1~5秒
An example of a general bath and plating conditions for forming such ternary copper-cobalt-nickel alloy plating is as follows:
Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L
pH: 1 to 4
Temperature: 30-50 ° C
Current density D k : 20 to 30 A / dm 2
Plating time: 1-5 seconds
 粗化処理後、粗化面上に付着量が200~3000μg/dm2のコバルト-100~700μg/dm2のニッケルのコバルト-ニッケル合金めっき層を形成することができる。この処理は広い意味で一種の防錆処理とみることができる。このコバルト-ニッケル合金めっき層は、銅箔と基板の接着強度を実質的に低下させない程度に行う必要がある。コバルト付着量が200μg/dm2未満では、耐熱剥離強度が低下し、耐酸化性及び耐薬品性が悪化することがある。また、もう一つの理由として、コバルト量が少ないと処理表面が赤っぽくなってしまうので好ましくない。コバルト付着量が3000μg/dm2を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じる場合があり、また、耐酸性及び耐薬品性の悪化することがある。好ましいコバルト付着量は500~2500μg/dm2である。一方、ニッケル付着量が100μg/dm2 未満では耐熱剥離強度が低下し耐酸化性及び耐薬品性が悪化することがある。ニッケルが1300μg/dm2を超えると、アルカリエッチング性が悪くなる。好ましいニッケル付着量は200~1200μg/dm2である。 After roughening treatment, cobalt nickel cobalt -100 ~ 700μg / dm 2 weight deposited on the roughened surface is 200 ~ 3000μg / dm 2 - can form a nickel alloy plating layer. This treatment can be regarded as a kind of rust prevention treatment in a broad sense. This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered. If the amount of cobalt adhesion is less than 200 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. As another reason, if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable. When the amount of cobalt deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching spots may occur, and acid resistance and chemical resistance may deteriorate. A preferable cobalt adhesion amount is 500 to 2500 μg / dm 2 . On the other hand, if the nickel adhesion amount is less than 100 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. When nickel exceeds 1300 microgram / dm < 2 >, alkali etching property will worsen. A preferable nickel adhesion amount is 200 to 1200 μg / dm 2 .
 また、コバルト-ニッケル合金めっきの条件の一例は次の通りである:
 めっき浴組成:Co1~20g/L、Ni1~20g/L
 pH:1.5~3.5
 温度:30~80℃
 電流密度Dk:1.0~20.0A/dm2
 めっき時間:0.5~4秒
An example of cobalt-nickel alloy plating conditions is as follows:
Plating bath composition: Co 1-20 g / L, Ni 1-20 g / L
pH: 1.5-3.5
Temperature: 30-80 ° C
Current density D k : 1.0 to 20.0 A / dm 2
Plating time: 0.5-4 seconds
 本発明に従えば、コバルト-ニッケル合金めっき上に更に付着量の30~250μg/dm2の亜鉛めっき層が形成される。亜鉛付着量が30μg/dm2未満では耐熱劣化率改善効果が無くなることがある。他方、亜鉛付着量が250μg/dm2を超えると耐塩酸劣化率が極端に悪くなることがある。好ましくは、亜鉛付着量は30~240μg/dm2であり、より好ましくは80~220μg/dm2である。 According to the present invention, a zinc plating layer having an adhesion amount of 30 to 250 μg / dm 2 is further formed on the cobalt-nickel alloy plating. If the zinc adhesion amount is less than 30 μg / dm 2 , the heat deterioration rate improving effect may be lost. On the other hand, when the zinc adhesion amount exceeds 250 μg / dm 2 , the hydrochloric acid deterioration rate may be extremely deteriorated. Preferably, the zinc coating weight is 30 ~ 240μg / dm 2, more preferably 80 ~ 220μg / dm 2.
 上記亜鉛めっきの条件の一例は次の通りである:
 めっき浴組成:Zn100~300g/L
 pH:3~4
 温度:50~60℃
 電流密度Dk:0.1~0.5A/dm2
 めっき時間:1~3秒
An example of the galvanizing conditions is as follows:
Plating bath composition: Zn 100 to 300 g / L
pH: 3-4
Temperature: 50-60 ° C
Current density D k : 0.1 to 0.5 A / dm 2
Plating time: 1 to 3 seconds
 なお、亜鉛めっき層の代わりに亜鉛-ニッケル合金めっき等の亜鉛合金めっき層を形成してもよく、さらに最表面にはクロメート処理やシランカップリング剤の塗布等によって防錆層を形成してもよい。 A zinc alloy plating layer such as zinc-nickel alloy plating may be formed in place of the zinc plating layer, and a rust prevention layer may be formed on the outermost surface by chromate treatment or application of a silane coupling agent. Good.
 〔表面粗さRz〕
 本発明の表面処理銅箔は、銅箔表面に粗化処理により粗化粒子が形成され、且つ、粗化処理表面のTDの平均粗さRzが0.20~0.80μmである。このような構成により、ピール強度が高くなって樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の曇りの度合い(ヘイズ値)が小さくなり、透明性が高くなる。この結果、当該樹脂を透過して視認される位置決めパターンを介して行うICチップ搭載時の位置合わせ等が容易となる。TDの平均粗さRzが0.20μm未満であると、超平滑な銅箔を製造するための製造コストの懸念を生じてしまう。一方、TDの平均粗さRzが0.80μm超であると、銅箔をエッチングで除去した後の樹脂表面の凹凸が大きくなり、その結果樹脂のヘイズ値が大きくなる。粗化処理表面のTDの平均粗さRzは、0.30~0.70μmが好ましく、0.35~0.60μmがより好ましく、0.35~0.55μmが更により好ましく、0.35~0.50μmが更により好ましい。
 なお、Rzを小さくすることが必要な用途に本発明の表面処理銅箔が用いられる場合には、粗化処理表面のTDの平均粗さRzは、0.20~0.70μmが好ましく、0.25~0.60μmがより好ましく、0.30~0.55μmが更により好ましく、0.30~0.50μmが更により好ましい。
[Surface roughness Rz]
In the surface-treated copper foil of the present invention, roughened particles are formed by a roughening treatment on the surface of the copper foil, and the average roughness Rz of the TD on the roughened surface is 0.20 to 0.80 μm. With such a configuration, the peel strength becomes high and the resin adheres well to the resin, and the degree of haze (haze value) of the resin after the copper foil is removed by etching is reduced and the transparency is increased. As a result, alignment and the like when mounting an IC chip through a positioning pattern that is visible through the resin are facilitated. If the average roughness Rz of TD is less than 0.20 μm, there is a concern about manufacturing costs for manufacturing an ultra-smooth copper foil. On the other hand, if the average roughness Rz of TD is more than 0.80 μm, the unevenness of the resin surface after the copper foil is removed by etching increases, and as a result, the haze value of the resin increases. The TD average roughness Rz of the roughened surface is preferably 0.30 to 0.70 μm, more preferably 0.35 to 0.60 μm, still more preferably 0.35 to 0.55 μm, and more preferably 0.35 to Even more preferred is 0.50 μm.
When the surface-treated copper foil of the present invention is used for an application that requires a small Rz, the TD average roughness Rz of the roughened surface is preferably 0.20 to 0.70 μm, 0 More preferred is .25 to 0.60 μm, even more preferred is 0.30 to 0.55 μm, and even more preferred is 0.30 to 0.50 μm.
 〔光沢度〕
 表面処理銅箔の粗化面の圧延方向(MD)の入射角60度での光沢度は、上述の樹脂のヘイズ値に大いに影響を及ぼす。すなわち、粗化面の光沢度が大きい銅箔ほど、上述の樹脂のヘイズ値が小さくなる。このため、本発明の表面処理銅箔は、粗化面の光沢度が76~350%であり、80~350%であるのが好ましく、90~300%であるのが好ましく、90~250%であるのがより好ましく、100~250%であるのがより好ましい。
[Glossiness]
The glossiness at an incident angle of 60 degrees in the rolling direction (MD) of the roughened surface of the surface-treated copper foil greatly affects the haze value of the resin. That is, the haze value of the above-mentioned resin becomes smaller as the copper foil has a higher glossiness on the roughened surface. For this reason, the surface-treated copper foil of the present invention has a glossiness of the roughened surface of 76 to 350%, preferably 80 to 350%, preferably 90 to 300%, and 90 to 250%. Is more preferable, and 100 to 250% is more preferable.
 ここで、本発明の視認性の効果をさらに向上させるために、表面処理前の銅箔の処理側の表面のTDの粗さ(Rz)及び光沢度を制御しておくことも重要である。具体的には、表面処理前の銅箔のTDの表面粗さ(Rz)が0.30~0.80μm、好ましくは0.30~0.50μmであり、圧延方向(MD)の入射角60度での光沢度が350~800%、好ましくは500~800%であって、更に従来の粗化処理よりも電流密度を高くし、粗化処理時間を短縮すれば、表面処理を行った後の、表面処理銅箔の圧延方向(MD)の入射角60度での光沢度が76~350%となる。このような銅箔としては、圧延油の油膜当量を調整して圧延を行う(高光沢圧延)、或いは、ケミカルエッチングのような化学研磨やリン酸溶液中の電解研磨により作製することができる。このように、処理前の銅箔のTDの表面粗さ(Rz)と光沢度とを上記範囲にすることで、処理後の銅箔の表面粗さ(Rz)及び表面積を制御しやすくすることができる。
 なお、表面処理後の表面粗さ(Rz)をより小さく(例えばRz=0.20μm)したい場合には、表面処理前の銅箔の処理側表面のTDの粗さ(Rz)を0.18~0.80μm、好ましくは0.25~0.50μmであり、圧延方向(MD)の入射角60度での光沢度が350~800%、好ましくは500~800%であって、更に従来の粗化処理よりも電流密度を高くし、粗化処理時間を短縮する。
 また、粗化処理前の銅箔は、MDの60度光沢度が500~800%であるのが好ましく、501~800%であるのがより好ましく、510~750%であるのが更により好ましい。粗化処理前の銅箔のMDの60度光沢度が500%未満であると500%以上の場合よりもヘイズ値が高くなるおそれがあり、800%を超えると、製造することが難しくなるという問題が生じるおそれがある。
 なお、高光沢圧延は以下の式で規定される油膜当量を13000以上~24000以下とすることで行うことが出来る。なお、表面処理後の表面粗さ(Rz)をより小さく(例えばRz=0.20μm)したい場合には、高光沢圧延を以下の式で規定される油膜当量を12000以上~24000以下とすることで行う。
 油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm2])}
 圧延油粘度[cSt]は40℃での動粘度である。
 油膜当量を12000~24000とするためには、低粘度の圧延油を用いたり、通板速度を遅くしたりする等、公知の方法を用いればよい。
 化学研磨は硫酸-過酸化水素-水系またはアンモニア-過酸化水素-水系等のエッチング液で、通常よりも濃度を低くして、長時間かけて行う。
Here, in order to further improve the visibility effect of the present invention, it is also important to control the TD roughness (Rz) and the glossiness of the surface of the copper foil before the surface treatment on the treatment side. Specifically, the TD surface roughness (Rz) of the copper foil before the surface treatment is 0.30 to 0.80 μm, preferably 0.30 to 0.50 μm, and the incident angle 60 in the rolling direction (MD) is 60. After the surface treatment, if the glossiness at 350 degrees is 350 to 800%, preferably 500 to 800%, the current density is higher than the conventional roughening treatment and the roughening treatment time is shortened. The glossiness of the surface-treated copper foil is 76 to 350% at an incident angle of 60 degrees in the rolling direction (MD). Such a copper foil can be produced by adjusting the oil film equivalent of rolling oil (high gloss rolling), or by chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution. Thus, it is easy to control the surface roughness (Rz) and the surface area of the copper foil after the treatment by setting the TD surface roughness (Rz) and the glossiness of the copper foil before the treatment within the above range. Can do.
If the surface roughness (Rz) after the surface treatment is desired to be smaller (for example, Rz = 0.20 μm), the TD roughness (Rz) of the treated surface of the copper foil before the surface treatment is 0.18. 0.80 μm, preferably 0.25 to 0.50 μm, and the glossiness at an incident angle of 60 degrees in the rolling direction (MD) is 350 to 800%, preferably 500 to 800%. The current density is made higher than the roughening treatment, and the roughening treatment time is shortened.
Further, the copper foil before the roughening treatment preferably has a 60 degree gloss of MD of 500 to 800%, more preferably 501 to 800%, and still more preferably 510 to 750%. . If the 60-degree glossiness of MD of the copper foil before the roughening treatment is less than 500%, the haze value may be higher than the case of 500% or more, and if it exceeds 800%, it is difficult to produce. Problems may arise.
The high gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13000 to 24000. When the surface roughness (Rz) after the surface treatment is desired to be smaller (for example, Rz = 0.20 μm), high gloss rolling should have an oil film equivalent defined by the following formula of 12000 to 24000. To do.
Oil film equivalent = {(rolling oil viscosity [cSt]) × (sheet feeding speed [mpm] + roll peripheral speed [mpm])} / {(roll biting angle [rad]) × (yield stress of material [kg / mm 2 ])}
The rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
In order to make the oil film equivalent 12000 to 24000, a known method such as using a low viscosity rolling oil or slowing a sheet passing speed may be used.
Chemical polishing is performed with an etching solution such as sulfuric acid-hydrogen peroxide-water system or ammonia-hydrogen peroxide-water system at a lower concentration than usual and for a long time.
 粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80~1.40であるのが好ましい。粗化処理表面のMDの60度光沢度とTDの60度光沢度との比Cが0.80未満であると、0.80以上である場合よりもヘイズ値が高くなるおそれがある。また、当該比Cが1.40超であると、1.40以下である場合よりもヘイズ値が高くなるおそれがある。当該比Cは、0.90~1.35であるのがより好ましく、1.00~1.30であるのが更により好ましい。 The ratio C (C = (60 degree gloss of MD) / (60 degree gloss of TD)) of the 60 degree gloss of MD and the 60 degree gloss of TD on the roughened surface is 0.80 to 1. 40 is preferred. If the ratio C between the 60 ° glossiness of MD and the 60 ° glossiness of TD on the roughened surface is less than 0.80, the haze value may be higher than when the ratio C is 0.80 or more. Further, if the ratio C is greater than 1.40, the haze value may be higher than when the ratio C is 1.40 or less. The ratio C is more preferably 0.90 to 1.35, and even more preferably 1.00 to 1.30.
 〔ヘイズ値〕
 本発明の表面処理銅箔は、上述のように粗化処理表面の平均粗さRz及び光沢度が制御されているため、樹脂基板に貼り合わせた後、銅箔を除去した部分の樹脂基板のヘイズ値が小さくなる。ここで、ヘイズ値(%)は、(拡散透過率)/(全光線透過率)×100で算出される値である。具体的には、本発明の表面処理銅箔は、粗化処理表面側から厚さ50μmの樹脂基板の両面に貼り合わせた後、エッチングで当該銅箔を除去したとき、樹脂基板のヘイズ値が20~70%であるのが好ましく、30~55%であるのがより好ましい。
[Haze value]
As described above, the surface-treated copper foil of the present invention is controlled in the average roughness Rz and glossiness of the roughened surface as described above. Therefore, after being bonded to the resin substrate, the portion of the resin substrate where the copper foil is removed The haze value decreases. Here, the haze value (%) is a value calculated by (diffuse transmittance) / (total light transmittance) × 100. Specifically, the surface-treated copper foil of the present invention has a haze value of the resin substrate when the copper foil is removed by etching after being bonded to both surfaces of a 50 μm thick resin substrate from the roughened surface side. It is preferably 20 to 70%, more preferably 30 to 55%.
 〔粒子の表面積〕
 粗化粒子の表面積Aと、粗化粒子を銅箔表面側から平面視したときに得られる面積Bとの比A/Bは、上述の樹脂のヘイズ値に大いに影響を及ぼす。すなわち、表面粗さRzが同じであれば、比A/Bが小さい銅箔ほど、上述の樹脂のヘイズ値が小さくなる。このため、本発明の表面処理銅箔は、当該比A/Bが1.90~2.40であり、2.00~2.20であるのが好ましい。
[Particle surface area]
The ratio A / B between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side greatly affects the haze value of the resin. That is, if the surface roughness Rz is the same, the haze value of the above-described resin decreases as the copper foil having a smaller ratio A / B. Therefore, in the surface-treated copper foil of the present invention, the ratio A / B is 1.90 to 2.40, and preferably 2.00 to 2.20.
 粒子形成時の電流密度とメッキ時間とを制御することで、粒子の形態や形成密度が決まり、上記表面粗さRz、光沢度及び粒子の面積比A/Bを制御することができる。 By controlling the current density and plating time during particle formation, the form and formation density of the particles are determined, and the surface roughness Rz, glossiness, and particle area ratio A / B can be controlled.
 本発明の表面処理銅箔は、上述のように、粗化粒子の表面積Aと、粗化粒子を銅箔表面側から平面視したときに得られる面積Bとの比A/Bが1.90~2.40に制御されており、表面の凹凸が大きい。また、粗化処理表面のTDの平均粗さRzが0.20~0.80μmに制御されているため表面に極端に粗い部分が無い。一方、粗化処理表面の光沢度が76~350%と高い。これらを考慮すると、本発明の表面処理銅箔は、粗化処理表面における粗化粒子の粒径が小さく制御されていることがわかる。この粗化粒子の粒径は、銅箔をエッチング除去した後の樹脂透明性に影響を及ぼすが、本発明の表面処理銅箔は、このように樹脂基板に接着している側の表面平均粗さRz、光沢度、及び、粗化粒子の表面積と粗化粒子を銅箔表面側から平面視したときに得られる面積との比を本発明の範囲に制御することは、粗化粒子の粒径を適切な範囲で小さくすることを意味しており、このため銅箔をエッチング除去した後の樹脂透明性が良好となると共に、ピール強度も良好となる。 As described above, the surface-treated copper foil of the present invention has a ratio A / B of 1.90 between the surface area A of the roughened particles and the area B obtained when the roughened particles are viewed in plan from the copper foil surface side. It is controlled to ˜2.40, and the surface unevenness is large. Further, since the average TD roughness Rz of the roughened surface is controlled to 0.20 to 0.80 μm, there is no extremely rough portion on the surface. On the other hand, the glossiness of the roughened surface is as high as 76 to 350%. Considering these, it can be seen that in the surface-treated copper foil of the present invention, the particle size of the roughened particles on the roughened surface is controlled to be small. The particle size of the roughened particles affects the transparency of the resin after the copper foil is etched away, but the surface-treated copper foil of the present invention has a surface average roughness on the side bonded to the resin substrate in this way. Controlling the ratio of the surface roughness Rz, the glossiness, and the surface area of the roughened particles to the area obtained when the roughened particles are planarly viewed from the copper foil surface side is within the scope of the present invention. This means that the diameter is reduced within an appropriate range. For this reason, the resin transparency after removing the copper foil by etching becomes good, and the peel strength also becomes good.
 〔エッチングファクター〕
 銅箔を用いて回路を形成する際のエッチングファクターの値が大きい場合、エッチング時に生じる回路のボトム部のすそ引きが小さくなるため、回路間のスペースを狭くすることができる。そのため、エッチングファクターの値は大きい方が、ファインパターンによる回路形成に適しているため好ましい。本発明の表面処理銅箔は、例えば、エッチングファクターの値は1.8以上であることが好ましく、2.0以上であることが好ましく、2.2以上であることが好ましく、2.3以上であることが好ましく、2.4以上であることがより好ましい。
 なお、プリント配線板または銅張積層板においては、樹脂を溶かして除去することで、銅回路または銅箔表面について、前述の表面粗さ(Rz)、粒子の面積比(A/B)、光沢度を測定することができる。
 [伝送損失]
 伝送損失が小さい場合、高周波で信号伝送を行う際の、信号の減衰が抑制されるため、高周波で信号の伝送を行う回路において、安定した信号の伝送を行うことができる。そのため、伝送損失の値が小さい方が、高周波で信号の伝送を行う回路用途に用いることに適するため好ましい。表面処理銅箔を、市販の液晶ポリマー樹脂((株)クラレ製Vecstar CTZ-50μm)と貼り合わせた後、エッチングで特性インピーダンスが50Ωのとなるようマイクロストリップ線路を形成し、HP社製のネットワークアナライザーHP8720Cを用いて透過係数を測定し、周波数20GHzおよび周波数40GHzでの伝送損失を求めた場合に、周波数20GHzにおける伝送損失が、5.0dB/10cm未満が好ましく、4.1dB/10cm未満がより好ましく、3.7dB/10cm未満が更により好ましい。
[Etching factor]
When the value of the etching factor when forming a circuit using copper foil is large, the bottom of the circuit that occurs during etching is reduced, so that the space between the circuits can be narrowed. Therefore, a larger etching factor is preferable because it is suitable for forming a circuit with a fine pattern. In the surface-treated copper foil of the present invention, for example, the etching factor is preferably 1.8 or more, preferably 2.0 or more, preferably 2.2 or more, and 2.3 or more. Preferably, it is 2.4 or more.
In the printed wiring board or copper-clad laminate, the surface roughness (Rz), particle area ratio (A / B), and gloss of the copper circuit or copper foil surface can be obtained by dissolving and removing the resin. The degree can be measured.
[Transmission loss]
When the transmission loss is small, attenuation of the signal when performing signal transmission at a high frequency is suppressed, so that a stable signal transmission can be performed in a circuit that transmits the signal at a high frequency. Therefore, a smaller transmission loss value is preferable because it is suitable for use in a circuit for transmitting a signal at a high frequency. After bonding the surface-treated copper foil to a commercially available liquid crystal polymer resin (Vecstar CTZ-50 μm manufactured by Kuraray Co., Ltd.), a microstrip line is formed by etching so that the characteristic impedance is 50Ω, and the network manufactured by HP When the transmission coefficient is measured using the analyzer HP8720C and the transmission loss at a frequency of 20 GHz and a frequency of 40 GHz is determined, the transmission loss at a frequency of 20 GHz is preferably less than 5.0 dB / 10 cm, and more preferably less than 4.1 dB / 10 cm. Preferably, less than 3.7 dB / 10 cm is even more preferable.
 本発明の表面処理銅箔を、粗化処理面側から樹脂基板に貼り合わせて積層体を製造することができる。樹脂基板はプリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、FPC用にポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム、フッ素樹脂等を使用する事ができる。なお、液晶ポリマー(LCP)フィルムやフッ素樹脂フィルムを用いた場合、ポリイミドフィルムを用いた場合よりも、当該フィルムと表面処理銅箔とのピール強度が小さくなる傾向にある。よって、液晶ポリマー(LCP)フィルムやフッ素樹脂フィルムを用いた場合には、銅回路を形成後、銅回路をカバーレイで覆うことによって、当該フィルムと銅回路とが剥がれにくくし、ピール強度の低下による当該フィルムと銅回路との剥離を防止することができる。
 なお、液晶ポリマー(LCP)フィルムやフッ素樹脂フィルムは誘電正接が小さいため、液晶ポリマー(LCP)フィルムやフッ素樹脂フィルムと本願発明に係る表面処理銅箔をとを用いた銅張積層板、プリント配線板、プリント回路板は高周波回路(高周波で信号の伝送を行う回路)用途に適する。また、本願発明に係る表面処理銅箔は表面粗さRzが小さく、光沢度が高いため表面が平滑であり、高周波回路用途にも適する。
The surface-treated copper foil of the present invention can be bonded to a resin substrate from the roughened surface side to produce a laminate. The resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board or the like. For example, a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy resin for rigid PWB Glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin and glass cloth base material epoxy resin, etc. are used, polyester film, polyimide film, liquid crystal polymer (LCP) film, fluorine for FPC Resin etc. can be used. In addition, when a liquid crystal polymer (LCP) film or a fluororesin film is used, the peel strength between the film and the surface-treated copper foil tends to be smaller than when a polyimide film is used. Therefore, when a liquid crystal polymer (LCP) film or a fluororesin film is used, the copper circuit is covered with a coverlay after the copper circuit is formed, so that the film and the copper circuit are not easily peeled off, and the peel strength is reduced. The film can be prevented from peeling off from the copper circuit.
In addition, since a liquid crystal polymer (LCP) film or a fluororesin film has a small dielectric loss tangent, a copper-clad laminate using a liquid crystal polymer (LCP) film or a fluororesin film and the surface-treated copper foil according to the present invention, printed wiring Boards and printed circuit boards are suitable for high-frequency circuits (circuits that transmit signals at high frequencies). Further, the surface-treated copper foil according to the present invention has a small surface roughness Rz and a high glossiness, so that the surface is smooth and suitable for high-frequency circuit applications.
 貼り合わせの方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔を被覆層の反対側の面からプリプレグに重ねて加熱加圧させることにより行うことができる。FPCの場合、ポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で銅箔に積層接着して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層板を製造することができる。 For the bonding method, in the case of rigid PWB, a prepreg in which a base material such as glass cloth is impregnated with a resin and the resin is cured to a semi-cured state is prepared. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing. In the case of FPC, it is laminated on a copper foil under high temperature and high pressure without using an adhesive on a substrate such as a polyimide film, or a polyimide precursor is applied, dried, cured, etc. A laminated board can be manufactured by performing.
 本発明の積層体は各種のプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。 The laminate of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited. For example, from the viewpoint of the number of layers of the conductor pattern, the single-sided PWB, the double-sided PWB, and the multilayer PWB (3 It is applicable to rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material.
 〔積層板及びそれを用いたプリント配線板の位置決め方法〕
 本発明の表面処理銅箔と樹脂基板との積層板の位置決めをする方法について説明する。まず、表面処理銅箔と樹脂基板との積層板を準備する。本発明の表面処理銅箔と樹脂基板との積層板の具体例としては、本体基板と付属の回路基板と、それらを電気的に接続するために用いられる、ポリイミド等の樹脂基板の少なくとも一方の表面に銅配線が形成されたフレキシブルプリント基板とで構成される電子機器において、フレキシブルプリント基板を正確に位置決めして当該本体基板及び付属の回路基板の配線端部に圧着させて作製される積層板が挙げられる。すなわち、この場合であれば、積層板は、フレキシブルプリント基板及び本体基板の配線端部が圧着により貼り合わせられた積層体、或いは、フレキシブルプリント基板及び回路基板の配線端部が圧着により貼り合わせられた積層板となる。積層板は、当該銅配線の一部や別途材料で形成したマークを有している。マークの位置については、当該積層板を構成する樹脂越しにCCDカメラ等の撮影手段で撮影可能な位置であれば特に限定されない。ここで、マークとは積層板やプリント配線板等の位置を検出し、または、位置決めをし、または、位置合わせをするために用いられる印(しるし)のことをいう。
[Lamination board and printed wiring board positioning method using the same]
A method for positioning the laminate of the surface-treated copper foil and the resin substrate of the present invention will be described. First, a laminate of a surface-treated copper foil and a resin substrate is prepared. As a specific example of the laminate of the surface-treated copper foil and the resin substrate according to the present invention, at least one of a main substrate, an attached circuit substrate, and a resin substrate such as polyimide used for electrically connecting them. In an electronic device composed of a flexible printed circuit board with copper wiring formed on the surface, a laminated board manufactured by accurately positioning the flexible printed circuit board and crimping it to the wiring ends of the main circuit board and the attached circuit board Is mentioned. That is, in this case, the laminate is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding. Laminated board. The laminated board has a mark formed of a part of the copper wiring and a separate material. The position of the mark is not particularly limited as long as it can be photographed by photographing means such as a CCD camera through the resin constituting the laminated plate. Here, the mark refers to a mark used to detect, position, or align the position of a laminated board, printed wiring board, or the like.
 このように準備された積層板において、上述のマークを樹脂越しに撮影手段で撮影すると、前記マークの位置を良好に検出することができる。そして、このようにして前記マークの位置を検出して、前記検出されたマークの位置に基づき表面処理銅箔と樹脂基板との積層板の位置決めを良好に行うことができる。また、積層板としてプリント配線板を用いた場合も同様に、このような位置決め方法によって撮影手段がマークの位置を良好に検出し、プリント配線板の位置決めをより正確に行うことが出来る。 In the thus prepared laminated plate, when the above-mentioned mark is photographed by the photographing means through the resin, the position of the mark can be detected well. And the position of the said mark can be detected in this way, and based on the position of the said detected mark, the positioning of the laminated board of surface-treated copper foil and a resin substrate can be performed favorably. Similarly, when a printed wiring board is used as the laminated board, the photographing means can detect the position of the mark well by such a positioning method, and the printed wiring board can be positioned more accurately.
 そのため、一つのプリント配線板ともう一つのプリント配線板を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。なお、一つのプリント配線板ともう一つのプリント配線板を接続する方法としては半田付けや異方性導電フィルム(Anisotropic Conductive Film、ACF)を介した接続、異方性導電ペースト(Anisotropic Conductive Paste、ACP)を介した接続または導電性を有する接着剤を介しての接続など公知の接続方法を用いることができる。なお、本発明において、「プリント配線板」には部品が装着されたプリント配線板およびプリント回路板およびプリント基板も含まれることとする。また、本発明のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造することができ、また、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続することができ、このようなプリント配線板を用いて電子機器を製造することもできる。なお、本発明において、「銅回路」には銅配線も含まれることとする。さらに、本発明のプリント配線板を、部品と接続してプリント配線板を製造してもよい。また、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続し、さらに、本発明のプリント配線板が2つ以上接続したプリント配線板と、部品とを接続することで、プリント配線板が2つ以上接続したプリント配線板を製造してもよい。ここで、「部品」としては、コネクタやLCD(Liquid Cristal Display)、LCDに用いられるガラス基板などの電子部品、IC(Integrated Circuit)、LSI(Large scale integrated circuit)、VLSI(Very Large scale integrated circuit)、ULSI (Ultra-Large Scale Integration)などの半導体集積回路を含む電子部品(例えばICチップ、LSIチップ、VLSIチップ、ULSIチップ)、電子回路をシールドするための部品およびプリント配線板にカバーなどを固定するために必要な部品等が挙げられる。 Therefore, it is considered that when one printed wiring board and another printed wiring board are connected, the connection failure is reduced and the yield is improved. In addition, as a method of connecting one printed wiring board and another printed wiring board, soldering, connection through an anisotropic conductive film (Anisotropic Conductive Film, ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used. In the present invention, the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which components are mounted. Also, it is possible to manufacture a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to the present invention, and at least one printed wiring board according to the present invention. One printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention can be connected, and an electronic apparatus can be manufactured using such a printed wiring board. In the present invention, “copper circuit” includes copper wiring. Furthermore, the printed wiring board of the present invention may be connected to a component to produce a printed wiring board. Further, at least one printed wiring board of the present invention is connected to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention. A printed wiring board in which two or more printed wiring boards are connected may be manufactured by connecting two or more printed wiring boards and components. Here, “components” include connectors, LCDs (Liquid Crystal Display), electronic components such as glass substrates used in LCDs, ICs (Integrated Circuits), LSIs (Large Scale Integrated Circuits), VLSIs (Very Large Circuits). ), Electronic components including semiconductor integrated circuits such as ULSI (Ultra-Large Scale Integration) (for example, IC chips, LSI chips, VLSI chips, ULSI chips), components for shielding electronic circuits and covers on printed wiring boards Examples include parts necessary for fixing.
 なお、本発明の実施の形態に係る位置決め方法は積層板(銅箔と樹脂基板との積層板やプリント配線板を含む)を移動させる工程を含んでいてもよい。移動工程においては例えばベルトコンベヤーやチェーンコンベヤーなどのコンベヤーにより移動させてもよく、アーム機構を備えた移動装置により移動させてもよく、気体を用いて積層板を浮遊させることで移動させる移動装置や移動手段により移動させてもよく、略円筒形などの物を回転させて積層板を移動させる移動装置や移動手段(コロやベアリングなどを含む)、油圧を動力源とした移動装置や移動手段、空気圧を動力源とした移動装置や移動手段、モーターを動力源とした移動装置や移動手段、ガントリ移動型リニアガイドステージ、ガントリ移動型エアガイドステージ、スタック型リニアガイドステージ、リニアモーター駆動ステージなどのステージを有する移動装置や移動手段などにより移動させてもよい。また、公知の移動手段による移動工程を行ってもよい。上記、積層板を移動させる工程において、積層板を移動させて位置合わせをすることができる。そして、位置合わせをすることで、一つのプリント配線板ともう一つのプリント配線板や部品を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。
 なお、本発明の実施の形態に係る位置決め方法は表面実装機やチップマウンターに用いてもよい。
 また、本発明において位置決めされる表面処理銅箔と樹脂基板との積層板が、樹脂板及び前記樹脂板の上に設けられた回路を有するプリント配線板であってもよい。また、その場合、前記マークが前記回路であってもよい。
The positioning method according to the embodiment of the present invention may include a step of moving a laminated board (including a laminated board of copper foil and a resin substrate and a printed wiring board). In the moving process, for example, it may be moved by a conveyor such as a belt conveyor or a chain conveyor, may be moved by a moving device provided with an arm mechanism, or may be moved by floating a laminated plate using gas. It may be moved by a moving means, a moving device or moving means (including a roller or a bearing) that moves a laminated plate by rotating an object such as a substantially cylindrical shape, a moving device or moving means that uses hydraulic pressure as a power source, Moving devices and moving means powered by air pressure, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. It may be moved by a moving device or moving means having a stage. Moreover, you may perform the movement process by a well-known moving means. In the step of moving the laminated plate, the laminated plate can be moved for alignment. Then, it is considered that by performing alignment, connection failure is reduced and yield is improved when one printed wiring board is connected to another printed wiring board or components.
The positioning method according to the embodiment of the present invention may be used for a surface mounter or a chip mounter.
Moreover, the printed wiring board which has the circuit provided on the resin board and the said resin board may be sufficient as the laminated board of the surface treatment copper foil and the resin board which are positioned in this invention. In that case, the mark may be the circuit.
 本発明において「位置決め」とは「マークや物の位置を検出すること」を含む。また、本発明において、「位置合わせ」とは、「マークや物の位置を検出した後に、前記検出した位置に基づいて、当該マークや物を所定の位置に移動すること」を含む。 In the present invention, “positioning” includes “detecting the position of a mark or an object”. In the present invention, “alignment” includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.
 実施例1~24及び比較例1~13として、各種銅箔を準備し、一方の表面に、粗化処理として表1~8に記載の条件にてめっき処理を行った。
 上述の粗化めっき処理を行った後、実施例1~13、15~20、22~24、比較例2、4、7~10について次の耐熱層および防錆層形成のためのめっき処理を行った。
耐熱層1の形成条件を以下に示す。
  液組成  :ニッケル5~20g/L、コバルト1~8g/L
  pH   :2~3
  液温   :40~60℃
  電流密度 :5~20A/dm2
  クーロン量:10~20As/dm2
 上記耐熱層1を施した銅箔上に、耐熱層2を形成した。比較例3、5、6については、粗化めっき処理は行わず、準備した銅箔に、この耐熱層2を直接形成した。耐熱層2の形成条件を以下に示す。
  液組成  :ニッケル2~30g/L、亜鉛2~30g/L
  pH   :3~4
  液温   :30~50℃
  電流密度 :1~2A/dm2
  クーロン量:1~2As/dm2
 上記耐熱層1及び2を施した銅箔上に、さらに防錆層を形成した。防錆層の形成条件を以下に示す。
  液組成  :重クロム酸カリウム1~10g/L、亜鉛0~5g/L
  pH   :3~4
  液温   :50~60℃
  電流密度 :0~2A/dm2(浸漬クロメート処理のため)
  クーロン量:0~2As/dm2(浸漬クロメート処理のため)
 上記耐熱層1、2及び防錆層を施した銅箔上に、さらに耐候性層を形成した。形成条件を以下に示す。
  アミノ基を有するシランカップリング剤として、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(実施例17)、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン(実施例1~13、15、16、24)、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン(実施例18)、3-アミノプロピルトリメトキシシラン(実施例19)、3-アミノプロピルトリエトキシシラン(実施例20)、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン(実施例22)、N-フェニル-3-アミノプロピルトリメトキシシラン(実施例23)で、塗布・乾燥を行い、耐候性層を形成した。これらのシランカップリング剤を2種以上の組み合わせで用いることもできる。
As Examples 1 to 24 and Comparative Examples 1 to 13, various copper foils were prepared, and plating treatment was performed on one surface under the conditions described in Tables 1 to 8 as a roughening treatment.
After performing the above-described rough plating treatment, the following plating treatment for forming the heat-resistant layer and the rust-preventing layer was carried out for Examples 1 to 13, 15 to 20, 22 to 24 and Comparative Examples 2, 4, and 7 to 10. went.
The conditions for forming the heat-resistant layer 1 are shown below.
Liquid composition: Nickel 5-20 g / L, Cobalt 1-8 g / L
pH: 2-3
Liquid temperature: 40-60 ° C
Current density: 5 to 20 A / dm 2
Coulomb amount: 10-20 As / dm 2
A heat-resistant layer 2 was formed on the copper foil provided with the heat-resistant layer 1. In Comparative Examples 3, 5, and 6, the rough plating treatment was not performed, and the heat-resistant layer 2 was directly formed on the prepared copper foil. The conditions for forming the heat-resistant layer 2 are shown below.
Liquid composition: Nickel 2-30 g / L, Zinc 2-30 g / L
pH: 3-4
Liquid temperature: 30-50 ° C
Current density: 1 to 2 A / dm 2
Coulomb amount: 1 to 2 As / dm 2
On the copper foil which gave the said heat-resistant layers 1 and 2, the antirust layer was further formed. The conditions for forming the rust preventive layer are shown below.
Liquid composition: potassium dichromate 1-10 g / L, zinc 0-5 g / L
pH: 3-4
Liquid temperature: 50-60 ° C
Current density: 0-2A / dm 2 (for immersion chromate treatment)
Coulomb amount: 0 to 2 As / dm 2 (for immersion chromate treatment)
On the copper foil which gave the said heat-resistant layers 1 and 2 and a rust prevention layer, the weathering layer was further formed. The formation conditions are shown below.
As a silane coupling agent having an amino group, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (Example 17), N-2- (aminoethyl) -3-aminopropyltriethoxysilane (Example) Examples 1 to 13, 15, 16, 24), N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane (Example 18), 3-aminopropyltrimethoxysilane (Example 19), 3-amino Propyltriethoxysilane (Example 20), 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine (Example 22), N-phenyl-3-aminopropyltrimethoxysilane (Example 23) ) Was applied and dried to form a weather resistant layer. These silane coupling agents can be used in combination of two or more.
 なお、圧延銅箔は以下のように製造した。表9に示す組成の銅インゴットを製造し、熱間圧延を行った後、300~800℃の連続焼鈍ラインの焼鈍と冷間圧延を繰り返して1~2mm厚の圧延板を得た。この圧延板を300~800℃の連続焼鈍ラインで焼鈍して再結晶させ、表9の厚みまで最終冷間圧延し、銅箔を得た。表9の「種類」の欄の「タフピッチ銅」はJIS H3100 C1100に規格されているタフピッチ銅を、「無酸素銅」はJIS H3100 C1020に規格されている無酸素銅を示す。また、「タフピッチ銅+Ag:100ppm」はタフピッチ銅にAgを100質量ppm添加したことを意味する。
 電解銅箔はJX日鉱日石金属社製電解銅箔HLP箔を用いた。電解研磨を行った場合には、電解研磨後の板厚を記載した。
 なお、表9に表面処理前の銅箔作製工程のポイントを記載した。「高光沢圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「通常圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。「化学研磨」、「電解研磨」は、以下の条件で行ったことを意味する。
 「化学研磨」はH2SO4が1~3質量%、H22が0.05~0.15質量%、残部水のエッチング液を用い、研磨時間を1時間とした。
 「電解研磨」はリン酸67%+硫酸10%+水23%の条件で、電圧10V/cm2、表9に記載の時間(10秒間の電解研磨を行うと、研磨量は1~2μmとなる。)で行った。
In addition, the rolled copper foil was manufactured as follows. A copper ingot having the composition shown in Table 9 was manufactured and hot-rolled, and then the annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled plate having a thickness of 1 to 2 mm. This rolled sheet was annealed in a continuous annealing line at 300 to 800 ° C. and recrystallized, and finally cold-rolled to the thickness shown in Table 9 to obtain a copper foil. “Tough pitch copper” in the “Type” column of Table 9 indicates tough pitch copper standardized in JIS H3100 C1100, and “Oxygen-free copper” indicates oxygen-free copper standardized in JIS H3100 C1020. “Tough pitch copper + Ag: 100 ppm” means that 100 mass ppm of Ag is added to tough pitch copper.
The electrolytic copper foil used was an electrolytic copper foil HLP foil manufactured by JX Nippon Mining & Metals. When electrolytic polishing was performed, the plate thickness after electrolytic polishing was described.
Table 9 shows the points of the copper foil preparation process before the surface treatment. “High gloss rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the value of the oil film equivalent. “Normal rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the oil film equivalent value described. “Chemical polishing” and “electropolishing” mean the following conditions.
“Chemical polishing” was performed using an etching solution of 1 to 3% by mass of H 2 SO 4 , 0.05 to 0.15% by mass of H 2 O 2 , and the remaining water, and the polishing time was 1 hour.
“Electropolishing” is a condition of phosphoric acid 67% + sulfuric acid 10% + water 23%, voltage 10 V / cm 2 , and the time shown in Table 9 (when electropolishing for 10 seconds, the polishing amount is 1 to 2 μm. ).
 上述のようにして作製した実施例及び比較例の各サンプルについて、各種評価を下記の通り行った。
(1)表面粗さ(Rz)の測定;
 株式会社小阪研究所製接触粗さ計Surfcorder SE-3Cを使用してJIS B0601-1994に準拠して十点平均粗さを粗化面について測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.25mm、送り速さ0.1mm/秒の条件で圧延方向と垂直に(TDに、電解銅箔の場合は通箔方向に垂直に)測定位置を変えて10回行い、10回の測定での値を求めた。
 なお、表面処理前の銅箔についても、同様にして表面粗さ(Rz)を求めておいた。
Various evaluation was performed as follows about each sample of the Example and comparative example which were produced as mentioned above.
(1) Measurement of surface roughness (Rz);
Ten-point average roughness was measured on the roughened surface in accordance with JIS B0601-1994, using a contact roughness meter Surfcorder SE-3C manufactured by Kosaka Laboratory. Measurement standard length 0.8mm, evaluation length 4mm, cut-off value 0.25mm, feed rate 0.1mm / sec. Perpendicular to rolling direction (in TD, in case of electrolytic copper foil, in foil passing direction) The measurement position was changed 10 times (perpendicularly), and the values for 10 measurements were obtained.
In addition, the surface roughness (Rz) was calculated | required similarly about the copper foil before surface treatment.
(2)粒子の面積比(A/B);
 粗化粒子の表面積はレーザー顕微鏡による測定法を使用した。株式会社キーエンス製レーザーマイクロスコープVK8500を用いて粗化処理面の倍率2000倍における100×100μm相当面積B(実データでは9982.52μm2)における三次元表面積Aを測定して、三次元表面積A÷二次元表面積B=面積比(A/B)とする手法により設定を行った。
(2) Particle area ratio (A / B);
The surface area of the roughened particles was measured by a laser microscope. Using a laser microscope VK8500 manufactured by Keyence Co., Ltd., measuring the three-dimensional surface area A in an area B equivalent to 100 × 100 μm at a magnification of 2000 times the roughened surface (actual data: 9982.52 μm 2 ) Setting was performed by a method of setting a two-dimensional surface area B = area ratio (A / B).
(3)光沢度;
 JIS Z8741に準拠した日本電色工業株式会社製光沢度計ハンディーグロスメーターPG-1を使用し、圧延方向(MD、電解銅箔の場合は通箔方向)及び圧延方向に直角な方向(TD、電解銅箔の場合は通箔方向に直角な方向)のそれぞれの入射角60度で粗化面について測定した。
 なお、表面処理前の銅箔についても、同様にして光沢度を求めておいた。
(3) Glossiness;
Using a gloss meter PG-1 made by Nippon Denshoku Industries Co., Ltd. in accordance with JIS Z8741, the rolling direction (MD, foil direction in the case of electrolytic copper foil) and the direction perpendicular to the rolling direction (TD, In the case of an electrolytic copper foil, the roughened surface was measured at an incident angle of 60 degrees in a direction perpendicular to the direction of threading.
In addition, the glossiness was calculated | required similarly about the copper foil before surface treatment.
(4)ヘイズ値;
 銅箔をラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。JIS K7136(2000)に準拠した村上色彩技術研究所製ヘイズメーターHM-150を使用し、サンプルフィルムのヘイズ値を測定した。
(4) haze value;
The copper foil was laminated on both sides of a polyimide film with a thermosetting adhesive for lamination (thickness 50 μm, Ube Industries Upilex), and the copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film. The haze value of the sample film was measured using a haze meter HM-150 manufactured by Murakami Color Research Laboratory based on JIS K7136 (2000).
(5)視認性(樹脂透明性);
 銅箔をラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。得られた樹脂層の一面に印刷物(直径6cmの黒色の円)を貼り付け、反対面から樹脂層越しに印刷物の視認性を判定した。印刷物の黒色の円の輪郭が円周の90%以上の長さにおいてはっきりしたものを「◎」、黒色の円の輪郭が円周の80%以上90%未満の長さにおいてはっきりしたものを「○」(以上合格)、黒色の円の輪郭が円周の0~80%未満の長さにおいてはっきりしたもの及び輪郭が崩れたものを「×」(不合格)と評価した。
(5) Visibility (resin transparency);
The copper foil was laminated on both sides of a polyimide film with a thermosetting adhesive for lamination (thickness 50 μm, Ube Industries Upilex), and the copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film. A printed material (black circle with a diameter of 6 cm) was attached to one surface of the obtained resin layer, and the visibility of the printed material was judged from the opposite surface through the resin layer. “◎” indicates that the outline of the black circle of the printed material is clear when the length is 90% or more of the circumference, and “Clear” indicates that the outline of the black circle is clear when the length is 80% or more and less than 90% of the circumference. “O” (passed above), a black circle with a clear outline of 0 to less than 80% of the circumference and a broken outline were evaluated as “x” (failed).
(6)ピール強度(接着強度);
 PC-TM-650に準拠し、引張り試験機オートグラフ100で常態ピール強度を測定し、上記常態ピール強度が0.7N/mm以上を積層基板用途に使用できるものとした。
(6) Peel strength (adhesive strength);
In accordance with PC-TM-650, the normal peel strength was measured with a tensile tester Autograph 100, and the normal peel strength of 0.7 N / mm or more could be used for laminated substrates.
(7)はんだ耐熱評価;
 銅箔をラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に貼り合わせた。得られた両面積層板について、JIS C6471に準拠したテストクーポンを作成した。作成したテストクーポンを85℃、85%RHの高温高湿下で48時間暴露した後に、300℃のはんだ槽に浮かべて、はんだ耐熱特性を評価した。はんだ耐熱試験後に、銅箔粗化処理面とポリイミド樹脂接着面の界面において、テストクーポン中の銅箔面積の5%以上の面積において、膨れにより界面が変色したものを×(不合格)、面積が5%未満の膨れ変色の場合を○、全く膨れ変色が発生しなかったものを◎として評価した。
(7) Solder heat resistance evaluation;
The copper foil was bonded to both surfaces of a polyimide film with a thermosetting adhesive for laminating (thickness 50 μm, Upilex manufactured by Ube Industries). About the obtained double-sided laminated board, the test coupon based on JISC6471 was created. The prepared test coupon was exposed to high temperature and high humidity of 85 ° C. and 85% RH for 48 hours, and then floated in a solder bath at 300 ° C. to evaluate solder heat resistance. After the solder heat resistance test, at the interface between the copper foil roughening surface and the polyimide resin adhesion surface, the area where the interface discolored due to blistering in an area of 5% or more of the copper foil area in the test coupon is x (failed), area When the color change was less than 5%, the case was evaluated as ◯, and the case where no color change occurred was evaluated as ◎.
(8)エッチングによる回路形状(ファインパターン特性)
 銅箔をラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に貼り合わせた。ファインパターン回路形成を行うために銅箔厚みを同じにする必要があり、ここでは12μm銅箔厚みを基準とした。すなわち、12μmよりも厚みが厚い場合には、電解研磨により12μm厚みまで減厚した。一方で12μmより厚みが薄い場合には、銅めっき処理により12μm厚みまで増厚した。得られた両面積層板の片面側について、積層板の銅箔光沢面側に感光性レジスト塗布及び露光工程により、ファインパターン回路を印刷し、銅箔の不要部分を下記条件でエッチング処理を行い、L/S=20/20μmとなるようなファインパターン回路を形成した。ここで回路幅は回路断面のボトム幅が20μmとなるようにした。
(エッチング条件)
装置:スプレー式小型エッチング装置
スプレー圧:0.2MPa
エッチング液:塩化第二鉄水溶液(比重40ボーメ)
液温度:50℃
ファインパターン回路形成後に、45℃のNaOH水溶液に1分間浸漬させて感光性レジスト膜を剥離した。
(8) Circuit shape by etching (fine pattern characteristics)
The copper foil was bonded to both surfaces of a polyimide film with a thermosetting adhesive for laminating (thickness 50 μm, Upilex manufactured by Ube Industries). In order to perform fine pattern circuit formation, it is necessary to make the copper foil thickness the same, and here, a thickness of 12 μm copper foil was used as a reference. That is, when the thickness was thicker than 12 μm, the thickness was reduced to 12 μm by electrolytic polishing. On the other hand, when the thickness was thinner than 12 μm, the thickness was increased to 12 μm by copper plating. For one side of the resulting double-sided laminate, the fine pattern circuit is printed by the photosensitive resist coating and exposure process on the copper foil glossy side of the laminate, and unnecessary portions of the copper foil are etched under the following conditions, A fine pattern circuit having L / S = 20/20 μm was formed. Here, the circuit width was set such that the bottom width of the circuit cross section was 20 μm.
(Etching conditions)
Equipment: Spray type small etching equipment Spray pressure: 0.2 MPa
Etching solution: Ferric chloride aqueous solution (specific gravity 40 Baume)
Liquid temperature: 50 ° C
After forming the fine pattern circuit, the photosensitive resist film was peeled off by dipping in a 45 ° C. NaOH aqueous solution for 1 minute.
(9)エッチングファクター(Ef)の算出
 上記にて得られたファインパターン回路サンプルを、日立ハイテクノロジーズ社製走査型電子顕微鏡写真S4700を用いて、2000倍の倍率で回路上部から観察を行い、回路上部のトップ幅(Wa)と回路底部のボトム幅(Wb)を測定した。銅箔厚み(T)は12μmとした。エッチングファクター(Ef)は、下記式により算出した。
  エッチングファクター(Ef) = (2×T)/(Wb-Wa)
(10)伝送損失の測定
 18μm厚の各サンプルについて、市販の液晶ポリマー樹脂((株)クラレ製Vecstar CTZ-50μm)と貼り合わせた後、エッチングで特性インピーダンスが50Ωのとなるようマイクロストリップ線路を形成し、HP社製のネットワークアナライザーHP8720Cを用いて透過係数を測定し、周波数20GHzおよび周波数40GHzでの伝送損失を求めた。周波数20GHzにおける伝送損失の評価として、3.7dB/10cm未満を◎、3.7dB/10cm以上且つ4.1dB/10cm未満を○、4.1dB/10cm以上且つ5.0dB/10cm未満を△、5.0dB/10cm以上を×とした。
 上記各試験の条件及び評価を表1~10に示す。
(9) Calculation of etching factor (Ef) The fine pattern circuit sample obtained above was observed from the top of the circuit at a magnification of 2000 using a scanning electron micrograph S4700 manufactured by Hitachi High-Technologies Corporation. The top width (Wa) at the top and the bottom width (Wb) at the bottom of the circuit were measured. The copper foil thickness (T) was 12 μm. The etching factor (Ef) was calculated by the following formula.
Etching factor (Ef) = (2 × T) / (Wb−Wa)
(10) Measurement of transmission loss For each sample with a thickness of 18 μm, after bonding with a commercially available liquid crystal polymer resin (Vecstar CTZ-50 μm manufactured by Kuraray Co., Ltd.), a microstrip line is formed so that the characteristic impedance becomes 50Ω by etching. The transmission coefficient was measured using a network analyzer HP8720C manufactured by HP, and transmission loss at a frequency of 20 GHz and a frequency of 40 GHz was obtained. As an evaluation of transmission loss at a frequency of 20 GHz, 未 満 less than 3.7 dB / 10 cm, ◎ 3.7 dB / 10 cm or more and less than 4.1 dB / 10 cm, 、 4 4.1 dB / 10 cm or more and less than 5.0 dB / 10 cm, △, 5.0 dB / 10 cm or more was defined as x.
The conditions and evaluation of each test are shown in Tables 1-10.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 〔評価結果〕
 実施例1~24は、いずれもヘイズ値、視認性及びピール強度が良好であった。また、はんだ耐熱評価も良好であった。
 比較例1~2、4、7~11、13は、ヘイズ値が著しく高く、表面粗さも大きかったため、視認性が不良であった。
 比較例3、5、6、12は、視認性は優れていたが、ピール強度が不十分であり、基板密着性が不良であった。また、比較例1~13ははんだ耐熱評価が不良であった。
 また、実施例5は実施例15とRz、MDの60度光沢度、表面積比A/Bがほぼ同じ値であるが、実施例5の粗化処理表面のMDの60度光沢度とTDの60度光沢度との比Cの値が0.84と0.80~1.40の範囲内であったため、Cの値が0.75と0.80~1.40の範囲外である実施例15よりもヘイズ値が小さくなった。
 同様の理由で実施例16は実施例17よりもヘイズ値が小さくなった。
 図1に、上記Rz評価の際の、(a)比較例1、(b)比較例2、(c)比較例3、(d)比較例4、(e)実施例1、(f)実施例2の銅箔表面のSEM観察写真をそれぞれ示す。
〔Evaluation results〕
Examples 1 to 24 all had good haze values, visibility and peel strength. The solder heat resistance evaluation was also good.
Comparative Examples 1 to 2, 4, 7 to 11 and 13 had a very high haze value and a large surface roughness, so that the visibility was poor.
In Comparative Examples 3, 5, 6, and 12, the visibility was excellent, but the peel strength was insufficient and the substrate adhesion was poor. In Comparative Examples 1 to 13, the solder heat resistance evaluation was poor.
Further, in Example 5, the 60 degree glossiness of Rz and MD and the surface area ratio A / B are substantially the same values as in Example 15, but the 60 degree glossiness of MD and TD of the roughened surface of Example 5 are the same. Since the value of the ratio C to 60 degree glossiness was within the range of 0.84 and 0.80 to 1.40, the C value was outside the range of 0.75 and 0.80 to 1.40. The haze value was smaller than in Example 15.
For the same reason, the haze value of Example 16 was smaller than that of Example 17.
FIG. 1 shows (a) Comparative Example 1, (b) Comparative Example 2, (c) Comparative Example 3, (d) Comparative Example 4, (e) Example 1, and (f) in the Rz evaluation. The SEM observation photograph of the copper foil surface of Example 2 is shown, respectively.

Claims (19)

  1.  銅箔表面に粗化処理により粗化粒子が形成され、粗化処理表面のTDの平均粗さRzが0.20~0.80μmであり、粗化処理表面のMDの60度光沢度が76~350%であり、
     前記粗化粒子の表面積Aと、前記粗化粒子を前記銅箔表面側から平面視したときに得られる面積Bとの比A/Bが1.90~2.40である表面処理銅箔。
    Roughening particles are formed on the surface of the copper foil by the roughening treatment, the average roughness Rz of the TD on the roughening treatment surface is 0.20 to 0.80 μm, and the 60 degree glossiness of MD on the roughening treatment surface is 76. ~ 350%,
    A surface-treated copper foil having a ratio A / B of 1.90 to 2.40 of a surface area A of the roughened particles and an area B obtained when the roughened particles are viewed in plan from the copper foil surface side.
  2.  前記MDの60度光沢度が90~250%である請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein the MD has a 60-degree glossiness of 90 to 250%.
  3.  前記TDの平均粗さRzが0.30~0.60μmである請求項1又は2に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1 or 2, wherein the average roughness Rz of the TD is 0.30 to 0.60 µm.
  4.  前記A/Bが2.00~2.20である請求項1~3のいずれかに記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 3, wherein the A / B is 2.00 to 2.20.
  5.  粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.80~1.40である請求項1~4のいずれかに記載の表面処理銅箔。 The ratio C (C = (60 degree gloss of MD) / (60 degree gloss of TD)) of the 60 degree gloss of MD and the 60 degree gloss of TD on the roughened surface is 0.80 to 1. The surface-treated copper foil according to any one of claims 1 to 4, which is 40.
  6.  粗化処理表面のMDの60度光沢度とTDの60度光沢度との比C(C=(MDの60度光沢度)/(TDの60度光沢度))が0.90~1.35である請求項5に記載の表面処理銅箔。 The ratio C (C = (60 degree gloss of MD) / (60 degree gloss of TD)) of 0.90 to 1.60 of the 60 degree gloss of MD and 60 degree gloss of TD on the roughened surface. The surface-treated copper foil according to claim 5, which is 35.
  7.  前記銅箔を、粗化処理表面側から厚さ50μmの樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去したとき、前記樹脂基板のヘイズ値が20~70%となる請求項1~6のいずれかに記載の表面処理銅箔。 When the copper foil is bonded to both surfaces of a 50 μm thick resin substrate from the roughened surface side and then the copper foil on both surfaces is removed by etching, the haze value of the resin substrate becomes 20 to 70%. The surface-treated copper foil according to any one of claims 1 to 6.
  8.  銅箔表面に粗化処理により粗化粒子が形成され、前記銅箔を、粗化処理表面側から厚さ50μmの樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去したとき、前記樹脂基板のヘイズ値が20~70%となる表面処理銅箔。 Roughening particles are formed by roughening treatment on the surface of the copper foil, and the copper foil is bonded to both surfaces of a 50 μm thick resin substrate from the roughening treatment surface side, and then the copper foils on both sides are removed by etching. When the surface-treated copper foil has a haze value of 20 to 70%.
  9.  請求項1~8のいずれかに記載の表面処理銅箔と樹脂基板とを積層して構成した積層板。 A laminate comprising a laminate of the surface-treated copper foil according to any one of claims 1 to 8 and a resin substrate.
  10.  請求項1~8のいずれかに記載の表面処理銅箔に使用される粗化処理前の銅箔。 A copper foil before the roughening treatment used for the surface-treated copper foil according to any one of claims 1 to 8.
  11.  MDの60度光沢度が500~800%である請求項10に記載の粗化処理前の銅箔。 The copper foil before roughening according to claim 10, wherein the 60 ° gloss of MD is 500 to 800%.
  12.  MDの60度光沢度が501~800%である銅箔。 A copper foil with a 60 degree gloss of MD of 501 to 800%.
  13.  請求項1~8のいずれかに記載の表面処理銅箔を用いたプリント配線板。 A printed wiring board using the surface-treated copper foil according to any one of claims 1 to 8.
  14.  請求項13に記載のプリント配線板を用いた電子機器。 An electronic device using the printed wiring board according to claim 13.
  15.  請求項13に記載のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法。 A method for manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to claim 13.
  16.  請求項13に記載のプリント配線板を少なくとも1つと、もう一つの請求項13に記載のプリント配線板又は請求項13に記載のプリント配線板に該当しないプリント配線板とを接続する工程を含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法。 Connecting at least one printed wiring board according to claim 13 to another printed wiring board according to claim 13 or a printed wiring board not corresponding to the printed wiring board according to claim 13; A method of manufacturing a printed wiring board in which two or more printed wiring boards are connected.
  17.  請求項15又は16に記載のプリント配線板が少なくとも1つ接続したプリント配線板を1つ以上用いた電子機器。 An electronic device using one or more printed wiring boards to which at least one printed wiring board according to claim 15 or 16 is connected.
  18.  請求項13に記載のプリント配線板と、部品とを接続する工程を少なくとも含む、プリント配線板を製造する方法。 A method for manufacturing a printed wiring board, comprising at least a step of connecting the printed wiring board according to claim 13 and a component.
  19.  請求項13に記載のプリント配線板を少なくとも1つと、もう一つの請求項13に記載のプリント配線板又は請求項13に記載のプリント配線板に該当しないプリント配線板とを接続する工程、および、
     請求項13に記載のプリント配線板又は請求項16に記載のプリント配線板が2つ以上接続したプリント配線板と、部品とを接続する工程
    を少なくとも含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法。
    Connecting at least one printed wiring board according to claim 13 to another printed wiring board according to claim 13 or a printed wiring board not corresponding to the printed wiring board according to claim 13, and
    A printed wiring board having two or more printed wiring boards connected, comprising at least a step of connecting a printed wiring board according to claim 13 or two or more printed wiring boards according to claim 16 and a component. A method of manufacturing a wiring board.
PCT/JP2013/062658 2012-05-11 2013-04-30 Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board WO2013168646A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147034840A KR101704892B1 (en) 2012-05-11 2013-04-30 Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board
KR1020167030318A KR101822325B1 (en) 2012-05-11 2013-04-30 Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board
CN201380024196.1A CN104271813B (en) 2012-05-11 2013-04-30 Surface treatment copper foil and use its laminated plates, the manufacturing method of copper foil, printing distributing board, e-machine and printing distributing board
PH12014502509A PH12014502509B1 (en) 2012-05-11 2014-11-10 Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012122448 2012-05-11
JP2012-122448 2012-05-11
JP2013-003867 2013-01-11
JP2013003867 2013-01-11
JP2013-008519 2013-01-21
JP2013008519A JP5475897B1 (en) 2012-05-11 2013-01-21 Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board

Publications (1)

Publication Number Publication Date
WO2013168646A1 true WO2013168646A1 (en) 2013-11-14

Family

ID=49550688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062658 WO2013168646A1 (en) 2012-05-11 2013-04-30 Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board

Country Status (7)

Country Link
JP (1) JP5475897B1 (en)
KR (2) KR101704892B1 (en)
CN (2) CN107022774A (en)
MY (2) MY171074A (en)
PH (1) PH12014502509B1 (en)
TW (1) TWI479036B (en)
WO (1) WO2013168646A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140216650A1 (en) * 2011-02-18 2014-08-07 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
JP2015105421A (en) * 2013-11-29 2015-06-08 Jx日鉱日石金属株式会社 Surface treated copper foil, laminate, printed wiring board, printed circuit board, and electronic apparatus
CN105034478A (en) * 2014-04-28 2015-11-11 株式会社Sh铜业 Surface-treated copper foil and laminate
US9255007B2 (en) 2011-06-02 2016-02-09 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9359212B2 (en) 2011-11-15 2016-06-07 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9487404B2 (en) 2011-06-02 2016-11-08 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9840757B2 (en) 2014-06-13 2017-12-12 Jx Nippon Mining & Metals Corporation Rolled copper foil for producing two-dimensional hexagonal lattice compound and method of producing two-dimensional hexagonal lattice compound

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885790B2 (en) * 2013-08-20 2016-03-15 Jx金属株式会社 Surface treated copper foil and laminated board using the same, copper foil with carrier, printed wiring board, electronic device, method for manufacturing electronic device, and method for manufacturing printed wiring board
TWI676405B (en) * 2016-07-26 2019-11-01 日商Jx金屬股份有限公司 Printed wiring boards, electronic equipment, ducts and metal materials
KR102274906B1 (en) * 2016-09-12 2021-07-09 후루카와 덴키 고교 가부시키가이샤 Copper foil and copper clad laminate having the same
CN108696987B (en) * 2017-03-31 2021-11-30 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
KR102349377B1 (en) * 2019-12-19 2022-01-12 일진머티리얼즈 주식회사 Surface-treated copper foil, preparing method thereof, copper foil laminate including the same, and printed wiring board including the same
CN112566373B (en) * 2020-11-13 2022-11-04 广东工业大学 Coarsening method based on tin template

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332418A (en) * 2006-06-15 2007-12-27 Fukuda Metal Foil & Powder Co Ltd Surface treated copper foil

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2849059B2 (en) 1995-09-28 1999-01-20 日鉱グールド・フォイル株式会社 Processing method of copper foil for printed circuit
WO2003096776A1 (en) 2002-05-13 2003-11-20 Mitsui Mining & Smelting Co.,Ltd. Flexible printed wiring board for chip-on-film
JP2004098659A (en) 2002-07-19 2004-04-02 Ube Ind Ltd Copper-clad laminate and its manufacturing process
JP4354955B2 (en) * 2004-02-17 2009-10-28 日鉱金属株式会社 Copper foil with blackened surface or layer
JP2005344174A (en) * 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape
KR100941219B1 (en) * 2005-03-31 2010-02-10 미쓰이 긴조꾸 고교 가부시키가이샤 Electrolytic copper foil, surface treated electrolytic copper foil using said electrolytic copper foil, and copper-clad laminate plate and printed wiring board using said surface treated electrolytic copper foil
KR20070044774A (en) * 2005-10-25 2007-04-30 미쓰이 긴조꾸 고교 가부시키가이샤 Two-layer flexible printed wiring board and method for manufacturing the same
TW200728515A (en) * 2005-10-31 2007-08-01 Mitsui Mining & Smelting Co Method for manufacture of electrolytic copper foil, electrolytic copper foil manufactured by the method, surface-treated copper foil manufactured using the electrolytic copper foil, and copper-clad laminate manufactured using the electrolytic copper
TW200738913A (en) * 2006-03-10 2007-10-16 Mitsui Mining & Smelting Co Surface treated elctrolytic copper foil and process for producing the same
JP2007332458A (en) 2006-05-18 2007-12-27 Sony Corp Vapor deposition apparatus, and vapor deposition source, and display device manufacturing method
JP4240506B2 (en) * 2006-09-05 2009-03-18 三井金属鉱業株式会社 Manufacturing method of film carrier tape for mounting electronic components
JP5129642B2 (en) * 2007-04-19 2013-01-30 三井金属鉱業株式会社 Surface treated copper foil, copper clad laminate obtained using the surface treated copper foil, and printed wiring board obtained using the copper clad laminate
KR101288641B1 (en) * 2008-11-25 2013-07-22 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil for printed circuit
SG173615A1 (en) * 2009-12-22 2011-09-29 Jx Nippon Mining & Metals Corp Method for producing laminate, and laminate
JP5242710B2 (en) * 2010-01-22 2013-07-24 古河電気工業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
JP5411192B2 (en) * 2011-03-25 2014-02-12 Jx日鉱日石金属株式会社 Rolled copper foil and method for producing the same
JP5261595B1 (en) * 2012-06-29 2013-08-14 Jx日鉱日石金属株式会社 Rolled copper foil, method for producing the same, and laminate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332418A (en) * 2006-06-15 2007-12-27 Fukuda Metal Foil & Powder Co Ltd Surface treated copper foil

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140216650A1 (en) * 2011-02-18 2014-08-07 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9260310B2 (en) * 2011-02-18 2016-02-16 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
USRE47195E1 (en) 2011-02-18 2019-01-08 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9255007B2 (en) 2011-06-02 2016-02-09 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9487404B2 (en) 2011-06-02 2016-11-08 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
US9359212B2 (en) 2011-11-15 2016-06-07 Jx Nippon Mining & Metals Corporation Copper foil for producing graphene and method of producing graphene using the same
JP2015105421A (en) * 2013-11-29 2015-06-08 Jx日鉱日石金属株式会社 Surface treated copper foil, laminate, printed wiring board, printed circuit board, and electronic apparatus
CN105034478A (en) * 2014-04-28 2015-11-11 株式会社Sh铜业 Surface-treated copper foil and laminate
CN105034478B (en) * 2014-04-28 2020-01-21 长春石油化学股份有限公司 Surface-treated copper foil and laminate
US9840757B2 (en) 2014-06-13 2017-12-12 Jx Nippon Mining & Metals Corporation Rolled copper foil for producing two-dimensional hexagonal lattice compound and method of producing two-dimensional hexagonal lattice compound

Also Published As

Publication number Publication date
TW201402840A (en) 2014-01-16
KR101822325B1 (en) 2018-01-25
MY194478A (en) 2022-11-30
KR101704892B1 (en) 2017-02-08
CN104271813A (en) 2015-01-07
JP2014148691A (en) 2014-08-21
JP5475897B1 (en) 2014-04-16
MY171074A (en) 2019-09-24
KR20150008482A (en) 2015-01-22
KR20160128467A (en) 2016-11-07
PH12014502509A1 (en) 2014-12-22
CN107022774A (en) 2017-08-08
PH12014502509B1 (en) 2014-12-22
TWI479036B (en) 2015-04-01
CN104271813B (en) 2018-08-28

Similar Documents

Publication Publication Date Title
JP5475897B1 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5417538B1 (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
TWI460068B (en) Surface-treated copper foil for copper-clad laminates and copper-clad laminate using the same
JP5819569B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP5362924B1 (en) Surface-treated copper foil and laminate using the same
KR20160129916A (en) Surface-treated copper foil and laminate using same, copper foil, printed wiring board, electronic device, and process for producing printed wiring board
JP2015061935A (en) Surface-treated copper foil and laminated board, copper foil with carrier, copper foil, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP5855244B2 (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board
WO2014038716A1 (en) Surface-treated copper foil and laminated board using same
JP5362899B1 (en) Surface-treated copper foil and laminate using the same
JP5432357B1 (en) Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
JP2014141736A (en) Surface-treated copper foil and laminate sheet using the same
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
WO2014073696A1 (en) Surface-treated copper foil and laminate using same
JP6081883B2 (en) Copper foil, laminated board using the same, method for manufacturing electronic device, and method for manufacturing printed wiring board
JP6364162B2 (en) Method for manufacturing printed wiring board
JP2014148747A (en) Surface-treated copper foil and laminate, printed wiring board, and electronic apparatus with use of the foil, and manufacturing method of printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147034840

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13787877

Country of ref document: EP

Kind code of ref document: A1