WO2013126975A1 - Material poroso tridimensional biorreabsorvível e bioativo e seu processo de obtenção - Google Patents

Material poroso tridimensional biorreabsorvível e bioativo e seu processo de obtenção Download PDF

Info

Publication number
WO2013126975A1
WO2013126975A1 PCT/BR2012/000374 BR2012000374W WO2013126975A1 WO 2013126975 A1 WO2013126975 A1 WO 2013126975A1 BR 2012000374 W BR2012000374 W BR 2012000374W WO 2013126975 A1 WO2013126975 A1 WO 2013126975A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
material according
group
phosphate
acids
Prior art date
Application number
PCT/BR2012/000374
Other languages
English (en)
French (fr)
Inventor
Walter Israel Rojas CABRERA
Karina NAKAJIMA
Luana BENDO
Original Assignee
Bioactive Tecnologia Em Polímeros Ltda. - Me
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioactive Tecnologia Em Polímeros Ltda. - Me filed Critical Bioactive Tecnologia Em Polímeros Ltda. - Me
Priority to US14/382,289 priority Critical patent/US20150086606A1/en
Publication of WO2013126975A1 publication Critical patent/WO2013126975A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • B29C44/3446Feeding the blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • B29C67/202Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising elimination of a solid or a liquid ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/08Methods for forming porous structures using a negative form which is filled and then removed by pyrolysis or dissolution

Definitions

  • the present invention is within the field of tissue engineering and relates to a bio-resorbable and bioactive three-dimensional porous material, such as a scaffold, which enables tissue regeneration and formation in mammals.
  • this invention relates to the process of obtaining said material.
  • Bone is a tissue which undergoes continuous adaptations throughout the life of the vertebrate in order to obtain and preserve the size, shape and structural integrity of the skeleton, and to regulate mineral homeostasis.
  • the remodeling and formation processes form the basis of the development and maintenance of the skeletal system.
  • the repair required consists of four main stages: fracture hematoma formation, cartilaginous callus formation, bone callus formation, and bone remodeling.
  • the process lasts at least four months and depends on the intensity of the tissue injury.
  • bone tissue loss for example, autogenous bone grafts commonly characterized by osteoconductivity, osteoinductivity and osteogenicity are commonly used.
  • this type of graft requires bone transplantation from another region of the patient's body, causing problems such as bruising, pain, infections, absorption variation and risk of death, among others.
  • tissue bioengineering has sought the creation of medical devices capable of repairing, restoring and regenerating tissues injured by disease, injury or age, seeking to combine the patient's benefit with the reduction of limiting side effects.
  • porous scaffolds are one of the most effective methods for three-dimensional tissue reconstruction, as it acts as a support for cell anchorage, resulting in guided tissue formation, ie guided bone regeneration (ROG). .
  • ROG guided bone regeneration
  • Biocompatibility is essential as the material should not elicit an inflammatory response or immunogenicity and cytotoxicity.
  • the mechanical properties must be sufficient to maintain the integrity of the material and prevent its collapse, allowing the regenerated tissue to be structurally stabilized.
  • Degradation is also an important factor as it can affect many cellular processes, including cell growth,
  • porosity and pore size should be adequate to optimize sedimentation, adhesion and cell growth processes, as well as extracellular matrix production, vascularization and tissue formation.
  • Priority document PI 9602509-3 describes the application of controlled porosity bioabsorbable materials, such as grafts or dressings, for wound healing.
  • the pores are formed by freeze drying using different steps and solvents.
  • control of pore size and material density obtained by this process are critical.
  • animal biopolymers such as collagen, for example. Collagen stimulates bone growth as it is the main constituent of the extracellular matrix.
  • Collagen stimulates bone growth as it is the main constituent of the extracellular matrix.
  • it is extracted directly from biological tissues or prepared together with a recombinant protein, making it relatively expensive and thermally unstable, which makes its application in medical and pharmaceutical compositions difficult.
  • Priority document PI 0605628-8 addresses the manufacture of porous alumina matrices with bio-glass and hydroxyapatite infiltration, wherein porosity is obtained using sucrose. Despite being an inert material, the use of alumina requires considerable time for tissue regeneration.
  • femoral stems such as PI 0802289-5
  • dental implant such as PI 9301263-2
  • the present invention describes a bio-resorbable and bioactive three-dimensional porous material as well as its method of obtaining.
  • the developed material is subject to change as to its polymer and ceramic composition, where applicable, and also in relation to pores, which may have different shapes, sizes, porosities (percentage of pores) and distribution.
  • the implantation of the material only requires a surgical procedure, reducing pain, postoperative complications and the risk of infections, since the material is completely resorbed by the body.
  • pharmacological agents either alone or in combination, for prophylactic, treatment or tissue regeneration purposes.
  • the present invention relates to a bio-resorbable and bioactive three-dimensional porous material as well as its process for obtaining it.
  • the material is polymer based and, where applicable, bioactive ceramics and pharmacological agents.
  • Figure 1 is an image taken by scanning electron microscopy at 3,500-fold magnification of the bio-resorbable and bioactive three-dimensional porous material of the present invention.
  • the present invention consists of a bio-resorbable three-dimensional porous material, such as a scaffold, which has appropriate mechanical properties for different application sites and can be used as a porous biomimetic platform or support in bone defects or cavities capable of regenerate and form bone tissue in a short period of time compared to the natural process as well as its procurement process.
  • Such material comprises bioresorbable polymers, which offer a three-dimensional physical structure and mechanical characteristics necessary for the support.
  • the base polymeric matrix is comprised of polymers that are selected from the group consisting of lactide-based monomers and / or homopolymers in all possible isomeric variations, such as D-lactide, L-lactide, DL-lactide; ⁇ -caprolactone monomer and / or homopolymer; glycolide monomers and / or homopolymers; poly (hydroxyalkanoate); polyesters and polyamides derived from aliphatic dicarboxylic acids and aliphatic hydroxy acids or aliphatic amino acids; poly (caprolactam); poly (dioxanone);
  • trimethylene polycarbonate poly (urethanes); as well as copolyesters, copolyamides and copolyester-amide of these derivatives and mixtures thereof, which are added in monomeric proportions ranging from 0.1% to 99.9%, for each constituent, in the total matrix formation composition.
  • Hydrophilic polymers and bioactive additives such as ceramic particles, which serve as cell signaling and consequent stimulation for bone formation, growth and regeneration, may be added to the base polymeric matrix.
  • Hydrophilic polymers are added in mass ratios ranging from 10 to 75% relative to the total mass of the base polymer matrix and are selected from the group consisting of poly (acrylics), amine functional polymers, poly (ethers), poly (styrenes) ), poly (vinyl acids), poly (vinyl alcohol), poly (vinyl pyrrolidones), sodium polystyrene maleate), naturally occurring polymers (such as gelatin, starch, modified cellulose and chitin) and preferably poly (ethylene oxides) and poly (ethylene glycols).
  • the ceramic particles are calcium phosphate based and are selected from the group consisting of tetracalcium phosphate [TeCP,
  • octacalcium OCP, Ca 8 H 2 (PO 4 ) 6-5H 2 O] calcium monohydrate phosphate dihydrate [DCPD, CaHPO 4 .2H 2 O], calcium monohydrate phosphate [DCP, Ca 2 P207.2H 20 ], heptacalic phosphate [HCP, Ca 7 (P50i 6 ) 2 ], tetracalic dihydrogen phosphate [TDHP, Ca H 2 P 6 O 2o].
  • antibiotics and anti-inflammatories to the bio-resorbable and bioactive three-dimensional porous material of the present invention allows local and controlled administration of the drug, increasing its efficacy and restricting possible systemic toxic effects.
  • cisplatin doxorubicin, ifosfamide, methotrexane, cyclophosphamide, etoposide and irinotecan can be selected.
  • doxorubicin doxorubicin
  • methotrexane cyclophosphamide
  • etoposide etoposide
  • irinotecan etoposide
  • the concentration of these drugs may range from 0.1% to 50% by mass.
  • the antitumor agents are added in a
  • an antibiotic can be included in the bio-resorbable and bioactive three-dimensional porous material, selected from the group consisting of: macrolides (erythromycin and azithromycin) ; tetracyclines (tetracycline, doxycycline and minocycline); ⁇ - lactams (penicillins, cephalosporins, carbapenems and clavunates); glycopeptides (vancomycin); aminoglycosides (tobramycin, streptomycin and gentamycin) and licosamides (clindamycin).
  • macrolides erythromycin and azithromycin
  • tetracyclines tetracycline, doxycycline and minocycline
  • ⁇ - lactams penicillins, cephalosporins, carbapenems and clavunates
  • glycopeptides vancomycin
  • aminoglycosides tobramycin, streptomycin and gentamycin
  • licosamides clindamycin
  • the concentration of these drugs may range from 0.1% to 50% by mass.
  • the antitumor agents are added in a concentration of 1% to 15% by mass.
  • statins especially simvastatin, atorvastatin, lovastatin, fluvastatin and pravastatin, which may be added to the bio-resorbable and bioactive three-dimensional porous material at a concentration of 0.01% to 50% by mass.
  • statins are added at a concentration of 0.5% to 10% by mass.
  • steroidal anti-inflammatories may be included, especially those selected from dexamethasone, hydrocortisone, betamethasone, prednisolone, methylprednisolone, cortisone and corticosterone at a concentration ranging from 0, 1% to 50% by mass,
  • Non-steroidal anti-inflammatory drugs which are selected from the group consisting of salicylates (acetylsalicylic acid) may also be included; indole and indole acetic acids (indomethacin, sulindac and etodolac); heteroaryl acetic acids (diclofenac, ketorolac, aceclofenac and tolmetine); arylpropionic acids (ibuprofen, naproxen, flurbiprofen, ketoprofen, loxoprofen and oxaprozine); anthranilic acids (mephanamic acid and meclofenamic acid); enolic acids (piroxicam, tenoxicam and meloxicam); alkanones (nabumetone); coxibes
  • salicylates acetylsalicylic acid
  • indole and indole acetic acids indomethacin, sulindac and etodolac
  • sulfonanilides in a concentration which may range from 0.1% to 50% by weight, preferably from 1% to 20% by weight.
  • Some properties are desirable and indispensable in the material, such as degradation control and resorption of scaffold components, adequate mechanical strength and efficient porosity to allow vascularization throughout the material structure.
  • the bioresorbable and bioactive three-dimensional porous material of the present invention is obtained by the process comprising the following steps:
  • Said polymers are selected according to their
  • the polymers are selected from the group consisting of: lactide monomers and / or homopolymers in all possible isomeric variations, such as D-lactide, L-lactide), DL-lactide; ⁇ -caprolactone monomers and / or homopolymers;
  • glycolide monomers and / or homopolymers poly (hydroxyalkanoate); polyesters and polyamides derived from aliphatic dicarboxylic acids and aliphatic hydroxy acids or aliphatic amino acids; poly (caprolactam); trimethylene polycarbonate); poly (dioxanone); poly (urethanes); as well as copolyesters, copolyamides and copolyester-amide of these derivatives and mixtures thereof.
  • a preferred proportion of the polymeric matrix forming process is lactide.caprolactone (LL: CL) of: 99 to 99:,
  • the polymers are dissolved to form the base polymer matrix.
  • medium or low polarity polar organic solvents such as halogenated solvents, ie solvents containing chlorine, fluorine, bromine or iodine atoms (such as chloroform, dichloromethane, tetrachloride) are used. carbon, trichloroethane and
  • chlorinated solvents such as chloroform and dichloromethane are used.
  • the dissolution of the polymers is performed at room temperature and under low to medium intensity agitation, around 50 to 500 rpm, on a magnetic stirrer.
  • the constituent polymers of the base polymer matrix that is, the lactide, glycolide and / or ⁇ -caprolactone homopolymers or copolymers, are dissolved in the chlorinated solvent.
  • the base polymer matrix is comprised of the lactide, glycolide and / or caprolactone-based copolymers added of a hydrophilic polymer.
  • the hydrophilic polymer is added to the dispersion of the base polymer matrix constituent polymers in mass ratios ranging from 10 to 75% of the total mass of the base polymer matrix and is selected from the group consisting of poly (acrylics). ), amine functional polymers, poly (ethers), poly (styrenes), poly (vinyl acids), poly (vinyl alcohol), poly (vinyl pyrrolidones), poly (sodium styrene maleate), naturally occurring polymers (such as such as gelatin, starch, modified cellulose and chitin) and preferably poly (ethylene oxides) and poly (ethylene glycols).
  • calcium phosphate-based bioactive ceramics may be added in a range ranging from 0.01 to 20.0%.
  • the ceramics are biocompatible and osteoinductive, and, besides presenting no risk of communicable diseases, they are absent of toxicity and can cause minimal immunological reaction.
  • the ceramic particles are selected from the group consisting of tetracalcium phosphate [TeCP, Ca 4 0 (P0 4 ) 2 ], hydroxyapatite [HA, Ca 10 (PO 4 ) 6 (OH) 2] and their size variation on the gauge scale ( nanoHA), amorphous calcium phosphate [ACP, Ca 3 (P0 4 ) 2 . ?
  • hydrophilic polymer or the mixture of hydrophilic polymers, is performed when the polymer-base matrix dispersion is homogeneous with respect to the ceramic particles.
  • Antitumors are selected from the group consisting of cisplatin, doxorubicin, ifosfamide, methotrexane, cyclophosphamide, etoposide and irinotecan and are added at a concentration ranging from 0.1% to 50% by weight, preferably from 2% to 30% by weight. pasta.
  • Antibiotics are selected from the group consisting of macrolides (erythromycin and azithromycin); tetracyclines (tetracycline, doxycycline and minocycline); / Mactamics (penicillins, cephalosporins, carbapenems and clavunates);
  • glycopeptides vancomycin
  • aminoglycosides tobramycin, streptomycin and gentamycin
  • licosamides clindamycin
  • statins selected from the group comprising simvastatin, atorvastatin, lovastatin, fluvastatin and pravastatin may be added at a concentration of 0.01% to 50% by mass, preferably at a concentration of 0.5% to 0%. in large scale.
  • steroidal anti-inflammatory drugs may be added.
  • dexamethasone selected from the group consisting of dexamethasone, hydrocortisone, betamethasone, prednisolone, methylprednisolone, cortisone and corticosterone and the non-steroidal anti-inflammatory drugs selected from the group consisting of salicylates (acetylsalicylic acid); indole and indole acetic acids (indomethacin, sulindac and etodolac); heteroaryl acetic acids (diclofenac, ketorolac, aceclofenac and tolmetine); arylpropionic acids (ibuprofen, naproxen, flurbiprofen, ketoprofen, loxoprofen and oxaprozine); anthranilic acids (mephanamic acid and meclofenamic acid); enolic acids (piroxicam, tenoxicam and meloxicam); alkanones (nabumetone); coxi
  • Step 2 Adding Porosity Forming Agent:
  • porosity forming agents are used.
  • Such agents may be: sugar particles, monosaccharides (fructose and glucose) or disaccharides (sucrose) being used; inorganic salt particles such as sodium chloride and ammonium carbonate;
  • frozen or effervescent solvent particles / droplets insoluble in the polymeric matrix dispersion such as n-hexane, methanol, ethanol, isopropanol; effervescent reaction gas using, for example, ammonium bicarbonate or gas foam.
  • the porosity builder should be added in proportions. varied with respect to the mass of the polymeric matrix dispersion, preferably in equal or greater proportions, which may range from 1: 1 to 20: 1 (w / w), to provide a porosity of up to 90% in the material.
  • the addition of the porosity forming agent to the polymeric matrix dispersion may be effected at any stage of dissolution,
  • conformation is the process step in which the polymeric mixture, added with the porosity forming agent, is homogenized to a firm and suitable consistency for molding and consequent leaching.
  • the dissolution temperature should be higher than the boiling point of the solvent used so that the conformation time is reduced compared to the time required for room temperature.
  • the mixing time or preparation time is about 10 minutes.
  • agitation is constant from low to medium intensity, in the range of 50 to 500 rpm, so that the resulting mixture is homogeneous.
  • the removal step depends on the porosity forming agent used in the material.
  • the porous or scaffold bioresorbable three-dimensional material is obtained.
  • Step 5 - Material Drying Drying of the material can be optimized by using temperature.
  • the drying temperature must be below the glass transition temperature of the polymer used or the melting temperature of PEG,
  • the material may be heated at a convenient temperature for approximately two hours under vacuum and then held under vacuum at room temperature until further use.
  • the glass transition temperature ranges from -40.0 ° C to 60.0 ° C.
  • hydrophilic polymer When using hydrophilic polymer, the presence of water (mainly in the form of moisture) must be avoided due to the hydrophilicity of this component.
  • the drying procedure is the same, however, it should be considered that the temperature of the drying process is also lower than
  • the drying step may be performed only under reduced pressure or vacuum at room temperature sufficient to keep the material away from moisture.
  • Drying of the material can be done with the aid of 99.99% pure nitrogen gas, with subsequent vacuum storage and room temperature.
  • the material obtained must still be sterilized.
  • ethylene oxide treatment or gamma irradiation can be employed, among others.
  • PLCL poly (L-lactide-co-s-caprolactone)
  • sucrose is added as a porogenic agent in the particle size range 50 - 125 ⁇ in a ratio of 3: 1 to the PLCL mass used.
  • the polymeric dispersion containing sucrose is brought to a temperature above the boiling point of dichloromethane, in this case 70 ° C. Under constant agitation at a moderate level, the mixture is prepared and shaped so that it can be manipulated and transferred to a cast Teflon mold.
  • Sucrose removal was obtained by using water, in a convenient time for total removal, preferably between 5 and 15 minutes.
  • the amount of water used was 1000 times greater than sucrose solubility in water to ensure complete removal of sugar particles from the material composition.
  • the leaching process was performed in duplicate, with water exchange.
  • Drying was performed in two steps: (i) washing of the material in cold analytical grade ethyl alcohol (around 0 ° C) and removal of excess alcohol and (ii) storage under reduced pressure (vacuum) atmosphere for 12 hours .
  • Leaching was performed on a microwave equipment, more specifically a conventional microwave oven.
  • the water is preheated in a microwave oven until boiling, preferably within a period of 1 to 5 minutes.
  • the material After reaching the boiling temperature of the water, the material is immersed in it and the leaching process is started, which was performed in duplicate again under microwave for the time required for complete removal of the pore-forming agent, preferably , between 5 and 15 minutes.
  • Figure 1 is an image of porous material obtained by scanning electron microscopy at a 3,500-fold magnification, where it is possible to observe the connectivity between the pores in a three-dimensional structure, in appropriate sizes to provide cell vascularization and anchorage.
  • Figure 2A shows the material prepared with poly (L-lactide-co-8-caprolactone) -PLCL in the monomeric ratio of L-lactide: 8-caprolactone 40:60 and PEG 4,000 g.mol "1 prepared with sucrose as agent. porosity builder.
  • Figure 2B shows the material prepared with poly (L-lactide-co-8-caprolactone) -PLCL in the monomeric ratio of L-lactide: s-caprolactone 70:30 and PEG 4,000 g.mol "1 , prepared with sucrose as agent. porosity builder.
  • the bio-resorbable and bioactive three-dimensional porous material provides a support that allows the tissue deficient region to be sustained and filled, providing a structure capable of enabling vascularization for cell adhesion and further differentiation and growth of these for the formation or regeneration of cells. required tissue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

A presente invenção refere-se a um material poroso tridimensional biorreabsorvível e bioativos constituído de polímeros biorreabsorvíveis que podem ser combinados a cerâmicas bioativas, o qual oferece uma estrutura tridimensional de poros interligados contendo aditivos capazes de possibilitar a regeneração e formação de tecidos, bem como o seu processo de obtenção.

Description

MATERIAL POROSO TRIDIMENSIONAL BIORRE ABSORVÍVEL E
BIOATIVO E SEU PROCESSO DE OBTENÇÃO
Campo de aplicação:
A presente invenção se insere no campo da engenharia de tecidos e refere-se a um material poroso tridimensional biorreabsorvível e bioativo, tal como um scaffold (suporte), que possibilita a regeneração e formação de tecidos em mamíferos.
Adicionalmente, esta invenção se refere ao processo de obtenção do referido material.
Fundamentos da invenção:
O osso é um tecido o qual é submetido a adaptações contínuas ao longo da vida do vertebrado, a fim de obter e preservar o tamanho, a forma e a integridade estrutural do esqueleto, além de regular a homeostase mineral.
Os processos de remodelamento e formação constituem a base do desenvolvimento e manutenção do sistema esquelético. Quando ocorre uma lesão no tecido ósseo, a reparação requerida consiste em quatro estágios principais: formação do hematoma de fratura, formação do calo cartilaginoso, formação do calo ósseo e remodelamento do osso. O processo dura pelo menos quatro meses e depende da intensidade da lesão tecidual.
Traumas ou doenças podem causar lesão ou perda de tecidos no organismo. No caso da perda de tecido ósseo, por exemplo, são comumente utilizados enxertos ósseos autógenos, caracterizados por osteocondutividade, osteoindutividade e osteogenicidade. Este tipo de enxerto, porém, requer que o transplante de osso seja oriundo de outra região do corpo do paciente, gerando problemas como hematomas, dores, infecções, variação de absorção e risco de morte, dentre outros.
Como uma alternativa a este procedimento, podem ser aplicados os enxertos homógenos, proveniente de bancos de tecidos humanos, que apresentam boa absorção pelo organismo, mas oferecem o risco de
transmissão de doenças infecciosas não detectadas. Neste âmbito, a bioengenharia de tecidos tem buscado a criação de dispositivos médicos capazes de reparar, restaurar e regenerar tecidos injuriados por doenças, ferimentos ou idade, buscando aliar o benefício do paciente com a redução de efeitos colaterais limitantes.
O uso de scaffolds (suportes) porosos é um dos métodos mais efetivos para uma reconstrução tecidual tridimensional, uma vez que este atua como suporte para a ancoragem de células, resultando na formação guiada do tecido, ou seja, uma regeneração óssea guiada (ROG).
Dentro deste contexto, este tipo de material requer algumas
peculiaridades e características específicas. Antes de mais nada, a
biocompatibilidade é essencial, pois o material não deve provocar resposta inflamatória nem imunogenicidade e citotoxicidade.
Além disso, as propriedades mecânicas devem ser suficientes para manter a integridade do material e evitar o seu colapso, permitindo que o tecido regenerado esteja estruturalmente estabilizado.
A degradação também constitui um fator importante, uma vez que pode afetar muitos processos celulares, incluindo o crescimento celular, a
regeneração de tecido e a resposta de compatibilidade.
Por fim, a porosidade e o tamanho de poro devem ser adequados para otimizar os processos de sedimentação, adesão e crescimento celular, bem como a produção de matriz extracelular, vascularização e formação de tecido.
Já existem alguns materiais com o mesmo intuito de regenerar e formar um novo tecido em mamíferos.
O documento de anterioridade PI 9602509-3, por exemplo, descreve a aplicação de materiais bioabsorvíveis e com porosidade controlada, como enxertos ou curativos, para a cura de feridas. Neste documento, os poros são formados por secagem por congelamento, utilizando diferentes etapas e solventes. No entanto, o controle do tamanho de poro e a densidade dos materiais obtidos por este processo são críticos. Além disso, tem-se o uso de biopolímeros de origem animal, como o colágeno, por exemplo. O colágeno estimula o crescimento ósseo, uma vez que é o principal constituinte da matriz extracelular. No entanto, sua extração é realizada diretamente de tecidos biológicos ou, então, seu preparo é feito juntamente com uma proteína recombinante, tornando-se relativamente dispendioso e termicamente instável, o que dificulta sua aplicação em composições médicas e farmacêuticas.
O estudo de Jeong et al. {Jeong et ai, J Biomater Sei Polymer Edn, 15, 645-660, 2004) descreve a obtenção de um material poroso via lixiviação com sal. O controle do tamanho de poro pode ser obtido peneirando-se as partículas em uma peneira com poros definidos. Um fator determinante e negativo neste tipo de processo é o tempo elevado de lixiviação para a remoção completa do agente formador de porosidade, neste caso, as partículas de sal. O período de obtenção do material neste tipo de
procedimento pode durar dias.
O documento de anterioridade PI 0605628-8 aborda a fabricação de matrizes porosas de alumina, com infiltração de biovidro e hidroxiapatita, em que a porosidade é obtida com o uso de sacarose. Apesar de ser um material inerte, o uso da alumina requer um tempo considerável para a regeneração do tecido.
O uso de materiais inertes metálicos é bastante comum em implantes ortopédicos, por exemplo, em locais que, na ausência de tecido, ocorre uma reposição da estrutura necessária. Diversos pedidos de patente que
descrevem materiais para uso em próteses e implantes podem ser citados, incluindo hastes femorais (tal como o documento PI 0802289-5) ou implante dental (tal como o documento de anterioridade PI 9301263-2). Embora ofereçam suporte ósseo, tais materiais devem ser trocados ao longo do tempo, resultando em novos procedimentos cirúrgicos.
Desta forma, a presente invenção descreve um material poroso tridimensional biorreabsorvível e bioativo, bem como seu método de obtenção.
O material desenvolvido é passível de mudanças quanto à sua composição polimérica e cerâmica, quando aplicável, e também em relação aos poros, os quais podem apresentar diferentes formas, tamanhos, porosidades (porcentagem de poros) e distribuição.
Além disso, a implantação do material requer apenas um procedimento cirúrgico, diminuindo a dor, as complicações pós-operatórias e o risco de infecções, uma vez que o material é completamente reabsorvido pelo organismo.
Ainda, este pode ser adicionado de agentes farmacológicos, de forma isolada ou em associação, com finalidades profiláticas, de tratamento ou ainda de promoção da regeneração tecidual.
Sumário da invenção:
A presente invenção se refere a um material poroso tridimensional biorreabsorvível e bioativo, bem como o seu processo de obtenção. O material é produzido à base de polímeros e, quando aplicável, cerâmicas bioativas e agentes farmacológicos.
Breve descrição dos desenhos:
A Figura 1 é uma imagem obtida por microscopia eletrônica de varredura, a um aumento de 3.500 vezes, do material poroso tridimensional biorreabsorvível e bioativo da presente invenção.
Descrição detalhada da invenção:
A presente invenção consiste em um material poroso tridimensional biorreabsorvível e bioativo, tal como um scaffold (suporte), que apresenta propriedades mecânicas apropriadas para diferentes sítios de aplicação, podendo ser utilizado como uma plataforma ou suporte biomimético poroso em defeitos ou cavidades ósseas, capaz de regenerar e formar tecido ósseo em um período de tempo reduzido em relação ao processo natural, bem como o seu processo de obtenção.
Tal material compreende polímeros biorreabsorvíveis, os quais oferecem uma estrutura física tridimensional e características mecânicas necessárias para o suporte. A matriz polimérica-base é constituída de polímeros que são selecionados do grupo que consiste em monômeros e/ou homopolímeros a base de lactídeo em todas as variações isoméricas possíveis, tais como D- lactídeo, L-lactídeo, DL-lactídeo; monômero e/ou homopolímero ε-caprolactona; monômeros e/ou homopolímeros glicolídeos; poli(hidroxialcanoato); poliésteres e poliamidas derivados de ácidos dicarboxílicos alifáticos e de hidroxiácidos alifáticos ou aminoácidos alifáticos; poli(caprolactama); poli(dioxanona);
policarbonato de trimetileno); poli(uretanos); bem como copoliésteres, copoliamidas e copoliéster-amida destes derivados e misturas destes, os quais são adicionados em proporções monoméricas que variam de 0,1 % até 99,9 %, para cada constituinte, na composição total para formação da matriz
polimérica-base.
À matriz polimérica-base, podem ser adicionados polímeros hidrofílicos e, ainda, aditivos bioativos, tais como partículas cerâmicas, que servem de sinalização celular e consequente estímulo para a formação, crescimento e regeneração tecidual óssea.
Os polímeros hidrofílicos são adicionados em proporções mássicas que variam de 10 a 75 % em relação à massa total da matriz polimérica-base e são selecionados do grupo consistindo de poli(acrílicos), polímeros funcionais de amina, poli(éteres), poli(estirenos), poli(ácidos vinílicos), poli(álcool vinílicos), poli(pirrolidonas vinílicas), poliestireno - maleato de sódio), polímeros de origem natural (tais como gelatina, amido, celulose modificada e quitina) e, de forma preferida, os poli(óxidos de etileno) e poli(etilenoglicóis).
As partículas cerâmicas são à base de fosfatos de cálcio, sendo selecionadas do grupo que consiste em fosfato tetracálcico [TeCP,
Ca4O(PO4)2], hidroxiapatita [HA, Cai0(PO4)6(OH)2] e sua variação de tamanho na escala manométrica (nanoHA), fosfato de cálcio amorfo [ACP,
Ca3(PO4)2.A7H2), fosfato tricálcico (α, α', β, γ) [TCP, Ca3(PO4)2], fosfato
octacálcico [OCP, Ca8H2(PO4)6-5H2O], mono-hidrogênio fosfato de cálcio di- hidratado [DCPD, CaHPO4.2H2O], mono-hidrogênio fosfato de cálcio [DCP, Ca2P207.2H20], fosfato heptacálcico [HCP, Ca7(P50i6)2], di-hidrogênio fosfato tetracálcico [TDHP, Ca H2P6O2o]. fosfato monocálcico mono-hidratado [MCPM, Ca(H2PO4)2.H20] e metafosfato de cálcio (α, β, γ) [CMP, Ca(P03)2] e são adicionados em uma faixa que pode variar de 0,01 a 20,0%.
Ao material, também é possível acrescentar fármacos, isoladamente ou em associação, com finalidades profiláticas, de tratamento ou de promoção da regeneração tecidual.
A introdução de antibióticos e anti-inflamatórios ao material poroso tridimensional biorreabsorvível e bioativo da presente invenção permite uma administração local e controlada do fármaco, aumentando sua eficácia e restringindo possíveis efeitos tóxicos sistémicos.
Da mesma forma, em casos de tumores, é possível direcionar o tratamento quimioterápico sem que haja maiores danos ao indivíduo.
Dentre os antitumorais mais utilizados para controle de tumores ósseos, podem ser selecionados a cisplatina, doxorrubicina, ifosfamida, metotrexano, ciclofosfamida, etoposido e irinotecano. Em relação a outros tipos de tumores, deve-se optar pelo quimioterápico mais adequado.
A concentração desses fármacos pode variar de 0,1% a 50% em massa. Preferencialmente, os agentes antitumorais são adicionados em uma
concentração de 2% a 30% em massa.
Considerando a regeneração óssea ou a regeneração tecidual como um todo (como ocorre em tecidos moles e cartilaginosos), pode-se incluir um antibiótico no material poroso tridimensional biorreabsorvível e bioativo, sendo ele selecionado do grupo que consiste em: macrolídeos (eritromicina e azitromicina); tetraciclinas (tetraciclina, doxiciclina e minociclina); /?-lactâmicos (penicilinas, cefalosporinas, carbapenêmicos e clavunatos); glicopeptídeos (vancomicina); aminoglicosídeos (tobramicina, estreptomicina e gentamicina) e licosamidas (clindamicina).
A concentração desses fármacos pode variar de 0,1 % a 50% em massa. Preferencialmente, os agentes antitumorais são adicionados em uma concentração de 1 % a 15% em massa.
Para a regeneração óssea guiada, o uso de anti-inflamatórios
esteroidais e não-esteroidais podem prejudicar o processo de formação óssea. Dessa forma, preconiza-se o uso de fármacos alternativos, como os
hipolipemiantes.
Dentre eles, pode ser citada a classe das estatinas, em especial, sinvastatina, atorvastatina, lovastatina, fluvastatina e pravastatina, os quais podem ser acrescidos ao material poroso tridimensional biorreabsorvível e bioativo na concentração de 0,01 % a 50% em massa. Preferencialmente, as estatinas são adicionadas em uma concentração de 0,5% a 10% em massa.
Considerando o uso do material poroso tridimensional biorreabsorvível e bioativo para outros propósitos, pode-se incluir anti-inflamatórios esteroidais, em especial aqueles selecionados dentre dexametasona, hidrocortisona, betametasona, prednisolona, metilprednisolona, cortisona e corticosterona em uma concentração que pode variar de 0,1 % a 50% em massa,
preferencialmente, de 1 % a 20% em massa.
Também é possível incluir os anti-inflamatórios não-esteroidais, em especial os inibidores da COX, os quais são selecionados do grupo que consiste em salicilatos (ácido acetilsalicílico); ácidos indol e indol acéticos (indometacina, sulindaco e etodolac); ácidos hetero aril-acéticos (diclofenaco, cetorolaco, aceclofenaco e tolmetina); ácidos arilpropiônicos (ibuprofeno, naproxeno, flurbiprofeno, cetoprofeno, loxoprofeno e oxaprozina); ácidos antranílicos (ácido mefanâmico e ácido meclofenâmico); ácidos enólicos (piroxicam, tenoxicam e meloxicam); alcanones (nabumetona); coxibes
(rofecoxib, celecoxib e etoricoxib); para-aminofenol (paracetamol) e
sulfonanilidas (nimesulida) em uma concentração que pode variar de 0,1 % a 50% em massa, preferencialmente, de 1 % a 20% em massa.
Algumas propriedades são desejáveis e imprescindíveis no material, tais como controle de degradação e reabsorção dos componentes do scaffold, resistência mecânica adequada e porosidade eficiente para permitir a vascularização em toda a estrutura do material.
Estas características possibilitam a migração de células em direção ao interior do material e favorecem o crescimento celular para formação de tecido específico.
- Processo de obtenção do material:
O material poroso tridimensional biorreabsorvível e bioativo da presente invenção é obtido por meio do processo que compreende as seguintes etapas:
Etapa 1 - Dissolução de polímeros para preparação da matriz
polimérica-base:
Para a obtenção do material da presente invenção, são utilizadas combinações de polímeros de origem natural ou sintética, os quais são capazes de sofrerem degradação por meio de processos hidrolíticos e/ou enzimáticos a hidroácidos não-tóxicos.
Os referidos polímeros são selecionados de acordo com sua
biocompatibilidade e biodegradabilidade e são usados em proporções monoméricas que variam de 0,1 % até 99,9 %, para cada constituinte, na composição total para formação da matriz polimérica-base. Os polímeros são selecionados do grupo consistindo de: monômeros e/ou homopolímeros lactídeo em todas as variações isoméricas possíveis, tais como D-lactídeo, L- lactíde), DL-lactídeo; monômeros e/ou homopolímeros ε-caprolactona;
monômeros e/ou homopolímeros glicolídeo; poli(hidroxialcanoato); poliésteres e poliamidas derivados de ácidos dicarboxílicos alifáticos e de hidroxiácidos alifáticos ou aminoácidos alifáticos; poli(caprolactama); policarbonato de trimetileno); poli(dioxanona); poli(uretanos); bem como copoliésteres, copoliamidas e copoliéster-amida destes derivados e suas misturas.
Uma proporção preferida ao processo de formação da matriz polimérica é composta por lactídeo.caprolactona (LL:CL) de :99 a 99: ,
preferencialmente 30:70 a 70:30 m/m.
Na primeira etapa do processo de obtenção do material, os polímeros são dissolvidos para a formação da matriz polimérica-base. Para a dissolução dos polímeros, faz-se uso de solventes orgânicos polares de média ou pequena polaridade, tais como solventes halogenados, ou seja, solventes que contêm átomos de cloro, flúor, bromo ou iodo (tais como o clorofórmio, diclorometano, tetracloreto de carbono, tricloroetano e
bromofórmio); 1 ,4-dioxano; carbonato de propíleno; acetona; acetato de metila; tetrahidrofurano; piridina e ácido fórmico (98 %), dentre outros. Em uma modalidade preferida, são utilizados solventes clorados, como o clorofórmio e o diclorometano.
A dissolução dos polímeros é realizada à temperatura ambiente e sob agitação de baixa a média intensidade, em torno de 50 a 500 rpm, em um agitador magnético.
Primeiramente, os polímeros constituintes da matriz polimérica-base, ou seja, os homopolímeros ou copolímeros à base de lactídeo, glicolídeo e/ou ε- caprolactona, são dissolvidos no solvente clorado.
Em modalidades preferidas, a matriz polimérica-base é constituída dos copolímeros à base de lactídeo, glicolídeo e/ou caprolactona adicionados de um polímero hidrofílico.
Quando aplicável, o polímero hidrofílico é adicionado à dispersão dos polímeros constituintes da matriz polimérica-base, em proporções mássicas que variam de 10 a 75 % em relação à massa total da matriz polimérica-base, e são selecionados do grupo consistindo de poli(acrílicos), polímeros funcionais de amina, poli(éteres), poli(estirenos), poli(ácidos vinílicos), poli(álcool vinílicos), poli(pirrolidonas vinílicas), poli(estireno - maleato de sódio), polímeros de origem natural (tais como gelatina, amido, celulose modificada e quitina) e, de forma preferida, os poli(óxidos de etileno) e poli(etilenoglicóis).
Ainda, quando aplicável, cerâmicas bioativas à base de fosfatos de cálcio podem ser adicionadas em uma faixa que varia de 0,01 a 20,0%. As cerâmicas são biocompatíveis e osteoindutivas, e, além de não apresentarem risco de doenças transmissíveis, são ausentes de toxicidade e podem causar mínima reação imunológica. As partículas cerâmicas são selecionadas do grupo que consiste em fosfato tetracálcico [TeCP, Ca40(P04)2], hidroxiapatita [HA, Ca10(PO4)6(OH)2] e sua variação de tamanho na escala manométrica (nanoHA), fosfato de cálcio amorfo [ACP, Ca3(P04)2. ?H2), fosfato tricálcico (α, α', β, γ) [TCP, Ca3(PO )2], fosfato octacálcico [OCP, Ca8H2(PO4)6-5H2O], mono-hidrogênio fosfato de cálcio di-hidratado [DCPD, CaHP04.2H20], mono-hidrogênio fosfato de cálcio [DCP, Ca2P207.2H2O], fosfato heptacálcico [HCP, Ca7(P50 6)2], di-hidrogênio fosfato tetracálcico [TDHP, Ca4H2P602o], fosfato monocálcico mono-hidratado [MCPM, Ca(H2PO )2.H20] e metafosfato de cálcio (α, β, γ) [CMP, Ca(P03)2].
Quando há a adição de aditivos bioativos, tais como partículas
cerâmicas, estas são adicionadas na primeira etapa de dissolução dos polímeros constituintes da matriz polimérica-base.
A adição do polímero hidrofílico, ou a mistura de polímeros hidrofílicos, é realizada quando a dispersão de matriz polimérica-base estiver homogénea em relação às partículas de cerâmica.
Nesta etapa, também é considerada a adição de agentes antitumorais, antibióticos ou anti-inflamatórios, quando aplicável, na concentração adequada de acordo com a natureza do agente, respeitando-se os limites de toxicidade e a concentração mínima eficaz.
Os antitumorais são selecionados do grupo que consiste em cisplatina, doxorrubicina, ifosfamida, metotrexano, ciclofosfamida, etoposido e irinotecano e são adicionados em uma concentração que pode variar de 0,1 % a 50% em massa, preferencialmente de 2% a 30% em massa.
Os antibióticos são selecionados do grupo que consiste em macrolídeos (eritromicina e azitromicina); tetraciclinas (tetraciclina, doxiciclina e minociclina); /Mactâmicos (penicilinas, cefalosporinas, carbapenêmicos e clavunatos);
glicopeptídeos (vancomicina); aminoglicosídeos (tobramicina, estreptomicina e gentamicina) e licosamidas (clindamicina) e são adicionados em uma
concentração que pode variar de 0,1 % a 50% em massa, preferencialmente de 1% a 15% em massa. Dentre os agentes hipolipemiantes, podem ser adicionadas estatinas selecionadas do grupo que compreender sinvastatina, atorvastatina, lovastatina, fluvastatina e pravastatina em uma concentração de 0,01% a 50% em massa, preferencialmente, em uma concentração de 0,5% a 0% em massa.
Ainda, podem ser adicionados anti-inflamatórios esteroidais
selecionados do grupo que consiste em dexametasona, hidrocortisona, betametasona, prednisolona, metilprednisolona, cortisona e corticosterona e o anti-inflamatórios não-esteroidais selecionados do grupo que consiste em salicilatos (ácido acetilsalicílico); ácidos indol e indol acéticos (indometacina, sulindaco e etodolac); ácidos hetero aril-acéticos (diclofenaco, cetorolaco, aceclofenaco e tolmetina); ácidos arilpropiônicos (ibuprofeno, naproxeno, flurbiprofeno, cetoprofeno, loxoprofeno e oxaprozina); ácidos antranílicos (ácido mefanâmico e ácido meclofenâmico); ácidos enólicos (piroxicam, tenoxicam e meloxicam); alcanones (nabumetona); coxibes (rofecoxib, celecoxib e etoricoxib); para-aminofenol (paracetamol) e sulfonanilidas (nimesulida) em uma concentração que pode variar de 0,1 % a 50% em massa,
preferencialmente, de 1% a 20% em massa.
Etapa 2 - Adição de apente formador de porosidade:
Para ocasionar a formação de poros interconectados, com diâmetro médio na faixa de 50 a 220 μηι, são utilizados agentes formadores de porosidade.
Tais agentes podem ser: partículas de açúcar, podendo ser usados os monossacarídeos (frutose e glicose) ou dissacarídeos (sacarose); partículas de sais inorgânicos, como cloreto de sódio e carbonato de amónio;
partículas/gotículas congeladas ou efervescentes de solventes insolúveis na dispersão de matriz polimérica, como n-hexano, metanol, etanol, isopropanol; gás com reação efervescente, utilizando-se o bicarbonato de amónio, por exemplo, ou espuma de gás.
O agente formador de porosidade deve ser adicionado em proporções variadas em relação à massa da dispersão de matriz polimérica, preferencialmente em proporções iguais ou maiores, que podem variar de 1 :1 a 20:1 (m/m), de modo a proporcionar uma porosidade de até 90% no material.
A adição do agente formador de porosidade à dispersão de matriz polimérica pode ser efetuada em qualquer fase da dissolução,
preferencialmente, após completa homogeneização da dispersão.
Etapa 3 - Conformação da mistura:
O preparo da dispersão para o processo de lixiviação, também
denominado conformação, é a etapa do processo em que a mistura polimérica, adicionada do agente formador de porosidade, é homogeneizada até atingir uma consistência firme e adequada para a moldagem e consequente lixiviação.
Nesta etapa, ocorre a eliminação praticamente completa do solvente orgânico do material. Para isso, o uso de temperatura auxilia no processo de evaporação do solvente e consequente redução no tempo de processo.
A temperatura de dissolução deve ser superior ao ponto de ebulição do solvente utilizado, para que o tempo de conformação seja reduzido em relação ao tempo requerido para a temperatura ambiente.
Com o uso de temperatura acima do ponto de ebulição do solvente, o tempo de conformação ou preparo da mistura dura cerca de 10 minutos.
Neste processo, a agitação é constante de baixa a média intensidade, na faixa de 50 a 500 rpm, para que a mistura resultante seja homogénea.
Etapa 4 - Remoção do agente formador de porosidade:
A etapa de remoção depende do agente formador de porosidade utilizado no material.
Dentre os processos que podem ser utilizados para a remoção do agente formador de porosidade, pode-se utilizar a lixiviação, fusão porogênica, sinterização, queda de pressão e dissolução porogênica.
Após remoção do agente formador de porosidade, obtém-se o material tridimensional biorreabsorvível poroso ou scaffold (suporte).
Etapa 5 - Secagem do material: A secagem do material pode ser otimizada com o uso de temperatura.
A temperatura de secagem deve ser inferior a temperatura de transição vítrea do polímero utilizado ou da temperatura de fusão do PEG,
preferencialmente sob pressão reduzida, ou vácuo. Assim, o material pode ser aquecido à temperatura conveniente durante aproximadamente duas horas, sob vácuo, e posteriormente mantido sob vácuo à temperatura ambiente até seu uso posterior.
Dependendo da composição monomérica, a temperatura de transição vítrea compreende o intervalo de -40,0 °C a 60,0 °C.
Quando se utiliza o polímero hidrofílico, é preciso evitar a presença de água (principalmente na forma de umidade), devido à hidrofilicidade deste componente.
O procedimento de secagem é o mesmo, no entanto, deve-se considerar que a temperatura do processo de secagem também seja inferior à
temperatura de fusão ou transição vítrea do polímero hidrofílico utilizado.
Em um processo preferido, a etapa de secagem pode ser realizada apenas sob pressão reduzida, ou vácuo, à temperatura ambiente, suficiente para manter o material ausente de umidade.
A secagem do material pode ser feita com o auxílio de gás nitrogénio com grau de pureza 99,99%, com posterior armazenamento à vácuo e temperatura ambiente.
Etapa 6 - Esterilização do material:
Após seco e embalado, o material obtido ainda deve ser esterilizado. Dentre os possíveis métodos de esterilização, pode-se empregar o tratamento com óxido de etileno ou a irradiação gama, dentre outros.
Primeiro exemplo específico da invenção:
É preparada uma dispersão 12,5 % de poli(L-lactídeo-co-s-caprolactona) (PLCL) 70:30 (L-lactídeo:e-caprolactona m/m) contendo 3,75 % de cerâmica (hidroxiapatita:p-fosfato tricálcico 1 :1 m/m) em diclorometano, com agitação moderada de cerca de 400 rpm, em agitador magnético, à temperatura ambiente, até completa homogeneização (aproximadamente 5 minutos).
À esta mistura, adiciona-se PEG 4.000 g.mol"1 até que a proporção m/m de PLCLPEG seja de 2:1 , mantendo-se a agitação constante até completa homogeneização (cerca de 2 minutos).
Após dispersão da matriz polimérica em diclorometano, adiciona-se sacarose como agente porogênico, na faixa granulométrica de 50 - 125 μηι, em uma proporção de 3:1 em relação à massa utilizada de PLCL.
A dispersão polimérica contendo a sacarose é levada à temperatura superior ao ponto de ebulição do diclorometano, neste caso, 70°C. Sob constante agitação, a nível moderado, a mistura é preparada e conformada tal que seja possível sua manipulação e transferência para um molde de teflon vazado.
Preparada a mistura no molde, esta segue para o processo de lixiviação, para remoção das partículas do agente porogênico e consequente formação dos poros.
A remoção da sacarose foi obtida via uso de água, em período de tempo conveniente para total remoção, preferencialmente entre 5 e 15 minutos.
A quantidade de água utilizada foi 1000 vezes superior à solubilidade de sacarose em água, para garantir completa remoção das partículas do açúcar da composição do material. O processo de lixiviação foi realizado em duplicata, com troca de água.
A secagem foi realizada em duas etapas: (i) lavagem do material em álcool etílico grau analítico gelado (em torno de 0°C) e remoção do excesso de álcool e (ii) armazenamento em atmosfera sob pressão reduzida (vácuo) durante 12 horas.
Segundo exemplo específico da invenção:
Até a etapa de conformação da mistura no molde, o processo executado no exemplo 2 foi idêntico ao descrito no exemplo 1.
A lixiviação foi realizada em um equipamento de micro-ondas, mais especificamente, um forno de micro-ondas convencional. Para isso, a água é pré-aquecida em forno micro-ondas até atingir a fervura, preferencialmente, em um período que compreende 1 a 5 minutos.
Após atingir a temperatura de fervura da água, o material é imerso na mesma e dá-se início ao processo de lixiviação, que foi executado em duplicata, novamente sob micro-ondas, por tempo necessário para completa remoção do agente formador de poros, preferencialmente, entre 5 e 15 minutos.
Imagens ilustrativas do material poroso tridimensional biorreabsorvível e bioativo produzido a base de poli(lactídeo-co-8-caprolactona) 70:30 pelo processo da presente invenção estão demonstrados nas figuras 1 , 2A e 2B.
A Figura 1 é uma imagem do material poroso obtida por microscopia eletrônica de varredura a um aumento de 3.500 vezes, na qual é possível observar a conectividade entre os poros em uma estrutura tridimensional, em tamanhos apropriados para propiciar a vascularização e ancoragem das células.
A figura 2A demonstra o material preparado com poli(L-lactídeo-co-8- caprolactona) - PLCL nas proporção monomérica de L-lactídeo:8-caprolactona 40:60 e PEG 4.000 g.mol"1, preparado com sacarose como agente formador de porosidade.
A figura 2B demonstra o material preparado com poli(L-lactídeo-co-8- caprolactona) - PLCL nas proporção monomérica de L-lactídeo:s-caprolactona 70:30 e PEG 4.000 g.mol"1, preparado com sacarose como agente formador de porosidade.
Conforme descrito, o material poroso tridimensional biorreabsorvível e bioativo fornece um suporte que permite a sustentação e preenchimento da região deficiente de tecido, oferecendo uma estrutura capaz de possibilitar a vascularização para a aderência de células e posterior diferenciação e crescimento destas para a formação ou regeneração de tecido requerida.
Embora a versão preferida da invenção tenha sido ilustrada e descrita, deve ser compreendido que a invenção não é limitada. Diversas modificações, mudanças, variações, substituições e equivalentes poderão ocorrer, sem desviar do escopo da presente invenção.

Claims

REIVINDICAÇÕES
1. Material poroso tridimensional biorreabsorvível e bioativo
caracterizado pelo fato de compreender uma matriz polimérica-base constituída por combinações de polímeros de origem natural ou sintética, os quais são selecionados do grupo consistindo de: monômeros e/ou
homopolímeros de lactídeo em todas as variações isoméricas possíveis, tais como D-lactídeo, L-lactídeo, DL-lactídeo; monômeros e/ou homopolímeros de ε-caprolactona; monômeros e/ou homopolímeros glicolídeos; poliésteres e poliamidas derivados de ácidos dicarboxílicos alifáticos e de hidroxiácidos alifáticos ou aminoácidos alifáticos; poli(hidroxialcanoato); poli(caprolactama); policarbonato de trimetileno); poli(uretanos); bem como copoliésteres, copoliamidas e copoliéster-amida destes derivados, e/ou suas misturas, em que os polímeros estão em proporções monoméricas que variam de 0,1 % a 99,9 % da composição total da matriz polimérica-base.
2. Material, de acordo com a reivindicação 1 , caracterizado pelo fato de ainda compreender partículas cerâmicas em proporções mássicas que variam de 0,01 a 20,0% em relação à massa total da matriz polimérica.
3. Material, de acordo com a reivindicação 1 , caracterizado pelo fato de ainda compreender um polímero hidrofílico em proporções mássicas que variam de 10 a 75 % em relação à massa total da matriz polimérica-base.
4. Material, de acordo com a reivindicação 1 , caracterizado pelo fato de ainda compreender agentes antitumorais, antibióticos, hipolipemiantes e/ou anti-inflamatórios ou combinações destes.
5. Material, de acordo com a reivindicação 1 , caracterizado pelo fato de que a matriz polimérica-base é formada por copolímeros à base de lactídeo, glicolídeo e/ou caprolactona.
6. Material, de acordo com a reivindicação 5, caracterizado pelo fato de que a matriz polimérica-base é composta por lactídeo:caprolactona de 1 :99 a 99:1 em massa.
7. Material, de acordo com a reivindicação 6, caracterizado pelo fato de que a matriz polimérica-base é composta por lactídeo:caprolactona de 30:70 a 70:30 em massa.
8. Material, de acordo com a reivindicação 2, caracterizado pelo fato de que as partículas cerâmicas são selecionadas do grupo que consiste em fosfatos de cálcio.
9. Material, de acordo com a reivindicação 8, caracterizado pelo fato de que os fosfatos de cálcio são selecionados do grupo consistindo de: fosfato tetracálcico [TeCP, Ca40(P04)2], hidroxiapatita [HA, Cai0(PO4)6(OH)2] e sua variação de tamanho na escala manométrica (nanoHA), fosfato de cálcio amorfo [ACP, Ca3(PO4)2.nH2), fosfato tricálcico (α, α', β, γ) [TCP, Ca3(P0 )2], fosfato octacálcico [OCP, Ca8H2(P0 )6.5H2O], mono-hidrogênío fosfato de cálcio di-hidratado [DCPD, CaHP04.2H2O], mono-hidrogênio fosfato de cálcio [DCP, Ca2P207.2H20], fosfato heptacálcico [HCP, Ca7(P50 6)2], di-hidrogênio fosfato tetracálcico [TDHP, Ca4H2P602o]. fosfato monocálcico mono-hidratado [MCPM, Ca(H2PO4)2.H20] e metafosfato de cálcio (α, β, γ) [CMP, Ca(P03)2], nanoHA, HA e β-TCP.
10. Material, de acordo com a reivindicação 3, caracterizado pelo fato de que o polímero hidrofílico é selecionado do grupo que consiste em poli(acrílicos), polímeros funcionais de amina, poli(éteres), poli(estirenos), poli(ácidos vinílicos), poli(álcool vinílicos), poli(pirrolidonas vinílicas), poliestireno - maleato de sódio), polímeros de origem natural (tais como gelatina, amido, celulose modificada e quitina), poli(óxidos de etileno) ou poli(etilenoglicóis).
1 1. Material, de acordo com a reivindicação 4, caracterizado pelo fato de que os antitumorais são selecionados do grupo que consiste em cisplatina, doxorrubicina, ifosfamida, metotrexano, ciclofosfamida, etoposido e irinotecano e são adicionados em uma concentração que varia de 0,1 % a 50% em massa, preferencialmente de 2% a 30% em massa.
12. Material, de acordo com a reivindicação 4, caracterizado pelo fato de que os antibióticos são selecionados do grupo que consiste em macrolídeos (eritromicina e azitromicina); tetraciclinas (tetraciclina, doxiciclina e minociclina); β-lactâmicos (penicilinas, cefalosporinas, carbapenêmicos e clavunatos);
glicopeptídeos (vancomicina); aminoglicosídeos (tobramicina, estreptomicina e gentamicina) e licosamidas (clindamicina) e são adicionados em uma
concentração que varia de 0,1 % a 50% em massa, preferencialmente de 1 % a 15% em massa.
13. Material, de acordo com a reivindicação 4, caracterizado pelo fato de que os hipolipemiantes são selecionados do grupo das estatinas,
especialmente, a sinvastatina, a atorvastatina, a lovastatina, a fluvastatina e a pravastatina e são adicionados em uma concentração de 0,01 % a 50% em massa, preferencialmente, em uma concentração de 0,5% a 10% em massa.
14. Material, de acordo com a reivindicação 4, caracterizado pelo fato de que os anti-inflamatórios podem ser esteroidais ou não esteroidais e são adicionados em uma concentração que varia de 0,1% a 50% em massa, preferencialmente, de 1 % a 20% em massa.
15. Material, de acordo com a reivindicação 14, caracterizado pelo fato de que os anti-inflamatórios esteroidais são selecionados do grupo que consiste em dexametasona, hidrocortisona, betametasona, prednisolona, metilprednisolona, cortisona e corticosterona.
16. Material, de acordo com a reivindicação 14, caracterizado pelo fato de que os anti-inflamatórios não-esteroidais são selecionados do grupo que consiste em salicilatos (ácido acetilsalicílico); ácidos indol e indol acéticos (indometacina, sulindaco e etodolac); ácidos hetero aril-acéticos (diclofenaco, cetorolaco, aceclofenaco e tolmetina); ácidos arilpropiônicos (ibuprofeno, naproxeno, flurbiprofeno, cetoprofeno, loxoprofeno e oxaprozina); ácidos antranílicos (ácido mefanâmico e ácido meclofenâmico); ácidos enólicos
(piroxicam, tenoxicam e meloxicam); alcanones (nabumetona); coxibes
(rofecoxib, celecoxib e etoricoxib); para-aminofenol (paracetamol) e
sulfonanilidas (nimesulida).
17. Processo para a obtenção do material poroso tridimensional biorreabsorvível e bioativo como definido em qualquer uma das reivindicações 1 a 16 caracterizado por compreender as etapas de:
a. dissolução de polímeros para preparação da matriz polimérica-base; b. adição de agente formador de porosidade;
c. conformação da mistura;
d. remoção do agente formador de porosidade:
e. secagem do material;
f. esterilização do material.
18. Processo, de acordo com a reivindicação 17, caracterizado pelo fato de que, na etapa (a), os polímeros são dissolvidos em solvente orgânico polar de média ou pequena polaridade, a temperatura ambiente e sob agitação de 50 a 500 rpm em agitador magnético.
19. Processo, de acordo com a reivindicação 18, caracterizado pelo fato de que os polímeros são selecionados do grupo consistindo de:
monômeros lactídeo em todas as variações isoméricas possíveis, tais como poli(D-lactídeo), poli(L-lactídeo), poli(DL-lactídeo); monômeros caprolactona em todas as variações estruturais moleculares possíveis, tais como
poli(caprolactona) e ε-caprolactona; monômeros glicolídeos em todas as variações estruturais moleculares possíveis, tais como poli (glicolídeo);
poliésteres e poliamidas derivados de ácidos dicarboxílicos alifáticos e de hidroxiácidos alifáticos ou aminoácidos alifáticos; poli(hidroxialcanoato);
poli(caprolactama); policarbonato de trimetileno); poli(uretanos); bem como copoliésteres, copoliamidas e copoliéster-amida destes derivados, em que os polímeros estão presentes em proporções monoméricas que variam de 0,1 % a 99,9 % da composição total da matriz polimérica-base.
20. Processo, de acordo com a reivindicação 18, caracterizado pelo fato de que o solvente orgânico polar de média ou pequena polaridade é um solvente halogenado (como o clorofórmio, diclorometano, tetracloreto de carbono, tricloroetano e bromofórmio); 1 ,4-dioxano; carbonato de propileno; acetona; acetato de metila; tetrahidrofurano; piridina ou ácido fórmico (98 %).
21. Processo, de acordo com a reivindicação 18, caracterizado pelo fato de que o solvente orgânico polar de média ou pequena polaridade é um solvente clorado.
22. Processo, de acordo com a reivindicação 21 , caracterizado pelo fato de que o solvente orgânico polar de média ou pequena polaridade é clorofórmio ou diclorometano.
23. Processo, de acordo com a reivindicação 17, caracterizado pelo fato de ainda compreender a adição de partículas cerâmicas após a dissolução dos polímeros constituintes da matriz polimérica-base.
24. Processo, de acordo com a reivindicação 23, caracterizado pelo fato de que as partículas cerâmicas são fosfatos de cálcio selecionados do grupo consistindo de fosfato tetracálcico [TeCP, Ca40(PO4)2], hidroxiapatita [HA, Caio(P0 )6(OH)2] e sua variação de tamanho na escala manométrica (nanoHA), fosfato de cálcio amorfo [ACP, Ca3(P04)2-/iH2), fosfato tricálcico ( , α', β, γ) [TCP, Ca3(P0 )2], fosfato octacálcico [OCP, Ca8H2(P04)6.5H20], mono- hidrogênio fosfato de cálcio di-hidratado [DCPD, CaHP04.2H20], mono- hidrogênio fosfato de cálcio [DCP, Ca2P207.2H20], fosfato heptacálcico [HCP, Ca7(P50i6)2_, di-hidrogênio fosfato tetracálcico [TDHP, Ca4H2P602o], fosfato monocálcico mono-hidratado [MCPM, Ca(H2PO4)2.H20] e metafosfato de cálcio (α, β, γ) [CMP, Ca(PO3)2], nanoHA, HA e β-TCP, em que os fosfatos de cálcio estão presentes em proporções mássicas que variam de 0,01 a 20,0% em relação à massa total da matriz polimérica.
25. Processo, de acordo com a reivindicação 17, caracterizado pelo fato de ainda compreender a adição de um polímero hidrofílico após a homogeneização das partículas cerâmicas na matriz polimérica-base.
26. Processo, de acordo com a reivindicação 25, caracterizado pelo fato de que polímero hidrofílico é selecionado do grupo que consiste em poli(acrílicos), polímeros funcionais de amina, poli(éteres), poli(estirenos), poli(ácidos vinílicos), poli(álcool vinílicos), poli(pirrolidonas vinílicas),
poliestireno - maleato de sódio), polímeros de origem natural (tais como gelatina, amido, celulose modificada e quitina), poli(óxidos de etileno) ou poli(etilenoglicóis), em que o polímero hidrofílico está presente em proporções mássicas que variam de 10 a 75 % em relação à massa total da matriz polimérica-base.
27. Processo, de acordo com a reivindicação 17, caracterizado pelo fato de que ainda compreender a adição de agentes antitumorais, antibióticos, hipolipemiantes e/ou anti-inflamatóríos, ou combinações destes, após a homogeneização das partículas cerâmicas na matriz polimérica-base.
28. Material, de acordo com a reivindicação 27, caracterizado pelo fato de que os antitumorais são selecionados do grupo que consiste em cisplatina, doxorrubicina, ifosfamida, metotrexano, ciclofosfamida, etoposido e irinotecano e são adicionados em uma concentração que varia de 0,1% a 50% em massa, preferencialmente de 2% a 30% em massa.
29. Material, de acordo com a reivindicação 27, caracterizado pelo fato de que os antibióticos são selecionados do grupo que consiste em macrolídeos
(eritromicina e azitromicina); tetraciclinas (tetraciclina, doxiciclina e mínociclina);Mactâmicos (penicilinas, cefalosporinas, carbapenêmicos e clavunatos);
glicopeptídeos (vancomicina); aminoglicosídeos (tobramicina, estreptomicina e gentamicina) e licosamidas (clindamicina) e são adicionados em uma
concentração que varia de 0,1% a 50% em massa, preferencialmente de 1% a 15% em massa.
30. Material, de acordo com a reivindicação 27, caracterizado pelo fato de que os hipolipemiantes são selecionados do grupo das estatinas,
especialmente, a sinvastatina, a atorvastatina, a lovastatina, a fluvastatina e a pravastatina e são adicionados em uma concentração de 0,01% a 50% em massa, preferencialmente, em uma concentração de 0,5% a 10% em massa.
31. Material, de acordo com a reivindicação 27, caracterizado pelo fato de que os anti-inflamatórios podem ser esteroidais ou não esteroidais e são adicionados em uma concentração que varia de 0,1 % a 50% em massa, preferencialmente, de 1% a 20% em massa.
32. Material, de acordo com a reivindicação 31 , caracterizado pelo fato de que os anti-inflamatórios esteroidais são selecionados do grupo que consiste em dexametasona, hidrocortisona, betametasona, prednisolona, metilprednisolona, cortisona e corticosterona.
33. Material, de acordo com a reivindicação 31 , caracterizado pelo fato de que os anti-inflamatórios não-esteroidais são selecionados do grupo que consiste em salicilatos (ácido acetilsalicílico); ácidos indol e indol acéticos (indometacina, sulindaco e etodolac); ácidos hetero aril-acéticos (diclofenaco, cetorolaco, aceclofenaco e tolmetina); ácidos arilpropiônicos (ibuprofeno, naproxeno, flurbiprofeno, cetoprofeno, loxoprofeno e oxaprozina); ácidos antranílicos (ácido mefanâmico e ácido meclofenâmico); ácidos enólicos (piroxicam, tenoxicam e meloxicam); alcanones (nabumetona); coxibes
(rofecoxib, celecoxib e etoricoxib); para-aminofenol (paracetamol) e
sulfonanilidas (nimesulida).
34. Processo, de acordo com a reivindicação 17, caracterizado pelo fato de que, na etapa (b), o agente formador de porosidade é adicionado em proporções de 1 :1 a 20:1 em massa em relação à massa da dispersão de matriz polimérica, sendo selecionado do grupo consistindo de: partículas de açúcar (monossacarídeos, como frutose e glicose, ou dissacarídeos, como sacarose); partículas de sais inorgânicos, como cloreto de sódio e carbonato de amónio; partículas e/ou gotículas congeladas ou efervescentes de solventes insolúveis na dispersão de matriz polimérica, como n-hexano, metanol, etanol, isopropanol; gás com reação efervescente, utilizando-se o bicarbonato de amónio ou espuma de gás.
35. Processo, de acordo com a reivindicação 17, caracterizado pelo fato de que, na etapa (c), a dispersão polimérica é homogeneizada sob agitação na faixa de 50 a 500 rpm até atingir uma consistência firme.
36. Processo, de acordo com a reivindicação 35, caracterizado pelo fato de que, na etapa (c), a conformação é otimizada com o uso de
temperatura, em que a mesma é superior ao ponto de ebulição do solvente utilizado.
37. Processo, de acordo com a reivindicação 17, caracterizado pelo fato de que, na etapa (d), a remoção do agente formador de porosidade ocorre por meio de lixiviação, fusão porogênica, sinterização, queda de pressão e dissolução porogênica.
38. Processo, de acordo com a reivindicação 17, caracterizado pelo fato de que, na etapa (e), a secagem do material é otimizada com o uso de temperatura, em que a mesma é inferior à temperatura de transição vítrea do polímero utilizado.
39. Processo, de acordo com a reivindicação 38, caracterizado pelo fato de que, na etapa (e), a secagem pode ainda ocorrer sob pressão reduzida ou vácuo.
40. Processo, de acordo com qualquer uma das reivindicações 38 ou 39, caracterizado pelo fato de que, na etapa (e), a secagem pode ainda ser feita com o auxílio de gás nitrogénio com grau de pureza 99,99%.
41. Processo, de acordo com a reivindicação 17, caracterizado pelo fato de que a esterilização ocorre por tratamento com óxido de etileno ou a irradiação gama.
PCT/BR2012/000374 2012-03-01 2012-09-28 Material poroso tridimensional biorreabsorvível e bioativo e seu processo de obtenção WO2013126975A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/382,289 US20150086606A1 (en) 2012-03-01 2012-09-28 Bioresorbable and bioactive three-dimensional porous material and method for the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR102012004682-2A BR102012004682A2 (pt) 2012-03-01 2012-03-01 Material poroso tridimensional biorreabsorvível e bioativo e seu processo de obtenção
BR1020120046822 2012-03-01

Publications (1)

Publication Number Publication Date
WO2013126975A1 true WO2013126975A1 (pt) 2013-09-06

Family

ID=49081475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000374 WO2013126975A1 (pt) 2012-03-01 2012-09-28 Material poroso tridimensional biorreabsorvível e bioativo e seu processo de obtenção

Country Status (3)

Country Link
US (1) US20150086606A1 (pt)
BR (1) BR102012004682A2 (pt)
WO (1) WO2013126975A1 (pt)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3635045A1 (en) 2017-05-26 2020-04-15 Infinite Material Solutions, LLC Water soluble polymer compositions
CN112646227A (zh) * 2020-12-02 2021-04-13 深圳市昌华生物医学工程有限公司 高分子聚合物/钙化物多孔材料的制备方法、高分子聚合物/钙化物多孔材料及其应用
CN115011542A (zh) * 2021-12-07 2022-09-06 中科睿极(深圳)医学科技有限公司 多孔微载体及其制备方法
CN113952944B (zh) * 2021-12-23 2022-03-29 浙江湃肽生物有限公司深圳分公司 一种纯化九肽-1的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466633A1 (en) * 2003-04-02 2004-10-13 Lifescan, Inc. Composite scaffolds seeded with mammalian cells
EP2127689A1 (en) * 2008-05-27 2009-12-02 RevisiOs B.V. i.o. Novel homogenous osteoinductive nanocomposites
WO2011075183A1 (en) * 2009-12-15 2011-06-23 Vanderbilt University Injectable/in situ forming tissue polyurethane composites and methods thereof
WO2011127149A1 (en) * 2010-04-06 2011-10-13 University Of Utah Research Foundation Controlled release combination biomaterials
US20120253470A1 (en) * 2011-03-30 2012-10-04 President And Fellows Of Harvard College Compositions for bone tissue repair and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8681098A (en) * 1997-08-01 1999-03-08 Massachusetts Institute Of Technology Three-dimensional polymer matrices
US20050003007A1 (en) * 2003-07-02 2005-01-06 Michele Boix Method of sterilization of polymeric microparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466633A1 (en) * 2003-04-02 2004-10-13 Lifescan, Inc. Composite scaffolds seeded with mammalian cells
EP2127689A1 (en) * 2008-05-27 2009-12-02 RevisiOs B.V. i.o. Novel homogenous osteoinductive nanocomposites
WO2011075183A1 (en) * 2009-12-15 2011-06-23 Vanderbilt University Injectable/in situ forming tissue polyurethane composites and methods thereof
WO2011127149A1 (en) * 2010-04-06 2011-10-13 University Of Utah Research Foundation Controlled release combination biomaterials
US20120253470A1 (en) * 2011-03-30 2012-10-04 President And Fellows Of Harvard College Compositions for bone tissue repair and uses thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CABRERA ET AL.: "Synthesis, characterization and biocompatibility of resorbable osteomimetic membranes of PLLA-co-PCL/PEG/HA- TCPbeta for bone tissue engineering.", 8TH WORLD BIOMATERIALS CONGRESS, 2008, AMSTERDAM *
CHIDAMBARAM ET AL.: "Organic-inorganic comosites for bone drug delivery.", AAPS PHARM SCITECH, vol. 10, 2009, pages 1158 - 1171 *
GORNA K ET AL.: "biodegradable polyurethanes for implants. II In vitro degradation and calcification of materials from poly(E-caprolactone)-poly(thylene oxide) diols and various chain extenders.", JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, vol. 60, 2002, pages 592 - 606 *
HABRAKEN WJEM ET AL.: "Ceramic composites as matrices and scaffolds for drug delivery in tissue engeneering.", ADVANCED DRUG DELIVERY REVIEW, vol. 59, 2007, pages 234 - 248, XP022110906, DOI: doi:10.1016/j.addr.2007.03.011 *
VIVIANA MOURINO ET AL.: "Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds.", J R SOC INTERFACE, vol. 7, 2010, pages 209 - 227 *
WANG ET AL., 2012 NANOCALCIUM-DEFICIENT HYDROXYAPATITE-POLY (E-CAPROLACTONE-POLYETHILENE GLYCOL-POLY(E-CAPROLACTONE) COMPOSITE SCAFOLDS., 7 June 2012 (2012-06-07) *

Also Published As

Publication number Publication date
US20150086606A1 (en) 2015-03-26
BR102012004682A2 (pt) 2013-10-22

Similar Documents

Publication Publication Date Title
Horch et al. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws
JP4644252B2 (ja) インサイチュー硬化ペースト、その製造および使用
Rimondini et al. In vivo experimental study on bone regeneration in critical bone defects using an injectable biodegradable PLA/PGA copolymer
Alves Cardoso et al. Gelation and biocompatibility of injectable Alginate–Calcium phosphate gels for bone regeneration
JP5406915B2 (ja) 生体適合性インプラント
BRPI1005792B1 (pt) Materiais de regeneração óssea a base de combinações de monetita e outros compostos de cálcio e silício biotativos
WO2013163705A1 (pt) Material injetável biorreabsorvível bioativo e processos de preparação de material injetável biorreabsorvível bioativo
JP2017047188A (ja) 足場を形成する方法
BR102013034085B1 (pt) Compósitos biocompatível e reabsorvível para osteossíntese e seu método para fabricar
US20070110819A1 (en) Composite structures containing hyaluronic acid the derivatives thereof as new bone substitutes and grafts
WO2013126975A1 (pt) Material poroso tridimensional biorreabsorvível e bioativo e seu processo de obtenção
WO2013163704A1 (pt) Membrana biorreabsorvível bioativa porosa e seu processo de obtenção
AU2015321554B2 (en) Porous foams derived from extracellular matrix, porous foam ECM medical devices, and methods of use and making thereof
Moussi et al. Injectable macromolecule-based calcium phosphate bone substitutes
Chen et al. Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite
JP7395357B6 (ja) 組織スキャフォールドおよびスキャフォールド組成物
US9770530B2 (en) Tissue substitute material with biologically active coating
Zeng et al. Poly (trimethylene carbonate)-based composite materials for reconstruction of critical-sized cranial bone defects in sheep
NL2007850C2 (en) Injectable calcium phosphate cement comprising glucono-delta-lactone.
US8911762B2 (en) Polylactic acid/calcium sulfate scaffold
Goel et al. Role of tricalcium phosphate implant in bridging the large osteoperiosteal gaps in rabbits
FI126495B (en) bone implants
Gut et al. In vitro and in vivo (rabbit, guinea pig, mouse) properties of a novel resorbable polymer and allogenic bone composite for guided bone regeneration and orthopedic implants
He et al. Fabrication of injectable calcium sulfate bone graft material
Kuo et al. The use of poly (l-lactic-co-glycolic acid)/tricalcium phosphate as a bone substitute in rabbit femur defects model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870064

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14382289

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12870064

Country of ref document: EP

Kind code of ref document: A1