WO2013162043A1 - 流動性に優れたポリカーボネート樹脂組成物、及びその成形体 - Google Patents

流動性に優れたポリカーボネート樹脂組成物、及びその成形体 Download PDF

Info

Publication number
WO2013162043A1
WO2013162043A1 PCT/JP2013/062607 JP2013062607W WO2013162043A1 WO 2013162043 A1 WO2013162043 A1 WO 2013162043A1 JP 2013062607 W JP2013062607 W JP 2013062607W WO 2013162043 A1 WO2013162043 A1 WO 2013162043A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin composition
parts
copolymer
less
Prior art date
Application number
PCT/JP2013/062607
Other languages
English (en)
French (fr)
Inventor
秀和 河窪
秀司 竹谷
哲朗 山本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2014512735A priority Critical patent/JP5920458B2/ja
Priority to CN201380019482.9A priority patent/CN104254569A/zh
Priority to EP13782470.2A priority patent/EP2843000B1/en
Priority to US14/394,940 priority patent/US9944790B2/en
Priority to KR1020147032832A priority patent/KR20150013579A/ko
Publication of WO2013162043A1 publication Critical patent/WO2013162043A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • C08G63/86Germanium, antimony, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0088Blends of polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a resin composition and a molded body (hereinafter, also referred to as “molded product”) such as a part for home appliances or a part for vehicle using the resin composition.
  • polycarbonate resin has been known as a resin having the highest impact resistance among engineering plastics and having good heat resistance. Therefore, it is used in various fields taking advantage of these characteristics. However, it has drawbacks such as poor chemical resistance and molding processability and thickness dependency of impact strength.
  • thermoplastic polyester is excellent in chemical resistance and molding processability, but has disadvantages inferior in impact resistance, dimensional stability and the like.
  • a resin composition comprising a polycarbonate resin and a polyester modified with polyethylene glycol, polytetramethylene glycol or the like has also been proposed, but although the moldability is improved, the heat resistance is insufficient for automobile exterior parts. .
  • Patent Document 1 discloses that in a resin composition comprising 30 parts of a polyethylene terephthalate block copolymer containing 30% of a bisphenol A polyethylene oxide adduct having a molecular weight of 1000 and 70 parts of polycarbonate, the surface appearance of the molded product is not impaired.
  • a resin composition having an excellent balance of moldability, heat resistance, and impact resistance is disclosed.
  • impact resistance is improved by blending a graft copolymer containing an elastomer as an impact resistance improver.
  • Patent Document 1 discloses that a resin composition having a good thin moldability can be obtained by using a polyester-polyether copolymer as described above. Resin compositions that can obtain good products even in large molded products such as electric appliances such as automobile fenders, door panels, and back door panels are disclosed. However, when the addition of the composition of Patent Document 1 is used for a large-sized molded body that is required to be further thinned for further weight reduction requirements, the fluidity is not sufficient. was there. In that case, a measure is taken to increase the fluidity by setting the molding temperature high, but as a result, the resin composition is thermally deteriorated, decomposition gas is generated, and the appearance of the molded article is deteriorated. As a result, the impact resistance and heat resistance decreased.
  • An object of the present invention is to provide a resin composition containing a polycarbonate resin and a thermoplastic polyester, and even if it is a large thin molded product, the surface appearance of the molded product is not impaired, and the moldability, heat resistance, impact resistance, low It is to provide a resin composition having an excellent balance of linear expansion.
  • the reason why the thin-wall moldability of the resin composition of Patent Document 1 is insufficient is that the polyalkylene glycol chain length of the polyester-polyether copolymer in the composition and the polyester- It was determined that the IV value of the polyether copolymer was not appropriate.
  • the present inventors coped with the above-described causes and made a resin composition containing a polycarbonate resin and a specific polyester-polyether copolymer as a main component, so that the surface appearance, heat resistance and impact resistance were increased.
  • the present invention has been completed by finding that the moldability can be greatly improved while suppressing the deterioration of mechanical properties such as the property and the low linear expansion property.
  • the “surface appearance” includes not only the surface appearance of the molded body itself but also the surface appearance after coating the molded body.
  • the gist of the present invention is as follows.
  • a resin composition comprising 40 parts by weight or more and less than 95 parts by weight of a polycarbonate resin, and 5 parts by weight or more and less than 60 parts by weight of a polyester-polyether copolymer as a base resin,
  • the polyester-polyether copolymer comprises an aromatic polyester unit polymerized using a germanium compound catalyst and a modified polyether unit represented by the following general formula 1, and has an IV value of 0.30 to 1.
  • —A— is —O—, —S—, —SO—, —SO 2 —, —CO—, an alkylene group having 1 to 20 carbon atoms, or an alkylidene group having 6 to 20 carbon atoms.
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are all hydrogen atoms, halogen atoms, or monovalent hydrocarbon groups having 1 to 5 carbon atoms.
  • R 9 and R 10 are all divalent hydrocarbon groups having 1 to 5 carbon atoms, and they may be the same or different, and m and n are the number of repeating units of oxyalkylene units. And 20 ⁇ m + n ⁇ 60.
  • modified polyether unit is a modified polyether unit represented by the following general formula 2.
  • n represent the number of repeating units of oxyalkylene units, and 20 ⁇ m + n ⁇ 60.
  • the impact modifier is one or more rubbery polymers selected from the group consisting of (1) polybutadiene, butadiene-styrene copolymer, butadiene-acrylate copolymer, and polyorganosiloxane. And at least one monomer selected from the group consisting of an aromatic vinyl compound, a vinyl cyanide compound, and a (meth) acrylic acid ester compound in the presence of the core of 10 to 90% by weight.
  • a core / shell type graft polymer comprising 90 to 10% by weight of a shell composed of a polymer obtained by polymerization, (2) a polyolefin-based polymer, and (3) an olefin-unsaturated carboxylic acid ester copolymer
  • Composition Composition.
  • the ratio (weight basis) of (4) plate-like filler having a number average major axis of 0.1 ⁇ m or more and less than 25 ⁇ m and (5) plate-like filler having a number average major axis of 25 ⁇ m or more and 40 ⁇ m or less is plate-like.
  • the resin composition according to any one of 1) to 8) above, wherein (4) / (5) 25% / 75% to 50% / 50% with respect to the filler amount.
  • the resin composition according to any one of 1) to 9) further comprising 5 to 100 parts by weight of glass long fibers with respect to 100 parts by weight of the base resin.
  • a molded article comprising the resin composition according to any one of 1) to 10) above.
  • the projection area of the molded body exceeds 30000 mm 2 , the length from the gate to the end exceeds 500 mm, the average thickness is less than 2.5 mm, and the measurement temperature is measured between ⁇ 30 ° C. and + 80 ° C.
  • the projection area of the molded body exceeds 30000 mm 2 , the length from the gate to the end exceeds 500 mm, the average wall thickness is less than 2.5 mm, and the measurement temperature is measured between ⁇ 30 ° C. and + 80 ° C.
  • the projected area of the molded body exceeds 60000 mm 2 , the average wall thickness is less than 2.5 mm, and the in-plane linear expansion coefficient measured between the measurement temperature ⁇ 30 ° C. and + 80 ° C. is 6.0 ⁇ 10
  • the projected area of the molded body exceeds 60000 mm 2 , the average wall thickness is less than 2.5 mm, and the in-plane linear expansion coefficient measured between ⁇ 30 ° C. and + 80 ° C.
  • the molded article according to 11) above which is ⁇ 5 / ° C. or lower.
  • the resin composition of the present invention has excellent moldability and has a good balance of moldability, heat resistance, impact resistance, and low linear expansion. Further, the molded body has excellent surface appearance, heat resistance, impact resistance, and low linear expansion. Moreover, the resin composition of this invention is excellent also in large sized thin-wall moldability.
  • the molded body of the resin composition of the present invention is suitable as a part for home appliances, a part for vehicles, and the like. That is, parts for home appliances and parts for vehicles formed by molding the resin composition of the present invention have excellent surface appearance, heat resistance, impact resistance, and low linear expansion.
  • the resin composition of the present invention has a polycarbonate resin of 40 parts by weight or more and less than 95 parts by weight, and a specific polyester-polyether copolymer of 5 parts by weight or more and less than 60 parts by weight (total 100 parts by weight). Part) as a base resin.
  • the effects of the present invention can be obtained, but from the viewpoint of the balance of impact resistance, heat resistance, dimensional stability, chemical resistance, and moldability, more preferably 50 parts by weight of polycarbonate resin More than 90 parts by weight, and 10 parts by weight or more and less than 50 parts by weight of the polyester-polyether copolymer, more preferably 60 parts by weight or more and less than 80 parts by weight of the polycarbonate resin, and the polyester-polyether copolymer.
  • the combined amount is 20 parts by weight or more and less than 40 parts by weight.
  • the resin composition of the present invention is mainly composed of a polycarbonate resin and a specific polyester-polyether copolymer, a molded article having an excellent appearance can be obtained particularly for a large injection molded product. Further, it is preferably used with a filler added, but even when no filler is added, there is an effect of excellent fluidity and thermal stability.
  • the resin composition of the present invention preferably further contains 0.5 to 40 parts by weight of an impact resistance improver from the viewpoint of further improving impact resistance.
  • an impact resistance improver from the viewpoint of heat resistance, rigidity, moldability, etc.
  • it is more preferably 1 to 20 parts by weight.
  • the required resistance From the viewpoint of obtaining impact strength and heat resistance, 2 to 10 parts by weight is more preferable.
  • the impact modifier examples include (1) core / shell type graft polymer, (2) polyolefin polymer, (3) olefin-unsaturated carboxylic acid ester copolymer, and (4) thermoplastic polyester elastomer.
  • core / shell type graft polymer examples include (1) core / shell type graft polymer, (2) polyolefin polymer, (3) olefin-unsaturated carboxylic acid ester copolymer, and (4) thermoplastic polyester elastomer.
  • the (1) core / shell type graft polymer is one or more rubbery polymers selected from the group consisting of polybutadiene, butadiene-styrene copolymer, butadiene-acrylic acid ester copolymer, and polyorganosiloxane. Polymerizing one or more monomers selected from the group consisting of an aromatic vinyl compound, a vinyl cyanide compound, and a (meth) acrylic acid ester compound in the presence of a core of 10 to 90% by weight and the core. It is preferable that the shell is composed of 90 to 10% by weight of the polymer obtained.
  • the resin composition of the present invention preferably contains a plate-like filler.
  • a plate-like filler By including a plate-like filler, the heat resistance of the molded article of the resin composition of the present invention can be further improved, and further, the low linear expansion can be improved.
  • the plate-like filler from the viewpoint of obtaining a low linear expansion effect, the number average major axis is 0.1 ⁇ m or more and 40 ⁇ m or less, and the content thereof is 5 to 100 with respect to 100 parts by weight of the base resin. It is preferable that it is a weight part. Further, the content is more preferably 10 to 70 parts by weight, still more preferably 15 to 40 parts by weight with respect to 100 parts by weight of the base resin.
  • the resin composition of the present invention preferably contains long glass fibers. By including the long glass fiber, the heat resistance and impact characteristics of the molded product of the resin composition of the present invention can be further improved.
  • the content of the long glass fiber is preferably 5 to 100 parts by weight of the long glass fiber with respect to 100 parts by weight of the resin. More preferably, it is 10 to 50 parts by weight, still more preferably 15 to 35 parts by weight.
  • the plate-like filler and the long glass fiber can be used in combination within the above range of the number of parts.
  • the resin composition of the present invention is a resin composition having a polycarbonate resin and a specific polyester-polyether copolymer as a base resin, it is superior to conventional resin compositions, particularly for large injection molded products. A molded body having a good appearance can be obtained. Further, when the specific plate-like filler is added, it becomes a resin composition excellent in molding processability, which can be a molded body having sufficient dimensional stability while realizing a light weight and thin wall, particularly a large size. It is used as a resin composition from which a thin molded article having excellent dimensional stability and appearance can be obtained.
  • the base resin has an effect of being excellent in fluidity and thermal stability even when no plate-like filler is added.
  • the resin composition of the present invention preferably further contains a stabilizer in an amount of 0.01 to 4 parts by weight, more preferably 100 parts by weight of the base resin, in order to prevent thermal deterioration during the molding process. 0.1 to 2 parts by weight.
  • the polycarbonate resin used in the present invention is a polycarbonate resin derived from a compound having two phenolic hydroxyl groups (hereinafter referred to as dihydric phenol), and is usually dihydric phenol and phosgene or dihydric phenol and carbonic acid diester. It is a resin obtained by reaction with.
  • Bisphenol A is particularly suitable as the dihydric phenol, but is not limited thereto.
  • the molecular weight of the polycarbonate resin is preferably in the range of 10,000 to 60,000 in terms of viscosity average molecular weight from the viewpoint of impact resistance, chemical resistance, moldability, and the like.
  • polyester-polyether copolymer ⁇ 1> Overall overview of polyester-polyether copolymer
  • the polyester-polyether copolymer used in the present invention is an aromatic polyester unit polymerized using a germanium compound catalyst, And a copolymer having a modified polyether unit represented by the general formula 1 and an IV value in the range of 0.30 to 1.00.
  • the structural unit of the polyester-polyether copolymer may be composed of an aromatic polyester unit and a specific modified polyether unit.
  • the aromatic polyester unit 85 It is preferably a copolymer comprising 15 to 35% by weight and 15 to 35% by weight of the modified polyether unit represented by the general formula 1, more preferably 80 to 70% by weight of the aromatic polyester unit, and the modification. 20 to 30% by weight of polyether units.
  • a method for producing a polyester-polyether copolymer uses (1) an aromatic dicarboxylic acid, a diol, and a modified polyether using a germanium compound catalyst.
  • Direct esterification method (2) Three-way transesterification method of dialkyl aromatic dicarboxylate, diol, modified polyether, and / or ester of modified polyether, (3) Transesterification of dialkyl aromatic dicarboxylate, diol Or a method of polycondensation by adding a modified polyether after transesterification, (4) a method of transesterifying under a melt and reduced pressure after mixing with a modified polyether using a polymeric aromatic polyester, and the like.
  • the polycarbonate resin is hydrolyzed while releasing carbon dioxide gas by the antimony compound when it remains in the composition and is heated during molding, As a result, silver stripes and foaming occur in the appearance of the obtained molded body.
  • the prepared catalyst is a germanium compound.
  • germanium compound used as the catalyst according to the present invention examples include germanium oxide such as germanium dioxide, germanium alkoxide such as germanium tetraethoxide and germanium tetraisopropoxide, germanium hydroxide and its alkali metal salt, germanium.
  • germanium oxide such as germanium dioxide
  • germanium alkoxide such as germanium tetraethoxide and germanium tetraisopropoxide
  • germanium hydroxide and its alkali metal salt germanium.
  • germanium examples include glycolate, germanium chloride, and germanium acetate. These may be used alone or in combination of two or more. Of these germanium compounds, germanium dioxide is particularly preferred.
  • the amount of germanium dioxide catalyst added at the time of polymerization is preferably 50 to 2000 ppm, more preferably 100 to 1000 ppm of the amount of the polyester-polyether copolymer from the viewpoint of reaction rate and economical viewpoint. preferable.
  • the aromatic dicarboxylic acid is particularly preferably terephthalic acid, and other examples include isophthalic acid, diphenyldicarboxylic acid, and diphenoxyethanedicarboxylic acid.
  • terephthalic acid isophthalic acid, diphenyldicarboxylic acid, and diphenoxyethanedicarboxylic acid.
  • a small proportion (15% or less) of other aromatic oxycarboxylic acids such as oxybenzoic acid, or aliphatics such as adipic acid, sebacic acid, cyclohexane 1,4-dicarboxylic acid, Or you may use together alicyclic dicarboxylic acid.
  • the diol is a low molecular weight glycol component that forms an ester unit, and is a low molecular weight glycol having 2 to 10 carbon atoms, such as ethylene glycol, trimethylene glycol, tetramethylene glycol, hexanediol, decanediol, cyclohexanedimethanol, etc. is there.
  • ethylene glycol, trimethylene glycol, and tetramethylene glycol are preferable from the viewpoint of availability.
  • alkyl group of the dialkyl aromatic dicarboxylate a methyl group is preferable from the viewpoint of transesterification.
  • a logarithmic viscosity (IV) at a concentration of 0.5 g / dl (5 g / l) at 25 ° C. is preferably from 0.30 to 1.00, more preferably from 0.45 to 0.60.
  • Aromatic polyester unit The unit of the aromatic polyester used in the present invention is a polymer or copolymer obtained from an aromatic dicarboxylic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof, Usually, it is an alternating polycondensate.
  • the aromatic polyester unit include polyethylene terephthalate, polyethylene terephthalate copolymer, polytetramethylene terephthalate, polytetramethylene terephthalate copolymer, polytrimethylene terephthalate, or polytrimethylene terephthalate copolymer. More preferably, it is at least one selected from the group consisting of a polyethylene terephthalate unit, a polybutylene terephthalate unit, and a polypropylene terephthalate unit.
  • the modified polyether unit used in the present invention is a unit represented by the general formula 1, and a unit represented by the general formula 2 is preferable.
  • a unit represented by the general formula 2 is preferable.
  • the number average of (m + n) is less than 20 for the number of repeating units m and n of the oxyalkylene units in the general formulas 1 and 2, there is little improvement in thermal stability, and when the number average of (m + n) exceeds 60, Since the moldability deteriorates, the number average of (m + n) needs to be 20 or more and 60 or less.
  • 25 or more are preferable and 30 or more are more preferable.
  • Impact modifier ⁇ 1> Core / shell type graft polymer
  • the core / shell type graft polymer is obtained by graft-polymerizing the specific vinyl compound (monomer) on the specific rubber-like elastic body. It is a thing.
  • the rubbery elastic body preferably has a glass transition temperature of 0 ° C. or lower, more preferably ⁇ 40 ° C. or lower.
  • a rubber-like elastic body include, for example, polybutadiene, butadiene-styrene copolymer, butadiene-acrylic acid ester copolymer, diene rubber such as butadiene-acrylonitrile copolymer, polybutyl acrylate, Polyacrylic acid 2-ethylhexyl, dimethylsiloxane-butyl acrylate rubber, acrylic rubber such as silicon / butyl acrylate composite rubber, olefin rubber such as ethylene-propylene copolymer, ethylene-propylene-diene copolymer, poly Examples include dimethylsiloxane rubber and dimethylsiloxane-diphenylsiloxane copolymer rubber.
  • butadiene-acrylic acid ester copolymer examples include butadiene-butyl acrylate copolymer and butadiene-2-ethylhexyl acrylate.
  • Polymer can be exemplified. From the viewpoint of impact resistance, polybutadiene, butadiene-styrene copolymer, and butadiene-butyl acrylate copolymer are preferably used.
  • butadiene-butyl acrylate copolymers a copolymer of 50 to 70% by weight of butyl acrylate and 30 to 50% by weight of butadiene is preferable from the viewpoint of weather resistance and impact resistance.
  • the average particle diameter of the rubber-like elastic body is not particularly limited, but is preferably in the range of 0.05 to 2.00 ⁇ m, more preferably 0.1 to 0.4 ⁇ m.
  • the gel content is not particularly limited, but a gel content of 10 to 99% by weight, more preferably 80 to 96% by weight is preferably used.
  • vinyl compounds used for the production of the core / shell type graft polymer include aromatic vinyl compounds, vinyl cyanide compounds, (meth) acrylic acid ester compounds such as acrylic acid esters and methacrylic acid esters, and the like. It is done. These may be used alone or in combination of two or more.
  • aromatic vinyl compound are styrene, ⁇ -methylstyrene
  • examples of the vinyl cyanide compound are acrylonitrile, methacrylonitrile
  • examples of the acrylate ester are butyl acrylate, 2-ethylhexyl acrylate
  • examples of the methacrylate ester are methyl. Methacrylate is particularly preferred.
  • the rubber-like elastic body and the vinyl compound are used in an amount of 10 to 90% by weight, more preferably 30 to 85% by weight of the vinyl-based compound 90. It is preferably ⁇ 10% by weight, more preferably 70 to 15% by weight. If the proportion of the rubber-like elastic body is less than 10% by weight, the impact resistance tends to be lowered, whereas if it exceeds 90% by weight, the heat resistance tends to be lowered.
  • a core / shell type graft polymer produced using an organic phosphorus emulsifier it is particularly preferable to use a core / shell type graft polymer produced using an organic phosphorus emulsifier.
  • polystyrene-based polymer examples include, for example, polyethylene and polypropylene, and can be suitably used, but are not limited thereto.
  • the polyolefin polymer may be a homopolymer, an ethylene-propylene copolymer, an ethylene-butene copolymer, an ethylene-4-methylpentene copolymer, an ethylene-hexene copolymer, an ethylene-octene copolymer, Copolymers such as a propylene-butene copolymer may be used.
  • the degree of polymerization of the polyolefin-based polymer is not particularly limited, and can be arbitrarily selected and used as long as the melt index is usually in the range of 0.05 to 50 g / 10 min.
  • these polyolefin polymers ethylene-butene copolymer, ethylene-hexene copolymer, and ethylene-octene copolymer are preferable from the viewpoint of further improving impact resistance.
  • Olefin-unsaturated carboxylic acid ester copolymer examples include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, and 1-octene. Etc. These olefins may be used alone or in combination of two or more. A particularly preferred olefin is ethylene.
  • Examples of the unsaturated carboxylic acid ester in the olefin-unsaturated carboxylic acid ester copolymer include methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, t-butyl acrylate, 2- Examples include ethyl hexyl acrylate, glycidyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, and glycidyl methacrylate. These may be used alone or in combination of two or more. Particularly preferred (meth) acrylic acid alkyl esters are methyl acrylate, ethyl acrylate, and glycidyl
  • the copolymerization ratio of the olefin unit to the unsaturated carboxylic acid ester unit is preferably 40/60 to 95/5, more preferably 50 by weight. / 50 to 90/10. If the weight ratio of the (meth) acrylic acid alkyl ester units in the copolymer is less than 5, the chemical resistance improving effect is often insufficient. When the weight ratio of the unsaturated carboxylic acid ester unit in the copolymer exceeds 60, the thermal stability at the time of melting (for example, during molding) is often insufficient.
  • the olefin-unsaturated carboxylic acid ester copolymer can be further copolymerized with vinyl acetate, styrene or the like.
  • olefin-unsaturated carboxylic acid ester copolymer examples include ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propyl acrylate copolymer, ethylene-butyl acrylate copolymer.
  • Polymer ethylene-hexyl acrylate copolymer, ethylene-2-ethylhexyl acrylate copolymer, ethylene-methyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-hexyl methacrylate copolymer, ethylene -2-ethylhexyl methacrylate copolymer, ethylene-glycidyl acrylate copolymer, ethylene-glycidyl methacrylate copolymer, ethylene-glycidyl acrylate-vinyl acetate copolymer, ethylene-glycidyl methacrylate-vinyl acetate copolymer Coalescence, ethylene-a Glycidyl acrylic acid - methyl acrylate copolymer, ethylene - glycidyl methacrylate - and methyl acrylate copolymer and the like.
  • ethylene-ethyl acrylate copolymer ethylene-glycidyl methacrylate copolymer, ethylene-glycidyl methacrylate-vinyl acetate copolymer, ethylene-glycidyl methacrylate-acrylic An acid methyl copolymer is preferred.
  • thermoplastic polyester elastomer is a copolymer composed of an aromatic dicarboxylic acid or an ester-forming derivative thereof, a diol or an ester-forming derivative thereof, and a polyether having a number average molecular weight of 700 to 3000.
  • the proportion of the component derived from the polyether is from 5 to 80% by weight, more preferably from 10 to 70% by weight. If the proportion of the component derived from the polyether is less than 5% by weight, the impact resistance tends to decrease, and if it exceeds 80% by weight, the heat resistance tends to decrease.
  • Those in the range of -2.0, more preferably in the range of 0.4-1.5 are preferred.
  • the logarithmic viscosity is less than 0.3, impact resistance, chemical resistance and the like are likely to be lowered.
  • the logarithmic viscosity is more than 2.0, molding processability tends to be lowered.
  • aromatic dicarboxylic acid or its ester-forming derivative used in the production of the thermoplastic polyester elastomer include terephthalic acid, isophthalic acid, and ester-forming derivatives thereof. These may be used alone or in combination of two or more.
  • examples of the diol or its ester-forming derivative include ethylene glycol, propylene glycol, tetramethylene glycol, and their ester-forming derivatives. These may be used alone or in combination of two or more.
  • examples of the polyether include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and a copolymer of ethylene oxide and propylene oxide. These may be used alone or in combination of two or more.
  • the number average molecular weight of the polyether is preferably in the range of 700 to 3000. If the molecular weight is less than 700, the heat resistance tends to decrease, whereas if it exceeds 3000, the thermal stability tends to decrease.
  • the plate-like filler used in the present invention is a component that can reduce the linear expansion of the molded article of the resin composition of the present invention.
  • a plate-like filler an alkaline inorganic substance mainly composed of silica or alumina can be used, and examples of the shape include a flat plate shape, a flake shape, and a scale shape.
  • the major axis of the number average filler (the longest length contained in the filler) is preferably 0.1 ⁇ m or more and 40 ⁇ m or less, and more preferably from the viewpoint of low linear expansion and surface appearance of the molded product. 1 ⁇ m or more and less than 25 ⁇ m.
  • a plate-like filler (I) having a number average major axis of 0.1 ⁇ m or more and less than 25 ⁇ m and a plate shape having a number average major axis of 25 ⁇ m or more and 40 ⁇ m or less.
  • the mixing ratio (by weight) of the filler (II) is [weight ratio of (I) to all plate fillers] / [weight ratio of (II) to all plate fillers] 25% / 75% to 50% / Preferably it is 50%.
  • the number average aspect ratio of the plate-like filler that is, [the length of the plate-like filler] / [thickness of the plate-like filler (the length of the straight line perpendicular to the maximum plane included in the filler including the straight line) )] Is preferably 10 or more, more preferably 15 or more, from the viewpoint of low linear expansion and impact resistance.
  • the number average major axis and the number average aspect ratio are the number average values of the grain values of each plate-like filler measured by a stereomicroscope and averaged.
  • silica or alumina as the main component of the material, One or more selected from the group consisting of mica, talc, montmorillonite, sericite, kaolin, glass flakes, plate-like alumina, and synthetic hydrotalcite are preferred. From the viewpoint of the dimensional stability improving effect of the present invention, mica, talc, Montmorillonite, sericite, kaolin, and glass flakes are more preferable, and mica, talc, and glass flakes are more preferable from the viewpoint of balance between impact resistance, fluidity, and product appearance, and mica is particularly preferable.
  • the mica may be natural or synthetic, and may be any of muscovite, biotite, or phlogopite.
  • Glass long fiber used in the resin composition of the present invention refers to a fiber obtained by melting and pulling glass.
  • the long glass fiber include filamentous glass such as E glass (Electrical glass), C glass (Chemical glass), A glass (Alkali glass), S glass (High strength glass), and alkali-resistant glass. E fibers are preferable.
  • the average fiber diameter of the long glass fibers is 3 to 30 ⁇ m, preferably 9 to 25 ⁇ m, more preferably 11 to 23 ⁇ m, and particularly preferably 13 to 18 ⁇ m. If the average fiber diameter is too small, the fibers are likely to break, so the productivity of the reinforcing fiber bundle may be reduced. Also, when continuously producing pellets, a large number of fibers must be bundled. This is not preferable because the trouble of connecting the two becomes complicated and the productivity is lowered. In addition, when the preferred pellet length is determined, if the fiber diameter is excessive, the aspect ratio of the fiber is lowered, and the reinforcing effect may not be sufficiently exhibited.
  • the long glass fiber a continuous glass fiber bundle can be used, which is commercially available as glass roving. In addition to glass roving, cakes and the like described in JP-A-6-1114830 can also be used.
  • the pellet length is 4 to 20 mm, preferably 5 to 16 mm, more preferably 6 to 14 mm, and particularly preferably 8 to 12 mm.
  • the pellet diameter is not particularly limited, but for example, 0.5 to 4 mm is exemplified.
  • the average aspect ratio of the long glass fibers in the pellet that is, (average length of glass fibers) / (average fiber diameter of glass fibers) is 50 to 6000, preferably 75 to 2000, more preferably 100 to 1500, particularly Preferably 200 to 1000 are exemplified. If the average aspect ratio is too small, the reinforcing effect may not be sufficiently exerted, and if the average aspect ratio is too large, plasticization may become unstable during molding or the dispersion of long glass fibers may occur.
  • the long glass fiber used in the present invention is preferably treated with a silane coupling agent from the viewpoint of improving impact resistance. Further, from the viewpoint of improving heat resistance, those subjected to sizing treatment with an epoxy-based or urethane-based surface treatment agent are preferable.
  • Examples of commercially available glass rovings that can be used for the long glass fibers of the present invention include, for example, EX-1437 manufactured by Nippon Electric Glass Co., Ltd. (fiber diameter 17 ⁇ m, aminosilane coupling agent, epoxy emulsion, about 4000 converged), Examples include, but are not limited to, ERS2310-LF702 (fiber diameter 17 ⁇ m, aminosilane coupling agent, urethane emulsion used, converged about 4000) manufactured by Central Glass Co., Ltd.
  • the stabilizer is preferably at least one selected from the group consisting of phenol-based stabilizers, phosphorus-based stabilizers, and sulfur-based stabilizers, and is excellent in flame retardancy. Therefore, these stabilizers are used in combination. More preferably.
  • the phenol-based stabilizer is more preferably a hindered phenol-based stabilizer, such as pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (for example, Ciba Specialty). Chemicals Irganox 1010 (registered trademark)), but is not limited thereto.
  • the phosphorus stabilizer is more preferably a phosphite stabilizer such as tris (2,4-di-t-butylphenyl) phosphite (for example, ADK STAB 2112 (registered trademark) manufactured by Asahi Denka Co., Ltd.). ), But is not limited to this.
  • a phosphite stabilizer such as tris (2,4-di-t-butylphenyl) phosphite (for example, ADK STAB 2112 (registered trademark) manufactured by Asahi Denka Co., Ltd.).
  • the resin composition of the present invention includes, for example, a light stabilizer, a flame retardant, a plasticizer, a lubricant, a mold release agent, an ultraviolet absorber, an antistatic agent, a pigment / dye, if necessary.
  • a light stabilizer for example, a flame retardant, a plasticizer, a lubricant, a mold release agent, an ultraviolet absorber, an antistatic agent, a pigment / dye, if necessary.
  • Inorganic fillers, acrylonitrile-styrene copolymers, polyethylene terephthalate, polybutylene terephthalate, and the like can be added as additives.
  • the resin composition of the present invention can be produced by any known method.
  • polycarbonate resin, specific polyester-polyether copolymer and other optional components to be used if necessary are mixed using a blender, super mixer, etc., kneaded with a single screw or multi screw extruder, etc., and pellets
  • the mixture may be melt kneaded by heating during kneading. Temperature conditions and the like can be set as appropriate.
  • the resin composition of the present invention is suitable as a material for various molded products, but is particularly excellent as a material for large thin molded products.
  • a molded article obtained by using the resin composition of the present invention can be projected area of the molded body is a large thin-walled shaped body is 10000mm 2 ⁇ 10000000mm 2.
  • a preferable projected area of the molded product is 30000 mm 2 to 7000000 mm 2
  • a more preferable projected area is 50000 mm 2 to 4000000 mm 2 .
  • the molded object obtained using the resin composition of this invention can be made into the large sized thin molded object whose average wall thickness is less than 3.0 mm and 0.1 mm or more.
  • the average wall thickness can be less than 2.5 mm, or less than 2.0 mm.
  • the lower limit of the average thickness is preferably 1.0 mm or more, more preferably 1.5 mm or more.
  • the length from the part of the molded body corresponding to the entrance of the mold gate to the end of the molded body (substantially maximum length of the flow distance when the resin composition flows in the cavity of the mold) It is possible to obtain a large thin molded body having a thickness of more than 500 mm.
  • the large thin molded article obtained by using the resin composition of the present invention has an in-plane linear expansion coefficient measured between a measurement temperature of ⁇ 30 ° C. and + 80 ° C. even when having such a projected area. It is preferably 6.0 ⁇ 10 ⁇ 5 / ° C. or less, and more preferably 4.0 ⁇ 10 ⁇ 5 / ° C. or less.
  • the linear expansion coefficient is preferably 3.5 ⁇ 10 ⁇ 5 / ° C. or higher.
  • molded products such as home appliance parts and vehicle parts are often used in close proximity to metal materials, etc., and are exposed to high temperatures due to radiant heat and heat conduction from metal materials that have become hot. There is.
  • the molded article of the present invention has such a linear expansion coefficient, it can be prevented from being thermally deformed by radiant heat or heat conduction from a metal material or the like, and is excellent in shape stability.
  • the molded body of the present invention is a molded body having a projected area of more than 30000 mm 2 , a length from the gate to the end of more than 500 mm, and an average thickness of less than 2.5 mm.
  • What has an in-plane linear expansion coefficient measured between a measurement temperature of ⁇ 30 ° C. and + 80 ° C. of 6.0 ⁇ 10 ⁇ 5 / ° C. or less is preferably 4.0 ⁇ 10 ⁇ 5 / ° C. or less. Is more preferable.
  • the projected area of the molded body exceeds 60000 mm 2 , the average wall thickness is less than 2.5 mm, and the in-plane linear expansion coefficient measured between ⁇ 30 ° C. and + 80 ° C.
  • the molded body of the present invention having such characteristics can be suitably used as a molded body of, for example, a vehicle part. Moreover, it can use suitably as a vehicle exterior component among the components for vehicles, and it is especially suitable for garnish, a pillar, and a spoiler especially.
  • the molded body of the present invention has good surface appearance and coating film adhesion when the surface is coated. Further, since the resin composition of the present invention has excellent fluidity, even if the molded body obtained using the resin composition is a large thin molded body, the smoothness of the entire surface is good. Yes, the surface appearance after coating and the adhesion of the coating are good.
  • the paint and the painting method for painting known ones can be appropriately selected and employed.
  • Method for producing molded body Any known method can be employed for molding the resin composition of the present invention.
  • it can be molded by injection molding, extrusion molding, blow molding, compression molding or the like. Of these, injection molding is preferred.
  • the resin composition of the present invention is used for a compound such as an inline compound process or a direct compound process as described in Plastics Info World 11/2002 P20-35, for example, to form a molded body. Can do.
  • the molded product of the present invention may be molded using the resin composition of the present invention as it is, or may be molded using a blend with a diluent.
  • a pellet obtained using the resin composition termeforth a "fiber reinforced resin composition" containing a glass long fiber
  • the combination of this pellet and diluent is dry blending. You can use any method. Rather, in order to maintain the fiber length in the resin composition and obtain higher rigidity, impact resistance, and durability improvement effects, do not pass through the extruder after dry blending, but directly in the molding machine such as an injection molding machine. It is preferable to use for.
  • the blending ratio of the diluent is determined by the long glass fiber content of the fiber reinforced resin composition pellets and the long glass fiber content required for the final molded product, but the effect of improving rigidity, impact resistance, and durability. From the above point, it is preferably 20 to 85% by weight based on the fiber reinforced resin composition.
  • the resin composition according to the present invention is a raw material for household appliances parts, automobile parts such as automobiles, electric / electronic parts, miscellaneous goods by various known methods as described above, for example, injection molding method, extrusion molding method, etc. It can be used as a resin composition.
  • the molded body molded using the resin composition is excellent in heat resistance, impact resistance, rigidity, dimensional stability, chemical resistance, molding processability, weather resistance and thermal stability, and the surface gloss of the molded body. , Excellent in appearance and paintability. Therefore, the molded body of the present invention can be suitably used as an automobile exterior part obtained by injection molding, and is particularly suitable for garnish, pillars, and spoilers.
  • Parts and “%” in the following measurement conditions and examples represent “parts by weight” and “% by weight”, respectively.
  • Polycarbonate resin As the polycarbonate resin, Taflon A2200 (registered trademark) manufactured by Idemitsu Kosan Co., Ltd. having a viscosity average molecular weight of 22,000 was used. In Tables 2-5, it is described as PC.
  • polyethylene terephthalate (IV 0.65) manufactured with a germanium-based catalyst, germanium dioxide, a stabilizer (Irganox 1010 manufactured by Ciba Specialty Chemicals) and Table 1
  • the pressure was reduced with a vacuum pump, polycondensation was performed at 1 torr (133 Pa), and the polycondensation reaction time at 270 ° C. (1 torr (133 Pa) was reached.
  • the molecular weight was adjusted by shortening the elapsed time from.
  • the polycondensation reaction time is 0.5 hours to 3 hours.
  • the pressure reduction is terminated to stop the reaction, and the produced various polyester-polyether copolymers B1 to B12 are taken out.
  • the strands cooled in a water bath are dried with hot air set to 100 ° C. After post-crystallization and drying were simultaneously performed in the machine, the mixture was put into a pulverizer and pelletized to obtain polyester-polyether copolymers B1 to B12 in a pellet state.
  • the polycondensation reaction time is shorter, a polyester-polyether copolymer having a smaller molecular weight and a smaller IV value can be obtained.
  • B8 and B10 were produced according to the method described in Patent Document 1 (polycondensation reaction time was 3 hours), and the IV value was 1.20.
  • BHET bishydroxyethylene terephthalate
  • germanium dioxide germanium dioxide
  • stabilizer Irganox 1010 manufactured by Ciba Specialty Chemicals
  • Polyether is charged and maintained at 190 ° C for 2 hours, then the temperature is gradually raised and the pressure is gradually reduced by a vacuum pump. Finally, polycondensation is performed at 270 ° C and 1 torr (133 Pa), and a predetermined polycondensation reaction is performed.
  • the reaction is stopped by stopping the pressure reduction, and the produced various polyester-polyether copolymers B13 are taken out. Further, the strand cooled in the water bath is set at 100 ° C. After crystallization and drying at the same time in a hot-air dryer, it is put into a pulverizer and pelletized. In fact, the pellet form polyester - give the polyether copolymer B13.
  • the obtained polyester-polyether copolymer had a polyether ratio of 25 wt% and an IV value of 0.49.
  • BHET manufactured by Pet Refine Technology Co., Ltd. was used as bishydroxyethylene terephthalate (BHET).
  • the bisol 18EN has a (m + n) number average of 18 in the structure of the general formula 2
  • the bisol 30EN has a (m + n) number average of 30 in the structure of the general formula 2
  • the bisol 60EN has the general formula 2
  • the number average of (m + n) in the structure is 60.
  • the numerical values of each composition in Table 1 indicate parts by weight.
  • Stabilizer E
  • Irganox 1010 hindered phenol manufactured by Ciba Specialty Chemicals Co., Ltd.
  • test pieces prepared in Examples and Comparative Examples were measured at ASTM D-256, 1/4 inch, notched, and 23 ° C.
  • the numerical values of the respective compositions in Tables 2 to 5 represent parts by weight.
  • test pieces were produced using an injection molding machine FN-1000 manufactured by Nissei Plastic Industry Co., Ltd. at a cylinder temperature of 280 ° C. and a mold temperature of 80 ° C., and evaluated by the above method.
  • the results are shown in Tables 2-5.
  • Tables 2 to 5 according to the resin composition of the present invention, since it has excellent fluidity, it has excellent moldability even in a large-sized thin-walled molded product. Can provide a resin composition having an excellent balance of properties, impact resistance and low linear expansion. Further, the molded article of the present invention has excellent heat resistance, impact resistance, and low linear expansion without damaging the surface appearance even in a large thin molded article.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 ポリカーボネート樹脂40重量部以上、95重量部未満、及びポリエステル-ポリエーテル共重合体5重量部以上、60重量部未満を基材樹脂として含む樹脂組成物であって、該ポリエステル-ポリエーテル共重合体が、ゲルマニウム化合物の触媒を用いて重合された、芳香族ポリエステル単位、及び下記一般式1で表される変性ポリエーテル単位からなり、IV値0.30~1.00の範囲である共重合体である、樹脂組成物により、成形品の表面外観を損なわずに、成形性・耐熱性・耐衝撃性・低線膨張性のバランスが優れた樹脂組成物を提供することができる。 

Description

流動性に優れたポリカーボネート樹脂組成物、及びその成形体
 本発明は、樹脂組成物と、その樹脂組成物を用いた、例えば家電製品用部品、車両用部品等の成形体(以下、「成形品」とも称する。)と、に関する。
 従来、ポリカーボネート樹脂は、エンジニアリングプラスチックの中でも最高の耐衝撃性を有し、耐熱性も良好な樹脂として知られている。そのため、これらの特徴を生かして種々の分野に使用されている。しかし、耐薬品性、成形加工性がよくなく、衝撃強度の厚さ依存性を有するなどの欠点を有している。
 一方、熱可塑性ポリエステルは、耐薬品性、成形加工性に優れているが、耐衝撃性、寸法安定性等に劣る欠点を有している。
 このようなそれぞれの材料の特徴を生かし、欠点を補完することを目的として種々の樹脂組成物が提案されている。例えば、自動車部品等に要求される耐衝撃性、耐熱性、耐薬品性、耐候性、成形性等を同時に満足させる試みが行われている。
 ポリカーボネート樹脂と、ポリエチレングリコール、ポリテトラメチレングリコール等で変性されたポリエステルとからなる樹脂組成物も提案されているが、成形性は改善されるものの、耐熱性が自動車外装部品には不十分である。
 さらに、ポリカーボネート樹脂、及びビスフェノール類のポリアルキレングリコール付加物をブロック単位として含有するゲルマニウム触媒を用いたポリエステル-ポリエーテル共重合体と、からなる樹脂組成が提案されている。例えば、特許文献1は、分子量1000のビスフェノールAポリエチレンオキシド付加物を30%含有するポリエチレンテレフタレートブロック共重合体30部、及びポリカーボネート70部からなる樹脂組成物において、その成形品の表面外観を損なわずに、成形性・耐熱性・耐衝撃性のバランスが優れた樹脂組成物を開示している。ここでは、エラストマーを含むグラフト共重合体を耐衝撃性改良剤として配合することより、耐衝撃性が改良されることが開示されている。
 現在、携帯電話、パソコンハウジングなどの電化製品や、自動車のフェンダー、ドアパネル、バックドアパネルなどの車両用部材には、軽量化要求が強く、そのために成形品形状の薄肉化が進められている。これに対応するために、成形材料である樹脂組成物に対して、成形性、耐衝撃性の更なる向上が望まれている。
 特許文献1では、前述のようにポリエステル-ポリエーテル共重合体を使用し薄肉成形性の良好な樹脂組成物が得られることが開示されており、薄肉化が求められている携帯電話、パソコンハウジングなどの電化製品や自動車フェンダー、ドアパネル、バックドアパネル等の大型成形品でも良品が得られる樹脂組成物が開示されている。しかしながら、更なる軽量化要求のために、大型でかつ更なる薄肉化が求められる成形体に対して、特許文献1の組成物を添加したものを用いた場合には、流動性が十分でない場合があった。その場合には、成形温度を高く設定することにより流動性を高めるという対策がとられるが、その結果樹脂組成物の熱劣化が生じ、分解ガスが発生するなどして、成形体外観が悪くなり、付随して、耐衝撃性・耐熱性が低下する結果となった。
特開2010-254739
 本発明の目的は、ポリカーボネート樹脂、及び熱可塑性ポリエステルを含む樹脂組成物において、大型薄肉成形品であってもその成形体の表面外観を損なわずに、成形性・耐熱性・耐衝撃性・低線膨張性のバランスが優れた樹脂組成物を提供することである。
 本発明者らが鋭意検討を重ねた結果、特許文献1の樹脂組成物の薄肉成形性が十分でない理由が、組成物中のポリエステル-ポリエーテル共重合体のポリアルキレングリコール鎖長及び、ポリエステル-ポリエーテル共重合体のIV値が適切でないことであることを突き止めた。
 本発明者らは、上述の究明された原因に対処し、ポリカーボネート樹脂、及び特定のポリエステル-ポリエーテル共重合体を主成分とする樹脂組成物とすることで、表面外観や耐熱性・耐衝撃性・低線膨張性等の機械特性の低下を抑えつつ、成形性を大幅に向上させうることを見出し、本発明を完成した。尚、「表面外観」には、成形体自体の表面外観だけでなく、成形体を塗装した後の表面外観を含むものとする。
 すなわち本発明の要旨は以下の通りである。
 1)ポリカーボネート樹脂40重量部以上、95重量部未満、及びポリエステル-ポリエーテル共重合体5重量部以上、60重量部未満を基材樹脂として含む樹脂組成物であって、
 該ポリエステル-ポリエーテル共重合体が、ゲルマニウム化合物の触媒を用いて重合された、芳香族ポリエステル単位、及び下記一般式1で表される変性ポリエーテル単位からなり、IV値0.30~1.00の範囲である共重合体であることを特徴とする樹脂組成物。
Figure JPOXMLDOC01-appb-C000003
 (式中、-A-は、-O-、-S-、-SO-、-SO2-、-CO-、炭素数1~20のアルキレン基、又は炭素数6~20のアルキリデン基であり、R1、R2、R3、R4、R5、R6、R7、およびR8は、いずれも水素原子、ハロゲン原子、または炭素数1~5の1価の炭化水素基であり、R9、R10はいずれも炭素数1~5の2価の炭化水素基であり、それらはそれぞれ同一であっても異なっていても良い。m、及びnはオキシアルキレン単位の繰り返し単位数を示し、20≦m+n≦60である。)
 2)前記ポリエステル-ポリエーテル共重合体のIV値が0.45~0.60の範囲である1)に記載の樹脂組成物。
 3)前記ポリエステル-ポリエーテル共重合体が、芳香族ポリエステル単位85~65重量%、及び前記変性ポリエーテル単位15~35重量%からなるものである上記1)又は上記2)に記載の樹脂組成物。
 4)前記芳香族ポリエステル単位が、ポリエチレンテレフタレート単位、ポリブチレンテレフタレート、及びポリプロピレンテレフタレート単位よりなる群から選ばれる1種以上である、上記1)~3)のいずれか1つに記載の樹脂組成物。
 5)前記変性ポリエーテル単位が、下記一般式2で表される変性ポリエーテル単位である、上記1)~4)のいずれか1つに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
 (式中、m及びnはオキシアルキレン単位の繰り返し単位数を示し、20≦m+n≦60である。)
 6)更に耐衝撃改良剤0.5~40重量部を含む上記1)~5)のいずれか1つに記載の樹脂組成物。
 7)前記耐衝撃性改良剤が、(1)ポリブタジエン、ブタジエン-スチレン共重合体、及びブタジエン-アクリル酸エステル共重合体、及びポリオルガノシロキサンからなる群より選ばれる1種以上のゴム状重合体であるコア10~90重量%、及び、該コアの存在下に、芳香族ビニル化合物、シアン化ビニル化合物、及び(メタ)アクリル酸エステル化合物からなる群より選ばれる1種以上の単量体を重合して得られる重合体により構成されたシェル90~10重量%、からなるコア/シェル型グラフト重合体、(2)ポリオレフィン系重合体、並びに(3)オレフィン-不飽和カルボン酸エステル共重合体よりなる群から選ばれた1種以上である、上記6)に記載の樹脂組成物。
 8)更に、前記基材樹脂100重量部に対し、数平均長径が0.1μm以上40μm以下の板状フィラー5~100重量部を含む上記1)~7)のいずれか1つに記載の樹脂組成物。
 9)前記板状フィラーにおいて、(4)数平均長径が0.1μm以上25μm未満の板状フィラーと(5)数平均長径が25μm以上40μm以下の板状フィラーの比率(重量基準)が板状フィラー量に対し(4)/(5)=25%/75%~50%/50%である、上記1)~8)のいずれか1つに記載の樹脂組成物。
 10)更に、前記基材樹脂100重量部に対し、ガラス長繊維5~100重量部を含む上記1)~9)のいずれか1つに記載の樹脂組成物。
 11)上記1)~10)のいずれか1つに記載の樹脂組成物を含む成形体。
 12)成形体の投影面積が30000mm2を超え、ゲートから端部までの長さが500mmを超え、平均肉厚が2.5mm未満、かつ、測定温度-30℃と+80℃との間で測定した面内の線膨張係数が6.0×10-5/℃以下である、上記11)に記載の成形体。
 13)成形体の投影面積が30000mm2を超え、ゲートから端部までの長さが500mmを超え、平均肉厚が2.5mm未満、かつ、測定温度-30℃と+80℃との間で測定した面内の線膨張係数が4.0×10-5/℃以下である、上記11)に記載の成形体。
 14)成形体の投影面積が60000mm2を超え、平均肉厚が2.5mm未満、かつ、測定温度-30℃と+80℃との間で測定した面内の線膨張係数が6.0×10-5/℃以下である、上記11)に記載の成形体。
 15)成形体の投影面積が60000mm2を超え、平均肉厚が2.5mm未満、かつ、測定温度-30℃と+80℃との間で測定した面内の線膨張係数が4.0×10-5/℃以下である、上記11)に記載の成形体。
 16)射出成形により得られる自動車外装部品である、上記11)に記載の成形体。
 17)ガーニッシュ、ピラー、およびスポイラーから選ばれる、上記11)に記載の成形体。
 18)射出成形により成形体を得ることを特徴とする、上記11)に記載の成形体の製造方法。
 本発明の樹脂組成物は、優れた成形性を有するとともに成形性・耐熱性・耐衝撃性・低線膨張性のバランスが優れている。また、その成形体は、優れた表面外観・耐熱性・耐衝撃性・低線膨張性を有する。また、本発明の樹脂組成物は、大型薄肉成形性にも優れている。
 本発明の樹脂組成物の成形体は、家電製品用部品、車両用部品等として好適である。即ち、本発明の樹脂組成物を成形してなる家電製品用部品、車両用部品等は、優れた表面外観・耐熱性・耐衝撃性・低線膨張性を有する。
(樹脂組成物)
1.樹脂組成物の全体の概要
 本発明の樹脂組成物は、ポリカーボネート樹脂40重量部以上、95重量部未満、及び特定のポリエステル-ポリエーテル共重合体5重量部以上、60重量部未満(合計100重量部)を基材樹脂として含む樹脂組成物である。このような組成であれば本発明の効果を奏するが、耐衝撃性、耐熱性、寸法安定性、耐薬品性、及び成形加工性のバランスの観点からは、より好ましくは、ポリカーボネート樹脂50重量部以上、90重量部未満、及びポリエステル-ポリエーテル共重合体10重量部以上、50重量部未満であり、さらに好ましくは、ポリカーボネート樹脂60重量部以上、80重量部未満、及びポリエステル-ポリエーテル共重合体20重量部以上、40重量部未満である。
 本発明の樹脂組成物は、ポリカーボネート樹脂、及び特定のポリエステル-ポリエーテル共重合体を主成分とするため、特に大型の射出成型品につき優れた外観の成形体が得られる。また、好ましくはフィラーを添加して使用されるが、フィラーを添加しない場合でも、流動性や熱安定性に優れるという効果がある。
 本発明の樹脂組成物は、耐衝撃性を更に向上させる観点から、耐衝撃改良剤をさらに0.5~40重量部含むことが好ましい。また、耐熱性、剛性、成形性等の観点から、より好ましくは1~20重量部であり、本発明の樹脂組成物の成形体を好ましい用途である車両用部品として用いる場合に、必要な耐衝撃強度と耐熱性とを得る観点からは、2~10重量部がさらに好ましい。
 前記耐衝撃改良剤としては、(1)コア/シェル型グラフト重合体、(2)ポリオレフィン系重合体、(3)オレフィン-不飽和カルボン酸エステル共重合体、及び(4)熱可塑性ポリエステル系エラストマーからなる群から選ばれる1種以上が好ましい。
 前記(1)コア/シェル型グラフト重合体は、ポリブタジエン、ブタジエン-スチレン共重合体、ブタジエン-アクリル酸エステル共重合体、及びポリオルガノシロキサンからなる群より選ばれる1種以上のゴム状重合体であるコア10~90重量%、並びに、該コアの存在下に、芳香族ビニル化合物、シアン化ビニル化合物、及び(メタ)アクリル酸エステル化合物からなる群より選ばれる1種以上の単量体を重合して得られる重合体により構成されるシェル90~10重量%、からなるものであることが好ましい。
 本発明の樹脂組成物は板状フィラーを含むことが好ましい。板状フィラーを含むことにより、本発明の樹脂組成物の成形体の耐熱性をより向上させることができ、更には低線膨張性を向上させることが出来る。板状フィラーとしては、低線膨張性効果を得る観点からは、数平均長径が0.1μm以上40μm以下であること、及び、前記基材樹脂100重量部に対してその含有量が5~100重量部であることが好ましい。また、含有量は、基材樹脂100重量部に対して、より好ましくは10~70重量部、更に好ましくは15~40重量部である。
 本発明の樹脂組成物はガラス長繊維を含むことが好ましい。ガラス長繊維を含むことにより、本発明の樹脂組成物の成形体の耐熱性や衝撃特性をより向上させることが出来る。ガラス長繊維の含有量としては、樹脂100重量部に対し、ガラス長繊維5~100重量部を含むことが好ましい。より好ましくは、10~50重量部、更に好ましくは15~35重量部である。
 本発明では上記の部数の範囲で、板状フィラーとガラス長繊維を併用することができる。
 本発明の樹脂組成物は、ポリカーボネート樹脂、及び特定のポリエステル-ポリエーテル共重合体を基材樹脂とする樹脂組成物であるため、従来の樹脂組成物よりも、特に大型の射出成形品につき優れた外観の成形体が得られる。また、さらに、前記特定の板状フィラーが添加されている場合は、軽量薄肉化を実現しつつ、十分な寸法安定性を有する成形体となりうる成型加工性に優れた樹脂組成物となり、特に大型薄肉、かつ、寸法安定性、及び外観に優れた成形体が得られる樹脂組成物として使用される。なお、前記基材樹脂は、板状フィラーを添加しない場合でも、流動性や熱安定性に優れるという効果がある。
 本発明の樹脂組成物は、成型加工時の熱劣化を防止するために、更に、安定剤を基材樹脂100重量部に対して、0.01~4重量部含むことが好ましく、より好ましくは0.1~2重量部である。
 本発明の樹脂組成物の全体概要は以上のとおりである。以下に、上述した樹脂組成物の構成のうち、主要なものについてさらに詳細に説明する。
2.ポリカーボネート樹脂
 本発明に用いるポリカーボネート樹脂とは、フェノール性水酸基を2個有する化合物(以下、2価フェノールという)より誘導されるポリカーボネート樹脂であり、通常2価フェノールとホスゲン、あるいは2価フェノールと炭酸ジエステルとの反応により得られる樹脂のことである。
 前記2価フェノールとしては、とくにビスフェノールAが好適であるが、これに限定されるものではない。
 前記ポリカーボネート樹脂の分子量としては、耐衝撃性、耐薬品性、成形加工性等の観点から、粘度平均分子量で10,000~60,000範囲のものが好ましい。
3.ポリエステル-ポリエーテル共重合体
 <1>ポリエステル-ポリエーテル共重合体の全体の概要
 本発明に用いるポリエステル-ポリエーテル共重合体は、ゲルマニウム化合物の触媒を用いて重合された、芳香族ポリエステル単位、及び前記一般式1で表される変性ポリエーテル単位からなり、IV値0.30~1.00の範囲である共重合体であるのが好ましい。
 ポリエステル-ポリエーテル共重合体の構成単位は、芳香族ポリエステル単位と特定の変性ポリエーテル単位からなればよいが、成形性の改善効果の観点、及び耐熱性維持の観点から、芳香族ポリエステル単位85~65重量%、及び前記一般式1で表される変性ポリエーテル単位15~35重量%からなる共重合体であることが好ましく、より好ましくは芳香族ポリエステル単位80~70重量%、及び前記変性ポリエーテル単位20~30重量%である。
 前記ポリエステル-ポリエーテル共重合体の分子量にはとくに限定はないが、通常テトラクロロエタン/フェノール=50/50(重量比)の混合溶剤中、25℃、0.5g/dlでの対数粘度(IV)が0.30~1.00の範囲にあるような分子量であることが好ましい。これにより、流動性に優れ、成形性・耐熱性・耐衝撃性・低線膨張性のバランスの優れた樹脂組成物となる。また、流動性をより向上させ、成形性・耐熱性・耐衝撃性・低線膨張性のバランスをより向上させる観点から、IV値は、より好ましくは0.45~0.60の範囲である。
 <2>ポリエステル-ポリエーテル共重合体の製造方法
 ポリエステル-ポリエーテル共重合体の製造方法は、ゲルマニウム化合物の触媒を用いて、(1)芳香族ジカルボン酸、ジオール、変性ポリエーテルの三者の直接エステル化法、(2)芳香族ジカルボン酸ジアルキル、ジオール、変性ポリエーテル、及び/又は、変性ポリエーテルのエステルの三者のエステル交換法、(3)芳香族ジカルボン酸ジアルキル、ジオールのエステル交換中、又は、エステル交換後に変性ポリエーテルを加えて、重縮合する方法、(4)高分子の芳香族ポリエステルを用い、変性ポリエーテルと混合後、溶融減圧下でエステル交換する方法等が挙げられ、これらに限定されるものではない。
 ポリエステル-ポリエーテル共重合体を製造するための触媒をアンチモン化合物とした場合には、組成物中に残存し成形等の加熱時に、アンチモン化合物によりポリカーボネート樹脂が炭酸ガスを放出しながら加水分解され、その結果、得られた成形体の外観に、銀条や発泡が発生する。
 ポリエステル-ポリエーテル共重合体を製造するための触媒として、アンチモン化合物と同程度以上の活性を有し、アンチモン化合物で発生するポリカーボネート樹脂の加水分解の問題を起きない触媒として本発明者らが選定した触媒が、ゲルマニウム化合物である。
 このような本発明に係る触媒として用いられるゲルマニウム系化合物としては、二酸化ゲルマニウム等のゲルマニウム酸化物、ゲルマニウムテトラエトキシド、ゲルマニウムテトライソプロポキシド等のゲルマニウムアルコキシド、水酸化ゲルマニウム及びそのアルカリ金属塩、ゲルマニウムグリコレート、塩化ゲルマニウム、酢酸ゲルマニウム等が挙げられ、これらは単独又は2種以上組み合わせて用いられる。これらのゲルマニウム系化合物の中では、二酸化ゲルマニウムが特に好ましい。
 重合時に投入する二酸化ゲルマニウム触媒量は、反応速度の観点、経済的観点から、ポリエステル-ポリエーテル共重合体の量の50~2000ppmとするのが好ましく、100~1000ppmとなるようにするのがより好ましい。
 前記芳香族ジカルボン酸は、特にテレフタル酸が好ましく、その他イソフタル酸、ジフエニルジカルボン酸、ジフエノキシエタンジカルボン酸等が例示される。これら芳香族ジカルボン酸の他に、少ない割合(15%以下)のオキシ安息香酸等の他の芳香族オキシカルボン酸、あるいは、アジピン酸、セバチン酸、シクロヘキサン1・4-ジカルボン酸等の脂肪族、又は肪環族ジカルボン酸を併用してもよい。
 前記ジオールは、エステル単位を形成する低分子量グリコール成分であり、炭素数2~10の低分子量グリコール、例えば、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、ヘキサンジオール、デカンジオール、シクロヘキサンジメタノール等である。特にエチレングリコール、トリメチレングリコール、テトラメチレングリコールが、入手のし易さの点から好ましい。
 前記芳香族ジカルボン酸ジアルキルのアルキル基としては、メチル基がエステル交換反応性の観点から好ましい。
 前記の高分子の芳香族ポリエステルの溶液粘度としては、得られる成形品の耐衝撃性、耐薬品性や成形加工性の観点から、フェノール/テトラクロロエタン=1/1(重量比)混合溶媒中、25℃で濃度0.5g/dl(5g/l)における対数粘度(IV)が0.30~1.00、さらには0.45~0.60の範囲のものが好ましい。
 <3>芳香族ポリエステル単位
 本発明に用いる芳香族ポリエステルの単位は、芳香族ジカルボン酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体とから得られる重合体ないし共重合体であって、通常、交互重縮合体である。
 前記芳香族ポリエステル単位の好ましい具体例としては、ポリエチレンテレフタレート、ポリエチレンテレフタレート共重合体、ポリテトラメチレンテレフタレート、ポリテトラメチレンテレフタレート共重合体、ポリトリメチレンテレフタレート、あるいはポリトリメチレンテレフタレート共重合体が挙げられ、より好ましくは、ポリエチレンテレフタレート単位、ポリブチレンテレフタレート単位、及びポリプロピレンテレフタレート単位よりなる群から選ばれる1種以上である。
 <4>変性ポリエーテル単位
 本発明に用いる変性ポリエーテル単位は、前記一般式1で表される単位であり、一般式2で表される単位が好ましい。一般式1及び2中のオキシアルキレン単位の繰り返し単位数m、nにつき、(m+n)の数平均が20未満では、熱安定性の改善が少なく、(m+n)の数平均が60を越えると、成形性が悪くなるため、(m+n)の数平均は、20以上、60以下であることを要する。また、その下限としては、25以上が好ましく、30以上がより好ましい。
4.耐衝撃改良剤
 <1>コア/シェル型グラフト重合体
 前記コア/シェル型グラフト重合体とは、前記の特定のゴム状弾性体に前記の特定のビニル系化合物(単量体)をグラフト重合させたものである。
 前記ゴム状弾性体としては、ガラス転移温度が0℃以下のものが好ましく、より好ましくは-40℃以下のものである。
 このようなゴム状弾性体の具体例としては、例えば、ポリブタジエン、ブタジエン-スチレン共重合体、ブタジエン-アクリル酸エステル共重合体、ブタジエン-アクリロニトリル共重合体などのジエン系ゴム、ポリアクリル酸ブチル、ポリアクリル酸2-エチルヘキシル、ジメチルシロキサン-アクリル酸ブチルゴム、シリコン系/アクリル酸ブチル複合ゴムなどのアクリル系ゴム、エチレン-プロピレン共重合体、エチレン-プロピレン-ジエン共重合体などのオレフィン系ゴム、ポリジメチルシロキサン系ゴム、ジメチルシロキサン-ジフェニルシロキサン共重合体系ゴムが例示され、ブタジエン-アクリル酸エステル共重合体の具体的なゴムとしてブタジエン-アクリル酸ブチル共重合体、ブタジエン-アクリル酸2エチルヘキシル共重合体が例示出来る。耐衝撃性の面より、ポリブタジエン、ブタジエン-スチレン共重合体、ブタジエン-アクリル酸ブチル共重合体が好ましく使用される。
 前記ブタジエン-アクリル酸ブチル共重合体のうちでも、アクリル酸ブチル50~70重量%とブタジエン30~50重量%との共重合体が耐候性、耐衝撃性から好ましい。
 ゴム状弾性体の平均粒子径にもとくに限定はないが、0.05~2.00μmの範囲のものが好ましく、0.1~0.4μmがより好ましい。また、ゲル含有量についてもとくに限定はないが、10~99重量%、さらには80~96重量%の範囲のものが好ましく使用される。
 前記コア/シェル型グラフト重合体の製造に使用されるビニル系化合物としては、たとえば芳香族ビニル化合物、シアン化ビニル化合物、アクリル酸エステルやメタクリル酸エステルなどの(メタ)アクリル酸エステル化合物などがあげられる。これらは単独で用いてもよく、2種以上併用してもよい。前記芳香族ビニル化合物の例としてはスチレン、αメチルスチレン、シアン化ビニル化合物の例としてはアクリロニトリル、メタアクリロニトリル、アクリル酸エステルの例としてはブチルアクリレート、2エチルヘキシルアクリレート、メタクリル酸エステルの例としてはメチルメタクリレートがとくに好ましいものとしてあげられる。
 コア型/シェル型グラフトポリマーを調製する際のゴム状弾性体とビニル系化合物との使用割合はゴム状弾性体10~90重量%、さらには30~85重量%に対して、ビニル系化合物90~10重量%、さらには70~15重量%が好ましい。ゴム状弾性体の割合が10重量%未満では耐衝撃性が低下しやすくなり、一方、90重量%をこえると耐熱性が低下する傾向が生ずる。
 また、熱安定性の観点、有機リン系乳化剤を用いて製造されたコア/シェル型グラフト重合体を用いることが特に好ましい。
<2>ポリオレフィン系重合体
 前記ポリオレフィン系重合体の具体例としては、例えば、ポリエチレン、ポリプロピレンなどが挙げられ、好適に使用されうるが、これらに限定されるものではない。ポリオレフィン系重合体は、ホモポリマーでもよいし、エチレン-プロピレン共重合体、エチレン-ブテン共重合体、エチレン-4-メチルペンテン共重合体、エチレン-ヘキセン共重合体、エチレン-オクテン共重合体、プロピレン-ブテン共重合体等のコポリマーでもよい。また、ポリオレフィン系重合体の重合度についてもとくに制限はなく、通常メルトインデックスが0.05~50g/10分の範囲のものであれば任意に選択・使用しうる。このようなポリオレフィン系重合体の中でも、耐衝撃性をより向上させる観点から、エチレン-ブテン共重合体、エチレン-ヘキセン共重合体、エチレン-オクテン共重合体が好ましい。
<3>オレフィン-不飽和カルボン酸エステル共重合体
 前記オレフィン-不飽和カルボン酸エステル共重合体におけるオレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンなどが挙げられる。これらのオレフィンは単独で、又は、2種以上を組み合わせて使用され得る。特に好ましいオレフィンはエチレンである。
 前記オレフィン-不飽和カルボン酸エステル共重合体における不飽和カルボン酸エステルとしては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、i-プロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、2-エチルヘキシルアクリレート、アクリル酸グリシジル、メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、i-プロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、2-エチルヘキシルメタクリレート、メタクリル酸グリシジルなどが挙げられる。これらは、単独で、又は、2種以上を組み合わせて使用され得る。特に好ましい(メタ)アクリル酸アルキルエステルは、メチルアクリレート、エチルアクリレート、メタクリル酸グリシジルである。
 前記オレフィン-不飽和カルボン酸エステル共重合体中における、上記オレフィン単位と上記不飽和カルボン酸エステル単位との共重合比は、重量比で、好ましくは40/60~95/5、より好ましくは50/50~90/10である。共重合体中の(メタ)アクリル酸アルキルエステル単位の重量比が5未満では、耐薬品性改良効果が不十分である場合が多い。共重合体中の不飽和カルボン酸エステル単位の重量比が60を超えると、溶融時(例えば、成形加工時)の熱安定性が不十分である場合が多い。
 前記オレフィン-不飽和カルボン酸エステル共重合体に更に酢酸ビニル、スチレン等を共重合することも出来る。
 前記オレフィン-不飽和カルボン酸エステル共重合体としては、例えば、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸プロピル共重合体、エチレン-アクリル酸ブチル共重合体、エチレン-アクリル酸ヘキシル共重合体、エチレン-アクリル酸2-エチルヘキシル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メタクリル酸ヘキシル共重合体、エチレン-メタクリル酸2-エチルヘキシル共重合体、エチレン-アクリル酸グリシジル共重合体、エチレン-メタクリル酸グリシジル共重合体、エチレン-アクリル酸グリシジル-酢酸ビニル共重合体、エチレン-メタクリル酸グリシジル-酢酸ビニル共重合体、エチレン-アクリル酸グリシジル-アクリル酸メチル共重合体、エチレン-メタクリル酸グリシジル-アクリル酸メチル共重合体等が挙げられる。このうち、耐衝撃性をより向上させる観点から、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸グリシジル共重合体、エチレン-メタクリル酸グリシジル-酢酸ビニル共重合体、エチレン-メタクリル酸グリシジル-アクリル酸メチル共重合体が好ましい。
<4>熱可塑性ポリエステル系エラストマー
 前記熱可塑性ポリエステル系エラストマーとは、芳香族ジカルボン酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体および数平均分子量700~3000のポリエーテルとからなる共重合体であり、ポリエーテルに由来する成分の割合が5~80重量%、さらには10~70重量%の範囲のものが好ましい。ポリエーテルに由来する成分の割合が5重量%未満では耐衝撃性が低下する傾向が生じ、80重量%をこえると耐熱性が低下しやすくなる。
 前記熱可塑性ポリエステル系エラストマーの溶液粘度はフェノール/テトラクロロエタン=1/1(重量比)混合溶媒中、25℃で濃度0.5g/dl(5g/l)における対数粘度(IV)が0.3~2.0、さらには0.4~1.5の範囲のものが好ましい。該対数粘度が0.3未満では耐衝撃性、耐薬品性などが低下しやすくなり、一方、2.0をこえると成形加工性などが低下する傾向が生ずる。
 前記熱可塑性ポリエステル系エラストマーの製造に使用される芳香族ジカルボン酸またはそのエステル形成性誘導体の具体例としては、たとえばテレフタル酸、イソフタル酸、それらのエステル形成性誘導体などが例示される。これらは単独で用いてもよく、2種以上併用してもよい。一方、ジオールまたはそのエステル形成性誘導体としては、例えば、エチレングリコール、プロピレングリコール、テトラメチレングリコール、それらのエステル形成性誘導体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。さらに、前記ポリエーテルとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキサイドとプロピレンオキサイドとの共重合体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。前記ポリエーテルの数平均分子量としては、700~3000の範囲が好ましい。該分子量が700未満では耐熱性が低下する傾向にあり、一方、3000をこえると熱安定性が低下する傾向にある。
5.板状フィラー
 本発明に用いる板状フィラーは、本発明の樹脂組成物の成形体の線膨張性を小さくすることができる成分である。このような板状フィラーとしては、シリカやアルミナをその材料の主成分とするアルカリ性の無機物を用いることができ、形状としては平板状、薄片状、鱗片状等があげられる。その数平均のフィラーの長径(フィラーに含まれる最長の長さ)が0.1μm以上40μm以下であることが好ましく、成形品の低線膨張性、表面外観の観点からは、より好ましくは0.1μm以上25μm未満である。また熱安定性の観点からは、より好ましくは25μm以上40μm以下である。このため、低線膨張性、表面外観、熱安定性のバランスの観点からは、数平均長径が0.1μm以上25μm未満の板状フィラー(I)と数平均長径が25μm以上40μm以下の板状フィラー(II)の混合比率(重量基準)は、[全板状フィラーに対する(I)の重量比率]/[全板状フィラーに対する(II)の重量比率]が25%/75%~50%/50%であるのが好ましい。
 また、板状フィラーの数平均のアスペクト比、即ち、[板状フィラーの長径]/[板状フィラーの厚さ(フィラーに含まれる、前記直線を含む最大の平面に垂直な、直線の長さ)]は、低線膨張性、耐衝撃性の観点から、好ましくは10以上、より好ましくは15以上である。
 なお、前記数平均長径、及び数平均アスペクト比は、実体顕微鏡により測定して平均した各板状フィラーの粒の値の数平均値である。
 本発明に用いる板状フィラーとしては、後で詳述する本発明に係る特異的な成形体中での各成分の分散状態を実現させる観点から、シリカやアルミナをその材料の主成分とする、マイカ、タルク、モンモリロナイト、セリサイト、カオリン、ガラスフレーク、板状アルミナ、合成ハイドロタルサイトからなる群から選ばれる1種以上が好ましく、本発明の寸法安定性向上効果の観点から、マイカ、タルク、モンモリロナイト、セリサイト、カオリン、ガラスフレークがより好ましく、耐衝撃性、流動性、製品外観のバランスの観点から、マイカ、タルク、ガラスフレークがさらに好ましく、特に好ましくはマイカである。
 前記マイカとしては、天然、合成のどちらでもよく、また、白雲母、黒雲母、金雲母のいずれでも良い。
6.ガラス長繊維
 本発明の樹脂組成物に用いるガラス長繊維とは、ガラスを融解、牽引して、繊維状にしたものをいう。ガラス長繊維としては、例えば、Eガラス(Electrical  glass)、Cガラス(Chemical  glass)、Aガラス(Alkali  glass)、Sガラス(High  strength  glass)及び耐アルカリガラス等のガラスを溶融紡糸してフィラメント状の繊維にしたものを挙げることができるが、Eガラスが好ましい。
 ガラス長繊維の平均繊維径は、3~30μmであり、好ましくは9~25μm、さらに好ましくは11~23μm、特に好ましくは13~18μmである。平均繊維径が過小であると、繊維が破損しやすいため、強化繊維束の生産性が低下することがあり、またペレットを連続製造するときに、繊維を多数本束ねなければならなくなり、繊維束をつなぐ手間が煩雑となったり生産性が低下するため好ましくない。また、好ましいペレット長が決まっているときは、繊維径が過大であると、繊維のアスペクト比が低下することとなり、補強効果が充分発揮されなくなることがあることから好ましくない。
 ガラス長繊維としては、連続状ガラス繊維束を用いることができ、これはガラスロービングとして市販されている。ガラスロービングの他に、特開平6-114830号公報に記載のケーキ等も使用できる。ペレット長は4~20mm、好ましくは5~16mm、さらに好ましくは6~14mm、特に好ましくは8~12mmが例示される。ペレット径は、特に制限されないが、例えば0.5~4mmが例示される。
 ペレット中のガラス長繊維の平均アスペクト比、すなわち、(ガラス繊維の平均長さ)/(ガラス繊維の平均繊維径)は、50~6000、好ましくは75~2000、さらに好ましくは100~1500、特に好ましくは200~1000が例示される。平均アスペクト比が小さすぎると、補強効果が充分発揮されない恐れがあり、平均アスペクト比が大きすぎると、成形時に可塑化が不安定になったり、ガラス長繊維の分散不良を起こす恐れがある。
 本発明で用いるガラス長繊維は、耐衝撃性向上の観点からは、シランカップリング剤で処理されたものが好ましい。また、耐熱性向上の観点からは、エポキシ系あるいはウレタン系表面処理剤でサイジング処理されたものが好ましい。
 本発明のガラス長繊維に使用できる市販のガラスロービングとしては、例えば、日本電気硝子(株)製のEX-1437(繊維径17μm、アミノシランカップリング剤、エポキシ系エマルジョン、約4000本を収束)、セントラル硝子(株)のERS2310-LF702(繊維径17μm、アミノシランカップリング剤、ウレタン系エマルジョン使用、約4000本を収束)などが挙げられるが、これらに限定されるものではない。
7.安定剤
 前記安定剤としては、フェノール系安定剤、リン系安定剤、硫黄系安定剤からなる群から選ばれる1種以上が好ましく、難燃性に優れることから、これらの安定剤を組み合わせて使用することがより好ましい。
 前記フェノール系安定剤としては、より好ましくはヒンダードフェノール系安定剤であり、例えば、ペンタエリスリトールテトラキス[3-(3、5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナート(例えば、チバスペシャルティケミカルズ製イルガノックス1010(登録商標))が挙げられるが、これに限定されるわけではない。
 前記リン系安定剤としては、より好ましくはホスファイト系安定剤であり、例えば、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト(例えば、旭電化株式会社製アデカスタブ2112(登録商標))が挙げられるが、これに限定されるわけではない。
8.添加剤
 本発明の樹脂組成物には、前記以外にも、必要に応じて、例えば、光安定剤、難燃剤、可塑剤、滑剤、離型剤、紫外線吸収剤、帯電防止剤、顔料・染料、無機充填剤、アクリロニトリル-スチレン共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどを添加剤として配合し得る。
(樹脂組成物の製造方法)
 本発明の樹脂組成物の製造は任意の既知の方法で行なうことができる。例えば、ポリカーボネート樹脂、特定のポリエステル-ポリエーテル共重合体及び必要により使用するその他の任意成分をブレンダー、スーパーミキサーなどを用いて混合し、単軸または多軸のスクリュー押出機などで混練し、ペレットとして得る方法を挙げることができるが、これに限定されるものではない。また、混練の際に加熱して、溶融混練してもよい。温度条件等は、適宜設定することができる。
(成形体)
 本発明の樹脂組成物は、各種の成形体の材料として好適であるが、特に、大型薄肉成形体用の材料として優れている。例えば、本発明の樹脂組成物を用いて得られる成形体は、成形体の投影面積が10000mm2~10000000mm2である大型薄肉成形体とすることができる。表面外観・耐熱性・耐衝撃性の観点から、成形体の好ましい投影面積は30000mm2~7000000mm2であり、より好ましい投影面積は50000mm2~4000000mm2である。また、本発明の樹脂組成物を用いて得られる成形体は、平均肉厚が3.0mm未満、0.1mm以上である大型薄肉成形体とすることができる。平均肉厚は、2.5mm未満とすることも可能であるし、2.0mm未満とすることも可能である。また、表面外観・耐熱性・耐衝撃性の観点から、平均肉厚の下限は、好ましくは1.0mm以上、より好ましくは1.5mm以上である。更に、金型のゲートの入口に対応する成形体の部分から成形体の端部までの長さ(樹脂組成物が金型のキャビティ内を流動する時の流動距離のうちの実質的な最大長さ)が500mmを超える大型薄肉成形体とすることが可能である。
 また、本発明の樹脂組成物を用いて得られる大型薄肉成形体は、このような投影面積を有する場合でも、測定温度-30℃と+80℃との間で測定した面内の線膨張係数が6.0×10-5/℃以下であるのが好ましく、より好ましくは4.0×10-5/℃以下である。また、線膨張係数は3.5×10-5/℃以上であるものが好ましい。これにより、大型薄肉成形体は形状安定性を有し、例えば、家電製品用部品や車両用部品等の成形体として好適に使用することができる。特に、家電製品用部品、車両用部品等の成形体では、金属材料等に近接して使用されることが多く、高温になった金属材料等からの輻射熱や熱伝導により高温に曝される場合がある。しかし、本発明の成形体はこのような線膨張係数を有することで、金属材料等からの輻射熱、熱伝導により熱変形することを防止することが可能になり、形状安定性に優れる。
 本発明の成形体は、より具体的には、成形体の投影面積が30000mm2を超え、ゲートから端部までの長さが500mmを超え、平均肉厚が2.5mm未満の成形体を、測定温度-30℃と+80℃との間で測定した面内の線膨張係数が6.0×10-5/℃以下であるものが好ましく、4.0×10-5/℃以下であるものがより好ましい。また、成形体の投影面積が60000mm2を超え、平均肉厚が2.5mm未満、かつ、測定温度―30℃と+80℃との間で測定した面内の線膨張係数が6.0×10-5/℃以下であるものが好ましく、4.0×10-5/℃以下であるものがより好ましい。
 このような特性を有する本発明の成形体は、例えば車両用部品等の成形体として好適に用いることができる。また、車両用部品のうち、自動車外装部品として好適に用いることができ、中でも、ガーニッシュ、ピラー、スポイラーに特に好適である。
 また、本発明の成形体は、表面に塗装を行った場合に、表面外観性、塗膜の密着性が良好である。また、本発明の樹脂組成物は優れた流動性を有することから、当該樹脂組成物を用いて得られる成形体が、特に大型薄肉成形体であっても、その表面全体の平滑性が良好であり、塗装後の表面外観性、塗膜の密着性が良好である。塗装の塗料や塗装方法は、公知のものを適宜選択して採用することができる。
(成形体の製造方法)
 本発明の樹脂組成物の成形には既知の任意の方法を採用することができる。例えば、射出成形、押出成形、ブロー成形、圧縮成形などで成形することができる。このうち、射出成形が好ましい。また、本発明の樹脂組成物を、例えば、Plastics Info World 11/2002 P20-35に記載されているような、インラインコンパウンドプロセス、直接コンパウンドプロセス等のコンパウンドに利用して、成形体を成形することができる。
 本発明の成形体は、本発明の樹脂組成物をそのまま使用して成形してもよいし、希釈材とブレンドしたものを使用して成形してもよい。また、ガラス長繊維を含む樹脂組成物(以下、「繊維強化樹脂組成物」と称する場合がある。)を用いて得られたペレットを用いる場合、このペレットと希釈材との配合は、ドライブレンド方式でかまわない。むしろ、樹脂組成物中の繊維長を保持し、より高い剛性、耐衝撃性、耐久性の改良効果を得るためには、ドライブレンド後は押出機を通さず、直接射出成形機等の成形機に供する方が好ましい。希釈材の配合比率については、繊維強化樹脂組成物のペレットのガラス長繊維含有量と、最終成形体に求められるガラス長繊維含有量とによって決まるが、剛性、耐衝撃性、耐久性の改良効果の点から、繊維強化樹脂組成物に対して20~85重量%が好ましい。
(樹脂組成物及びその成形体の用途)
 本発明に係る樹脂組成物は、前記のように既知の種々の方法、例えば射出成形法、押出し成形法などにより、家電製品用部品、自動車等の車両用部品、電気・電子部品、雑貨の原料となる樹脂組成物として用いることができる。
 また、当該樹脂組成物を用いて成形した成形体は、耐熱性、耐衝撃性、剛性、寸法安定性、耐薬品性、成形加工性、耐候性ならびに熱安定性に優れ、成形体の表面光沢、外観、塗装性に優れたものとなる。従って、本発明の成形体は、射出成形により得られる自動車外装部品として好適に用いることができ、中でも、ガーニッシュ、ピラー、スポイラーに特に好適である。
 以下、本発明の樹脂組成物を実施例に基づき具体的に説明する。
 下記測定条件や実施例などにおける「部」および「%」は、それぞれ「重量部」および「重量%」を表す。
 まず、使用した材料、及び測定条件につき以下説明する。
(ポリカーボネート樹脂)
 ポリカーボネート樹脂としては、粘度平均分子量22,000である出光興産(株)製のタフロンA2200(登録商標)を用いた。表2~5中では、PCと表記している。
(ポリエステル-ポリエーテル共重合体:B1~B12)
 攪拌機、ガス排出出口を備えた反応器に、ゲルマニウム系触媒で製造されたポリエチレンテレフタレート(IV=0.65)、二酸化ゲルマニウム、安定剤(チバ・スペシャリティーケミカルズ製のイルガノックス1010)と、表1に示す変性ポリエーテルとを仕込み270℃で2時間保持した後、真空ポンプで減圧し、1torr(133Pa)で重縮合を実施し、270℃における重縮合反応時間(1torr(133Pa)に到達した時点からの経過時間)を短くすることで分子量を調整した。すなわち重縮合反応時間は0.5時間~3時間である。所定時間経過したところで減圧を終了して反応を停止し、製造した種々のポリエステル-ポリエーテル共重合体B1~B12を取り出し、更に、水槽で冷却したストランドに対して、100℃に設定した熱風乾燥機中で後結晶化と乾燥を同時に行った後、粉砕器に投入してペレット化する事で、ペレット状態のポリエステル-ポリエーテル共重合体B1~B12を得た。重縮合反応時間が短いほど、分子量が小さく、IV値の小さなポリエステル-ポリエーテル共重合体を得ることが出来る。なお、B8、B10は特許文献1に記載の方法に従い製造したもの(重縮合反応時間は3時間)で、そのIV値は1.20であった。
(ポリエステル-ポリエーテル共重合体:B13)
 攪拌機、ガス排出出口を備えた反応器に、ポリエチレンテレフタレートの原料であるビスヒドロキシエチレンテレフタレート(BHET)、二酸化ゲルマニウム、安定剤(チバ・スペシャリティーケミカルズ製のイルガノックス1010)と、表1に示す変性ポリエーテルとを仕込み190℃で2時間保持した後、温度を徐々に上げると共に真空ポンプで徐々に減圧し、最終的に270℃、1torr(133Pa)で重縮合を実施し、所定の重縮合反応時間(1.5時間)が経過したところで、減圧を終了して反応を停止し、製造した種々のポリエステル-ポリエーテル共重合体B13を取り出し、更に、水槽で冷却したストランドを、100℃に設定した熱風乾燥機中で後結晶化と乾燥を同時に行った後、粉砕器に投入してペレット化する事で、ペレット状態のポリエステル-ポリエーテル共重合体B13を得た。得られたポリエステル-ポリエーテル共重合体のポリエーテル比率は25wt%であり、IV値は0.49であった。
Figure JPOXMLDOC01-appb-T000005
 表1中の、PETは、ゲルマニウム系触媒で重合されたIV=0.65のポリエチレンテレフタレート。ビスヒドロキシエチレンテレフタレート(BHET)は、ペットリファインテクノロジー株式会社製のBHETを用いた。ビスオール18ENは、一般式2の構造における(m+n)の数平均が18のもの、ビスオール30ENは、一般式2の構造における(m+n)の数平均が30のもの、ビスオール60ENは、一般式2の構造における(m+n)の数平均が60のものである。
 また、表1中のIV値はテトラクロロエタン/フェノール=50/50(重量比)の混合溶媒中、25℃、0.5g/dlでの対数粘度から算出したものである。表1中の各組成の数値は重量部を示したものである。
(耐衝撃改良剤)
 コア/シェル型グラフト共重合体、株式会社カネカ製のカネエースM732
(板状フィラー:D)
(D-1)数平均長径27μm、マスコバイトマイカA-21S:株式会社ヤマグチマイカ
(D-2)数平均長径40μm、マスコバイトマイカA-41S:株式会社ヤマグチマイカ
(D-3)数平均長径10μm、マスコバイトマイカAS800:巴工業株式会社
(ガラス長繊維)
 繊維径16μm、TEX値2000(g/1000m)、アミノシランカップリング剤、エポキシ系エマルジョン処理
(安定剤:E)
 株式会社チバ・スペシャリティーケミカルズ製のイルガノックス1010(ヒンダードフェノール)
(離型剤:F)
 理研ビタミン株式会社製、リケスターEW-400(ペンタエリスリトールフルステアレート)
(流動性;スパイラル(2mm))
 ファナック株式会社製、射出成型機FAS-150を用い、シリンダー温度280℃、金型温度80℃、射出圧力1000kg/cm2で成形し、スパイラル状の成形体(10mm幅×2mm厚、ピッチ5mm)における流動長を測定した。
(アイゾット衝撃値;IZOD(ノッチ有))
 実施例及び比較例で作製した試験片につき、ASTM D-256、1/4インチ、ノッチ付、23℃で測定した。
(耐熱性;HDT(低荷重))
 実施例及び比較例で作製した試験片につき、ASTM D-696で測定した。
(滞留試験後の外観)
 日精樹脂工業株式会社製射出成形機FN-1000を用い、シリンダー温度280℃、金型温度80℃で2分滞留させて成形した120×120×3mmの平板の成形品の外観を肉眼で観察して、つぎの基準にしたがって評価した。
 ◎:表面のフラッシュが全く認められないもの
 ○:表面のフラッシュがほとんど認められないもの
 △:表面のフラッシュが少し認められるもの
 ×:表面のフラッシュが著しいもの
(大型薄肉成形性の評価)
 三菱重工業製大型射出成形機850-MG160を用い、シリンダー温度280℃、金型温度80℃にて、試験片として、投影面積は600mm×200mm(ゲートから端部までの距離は600mm)とし、厚みは2.5mm、2.0mm、1.5mmの3点にて、大型射出成形品である自動車のパネル部品を作成し、肉眼で観察して、次の基準にしたがって評価した。末端まで樹脂の充填がなされ、より厚みが薄い自動車のパネル部品であっても、その表面外観が良好であるほど薄肉成形性に優れた材料であると言える。
 ◎:成形品末端まで充填され、表面のフラッシュが全く認められないもの
 ○:成形品末端まで充填され、表面のフラッシュがほとんど認められないもの
 △:成形品末端まで充填され、表面のフラッシュが少し認められるもの
 ×:成形品末端まで充填され、表面のフラッシュが著しいもの
 ××:成形品末端まで充填できないもの
(線膨張性評価)
 先述の方法で得た成形品の中央部分を切り出して得た試験片について流動(MD)方向と流動に対して直角(TD)方向について、それぞれJIS K7197に準じて、測定温度-30℃と+80℃との間で試験を実施し、線膨張係数を評価した。
(成形品の塗装性の評価)
 先述の方法で得た600mm×200mm大、厚み2.5mm、2.0mm、1.5mmの成形品を塗装し次の基準にしたがって評価した。塗膜密着性が不十分とは、碁盤目ハクリ試験にて塗膜ハクリが5/100を超え生じたものを塗膜密着性が不十分であると判断した。
 ○:塗膜面の表面外観性が良好であり、塗膜密着性の問題もないもの。
 △:塗膜面の表面外観性が不均一で不良であり、塗膜密着性の問題がないもの。
 ×:塗膜面の表面外観性が不均一で不良であり、塗膜密着性が不十分であるもの。
(実施例1~24、及び比較例1~6)
 ポリカーボネート樹脂(PC)、ポリエステル-ポリエーテル共重合体B1~B13、ゲルマニウム系触媒で重合されたIV=0.65のポリエチレンテレフタレート樹脂(PET)、耐衝撃性改良剤、板状フィラー(D)、ガラス長繊維、ヒンダードフェノール系安定剤(E)、離型剤(F)を、表2~5に示す割合で予備混合し、それぞれ280℃で2軸押出機を用いて溶融混練し、ペレットを製造した。表2~5中の各組成の数値は重量部を示したものである。
 得られたペレットを用いて日精樹脂工業株式会社製射出成形機FN-1000を用いシリンダー温度280℃、金型温度80℃にて試験片を作製し、上記方法により評価した。結果を表2~5に示す。
 表2~5に示されるとおり、本発明の樹脂組成物によれば、優れた流動性を有することから、大型薄肉成形品であっても優れた成形性を有し、しかも、成形性・耐熱性・耐衝撃性・低線膨張性のバランスが優れた樹脂組成物を提供することができる。また、本発明の成形体は、大型薄肉成形品であっても表面外観を損なうことがなく、優れた耐熱性、耐衝撃性、低線膨張性を有する。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
                                                                                

Claims (18)

  1.  ポリカーボネート樹脂40重量部以上、95重量部未満、及びポリエステル-ポリエーテル共重合体5重量部以上、60重量部未満を基材樹脂として含む樹脂組成物であって、
     該ポリエステル-ポリエーテル共重合体が、ゲルマニウム化合物の触媒を用いて重合された、芳香族ポリエステル単位、及び下記一般式1で表される変性ポリエーテル単位からなり、IV値0.30~1.00の範囲である共重合体であることを特徴とする樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式中、-A-は、-O-、-S-、-SO-、-SO2-、-CO-、炭素数1~20のアルキレン基、又は炭素数6~20のアルキリデン基であり、R1、R2、R3、R4、R5、R6、R7、およびR8は、いずれも水素原子、ハロゲン原子、または炭素数1~5の1価の炭化水素基であり、R9、R10はいずれも炭素数1~5の2価の炭化水素基であり、それらはそれぞれ同一であっても異なっていても良い。m、及びnはオキシアルキレン単位の繰り返し単位数を示し、20≦m+n≦60である。)
  2.  前記ポリエステル-ポリエーテル共重合体のIV値が0.45~0.60の範囲である請求項1に記載の樹脂組成物。
  3.  前記ポリエステル-ポリエーテル共重合体が、芳香族ポリエステル単位85~65重量%、及び前記変性ポリエーテル単位15~35重量%からなるものである請求項1又は2に記載の樹脂組成物。
  4.  前記芳香族ポリエステル単位が、ポリエチレンテレフタレート単位、ポリブチレンテレフタレート単位、及びポリプロピレンテレフタレート単位よりなる群から選ばれる1種以上である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記変性ポリエーテル単位が、下記一般式2で表される変性ポリエーテル単位である、請求項1~4のいずれか1項に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
     (式中、m及びnはオキシアルキレン単位の繰り返し単位数を示し、20≦m+n≦60である。)
  6.  更に耐衝撃改良剤0.5~40重量部を含む請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記耐衝撃改良剤が、(1)ポリブタジエン、ブタジエン-スチレン共重合体、及びブタジエン-アクリル酸エステル共重合体、及びポリオルガノシロキサンからなる群より選ばれる1種以上のゴム状重合体であるコア10~90重量%、並びに、該コアの存在下に、芳香族ビニル化合物、シアン化ビニル化合物、及び(メタ)アクリル酸エステル化合物からなる群より選ばれる1種以上の単量体を重合して得られる重合体により構成されたシェル90~10重量%、からなるコア/シェル型グラフト重合体、(2)ポリオレフィン系重合体、並びに(3)オレフィン-不飽和カルボン酸エステル共重合体よりなる群から選ばれた1種以上である、請求項6に記載の樹脂組成物。
  8.  更に、前記基材樹脂100重量部に対し、数平均長径が0.1μm以上40μm以下の板状フィラー5~100重量部を含む請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  前記板状フィラーにおいて、(4)数平均長径が0.1μm以上25μm未満の板状フィラーと(5)数平均長径が25μm以上40μm以下の板状フィラーの比率(重量基準)が板状フィラー量に対し(4)/(5)=25%/75%~50%/50%である、請求項1~8のいずれか1項に記載の樹脂組成物。
  10.  更に、前記基材樹脂100重量部に対し、ガラス長繊維5~100重量部を含む請求項1~9のいずれか1項に記載の樹脂組成物。
  11.  請求項1~10のいずれか1項に記載の樹脂組成物を含む成形体。
  12.  成形体の投影面積が30000mm2を超え、ゲートから端部までの長さが500mmを超え、平均肉厚が2.5mm未満、かつ、測定温度-30℃と+80℃との間で測定した面内の線膨張係数が6.0×10-5/℃以下である、請求項11に記載の成形体。
  13.  成形体の投影面積が30000mm2を超え、ゲートから端部までの長さが500mmを超え、平均肉厚が2.5mm未満、かつ、測定温度-30℃と+80℃との間で測定した面内の線膨張係数が4.0×10-5/℃以下である、請求項11に記載の成形体。
  14.  成形体の投影面積が60000mm2を超え、平均肉厚が2.5mm未満、かつ、測定温度-30℃と+80℃との間で測定した面内の線膨張係数が6.0×10-5/℃以下である、請求項11に記載の成形体。
  15.  成形体の投影面積が60000mm2を超え、平均肉厚が2.5mm未満、かつ、測定温度-30℃と+80℃との間で測定した面内の線膨張係数が4.0×10-5/℃以下である、請求項11に記載の成形体。
  16.  射出成形により得られる自動車外装部品である、請求項11に記載の成形体。
  17.  ガーニッシュ、ピラー、およびスポイラーから選ばれる、請求項11に記載の成形体。
  18.  射出成形により成形体を得ることを特徴とする、請求項11に記載の成形体の製造方法。
                                                                                    
PCT/JP2013/062607 2012-04-27 2013-04-30 流動性に優れたポリカーボネート樹脂組成物、及びその成形体 WO2013162043A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014512735A JP5920458B2 (ja) 2012-04-27 2013-04-30 流動性に優れたポリカーボネート樹脂組成物、及びその成形体
CN201380019482.9A CN104254569A (zh) 2012-04-27 2013-04-30 流动性优异的聚碳酸酯树脂组合物及其成型体
EP13782470.2A EP2843000B1 (en) 2012-04-27 2013-04-30 A molding comprising a polycarbonate resin composition with superior fluidity and a method of producing the same
US14/394,940 US9944790B2 (en) 2012-04-27 2013-04-30 Polycarbonate resin composition with superior fluidity and molding thereof
KR1020147032832A KR20150013579A (ko) 2012-04-27 2013-04-30 유동성이 우수한 폴리카보네이트 수지 조성물, 및 그 성형체

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-103690 2012-04-27
JP2012103690 2012-04-27
JP2012-136026 2012-06-15
JP2012136026 2012-06-15

Publications (1)

Publication Number Publication Date
WO2013162043A1 true WO2013162043A1 (ja) 2013-10-31

Family

ID=49483337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062607 WO2013162043A1 (ja) 2012-04-27 2013-04-30 流動性に優れたポリカーボネート樹脂組成物、及びその成形体

Country Status (6)

Country Link
US (1) US9944790B2 (ja)
EP (1) EP2843000B1 (ja)
JP (1) JP5920458B2 (ja)
KR (1) KR20150013579A (ja)
CN (1) CN104254569A (ja)
WO (1) WO2013162043A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195100A1 (ja) * 2015-06-04 2016-12-08 株式会社カネカ 耐熱分解性に優れたポリカーボネート樹脂組成物

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150060639A1 (en) * 2013-09-05 2015-03-05 Samsung Sdi Co., Ltd. Mold for Food
JP6936788B2 (ja) * 2016-04-01 2021-09-22 株式会社カネカ 軽量化及びリブ設計が可能な樹脂組成物による表面性が良好な射出発泡成形体
KR102005156B1 (ko) * 2016-12-30 2019-08-01 롯데첨단소재(주) 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
US10501623B2 (en) * 2016-12-30 2019-12-10 Lotte Advanced Materials Co., Ltd. Polycarbonate resin composition and molded article using the same
WO2019208653A1 (ja) * 2018-04-27 2019-10-31 株式会社カネカ マスターバッチ、ポリカーボネート系樹脂組成物、射出発泡成形体及びその製造方法
KR102547560B1 (ko) * 2019-12-20 2023-06-23 롯데케미칼 주식회사 경통 부재

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091440A (ja) * 2007-10-05 2009-04-30 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
JP2010254739A (ja) 2009-04-21 2010-11-11 Kaneka Corp 成形性の優れた樹脂組成物、及びその成形体
JP2011231280A (ja) * 2010-04-30 2011-11-17 Kaneka Corp ポリカーボネート系樹脂組成物、及びその射出成型体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1894340A (zh) * 2003-12-18 2007-01-10 通用电气公司 聚碳酸酯聚酯模塑组合物
JP2008075087A (ja) * 2007-10-02 2008-04-03 Kaneka Corp 制振性樹脂組成物とそれを用いた成形品
JP5434177B2 (ja) * 2009-03-19 2014-03-05 株式会社カネカ 成形性の優れた樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009091440A (ja) * 2007-10-05 2009-04-30 Kaneka Corp 高熱伝導性熱可塑性樹脂組成物
JP2010254739A (ja) 2009-04-21 2010-11-11 Kaneka Corp 成形性の優れた樹脂組成物、及びその成形体
JP2011231280A (ja) * 2010-04-30 2011-11-17 Kaneka Corp ポリカーボネート系樹脂組成物、及びその射出成型体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195100A1 (ja) * 2015-06-04 2016-12-08 株式会社カネカ 耐熱分解性に優れたポリカーボネート樹脂組成物
JPWO2016195100A1 (ja) * 2015-06-04 2018-03-22 株式会社カネカ 耐熱分解性に優れたポリカーボネート樹脂組成物
US10344162B2 (en) 2015-06-04 2019-07-09 Kaneka Corporation Polycarbonate resin composition having excellent thermal decomposition resistance

Also Published As

Publication number Publication date
CN104254569A (zh) 2014-12-31
EP2843000A4 (en) 2015-12-02
US20150099106A1 (en) 2015-04-09
JPWO2013162043A1 (ja) 2015-12-24
EP2843000B1 (en) 2021-10-06
JP5920458B2 (ja) 2016-05-18
US9944790B2 (en) 2018-04-17
EP2843000A1 (en) 2015-03-04
KR20150013579A (ko) 2015-02-05

Similar Documents

Publication Publication Date Title
JP5920458B2 (ja) 流動性に優れたポリカーボネート樹脂組成物、及びその成形体
JP5581606B2 (ja) 成形性の優れた樹脂組成物、及びその成形体
JP5569131B2 (ja) ポリカーボネート系樹脂組成物、及びその射出成型体
JP2010105226A (ja) 樹脂成形体
JP6810572B2 (ja) ポリブチレンテレフタレート系樹脂組成物
JP5277833B2 (ja) 異形押出成形用ポリカーボネート樹脂組成物及び緩衝材
JP6668768B2 (ja) ポリブチレンテレフタレート樹脂組成物およびそれからなる成形品
JP6217641B2 (ja) 特定断面構造を有する成形体
JP3605956B2 (ja) 強化ポリエステル樹脂組成物およびその成形品
JP7288752B2 (ja) 熱可塑性樹脂組成物及び成形体
JP2019038918A (ja) ポリブチレンテレフタレート樹脂組成物およびそれからなる成形品
JP5434177B2 (ja) 成形性の優れた樹脂組成物
JP7262282B2 (ja) 熱可塑性樹脂組成物及び成形体
JP7174602B2 (ja) ポリエステル樹脂組成物
WO2020111011A1 (ja) 熱可塑性樹脂組成物及び成形体
JP2020019950A (ja) ポリブチレンテレフタレート樹脂組成物及びその製造方法、並びに、金属樹脂複合体
JP7288751B2 (ja) 熱可塑性樹脂組成物及び成形体
JP5454630B2 (ja) 異形押出成形用ポリカーボネート樹脂組成物及び緩衝材
JP2011046758A (ja) 熱可塑性樹脂組成物及びその成形体
JPS60215052A (ja) 樹脂組成物
JPH0366345B2 (ja)
JP2003268104A (ja) ポリエーテルエステルアミドおよび熱可塑性樹脂組成物
JPH0365833B2 (ja)
JPH04309552A (ja) 艶消し用樹脂組成物
JPS63135445A (ja) ポリエステル系樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782470

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512735

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14394940

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147032832

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013782470

Country of ref document: EP