WO2013163705A1 - Material injetável biorreabsorvível bioativo e processos de preparação de material injetável biorreabsorvível bioativo - Google Patents

Material injetável biorreabsorvível bioativo e processos de preparação de material injetável biorreabsorvível bioativo Download PDF

Info

Publication number
WO2013163705A1
WO2013163705A1 PCT/BR2012/000373 BR2012000373W WO2013163705A1 WO 2013163705 A1 WO2013163705 A1 WO 2013163705A1 BR 2012000373 W BR2012000373 W BR 2012000373W WO 2013163705 A1 WO2013163705 A1 WO 2013163705A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
material according
bioactive
bioresorbable
phosphate
Prior art date
Application number
PCT/BR2012/000373
Other languages
English (en)
French (fr)
Inventor
Walter Israel Rojas CABRERA
Karina NAKAJIMA
Luana BENDO
Original Assignee
Bioactive Biomaterials Ltda.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioactive Biomaterials Ltda. filed Critical Bioactive Biomaterials Ltda.
Publication of WO2013163705A1 publication Critical patent/WO2013163705A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention relates to the production of an injectable biomaterial with bioreaction and bioactivity characteristics which enables the regeneration and formation of bone tissues in mammals for application in tissue engineering.
  • This material hereafter referred to as bioactive bioresorbable injectable bone, moldable paste, bioactive bioresorbable injectable material
  • bioactive bioresorbable injectable bone can be used for total anchorage of prostheses, augmentation of the vertebral body, filling of bone cavities or bone replacement.
  • the biomaterial developed in the present invention may also be applied to many skeletal disorders requiring bone replacement or supplementation, from the most common age-related disorders such as osteoporosis, arthrosis and arthritis to the most severe such as sarcomas and cysts. bone
  • Bone is a tissue which undergoes continuous adaptations throughout the life of the vertebrate in order to obtain and preserve the size, shape and structural integrity of the skeleton, and to regulate mineral homeostasis.
  • the remodeling and formation processes form the basis of the development and maintenance of the skeletal system.
  • the required repair consists of four main stages: fracture hematoma formation; cartilaginous callus formation; bone callus formation; and bone remodeling.
  • the bone repair process lasts at least four months and depends on the intensity of the tissue injury. However, if bone segments are seriously lost or injured, resulting in the removal of these tissues, bone welding is no longer possible and bone callus formation will not occur. In this case, the use of a graft or material capable of restoring the tissue will be necessary. damaged or lost bone.
  • Bone growth or replacement can be achieved through the use of injectable materials.
  • injectable bone cements ie fillers capable of self-hardening, with injectable characteristics and with the ability to conform to the implant site, which may have reactivity and potentiality. for controlled drug release.
  • injectable mixtures for bone regeneration and / or replacement comprise three major components which are described in US 20060041033: (i) bone cement containing two constituents which when mixed form a hardened cement paste; (ii) another non-miscible constituent with the cement paste capable of generating pores in the material; and (iii) a contrast agent for X-ray analysis.
  • WO2004071543A1 is also based on this principle, being a bone cement mixture which, in situ, results in a porous bone substitute material.
  • PI 0317809A also relates to an injectable bone cement-based bone tissue substitution mixture (similar to the aforementioned applications) from a powder / liquid system which may contain the poly (methyl methacrylate) polymer (PMMA), the methyl methacrylate monomer (MMA), catalyst and polymerization accelerator, a calcium phosphate cement paste, a contrast agent, among others.
  • PMMA poly (methyl methacrylate) polymer
  • MMA methyl methacrylate monomer
  • catalyst and polymerization accelerator a calcium phosphate cement paste
  • a contrast agent among others.
  • these patent applications deal with a polymethacrylate cement or calcium phosphate cement, containing as other components water and soluble compounds therein, as well as hydrophobic agents, in order to obtain a mixture essentially divided into a powder component and a liquid component.
  • contrast agents which are used for image analysis in X-ray techniques, is required to accompany postoperative bone formation. These agents absorb radiation and should not interact with the body.
  • contrast agents are not completely inert with some degree of interaction and, although they are commonly safe, their use is not free of side effects such as systemic hypersensitivity reactions, adverse cardiac reactions ( hypertension, tachycardia, arrhythmia), vascular effects (platelet aggregation, vasoconstriction, thrombosis) and renal adverse effects.
  • the degree of interaction and consequent severity of these effects depend essentially on three factors: (i) amount of contrast agent used; (ii) nature of the compound and (iii) pre-existence of risk factors.
  • the cements found in the literature usually consist of two phases that are mixed at the time of application.
  • the paste or cement obtained when applied prematurely, offers a risk of disintegration when in contact with biological fluids. In contrast, when applied late, it hardens and acquires non-manipulable consistency.
  • PI 0711900-3 describes a biodegradable fibrin-based composition for injection into bone defects or voids that may be the result of osteoporosis, surgery, bone cysts, tumor removal, or traumatic bone damage.
  • the paper addresses bone graft-based practices (bone graft (autogenous or allogeneic), bone graft substitutes, bone cements (such as PMMA) or injectable calcium salts.
  • bone graft autogenous or allogeneic
  • bone graft substitutes such as PMMA
  • bone cements such as PMMA
  • injectable calcium salts injectable calcium salts.
  • autogenous grafts are widely used, but their application with donor tissue has limitations such as trauma, infection or morbidity, while allogeneic grafts may pose a risk of disease transmission and immunogenicity. Both the grafts show loss of biological and mechanical properties due to secondary remodeling.
  • PMMA non-resorbable polymeric material
  • fibrin, fibrin sealant or fibrinogen solutions is associated with their binding function, in which a firm and mechanically stable network of good mechanical properties is formed, preventing the biomaterial from being displaced from its site.
  • the present invention is based on obtaining a composition capable of stimulating and achieving the necessary bone growth and regeneration for different application regions, using completely biodegradable and biocompatible materials and reducing the time of these events. biological.
  • a material in order for a material to be injectable for filling, the material must be sterile, non-toxic in vitro, with rheology such that it is injectable, easy to use and has an effective front. mineralization. All of these requirements are met in the present patent application as bioresorbable polymers and calcium salts which impart bioactivity and osteoinduction to the composition are used.
  • the preferably synthetic resorbable polymers used are a polymeric matrix with biocompatibility, biodegradability and hydrophilicity characteristics. Thus, the material interacts strongly with the biological fluid and the graft implant microenvironment
  • the calcium (ceramic) salts used in the present invention are calcium phosphates, natural inorganic constituents of bone tissue. These ceramic constituents are of great interest in applications involving the formation of hard mineralized tissues, as they are non-toxic and non-immunogenic, attributing osteoinduction capacity to the material.
  • the introduction of ceramic particles with bioresorbable polymers provides advantages such as optimization of mechanical properties, increased osteoinductivity, control of implant degradation rates and intrinsic radiopacity.
  • composition of the bioresorbable injectable material presented in The present invention based on calcium biopolymers and phosphates, generates a biomaterial of mechanical behavior similar to natural bone, besides presenting excellent injectability.
  • the composition is ready for application and requires no prior preparation; It is absent from contrast agents since calcium phosphate salts have intrinsic radiopacity or hardening agents; It is also absent from biological constituents which would require special care.
  • composition developed and described in the present patent application also offers the possibility of viscosity control depending on the region to be applied.
  • the injectable composition should have higher viscosity if applied to fill a cyst.
  • a lower viscosity is required.
  • Bioabsorbable and bioactive compounds developed in the present invention enable their application by minimally invasive processes, reducing the patient's pain and strengthening the necessary structure.
  • the synergy between the constituents of the present invention results in fast and above all guided bone regeneration (ROG). While the minimum time required for the natural regeneration of bone tissue is four months, with the composition developed here, the time required is only 30 days. Additional components may also be included in the bioresorbable injectable bone composition in order to promote augmentation, strengthening, support, repair, reconstruction, healing or bone filling. Options are: osteoconductive agents, chemotherapeutic agents or
  • pharmacological compounds pharmacological compounds, adhesive compounds and mineral additives. These compounds and / or agents may be chemically bound to the matrix, adsorbed onto the
  • particulate constituents attached to the polymeric matrix or contained in a particle / molecule (as if encapsulated, for example).
  • the main objective of the present invention is to obtain a bioactive bioresorbable injectable material for filling cavities or bone defects, ready for use, resulting in regeneration and formation of bone tissue.
  • Figure 1 shows a 30-day rat skull study using the formulation of the present invention.
  • Figure 2A is a scanning electron micrograph.
  • Figure 2B is a scanning electron micrograph.
  • the present invention relates to a bioabsorbable and bioactive injectable material.
  • This material contains viscoelastic property, typical mechanical properties of elastomers and thermal stability and can be injected into defects or bone cavities of many applications, including minimally invasive procedures.
  • the composition of this material comprises biocompatible and biodegradable polymers, preferably of synthetic origin, which gives complete resorption of the injectable material by the body. Furthermore, in the composition there are also bioactive calcium phosphate-based inorganic constituents capable of stimulating bone regeneration and formation.
  • osteoconductive agents such as bioglass and calcium phosphate and combinations thereof; in addition to chemotherapeutic or pharmacological agents such as: cisplatin, doxorubicin, ifosfamide, methotrexane, cyclophosphamide, etoposide, irinotecan; antibiotics of the following classes: macrolides, in particular erythromycin and azithromycin; tetracyclines, in particular tretracycline, doxycycline and minocycline; Matactam, in particular penicillins, cephalosporins, carbapenems and clavunates; glycopeptides, in particular vancomycin;
  • anti-inflammatory drugs such as the statin class, in particular simvastatin, atorvastatin, lovastatin, fluvastatin, pravastatin, steroidal anti-inflammatory drugs, in particular glucocorticoids, non-limitingly mentioned are dexamethasone, betamethasone, prednisolone, methylprednisolone, hydrocortisone, cortisone, corticosterone, non-steroidal anti-inflammatories, in particular COX inhibitors, of which non-limiting drugs may be cited.
  • salicylate classes acetylsalicylic acid, salicylates
  • indole and indole acetic acids indomethacin, sulindac, etodolac
  • heteroaryl acetic acids diclofenac, ketorolac, aceclofenac, tolmetine
  • arylpropionic acids ibuprofen, naproxen, flurbiprofen, ketoprofen, loxoprofen, oxaprozine
  • anthranilic acids mephanamic acid, meclophenamic acid
  • enolic acids piroxicam, tenoxicam, meloxicam
  • alkanones nabumetone
  • the coxibs rofecoxib, celecoxib, etoricoxib
  • para-aminophenol acetaminophen
  • sulfonanilides sulfonanilides
  • adhesive compounds such as gums or gelatin, starch, modified cellulose, chitosan, chitin, carboxymethylcellulose,
  • mineral additives such as bioavailable zinc, iron, manganese, magnesium and selenium, which may be combined with calcium and phosphorus (such as glycerophosphate and carbonates), as well as zinc, copper and iron in the form of sulfate salts.
  • the present invention describes a bioactive resorbable injectable material composition, called a bioactive resorbable injectable bone or moldable paste, for tissue engineering.
  • Such a composition contains bioresorbable polymers of natural or synthetic origin, preferably of synthetic origin, which impart to the physical structure the appropriate mechanical characteristics and hydrophilicity required for biological fluid interaction.
  • Said composition also contains bioactive inorganic constituents (bioactive ceramics) which serve as cellular signaling and consequent stimulation for bone formation, growth and regeneration.
  • bioabsorbable and bioactive injectable material contains viscoelastic property, typical mechanical properties of elastomers and thermal stability and can be injected into defects or bone cavities of many applications, including minimally invasive procedures.
  • composition of this material comprises biocompatible and biodegradable polymers, preferably of synthetic origin, which gives complete resorption of the injectable material by the body.
  • composition there are also bioactive calcium phosphate-based inorganic constituents capable of stimulating bone regeneration and formation.
  • composition is based on three main constituents, that is, the composition must present:
  • bioresorbable and biocompatible polymer combinations such as combinations of polymers of natural or synthetic origin, which are capable of degradation by hydrolytic and / or enzymatic processes to non-toxic hydroacids.
  • Lactide-based monomers and / or homopolymers in all possible isomeric variations such as D-lactide, L-lactide, DL-lactide; ⁇ -caprolactone monomer and / or homopolymer;
  • glycolide monomers and / or homopolymers poly (hydroxyalkanoate); poly (esters) and poly (amides) derived from aliphatic dicarboxylic acids and aliphatic hydroxy acids or aliphatic amino acids; poly (caprolactam); poly (dioxanone);
  • trimethylene polycarbonate polycarbonate
  • poly (urethanes) poly (urethanes); as well as copolyesters, copoly (amides) and copoly (ester-amide) of these derivatives and mixtures thereof.
  • poly (lactides), poly (glycolides), and others may also be considered poly (lactides), poly (glycolides), and others.
  • pulley anhydrides
  • poly (amines) poly (stereosides), poly (orthoesters),
  • hydrophilic (s) determine the polymeric matrix of the formulation of the present invention.
  • the biocompatible bioresorbable polymer (s) and / or combinations thereof will be present as from 5 to 85% of the bioactive bioresorbable injectable bone formulation, preferably from 15 to 80% by weight of the composition. total.
  • bioresorbable polymers may be homopolymers and / or copolymers of the isomeric D, L and DL isomeric variations of lactide, glycolide and / or ⁇ -caprolactone, as well as mixtures thereof, the main advantages of these aliphatic poly (esters) being biocompatibility and biodegradability.
  • Diblock or triblocoform copolymer may be used by monomers or homopolymers of the lactide, glycolide or caprolactone families.
  • lactide monomer or homopolymer
  • hydrophilic polymers responsible for conferring the required affinity of the composition for water.
  • the hydrophilic polymers used are selected from the group consisting of poly (ethylene oxide) s,
  • poly (ethylene glycol) s poly (vinyl alcohol), poly (vinyl pyrrolidone), poly (sodium styrene maleate), gelatin, starch, modified cellulose, chitin, among others.
  • the hydrophilic polymers used are based on poly (ethylene glycol) (PEG) in mass ratios ranging from 0.1% to 99.9% relative to polymer matrix (i) and (ii).
  • PEG poly (ethylene glycol)
  • the PEG polymer may be used in molar masses between 200 and 10,000,000 g.mol "1 , where preferably between 400 and 6,000 g.mol- 1 ;
  • PEG can be functionalized with other organic molecules at the polymer chain end or branch.
  • Diblock or triblocoform copolymer may be used.
  • caprolactone as well as the PEG molecule.
  • bioactive ceramic present in an amount from 0.5% to 50%, preferably from 1.0% to 40.0%, and more preferably from 1.0% to 20.0%, relative to the matrix. polymeric.
  • This ceramic constituent is composed of calcium salts (calcium carbonate, calcium sulfate and combinations thereof), more specifically calcium phosphates such as: tricalcium phosphate, tricalcium alpha-phosphate, tricalcium beta-phosphate, calcium phosphate polymorphs hydroxyapatite.
  • calcium salts calcium carbonate, calcium sulfate and combinations thereof
  • calcium phosphates such as: tricalcium phosphate, tricalcium alpha-phosphate, tricalcium beta-phosphate, calcium phosphate polymorphs hydroxyapatite.
  • calcium phosphates such as: tricalcium phosphate, tricalcium alpha-phosphate, tricalcium beta-phosphate, calcium phosphate polymorphs hydroxyapatite.
  • TeCP tetracalcium phosphate
  • Ca 4 0 (P0 4) 2] hydroxyapatite
  • bioactive bioresorbable injectable bone The mechanical properties of bioactive bioresorbable injectable bone are controlled by varying the viscosity which should be in the range of 1 mPa.s and 14kPa.s.
  • the main features of the present invention are delimited by viscosity, which may be modulated by the composition of the polymeric matrix, varying by weight percentages, and by the inorganic phase, ie the amount of ceramic present in the formulation.
  • the viscosity of bioactive bioresorbable injectable bone is dependent on the application, ie the bone dysfunction to be treated.
  • other properties are also essential and equally dependent on injectable bone composition, such as mechanical stability and bioresorbation time.
  • osteoconductive agents such as bioglass and calcium phosphate and combinations thereof; in addition to chemotherapeutic or pharmacological agents such as: cisplatin, doxorubicin, ifosfamide, methotrexane, cyclophosphamide, etoposide, irinotecan; antibiotics of the following classes: macrolides, in particular erythromycin and azithromycin; tetracyclines, in particular tretracycline, doxycycline and minocycline; -lactams, in particular penicillins, cephalosporins, carbapenems and clavunates; glycopeptides, in particular vancomycin; aminoglycosides, in particular streptomycin, gentamicin and tobramycin; and licosamides, especially clindamycin; anti-inflammatory drugs such as the statin class, in particular simvastatin, atorvastatin, lovastatin, fluvastatin, pravastatin,
  • composition containing said chemotherapeutic and / or pharmacological agents confers the advantage of local treatment of the injured tissue with controlled release of the drug.
  • the composition of the bioresorbable injectable material may further contain adhesive compounds such as gums or gelatin, starch, modified cellulose, chitosan, chitin, carboxymethylcellulose, hydroxypropyl methylcellulose, poloxamer, carbomers, alginates, hydrophilic polymers (polyethylene glycol).
  • composition of the bioresorbable injectable material may also contain mineral additives such as zinc, iron, manganese, magnesium and selenium bioavailable, and may be combined with calcium and phosphorus (such as glycerophosphate and carbonates) as well as zinc, copper and iron in the forms. of sulfate salts.
  • mineral additives such as zinc, iron, manganese, magnesium and selenium bioavailable
  • calcium and phosphorus such as glycerophosphate and carbonates
  • the formulation of this material may further be combined with osteoconductive agents such as bioglass and calcium phosphate and their
  • the process of obtaining bioactive bioresorbable injectable bone is based on the dissolution of polymers and ceramics in the absence of solvent. For this, the dissolution process takes place via temperature and stirring of the mixture.
  • the process of obtaining bioactive bioresorbable injectable bone by dissolution via magnetic stirrer comprises the following steps:
  • step "b” Dissolution of the components of step "a” according to the concomitant substeps on a magnetic stirrer heating plate:
  • thermosensitive elements d) Addition of additional thermosensitive elements; and e) Verification of homogeneity of the polymeric matrix.
  • step "c” stirring is required until complete homogenization of the constituents.
  • the temperature of the medium must reach at least the melting temperature of the higher molecular weight PEG, so that complete dissolution of the constituents of the mixture and ease of homogenization.
  • the polymeric matrix is homogeneous, it is agitated with the consequent addition of the ceramic constituent (s).
  • the heating plate can be replaced by thermostatic bath, water bath, heating blanket, ultrasound, heating plate, heating platform, microwave equipment.
  • the complete homogeneity of the mixture results in the final composition of the bioactive bioresorbable injectable bone developed in the present invention.
  • Heating of the mixture can be achieved by various methods, preferably heating on a magnetic stirrer (with hotplate) or heating on a microwave equipment.
  • the process of obtaining bioactive bioresorbable injectable bone is based on the dissolution of polymers and ceramics in the absence of solvent. For this, the dissolution process takes place via microwave oven.
  • the process of obtaining bioactive bioresorbable injectable bone by dissolution via microwave comprises the following steps:
  • step "A" (a) weighing of polymers, ceramic elements and additional elements; (b) Mixing of the heavy components in step "A";
  • This method has a very short preparation time compared to the first one.
  • the constituents may be mixed concurrently and conducted to microwave radiation using a microwave apparatus and a conventional microwave oven may be used.
  • the radiation intensity in the case of the conventional microwave oven may preferably be modulated to that of higher power.
  • the dissolution of the constituents may be carried out according to the method mentioned in the dissolution via magnetic stirrer with heating plate, or preferably by microwave in sufficient time for the complete dissolution of the polymeric constituents (polymeric matrix).
  • the time may be adjusted according to the nature of the polymers of the composition, being at most 60 (sixty) seconds.
  • the bioactive bioresorbable injectable bone polymer matrix of the present invention is comprised of 80% PEG, at the molar masses 400, 600, 1,000 and 1,500 g.mol "1.
  • PEG the copolymer containing L-lactide and ⁇ -caprolactone, in the ratio LL: CL 2: 3 m / m and ⁇ -TCP as bioactive ceramics ⁇ -TCP is introduced to the polymeric matrix in an amount from 1.0% to 20.0%.
  • the process for obtaining this composition is based on the initial dissolution of the 400 and 600 g.mol "1 molar mass PEGs at room temperature together with the copolymer while stirring.
  • Example 2 The composition of the polymer matrix was kept constant and equal to that of Example 1, while the bioactive ceramic was replaced by HA in the same proportion. The process for obtaining this composition is based on the initial dissolution of the 400 and 600 g.mol "1 molar mass PEGs at room temperature together with the copolymer while stirring.
  • Example 3 The polymer matrix composition was kept constant and equal to that of Example 1, while the bioactive ceramic was replaced by nanoHA in the same proportion. The process for obtaining this composition is based on the initial dissolution of the 400 and 600 g.mol "1 molar mass PEGs at room temperature together with the copolymer while stirring.
  • Example 4 The composition of the polymeric matrix was kept constant and equal to that of Example 1, while the bioactive ceramic was replaced by a binary combination of ⁇ -TCP and HA or ⁇ -TCP and nanoHA ceramics in a ratio ranging from 1: 5 m / m, preferably 1: 1.
  • the process for obtaining this composition is based on the initial dissolution of the 400 and 600 g.mol "1 molar mass PEGs at room temperature together with the copolymer while stirring. Later the 1,000 and 1,500 g.mol " PEGs are added. 1 , with temperature adjustment up to the melting of PEG 1,500 g.mol "1 , under stirring until complete dispersion homogenization.
  • the p-TCP: HA or p-TCP: nanoHA 1: 1 combination is added sequentially, while stirring is maintained until the dispersion is homogeneous.
  • the bioactive bioresorbable injectable bone polymer matrix of the present invention is comprised of 80% PEG, at the molar masses 400, 600, 1,000 and 4,000 g.mol "1. Combined with PEG are the L-containing copolymer. lactide and ⁇ -caprolactone, in the ratio LL: CL 2: 3 m / m and ⁇ -TCP as bioactive ceramics ⁇ -TCP is introduced to the polymeric matrix in an amount from 1.0% to 20.0%.
  • composition of the polymeric matrix was kept constant and the same as in example 1. However, the composition of the PEG combinations was replaced from PEG 1,500 g.mol "1 with PEG 4,000 g.mol " 1 , maintaining the combination of the other molar masses. presented in the first example.
  • the process for obtaining this composition is based on the initial dissolution of the 400 and 600 g.mol "1 molar mass PEGs at room temperature, together with the copolymer, under stirring. Subsequently, 1,500 and 4,000 g.mol " PEGs are added. 1 , with temperature adjustment until PEG melting 4,000 g.mol "1 , still under stirring until complete dispersion homogenization. The ⁇ -TCP is added thereafter, while stirring is continued until the dispersion is homogeneous.
  • Figure 2A and 2B show two electron micrographs of sweep of two different formulations in different sizes. At 25X (twenty five times) magnification, Figure 2A gives a less viscous, more consistent formulation. These images illustrate the different viscosities the material can acquire in view of the changing proportions and nature of the constituents. Both images were taken at room temperature, about 25 ° C. In the figure with the 1,500 X magnification (one thousand five hundred times), figure 2B has another formulation. In this micrograph the presence of dispersed ceramic particles along the polymeric matrix is clear.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A presente invenção descreve uma composição de material injetável biorreabsorvível e bioativo, denominado osso injetável biorreabsorvível bioativo ou pasta moldável, para engenharia de tecidos. Tal composição contém polímeros biorreabsorvíveis, de origem natural ou sintética, sendo preferencialmente de origem sintética, que conferem à estrutura física, as características mecânicas apropriadas e a hidrofilicidade necessária para a interação fluídica biológica. A referida composição contém também constituintes inorgânicos bioativos (cerâmicas bioativas) que servem de sinalização celular e consequente estímulo para a formação, crescimento e regeneração tecidual óssea. Tal composição pode adicionalmente conter: agentes osteocondutivos; agentes quimioterápicos ou farmacológicos; compostos adesivos; e/ou aditivos minerais.

Description

MATERIAL INJETÁVEL BIORREABSORVÍVEL BIOATIVO E PROCESSOS DE PREPARAÇÃO DE MATERIAL INJETÁVEL BIORREABSORVÍVEL
BIOATIVO
Campo da invenção
A presente invenção refere-se à obtenção de um biomaterial injetável com características de biorreabsorção e bioatividade, que possibilita a regeneração e formação de tecidos ósseos em mamíferos, para aplicação em engenharia de tecidos. Este material (doravante, denominado osso injetável biorreabsorvível bioativo, pasta moldável, material injetável biorreabsorvível bioativo) pode ser utilizado para ancoragem total de próteses, aumento do corpo vertebral, preenchimento de cavidades ósseas ou substituição óssea. O biomaterial desenvolvido na presente invenção pode ser aplicado também em muitas doenças relativas ao esqueleto, que necessite de substituição ou suplementação óssea, desde disfunções mais comuns, relacionadas à idade, como osteoporose, artrose e artrite, até as mais graves, como sarcomas e cistos de osso.
Fundamentos da invenção
O osso é um tecido o qual é submetido a adaptações contínuas ao longo da vida do vertebrado, a fim de obter e preservar o tamanho, a forma e a integridade estrutural do esqueleto, além de regular a homeostase mineral.
Os processos de remodelamento e formação constituem a base do desenvolvimento e manutenção do sistema esquelético. Quando ocorre uma lesão no tecido ósseo, a reparação requerida consiste em quatro estágios principais: formação do hematoma de fratura; formação do calo cartilaginoso; formação do calo ósseo; e remodelamento do osso. O processo de reparação óssea dura pelo menos quatro meses e depende da intensidade da lesão tecidual. No entanto, se os segmentos ósseos são perdidos ou injuriados seriamente, resultando na remoção destes tecidos, a soldadura do osso deixa de ser possível e não haverá a formação do calo ósseo. Neste caso, será necessário o uso de um enxerto ou material capaz de restabelecer o tecido ósseo lesado ou perdido.
O crescimento ou a substituição óssea pode ser alcançado por meio do uso de materiais injetáveis. A grande maioria dos materiais existentes em pesquisas e já no mercado é baseada em cimentos ósseos injetáveis, ou seja, materiais de preenchimento capazes de se autoendurecer, com característica de injetabilidade e com habilidade de se conformar ao sítio de implante, podendo apresentar reatividade e potencialidade para liberação controlada de drogas. Geralmente, as misturas injetáveis para regeneração e/ou substituição óssea compreendem três componentes principais que estão descritos no documento US 20060041033: (i) cimento ósseo contendo dois constituintes que quando misturados formam uma pasta de cimento endurecida; (ii) outro constituinte não miscível com a pasta de cimento capaz de gerar poros no material; e (iii) um agente de contraste para análise de raios-X.
O documento WO2004071543A1 também é baseado neste princípio, sendo uma mistura de cimento de osso que, in situ, resulta em um material substituto poroso ósseo.
O documento PI 0317809A também se refere a uma mistura injetável para substituição de tecido ósseo baseada em cimento ósseo (similar aos pedidos citados anteriormente) a partir de um sistema pó/líquido podendo conter o polímero poli(metilmetacrilato) (PMMA), o monômero metilmetacrilato (MMA), catalisador e acelerador de polimerização, uma pasta de cimento de fosfato de cálcio, um agente de contraste, entre outros. De forma geral, estes pedidos de patente abordam um cimento de polimetacrilato ou um cimento de fosfato de cálcio, contendo como outros componentes a água e compostos solúveis nesta, além de contar também com agentes hidrofóbicos, a fim de se obter uma mistura essencialmente dividida em um componente na forma de pó e um componente líquido.
Conforme observado nos pedidos de patentes brevemente descritos acima, são constituintes comuns o polímero PMMA e a presença de um agente radiopaco ou de contraste. No entanto, existem algumas limitações e cuidados a serem tomados com relação ao uso destes componentes. A adição de agentes de contraste, os quais são utilizados para análise de imagens em técnicas à base de raios-X, é necessária para acompanhar a formação de osso pós-operatório. Estes agentes absorvem radiação e não deveriam interagir com o organismo. Porém, na prática clínica tem se observado que os agentes de contraste não são completamente inertes apresentando certo grau de interação e, apesar de serem comumente seguros, o seu uso não é livre de efeitos colaterais, como reações de hipersensibilidade sistémica, reações adversas cardíacas (hipertensão, taquicardia, arritmia), efeitos vasculares (agregação plaquetária, vasoconstrição, trombose) e efeitos adversos renais. O grau de interação e consequente severidade destes efeitos dependem essencialmente de três fatores: (i) quantidade utilizada do agente de contraste; (ii) natureza do composto e (iii) pré-existência de fatores de riscos.
Alguns cuidados devem ser tomados com o uso de cimentos ósseos. Os cimentos encontrados na literatura geralmente são compostos por duas fases que são misturadas no momento da aplicação. A pasta ou cimento obtido, quando aplicado prematuramente, oferece risco de desintegração quando em contato com os fluidos biológicos. Em contrapartida, quando aplicado tardiamente, endurece e adquire consistência não manipulável.
Existem alguns pedidos de patente contendo fibrina em sua composição química. O documento PI 0711900-3 descreve uma composição à base de fibrina biodegradável para injeção nos defeitos ou vazios ósseos que podem ser o resultado de osteoporose, cirurgia, cistos ósseos, remoção de tumor ou dano ósseo traumático. O documento aborda práticas de preenchimento ósseo baseadas em enxerto de osso (autógeno ou alógeno), substitutos de enxerto ósseo, cimentos ósseos (como PMMA, por exemplo) ou sais de cálcio injetáveis. O documento menciona ainda que enxertos autógenos são muito usados, mas sua aplicação com o tecido doador apresenta limitações como trauma, infecção ou morbidade, enquanto que os enxertos alógenos podem oferecer risco de transmissão de doenças e imunogenicidade. Ambos os enxertos mostram perda de propriedades biológicas e mecânicas devido ao remodelamento secundário. Também de acordo com este pedido de patente, é mencionada a limitação do uso de PMMA: material polimérico não reabsorvível. Durante a sua polimerização, monômeros que não reagiram, catalisador e oligômeros de baixo peso molecular podem ficar presos na estrutura do polímero e podem ser liberados do material, resultando em respostas
citotóxicas e imunológicas localizadas. Além disso, a reação de polimerização do PMMA é exotérmica, podendo causar necrose pelo calor. O fato de a reação ser exotérmica também limita a incorporação de agentes
farmacológicos ou quimioterápicos. A dispersão de PMMA também pode resultar em complicações muito sérias incluindo a compressão de estruturas adjacentes (o que requer uma cirurgia posterior) e/ou embolismo. Mesmo assim este material é ainda bastante usado como material injetável.
Outro documento, depositado no Brasil como PI 0712910-6, também contém fibrina em seu princípio de ação. O uso de fibrina, selante de fibrina ou soluções de fibrinogênio, está associado a sua função aglutinante, no qual há a formação de uma rede firme e mecanicamente estável, de boas propriedades mecânicas, evitando que o biomaterial seja deslocado do seu sítio de
implantação. A estratégia destas composições é atraente, porém o uso de proteínas está restrito a cuidados de temperatura e do meio no qual estas moléculas são inseridas, para que não haja a perda da atividade biológica. Estas restrições também são encontradas em outros tipos de material injetável, como em um cimento à base de osso particulado (documento US 7371409), no documento US20040101960, à base de células e também em materiais que contenham biomoléculas, tais como proteínas morfogenéticas ósseas.
Já existem no mercado, produtos com a finalidade de promover osteointegração a partir do contato adjacente do produto com uma superfície óssea. Podem ser chamados de substitutos ósseos sintéticos e injetáveis. No entanto, utilizam apenas composição cerâmica, na forma de pasta, podendo oferecer alguns dos riscos à saúde previamente citados para o uso de cimentos ósseos. Neste produto, a mistura que resulta na forma pastosa deve ser feita no momento da aplicação, pois os componentes vêm separadamente e o controle da consistência ou viscosidade é ajustado manualmente.
Frente às opções existentes, a presente invenção está baseada na obtenção de uma composição capaz de estimular e alcançar o crescimento e a regeneração óssea necessária para diferentes regiões de aplicação, a partir do uso de materiais completamente biodegradáveis e biocompatíveis e com redução do tempo destes eventos biológicos. De acordo com o documento US20070276505, para que um material possa ser utilizado de maneira injetável para preenchimento, o material deve ser esterilizável, não tóxico in vitro, com reologia tal que permita a injeção, de fácil manipulação ao uso e ter uma frente eficaz de mineralização. Todos estes requisitos são alcançados no presente pedido de patente, uma vez que são utilizados polímeros biorreabsorvíveis e sais de cálcio que conferem a bioatividade e osteoindução à composição.
Os polímeros biorreabsorvíveis utilizados, preferencialmente sintéticos, constituem uma matriz polimérica com características de biocompatibilidade, biodegradabilidade e hidrofilicidade. Assim, o material interage fortemente com o fluido biológico e o microambiente do implante na forma de enxerto
temporário, uma vez que os produtos de degradação dos polímeros são completamente eliminados do organismo por rotas metabólicas. Os sais de cálcio (cerâmica) utilizados na presente invenção são os fosfatos de cálcio, constituintes inorgânicos naturais do tecido ósseo. Estes constituintes cerâmicos são de grande interesse em aplicações que envolvem a formação de tecidos duramente mineralizados, pois não apresentam toxicidade e não são imunogênicos, atribuindo capacidade de osteoindução ao material. A
introdução de partículas de cerâmica junto aos polímeros biorreabsorvíveis proporciona vantagens como a otimização das propriedades mecânicas, aumento da osteoindutividade, controle das taxas de degradação do implante e radiopacidade intrínseca.
A composição do material injetável biorreabsorvível apresentado na presente invenção, baseada em biopolímeros e fosfatos de cálcio, gera um biomaterial de comportamento mecânico similar ao osso natural, além de apresentar ótima injetabilidade. A composição já está pronta para a aplicação e não requer preparo prévio; é ausente de agentes de contraste uma vez que os sais de fosfato de cálcio apresentam radiopacidade intrínseca ou agentes endurecedores; e também é ausente de constituintes biológicos, os quais necessitariam de cuidados especiais.
A composição desenvolvida e descrita no presente pedido de patente oferece ainda a possibilidade de controle de viscosidade, dependendo da região a ser aplicada. Por exemplo, a composição injetável deve apresentar maior viscosidade, se aplicada para preenchimento de um cisto. No entanto, para reposição de porções não mineralizadas é necessário uma viscosidade menor. As características inerentes ao material sintético injetável
biorreabsorvível e bioativo desenvolvido na presente invenção possibilitam a sua aplicação por processos minimamente invasivos, reduzindo a dor do paciente e fortalecendo a estrutura necessária.
A sinergia entre os constituintes da presente invenção (polímeros biorreabsorvíveis e hidrofílicos e também a cerâmica bioativa) resulta em regeneração óssea guiada (ROG) e, sobretudo, rápida. Enquanto que o tempo mínimo necessário para a regeneração natural de um tecido ósseo é de quatro meses, com a composição aqui desenvolvida, o tempo necessário é de apenas 30 dias. Componentes adicionais podem ser também incluídos na composição do osso injetável biorreabsorvível, a fim de promover aumento, fortalecimento, suporte, reparação, reconstrução, cicatrização ou preenchimento do osso. São opções: agentes osteocondutivos, agentes quimioterapêuticos ou
farmacológicos, compostos adesivos e aditivos minerais. Estes compostos e/ou agentes podem ser quimicamente ligados à matriz, adsorvidos nos
constituintes particulados, presos à matriz polimérica ou contidos em uma partícula/molécula (como se encapsulado, por exemplo).
Desta forma, o objetivo principal da presente invenção é a obtenção de um material injetável biorreabsorvível bioativo para preenchimento de cavidades ou defeitos ósseos, pronto para uso, resultando em regeneração e formação de tecido ósseo.
Breve descrição das figuras
A Figura 1 mostra um estudo realizado em crânio de ratos, durante 30 dias, utilizando a formulação da presente invenção.
A Figura 2A é uma micrografia eletrônica de varredura.
A Figura 2B é uma micrografia eletrônica de varredura.
Sumário da invenção
A presente invenção refere-se à um material injetável biorreabsorvível e bioativo. Este material contém propriedade viscoelástica, propriedades mecânicas típicas de elastômeros e estabilidade térmica, podendo ser injetado em defeitos ou cavidades ósseas de muitas aplicações, em procedimentos minimamente invasivos, inclusive. A composição deste material compreende polímeros biocompatíveis e biodegradáveis, preferencialmente de origem sintética, o que confere completa reabsorção do material injetável pelo organismo. Além disso, na composição também estão presentes constituintes inorgânicos bioativos à base de fosfatos de cálcio, capazes de estimular a regeneração e a formação óssea. À formulação deste material podem ser combinados agentes osteocondutivos como biovidros e fosfatos de cálcio e suas combinações; além de agentes quimioterapêuticos ou farmacológicos, tais como: cisplatina, doxorrubicina, ifosfamida, metotrexano, ciclofosfamida, etoposido, irinotecano; antibióticos das seguintes classes: macrolídeos, em especial, eritromicina e azitromicina; tetraciclinas, em especial, tretraciclina, doxiciclina e minociclina; Mactâmicos, em especial, penicilinas, cefalosporinas, carbapenêmicos e clavunatos; glicopeptídeos, em especial, vancomicina;
aminoglicosídeos, em especial, estreptomicina, gentamicina e tobramicina; e as licosamidas, em especial, clindamicina; anti-inflamatórios como a classe das estatinas, em especial, sinvastatina, atorvastatina, lovastatina, fluvastatina, pravastatina, anti-inflamatórios esteroidais, em especial os glicocorticoides, dos quais podem ser citados, de forma não limitante, dexametasona, betametasona, prednisolona, metilprednisolona, hidrocortisona, cortisona, corticosterona, anti-inflamatórios não-esteroidais, em especial os inibidores da COX, dos quais podem ser citados, de forma não limitante, fármacos das classes dos salicilatos (ácido acetilsalicílico, salicilatos); dos ácidos indol e indol acéticos (indometacina, sulindaco, etodolac); dos ácidos hetero aril-acéticos (diclofenaco, cetorolaco, aceclofenaco, tolmetina); dos ácidos arilpropiônicos (ibuprofeno, naproxeno, flurbiprofeno, cetoprofeno, loxoprofeno, oxaprozina); dos ácidos antranílicos (ácido mefanâmico, ácido meclofenâmico); dos ácidos enólicos (piroxicam, tenoxicam, meloxicam); dos alcanones (nabumetona); dos coxibes (rofecoxib, celecoxib, etoricoxib); do para-aminofenol (paracetamol); dos sulfonanilidas (nimesulida); e agentes fitoter.
Pode conter ainda compostos adesivos como gomas ou gelatinas, amido, celulose modificada, quitosana, quitina, carboximetilcelulose,
hidroxipropilmetilcelulose, poloxamer, carbômeros, alginatos, polímeros hidrofílicos (polietilenoglicol); e aditivos minerais como os biodisponíveis a base de zinco, ferro, manganês, magnésio e selênio, podendo ser combinados com cálcio e fósforo (como glicerofosfato e carbonatos), assim como zinco, cobre e ferro nas formas de sais sulfato.
Descrição detalhada da invenção
A presente invenção descreve uma composição de material injetável biorreabsorvível e bioativo, denominado osso injetável biorreabsorvível bioativo ou pasta moldável, para engenharia de tecidos.
Tal composição contém polímeros biorreabsorvíveis, de origem natural ou sintética, sendo preferencialmente de origem sintética, que conferem à estrutura física, as características mecânicas apropriadas e a hidrofilicidade necessária para a interação fluídica biológica. A referida composição contém também constituintes inorgânicos bioativos (cerâmicas bioativas) que servem de sinalização celular e consequente estímulo para a formação, crescimento e regeneração tecidual óssea. A presente invenção refere-se à um material injetável biorreabsorvível e bioativo. Este material contém propriedade viscoelástica, propriedades mecânicas típicas de elastômeros e estabilidade térmica, podendo ser injetado em defeitos ou cavidades ósseas de muitas aplicações, em procedimentos minimamente invasivos, inclusive.
A composição deste material compreende polímeros biocompatíveis e biodegradáveis, preferencialmente de origem sintética, o que confere completa reabsorção do material injetável pelo organismo.
Além disso, na composição também estão presentes constituintes inorgânicos bioativos à base de fosfatos de cálcio, capazes de estimular a regeneração e a formação óssea.
A composição é baseada em três constituintes principais, isto é, a composição apresenta obrigatoriamente:
(i) de combinações de polímeros biorreabsorvíveis e biocompatíveis, como combinações de polímeros de origem natural ou sintética, os quais são capazes de sofrerem degradação por meio de processos hidrolíticos e/ou enzimáticos a hidroácidos não-tóxicos. Monômeros e/ou homopolímeros a base de lactídeo em todas as variações isoméricas possíveis, tais como D-lactídeo, L-lactídeo, DL-lactídeo; monômero e/ou homopolímero ε-caprolactona;
monômeros e/ou homopolímeros glicolídeo; poli(hidroxialcanoato); poli(ésteres) e poli(amidas) derivados de ácidos dicarboxílicos alifáticos e de hidroxiácidos alifáticos ou aminoácidos alifáticos; poli(caprolactama); poli(dioxanona);
policarbonato de trimetileno); poli(uretanos); bem como copoliésteres, copoli(amidas) e copoli(éster-amida) destes derivados e misturas destes.
Podem ser também considerados poli(lactídeos), poli(glicolídeos),
polia(nidridos), poli(aminas), poli(esteramidas), poli(ortoésteres),
poli(dioxanonas), poli(acetais), poli(cetais), poli(carbonatos),
poli(ortocarbonatos), poli(fosfazenos), succinatos, ácido poli(málico),
poli(aminoácidos), polivinilpirrolidona, poli(etilenoglicol), poli(hidroxicelulose), poli(fosfoésteres), quitina, quitosana, ácido hialurônico e copolímeros, terpolímeros e misturas dos mesmos.
Este constituinte polimérico, juntamente com o(s) polímero(s)
hidrofílico(s), determinam a matriz polimérica da formulação da presente invenção. Assim, como consituinte, o(s) polímero(s) biorreabsorvível e biocompatível e/ou combinações destes, estará presente como 5 a 85 % da formulação de osso injetável biorreabsorvível bioativo, de forma preferida, entre 15 e 80 % em massa da composição total.
Na presente invenção, os polímeros e copolímeros utilizados
apresentam uma variação na proporção entre os seus constituintes de 0,1% a 99,9% de monômeros ou homopolímeros.
Preferencialmente, tais polímeros biorreabsorvíveis podem ser homopolímeros e/ou copolímeros das variações isoméricas D, L e DL de lactídeo, glicolídeo e/ou de ε-caprolactona, bem como misturas destes sendo a biocompatibilidade e biodegradabilidade as principais vantagens destes poli(ésteres) alifáticos. Pode ser utilizado copolímero dibloco ou triblocoformado por monômeros ou homopolímeros das famílias lactídeo, glicolídeo ou caprolactona.
Em uma composição preferencial, tem-se de 30% a 80% de lactídeo (monômero ou homopolímero) em relação à quantidade dos demais
constituintes (monômeros ou homopolímeros de glicolídeo e/ou ε- caprolactona).
(ii) adição de polímeros hidrofílicos, responsáveis por conferir a afinidade da composição pela água requerida. Os polímeros hidrofílicos utilizados são selecionados do grupo que consiste de poli(óxido de etileno)s,
poli(etilenoglicol)s, poli(álcool vinílico), poli(vinil pirrolidona), poli(estireno- maleato de sódio), gelatina, amido, celulose modificada, quitina, dentre outros.
Preferencialmente, os polímeros hidrofílicos utilizados são à base de poli(etilenoglicol)(PEG) em proporções de massa que variam de 0,1 % a 99,9%, em relação à matriz polimérica (i) e (ii). O polímero PEG pode ser usado em massas molares compreendidas entre 200 e 10.000.000 g.mol"1, sendo preferível entre 400 e 6.000 g.mol"1;
O PEG pode ser funcionalizado com outras moléculas orgânicas nas terminações ou ramificações da cadeia polimérica.
Pode ser utilizado copolímero dibloco ou triblocoformado por
monômeros ou homopolímeros das famílias lactídeo, glicolídeo ou
caprolactona, bem como a molécula de PEG.
(iii) cerâmica bioativa, presente em uma quantidade compreendida entre 0,5% e 50%, preferivelmente entre 1 ,0% e 40,0%, e mais preferivelmente entre 1 ,0% e 20,0%, em relação à matriz polimérica.
Este constituinte cerâmico é composto por sais de cálcio (carbonato de cálcio, sulfato de cálcio e combinações destes), mais especificamente, fosfatos de cálcio, tais como: fosfato tricálcico, alfa-fosfato tricálcico, beta-fosfato tricálcico, polimorfos de fosfato de cálcio, hidroxiapatita. De forma mais detalhada: fosfato tetracálcico [TeCP, Ca40(P04)2], hidroxiapatita [HA,
Caio(P04)6(OH)2] e sua variação de tamanho na escala manométrica
(nanoHA), fosfato de cálcio amorfo [ACP, Ca3(P04)2-iH2), fosfato tricálcico (a, α', β, γ) [TCP, Ca3(P0 )2], fosfato octacálcico [OCP, Ca8H2(P04)6.5H2O], mono- hidrogênio fosfato de cálcio di-hidratado [DCPD, CaHP04.2H20], mono- hidrogênio fosfato de cálcio [DCP, Ca2P207.2H20], fosfato heptacálcico [HCP, Ca (P50i6)2], di-hidrogênio fosfato tetracálcico [TDHP, Ca4H2P602o], fosfato monocálcico mono-hidratado [MCPM, Ca(H2PO4)2.H20] e metafosfato de cálcio (a, p, γ) [CMP, Ca(P03)2].
As propriedades mecânicas do osso injetável biorreabsorvível bioativo são controladas por meio da variação da viscosidade que deve ficar na faixa de 1 mPa.s e 14kPa.s.
As características principais da presente invenção são delimitadas pela viscosidade, a qual pode ser modulada pela composição da matriz polimérica, variando-se as percentagens em peso, e pela fase inorgânica, ou seja, a quantidade de cerâmica presente na formulação. A viscosidade do osso injetável biorreabsorvível bioativo é dependente da aplicação, isto é, da disfunção óssea a ser tratada. Além disso, outras propriedades são também essenciais e igualmente dependentes da composição do osso injetável, como a estabilidade mecânica e o tempo de biorreabsorção.
À formulação deste material podem ser combinados agentes
osteocondutivos como biovidros e fosfatos de cálcio e suas combinações; além de agentes quimioterapêuticos ou farmacológicos, tais como: cisplatina, doxorrubicina, ifosfamida, metotrexano, ciclofosfamida, etoposido, irinotecano; antibióticos das seguintes classes: macrolídeos, em especial, eritromicina e azitromicina; tetraciclinas, em especial, tretraciclina, doxiciclina e minociclina; -lactâmicos, em especial, penicilinas, cefalosporinas, carbapenêmicos e clavunatos; glicopeptídeos, em especial, vancomicina; aminoglicosídeos, em especial, estreptomicina, gentamicina e tobramicina; e as licosamidas, em especial, clindamicina; anti-inflamatórios como a classe das estatinas, em especial, sinvastatina, atorvastatina, lovastatina, fluvastatina, pravastatina, anti- inflamatórios esteroidais, em especial os glicocorticoides, dos quais podem ser citados, de forma não limitante, dexametasona, betametasona, prednisolona, metilprednisolona, hidrocortisona, cortisona, corticosterona, anti-inflamatórios não-esteroidais, em especial os inibidores da COX, dos quais podem ser citados, de forma não limitante, fármacos das classes dos salicilatos (ácido acetilsalicílico, salicilatos); dos ácidos indol e indol acéticos (indometacina, sulindaco, etodolac); dos ácidos hetero aril-acéticos (diclofenaco, cetorolaco, aceclofenaco, tolmetina); dos ácidos arilpropiônicos (ibuprofeno, naproxeno, flurbiprofeno, cetoprofeno, loxoprofeno, oxaprozina); dos ácidos antranílicos (ácido mefanâmico, ácido meclofenâmico); dos ácidos enólicos (piroxicam, tenoxicam, meloxicam); dos alcanones (nabumetona); dos coxibes (rofecoxib, celecoxib, etoricoxib); do para-aminofenol (paracetamol); dos sulfonanilidas (nimesulida); e agentes fitoterápicos.
A composição contendo os referidos agentes quimioterápicos e/ou farmacológicos conferem a vantagem de um tratamento local do tecido lesionado com liberação controlada do fármaco. A composição do material injetável biorreabsorvível pode conter ainda compostos adesivos como gomas ou gelatinas, amido, celulose modificada, quitosana, quitina, carboximetilcelulose, hidroxipropilmetilcelulose, poloxamer, carbômeros, alginatos, polímeros hidrofílicos (polietilenoglicol).
A composição do material injetável biorreabsorvível pode conter ainda aditivos minerais como os biodisponíveis a base de zinco, ferro, manganês, magnésio e selênio, podendo ser combinados com cálcio e fósforo (como glicerofosfato e carbonatos), assim como zinco, cobre e ferro nas formas de sais sulfato.
À formulação deste material podem ser combinados adicionalmente agentes osteocondutivos como biovidros e fosfatos de cálcio e suas
combinações.
Processo de preparação do material injetável biorreabsorvível e bioativo por dissolução via agitador magnético com placa de aquecimento
O processo de obtenção do osso injetável biorreabsorvível bioativo é baseada na dissolução dos polímeros e da cerâmica, na ausência de solvente. Para isso, o processo de dissolução ocorre via temperatura e agitação da mistura.
O processo de obtenção do osso injetável biorreabsorvível bioativo por dissolução via agitador magnético compreende as seguintes etapas:
a) Pesagem dos polímeros e cerâmicas e elementos adicionais;
b) Dissolução dos componentes da etapa "a", conforme as subetapas concomitantes em placa de aquecimento com agitador magnético:
b.1 - dissolução do (s) PEG (s) de menor massa molecular e do (s) poliéster alifático (s);
b.2- dissolução do (s) PEG (s) de maior massa molecular; b.3- adição da cerâmica;
b.4- adição de elementos adicionais.
c) Agitação;
d)Adição dos elementos adicionais termosensíveis; e e)Verificação da homogeneidade da matriz polimérica.
Na etapa "c", a agitação é requerida até completa homogeneização dos constituintes. A temperatura do meio deve atingir, no mínimo, a temperatura de fusão do PEG de maior massa molecular, para que ocorra dissolução completa dos constituintes da mistura e facilidade de homogeneização da mesma.
Opcionalmente, assim que a matriz polimérica estiver homogénea, esta é levada à agitação com consequente adição do (s) constituinte (s) cerâmico (s).
A placa de aquecimento pode ser substituída por banho termostático, banho-maria, manta de aquecimento, ultrassom, chapa de aquecimento, plataforma de aquecimento, equipamento de micro-ondas.
Da mesma forma que o método de dissolução anterior, quando a homogeneidade da mistura estiver completa, tem-se a composição final do osso injetável biorreabsorvível bioativo da presente invenção.
A completa homogeneidade da mistura resulta na composição final do osso injetável biorreabsorvível bioativo desenvolvido na presente invenção.
O aquecimento da mistura pode ser alcançado por diversos métodos, preferencialmente aquecimento em um agitador magnético (com placa de aquecimento) ou aquecimento em um equipamento de micro-ondas.
Processo de preparação do material injetável biorreabsorvível e bioativo por dissolução via forno de microondas
O processo de obtenção do osso injetável biorreabsorvível bioativo é baseada na dissolução dos polímeros e da cerâmica, na ausência de solvente. Para isso, o processo de dissolução ocorre via forno de micro-ondas.
O processo de obtenção do osso injetável biorreabsorvível bioativo por dissolução via microondas compreende as seguintes etapas:
a) Pesagem dos polímeros, elementos cerâmicos e elementos adicionais; b) Mistura dos componentes pesados na etapa "A";
c) Aquecimento dos componentes misturados na etapa "B" em micro- ondas até homogeinização; d) Agitação;
e) Adição dos elementos adicionais termosensíveis; e
f) Verificação da homogeneidade da matriz polimérica.
Este método possui tempo de preparo bastante reduzido em relação ao primeiro. Os constituintes podem ser misturados concomitantemente e conduzidos à radiação de micro-ondas, por meio do uso de um equipamento de micro-ondas, podendo ser utilizado um forno de micro-ondas convencional. A intensidade da radiação, no caso do forno de micro-ondas convencional, pode ser modulada, preferencialmente, para a de maior potência.
A dissolução dos constituintes pode ser realizada segundo o método citado na dissolução via agitador magnético com placa de aquecimento, ou, preferencialmente, por meio de micro-ondas em um tempo suficiente para a completa dissolução dos constituintes poliméricos (matriz polimérica).
O tempo pode ser ajustado conforme a natureza dos polímeros da composição, sendo de no máximo, 60 (sessenta) segundos. Assim que a matriz polimérica estiver homogénea, esta é levada à agitação com
consequente adição do (s) constituinte (s) cerâmico (s).
Da mesma forma que o método de dissolução anterior, quando a homogeneidade da mistura estiver completa, tem-se a composição final do osso injetável biorreabsorvível bioativo da presente invenção.
EXEMPLOS
Exemplo 1 : Em uma composição preferida, a matriz polimérica do osso injetável biorreabsorvível bioativo da presente invenção é constituída de 80% de PEG, nas massas molares 400, 600, 1.000 e 1.500 g.mol"1. Combinados ao PEG estão o copolímero contendo L-lactídeo e ε-caprolactona, na proporção LL:CL 2:3 m/m e o β-TCP como cerâmica bioativa. O β-TCP é introduzido à matriz polimérica em uma quantidade compreendida entre 1 ,0% e 20,0%. O processo para a obtenção desta composição é baseada na dissolução inicial dos PEGs de massa molar 400 e 600 g.mol"1, à temperatura ambiente, juntamente com o copolímero, sob agitação. Posteriormente são adicionados os PEGs 1.000 e 1.500 g.mol"1, com ajuste da temperatura até a fusão do PEG 1.500 g.mol"1, ainda sob agitação até completa homogeneização da dispersão. O β-TCP é adicionado na sequência, mantendo-se a agitação, até que a dispersão esteja homogénea.
Exemplo 2: A composição da matriz polimérica foi mantida constante e igual a do exemplo 1 , enquanto que a cerâmica bioativa foi substituída por HA, na mesma proporção. O processo para a obtenção desta composição é baseada na dissolução inicial dos PEGs de massa molar 400 e 600 g.mol"1, à temperatura ambiente, juntamente com o copolímero, sob agitação.
Posteriormente são adicionados os PEGs 1.000 e 1.500 g.mol"1, com ajuste da temperatura até a fusão do PEG 1.500 g.mol"1, ainda sob agitação até completa homogeneização da dispersão. A HA é adicionada na sequência, mantendo-se a agitação, até que a dispersão esteja homogénea.
Exemplo 3: A composição da matriz polimérica foi mantida constante e igual a do exemplo 1 , enquanto que a cerâmica bioativa foi substituída por nanoHA, na mesma proporção. O processo para a obtenção desta composição é baseada na dissolução inicial dos PEGs de massa molar 400 e 600 g.mol"1, à temperatura ambiente, juntamente com o copolímero, sob agitação.
Posteriormente são adicionados os PEGs 1.000 e 1.500 g.mol"1, com ajuste da temperatura até a fusão do PEG 1.500 g.mol"1, ainda sob agitação até completa homogeneização da dispersão. A nanoHA é adicionada na
sequência, mantendo-se a agitação, até que a dispersão esteja homogénea.
Exemplo 4: A composição da matriz polimérica foi mantida constante e igual a do exemplo 1 , enquanto que a cerâmica bioativa foi substituída por uma combinação binária de cerâmicas β-TCP e HA ou β-TCP e nanoHA, numa razão que varia de 1 :5 m/m, preferencialmente de 1 :1. O processo para a obtenção desta composição é baseada na dissolução inicial dos PEGs de massa molar 400 e 600 g.mol"1, à temperatura ambiente, juntamente com o copolímero, sob agitação. Posteriormente são adicionados os PEGs 1.000 e 1.500 g.mol"1, com ajuste da temperatura até a fusão do PEG 1.500 g.mol"1, ainda sob agitação até completa homogeneização da dispersão. A combinação p-TCP:HA ou p-TCP:nanoHA 1 :1 é adicionada na sequência, mantendo-se a agitação, até que a dispersão esteja homogénea.
Exemplo 5: Nesta composição, a matriz polimérica do osso injetável biorreabsorvível bioativo da presente invenção é constituída de 80% de PEG, nas massas molares 400, 600, 1.000 e 4.000 g.mol"1. Combinados ao PEG estão o copolímero contendo L-lactídeo e ε-caprolactona, na proporção LL:CL 2:3 m/m e o β-TCP como cerâmica bioativa. O β-TCP é introduzido à matriz polimérica em uma quantidade compreendida entre 1 ,0% e 20,0%.
A composição da matriz polimérica foi mantida constante e igual a do exemplo 1. No entanto, a composição das combinações de PEG foi substituído do PEG 1.500 g.mol"1 pelo PEG 4.000 g.mol"1, mantendo a combinação das demais massas molares apresentadas no primeiro exemplo.
O processo para a obtenção desta composição é baseada na dissolução inicial dos PEGs de massa molar 400 e 600 g.mol"1, à temperatura ambiente, juntamente com o copolímero, sob agitação. Posteriormente são adicionados os PEGs 1.500 e 4.000 g.mol"1, com ajuste da temperatura até a fusão do PEG 4.000 g.mol"1, ainda sob agitação até completa homogeneização da dispersão. O β-TCP é adicionado na sequência, mantendo-se a agitação, até que a dispersão esteja homogénea.
Exemplos do material resultante de formulações possíveis estão ilustrados nas Figuras 2A e 2B, mostrados dois aumentos diferentes, obtidos pela técnica de microscopia eletrônica de varredura.
Estudos realizados e resultados obtidos
Em um estudo in vivo, realizado em crânio de ratos, foi avaliada a resposta do tecido ósseo em relação à aplicação de uma formulação
desenvolvida na presente invenção. O resultado do estudo em 30 dias está ilustrado na Figura 1. Nesta fotografia já é possível constatar a formação óssea.
Na Figura 2A e 2B estão apresentadas duas micrografias eletrônicas de varredura de duas formulações distintas, em diferentes tamanhos. Na micrografia de 25 X (vinte e cinco vezes) de aumento, figura 2A tem-se uma formulação menos viscosa, mais consistente. Estas imagens ilustram as diferentes viscosidades que o material pode adquirir ante a mudança de proporções e natureza dos constituintes. Ambas as imagens foram obtidas à temperatura ambiente, cerca de 25°C. Na figura com o aumento de 1.500 X (um mil e quinhentas vezes), figura 2B tem-se uma outra formulação. Nesta micrografia é nítida a presença de partículas cerâmicas dispersas ao longo da matriz polimérica.
Embora a versão preferida da invenção tenha sido ilustrada e descrita, deve ser compreendido que a mesma não é limitada. Diversas modificações, mudanças, variações, substituições e equivalentes poderão ocorrer, sem desviar do escopo da presente invenção.

Claims

REIVINDICAÇÕES
1- Material injetável biorreabsorvível bioativo caracterizado pelo fato de conter obrigatoriamente combinação de polímeros biorreabsorvíveis; polímeros hidrofílicos; e cerâmica bioativa.
2- Material, de acordo com a reivindicação 1 , caracterizado pelo fato de ainda conter agentes osteocondutivos; agentes quimioterápicos ou farmacológicos; compostos adesivos; e/ou aditivos minerais.
3- Material, de acordo com a reivindicação 1 , caracterizado pelo fato da combinações de polímeros biorreabsorvíveis e biocompatíveis ser realizada com polímeros de origem natural ou sintética capazes de sofrer degradação por meio de processos hidrolíticos e/ou enzimáticos a hidroácidos não-tóxicos.
4- Material, de acordo com a reivindicação 3, caracterizado pelo fato da combinações dos polímeros biorreabsorvíveis e biocompatíveis serem monômeros e/ou homopolímeros a base de lactídeo em todas as variações isoméricas, tais como D-lactídeo, L-lactídeo, DL-lactídeo; monômero e/ou homopolímero ε-caprolactona; monômeros e/ou homopolímeros glicolídeo; poli(hidroxialcanoato); poli(ésteres) e poli(amidas) derivados de ácidos dicarboxílicos alifáticos e de hidroxiácidos alifáticos ou aminoácidos alifáticos; poli(caprolactama); poli(dioxanona); policarbonato de trimetileno);
poli(uretanos); bem como copoliésteres, copoli(amidas) e copoli(éster-amida) destes derivados e misturas destes; poli(lactídeos); poli(glicolídeos);
polia(nidridos); poli(aminas); poli(esteramidas); poli(ortoésteres);
poli(dioxanonas); poli(acetais); poli(cetais); poli(carbonatos);
poli(ortocarbonatos); poli(fosfazenos); succinatos; ácido poli(málico);
poli(aminoácidos); polivinilpirrolidona; poli(etilenoglicol); poli(hidroxicelulose); poli(fosfoésteres); quitina; quitosana; ácido hialurônico e copolímeros;
terpolímeros e misturas dos mesmos.
5- Material, de acordo com a reivindicação 7, caracterizado pelo fato do(s) polímero(s) biorreabsorvível e biocompatível serem homopolímeros e/ou copolímeros das variações isoméricas D, L e DL de lactídeo, glicol ídeo e/ou de ε-caprolactona, bem como misturas com biocompatibilidade e biodegradabilidade.
6- Material, de acordo com a reivindicação 5, caracterizado pelo fato uma composição terde 30% a 80% de lactídeo monômero ou
homopolímero em relação à quantidade dos monômeros ou homopolímeros de glicolídeo e/ou ε-caprolactona.
7- Material, de acordo com a reivindicação 3, caracterizado pelo fato do(s) polímero(s) biorreabsorvível e biocompatível e/ou combinações destes, estarem presente como 5 a 85 % da formulação de material injetável biorreabsorvível e bioativo.
8- Material, de acordo com a reivindicação 6, caracterizado pelo fato do(s) polímero(s) biorreabsorvível e biocompatível e/ou combinações destes, estarem presente como 15 a 80 % da formulação de material injetável biorreabsorvível e bioativo.
9- Material, de acordo com a reivindicação 3, caracterizado pelo fato do(s) polímero(s) biorreabsorvível e biocompatível apresenta uma variação na proporção entre os seus constituintes de 0,1 % a 99,9% de monômeros ou homopolímeros.
10- Material, de acordo com a reivindicação 1 , caracterizado pelo fato dos polímeros hidrofílicos serem selecionados do grupo que consiste de poli(óxido de etileno)s, poli(etilenoglicol)s, poli(álcool vinílico), poli(vinil pirrolidona), poli(estireno-maleato de sódio), gelatina, amido, celulose modificada, quitina.
11- Material, de acordo com a reivindicação 10, caracterizado pelo fato dos polímeros hidrofílicos serem à base de poli(etilenoglicol)(PEG) em proporções de massa que variam de 0,1% a 99,9%, em relação à matriz polimérica.
12- Material, de acordo com a reivindicação 11 , caracterizado pelo fato do polímero PEG ser usado em massas molares compreendidas entre 200 e 10.000.000 g.mol"1-
13- Material, de acordo com a reivindicação 11 , caracterizado pelo fato do polímero PEG ser usado em massas molares compreendidas entre 400 e 6.000 g.mol"1.
14- Material, de acordo com a reivindicação 13, caracterizado pelo fato da cerâmica bioativa ser composta por sais de cálcio carbonato de cálcio, sulfato de cálcio e combinações destes.
15- Material, de acordo com a reivindicação 14, caracterizado pelo fato da cerâmica bioativa ser composta por fosfatos de cálcio: fosfato tricálcico, alfa-fosfato tricálcico, beta-fosfato tricálcico, polimorfos de fosfato de cálcio, hidroxiapatita. De forma mais detalhada: fosfato tetracálcico [TeCP,
Ca 0(P04)2], hidroxiapatita [HA, Caio(PO4)6(OH)2] e sua variação de tamanho na escala manométrica (nanoHA), fosfato de cálcio amorfo [ACP,
Ca3(P04)2.nH2), fosfato tricálcico (α, α', β, γ) [TCP, Ca3(P04)2], fosfato octacálcico [OCP, Ca8H2(P04)6-5H20], mono-hidrogênio fosfato de cálcio di- hidratado [DCPD, CaHP04.2H20], mono-hidrogênio fosfato de cálcio [DCP, Ca2P207.2H20], fosfato heptacálcico [HCP, Ca7(P5Oi6)2], di-hidrogênio fosfato tetracálcico [TDHP, Ca H2Pe02o], fosfato monocálcico mono-hidratado [MCPM, Ca(H2PO4)2.H20] e metafosfato de cálcio (α, β, γ) [CMP, Ca(PO3)2].
16- Material, de acordo com a reivindicação 14, caracterizado pelo fato da cerâmica bioativa estar presente em uma quantidade compreendida entre 0,5% e 50% em relação à matriz polimérica.
17- Material, de acordo com a reivindicação 16, caracterizado pelo fato da cerâmica bioativa estar presente em uma quantidade compreendida entre 1 ,0% e 40,0% em relação à matriz polimérica.
18- Material, de acordo com a reivindicação 17, caracterizado pelo fato da cerâmica bioativa estar presente em uma quantidade compreendida entre 1 ,0% e 20,0% em relação à matriz polimérica.
19- Material, de acordo com as reivindicações 16, 17 e 18,
caracterizado pelo fato da variação da viscosidade do material definida pela quantidade de cerâmica bioativa variar faixa de 1 mPa.s e 14kPa.s.
20- Material, de acordo com a reivindicação 2, caracterizado pelo fato dos agentes osteocondutivos serem biovidros e fosfatos de cálcio e suas combinações.
21- Material, de acordo com a reivindicação 2, caracterizado pelo fato dos agentes quimioterapêuticos ou farmacológicos serem escolhidos do grupo que consiste em: cisplatina; doxorrubicina; ifosfamida; metotrexano;
ciclofosfamida; etoposido; irinotecano; antibióticos macrolídeos: eritromicina e azitromicina, tetraciclinas tretraciclina e doxiciclina e minociclina, ?-lactâmicos: penicilinas e cefalosporinas e carbapenêmicos, e clavunatos; glicopeptídeos: vancomicina; aminoglicosídeos: estreptomicina, gentamicina e tobramicina; licosamidas clindamicina; anti-inflamatórios da classe das estatinas:
sinvastatina, atorvastatina, lovastatina, fluvastatina, pravastatina; anti- inflamatórios esteroidais glicocorticoides: dexametasona, betametasona, prednisolona, metilprednisolona, hidrocortisona, cortisona, corticosterona; anti- inflamatórios não-esteroidais inibidores da COX: das classes dos salicilatos ácido acetilsalicílico, salicilatos; dos ácidos indol e indol acéticos: indometacina, sulindaco, etodolac; dos ácidos hetero aril-acéticos: diclofenaco, cetorolaco, aceclofenaco, tolmetina; dos ácidos arilpropiônicos: ibuprofeno, naproxeno, flurbiprofeno, cetoprofeno, loxoprofeno, oxaprozina; dos ácidos antranílicos: ácido mefanâmico, ácido meclofenâmico; dos ácidos enólicos: piroxicam, tenoxicam, meloxicam; dos alcanones: nabumetona; dos coxibes: rofecoxib, celecoxib, etoricoxib; do para-aminofenol: paracetamol; dos sulfonanilidas: nimesulida; e agentes fitoterápicos.
22- Material, de acordo com a reivindicação 21 , caracterizado pelo fato dos agentes quimioterapêuticos ou farmacológicos serem permitirem tratamento local do tecido lesionado com liberação controlada do fármaco.
23- Material, de acordo com a reivindicação 2, caracterizado pelo fato dos agentes compostos adesivos serem gomas ou gelatinas, amido, celulose modificada, quitosana, quitina, carboximetilcelulose, hidroxipropilmetilcelulose, poloxamer, carbômeros, alginatos ou polímeros hidrofílicos polietilenoglicol.
24- Material, de acordo com a reivindicação 2, caracterizado pelo fato dos aditivos minerais biodisponíveis serem à base de zinco, ferro, manganês, magnésio e selênio, combinados ou não com cálcio e fósforo como glicerofosfato e carbonatos, assim como zinco, cobre e ferro nas formas de sais sulfato.
25- Processo de preparação de material injetável biorreabsorvível bioativo caracterizado pelo fato de compreender as seguintes etapas:
a)Pesagem dos polímeros e elementos cerâmicos e elementos adicionais;
b) Dissolução dos componentes da etapa "a", conforme as subetapas concomitantes em agitador magnético com placa de aquecimento:
b.1 - dissolução do (s) PEG (s) de menor massa molecular e do (s) poliéster alifático (s);
b.2- dissolução do (s) PEG (s) de maior massa molecular; b.3- adição da cerâmica;
b.4- adição de elementos adicionais.
c) Agitação;
d)Adição de elementos adicionais termosensíveis; e
e)Verificação da homogeneidade da matriz polimérica.
26- Processo, de acordo com a reivindicação 25, caracterizado pelo fato de na etapa "b" a temperatura do meio deve atingir, no mínimo, a temperatura de fusão do PEG de maior massa molecular.
27- Processo, de acordo com a reivindicação 25, caracterizado pelo fato de na etapa "d", a agitação ocorrer até completa homogeneização dos constituintes.
28- Processo, de acordo com a reivindicação 25, caracterizado pelo fato de placa de aquecimento pode ser substituída por banho termostático, banho-maria, manta de aquecimento, ultrassom, chapa de aquecimento, plataforma de aquecimento, equipamento de micro-ondas.
29- Processo de preparação de material injetável biorreabsorvível bioativo caracterizado pelo fato de compreender as seguintes etapas:
a) Pesagem dos polímeros, elementos cerêmicos e elementos adicionais; b) Mistura dos componentes pesados na etapa "A";
c) Aquecimento dos componentes misturados na etapa "B" em microondas até homogeinização;
d) Agitação;
e) Adição dos elementos adicionais termosensíveis; e
f) Verificação da homogeneidade da matriz polimérica.
30- Processo de acordo com a reivindicação 29, caracterizado pelo fato de na etapa "c" o tempo ser ajustado conforme a natureza dos polímeros da composição, sendo de no máximo, 60 (sessenta) segundos.
PCT/BR2012/000373 2012-05-04 2012-09-28 Material injetável biorreabsorvível bioativo e processos de preparação de material injetável biorreabsorvível bioativo WO2013163705A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102012010542-0A BR102012010542B1 (pt) 2012-05-04 2012-05-04 Material injetável biorreabsorvível bioativo e processo de preparação de material injetável biorreabsorvível bioativo
BR1020120105420 2012-05-04

Publications (1)

Publication Number Publication Date
WO2013163705A1 true WO2013163705A1 (pt) 2013-11-07

Family

ID=49514119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000373 WO2013163705A1 (pt) 2012-05-04 2012-09-28 Material injetável biorreabsorvível bioativo e processos de preparação de material injetável biorreabsorvível bioativo

Country Status (2)

Country Link
BR (1) BR102012010542B1 (pt)
WO (1) WO2013163705A1 (pt)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103845760A (zh) * 2014-02-25 2014-06-11 天津市镁胜生物技术有限公司 一种降解速率可控的体内降解脊柱融合器及其制备方法
CN107823703A (zh) * 2017-11-17 2018-03-23 河北点云生物科技有限公司 一种3d打印人工骨制造注射型制剂的方法
WO2018055615A1 (en) * 2016-09-22 2018-03-29 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Injectable implants
CN109464702A (zh) * 2019-01-14 2019-03-15 浙江瑞谷生物科技有限公司 含bmp-2的牙槽骨修复材料及其制备方法和应用
CN110075359A (zh) * 2019-03-26 2019-08-02 华南理工大学 一种超声辅助制备多孔骨水泥支架及其制备方法
CN110997021A (zh) * 2017-05-30 2020-04-10 爱可法Ip有限公司 包含聚(1,3-三亚甲基碳酸酯)的可再吸收可生物降解的医药和化妆品组合物
CN111166940A (zh) * 2019-08-31 2020-05-19 深圳市立心科学有限公司 可吸收的人工骨复合材料及其制备方法
CN111558090A (zh) * 2020-05-19 2020-08-21 中南大学 一种利用月桂醇修饰45s5生物活性玻璃制备d-45s5/plla复合骨支架的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521734B (zh) * 2020-10-14 2023-03-31 浙江中在医疗科技有限公司 一种可降解医用弹性体材料及其用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626861A (en) * 1994-04-01 1997-05-06 Massachusetts Institute Of Technology Polymeric-hydroxyapatite bone composite
WO2011075183A1 (en) * 2009-12-15 2011-06-23 Vanderbilt University Injectable/in situ forming tissue polyurethane composites and methods thereof
WO2011127149A1 (en) * 2010-04-06 2011-10-13 University Of Utah Research Foundation Controlled release combination biomaterials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626861A (en) * 1994-04-01 1997-05-06 Massachusetts Institute Of Technology Polymeric-hydroxyapatite bone composite
WO2011075183A1 (en) * 2009-12-15 2011-06-23 Vanderbilt University Injectable/in situ forming tissue polyurethane composites and methods thereof
WO2011127149A1 (en) * 2010-04-06 2011-10-13 University Of Utah Research Foundation Controlled release combination biomaterials

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHIDAMBARAM ET AL.: "Organic-inorganic comosites for bone drug delivery.", AAPS PHARM SCITECH, vol. 10, 2009, pages 1158 - 1171 *
FU ET AL.: "Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatitelpolythyleneglycol-poly-s- caprolactone hydrogel composites.", J PHYS CHEM, vol. 113, 2009, pages 16518 - 16525 *
HABRAKEN WJEM ET AL.: "Ceramic composites as matrices and scaffolds for drug delivery in tissue engeneering.", ADVANCED DRUG DELIVERY REVIEW, vol. 59, 2007, pages 234 - 248, XP022110906, DOI: doi:10.1016/j.addr.2007.03.011 *
KAITO ET AL.: "Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxiapatite composite.", BIOMATERIALS, vol. 26, 2005, pages 73 - 79 *
RIBEIRO C ET AL.: "Characterization of resorbable membranes based on polymer-ceramic composite (PLLA-co-PCL/PEG/beta-TCP) for bone tissue engineering.", 8TH WORLD BIOMATERIALS CONGRESS, 2008, AMSTERDAM *
VÁZQUEZ ET AL.: "Acrylic bone cement modified with beta-TCP particle; encapsulated with polyethyleneglycol.", BIOMATERIALS, vol. 6, 2005, pages 4309 - 4316 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103845760A (zh) * 2014-02-25 2014-06-11 天津市镁胜生物技术有限公司 一种降解速率可控的体内降解脊柱融合器及其制备方法
WO2018055615A1 (en) * 2016-09-22 2018-03-29 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Injectable implants
US11439587B2 (en) 2016-09-22 2022-09-13 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Injectable implants
CN110997021A (zh) * 2017-05-30 2020-04-10 爱可法Ip有限公司 包含聚(1,3-三亚甲基碳酸酯)的可再吸收可生物降解的医药和化妆品组合物
CN110997021B (zh) * 2017-05-30 2022-02-15 爱可法Ip有限公司 包含聚(1,3-三亚甲基碳酸酯)的可再吸收可生物降解的医药和化妆品组合物
CN107823703A (zh) * 2017-11-17 2018-03-23 河北点云生物科技有限公司 一种3d打印人工骨制造注射型制剂的方法
CN109464702A (zh) * 2019-01-14 2019-03-15 浙江瑞谷生物科技有限公司 含bmp-2的牙槽骨修复材料及其制备方法和应用
CN109464702B (zh) * 2019-01-14 2021-02-26 浙江瑞谷生物科技有限公司 含bmp-2的牙槽骨修复材料及其制备方法和应用
CN110075359B (zh) * 2019-03-26 2021-09-21 华南理工大学 一种超声辅助制备多孔骨水泥支架及其制备方法
CN110075359A (zh) * 2019-03-26 2019-08-02 华南理工大学 一种超声辅助制备多孔骨水泥支架及其制备方法
CN111166940A (zh) * 2019-08-31 2020-05-19 深圳市立心科学有限公司 可吸收的人工骨复合材料及其制备方法
CN111166940B (zh) * 2019-08-31 2021-05-07 深圳市立心科学有限公司 可吸收的人工骨复合材料及其制备方法
CN111558090A (zh) * 2020-05-19 2020-08-21 中南大学 一种利用月桂醇修饰45s5生物活性玻璃制备d-45s5/plla复合骨支架的方法

Also Published As

Publication number Publication date
BR102012010542B1 (pt) 2019-09-24
BR102012010542A2 (pt) 2014-04-15

Similar Documents

Publication Publication Date Title
WO2013163705A1 (pt) Material injetável biorreabsorvível bioativo e processos de preparação de material injetável biorreabsorvível bioativo
US20210275717A1 (en) Organophosphorous, multivalent metal compounds, & polymer adhesive interpenetrating network compositions & methods
JP6989148B2 (ja) 注射用の生分解性骨セメントとそれを作製及び使用する方法
US5085861A (en) Bioerodable implant composition comprising crosslinked biodegradable polyesters
KR101769805B1 (ko) 테트라 칼슘 포스페이트 기재 유기인계 조성물 및 방법
US4843112A (en) Bioerodable implant composition
US6077916A (en) Biodegradable mixtures of polyphoshazene and other polymers
JP5315233B2 (ja) 注入可能な骨空隙充填剤
TW200924804A (en) A bone and/or dental cement composition and uses thereof
WO2012158527A2 (en) Organophosphorous & multivalent metal compound compositions & methods
BR102013034085B1 (pt) Compósitos biocompatível e reabsorvível para osteossíntese e seu método para fabricar
PT1924302E (pt) MATERIAL COMPËSITO INJECTáVEL ADEQUADO PARA UTILIZAÆO COMO SUBSTITUTO DO OSSO
Moussi et al. Injectable macromolecule-based calcium phosphate bone substitutes
US10603403B2 (en) Acrylic cements for bone augmentation
WO2013163704A1 (pt) Membrana biorreabsorvível bioativa porosa e seu processo de obtenção
WO2022048126A1 (zh) 一种骨科用无创植入高黏度胶材料及其制备方法及应用
WO2013126975A1 (pt) Material poroso tridimensional biorreabsorvível e bioativo e seu processo de obtenção
JP5886313B2 (ja) 生体材料およびそれを得る方法
Ozdemir et al. Calcium phosphate cements for medical applications
Mickiewicz Polymer-calcium Phospate Composites for Use as an Injectable Bone Substitute
WO2015169992A1 (es) Cemento inorgánico, inyectable y termosensible para reconstrucción ósea: preparación y uso
He et al. Fabrication of injectable calcium sulfate bone graft material
Martins Tailoring biomaterials for vertebral body repair-Synthesis, characterization and application
이세호 Injectable bone substitute composed of biodegradable polymer/hydroxyapatite composite microspheres containing antibiotics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12875883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12875883

Country of ref document: EP

Kind code of ref document: A1