WO2013167519A2 - Siliziumnitridkeramik und verfahren zu deren herstellung - Google Patents

Siliziumnitridkeramik und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2013167519A2
WO2013167519A2 PCT/EP2013/059358 EP2013059358W WO2013167519A2 WO 2013167519 A2 WO2013167519 A2 WO 2013167519A2 EP 2013059358 W EP2013059358 W EP 2013059358W WO 2013167519 A2 WO2013167519 A2 WO 2013167519A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
additive
nitride ceramic
sintering
ceramic
Prior art date
Application number
PCT/EP2013/059358
Other languages
English (en)
French (fr)
Other versions
WO2013167519A3 (de
Inventor
Karl Berroth
Frank STEGNER
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2013167519A2 publication Critical patent/WO2013167519A2/de
Publication of WO2013167519A3 publication Critical patent/WO2013167519A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a sintered silicon nitride ceramic, which in particular forms a component of a rolling or sliding bearing. Furthermore, the invention relates to a method for producing such
  • Silicon nitride ceramic Sintered silicon nitride ceramics are a frequently used material in mechanical and plant engineering, in the chemical industry, in foundry technology, in electronics, and because of their high strength, fracture toughness, wear, corrosion and thermal shock resistance as well as their low density and low thermal expansion in aerospace engineering.
  • EP 0 587 1 19 B1 shows a silicon nitride sintered body with a high content
  • Methods are 2.0% to 7.5% by weight of one or more
  • Rare earth elements in the form of the respective oxide as an additive added to the silicon nitride.
  • yttria and yttria are preferred embodiments.
  • Alumina is used as a single additive. In these embodiments, sintering takes place over a period of six hours at a temperature of 1,900 ° C. From DE 23 53 093 B2 a method for producing a sintered ceramic based on silicon nitride is known in which alumina powder and
  • Magnesium oxide powder can be used as additives for sintering.
  • the alumina powder and the alumina powder can be used as additives for sintering.
  • the alumina powder and the alumina powder can be used as additives for sintering.
  • Alumina powder and the magnesium oxide powder are for three to ten
  • DE 37 34 274 A1 shows an electrically insulating, ceramic sintered body, which preferably consists of a silicon nitride ceramic.
  • spinel MgAl 2 O 4 is added as an additive.
  • DE 40 13 923 C2 describes a silicon nitride ceramic with a sintering additive of different oxides, which are added in the form of their mixtures and after the dry mixing of the powder comparable to the spinel
  • composition (sections [0082] and [0094]).
  • Rolling element takes place after completion of the sintering preferably a hot isostatic pressing treatment (HIP) in a non-oxidizing atomic sphere of at least 300 atm (30 MPa) and at a temperature of 1 .600 ° C to 1 .860 ° C.
  • HIP hot isostatic pressing treatment
  • the object of the present invention is a silicon nitride ceramic and a method for the production thereof
  • Siliziumnitridkeramik which has both a high strength and fracture toughness, a largely pore-free microstructure and a low sinter skin.
  • Siliciumnitridkerannik which is designed in particular as a component of a rolling or sliding bearing, for example as a bearing ring or as a rolling element.
  • the method first comprises a step in which silicon nitride Si3N is provided.
  • the silicon nitride is preferably provided as a powder.
  • a first additive is provided as a sintering additive, which is present in the form of primary particles having an average primary particle size of less than 1 ⁇ m. These are therefore nanoscale particles which are preferred as
  • Nanoparticles are formed.
  • the first additive also acts as a sintering aid.
  • the silicon nitride, the first additive and optionally further additives and additives are mixed to form a mixture.
  • the mixture is then formed into a green body, which is then sintered to a silicon nitride ceramic.
  • the sintering can be
  • An essential advantage of the method according to the invention is that a particularly homogeneous distribution of the elements required for liquid phase sintering in the Si 3 N ceramic is achieved by using the first additive.
  • a particular advantage of the method according to the invention is also that during the manufacturing process oxidic compounds / elements as
  • Sinter additives can be used which have hygroscopic properties in intrinsic form (eg MgO, CaO) and therefore can not normally be dispersed in water.
  • the first additive to be used according to the invention On the other hand, it does not prove to be hygroscopic, but is also watery
  • the mixing of the silicon nitride powder and the at least first additive and the further processing can therefore also be carried out on an aqueous basis, so that it is possible to dispense with a much more expensive and dangerous solvent-based preparation.
  • a drying of the ground mixture is preferably carried out to a fine, free-flowing granules.
  • Granules to the green body is preferably carried out by pressing into a mold.
  • the first additive is preferably formed by a multi-cation oxide. These are therefore the cations of at least two different chemical elements, in particular the cations of at least two different metals.
  • the first additive particularly preferably has a spinel structure, wherein the term spinel structure here expressly spinel-like compounds, d. H. Spinel structures are included with non-stoichiometric compositions. These mixed oxide structures are particularly suitable as sintering aids and are also only slightly hygroscopic, so that an aqueous dispersion is possible.
  • the first additive has a
  • Garnet structure or a perovskite structure Garnet structure or a perovskite structure.
  • the first additive has the following general chemical formula:
  • x 0, there is a stoichiometrically balanced chemical compound.
  • variable x in the general chemical formula given above is greater than zero, so that a superstoichiometric composition of the first additive is given. It is thus a spinel structure or a spinel-like structure, i. H. a structure similar to spinel, which contains an excessive amount of the oxide of M ", which is found in the
  • Sintering reduces the viscosity of the sintering additive-based glass phase, so that the silicon nitride ceramic can be completely densified at a comparatively low melting temperature and with a comparatively short sintering time.
  • the variable x is particularly preferably greater than 0.2.
  • the average particle size of the first additive is preferably from a few 10 nm to a few 100 nm. Accordingly, the average particle size of the first additive is preferably less than 500 nm
  • average particle size of the first additive preferably more than 50 nm.
  • the component M "of the general chemical formula given above is preferably one or more elements selected from the group consisting of Mg, Ca, Ba and Sr.
  • the component M m of the general chemical formula given above is preferably one or more elements selected from the group formed by Al, Fe, Cr and Mn.
  • the component M "comprises the element Mg.
  • the component M m particularly preferably comprises the element Al.
  • the first additive preferably has the chemical formula Mgi + x (Al, Fe) 2O 4 + x , which is a concretization of the general chemical formula given above.
  • the first additive preferably has the chemical formula Mgi + xAl 2 O 4 + x , which is a concretization of the general chemical formula given above.
  • the proportion of the first additive is preferably between 10% by weight and 30% by weight of the mixture. Furthermore, the proportion of the first additive is preferably between 10 wt .-% and 15 wt .-%, more preferably between 12 wt .-% and 13.5 wt .-% of the mixture. Basically, a share of more than
  • the proportion of the first additive is between 3% by weight and 10% by weight of the mixture.
  • this proportion has an advantageous effect on the strength, the hardness, the corrosion resistance and the high-temperature properties.
  • the proportion of silicon nitride is preferably between 60% by weight and 97% by weight of the mixture, more preferably between 80% by weight and 90% by weight.
  • no further additive of the mixture is added in addition to the first additive.
  • Silicon nitride only the first additive is only the first additive.
  • the exclusive use of the first additive as an additive ensures that the first additive is extremely homogeneous in the mixture is distributed.
  • the mixture is free of rare earth elements and their compounds, which are dispensable for the process according to the invention.
  • Method is provided in addition to the first additive, a second additive and added to the mixture.
  • the second additive is preferably in the form of primary particles, which have an average primary particle size of less than 1 ⁇ .
  • the second additive is preferably such chemical
  • the second additive is preferably selected from the group of oxides and nitrides of the elements Fe, Ti, Hf, Zr, Mo, Ta, Nb and Cr and the oxides and nitrides of the rare earth metals.
  • the second additive may comprise several of the compounds mentioned.
  • the proportion of the second additive is preferably at most 5 wt .-% of the mixture.
  • a third additive is provided and added to the mixture.
  • the third additive can be added both when using the first and second additive and when using the first additive alone.
  • the third additive is preferably present in the form of primary particles, which an average
  • Primary particle size of less than 1 ⁇ have.
  • the third additive is preferably such chemical
  • the third additive may comprise several of said compounds.
  • the proportion of the third additive is preferably at most 5 wt .-% of the
  • the sintering is carried out at a temperature between 1 .500 ° C and 2,000 ° C, more preferably between 1 .700 ° C and 1 .900 ° C. In alternative preferred embodiments, sintering takes place at a temperature of between 1,700 ° C and 2,000 ° C.
  • the duration of sintering is preferably between one minute and 60 minutes, more preferably between 20 minutes and 30 minutes. In alternative preferred embodiments, the duration for sintering is between one hour and four hours, more preferably between two hours and three hours.
  • the provision of the particles of the first additive preferably takes place in that the substance of the first additive is precipitated from a liquid phase.
  • the provision of the particles of the first additive preferably takes place in that a
  • Primary particle size and a specific surface can be achieved by the subsequent grinding of coarser particles.
  • the sintering of the green body is preferably carried out by sintering
  • the silicon nitride ceramic produced according to the invention already has a largely pore-free structure and a high strength, it is preferred that none should be used
  • Hot isostatic pressing performed.
  • An advantage of the method according to the invention is that no or only a thin sintered skin of the silicon nitride ceramic is formed. The while sintering
  • resulting sintered skin has a thickness which is preferably less than 0.5 mm, more preferably less than 0.2 mm and more preferably less than 0.1 mm is.
  • Silicon nitride ceramic is also preferably no measure is taken to reduce the oxygen content in the edge region of the silicon nitride ceramic, such as, for example, a deoxidation treatment before sintering.
  • Another object of the invention is a silicon nitride ceramic, which is obtainable by the method according to the invention.
  • a further subject of the invention is a silicon nitride ceramic which is sintered and comprises a second phase in addition to silicon nitride.
  • the second phase is formed by a chemical compound of silicon nitride and a first additive.
  • the second phase has an average size of less than 1 ⁇
  • the second phase is similar to a binder.
  • the two-phase is formed amorphous or partially crystalline.
  • the silicon nitride ceramic according to the invention has in terms of their
  • composition in particular with regard to the chemical composition of the first additive and optionally further additives and their quantitative
  • Composition also prefers those features which are given as preferred for the process according to the invention. This applies to the
  • the average size of the second phase is preferably less than 500 nm. Furthermore, the average size of the second phase is preferably more than 50 nm
  • composition of the second additive bound in the second phase in the sintered silicon nitride ceramic is preferably the same as the chemical one
  • composition of the first additive which according to the invention Preferred method is to use.
  • the chemical composition of the further additives optionally bound in the sintered silicon nitride ceramic preferably resembles the chemical composition of the further additives which are preferably to be used according to the method according to the invention.
  • the silicon nitride ceramic according to the invention is characterized in that it has a high strength and at the same time good fracture toughness. So is the
  • ⁇ -point bending strength of the silicon nitride ceramic according to the invention at least 650 MPa, in particular at least about 670 MPa, preferably at least 750 MPa to about 775 MPa.
  • the fracture toughness according to Niihara is simultaneously at least 6 MPam "0.5.
  • the compressive strength of the silicon nitride ceramic of the invention preferably at least 2,500 MPa, more preferably more than 3000 MPa.
  • the porosity is less than about 1 percent.
  • the silicon nitride ceramics according to the invention preferably has a morphology with predominantly acicular ß-Si3N crystals, which in the glassy or
  • the needle-shaped crystals ensure a good fracture toughness and damage tolerance of the
  • the needle-shaped crystals have a large relative length. Accordingly, the acicular crystals have a length and a diameter whose ratio is on average preferably greater than 2, more preferably greater than 5.
  • the silicon nitride ceramic according to the invention is preferably formed without pores, without being subjected to a hot isostatic pressing or a comparable
  • Preferred embodiments of the silicon nitride ceramic according to the invention have a sintered skin which is less than 0.5 mm, more preferably less than 0.2 mm and more preferably less than 0.1 mm thick, without the sintering skin being reduced by a measure after sintering ,
  • the silicon nitride ceramic according to the invention is preferably designed as a component of a bearing, for example as a component of a sliding bearing or a roller bearing.
  • Silicon nitride ceramic according to the invention at least comprises, also one
  • the component of the bearing is formed by the silicon nitride ceramic according to the invention.
  • the silicon nitride ceramic according to the invention is preferably designed as a bearing ring or as a rolling element.
  • Fig. 1 a micrograph of a preferred embodiment of a
  • FIG. 3 a micrograph of a cross-sectional area from the edge region of FIG
  • Fluidized bed granulation The granules produced were then processed by the molding processes of a cold isostatic pressing (CIP) or a uniaxial dry pressing with cold isostatic densification into green bodies and if necessary in terms of geometry, dimensional accuracy, tolerance and surface quality
  • CIP cold isostatic pressing
  • uniaxial dry pressing with cold isostatic densification into green bodies and if necessary in terms of geometry, dimensional accuracy, tolerance and surface quality
  • Machining processes such as drilling, turning, milling, grinding, etc. in the green state reworked as close to final contour as possible.
  • the sintering of the moldings was then carried out depending on the type of sintering additive used and sintering additive content at temperatures between 1 .700 ° C and 1 .900 ° C in a gas pressure sintering furnace under non-oxidizing atmosphere with temporary application of a gas pressure of 0.5 MPa to 10 MPa.
  • the density of the ceramic was determined by comparing the samples or the determined by the measurement method according to Archimedes component density and the Heliumpyknometriennessung determined on a very pulverulent material sample determined true density of the silicon nitride material.
  • Test specimen for the determination of the 3- or 4-point bending strength according to DIN EN 843-1 worked out and subjected to the measurement.
  • the determination of the modulus of elasticity was carried out by evaluating the stress-strain ratio from the 3- or 4-point bending test according to the standard DIN EN 843-2, method A.
  • the hardness test was carried out by Vickers HV20 hardness impressions according to the DIN EN 843-4 standard on finely polished material ground sections.
  • the fracture toughness test was performed by measuring the cracks from the corners of the hardness impressions and calculating according to Niihara's Klc fracture toughness formula.
  • M is at least one divalent metal and M 1 " is at least one trivalent metal and 0 ⁇ x ⁇ 0.7. It is a spinel or a spinel-like
  • Silicon nitride was added in different concentrations.
  • the first additive was in the form of primary particles having an average primary particle size of less than 1 ⁇ .
  • Table 1 shows various proportions of M N and M '"- metal oxides M N O, M'" 0 for the inventive provision of various proportions of the first additive with each stoichiometric composition for gas pressure sintering.
  • the data in Table 1 are in% by weight.
  • the data in Table 2 are in% by weight. Total 10 wt% 13.5 wt% 15 wt% 17.5 wt% content
  • Fig. 1 shows a microsection of a preferred embodiment of
  • silicon nitride ceramic according to the invention (Example No. 3 in Table 3), which was prepared by the addition of a first additive, which is a spinel or
  • pre-synthesized additive In the micrograph a scale of 50 ⁇ is shown. The silicon nitride ceramic shown is approximately free of pores and homogeneously sintered. The very few black dots indicate small residual pores 01 in the material. The white microstructure constituents in the polished section are due to the introduction of a third additive as coloring agent, which forms crystallized grains 02 having a size of 1 ⁇ m to 2 ⁇ m.
  • FIG. 2 shows a prior art silicon nitride ceramic which has been subjected to hot isostatic pressing (HIP) with about 12% by weight sintering additive content, so that it has a comparatively high compressive strength of more than
  • HIP hot isostatic pressing
  • the silicon nitride ceramic according to the invention shown in FIG. 1 was not subjected to a hot isostatic pressing process, so that it was produced much less laboriously and yet has a comparable microstructure as the silicon nitride ceramic produced in accordance with the prior art shown in FIG.
  • Silicon nitride ceramics also have a compressive strength of about 3,000 MPa.
  • the inventive ceramic according to Example 3 can be attributed to the significantly higher sintering additive addition.
  • the prior art silicon nitride ceramic shown in Fig. 2 also has a dyeing additive included in the silicon nitride ceramic in the form of crystallized grains 03, which are recognizable as white dots.
  • the grains 03 have a size of about 1 ⁇ to 2 ⁇ on.
  • HIP hot isostatic pressing
  • Microstructure of this silicon nitride ceramic fine residual pores 04 with approximately similar frequency and size as in Fig. 1 recognizable.
  • Silicon nitride ceramic The silicon nitride ceramic shown has no or only a very thin sintered skin on its surface 06, which would have to be removed or reduced after sintering by a hard-machining step.
  • FIG. 4 shows, in comparison to FIG. 3, a cross-sectional area of a silicon nitride ceramic according to the prior art.
  • This silicon nitride ceramic has on its surface on a sintering skin 07, which must be removed for many applications by a subsequent hard machining, but significantly increases the production cost.
  • the free-flowing powder material was then filled in a hot press mold and compressed at temperatures between 1 .700 ° C and 2,000 ° C with application of an axial or uniaxial pressing pressure of 5 MPa to 40 MPa.
  • the first additive was in the form of primary particles of an average
  • the data in Table 5 are in% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

Die vorliegende Erfindung betrifft eine gesinterte Siliziumnitridkeramik, welche insbesondere eine Komponente eines Wälz- oder Gleitlagers bildet. Im Weiteren betrifft die Erfindung ein Verfahren zur Herstellung einer solchen Siliziumnitridkeramik. Das Verfahren umfasst zunächst einen Schritt, in welchem Siliziumnitrid Si3N4 bereitgestellt wird. Weiterhin wird ein erstes Additiv bereitgestellt, welches in Form von Primärpartikeln einer durchschnittlichen Primärpartikelgröße von weniger als 1µm vorliegt. Das erste Additiv fungiert als Sinterhilfe. In einem weiteren Schritt des erfindungsgemäßen Verfahrens werden das Siliziumnitrid und das erste Additiv zu einer Mischung vermischt. Die Mischung wird anschließend zu einem Grünling geformt, welcher daraufhin zu einer Siliziumnitridkeramik gesintert wird. Dabei wird neben dem Siliziumnitrid auch das erste Additiv zu einem Bestandteil der Siliziumnitridkeramik.

Description

Siliziumnitridkeramik und Verfahren zu deren Herstellung
Die vorliegende Erfindung betrifft eine gesinterte Siliziumnitridkeramik, welche insbesondere eine Komponente eines Wälz- oder Gleitlagers bildet. Im Weiteren betrifft die Erfindung ein Verfahren zur Herstellung einer solchen
Siliziumnitridkeramik. Gesinterte Siliziumnitridkeramiken sind wegen ihrer hohen Festigkeit, Risszähigkeit, Verschleiß-, Korrosions- und Temperaturwechselbeständigkeit sowie wegen ihrer geringen Dichte und ihrer geringen thermischen Ausdehnung ein häufig verwendeter Werkstoff im Maschinen- und Anlagenbau, in der chemischen Industrie, in der Gießereitechnik, in der Elektronik sowie in der Luft- und Raumfahrttechnik.
Die EP 0 587 1 19 B1 zeigt einen Siliziumnitrid-Sinterkörper mit hoher
Wärmeleitfähigkeit und ein Verfahren zu dessen Herstellung. Gemäß diesem
Verfahren werden 2,0 Gew.-% bis 7,5 Gew.-% eines oder mehrere
Seltenerdelemente in Form des jeweiligen Oxides als Additiv dem Siliziumnitrid beigefügt. Bei bevorzugten Ausführungsformen werden Yttriumoxid und
Aluminiumoxid als einzelne Additive verwendet. Bei diesen Ausführungsformen erfolgt ein Sintern über eine Dauer von sechs Stunden bei einer Temperatur von 1 .900°C. Aus der DE 23 53 093 B2 ist ein Verfahren zur Herstellung einer gesinterten Keramik auf Siliziumnitridbasis bekannt, bei welchem Aluminiumoxidpulver und
Magnesiumoxidpulver als Additive zum Sintern verwendet werden. Gemäß einer bevorzugten Ausführungsform werden das Aluminiumoxidpulver und das
Magnesiumoxidpulver bereits vor dem Sintern zur Reaktion gebracht. Das
Aluminiumoxidpulver und das Magnesiumoxidpulver werden für drei bis zehn
Stunden bei einer Temperatur von 1 .600°C bis 1 .800°C erhitzt, um Spinelle zu erzeugen. Anschließend werden die Spinelle sehr fein pulverisiert, um eine
Teilchengröße von weniger als 50 μιτι zu erzielen. Die DE 37 34 274 A1 zeigt einen elektrisch isolierenden, keramischen Sinterkörper, welcher bevorzugt aus einer Siliziumnitridkeramik besteht. Bei der Herstellung des gesinterten Körpers wird Spinell MgAI2O4 als Additiv beigemengt.
DE 40 13 923 C2 beschreibt eine Siliziumnitridkeramik mit einem Sinterzusatz aus unterschiedlichen Oxiden, die in Form ihrer Mischungen zugegeben werden und die nach der Trockenmischung der Pulver eine mit dem Spinell vergleichbare
Zusammensetzung ergeben (Abschnitte [0082] und [0094]).
Die DE 694 27 510 T2 zeigt ein Verfahren zur Herstellung eines Sinters auf
Siliziumnitridbasis. Bei diesem Verfahren wird die stöchiometrische Spinellstruktur MgO AI2O3 als Sinterzusatz (max. 6 Gew.-%) verwendet. Die DE 602 18 549 T2 zeigt ein Wälzlagerelement mit einem Siliziumnitrid- Sinterkörper, welcher neben Siliziumnitrid auch 1 Masse-% bis 10 Masse-%
Seltenerdmetalle in Form von Oxiden enthält. Zur Herstellung dieses
Wälzlagerelementes erfolgt nach Vollendung des Sinterns bevorzugt eine heißisostatische Pressbehandlung (HIP) in einer nichtoxidierenden Atomsphäre von mindestens 300 Atm (30 MPa) und bei einer Temperatur von 1 .600°C bis 1 .860°C.
Die Aufgabe der vorliegenden Erfindung besteht ausgehend vom Stand der Technik darin, eine Siliziumnitridkeramik und ein Verfahren zu deren Herstellung
bereitzustellen, wobei eine vergleichsweise aufwandärmere Herstellung zu einer Siliziumnitridkeramik führt, welche sowohl eine hohe Festigkeit und Risszähigkeit, eine weitestgehend porenfreie Gefügestruktur als auch eine nur geringe Sinterhaut aufweist.
Die genannte Aufgabe wird gelöst durch ein Verfahren gemäß dem beigefügten An- spruch 1 sowie durch Siliziumnitridkeramiken gemäß den beigefügten
nebengeordneten Ansprüchen 7 und 8. Das erfindungsgemäße Verfahren dient der Herstellung einer gesinterten
Siliziumnitridkerannik, welche insbesondere als Komponente eines Wälz- oder Gleitlagers ausgebildet ist, beispielsweise als ein Lagerring oder als ein Wälzkörper. Das Verfahren umfasst zunächst einen Schritt, in welchem Siliziumnitrid Si3N bereitgestellt wird. Das Siliziumnitrid wird bevorzugt als Pulver bereitgestellt.
Weiterhin wird ein erstes Additiv als Sinteradditiv bereitgestellt, welches in Form von Primärpartikeln einer durchschnittlichen Primärpartikelgröße von weniger als 1 μιτι vorliegt. Es handelt sich somit um nanoskalige Partikel, welche bevorzugt als
Nanopartikel ausgebildet sind. Das erste Additiv fungiert im Weiteren als Sinterhilfe. In einem weiteren Schritt des erfindungsgemäßen Verfahrens werden das Siliziumnitrid, das erste Additiv und ggf. weitere Additive und Zusätze zu einer Mischung vermischt. Die Mischung wird anschließend zu einem Grünling geformt, welcher daraufhin zu einer Siliziumnitridkeramik gesintert wird. Das Sintern kann
beispielsweise durch ein Gasdrucksintern oder durch einen Heißpressprozess erfolgen. Dabei wird neben dem Siliziumnitrid auch das erste Additiv zu einem
Bestandteil der Siliziumnitridkeramik und bildet dabei eine Zweitphase, insbesondere eine glasartige Binder-, Füll- und Korngrenzphase aus.
Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass durch die Verwendung des ersten Additivs eine besonders homogene Verteilung der zum Flüssigphasensintern nötigen Elemente in der Si3N -Keramik erreicht wird.
Daraus resultiert ein besonders vorteilhaftes Sinterverhalten und ein porenfreies bzw. weitestgehend porenarmes Gefüge, welches es ermöglicht, auf eine heißisostatische Sinterverdichtung (HIP) der Si3N -Keramik zu verzichten. Stattdessen lässt sich erfindungsgemäß eine Si3N -Keramik mit etwa gleichwertigem Gefüge und
Eigenschaften auch über einen weniger aufwändigen Gasdrucksinter- oder
Heißpressprozess herstellen.
Ein besonderer Vorteil des erfindungsgemäßen Verfahrens besteht außerdem darin, dass während des Herstellungsprozesses oxidische Verbindungen/Elemente als
Sinteradditive Verwendung finden können, die in intrinsischer Form hygroskopische Eigenschaften aufweisen (z. B. MgO, CaO) und sich deshalb normalerweise nicht wässrig dispergieren lassen. Das erfindungsgemäß zu verwendende erste Additiv erweist sich hingegen nicht als hygroskopisch, sondern ist auch in wässriger
Umgebung stabil . Das Mischen des Siliziumnitridpulvers und des zumindest ersten Additivs sowie die weitere Aufbereitung können deshalb auch auf wässriger Basis erfolgen, sodass auf eine wesentlich teurere und gefährlichere lösungsmittelbasierte Aufbereitung verzichtet werden kann.
Bevorzugte Ausführungsformen des Verfahrens sehen weiterhin einen
Nassmahlprozess für die Mischung vor, mit dem die gewünschte Feinheit,
Homogenität und Oberflächenqualität der Mischung erreicht und gezielt eingestellt werden kann. Nachfolgend erfolgt bevorzugt ein Trocknen der gemahlenen Mischung zu einem feinen, gut rieselfähigen Granulat. Das anschließende Formen des
Granulates zum Grünling erfolgt bevorzugt durch ein Pressen in eine Form.
Das erste Additiv ist bevorzugt durch ein Oxid mit mehreren Kationen gebildet. Es handelt sich somit um die Kationen mindestens zweier verschiedener chemischer Elemente, insbesondere um die Kationen mindestens zweier verschiedener Metalle.
Das erste Additiv weist besonders bevorzugt eine Spinellstruktur auf, wobei unter dem Begriff Spinell struktur hier ausdrücklich auch spinellartige Verbindungen, d. h. Spinellstrukturen mit nichtstöchiometrischen Zusammensetzungen eingeschlossen sind. Diese Mischoxidstrukturen eignen sich besonders gut als Sinterhilfsmittel und sind zudem nur gering hygroskopisch, sodass eine wässrige Dispergierung möglich ist. Bei alternativen bevorzugten Ausführungsformen weist das erste Additiv eine
Granatstruktur oder eine Perowskitstruktur auf.
Bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens weist das erste Additiv die folgende allgemeine chemische Formel auf:
M"i+xM'"2O4+x In dieser allgemeinen chemischen Formel steht M" für mindestens ein zweiwertiges Metall, während M1" für mindestens ein dreiwertiges Metall steht. Weiterhin gilt 0 < x < 0,7. Insofern x = 0 ist, liegt eine stöchiometrisch ausgeglichene chemische Verbindung vor.
Bei bevorzugten Ausführungsformen ist die Variable x in der oben angegebenen allgemeinen chemischen Formel größer als Null, sodass eine überstöchiometrische Zusammensetzung des ersten Additivs gegeben ist. Es handelt sich somit um eine Spinellstruktur oder um eine spinellartige Struktur, d. h. eine dem Spinell ähnliche Struktur, die einen überhöhten Anteil des Oxides von M" umfasst, welches beim
Sintern die Viskosität der sinteradditivbasierten Glasphase herabsetzt, sodass sich die Siliziumnitridkeramik bei einer vergleichsweise niedrigen Schmelztemperatur und mit einer vergleichsweise kurzen Sinterdauer vollständig verdichten lässt. Die Variable x ist besonders bevorzugt größer als 0,2.
Die durchschnittliche Partikelgröße des ersten Additivs beträgt bevorzugt einige 10 nm bis einige 100 nm. Folglich beträgt die durchschnittliche Partikelgröße des ersten Additivs bevorzugt weniger als 500 nm. Im Weiteren beträgt die
durchschnittliche Partikelgröße des ersten Additivs bevorzugt mehr als 50 nm.
Bei der Komponente M" der oben angegebenen allgemeinen chemischen Formel handelt es sich bevorzugt um eines oder mehrere Elemente, die aus der durch Mg, Ca, Ba und Sr gebildeten Gruppe ausgewählt sind. Bei der Komponente Mm der oben angegebenen allgemeinen chemischen Formel handelt es sich bevorzugt um ein oder mehrere Elemente, die aus der durch AI, Fe, Cr und Mn gebildeten Gruppe ausgewählt sind.
Bei besonders bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens umfasst die Komponente M" das Element Mg. Die Komponente Mm umfasst besonders bevorzugt das Element AI. Das erste Additiv weist bevorzugt die chemische Formel Mgi+x(AI,Fe)2O4+x auf, welche eine Konkretisierung der oben angegebenen allgemeinen chemischen Formel darstellt. Das erste Additiv weist bevorzugt die chemische Formel Mgi+xAI2O4+x auf, welche eine Konkretisierung der oben angegebenen allgemeinen chemischen Formel darstellt.
Der Anteil des ersten Additivs beträgt bevorzugt zwischen 10 Gew.-% und 30 Gew.- % an der Mischung. Weiterhin beträgt der Anteil des ersten Additivs bevorzugt zwischen 10 Gew.-% und 15 Gew.-%, besonders bevorzugt zwischen 12 Gew.-% und 13,5 Gew.-% an der Mischung. Grundsätzlich ist ein Anteil von mehr als
10 Gew.-% des Additivs zur Verwendung als Sinterhilfe vergleichsweise hoch. Dieser hohe Anteil führt zu einem vergleichsweise großen Anteil einer Glasphase in der gesinterten Siliziumnitridkeramik. Der größere Anteil der Glasphase gewährleistet neben einer verbesserten Flüssigphasensinterbarkeit eine höhere Elastizität, eine höhere Zähigkeit und eine verbesserte Schadenstoleranz.
Bei alternativen bevorzugten Ausführungsformen beträgt der Anteil des ersten Additivs zwischen 3 Gew.-% und 10 Gew.-% an der Mischung. Dieser Anteil wirkt sich hingegen vorteilhaft auf die Festigkeit, die Härte, die Korrosionsbeständigkeit und die Hochtemperatureigenschaften aus.
Der Anteil des Siliziumnitrids beträgt bevorzugt zwischen 60 Gew.-% und 97 Gew.-% an der Mischung, besonders bevorzugt zwischen 80 Gew.-% und 90 Gew.-%.
Bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens wird neben dem ersten Additiv kein weiteres Additiv der Mischung beigefügt. Somit enthalten die Mischung, der Grünling und die gesinterte Siliziumnitridkeramik neben dem
Siliziumnitrid jeweils nur das erste Additiv. Die ausschließliche Verwendung des ersten Additivs als Additiv gewährleistet, dass das erste Additiv äußerst homogen in der Mischung verteilt ist. Bevorzugt ist die Mischung frei von Seltenerdelementen und deren Verbindungen, die für das erfindungsgemäße Verfahren verzichtbar sind.
Bei alternativen bevorzugten Ausführungsformen des erfindungsgemäßen
Verfahrens wird neben den ersten Additiv ein zweites Additiv bereitgestellt und der Mischung beigegeben.
Auch das zweite Additiv liegt bevorzugt in Form von Primärpartikeln vor, welche eine durchschnittliche Primärpartikelgröße von weniger als 1 μιτι aufweisen.
Bei dem zweiten Additiv handelt es sich bevorzugt um solche chemischen
Verbindungen, die gemäß dem Stand der Technik als Additiv verwendet werden. Insbesondere ist das zweite Additiv bevorzugt ausgewählt aus der Gruppe der Oxide und Nitride der Elemente Fe, Ti, Hf, Zr, Mo, Ta, Nb und Cr sowie der Oxide und Nitride der Seltenerdmetalle. Auch kann das zweite Additiv mehrere der genannten Verbindungen umfassen.
Der Anteil des zweiten Additivs beträgt bevorzugt höchstens 5 Gew.-% an der Mischung.
Bei weiteren alternativen bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens wird ein drittes Additiv bereitgestellt und der Mischung beigegeben. Das dritte Additiv kann sowohl bei Verwendung des ersten und zweiten Additivs als auch bei alleinigem Einsatz des ersten Additivs zugesetzt werden. Auch das dritte Additiv liegt bevorzugt in Form von Primärpartikeln vor, welche eine durchschnittliche
Primärpartikelgröße von weniger als 1 μιτι aufweisen.
Bei dem dritten Additiv handelt es sich bevorzugt um solche chemischen
Verbindungen, welche bereits gemäß dem Stand der Technik als Additiv zum Sintern von Siliziumnitrid verwendet werden. Bevorzugt handelt es sich bei dem dritten
Additiv um MgO, AI2O3, Y2O3 oder AIN. Auch kann das dritte Additiv mehrere der genannten Verbindungen umfassen. Der Anteil des dritten Additivs beträgt bevorzugt höchstens 5 Gew.-% an der
Mischung.
Bei bevorzugten Ausführungsformen des erfindungsgemäßen Verfahrens erfolgt das Sintern bei einer Temperatur zwischen 1 .500°C und 2.000°C, besonders bevorzugt zwischen 1 .700°C und 1 .900°C. Bei alternativen bevorzugten Ausführungsformen erfolgt das Sintern bei einer Temperatur zwischen 1 .700°C und 2.000°C.
Mit dem erfindungsgemäßen Verfahren können kurze Zeiten zum Sintern realisiert werden. Daher beträgt die Dauer des Sinterns bevorzugt zwischen einer Minute und 60 Minuten, besonders bevorzugt zwischen 20 Minuten und 30 Minuten. Bei alternativen bevorzugten Ausführungsformen beträgt die Dauer zum Sintern zwischen einer Stunde und vier Stunden, besonders bevorzugt zwischen zwei Stunden und drei Stunden.
Das Bereitstellen der Partikel des ersten Additivs erfolgt bevorzugt dadurch, dass der Stoff des ersten Additivs aus einer flüssigen Phase gefällt wird. Alternativ erfolgt das Bereitstellen der Partikel des ersten Additivs bevorzugt dadurch, dass eine
Flammenpyrolyse des Stoffes des ersten Additivs vorgenommen wird. Für beide Bereitstellungsvarianten des ersten Additivs kann eine bevorzugte
Primärpartikelgröße und eine spezifische Oberfläche durch das nachträgliche Mahlen gröberer Partikel erreicht werden.
Das Sintern des Grünlings erfolgt bevorzugt durch ein Sintern unter
Gasdruckatmosphäre oder alternativ durch ein uniaxiales Heißpressen. Da die erfindungsgemäß hergestellte Siliziumnitridkeramik bereits ein weitestgehend porenfreies Gefüge und eine hohe Festigkeit aufweist, wird bevorzugt kein
heißisostatisches Pressen (HIP) durchgeführt. Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass keine oder nur eine dünne Sinterhaut der Siliziumnitridkeramik entsteht. Die beim Sintern
entstehende Sinterhaut weist eine Dicke auf, die bevorzugt weniger als 0,5 mm, besonders bevorzugt weniger als 0,2 mm und weiter bevorzugt weniger als 0,1 mm beträgt. Somit bedarf es keiner Maßnahme zum nachträglichen Verringern der Sinterhaut. Daher erfolgt bevorzugt keine Maßnahme zur nachträglichen
Verringerung der Sinterhaut, wie beispielsweise ein Schleifen der
Siliziumnitridkeramik. Auch erfolgt bevorzugt keine Maßnahme zur Verringerung des Sauerstoffgehaltes im Randbereich der Siliziumnitridkeramik, wie beispielsweise eine Desoxidierungsbehandlung vor dem Sintern.
Einen weiteren Gegenstand der Erfindung bildet eine Siliziumnitridkeramik, die durch das erfindungsgemäße Verfahren erhältlich ist.
Einen weiteren Gegenstand der Erfindung bildet eine Siliziumnitridkeramik, die gesintert ist und neben Siliziumnitrid eine Zweitphase umfasst. Die Zweitphase ist durch eine chemische Verbindung aus Siliziumnitrid und einem ersten Additiv gebildet. Die Zweitphase weist eine durchschnittliche Größe von weniger als 1 μιτι auf
Die nachfolgende Beschreibung bevorzugter Ausführungsformen bezieht sich auf beide der oben genannten erfindungsgemäßen Siliziumnitridkeramiken. Die Zweitphase ist binderähnlich ausgebildet. Bevorzugt ist die Zweiphase amorph oder teilkristallin ausgebildet.
Die erfindungsgemäße Siliziumnitridkeramik weist hinsichtlich ihrer
Zusammensetzung, insbesondere hinsichtlich der chemischen Zusammensetzung des ersten Additivs sowie ggf. weitere Additive und ihrer quantitativen
Zusammensetzung bevorzugt auch diejenigen Merkmale auf, welche für das erfindungsgemäße Verfahren als bevorzugt angegeben sind. Dies gilt für die
Zweitphase auch in Bezug auf das erste Additiv. So beträgt die durchschnittliche Größe der Zweitphase bevorzugt weniger als 500 nm. Weiterhin beträgt die durchschnittliche Größe der Zweitphase bevorzugt mehr als 50 nm. Die chemische
Zusammensetzung des in der Zweitphase gebundenen ersten Additivs in der gesinterten Siliziumnitridkeramik gleicht bevorzugt der chemischen
Zusammensetzung des ersten Additivs, welches gemäß dem erfindungsgemäßen Verfahren bevorzugt zu verwenden ist. Die chemische Zusammensetzung der ggf. in der gesinterten Siliziumnitridkeramik gebundenen weiteren Additive gleicht bevorzugt der chemischen Zusammensetzung der weiteren Additive, welche gemäß dem erfindungsgemäßen Verfahren bevorzugt zu verwenden sind.
Die erfindungsgemäße Siliziumnitridkeramik zeichnet sich dadurch aus, dass sie eine hohe Festigkeit bei gleichzeitig guter Risszähigkeit aufweist. So beträgt die
ß-Punkt-Biege-'festigkeit der erfindungsgemäßen Siliziumnitridkeramik mindestens 650 MPa, insbesondere mindestens ca. 670 MPa, bevorzugt mindestens 750 MPa bis ca. 775 MPa. Die Risszähigkeit nach Niihara beträgt gleichzeitig mindestens 6 MPam"0,5. Die Druckfestigkeit der erfindungsgemäßen Siliziumnitridkeramik bevorzugt mindestens 2.500 MPa, besonders bevorzugt mehr als 3.000 MPa. Die Porosität beträgt weniger als ca. 1 Prozent. Die erfindungsgemäße Siliziumnitridkeramik weist bevorzugt eine Morphologie mit überwiegend nadeiförmigen ß-Si3N -Kristallen auf, die in der glasartigen bzw.
teilkristallinen Korngrenz- und Füllphase eingebettet sind. Die nadeiförmigen Kristalle gewährleisten eine gute Risszähigkeit und Schadenstoleranz der
Siliziumnitridkeramik. Dabei weisen die nadeiförmigen Kristalle eine große relative Länge auf. Demzufolge besitzen die nadeiförmigen Kristalle eine Länge und einen Durchmesser, deren Verhältnis im Durchschnitt bevorzugt größer als 2, besonders bevorzugt größer als 5 ist.
Die erfindungsgemäße Siliziumnitridkeramik ist bevorzugt porenfrei ausgebildet, ohne dass sie einem heißisostatischen Pressen oder einem vergleichbaren
Verfahren unterzogen wurde.
Bevorzugte Ausführungsformen der erfindungsgemäßen Siliziumnitridkeramik weisen eine Sinterhaut auf, die weniger als 0,5 mm, besonders bevorzugt weniger als 0,2 mm und weiter bevorzugt weniger als 0,1 mm dick ist, ohne dass die Sinterhaut durch eine Maßnahme nach dem Sintern reduziert wurde. Die erfindungsgemäße Siliziumnitridkeramik ist bevorzugt als eine Komponente eines Lagers ausgebildet, beispielsweise als Komponente eines Gleitlagers oder eines Wälzlagers. Somit bildet eine Komponente eines Lagers, welche die
erfindungsgemäße Siliziumnitridkeramik zumindest umfasst, ebenfalls einen
Gegenstand der Erfindung. Im einfachsten Fall ist die Komponente des Lagers durch die erfindungsgemäße Siliziumnitridkeramik gebildet.
Die erfindungsgemäße Siliziumnitridkeramik ist bevorzugt als ein Lagerring oder als ein Wälzkörper ausgebildet.
Weitere Vorteile, Einzelheiten und Weiterbildungen der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen der Erfindung im Vergleich zum Stand der Technik, unter Bezugnahme auf die jeweiligen Tabellen und Zeichnung. Es zeigen:
Fig. 1 : ein Schliffbild einer bevorzugten Ausführungsform einer
erfindungsgemäßen Siliziumnitridkeramik;
Fig. 2: ein Schliffbild einer Siliziumnitridkeramik gemäß dem Stand der
Technik;
Fig. 3: ein Schliffbild einer Querschnittsfläche vom Randbereich der
bevorzugten Ausführungsform der erfindungsgemäßen
Siliziumnitridkeramik; und
Fig. 4: ein Schliffbild einer Querschnittsfläche vom Randbereich einer
Siliziumnitridkeramik gemäß dem Stand der Technik mit einer
Sinterhaut.
Im Folgenden werden zunächst einige Beispiele für Ausführungsformen der
Erfindung erläutert, bei welchen ein gasdruckgesinterter Werkstoff hergestellt wird. Zur Herstellung erfindungsgemäßer Siliziumnitridkeramiken wurden zunächst
Materialmischungen gemäß den Tabellen 1 und 2 durch Dispergierung des
Siliziumnitridpulvers und der Additive in wässrigem Medium unter Zusatz weiterer entsprechender Additive, wie einem Verflüssiger und einem Entschäumer hergestellt. Zur Einstellung der Sinteraktivität wurden diese Suspensionen anschließend in einer Attritormühle auf die gewünschte Kornfeinheit und spezifischen Oberfläche
gemahlen.
Die für eine anschließende Formgebung und Grünbearbeitung nötigen Bindemittel, Weichmacher und Presshilfsmittel wurden anschließend der Suspension zugesetzt und diese nochmals homogenisiert. Die Weiterverarbeitung der Materialmischung zu einem feinen, gut rieselfähigen und verpressbaren Granulat erfolgte im Anschluss durch Verdüsen und Trocknung der Suspension mittels Sprüh- bzw.
Wirbelschichtgranulation. Die hergestellten Granulate wurden anschließend über die Formgebungsverfahren eines kaltisostatischen Pressens (CIP) bzw. eines uniaxialen Trockenpressens mit kaltisostatischer Nachverdichtung zu Grünkörpern verarbeitet und bei Bedarf hinsichtlich Geometrie, Maßhaltigkeit, Toleranz und Oberflächengüte durch
spanende Verfahren, wie Bohren, Drehen, Fräsen, Schleifen usw. im Grünzustand möglichst endkonturnah nachbearbeitet.
Anschließend erfolgte ein thermischer Entbinderungsschritt zum Entfernen aller für das anschließende Sintern nachteiligen, für die Formgebung jedoch nötigen organischen Bestandteile.
Das Sintern der Formkörper erfolgte danach je nach verwendetem Sinteradditivtyp und Sinteradditivgehalt bei Temperaturen zwischen 1 .700 °C und 1 .900 °C in einem Gasdrucksinterofen unter nichtoxidierender Atmosphäre mit zeitweisem Aufbringen eines Gasdruckes von 0,5 MPa bis 10 MPa.
Die Dichte der Keramik wurde durch Gegenrechnung der Proben bzw. der mit der Messmethode nach Archimedes ermittelten Bauteildichte und der über Heliumpyknometriennessung an einer feinstpulverisierten Werkstoffprobe ermittelten Reindichte des Siliziumnitridwerkstoffes ermittelt.
Aus den hergestellten Keramikproben bzw. -bauteilen wurden anschließend
Prüfkörper für die Ermittlung der 3- bzw. 4-Punkt-Biegefestigkeit gemäß DIN EN 843- 1 herausgearbeitet und der Messung unterzogen.
Die Ermittlung des E-Moduls erfolgte durch Auswertung des Spannungs-Dehnungs- Verhältnisses aus der 3- bzw. 4-Punkt-Biegeprüfung gemäß der Norm DIN EN 843-2, Verfahren A.
Die Prüfung der Härte erfolgte durch Vickers-HV20-Härteeindrücke gemäß der Norm DIN EN 843-4 an feinpolierten Werkstoffanschliffen. Die Prüfung der Risszähigkeit erfolgte durch das Ausmessen der von den Ecken der Härteeindrücke ausgehenden Risse und Berechnung gemäß der Formel für die Risszähigkeit Klc nach Niihara.
Die statistische Auswertung aller ermittelten mechanischen Kennwerte erfolgte nach der für monolithische Keramiken erlassenen Norm DIN EN 843-5.
Zur Herstellung der erfindungsgemäßen Siliziumnitridkeramiken wurde bevorzugt jeweils ein
Figure imgf000015_0001
als ein erstes Additiv verwendet, wobei M" für mindestens ein zweiwertiges Metall und M1" für mindestens ein dreiwertiges Metall steht und 0 < x < 0,7 gilt. Dabei handelt es sich um einen Spinell oder eine spinellartige
Struktur, welche im Rahmen der Erfindung stöchiometrisch im Falle von x = 0 (vgl. Tabelle 1 ) oder überstöchiometrisch im Falle von x > 0 (vgl. Tabelle 2) dem
Siliziumnitrid in unterschiedlichen Konzentrationen zugesetzt wurde. Das erste Additiv lag in Form von Primärpartikeln einer durchschnittlichen Primärpartikelgröße von weniger als 1 μιτι vor.
Tabelle 1 zeigt verschiedene Anteile von von MN- und M'"-Metalloxiden MNO, M'"0 zur erfindungsgemäßen Bereitstellung verschiedener Anteile des ersten Additivs mit jeweils stöchiometrischer Zusannnnensetzung für das Gasdrucksintern. Die Angaben in Tabelle 1 sind in Gew.-%.
Figure imgf000016_0001
Tabelle 1
Tabelle 2 zeigt verschiedene Anteile von von M - und M -Metalloxiden M O, M O zur erfindungsgemäßen Bereitstellung verschiedener Anteile des ersten Additivs mit jeweils überstöchiometrischer Zusammensetzung (x = 0,5) für das Gasdrucksintern. Die Angaben in Tabelle 2 sind in Gew.-%. Gesamt- 10 Gew.-% 13,5 Gew.-% 15 Gew.-% 17,5 Gew.-% gehalt
Sinteradditive
Äquivalent
auf Basis M"O M'"O M"O M'"O M"O M'"O M"O M'"O der Oxide Anteil Anteil Anteil Anteil
M" M1"
Mg AI 3,72 6,28 5,03 8,47 5,58 9,42 6,51 10,99
Ca AI 4,52 5,48 6,10 7,40 6,78 8,22 7,91 9,59
Mg Fe 2,75 7,25 3,71 9,79 4,12 10,88 4,81 12,69
Ca Fe 3,45 6,55 4,66 8,84 5,18 9,82 6,04 1 1 ,46
Mg Alo,5F 3,16 6,84 4,27 9,23 4,74 10,26 5,53 1 1 ,97
Ca Alo,5F 3,91 6,09 5,28 8,22 5,87 9,13 6,85 10,65
Tabelle 2
Repräsentative Beispiele Nr. 1 bis 3 für die Eigenschaftswerte erfindungsgemäß gasdruckgesinterter Keramikwerkstoffe sind in Tabelle 3 aufgeführt.
Nr Additiv Stö- GeDichte 3-Punkt- Wei- Härte Risszächio- halt Biegefes- bull higkeit me- tigkeit
trie
X Gew.- % th. D. MPa HV 20 MPam"U b
%
1 MgAI0,5F 0 13,5 99,1 670 10,2 n.b. n.b.
2 MgAl 0 13,5 99,1 705 9,1 n.b. n.b.
3 MgAl 0,5 13,5 99,2 775 16,9 1373 6,3 fabe Ie 3 Die Auswertung des Gefüges, der Mikrostruktur und der Sinterhaut am Rand des Werkstoffes erfolgte durch die Herstellung feinpolierter Werkstoff- und
Bauteilanschliffe und Analyse mittels Auflicht- bzw. Rasterelektronenmikroskopie.
Fig. 1 zeigt ein Schliffbild einer bevorzugten Ausführungsform der
erfindungsgemäßen Siliziumnitridkeramik (Beispiel Nr. 3 in Tabelle 3), die durch den Zusatz eines ersten Additivs hergestellt wurde, welches eine Spinell- oder
spinellartige Struktur aufweist und mit der Formel Mgi+xAI2O4+x mit 0 < x < 0,7 beschrieben werden kann. Dieser Spinell oder spinellartige Struktur ist nicht erst während des Sinterns entstanden, sondern wurde in dieser Form als Additiv dem Siliziumnitrid vor dem Sintern beigegeben. Es handelt sich somit um ein
vorsynthetisiertes Additiv. Im Schliffbild ist ein Maßstab von 50 μιτι dargestellt. Die gezeigte Siliziumnitridkeramik ist annähernd porenfrei und homogen gesintert. Die sehr wenigen, schwarzen Punkte deuten auf kleine Restporen 01 im Werkstoff hin. Die weißen Gefügebestandteile im Anschliff sind auf das Einbringen eines dritten Additivs als Einfärbem ittel zurückzuführen, das kristallisierte Körner 02 mit einer Größe von 1 μιτι bis 2 μιτι ausbildet.
Fig. 2 zeigt eine Siliziumnitridkeramik gemäß dem Stand der Technik, welche mit ca. 12 Gew.-% Sinteradditivgehalt einem heißisostatischen Pressen (HIP) unterzogen wurde, sodass sie eine vergleichsweise hohe Druckfestigkeit von mehr als
3.000 MPa, eine 3-Punkt-Biegefestigkeit größer 900 MPa und eine Risszähigkeit von
6,5 MPam"0,5 bis 7,0 MPam"0,5 aufweist. Hingegen wurde die in Fig. 1 gezeigte erfindungsgemäße Siliziumnitridkeramik keinem heißisostatischen Pressvorgang unterzogen, sodass sie weit weniger aufwändig hergestellt wurde und dennoch eine vergleichbare Gefügestruktur wie die in Fig. 2 gezeigte gemäß dem Stand der Technik aufwändig hergestellte Siliziumnitridkeramik aufweist. Die erfindungsgemäße
Siliziumnitridkeramik besitzt ebenfalls eine Druckfestigkeit von etwa 3.000 MPa. Die etwas geringere Biegefestigkeit von 775 MPa und die Risszähigkeit von 6,3 MPam"0,5 der erfindungsgemäßen Keramik nach Beispiel 3 sind auf den deutlich höheren Sinteradditivzusatz zurückführbar.
Die in Fig. 2 gezeigte Siliziumnitridkeramik gemäß dem Stand der Technik weist ebenfalls ein Einfärbe-Additiv auf, welches in der Siliziumnitridkeramik in Form von kristallisierten Körnern 03 eingeschlossen ist, die als weiße Punkte erkennbar sind. Die Körner 03 weisen eine Größe von etwa 1 μιτι bis 2 μιτι auf. Trotz des Sinterns und der Verdichtung durch ein Heißisostatisches Pressen (HIP) sind auch im
Gefügebild dieser Siliziumnitridkeramik feine Restporen 04 mit etwa ähnlicher Häufigkeit und Größe wie in Fig. 1 erkennbar.
Fig. 3 zeigt ein Schliffbild einer Querschnittsfläche der erfindungsgemäßen
Siliziumnitridkeramik. Die gezeigte Siliziumnitridkeramik weist an ihrer Oberfläche 06 keine bzw. nur eine sehr dünne Sinterhaut auf, die nach dem Sintern durch einen Hartbearbeitungsschritt entfernt bzw. reduziert werden müsste.
Fig. 4 zeigt im Vergleich zu Fig. 3 eine Querschnittsfläche einer Siliziumnitridkeramik gemäß dem Stand der Technik. Diese Siliziumnitridkeramik weist an ihrer Oberfläche eine Sinterhaut 07 auf, welche für viele Anwendungen durch eine nachträgliche Hartbearbeitung entfernt werden muss, die jedoch den Fertigungsaufwand deutlich erhöht.
Im Folgenden werden einige Beispiele für Ausführungsformen der Erfindung erläutert, bei welchen ein heißgepresster Werkstoff hergestellt wird.
Die Materialmischungen für die heißgepressten Werkstoffvarianten wurden analog zu dem bereits für das Gasdrucksintern beschriebenen, erfindungsgemäßen
Verfahrensweg hergestellt, jedoch unter Zugabe eines geringeren Gehaltes an Bindemittel vor der Granulation. Das rieselfähige Pulvermaterial wurde im Anschluss in eine Heißpressform gefüllt und bei Temperaturen zwischen 1 .700 °C und 2.000 °C unter Aufbringung eines axialen bzw. uniaxialen Pressdruckes von 5 MPa bis 40 MPa verdichtet. Tabelle 4 zeigt verschiedene Anteile von M11- und M'^Metalloxiden M"O, M'"0 zur erfindungsgemaßen Bereitstellung verschiedener Anteile des ersten Additivs mit jeweils stöchiometrischer Zusammensetzung (x = 0,0) für das Heißpressen. Das erste Additiv lag in Form von Primärpartikeln einer durchschnittlichen
Primärpartikelgröße von weniger als 1 μιτι vor. Die Angaben in Tabelle 4 sind in Gew.-%.
Figure imgf000020_0001
abelle 4
Tabelle 5 zeigt verschiedene Anteile von von M - und M -Metalloxiden M O, M O zur erfindungsgemäßen Bereitstellung verschiedener Anteile des ersten Additivs mit jeweils überstöchiometrischer Zusammensetzung (x = 0,5) für das Heißpressen. Die Angaben in Tabelle 5 sind in Gew.-%.
Figure imgf000021_0001
abelle 5
Ein repräsentatives Beispiel Nr. 4 für die Eigenschaftswerte der erfindungsgemäß heißgepressten Keramikwerkstoffe ist in Tabelle 6 aufgeführt.
Nr AddiStöchio- Gehalt Dichte 3-Punkt- Wei- HärRisszätiv metrie Biegefes- bull te higkeit tigkeit
X Gew.-% % th. MPa HV MPam"U b
D. 20
4 MgAl 0 3 99,6 1012 9,2 n.b. n.b.
Tabe Ie 6 Bezugszeichenliste
01 - Restporen
02 - kristallisierte Körner eines Einfärbemittels
03 - kristallisierte Körner eines Einfärbe-Additivs
04 - Restporen
05 - -
06 - Oberfläche
07 - Sinterhaut

Claims

Patentansprüche
Verfahren zur Herstellung einer Siliziumnitridkeramik, folgende Schritte umfassend:
- Bereitstellen von Siliziumnitrid;
- Bereitstellen eines ersten Additivs als Sinterhilfe, welches in Form von
Primärpartikeln einer durchschnittlichen Primärpartikelgröße von weniger als 1 μιτι vorliegt;
- Mischen des Siliziumnitrides und des ersten Additivs zu einer Mischung;
- Formen der Mischung zu einem Grünling; und
- Sintern des Grünlings zu einer Siliziumnitridkeramik.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das erste Additiv durch ein Oxid mit mehreren Kationen gebildet ist, wobei die mehreren
Kationen durch mindestens zwei verschiedene Metallionen gebildet sind.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das erste Additiv eine Spinellstruktur aufweist.
Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das erste Additiv die folgende allgemeine chemische Formel aufweist:
M"i+xM'"2O4+x
wobei
M" ein zweiwertiges Metall umfasst,
Mm ein dreiwertiges Metall umfasst, und wobei
0 < x < 0,7.
Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass das erste Additiv die Formel Mgi+xAI2O4+x aufweist.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Anteil des ersten Additivs an der Mischung zwischen 3 Gew.-% und
20 Gew.-% beträgt.
7. Siliziumnitridkeramik, erhältlich durch ein Verfahren nach einem der Ansprüche 1 bis 6.
8. Siliziumnitridkeramik, die gesintert ist und zumindest folgende Bestandteile aufweist:
- Siliziumnitrid; und
- eine Zweitphase, die durch eine chemische Verbindung aus Siliziumnitrid und einem ersten Additiv gebildet ist und die eine durchschnittliche Größe von weniger als 1 μιτι aufweist.
9. Siliziumnitridkeramik nach Anspruch 8, dadurch gekennzeichnet, dass die
Zweitphase amorph oder teilkristallin ausgebildet ist.
10. Komponente eines Wälz- oder Gleitlagers in Form eines Lagerringes oder eines Wälzkörpers, welche durch eine Siliziumnitridkeramik nach einem der
Ansprüche 7 bis 9 gebildet ist.
PCT/EP2013/059358 2012-05-10 2013-05-06 Siliziumnitridkeramik und verfahren zu deren herstellung WO2013167519A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012207803.7 2012-05-10
DE102012207803A DE102012207803A1 (de) 2012-05-10 2012-05-10 Siliziumnitridkeramik und Verfahren zu deren Herstellung

Publications (2)

Publication Number Publication Date
WO2013167519A2 true WO2013167519A2 (de) 2013-11-14
WO2013167519A3 WO2013167519A3 (de) 2014-01-03

Family

ID=48483033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/059358 WO2013167519A2 (de) 2012-05-10 2013-05-06 Siliziumnitridkeramik und verfahren zu deren herstellung

Country Status (2)

Country Link
DE (1) DE102012207803A1 (de)
WO (1) WO2013167519A2 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2353093B2 (de) 1972-10-24 1977-07-28 K.K. Toyota Chuo Kenkyusho, Nagoya, Aichi (Japan) Verfahren zur herstellung gesinterter formkoerper auf siliziumnitridbasis
DE3734274A1 (de) 1986-10-09 1988-04-21 Nippon Denso Co Elektrisch isolierender, keramischer, gesinterter koerper
EP0587119B1 (de) 1992-09-08 1998-01-07 Kabushiki Kaisha Toshiba Siliciumnitrid-Sinterkörper mit hoher Wärmeleitfähigkeit und Verfahren zu seiner Herstellung
DE69427510T2 (de) 1993-10-25 2001-10-04 Kabushiki Kaisha Toshiba, Kawasaki Auf Siliziumnitrid basierende Sinter
DE4013923C2 (de) 1989-06-07 2003-06-26 Denki Kagaku Kogyo Kk Siliciumnitridpulver, Verfahren zu seiner Herstellung und Verwendung eines Siliciumnitridpulvers
DE60218549T2 (de) 2001-01-12 2007-11-22 Kabushiki Kaisha Toshiba Abriebsbeständiges Siliziumnitridbauteil und Verfahren zur Herstellung des Bauteils

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187127A (en) * 1987-09-18 1993-02-16 Kabushiki Kaisha Toshiba Fiber-reinforced silicon nitride ceramic
US5214007A (en) * 1988-03-31 1993-05-25 Aisin Seiki Kabushiki Kaisha Production process for silicon nitride sintered body
JPH07102966B2 (ja) * 1989-02-27 1995-11-08 電気化学工業株式会社 窒化ケイ素の製造方法
JPH0680470A (ja) * 1992-07-17 1994-03-22 Sumitomo Electric Ind Ltd 窒化ケイ素焼結体の製造方法
JP2003034581A (ja) * 2001-07-24 2003-02-07 Toshiba Corp 窒化けい素製耐摩耗性部材およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2353093B2 (de) 1972-10-24 1977-07-28 K.K. Toyota Chuo Kenkyusho, Nagoya, Aichi (Japan) Verfahren zur herstellung gesinterter formkoerper auf siliziumnitridbasis
DE3734274A1 (de) 1986-10-09 1988-04-21 Nippon Denso Co Elektrisch isolierender, keramischer, gesinterter koerper
DE4013923C2 (de) 1989-06-07 2003-06-26 Denki Kagaku Kogyo Kk Siliciumnitridpulver, Verfahren zu seiner Herstellung und Verwendung eines Siliciumnitridpulvers
EP0587119B1 (de) 1992-09-08 1998-01-07 Kabushiki Kaisha Toshiba Siliciumnitrid-Sinterkörper mit hoher Wärmeleitfähigkeit und Verfahren zu seiner Herstellung
DE69427510T2 (de) 1993-10-25 2001-10-04 Kabushiki Kaisha Toshiba, Kawasaki Auf Siliziumnitrid basierende Sinter
DE60218549T2 (de) 2001-01-12 2007-11-22 Kabushiki Kaisha Toshiba Abriebsbeständiges Siliziumnitridbauteil und Verfahren zur Herstellung des Bauteils

Also Published As

Publication number Publication date
DE102012207803A1 (de) 2013-11-28
WO2013167519A3 (de) 2014-01-03

Similar Documents

Publication Publication Date Title
EP2513010B1 (de) Keramischer verbundwerkstoff, bestehend aus den hauptbestandteilen aluminiumoxid und zirkonoxid und einer dispersoiden phase
DE3610041C2 (de) Keramik auf Zirkoniumdioxidbasis mit Aluminiumoxid, Spinell, Mullit oder Spinell und Mullit und mit verbesserter hydrothermaler und thermischer Stabilität
DE69403054T2 (de) Gesinterter keramischer Körper, der hauptsächlich Alumina enthält
DE3010545C2 (de) Gesinterte Keramik, insbesondere für Zerspanungswerkzeuge, und Verfahren zur Herstellung derselben
EP3468939B1 (de) Zirkonoxid-keramik, zellularer werkstoff daraus und verfahren zur herstellung der zirkonoxid-keramik
DE112009000280B4 (de) Polykristalliner MgO-Sinterkörper und MgO-Sputtertarget
EP2819973B1 (de) Verfahren zur herstellung eines keramischen sinterformkörpers aus y2o3-stabilisiertem zirkonoxid
EP0021239B1 (de) Verfahren zur Herstellung von dichten Formkörpern aus polykristallinem alpha-Siliciumcarbid durch Heisspressen und so hergestellte Formkörper
EP3027579B1 (de) Gesinterte kugel
DE102012021906A1 (de) Keramischer Kompositwerkstoff, durch diesen gebildetes Bauteil sowie Verfahren zur Herstellung des Kompositwerkstoffs
WO2023012103A1 (de) Verfahren zur herstellung von beschichteten substraten sowie beschichtetes substrat und dessen verwendung
DE69317254T2 (de) Siliciumnitrid-Sinterkörper
EP2462080B1 (de) Alpha-al2o3-sintermaterial und verfahren zur herstellung eines hochdichten und feinstkristallinen formkörpers aus diesem material sowie dessen verwendung
DE112007000218B4 (de) Verfahren zur Erzeugung einer kohlenstoffhaltigen Siliziumcarbidkeramik
DE69201910T2 (de) Siliciumnitrid-Sinterkörper und Verfahren zu seiner Herstellung.
EP0497156B1 (de) Verfahren zur Herstellung eines Werkstoffes auf Siliciumnitrid-Basis.
DE4233602C2 (de) Verfahren zur Herstellung eines dichten Si¶3¶N¶4¶-Werkstoffes sowie dessen Verwendung
DE102012012227B4 (de) Herstellung dichter Siliziumcarbid-Sinterkörper mit gezielt einstellbarem elektrischem Widerstand und so erhältliche Siliciumcarbid-Sinterkörper
DE102009046036B4 (de) Verfahren zur Herstellung von redispergierbaren hochreinen Nanospinellpulvern und redispergierbares hochreines Nanospinellpulver
DE2937740A1 (de) Oxidationsbestaendiges siliziumnitrid mit einem gehalt an seltenerdenoxid
WO2013167519A2 (de) Siliziumnitridkeramik und verfahren zu deren herstellung
EP2674407B1 (de) Feuerfester keramischer Versatz und daraus gebildeter Stein
DE19733700C2 (de) Hartstoffverstärkte stabilisierte Zr02-Keramik mit mechanischer Stabilität unter hydrothermaler Beanspruchung, Verfahren zu deren Herstellung und Verwendung
DE102012200654B4 (de) Schlicker, Granulat und Keramik, Verfahren zu deren Herstellung und Verwendung
WO2013167518A2 (de) Siliziumnitridkeramik sowie verfahren zu deren herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13724538

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13724538

Country of ref document: EP

Kind code of ref document: A2