WO2013168420A1 - ステアリングダンパ及びそれを備えた鞍乗型車両並びにその製造方法 - Google Patents

ステアリングダンパ及びそれを備えた鞍乗型車両並びにその製造方法 Download PDF

Info

Publication number
WO2013168420A1
WO2013168420A1 PCT/JP2013/002957 JP2013002957W WO2013168420A1 WO 2013168420 A1 WO2013168420 A1 WO 2013168420A1 JP 2013002957 W JP2013002957 W JP 2013002957W WO 2013168420 A1 WO2013168420 A1 WO 2013168420A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic fluid
steering damper
steering
fluid chamber
rotor
Prior art date
Application number
PCT/JP2013/002957
Other languages
English (en)
French (fr)
Inventor
泰信 原薗
延男 原
敏 石川
福田 博美
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to EP13787615.7A priority Critical patent/EP2848509B1/en
Priority to JP2014514383A priority patent/JP5789045B2/ja
Priority to US14/398,231 priority patent/US9920809B2/en
Priority to ES13787615.7T priority patent/ES2564286T3/es
Publication of WO2013168420A1 publication Critical patent/WO2013168420A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K21/00Steering devices
    • B62K21/08Steering dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F6/00Magnetic springs; Fluid magnetic springs, i.e. magnetic spring combined with a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/145Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only rotary movement of the effective parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a steering damper for adjusting a steering damping force provided in a vehicle steering (steering) mechanism, a straddle-type vehicle including the same, and a method of manufacturing the same.
  • This steering damper is basically composed of an upper casing portion having a ring-shaped receiving recess opened downward, and a lower casing portion that is inserted into the receiving recess from below and covers the cover so as to be relatively rotatable.
  • An electromagnet and a magnetic fluid are accommodated in the accommodating recess, and the accommodating recess is sealed with two seal members.
  • the electromagnet is composed of a casing part main body (32b) having a laterally U-shaped groove facing outward on the outer periphery, and a coil wound around the groove of the casing part main body (32b). Has been.
  • the electromagnet is attached to the lower casing part (32a).
  • the electromagnet and the lower casing part are assembled so as to be rotatable relative to the upper casing part via a bearing metal (35).
  • a seal member is disposed between the relative rotation surfaces of the two casing portions to seal the housing recess.
  • a fluid storage chamber is formed in the gap between the inner peripheral surface of the upper casing portion and the outer peripheral surface of the electromagnet, the ceiling surface of the upper casing portion, and the upper surface of the casing portion main body.
  • a magnetic fluid is injected into the fluid storage chamber.
  • the steering damper configured in this manner has a lower casing portion fixed to the head pipe, and an upper casing portion fixed to an upper bracket that holds the steering handle.
  • a magnetic field is generated by an electromagnet when the steering handle is turned, the viscosity of the magnetic fluid increases. Therefore, it is possible to obtain effects such as suppressing vibrations and shaking in the rotational direction of the steering wheel during driving.
  • the magnetic damper is supplied with a magnetic fluid from the inlet while evacuating from the outlet connected to the fluid storage chamber before being attached to the vehicle.
  • a manufacturing method is used in which the inside of the storage chamber is filled with a magnetic fluid. The reason why the evacuation is performed is that the magnetic fluid has a very high viscosity, so that the magnetic fluid can be easily filled into the fluid storage chamber formed in a narrow space. Further, at that time, air is left as little as possible in the magnetic fluid chamber.
  • JP 2010-254117 A (FIGS. 4 to 9)
  • the conventional example having such a configuration has the following problems. That is, in the conventional apparatus, when the volume of the magnetic fluid expands due to a temperature rise, the internal pressure of the fluid storage chamber increases, and thus there is a possibility that the upper casing portion and the lower casing portion are slightly separated. When such a situation occurs, there is a problem that air engagement occurs in which air enters the fluid storage chamber from the seal portion, which adversely affects the characteristics of the steering damper.
  • the conventional manufacturing method has a problem that the manufacturing is complicated because it is necessary to perform evacuation.
  • the device of the present invention has been made in view of such circumstances, and provides a steering damper capable of preventing characteristic changes caused by expansion of a magnetic fluid and air biting, and a straddle-type vehicle including the same.
  • the purpose is to do.
  • the method of the present invention has been made in view of such circumstances, and an object thereof is to provide a method for manufacturing a steering damper that can be easily manufactured.
  • the present invention has the following configuration. That is, the present invention has a lower casing part provided with an opening in the center part, a circular disk part in a plan view, and a rotating shaft formed to protrude above and below the rotation center of the disk part, A rotor part which is rotatably arranged by inserting the rotation shaft into the opening of the lower casing part, an electromagnet which is fixed around the rotor part and spaced from the rotor part, and a center An upper casing part fastened to the lower casing part so as to cover the electromagnet and the rotor part in a state in which the part is provided with a bearing part, and the rotating shaft of the rotor part is inserted into the bearing part; A magnetic fluid chamber formed between a rotor portion and the electromagnet and filled with a magnetic fluid, and a volume compensation portion communicating with the magnetic fluid chamber and compensating for a volume change of the magnetic fluid It is.
  • the damping force of the rotor portion covered with the lower casing portion and the upper casing portion can be adjusted by changing the viscosity of the magnetic fluid by the electromagnet. Since the magnetic fluid chamber is provided with a volume compensation unit, bubbles that are lighter than the magnetic fluid can be collected in the volume compensation unit even if the volume of the magnetic fluid expands or the air bites. Therefore, the characteristic change of the steering damper due to the volume expansion of the magnetic fluid and the air biting can be prevented.
  • the volume compensation portion is provided in a position corresponding to the upper portion of the magnetic fluid chamber in the upper casing portion.
  • the volume compensation unit includes a communication port formed in the upper casing unit and communicated with the magnetic fluid chamber, and a membrane member that closes the communication port and can be elastically deformed. Preferably it is.
  • the membrane member that closes the communication port is elastically deformed, so that the expansion can be absorbed. Even if the magnetic fluid expands and contracts, the membrane member returns to its original shape, so that no air is caught.
  • the rotor portion is sealed by the lower casing portion and the upper casing portion fastened to each other.
  • the rotor part Since the rotor part is a sealed structure and dust is difficult to enter, the rotor part can be operated smoothly over a long period of time. Further, even if the magnetic fluid expands and the internal pressure between the upper casing portion and the lower casing portion increases, the magnetic fluid does not deform, so that the sealing performance is excellent and the magnetic fluid does not leak.
  • the rotor portion includes an outer cylinder formed by extending an outer peripheral surface of the disk portion in the direction of the rotation shaft, and the electromagnet generates a generated magnetic field that passes through the outer cylinder of the rotor portion. It is preferable to arrange in the position.
  • the magnetic field from the electromagnet passes through the outer cylinder having a larger area than the disk portion, the magnetic field passing through the magnetic fluid chamber can be increased. Therefore, the damping force generated in the rotor part when the viscosity of the magnetic fluid is changed can be increased.
  • the outer peripheral surface of the outer cylinder of the rotor portion is made of a magnetic material.
  • the viscosity of the magnetic fluid can be adjusted efficiently.
  • the rotor portion has an outer peripheral member made of a magnetic material attached to the outer peripheral surface of the outer cylinder.
  • the degree of freedom of structure can be increased while maintaining the ease of passing the magnetic field to the magnetic fluid chamber.
  • the rotor portion is provided with a seal member that maintains the magnetic fluid chamber in a liquid-tight state on the inner peripheral side of the outer cylinder.
  • the seal member is provided on the inner peripheral side of the outer cylinder, rattling around the rotation shaft can be suppressed compared to a structure in which the seal member is provided on the rotation shaft side. Therefore, air biting in the magnetic fluid chamber can be suppressed. Further, since the volume of the magnetic fluid chamber can be reduced, the amount of expensive magnetic fluid used can be reduced, and the cost can be suppressed.
  • the seal member is provided on an inner peripheral surface of the outer cylinder.
  • the seal member is provided on the inner peripheral surface of the outer cylinder, the distance between the rotating shaft and the seal member can be maximized. Therefore, it is possible to minimize backlash around the rotation axis. As a result, air biting in the magnetic fluid chamber can be further suppressed. Moreover, since the volume of the magnetic fluid chamber can be reduced as much as possible, the amount of expensive magnetic fluid used can be reduced, and the cost can be suppressed.
  • the upper casing member is an upper partition wall that is formed to protrude toward the disc portion side between the inner peripheral surface of the outer cylinder and the rotation shaft of the rotor portion of the ceiling surface.
  • the lower casing member is provided with a lower partition wall formed to protrude toward the disk portion between the inner peripheral surface of the outer cylinder and the rotation shaft of the rotor portion, of the bottom surface.
  • the seal member is an oil seal, and is provided outside the upper partition wall and the lower partition wall so that a lip portion of the oil seal is in contact with an outer peripheral surface of the upper partition wall and an outer peripheral surface of the lower partition wall. It is preferable.
  • An oil seal is provided on the outer peripheral surface of the upper partition wall so that the lip portion contacts the outer peripheral surface of the upper partition wall of the upper casing member, and an oil seal is provided so that the lip portion contacts the outer peripheral surface of the lower partition wall of the lower casing member. Is provided on the outer peripheral surface of the lower partition wall. Therefore, even if the upper casing portion and the lower casing portion are somewhat loose, the lip portion of the oil seal does not separate from the upper partition wall and the lower partition wall. Therefore, the magnetic fluid can be prevented from leaking.
  • the magnetic fluid chamber has an annular shape in a plan view, and communicates with the magnetic fluid chamber.
  • the first working hole communicates with the magnetic fluid chamber. It is preferable to further include a second working hole formed at a position sandwiching the rotation shaft.
  • Magnetic fluid is injected from one of the first working hole and the second working hole, and the injection is continued until the magnetic fluid overflows from the other of the second working hole and the first working hole.
  • the magnetic fluid chamber can be filled with the magnetic fluid while the air in the chamber is pushed out. Therefore, air filling can be prevented when filling the magnetic fluid.
  • the side from which the magnetic fluid is discharged preferably serves as a volume compensation unit. Thereby, the structure can be simplified.
  • any one of the above-described steering damper a main frame constituting a skeleton of a vehicle, a head pipe provided at a front end of the main frame and inclined at a caster angle, and the head
  • a steering shaft provided rotatably on the pipe, a steering handle provided on the upper portion of the steering shaft, a front wheel provided on the lower portion of the steering shaft, and a rear wheel provided on the rear side of the main frame
  • the steering damper is preferably attached to the steering handle in a posture in which the volume compensation portion is directed forward, and the disc portion is in a posture orthogonal to the axis of the head pipe.
  • the volume damper Since the head pipe has a posture in which the upper part is inclined rearward so as to have a caster angle, the volume damper is directed forward, and the steering damper is placed in a posture in which the disc portion is orthogonal to the axis of the head pipe.
  • the volume compensation section When attached to the steering handle, the volume compensation section is positioned at the top. Therefore, the expansion of the magnetic fluid can be absorbed by the volume compensation unit, and bubbles generated by the air biting can be collected by the volume compensation unit. As a result, it is possible to prevent changes in the characteristics of the steering damper due to the volume expansion of the magnetic fluid and the air biting, and it is possible to prevent the handling of the saddle riding type vehicle from fluctuating.
  • the steering damper is fixed to the steering handle and includes a stay arm having one end connected to the rotating shaft, and the other end of the stay arm is fixed to the main frame. It is preferable.
  • the steering damper can be easily attached to the saddle riding type vehicle.
  • the rotating shaft of the rotor portion is rotatably held by the opening portion of the lower casing portion and the bearing portion of the upper casing portion, and the circular disc portion extending in the outer circumferential direction from the rotating shaft is provided with the circular disc portion in plan view.
  • An electromagnet is disposed in a state of being surrounded by a casing portion and the upper casing portion and being fixed to be separated from the rotor portion on the outer peripheral side of the rotor portion, and is formed at least between the rotor portion and the electromagnet.
  • the steering damper communicates with the magnetic fluid chamber, and compensates for the volume change of the magnetic fluid, and the first is connected to the magnetic fluid chamber.
  • the first work hole and the second work hole are arranged in a posture in which one of the first work hole and the second work hole of the steering damper is positioned above the rotation shaft.
  • the magnetic fluid is injected from the other of the working holes. Therefore, since the magnetic fluid injected from one side is discharged from the other side, the magnetic fluid chamber can be filled with the magnetic fluid while pushing out air in the magnetic fluid chamber. Therefore, it is not necessary to perform evacuation, and the steering damper can be easily manufactured.
  • the first working hole and the second working hole may be configured such that the side from which the magnetic fluid is discharged also serves as a volume compensation unit.
  • the posture in which the other of the first working hole and the second working hole is positioned below one of the first working hole and the second working hole It is preferable to inject the magnetic fluid.
  • the magnetic fluid Since the magnetic fluid is discharged from above while being injected from below, it can be discharged upward even if air is caught. Accordingly, air biting in the magnetic fluid chamber can be suppressed.
  • the damping force of the rotor portion covered with the lower casing portion and the upper casing portion can be adjusted by changing the viscosity of the magnetic fluid by the electromagnet. Since the magnetic fluid chamber is provided with the volume compensation unit, even if the volume of the magnetic fluid expands or air engagement occurs, bubbles that are lighter than the magnetic fluid can be collected in the volume compensation unit. Therefore, the characteristic change of the steering damper due to the volume expansion of the magnetic fluid and the air biting can be prevented.
  • FIG. 1 is a left side view showing an entire motorcycle according to an embodiment. It is the partially expanded view which showed the attachment state of the steering damper which concerns on an Example, (a) shows a top view, (b) shows a left view. It is a top view which shows the external appearance of a steering damper. It is the figure which looked at the external appearance of the steering damper from the lower surface.
  • FIG. 5 is a sectional view taken along arrows 301-301 in FIGS. 3 and 4;
  • FIG. 4 is a sectional view taken along arrow 303-303 in FIG. 3;
  • FIG. 10 is a cross-sectional view taken along arrow 305-305 in FIG. It is a schematic diagram with which it uses for description of the manufacturing method of a steering damper.
  • FIG. 1 is a left side view showing the whole motorcycle according to the embodiment
  • FIG. 2 is a partially enlarged view showing a mounting state of the steering damper according to the embodiment
  • (a) is a plan view.
  • (B) shows a left side view.
  • the motorcycle 1 includes a main frame 3.
  • the main frame 3 forms a skeleton of the motorcycle 1.
  • a head pipe 5 is provided at the front end of the main frame 3.
  • the head pipe 5 is formed in an inclined posture corresponding to the caster angle.
  • the head pipe 5 is formed in a hollow shape, and a steering shaft 7 is rotatably inserted into that portion.
  • the steering shaft 7 has an upper end fixed to the upper bracket 9 and a lower end fixed to the under bracket 11.
  • a pair of front forks 13 are attached to both ends of the upper bracket 9 and the under bracket 11 in the left-right direction.
  • a front wheel 15 is rotatably supported on the lower ends of the pair of front forks 13.
  • the upper bracket 9 is provided with a pair of handle holders 17 on the upper surface.
  • Each of these handle holders 17 holds a steering handle 19 via two bolts BL.
  • the steering handle 19 is operated by the operator. When the operator operates the steering handle 19, the steering force is transmitted to the pair of front forks 13 via the steering shaft 7, the upper bracket 9, and the under bracket 11, and the front wheels 15 are steered.
  • the mounting base 21 is fastened to the upper part of the handle holder 17 with the two bolts BL.
  • a steering damper 23 which will be described in detail later, is attached to the attachment base 21 with four bolts BS in advance.
  • the steering damper 23 has a function of adjusting the damping force when the operator operates the steering handle 19.
  • a fuel tank 25 is provided on the upper part of the main frame 3.
  • a seat 27 is provided in a portion of the main frame 3 that is behind the fuel tank 25.
  • An engine 29 is disposed in a portion of the main frame 3 below the fuel tank 25.
  • a rear arm 31 is swingably attached to the rear portion of the engine 29. The rear arm 31 rotatably holds a rear wheel 33 at the rear end thereof. The rear wheel 33 transmits the driving force of the engine 29 and causes the motorcycle 1 to travel.
  • FIGS. 3 is a plan view showing the appearance of the steering damper
  • FIG. 4 is a view of the appearance of the steering damper as viewed from below
  • FIG. 5 is a cross-sectional view taken along arrows 301-301 in FIGS. 6 is a cross-sectional view taken along arrow 303-303 in FIG. 3
  • FIG. 7 is an enlarged vertical cross-sectional view of the main part of FIG. 5
  • FIG. 8 is a plan view of the lower casing part.
  • FIG. 9 is a sectional view taken along arrow 305-305 in FIG.
  • the steering damper 23 mainly includes a lower casing portion 33, a rotor portion 35, an electromagnet 37, an upper casing portion 39, a magnetic fluid chamber 41, and a volume compensation portion 43. .
  • the lower casing part 33 is formed with an opening 45 at a central part in plan view.
  • the lower casing portion 33 has attachment portions 47 formed at four locations on the outer peripheral portion.
  • a space portion 49 having an annular shape in plan view is formed on the outer peripheral side of the opening 45.
  • an accommodating portion 51 having an annular shape in plan view is formed on the outer peripheral side of the space portion 49.
  • a lower partition wall 53 protruding toward the rotor portion 35 is formed between the space portion 49 and the accommodating portion 51 on the bottom surface of the lower casing portion 33.
  • pouring part 55 connected to the accommodating part 51 is formed in one site
  • the injection part 55 includes an injection hole 59 and an injection promotion chamber 61.
  • the injection hole 59 is a through hole that communicates the accommodating portion 51 with the atmosphere.
  • the injection promoting chamber 61 is a space formed lower than the other bottom surface of the accommodating portion 51.
  • the injection hole 59 is closed by an O-ring and a screw 62.
  • the rotor part 35 includes a disk part 63, a rotating shaft 65, an outer cylinder 67, and an annular member 69.
  • the disc portion 63 is formed with a rotation shaft 65 protruding in the vertical direction at the center.
  • the outer cylinder 67 is formed by extending the outer peripheral surface of the disk portion 63 in the direction in which the rotation shaft 65 extends.
  • the annular member 69 is press-fitted or cast into the outer periphery of the outer cylinder 67.
  • the annular member 69 is formed of a magnetic material such as a metal such as iron, nickel, or manganese, or an alloy including iron, nickel, manganese, or the like such as zinc ferrite.
  • the disc part 63 is made of a nonmagnetic material such as aluminum, for example. In addition, you may comprise the whole rotor part 35 integrally with a magnetic body.
  • the outer cylinder 67 has an oil seal 71 press-fitted above and below the inner peripheral surface thereof.
  • the oil seal 71 is attached to the inner peripheral surface of the outer cylinder 67 so that the lip portion contacts the outer peripheral surfaces of the upper partition wall 95 and the lower partition wall 53.
  • the rotary shaft 65 has a bearing 73 press-fitted above and below its outer peripheral surface.
  • the electromagnet 37 includes a bobbin 75, a coil 77, a yoke case 79, and a yoke cap 81 as shown in FIG.
  • the bobbin 75 is a ring having a U-shaped cross section that is open to the outside, and is wound with a coil 77.
  • the yoke case 79 is configured such that its longitudinal section has an L shape.
  • the bobbin 75 is housed in the yoke case 79 together with the coil 77.
  • the yoke cap 81 is press-fitted into the yoke case 79 after the bobbin 75 is housed in the yoke case 79, and closes the upper portion of the yoke case 79.
  • the yoke cap 81 has an opening 85 formed in a part thereof for taking out the wiring 83 of the coil 77.
  • An opening 86 is formed at a position corresponding to the opening 85 in the upper part of the yoke case 79.
  • the openings 85 and 86 are filled with a sealing agent after the electromagnet 37 is assembled.
  • the upper casing portion 39 has an opening 87 formed in the central portion in plan view.
  • the upper casing part 39 is formed with an attachment part 89 at a position corresponding to the attachment part 47 of the lower casing part 33.
  • a space portion 91 is formed at a position corresponding to the space portion 49 of the lower casing portion 33 on the outer peripheral side of the opening portion 87.
  • a housing portion 93 is formed at a position corresponding to the housing portion 51 of the lower casing portion 33.
  • An upper partition wall 95 is formed at a position corresponding to the lower partition wall 53 on the ceiling surface of the upper casing portion 39. The upper partition wall 95 is formed so as to protrude toward the rotor portion 35 side.
  • the upper casing part 39 is provided with a volume compensation part 43 in the upper part as shown in FIG.
  • the volume compensation unit 43 includes a communication port 97, a diaphragm 99, and a cap 101.
  • the communication port 97 is formed so as to communicate the accommodating portion 93, the diaphragm accommodating space SP, and the atmosphere. Further, the opening area is made smaller than that of the injection hole 59 described above.
  • the diaphragm 99 is made of an elastically deformable material.
  • the cap 101 covers the diaphragm 99 and is screwed over the diaphragm housing space SP. At this time, the outer peripheral flange portion of the diaphragm 99 is sandwiched between the cap 101 and the upper casing portion 39.
  • the cap 101 discharges air in the cap 101 when the diaphragm 99 is deformed so as to protrude toward the cap 101 side, and takes in air into the cap 101 when the diaphragm 99 returns to the communication port 97 side.
  • a vent 103 is formed.
  • the air vent 103 communicates with the diaphragm housing space SP side of the cap 101, and communicates with the atmosphere outside the cap 101 through a gap formed around the screw portion of the cap 101.
  • the above-described electromagnet 37 is press-fitted into the outer peripheral inner wall of the accommodating portion 93 of the upper casing portion 39.
  • the rotor part 35 is disposed inside the electromagnet 37 with the rotating shaft 65 inserted and supported in the openings 87 and 45 of the upper casing part 39 and the lower casing part 33 via the bearing 73.
  • the mounting base 21 is applied to the lower surface of the lower casing portion 33, and the three members are fastened together with the bolt BS and the nut NS.
  • the rotor part 35 is sealed by the lower casing part 33 and the upper casing part 39.
  • the sealant is also filled in the opening of the upper casing portion 39 corresponding to the openings 85 and 86. This prevents droplets from entering the steering damper 23.
  • the opening 87 described above corresponds to the “bearing portion” in the present invention, and the diaphragm 99 corresponds to the “membrane member” in the present invention.
  • an oil seal 71 When the rotor portion 35 is sealed, as shown in FIG. 7, an oil seal 71, an outer cylinder 67, an annular member 69, an inner peripheral surface of the electromagnet 37, a bottom surface of the lower casing portion 33, and an upper casing portion.
  • a magnetic fluid chamber 41 partitioned by the ceiling surface 39 is formed.
  • Forming the magnetic fluid chamber 41 with the magnetic fluid is performed by pressurizing and injecting the magnetic fluid into the injection hole 59. At that time, the injection of the magnetic fluid is maintained until the magnetic fluid is discharged from the communication port 97. When the magnetic fluid is discharged from the communication port 97, it indicates that the magnetic fluid chamber 41 is filled with the magnetic fluid. Therefore, the communication port 97 is closed with the diaphragm 99 and the diaphragm 101 is held by the cap 101 while holding the diaphragm 99. Block the SP. Further, the injection hole 59 is closed. Thus, by continuing the pressure injection until the magnetic fluid overflows from the communication port 99, the magnetic fluid chamber 41 can be filled with the magnetic fluid while pushing out the air in the magnetic fluid chamber 41. Therefore, air filling can be prevented when filling the magnetic fluid.
  • injection hole 97 and the communication port 99 described above correspond to the “first work hole” and the “second work hole” in the present invention.
  • This magnetic fluid chamber 41 is filled with a magnetic fluid.
  • the magnetic fluid include MR fluid (magnetic viscous fluid: Magneto-rheological fluid), MCF fluid (magnetic mixed fluid: Magnetic fluid), and ER fluid (electro-rheological fluid). In either case, the viscosity can be adjusted by applying a magnetic field or an electric field.
  • MR fluid is composed of a slurry in which ferromagnetic fine particles are dispersed in a liquid.
  • the particle size of the ferromagnetic fine particles is usually about several tens of nm or less.
  • the ferromagnetic fine particles can be formed of, for example, a metal such as iron, nickel, or manganese, or an alloy containing iron, nickel, manganese, or the like such as manganese zinc ferrite.
  • the liquid in which the ferromagnetic material is dispersed may be water or an aqueous solution, or may be an organic solvent such as isoparaffin, alkylnaphthalene, or perfluoropolyether.
  • a rudder angle sensor 109 is connected to the rotating shaft 65 protruding from the opening 87 of the upper casing portion 39.
  • the rudder angle sensor 109 detects the rotation angle of the rotating shaft 65 and detects the steering angle of the steering shaft 7.
  • the steering angle sensor 109 is connected to a dedicated controller, for example, and is used as a signal for adjusting the damping force of the steering damper 23. Note that an ECU (engine control unit) may be used instead of the dedicated controller.
  • the steering damper 23 having the above-described configuration can adjust the damping force of the rotor portion 35 covered with the lower casing portion 33 and the upper casing portion 39 by changing the viscosity of the magnetic fluid by the electromagnet 37. Since the magnetic fluid chamber 41 is provided with a volume compensation unit 43, even if the volume of the magnetic fluid expands due to temperature changes in the external environment or air engagement occurs due to vibrations, the volume expansion is compensated for volume. The part 43 can absorb the air bubbles that are lighter than the magnetic fluid or collect them in the volume compensation part 43. Therefore, it is possible to prevent a change in the damping characteristic of the steering damper 23 due to the volume expansion of the magnetic fluid and the air biting.
  • the volume compensation unit 43 is provided in a position corresponding to the upper part of the magnetic fluid chamber 41 in the upper casing unit 39. Therefore, since bubbles that are lighter than the magnetic fluid can be efficiently collected by the volume compensation unit 41, small bubbles can also be collected by the volume compensation unit 41.
  • the volume compensation unit 43 is formed in the upper casing unit 39, and a communication port 97 that connects the magnetic fluid chamber 41 and the diaphragm housing space SP, a diaphragm 99 that closes the communication port 97 and can be elastically deformed, It has. Therefore, even if the magnetic fluid expands, the diaphragm 99 that closes the communication port 97 is elastically deformed, so that the expansion can be absorbed. Further, even if the magnetic fluid expands and contracts, the diaphragm 99 returns to its original shape, so that no air is caught.
  • the rotor part 35 is sealed by a lower casing part 33 and an upper casing part 39 which are fastened to each other. Therefore, since it is difficult for dust to enter, the rotor portion 35 can be operated smoothly over a long period of time. Further, even if the magnetic fluid expands and the internal pressure between the upper casing portion 39 and the lower casing portion 33 increases, the upper casing portion 39 and the lower casing portion 33 that are fastened to each other are not deformed. No leakage occurs.
  • annular member 69 made of a magnetic material is attached to the outer peripheral surface of the outer cylinder 67. Therefore, the disk part 63 and the outer cylinder 63 of the rotor part 35 are made of a non-magnetic material, and the annular member 69 is made of a magnetic material. The degree of freedom can be increased.
  • the oil seal 71 is provided on the inner peripheral surface of the outer cylinder 67, the distance between the rotary shaft 65 and the oil seal 71 can be maximized. Therefore, the play around the rotation shaft 65 can be minimized. As a result, air biting in the magnetic fluid chamber 51 can be further suppressed. Moreover, since the volume of the magnetic fluid chamber 41 can be reduced as much as possible, the amount of expensive magnetic fluid used can be reduced, and the cost can be suppressed.
  • the upper casing portion 39 is provided with an upper partition wall 95 that protrudes toward the disc portion 63 between the inner peripheral surface of the outer cylinder 67 and the rotation shaft 65 of the rotor portion 35 in the ceiling surface.
  • the lower casing portion 33 is provided with a lower partition wall 53 formed to protrude toward the disc portion 63 between the inner peripheral surface of the outer cylinder 68 and the rotating shaft 65 of the rotor portion 35 in the bottom surface.
  • the oil seal 71 is provided outside the upper partition wall 95 and the lower partition wall 53 so that the lip portion of the oil seal 71 contacts the outer peripheral surface of the upper partition wall 95 and the outer peripheral surface of the lower partition wall 53. Therefore, even if the upper casing portion 39 and the lower casing portion 33 are somewhat loose, the lip portion of the oil seal 71 does not separate from the upper partition wall 95 and the lower partition wall 53. Therefore, the magnetic fluid can be prevented from leaking.
  • the communication port 97 also serves as the volume compensation unit 43, the structure of the steering damper 23 can be simplified.
  • the steering damper 23 described above is attached to the steering handle 19 in a posture in which the volume compensation portion 43 is directed forward and the disc portion 63 is in a posture orthogonal to the axis of the head pipe 5. Since the head pipe 5 has a posture in which the upper part is inclined rearward so as to have a caster angle, the volume compensation unit 43 is positioned at the uppermost part. Therefore, the expansion of the magnetic fluid can be absorbed by the volume compensation unit 43, and bubbles generated by the air biting can be collected in the volume compensation unit 43. As a result, the characteristic change of the steering damper 23 caused by the volume expansion of the magnetic fluid and the air biting can be prevented, and the handling of the motorcycle 1 can be prevented from fluctuating.
  • the steering damper 23 is fixed to the steering handle 19 and includes a stay arm 105 having one end connected to the rotary shaft 65.
  • the other end of the stay arm 105 is fixed to the main frame 3. Therefore, the steering damper 23 can be easily attached to the motorcycle 1.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the communication port 97 is formed in the volume compensation unit 43, but the discharge port may be formed at a position different from the communication port 97.
  • the magnetic fluid may be injected into the magnetic fluid chamber 41 with the volume compensation unit 43 closed, and the discharge port may be closed when the magnetic fluid overflows from the discharge port. Since the diaphragm 99 and the cap 101 are already attached, it is only necessary to close the discharge port with a screw (not shown) and the injection hole 59 with the screw 62.
  • the annular member 69 is attached to the outer peripheral surface of the outer cylinder 67.
  • the rotor part 35 includes an outer cylinder 67 formed by extending the outer peripheral surface of the disk part 63 in the direction of the rotation shaft 65, and the electromagnet 37 is located at a position where the generated magnetic field passes through the outer cylinder 67 of the rotor part 35. It is good also as the structure arranged. Thereby, since the magnetic flux from the electromagnet 37 passes through the outer cylinder 67 having a larger area than the disk portion 63, the magnetic flux passing through the magnetic fluid chamber 41 can be increased.
  • the damping force generated in the rotor portion 35 when the viscosity of the magnetic fluid is changed can be increased.
  • the rotor portion 35 may be configured such that the outer peripheral surface of the outer cylinder 67 is made of a magnetic material. Thereby, since a magnetic field can be efficiently passed with respect to the outer cylinder 67, the viscosity of a magnetic fluid can be adjusted efficiently.
  • the oil seal 71 is disposed on the inner peripheral surface of the outer cylinder 67, but the present invention is not limited to such a configuration.
  • an oil seal 71 that maintains the magnetic fluid chamber 41 in a liquid-tight state may be provided on the inner peripheral side of the outer cylinder 67 (for example, an intermediate position between the inner peripheral surface of the outer cylinder 67 and the rotary shaft 65).
  • the distance of the rotating shaft 65 and the oil seal 71 can be lengthened, and rattling around the rotating shaft 65 can be suppressed. . Therefore, the air biting of the magnetic fluid chamber 41 can be suppressed.
  • the volume of the magnetic fluid chamber 41 can be reduced, the amount of expensive magnetic fluid used can be reduced, and the cost can be suppressed.
  • the oil seal 71 is employed as the seal member, but other seal members that can prevent magnetic fluid leakage while rotating may be used.
  • the oil seal 71 is disposed on the lower partition wall 53 and the upper partition wall 95, but the lower partition wall 53 and the upper partition wall 95 may be omitted. Thereby, the structure of the lower casing part 33 and the upper casing part 39 can be simplified, and cost reduction can be aimed at.
  • the volume compensator 43 of the steering damper 23 is attached in such a posture as to face forward.
  • the compensation unit 43 only needs to be on the front side, and is not limited to the mounting posture shown in FIG.
  • the stay arm 105 of the steering damper 23 is fixed to the main frame 3 by the stopper 107.
  • the present invention does not necessarily require the stopper 107.
  • the stay arm 105 may be extended and the end thereof may be directly fixed to the main frame 3.
  • the motorcycle 1 is exemplified as the saddle riding type vehicle.
  • the present invention is different from the motorcycle 1 described above, for example, a motorcycle such as a scooter or a moped other than a scooter type, a three-wheeled vehicle, a four-wheeled vehicle, an ATV (All Terrain Vehicle) four-wheel buggy. ), It can also be applied to a saddle type vehicle such as a snowmobile.
  • FIG. 10 is a schematic diagram for explaining a method of manufacturing the steering damper.
  • the injection hole 59 of the steering damper 23 is opened, and the cap 101 and the diaphragm 99 are further removed.
  • the magnetic fluid chamber 41 is communicated with the atmosphere through the injection hole 59, and the magnetic fluid chamber 41 is communicated with the atmosphere through the communication port 97.
  • the steering damper 23 is set in the standing posture. Specifically, the outer surfaces of the lower casing portion 33 and the upper casing portion 39 are set in a vertical posture so that the injection hole 59 of the steering damper 23 is positioned lower than the communication port 97.
  • the magnetic fluid When the magnetic fluid is pressurized and injected from the injection hole 59 of the steering damper 23 in the vertical posture, the magnetic fluid spreads around the oil seal 71 and its surroundings. At that time, since the opening surface of the injection hole 59 in the magnetic fluid chamber 41 is the injection promotion chamber 61 and the concave portion of the oil seal 71 is directed to the injection hole 59, the magnetism with high viscosity is used. The fluid can easily enter the magnetic fluid chamber 41. Then, the magnetic fluid flows around the oil seal 71 side on the upper casing member 39 side, and spreads over the entire circumference of the magnetic fluid chamber 41 formed in an annular shape in plan view.
  • the communication port 97 since the communication port 97 is located above, the air existing in the magnetic fluid chamber 41 is gradually pushed out from the communication port 97. Then, when the magnetic fluid overflows from the communication port 97, the injection of the magnetic fluid from the injection hole 59 is stopped. Then, the injection hole 59 is closed with a screw 62. Further, the diaphragm 99 is pressed against the overflowing magnetic fluid, the diaphragm 99 is attached to the bottom of the diaphragm housing space SP so as to close the communication port 97, and the cap 101 is attached so as to sandwich the outer periphery of the diaphragm 99 from above. Thereby, the steering damper 23 described above is completed.
  • the magnetic fluid chamber 41 is filled with the magnetic fluid while pushing out the air in the magnetic fluid chamber 41. be able to. Therefore, it is not necessary to perform evacuation, and the steering damper 23 can be easily manufactured.
  • the magnetic fluid is injected from the injection hole 59 after fixing the attitude of the steering damper 23 so that the injection hole 59 is positioned below the communication port 95 through which the magnetic fluid is discharged. Even if air biting occurs, it can be discharged upward. Therefore, air biting in the magnetic fluid chamber 41 can be suppressed.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the steering damper 23 is in a vertical posture, but it may be in an inclined posture in which the injection hole 59 is lower than the communication port 97 instead of the vertical posture. Even in such an inclined posture, the same effects as described above are obtained.
  • the communication port 97 is formed in the volume compensation unit 43, but the discharge port may be formed at a position different from the communication port 97.
  • the communication port 97 is already closed by the diaphragm 99 and the cap 101 when the magnetic fluid is injected. Then, the discharge port may be closed when the magnetic fluid overflows from the discharge port. Thereby, the man-hour for obstruct
  • the present invention is suitable for a steering damper, a straddle-type vehicle including the steering damper, and a method for manufacturing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

 本発明のステアリングダンパ23は、電磁石37により磁性流体の粘性を変化させることにより、下ケーシング部33と上ケーシング部39とで覆われたロータ部35の減衰力を調整することができる。磁性流体室41には体積補償部43を設けてあるので、磁性流体の体積が膨張したり、エア噛みが生じたりしても磁性流体よりも軽い気泡は体積補償部43に集めることができる。したがって、磁性流体の体積膨張やエア噛みに起因するステアリングダンパ23の特性変化を防止することできる。

Description

ステアリングダンパ及びそれを備えた鞍乗型車両並びにその製造方法
 本発明は、車両のステアリング(操舵)機構に設けられ、ステアリングの減衰力を調整するためのステアリングダンパ及びそれを備えた鞍乗型車両並びにその製造方法に関する。
 従来、この種の装置として、下ケーシング部と、第1のシール部材と、電磁石と、第2のシール部材と、上ケーシング部とを備えたものがある(例えば、特許文献1参照)。
 このステアリングダンパは、下方に開放されたリング状の収容凹部を有する上ケーシング部と、その収容凹部に下方から挿入されて相対回動可能に蓋をする下ケーシング部とを基本構成とする。収容凹部には電磁石と磁性流体が収容され、収容凹部は2個のシール部材でシールされる。詳述すれば、電磁石は、外周部に外方へ向けた横向きU字状の溝を有するケーシング部本体(32b)と、このケーシング部本体(32b)の溝に巻回されたコイルとから構成されている。電磁石は、下ケーシング部(32a)に取り付けられる。電磁石と下ケーシング部は軸受メタル(35)を介して上ケーシング部と相対回動可能に組み付けられる。この際、両ケーシング部の相対回動面の間には、シール部材が配置されて収容凹部をシールする。上ケーシング部の内周面と電磁石の外周面、上ケーシング部の天井面とケーシング部本体の上面との隙間に流体収容室が形成される。この流体収容室には、磁性流体が注入される。
 このように構成されたステアリングダンパは、下ケーシング部がヘッドパイプに固定され、上ケーシング部がステアリングハンドルを保持するアッパブラケットに固定される。ステアリングハンドルが旋回される際に、電磁石により磁界を発生させると、磁性流体の粘性が増大する。したがって、運転中におけるステアリングハンドルの回転方向の振動やブレを抑制させることができる等の効果を得られる。
 また、上記のステアリングダンパは、上述したように組み立てられた後、車両に取り付けるに先立って、流体収容室に連通した排出口から真空引きを行いつつ、注入口から磁性流体を供給して、流体収容室の内部に磁性流体を充填する製造方法を採用している。真空引きを行うのは、磁性流体の粘度が非常に高いので、磁性流体を、狭い空間で形成されている流体収容室に対して、円滑に充填させやすくするためである。また、その際に、磁性流体室にはできるだけ空気を残さないようにするためである。
特開2010-254117号公報(図4~図9)
 しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
 すなわち、従来の装置は、磁性流体が温度上昇に起因して体積が膨張すると、流体収容室の内圧が上昇するので、上ケーシング部と下ケーシング部とが僅かに離反する恐れがある。このような事態が生じると、シール部から流体収容室に空気が侵入するエア噛みが生じてステアリングダンパの特性に悪影響を与えるという問題がある。
 また、従来の製造方法は、真空引きを行う必要があるので、製造が煩雑であるという問題がある。
 本発明装置は、このような事情に鑑みてなされたものであって、磁性流体の膨張やエア噛みに起因する特性変化を防止することができるステアリングダンパ及びそれを備えた鞍乗型車両を提供することを目的とする。
 また、本発明方法は、このような事情に鑑みてなされたものであって、製造を容易に行うことができるステアリングダンパの製造方法を提供することを目的とする。
 本発明は、このような目的を達成するために、次のような構成をとる。
 すなわち、本発明は、中央部に開口部を備えた下ケーシング部と、平面視円形の円板部と、前記円板部の回転中心の上下に突出して形成された回転軸とを有し、前記下ケーシング部の前記開口部に前記回転軸を挿入して回転可能に配置されたロータ部と、前記ロータ部の周囲であって、前記ロータ部から離間して固定配置された電磁石と、中央部に軸受部を備え、前記ロータ部の回転軸を前記軸受部に挿入された状態で、前記電磁石と前記ロータ部とを覆うように前記下ケーシング部と締結された上ケーシング部と、少なくとも前記ロータ部と前記電磁石との間に形成され、磁性流体を充填されている磁性流体室と、前記磁性流体室に連通し、磁性流体の体積変化を補償する体積補償部と、を備えているものである。
 [作用・効果]本発明によれば、電磁石により磁性流体の粘性性を変化させることにより、下ケーシング部と上ケーシング部とで覆われたロータ部の減衰力を調整することができる。磁性流体室には体積補償部を設けてあるので、磁性流体の体積が膨張したり、エア噛みが生じたりしても磁性流体よりも軽い気泡は体積補償部に集めることができる。したがって、磁性流体の体積膨張やエア噛みに起因するステアリングダンパの特性変化を防止することできる。
 また、本発明において、前記体積補償部は、前記上ケーシング部のうち、前記磁性流体室の上方に相当する位置に設けられていることが好ましい。
 磁性流体よりも軽い気泡を体積補償部に効率的に収集させることができるので、小さな気泡をも体積補償部に収集させることができる。
 また、本発明において、前記体積補償部は、前記上ケーシング部に形成され、前記磁性流体室に連通した連通口と、前記連通口を閉塞し、弾性変形が可能な膜部材と、を備えていることが好ましい。
 磁性流体が膨張しても、連通口を閉塞する膜部材が弾性変形するので、膨張を吸収することができる。また、磁性流体が膨張した後に収縮しても、膜部材が元の形状へ戻るので、エア噛みが生じない。
 また、本発明において、前記ロータ部は、互いに締結された前記下ケーシング部と前記上ケーシング部とによって密閉されていることが好ましい。
 ロータ部が密閉構造で塵埃が入り込みにくいので、長期間にわたってロータ部を円滑に動作させることができる。また、磁性流体が膨張して上ケーシング部と下ケーシング部との内圧が高まったとしても変形しないので、シール性に優れ、磁性流体の漏れが生じない。
 また、本発明において、前記ロータ部は、前記円板部の外周面を前記回転軸の方向に延ばしてなる外筒を備え、前記電磁石は、発生させた磁界が前記ロータ部の外筒を通る位置に配置されていることが好ましい。
 円板部よりも大面積となる外筒を電磁石からの磁界が通るので、磁性流体室を通過する磁界を多くすることができる。したがって、磁性流体の粘性を変化させた際にロータ部に生じる減衰力を大きくできる。
 また、本発明において、前記ロータ部は、前記外筒の外周面が磁性体で構成されていることが好ましい。
 効率的に外筒に対して磁界を通させることができるので、磁性流体の粘性を効率的に調整することができる。
 また、本発明において、前記ロータ部は、磁性体で構成された外周部材を前記外筒の外周面に取り付けられていることが好ましい。
 ロータ部の円板部を非磁性体とし、外周部材を磁性体とするので、磁性流体室への磁界の通りやすさを維持しつつも、構造の自由度を高くすることができる。
 また、本発明において、前記ロータ部は、前記磁性流体室を液密に維持するシール部材を前記外筒の内周側に設けられていることが好ましい。
 シール部材を外筒の内周側に設けているので、回転軸側にシール部材を設けた構造に比較して、回転軸を中心としたガタツキを抑制できる。したがって、磁性流体室のエア噛みを抑制できる。また、磁性流体室の容積を小さくできるので、高価な磁性流体の使用量を少なくでき、コストを抑制することができる。
 また、本発明において、前記シール部材は、前記外筒の内周面に設けられていることが好ましい。
 外筒の内周面にシール部材を設けているので、回転軸とシール部材との距離を最大限に長くすることができる。したがって、回転軸を中心としたガタツキを最小限に抑えることができる。その結果、磁性流体室のエア噛みをより抑制することができる。また、磁性流体室の容積を極力小さくできるので、高価な磁性流体の使用量を少なくでき、コストを抑制することができる。
 また、本発明において、前記上ケーシング部材は、天井面のうち、前記外筒の内周面と前記ロータ部の回転軸との間にて、前記円板部側へ突出して形成された上隔壁を設けられ、前記下ケーシング部材は、底面のうち、前記外筒の内周面と前記ロータ部の回転軸との間にて、前記円板部側へ突出して形成された下隔壁を設けられ、前記シール部材は、オイルシールであり、前記上隔壁の外周面と、前記下隔壁の外周面に前記オイルシールのリップ部が接触するように、前記上隔壁及び前記下隔壁の外側に設けられていることが好ましい。
 上ケーシング部材の上隔壁の外周面にリップ部が接触するように、オイルシールが上隔壁の外周面に設けられ、下ケーシング部材の下隔壁の外周面にリップ部が接触するように、オイルシールが下隔壁の外周面に設けられている。したがって、上ケーシング部と下ケーシング部とが多少がたついたとしても、オイルシールのリップ部が上隔壁及び下隔壁から離れることがない。したがって、磁性流体が漏れ出すことを防止できる。
 また、本発明において、前記磁性流体室は、平面視で環状を呈し、前記磁性流体室に連通した第1の作業孔と、前記磁性流体室に連通し、前記第1の作業孔とは前記回転軸を挟んだ位置に形成された第2の作業孔とをさらに備えていることが好ましい。
 第1の作業孔と第2の作業孔のいずれか一方から磁性流体を注入し、第2の作業孔と第1の作業孔の他方から磁性流体が溢れるまで注入を継続することで、磁性流体室の空気を押し出させつつ磁性流体室に磁性流体を充填させることができる。したがって、磁性流体を充填する際にエア噛みを防止できる。
 なお、第1の作業孔と第2の作業孔のうち、磁性流体を排出される側は、体積補償部を兼ねることが好ましい。これにより、構造を簡易化できる。
 また、本発明において、上記いずれかに記載のステアリングダンパと、車両の骨格を構成するメインフレームと、前記メインフレームの前端に設けられ、キャスター角で傾斜して形成されたヘッドパイプと、前記ヘッドパイプに回動自在に設けられたステアリングシャフトと、前記ステアリングシャフトの上部に設けられたステアリングハンドルと、前記ステアリングシャフトの下部に設けられた前輪と、前記メインフレームの後側に設けられた後輪とを備え、前記ステアリングダンパは、前記体積補償部を前方に向けた姿勢で、かつ前記円板部が前記ヘッドパイプの軸線と直交する姿勢で前記ステアリングハンドルに取り付けられていることが好ましい。
 ヘッドパイプは、キャスターアングルを有するように上部が後方に傾斜された姿勢となっているので、体積補償部が前方に向けられ、かつ円板部がヘッドパイプの軸線と直交する姿勢でステアリングダンパをステアリングハンドルに取り付けると、体積補償部が最上部に位置することになる。したがって、磁性流体の膨張を体積補償部で吸収することができるとともに、エア噛みにより生じた気泡を体積補償部に収集することができる。その結果、磁性流体の体積膨張やエア噛みに起因するステアリングダンパの特性変化を防止することでき、鞍乗型車両のハンドリングが変動することを防止できる。
 また、本発明において、前記ステアリングダンパは、前記ステアリングハンドルに固定されており、前記回転軸に一端側が連結されたステイアームを備え、前記ステイアームは、その他端側が前記メインフレームに固定されていることが好ましい。
 ステイアームを介して回転軸がメインフレームに固定されているので、鞍乗型車両へのステアリングダンパの取付を容易に行うことができる。
 また、下ケーシング部の開口部と上ケーシング部の軸受部にロータ部の回転軸を回転可能に保持させ、前記回転軸から外周方向に延出された平面視円形の円板部を、前記下ケーシング部と前記上ケーシング部とで囲い、前記ロータ部の外周側であって、前記ロータ部から離間して固定した状態で電磁石を配置し、少なくとも前記ロータ部と前記電磁石との間に形成された磁性流体室に磁性流体を充填させるステアリングダンパの製造方法において、ステアリングダンパは、前記磁性流体室に連通し、磁性流体の体積変化を補償する体積補償部と、前記磁性流体室に連通した第1の作業孔と、前記磁性流体室に連通し、前記第1の作業孔から前記回転軸を挟んだ位置に設けられた第2の作業孔とを備え、前記第1の作業孔と前記第2の作業孔のうちの一方を前記回転軸よりも上方に位置させた姿勢で、前記第1の作業孔と前記第2の作業孔のうちの他方から磁性流体を注入して、前記磁性流体室に磁性流体を充填するものである。
 [作用・効果]本発明によれば、ステアリングダンパの第1の作業孔と第2の作業孔のうちの一方を回転軸よりも上方に位置させた姿勢で、第1の作業孔と第2の作業孔のうちの他方から磁性流体を注入させる。したがって、一方から注入された磁性流体は他方から排出されるので、磁性流体室の空気を押し出させつつ磁性流体室に磁性流体を充填させることができる。したがって、真空引きを行う必要がなく、ステアリングダンパの製造を容易に行うことができる。
 なお、第1の作業孔と第2の作業孔は、磁性流体を排出される側が体積補償部を兼ねる構成としてもよい。
 また、本発明において、前記第1の作業孔と前記第2の作業孔のうちの他方を、前記第1の作業孔と前記第2の作業孔のうちの一方よりも下方に位置させた姿勢で磁性流体を注入することが好ましい。
 磁性流体を下方から注入させつつ上方から排出させるので、エア噛みが生じても上方へ排出させることができる。したがって、磁性流体室におけるエア噛みを抑制できる。
 本発明に係るステアリングダンパによれば、電磁石により磁性流体の粘性を変化させることにより、下ケーシング部と上ケーシング部とで覆われたロータ部の減衰力を調整することができる。磁性流体室には体積補償部を設けてあるので、磁性流体の体積が膨張したり、エア噛みが生じても磁性流体よりも軽い気泡は体積補償部に集めたりすることができる。したがって、磁性流体の体積膨張やエア噛みに起因するステアリングダンパの特性変化を防止することできる。
実施例に係る自動二輪車の全体を示す左側面図である。 実施例に係るステアリングダンパの取り付け状態を示した一部拡大図であり、(a)は平面図を示し、(b)は左側面図を示す。 ステアリングダンパの外観を示す平面図である。 ステアリングダンパの外観を下面から見た図である。 図3及び図4の301-301矢視断面図である。 図3の303-303矢視断面図である。 図5の要部を拡大した縦断面図である。 下ケーシング部の平面図である。 図8の305-305矢視断面図である。 ステアリングダンパの製造方法の説明に供する模式図である。
 以下、図面を参照して本発明の一実施例について説明する。なお、以下の説明においては、「鞍乗型車両」として自動二輪車を例にとって説明する。
 <自動二輪車の構成>
 図1は、実施例に係る自動二輪車の全体を示す左側面図であり、図2は、実施例に係るステアリングダンパの取り付け状態を示した一部拡大図であり、(a)は平面図を示し、(b)は左側面図を示す。
 自動二輪車1は、メインフレーム3を備えている。メインフレーム3は、自動二輪車1の骨格を形成している。メインフレーム3の前端には、ヘッドパイプ5が設けられている。このヘッドパイプ5は、キャスター角に応じた傾斜姿勢で形成されている。ヘッドパイプ5は、中空に形成されており、その部分にステアリングシャフト7が回動自在に挿入されている。ステアリングシャフト7は、その上端部をアッパブラケット9に固定され、その下端部をアンダブラケット11に固定されている。アッパブラケット9とアンダブラケット11の左右方向における両端側には、一対のフロントフォーク13が取り付けられている。一対のフロントフォーク13の下端部には、前輪15が回転可能に支持されている。アッパブラケット9は、上面に一対のハンドルホルダ17が設けられている。これらのハンドルホルダ17は、それぞれ2本のボルトBLを介してステアリングハンドル19を保持している。ステアリングハンドル19は、操縦者によって操作される。操縦者がステアリングハンドル19を操作すると、その操舵力がステアリングシャフト7とアッパブラケット9とアンダブラケット11を介して、一対のフロントフォーク13に伝達されて前輪15が操舵される。
 ハンドルホルダ17の上部には、取り付け基台21が上記2本のボルトBLで共締め固定される。なお、この際、この取り付け基台21には、詳細を後述するステアリングダンパ23が予め4本のボルトBSで取り付けられている。このステアリングダンパ23は、操縦者がステアリングハンドル19を操作した際における減衰力を調整する機能を備えている。
 メインフレーム3の上部には、燃料タンク25が設けられている。メインフレーム3のうち、燃料タンク25の後方にあたる部分には、シート27が設けられている。メインフレーム3のうちの燃料タンク25の下方にあたる部分には、エンジン29が配置されている。エンジン29の後部には、リアアーム31が揺動可能に取り付けられている。リアアーム31は、その後端部に後輪33を回転可能に保持している。後輪33は、エンジン29の駆動力が伝達されて、自動二輪車1を走行させる。
 <ステアリングダンパの構成>
 次に、図3~図9を参照して、上述したステアリングダンパ23について詳述する。なお、図3は、ステアリングダンパの外観を示す平面図であり、図4は、ステアリングダンパの外観を下面から見た図であり、図5は、図3及び図4の301-301矢視断面図であり、図6は、図3の303-303矢視断面図であり、図7は、図5の要部を拡大した縦断面図であり、図8は、下ケーシング部の平面図であり、図9は、図8の305-305矢視断面図である。
 図5に示すように、ステアリングダンパ23は、主として、下ケーシング部33と、ロータ部35と、電磁石37と、上ケーシング部39と、磁性流体室41と、体積補償部43とを備えている。
 下ケーシング部33は、平面視における中央部に開口部45を形成されている。下ケーシング部33は、外周部の4箇所に取付部47を形成されている。開口部45の外周側には、平面視で環状を呈する空間部49が形成されている。空間部49の外周側には、平面視で環状を呈する収容部51が形成されている。下ケーシング部33の底面における空間部49と収容部51との間には、ロータ部35側へ突出した下隔壁53が形成されている。
 下ケーシング部33の一部位には、収容部51に連通した注入部55が形成されている。注入部55は、注入孔59と、注入促進室61とを備えている。注入孔59は、収容部51を大気に連通する貫通孔である。注入促進室61は、収容部51の他の底面より低く形成された空間である。注入孔59は、Oリングとネジ62によって閉塞される。
 ロータ部35は、円板部63と、回転軸65と、外筒67と、環状部材69とを備えている。円板部63は、中心部に回転軸65が上下方向に突出して形成されている。外筒67は、回転軸65が延出されている方向に向かって円板部63の外周面を延ばされて形成されている。環状部材69は、外筒67の外周に圧入され、または鋳込まれている。環状部材69は、例えば、鉄、ニッケル、マンガンなどの金属、または、亜鉛フェライトなどの鉄やニッケル、マンガンなどを含む合金などの磁性体で形成されている。円板部63は、例えば、アルミニウムなどの非磁性体で構成されている。なお、ロータ部35の全体を磁性体で一体的に構成してもよい。外筒67は、その内周面の上下にオイルシール71が圧入されている。オイルシール71は、そのリップ部が上隔壁95、下隔壁53の外周面に接触する姿勢で外筒67の内周面に取り付けられている。回転軸65は、その外周面の上下にベアリング73が圧入されている。
 電磁石37は、図6に示すように、ボビン75と、コイル77と、ヨークケース79と、ヨークキャップ81とを備えている。ボビン75は、外側に向けて開放された断面U字状のリングで、コイル77を巻かれている。ヨークケース79は、縦断面がL字状を呈するように構成されている。ボビン75は、コイル77とともにヨークケース79に収められている。ヨークキャップ81は、ボビン75をヨークケース79に収めた後にヨークケース79に圧入され、ヨークケース79の上部を閉塞する。また、ヨークキャップ81は、コイル77の配線83を取り出す開口85が一部位に形成されている。また、ヨークケース79の上部のうち、開口85に対応する位置には、開口86が形成されている。なお、開口85,86には、電磁石37の組み立て後にシール剤を充填する。
 図5に示すように、上ケーシング部39は、平面視における中央部に開口部87を形成されている。上ケーシング部39は、下ケーシング部33の取付部47に対応する位置に取付部89を形成されている。開口部87の外周側であって、下ケーシング部33の空間部49に対応する位置に空間部91が形成されている。空間部91の外周側には、下ケーシング部33の収容部51に対応する位置に収容部93が形成されている。上ケーシング部39の天井面には、下隔壁53に対応する位置に、上隔壁95が形成されている。上隔壁95は、ロータ部35側へ突出して形成されている。
 上ケーシング部39は、図7に示すように、上部に体積補償部43を備えている。体積補償部43は、連通口97と、ダイアフラム99と、キャップ101とを備えている。連通口97は、収容部93とダイアフラム収容空間SPと大気とを連通するように形成されている。また、その開口面積は、上述した注入孔59より小さくされている。ダイアフラム99は、弾性変形可能な材料で形成されている。キャップ101は、ダイアフラム99を覆い、かつダイアフラム収容空間SPを覆ってねじ込まれる。この際、ダイアフラム99の外周フランジ部は、キャップ101と上ケーシング部39とで挟持される。キャップ101は、ダイアフラム99がキャップ101側へ突出するように変形した際に、キャップ101内の空気を排出し、ダイアフラム99が連通口97側に戻る際に、キャップ101内に空気を取り込むための通気口103が形成されている。通気口103は、キャップ101のダイアフラム収容空間SP側に連通し、キャップ101のネジ部の周囲に沿って形成された隙間を通ってキャップ101の外部である大気に連通している。
 上述した電磁石37は、上ケーシング部39の収容部93の外周内壁に圧入される。ロータ部35は、回転軸65をベアリング73を介して、上ケーシング部39及び下ケーシング部33の開口部87,45に挿入支持されて電磁石37の内側に配置される。このように組み付けた後、図4及び図5に示すように、下ケーシング部33の下面に取り付け基台21を当て、ボルトBSとナットNSで三者を共締めにする。これによりロータ部35は、下ケーシング部33と上ケーシング部39とで密閉される。また、図6に示すように、開口部85,86に対応する上ケーシング部39の開口にもシール剤を充填する。これにより、ステアリングダンパ23の内部への液滴の浸入を防止する。
 なお、上述した開口部87が本発明における「軸受部」に相当し、ダイアフラム99が本発明における「膜部材」に相当する。
 ロータ部35が密閉されると、図7に示すように、オイルシール71と、外筒67と、環状部材69と、電磁石37の内周面と、下ケーシング部33の底面と、上ケーシング部39の天井面とで仕切られた磁性流体室41が形成される。
 磁性流体室41への磁性流体の充填は、注入孔59へ磁性流体が加圧注入されることによって行われる。その際、磁性流体が連通口97から排出されてくるまで磁性流体の注入を維持させる。連通口97から磁性流体が排出されると、磁性流体室41に磁性流体が充填されたことを示すので、連通口97をダイアフラム99で閉塞するとともに、キャップ101でダイアフラム99を押さえつつダイアフラム収容空間SPを塞ぐ。さらに、注入孔59を閉塞する。このように、連通口99から磁性流体が溢れるまで加圧注入を継続することで、磁性流体室41の空気を押し出させつつ、磁性流体室41に磁性流体を充填させることができる。したがって、磁性流体を充填する際にエア噛みを防止できる。
 なお、上述した注入孔97と連通口99が本発明における「第1の作業孔」と「第2の作業孔」に相当する。
 この磁性流体室41は、磁性流体を充填されている。磁性流体としては、MR流体(磁性粘性流体:Magneto-rheological fluid)や、MCF流体(磁気混合流体:Magnetic compound fluid)、ER流体(電気粘性流体:Electro-rheological fluid)などが挙げられる。いずれも磁界や電界を印加することにより、粘性を調整することができるものである。
 MR流体は、強磁性体微粒子が液体中に分散されたスラリーからなる。強磁性体微粒子の粒径は、通常、数十nm程度以下である。強磁性体微粒子は、例えば、鉄やニッケル、マンガンなどの金属、またはマンガン亜鉛フェライトなどの鉄やニッケル、マンガンなどを含む合金などにより形成することができる。強磁性体を分散させる液体は、水や水溶液であってもよいし、イソパラフィン、アルキルナフタレン、パーフルオロポリエーテルなどの有機溶媒などであってもよい。
 磁場が印加されていない状態では、磁性流体内の強磁性体微粒子は、ほぼ均一に分散された状態にある。このため、一般的には、磁場が印加されていない状態の磁性流体は、ニュートン流体としての挙動を示す。一方、磁場が印加されると、磁性流体内の各磁区が磁気的に分極する。このため、例えば、MR流体においては、強磁性体微粒子間に結合力が生じる。したがって、複数の強磁性体微粒子がクラスターを形成するので、見かけ上の粘性が増大する。つまり、図7に示すように、電磁石37により磁場が印加されると、二点鎖線で示すように磁界が発生し、磁性流体に磁界が印加されるので、磁性流体の粘度が増大する。したがって、電磁石37に供給する電流を調整することで、所望のせん断による減衰力をステアリングダンパ23に生じさせることができる。
 下ケーシング部33の開口部45から突出した回転軸65には、ステイアーム105の一端側が取り付けられている。図2(b)に示すように、ステイアーム105の他端側は、ストッパ107を介して、メインフレーム3に固定されている。また、上ケーシング部39の開口部87から突出した回転軸65には、舵角センサ109が連結されている。舵角センサ109は、回転軸65の回転角度を検出して、ステアリングシャフト7の操舵角を検出する。舵角センサ109は、例えば、専用のコントローラに接続され、ステアリングダンパ23の減衰力を調整するための信号として利用される。なお、専用のコントローラに代えて、ECU(エンジンコントロールユニット)を利用してもよい。
 <ステアリングダンパ23の効果>
 上述した構成のステアリングダンパ23は、電磁石37により磁性流体の粘性を変化させることにより、下ケーシング部33と上ケーシング部39とで覆われたロータ部35の減衰力を調整することができる。磁性流体室41には体積補償部43を設けてあるので、外部環境の温度変化により磁性流体の体積が膨張したり、振動に起因してエア噛みが生じたりしても、体積膨張を体積補償部43で吸収したり、磁性流体よりも軽い気泡を体積補償部43に集めたりすることができる。したがって、磁性流体の体積膨張やエア噛みに起因するステアリングダンパ23の減衰特性変化を防止することできる。
 また、体積補償部43は、上ケーシング部39のうち、磁性流体室41の上方に相当する位置に設けられている。したがって、磁性流体よりも軽い気泡を体積補償部41に効率的に収集させることができるので、小さな気泡をも体積補償部41に収集させることができる。
 また、体積補償部43は、上ケーシング部39に形成され、磁性流体室41とダイアフラム収容空間SPとを連通した連通口97と、連通口97を閉塞し、弾性変形が可能なダイアフラム99と、を備えている。したがって、磁性流体が膨張しても、連通口97を閉塞するダイアフラム99が弾性変形するので、膨張を吸収することができる。また、磁性流体が膨張した後に収縮しても、ダイアフラム99が元の形状へ戻るので、エア噛みが生じない。
 また、ロータ部35は、互いに締結された下ケーシング部33と上ケーシング部39とによって密閉されている。したがって、塵埃が入り込みにくいので、長期間にわたってロータ部35を円滑に動作させることができる。また、磁性流体が膨張して上ケーシング部39と下ケーシング部33との内圧が高まったとしても互いに締結された上ケーシング部39と下ケーシング部33が変形しないので、シール性に優れ、磁性流体の漏れが生じない。
 また、ロータ部35は、磁性体で構成された環状部材69を外筒67の外周面に取り付けられている。したがって、ロータ部35の円板部63や外筒63を非磁性体とし、環状部材69を磁性体とすることで、磁性流体室41への磁界の通りやすさを維持しつつも、構造の自由度を高くすることができる。
 また、オイルシール71は、外筒67の内周面に設けられているので、回転軸65とオイルシール71との距離を最大限に長くすることができる。したがって、回転軸65を中心としたガタツキを最小限に抑えることができる。その結果、磁性流体室51のエア噛みをより抑制することができる。また、磁性流体室41の容積を極力小さくできるので、高価な磁性流体の使用量を少なくでき、コストを抑制することができる。
 また、上ケーシング部39は、天井面のうち、外筒67の内周面とロータ部35の回転軸65との間にて、円板部63側へ突出して形成された上隔壁95を設けられ、下ケーシング部33は、底面のうち、外筒68の内周面とロータ部35の回転軸65との間にて、円板部63側へ突出して形成された下隔壁53を設けられ、オイルシール71は、上隔壁95の外周面と、下隔壁53の外周面にオイルシール71のリップ部が接触するように、上隔壁95及び下隔壁53の外側に設けられている。したがって、上ケーシング部39と下ケーシング部33とが多少がたついたとしても、オイルシール71のリップ部が上隔壁95及び下隔壁53から離れることがない。したがって、磁性流体が漏れ出すことを防止できる。
 また、連通口97は、体積補償部43を兼ねているので、ステアリングダンパ23の構造を簡易化することができる。
 <自動二輪車1の効果>
 上述したステアリングダンパ23は、体積補償部43を前方に向けた姿勢で、かつ円板部63がヘッドパイプ5の軸線と直交する姿勢でステアリングハンドル19に取り付けられている。ヘッドパイプ5は、キャスターアングルを有するように上部が後方に傾斜された姿勢となっているので、体積補償部43が最上部に位置することになる。したがって、磁性流体の膨張を体積補償部43で吸収することができるとともに、エア噛みにより生じた気泡を体積補償部43に収集することができる。その結果、磁性流体の体積膨張やエア噛みに起因するステアリングダンパ23の特性変化を防止することでき、自動二輪車1のハンドリングが変動することを防止できる。
 また、ステアリングダンパ23は、ステアリングハンドル19に固定されており、回転軸65に一端側が連結されたステイアーム105を備え、このステイアーム105は、その他端側がメインフレーム3に固定されている。したがって、自動二輪車1へのステアリングダンパ23の取付を容易に行うことができる。
 本装置発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した実施例では、連通口97が体積補償部43に形成されているが、連通口97とは異なる位置に排出口を形成しておいてもよい。これにより、体積補償部43を閉塞させた状態で、磁性流体を磁性流体室41に注入させ、排出口から磁性流体が溢れた時点で排出口を閉塞すればよい。既にダイアフラム99及びキャップ101が取り付けられているので、排出口を図示しないネジ等で閉塞するとともに、注入孔59をネジ62で閉塞するだけでよい。
 (2)上述したステアリングダンパ23の実施例では、外筒67の外周面に環状部材69を取り付けた構成としている。しかしながら、本発明はこのような構成に限定されるものではない。例えば、ロータ部35は、円板部63の外周面を回転軸65の方向に延ばしてなる外筒67を備え、電磁石37は、発生させた磁界がロータ部35の外筒67を通る位置に配置されている構成としてもよい。これにより、円板部63よりも大面積となる外筒67を電磁石37からの磁束が通るので、磁性流体室41を通過する磁束を多くすることができる。したがって、磁性流体の粘性を変化させた際にロータ部35に生じる減衰力を大きくできる。さらに、ロータ部35は、外筒67の外周面を磁性体で構成するようにしてもよい。これにより、効率的に外筒67に対して磁界を通させることができるので、磁性流体の粘性を効率的に調整することができる。
 (3)上述したステアリングダンパ23の実施例では、オイルシール71を外筒67の内周面に配置しているが、本発明はこのような構成に限定されない。例えば、磁性流体室41を液密に維持するオイルシール71を外筒67の内周側(例えば、外筒67の内周面と回転軸65との中間位置)に設けてもよい。これにより、回転軸65に近い位置にオイルシール71を設けた構造に比較して、回転軸65とオイルシール71との距離を長くすることができ、回転軸65を中心としたガタツキを抑制できる。したがって、磁性流体室41のエア噛みを抑制できる。また、磁性流体室41の容積を小さくできるので、高価な磁性流体の使用量を少なくでき、コストを抑制することができる。
 (4)上述したステアリングダンパ23の実施例では、シール部材としてオイルシール71を採用しているが、回転しつつも磁性流体の漏れを防止できる他のシール部材を用いてもよい。
 (5)上述したステアリングダンパ23の実施例では、下隔壁53及び上隔壁95にオイルシール71を配置しているが、下隔壁53及び上隔壁95を省略した構成としてもよい。これにより下ケーシング部33及び上ケーシング部39の構成を簡単化することができ、コストダウンを図ることができる。
 (6)上述した自動二輪車1の実施例では、ステアリングダンパ23の体積補償部43が前方に向くような姿勢で取り付けられているが、図2(a)に示すように回転軸65よりも体積補償部43が前側にあればよく、平面視における図2(a)に示す取り付け姿勢に限定されるものではない。
 (7)上述した自動二輪車1の実施例では、ステアリングダンパ23のステイアーム105をストッパ107によりメインフレーム3に固定している。しかし、本発明はストッパ107を必須とするものはなく、例えば、ステイアーム105を延長して、その端部をメインフレーム3に直接的に固定するようにしてもよい。
 (8)上述した自動二輪車1の実施例では、鞍乗型車両として自動二輪車1を例示した。本発明は、上述した自動二輪車1とは異なる、例えば、スクータ、スクータタイプ以外のモペットなどの自動二輪車や、自動三輪車、自動四輪車、ATV(All Terrain Vehicle(全地形型車両)四輪バギー)、スノーモービルなどの鞍乗型車両であっても適用することができる。
 <ステアリングダンパ23の製造方法>
 次に、図10を参照して、上述したステアリングダンパ23の製造方法の一例について説明する。なお、図10は、ステアリングダンパの製造方法の説明に供する模式図である。
 ステアリングダンパ23の注入孔59を開放させ、さらにキャップ101とダイアフラム99を取り外した状態とする。換言すると、注入孔59により磁性流体室41を大気に連通させ、さらに連通口97により磁性流体室41を大気に連通させた状態とする。そして、ステアリングダンパ23を起立姿勢とさせる。具体的には、ステアリングダンパ23の注入孔59を連通口97よりも低い位置となるように、下ケーシング部33及び上ケーシング部39の外面が鉛直姿勢となるようにする。
 鉛直姿勢とされたステアリングダンパ23の注入孔59から磁性流体を加圧注入すると、磁性流体はオイルシール71及びその周囲に拡がる。その際には、注入孔59の磁性流体室41における開口面が注入促進室61とされていること、及び、オイルシール71の凹部が注入孔59に向けられていることから、粘性の高い磁性流体が磁性流体室41に入りやすくすることができる。そして、上ケーシング部材39側にあるオイルシール71側にも磁性流体が回り込みつつ、平面視で環状に形成されている磁性流体室41の全周にわたって磁性流体がゆきわたる。このとき、連通口97が上に位置しているので、磁性流体室41に存在している空気が連通口97から徐々に押し出されてゆく。そして、磁性流体が連通口97から溢れたのを見計らって、注入孔59からの磁性流体の注入を停止させる。そして、注入孔59をネジ62により閉塞させる。さらに、溢れた磁性流体にダイアフラム99を押し付け、連通口97を閉塞するようにダイアフラム99をダイアフラム収容空間SPの底部に取り付け、その上からダイアフラム99の外周部を挟むようにキャップ101を取り付ける。これにより、上述したステアリングダンパ23が完成する。
 上述したステアリングダンパ23の製造方法によると、注入孔59から注入された磁性流体は連通口97から排出されるので、磁性流体室41の空気を押し出させつつ磁性流体室41に磁性流体を充填させることができる。したがって、真空引きを行う必要がなく、ステアリングダンパ23の製造を容易に行うことができる。
 また、磁性流体が排出される連通口95よりも下方に注入孔59が位置するように、ステアリングダンパ23の姿勢を固定した上で、注入孔59から磁性流体を注入するようにしているので、エア噛みが生じても上方へ排出させることができる。したがって、磁性流体室41におけるエア噛みを抑制できる。
 本方法発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
 (1)上述した実施例では、ステアリングダンパ23を鉛直姿勢としているが、鉛直姿勢でなくとも、注入孔59が連通口97よりも低い姿勢となる傾斜姿勢としてもよい。このような傾斜姿勢であっても上記同様の効果を奏する。
 (2)上述した実施例では、連通口97が体積補償部43に形成されているが、連通口97とは異なる位置に排出口を形成しておいてもよい。この場合、連通口97は磁性流体を注入する際には既にダイアフラム99及びキャップ101で閉塞されている。そして、排出口から磁性流体が溢れた時点で排出口を閉塞するようにすればよい。これにより、磁性流体が排出口から溢れた時点で磁性流体室を閉塞するための工数を削減できる。
 以上のように、本発明は、ステアリングダンパ及びそれを備えた鞍乗型車両並びにその製造方法に適している。
 1 … 自動二輪車
 3 … メインフレーム
 5 … ヘッドパイプ
 7 … ステアリングシャフト
 9 … アッパブラケット
 11 … アンダブラケット
 13 … 一対のフロントフォーク
 19 … ステアリングハンドル
 33 … 下ケーシング部
 35 … ロータ部
 37 … 電磁石
 39 … 上ケーシング部
 41 … 磁性流体室
 43 … 体積補償部
 53 … 下隔壁
 59 … 注入孔
 61 … 注入促進室
 63 … 円板部
 65 … 回転軸
 67 … 外筒
 69 … 環状部材
 71 … オイルシール
 77 … コイル
 95 … 上隔壁
 97 … 連通口
 99 … ダイアフラム
 101 … キャップ
 105 … ステイアーム
 107 … ストッパ

Claims (15)

  1.  中央部に開口部を備えた下ケーシング部と、
     平面視円形の円板部と、前記円板部の回転中心の上下に突出して形成された回転軸とを有し、前記下ケーシング部の前記開口部に前記回転軸を挿入して回転可能に配置されたロータ部と、
     前記ロータ部の周囲であって、前記ロータ部から離間して固定配置された電磁石と、
     中央部に軸受部を備え、前記ロータ部の回転軸を前記軸受部に挿入された状態で、前記電磁石と前記ロータ部とを覆うように前記下ケーシング部と締結された上ケーシング部と、
     少なくとも前記ロータ部と前記電磁石との間に形成され、磁性流体を充填されている磁性流体室と、
     前記磁性流体室に連通し、磁性流体の体積変化を補償する体積補償部と、
     を備えているステアリングダンパ。
  2.  請求項1に記載のステアリングダンパにおいて、
     前記体積補償部は、前記上ケーシング部のうち、前記磁性流体室の上方に相当する位置に設けられているステアリングダンパ。
  3.  請求項1または2に記載のステアリングダンパにおいて、
     前記体積補償部は、前記上ケーシング部に形成され、前記磁性流体室に連通した連通口と、前記連通口を閉塞し、弾性変形が可能な膜部材と、を備えているステアリングダンパ。
  4.  請求項1から3のいずれかに記載のステアリングダンパにおいて、
     前記ロータ部は、互いに締結された前記下ケーシング部と前記上ケーシング部とによって密閉されているステアリングダンパ。
  5.  請求項1から4のいずれかに記載のステアリングダンパにおいて、
     前記ロータ部は、前記円板部の外周面を前記回転軸の方向に延ばしてなる外筒を備え、
     前記電磁石は、発生させた磁界が前記ロータ部の外筒を通る位置に配置されているステアリングダンパ。
  6.  請求項5に記載のステアリングダンパにおいて、
     前記ロータ部は、前記外筒の外周面が磁性体で構成されているステアリングダンパ。
  7.  請求項6に記載のステアリングダンパにおいて、
     前記ロータ部は、磁性体で構成された外周部材を前記外筒の外周面に取り付けられているステアリングダンパ。
  8.  請求項5から7のいずれかに記載のステアリングダンパにおいて、
     前記ロータ部は、前記磁性流体室を液密に維持するシール部材を前記外筒の内周側に設けられているステアリングダンパ。
  9.  請求項8に記載のステアリングダンパにおいて、
     前記シール部材は、前記外筒の内周面に設けられているステアリングダンパ。
  10.  請求項9に記載のステアリングダンパにおいて、
     前記上ケーシング部は、天井面のうち、前記外筒の内周面と前記ロータ部の回転軸との間にて、前記円板部側へ突出して形成された上隔壁を設けられ、
     前記下ケーシング部は、底面のうち、前記外筒の内周面と前記ロータ部の回転軸との間にて、前記円板部側へ突出して形成された下隔壁を設けられ、
     前記シール部材は、オイルシールであり、前記上隔壁の外周面と、前記下隔壁の外周面に前記オイルシールのリップ部が接触するように、前記上隔壁及び前記下隔壁の外側に設けられているステアリングダンパ。
  11.  請求項1から10のいずれかに記載のステアリングダンパにおいて、
     前記磁性流体室は、平面視で環状を呈し、
     前記磁性流体室に連通した第1の作業孔と、
     前記磁性流体室に連通し、前記第1の作業孔とは前記回転軸を挟んだ位置に形成された第2の作業孔とをさらに備えているステアリングダンパ。
  12.  請求項1から11のいずれかに記載のステアリングダンパと、
     車両の骨格を構成するメインフレームと、
     前記メインフレームの前端に設けられ、キャスター角で傾斜して形成されたヘッドパイプと、
     前記ヘッドパイプに回動自在に設けられたステアリングシャフトと、
     前記ステアリングシャフトの上部に設けられたステアリングハンドルと、
     前記ステアリングシャフトの下部に設けられた前輪と、
     前記メインフレームの後側に設けられた後輪とを備え、
     前記ステアリングダンパは、前記体積補償部を前方に向けた姿勢で、かつ前記円板部が前記ヘッドパイプの軸線と直交する姿勢で前記ステアリングハンドルに取り付けられている鞍乗型車両。
  13.  請求項12に記載の鞍乗型車両において、
     前記ステアリングダンパは、前記ステアリングハンドルに固定されており、前記回転軸に一端側が連結されたステイアームを備え、
     前記ステイアームは、その他端側が前記メインフレームに固定されている鞍乗型車両。
  14.  下ケーシング部の開口部と上ケーシング部の軸受部にロータ部の回転軸を回転可能に保持させ、前記回転軸から外周方向に延出された平面視円形の円板部を、前記下ケーシング部と前記上ケーシング部とで囲い、前記ロータ部の外周側であって、前記ロータ部から離間して固定した状態で電磁石を配置し、少なくとも前記ロータ部と前記電磁石との間に形成された磁性流体室に磁性流体を充填させるステアリングダンパの製造方法において、
     ステアリングダンパは、
     前記磁性流体室に連通し、磁性流体の体積変化を補償する体積補償部と、
     前記磁性流体室に連通した第1の作業孔と、
     前記磁性流体室に連通し、前記第1の作業孔から前記回転軸を挟んだ位置に設けられた第2の作業孔とを備え、
     前記第1の作業孔と前記第2の作業孔のうちの一方を前記回転軸よりも上方に位置させた姿勢で、前記第1の作業孔と前記第2の作業孔のうちの他方から磁性流体を注入して、前記磁性流体室に磁性流体を充填するステアリングダンパの製造方法。
  15.  請求項14に記載のステアリングダンパの製造方法において、
     前記第1の作業孔と前記第2の作業孔のうちの他方を、前記第1の作業孔と前記第2の作業孔のうちの一方よりも下方に位置させた姿勢で磁性流体を注入するステアリングダンパの製造方法。
PCT/JP2013/002957 2012-05-09 2013-05-08 ステアリングダンパ及びそれを備えた鞍乗型車両並びにその製造方法 WO2013168420A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13787615.7A EP2848509B1 (en) 2012-05-09 2013-05-08 Steering damper, saddle-type vehicle provided therewith, and method for producing same
JP2014514383A JP5789045B2 (ja) 2012-05-09 2013-05-08 ステアリングダンパ及びそれを備えた鞍乗型車両並びにその製造方法
US14/398,231 US9920809B2 (en) 2012-05-09 2013-05-08 Steering damper, a saddle riding type vehicle having the same, and a method of manufacturing the same
ES13787615.7T ES2564286T3 (es) 2012-05-09 2013-05-08 Amortiguador de dirección, vehículo del tipo de montar a horcajadas provisto del mismo, y método para producirlo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-107634 2012-05-09
JP2012107634 2012-05-09

Publications (1)

Publication Number Publication Date
WO2013168420A1 true WO2013168420A1 (ja) 2013-11-14

Family

ID=49550483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/002957 WO2013168420A1 (ja) 2012-05-09 2013-05-08 ステアリングダンパ及びそれを備えた鞍乗型車両並びにその製造方法

Country Status (5)

Country Link
US (1) US9920809B2 (ja)
EP (1) EP2848509B1 (ja)
JP (1) JP5789045B2 (ja)
ES (1) ES2564286T3 (ja)
WO (1) WO2013168420A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019116844A1 (de) 2019-06-21 2020-12-24 Schunk Kohlenstofftechnik Gmbh Einrichtung zur Entnahme und Abgabe einer Schmelze sowie Verfahren zum Herstellen der Einrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172096A (ja) * 2003-12-10 2005-06-30 Kayaba Ind Co Ltd Mr流体式ロータリステアダンパ
JP2006281915A (ja) * 2005-03-31 2006-10-19 Honda Motor Co Ltd ステアリングダンパ取り付け構造
JP2010254117A (ja) 2009-04-24 2010-11-11 Yamaha Motor Co Ltd 鞍乗型車両

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464050B2 (en) * 2000-11-03 2002-10-15 Delphi Technologies, Inc. Magneto-rheological steering damper
US6679508B2 (en) * 2001-10-01 2004-01-20 Delphi Technologies, Inc. Flexible no-lash drive plate
JP5527765B2 (ja) 2010-03-25 2014-06-25 株式会社栗本鐵工所 磁気粘性流体を用いた回転制動装置
JP2012025181A (ja) * 2010-07-20 2012-02-09 Yamaha Motor Co Ltd 鞍乗り型車両及び鞍乗り型車両に利用されるステアリングダンパ装置
WO2012149980A1 (en) * 2011-05-05 2012-11-08 öHLINS RACING AB Steering damper with active adjustment of damping characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172096A (ja) * 2003-12-10 2005-06-30 Kayaba Ind Co Ltd Mr流体式ロータリステアダンパ
JP2006281915A (ja) * 2005-03-31 2006-10-19 Honda Motor Co Ltd ステアリングダンパ取り付け構造
JP2010254117A (ja) 2009-04-24 2010-11-11 Yamaha Motor Co Ltd 鞍乗型車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2848509A4

Also Published As

Publication number Publication date
JPWO2013168420A1 (ja) 2016-01-07
EP2848509A1 (en) 2015-03-18
EP2848509A4 (en) 2015-05-06
ES2564286T3 (es) 2016-03-21
EP2848509B1 (en) 2016-02-24
US9920809B2 (en) 2018-03-20
US20150090546A1 (en) 2015-04-02
JP5789045B2 (ja) 2015-10-07

Similar Documents

Publication Publication Date Title
US9278711B2 (en) Vehicle
US8056918B2 (en) Saddle riding type vehicle including steering damper
US20150027830A1 (en) Suspension device
JPS61139578A (ja) 舵取安定器
WO2013168422A1 (ja) ステアリングダンパ制御装置及びそれを備えた鞍乗型車両
JP5911015B2 (ja) 自動二輪車
JP5789045B2 (ja) ステアリングダンパ及びそれを備えた鞍乗型車両並びにその製造方法
JP6349116B2 (ja) フロントフォーク
JP5624484B2 (ja) 緩衝器
JP2008037412A (ja) 車両
JP2009190454A (ja) 鞍乗型車両
JP5917688B2 (ja) ステアリングダンパ
JP2005231603A (ja) 二輪車用懸架装置
JP2007278333A (ja) フロントフォーク
WO2019008778A1 (ja) ダンパ装置
JP6894229B2 (ja) 車両用のブレーキ液圧制御装置、モータサイクル用ブレーキシステム、及び、車両用のブレーキ液圧制御装置の製造方法
JP2008196675A (ja) 減衰力可変ダンパー
JP4943794B2 (ja) 車両
WO2022059274A1 (ja) 鞍乗り型車両
EP3536590B1 (en) Straddled vehicle
JP5113116B2 (ja) 減衰部構造
JP2518482Y2 (ja) 油圧緩衝器
JP3159916U (ja) 鞍乗型車両
TW201942508A (zh) 軟管、液壓裝置、及組合方法
JP2008249062A (ja) 車両のクッションユニット構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014514383

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14398231

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013787615

Country of ref document: EP