WO2013161930A1 - 超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体 - Google Patents

超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体 Download PDF

Info

Publication number
WO2013161930A1
WO2013161930A1 PCT/JP2013/062185 JP2013062185W WO2013161930A1 WO 2013161930 A1 WO2013161930 A1 WO 2013161930A1 JP 2013062185 W JP2013062185 W JP 2013062185W WO 2013161930 A1 WO2013161930 A1 WO 2013161930A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting wire
magnesium diboride
precursor
magnesium
metal sheath
Prior art date
Application number
PCT/JP2013/062185
Other languages
English (en)
French (fr)
Inventor
一宗 児玉
和英 田中
下山 淳一
明保 山本
Original Assignee
国立大学法人東京大学
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 株式会社日立製作所 filed Critical 国立大学法人東京大学
Priority to US14/396,832 priority Critical patent/US20150111755A1/en
Priority to EP13782254.0A priority patent/EP2843671A4/en
Publication of WO2013161930A1 publication Critical patent/WO2013161930A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/04Single wire
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0856Manufacture or treatment of devices comprising metal borides, e.g. MgB2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • H10N60/202Permanent superconducting devices comprising metal borides, e.g. MgB2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12097Nonparticulate component encloses particles

Definitions

  • the present invention relates to a superconducting wire, a precursor of a superconducting wire and a method of manufacturing the same, and a precursor of a superconducting multicore conductor.
  • Magnesium diboride (MgB 2 ) is a superconductor discovered in 2001. Among the superconductors using metal, it has the highest critical temperature (39 K). Therefore, by using magnesium diboride, it is possible to operate a superconducting device conventionally operated by cooling to liquid helium temperature (4.2 K) at high temperature (10 K to 20 K) without using liquid helium. It will be possible. In particular, to equipment using a magnetic field with extremely small temporal fluctuation, such as a nuclear magnetic resonance analyzer (NMR (Nuclear Magnetic Resonance) apparatus) or a medical MRI apparatus (medical magnetic resonance imaging (Magnetic Resonance Imaging) apparatus) Application of is expected. This is because a superconductor using magnesium diboride reduces the problem of remarkable magnetic flux creep in a superconductor using copper oxide or the like.
  • NMR Nuclear Magnetic Resonance
  • medical MRI apparatus medical magnetic resonance imaging (Magnetic Resonance Imaging) apparatus
  • the linearized superconductor (superconductor wire) can be obtained, for example, by filling a metal sheath with a raw material powder, applying a surface reduction process to form a wire, and firing the wire.
  • the superconducting wire thus obtained has a practical critical current density. This manufacturing method is called the powder-in-tube method.
  • Patent documents 1 and 2 are known in relation to such a technique.
  • Patent 4667638 gazette Japanese Patent Application Publication No. 2003-031057
  • the superconducting wire In a superconducting magnet using a superconducting wire containing magnesium diboride, in order to generate a predetermined magnetic field, it is important to increase the product of the critical current density of the superconducting wire and the wire length. The larger the value of this product, the wider the range of magnetic fields that can be generated. Therefore, the superconducting wire is required to have a sufficiently long wire length and uniformly high critical current density over the entire length.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a superconducting wire having a sufficiently long wire length and to have a uniformly high critical current density over the entire length, and a precursor of the superconducting wire.
  • An object of the present invention is to provide a body, a method of manufacturing the same, and a precursor of a superconducting multicore conductor.
  • a superconducting wire having a wire length sufficiently longer than the conventional one and having a uniformly high critical current density over the entire length, a precursor of the superconducting wire and a method of manufacturing the same, and a superconducting multicore conductor Precursors can be provided.
  • FIG. 2 is a perspective view of a superconducting wire 10;
  • A is sectional drawing of the superconducting wire 10,
  • (b) is a figure for demonstrating the number of air gaps in Fig.2 (a).
  • FIG. 6 is a cross-sectional view of a conventional superconducting wire 11;
  • FIG. 2 is a view for explaining the boundary between a magnesium diboride core 1 and a metal sheath 2;
  • FIG. 2 is a view for explaining the boundary between a magnesium diboride core 1 and a metal sheath 2;
  • It is a graph which shows the relationship between an applied magnetic field and a critical current density.
  • It is a graph which shows the relationship between an applied magnetic field and a critical current density.
  • the superconducting wire 10 of the present embodiment includes a magnesium diboride core 1 in which magnesium diboride is electrically continuous and a metal sheath 2 covering the magnesium diboride core 1. It is possessed.
  • the superconducting wire 10 satisfies the following three physical properties.
  • Physical property 1 The density of the magnesium diboride core 1 is 1.5 g / cm 3 or more.
  • Physical property 2 In an air gap existing in an arbitrary longitudinal cross section in the longitudinal direction of the superconducting wire 10, when a length of a line connecting two furthest points in a closed curve forming the air gap is L, the length L is Of the air gaps of 20 ⁇ m or more, the number of air gaps having an angle of 45 ° or more between the line segment and the longitudinal axis of the superconducting wire 10 is the angle between the line segment and the longitudinal axis of the superconducting wire 10 Less than the number of voids smaller than 45 °.
  • the density of the magnesium diboride core 1 contained in the superconducting wire 10 is 1.5 g / cm 3 or more.
  • the density of the magnesium diboride core 1 is preferably 1.57 g / cm 3 or more, and the upper limit thereof is that the true density of magnesium diboride is 2.62 g / cm 3 . If the packing density exceeds 90%, the fluidity is deteriorated to linearize and processing becomes difficult, so the content is preferably 2.36 g / cm 3 or less.
  • measure the mass of the magnesium diboride core 1 taken out by removing the metal sheath of the wire with an electronic balance calculate the volume from its dimensions with an electron microscope, and divide the mass by volume It can be measured by
  • the voids inside the magnesium diboride core 1 can be reduced.
  • route which a superconducting current can flow can be increased, and it can be set as the superconducting wire 1 which has a favorable critical current density.
  • a void 4 is present inside the magnesium diboride core 1.
  • the metal sheath 2 is fired after the filling. It is generated by That is, when fine particles of boron and magnesium constituting the raw material powder are fired, such voids 4 are generated because they shrink considerably when magnesium diboride is produced. Further, since it is practically impossible to fill the metal sheath 2 with the powder at a filling rate of 100%, the void 4 is also present in the ex-Situ method.
  • the size of the air gap 4 is represented by the length L of the line segment. Moreover, such a longitudinal cross section can be observed by the method as described in the Example mentioned later.
  • is about 20 °. Then, the number of the air gaps 4 where such ⁇ is smaller than 45 ° (not including 45 °) is larger than the number of the air gaps 4 where ⁇ is 45 ° or more. By satisfying such conditions, it is possible to increase the paths through which the superconducting current of the superconducting wire 10 (magnesium diboride 1) can flow.
  • the diameter of the magnesium diboride core 1 in the superconducting wire is about 20 ⁇ m to 500 ⁇ m, and when L exceeds 20 ⁇ m and the number of voids 4 with ⁇ of 45 ° or more is too large, the magnesium diboride core 1
  • the number of voids 4 in the magnesium diboride core 1 where ⁇ is 45 ° or more is as small as possible.
  • the length L of the line segment is set to 20 ⁇ m or more as the size of the air gap 4 for determining the size of ⁇ .
  • the size of ⁇ of the air gap 4 described above be as small as possible.
  • the size of the boundary ⁇ is preferably smaller than 20 °, and more preferably smaller than 10 °.
  • a superconducting wire 11 (conventional superconducting wire) shown in FIG. 3 may be mentioned as an example not applicable to the superconducting wire 10 of the present embodiment.
  • a large number of air gaps 4 in the direction ( ⁇ of about 90 °) perpendicular to the current flow direction exist inside the magnesium diboride core 1.
  • the current path of the magnesium diboride core 1 superconducting current may be blocked, and a good superconducting wire 10 having uniform critical current density characteristics in the longitudinal direction may not be obtained. is there.
  • the superconducting wire 10 is a virtual approximation by the least squares method with respect to the boundary curve 5 between the magnesium diboride core 1 and the metal sheath 2 in an arbitrary 100 ⁇ m region in the longitudinal direction in the longitudinal cross section.
  • the distances x1, x2, x3 between the boundary curve 5 and the approximate curve 6 are all 10 ⁇ m or less. This can be said that the longest distance of the distance between the boundary curve 5 and the approximate straight line 6 is 10 ⁇ m or less.
  • the undulation of the interface 5 as shown in the figure is caused by the presence of magnesium diboride 7 or boron 8 having high hardness as shown in FIG.
  • this distance is ideally 0 ⁇ m, that is, the boundary between the magnesium diboride core 1 and the metal sheath 2 is completely smooth. However, since such a state is practically difficult, it is usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • magnesium diboride has higher hardness than, for example, boron, carbon, magnesium and the like. Therefore, although the details will be described later, when magnesium diboride is used as a part of the raw material of the magnesium diboride core 1, when the raw material such as magnesium diboride is filled in the metal sheath 2 and stretched, the magnesium diboride The wire may be cut at the portion where the metal sheath contacts with the metal sheath. That is, since magnesium diboride has high hardness, it may bite too much into the metal sheath 2. As a result, the strength of the metal sheath 2 is reduced, and the wire is cut. Therefore, in order to avoid such a phenomenon, it is preferable to set the particle size of magnesium diboride to 10 ⁇ m or less. By doing this, the distance L between the boundary curve 5 and the approximate curve 6 can be made 10 ⁇ m or less.
  • the magnesium diboride core 1 constituting the superconducting wire 10 contains magnesium diboride as described above. However, a part of the boron atom site of magnesium diboride contained may be substituted by a carbon atom. With such a configuration of the superconducting wire 10, lattice distortion can be caused in the crystal, and the critical current density in the high magnetic field region of the superconducting wire 10 can be increased.
  • substitution can be produced by using together and baking material (carbon source) which contains carbons, such as boron carbide etc., in addition to magnesium and boron at the time of preparation of magnesium diboride.
  • the substitution amount can be controlled by appropriately changing the amount of the material containing carbon and the type of the material.
  • the material in particular of the metal sheath 2 which comprises the superconducting wire 10 is not restrict
  • a material of the metal sheath 2 it is preferable to use a metal material which does not react with magnesium, boron, magnesium diboride or the like.
  • materials other than these it is preferable to use a metal material that does not react with such materials.
  • materials which are low in reactivity with these materials or which do not significantly decrease the critical current density even if they react can be used as well.
  • Such a material examples include iron (Fe), niobium (Nb), tantalum (Ta), titanium (Ti) and the like.
  • a material which comprises the metal sheath 2 these are preferable.
  • One of these may be used alone, or two or more may be used in an arbitrary ratio.
  • an alloy containing these as components may be used.
  • the outer surface of the metal sheath 2 may be coated with a material containing copper (Cu).
  • a material containing copper Cu
  • the processability of the superconducting wire 10 can be improved.
  • copper has good conductivity and good heat conductivity
  • covering the metal sheath 2 with a material containing such copper improves the thermal instability unique to the superconducting material. it can.
  • a material containing copper any of a copper simple substance or a copper compound (copper alloy etc.) may be sufficient.
  • a material containing copper what combined the copper simple substance and the copper compound may be used.
  • the superconducting wire 10 is obtained by firing a precursor of the superconducting wire 10.
  • the manufacturing method of the superconducting wire 10 is demonstrated, demonstrating the physical property and baking conditions of a precursor.
  • any one of the following precursor A and precursor B is used. That is, the magnesium diboride core 1 constituting the superconducting wire 10 is formed by filling magnesium and boron into the metal sheath 1 and then firing it, and the boron is crystalline, and the volume average of the boron is The precursor A whose particle diameter is 2 micrometers or less is mentioned.
  • the precursor A crystalline boron having a volume average particle diameter of 2 ⁇ m or less is used as part of the raw material. Therefore, volumetric shrinkage of the raw material powder in the metal sheath 2 can be suppressed also by the in-situ method. This can reduce the amount of voids that can occur after firing. Therefore, the critical current density of the obtained superconducting wire 10 does not become excessively low.
  • Precursor A there are no particular limitations on the amounts of boron and magnesium contained in Precursor A. However, based on the composition of magnesium diboride to be produced, it is preferable to fill the metal sheath 2 so that 1 mole of magnesium is contained with respect to 2 moles of boron.
  • the magnesium diboride core 1 constituting the superconducting wire 10 is formed by sintering magnesium, boron and magnesium diboride after being filled in the metal sheath 2, and the metal sheath 2
  • the precursor B which is 10 micrometers or less in volume average particle diameter of magnesium diboride with which it is filled is also mentioned.
  • magnesium diboride having a volume average particle diameter of 10 ⁇ m or less is also used as a raw material for forming the magnesium diboride core 1.
  • Magnesium diboride shrinks little more when fired. Therefore, the amount of voids that can be generated by performing the in-situ method using magnesium and boron as raw materials can be reduced. Thereby, the space in the metal sheath 2 can be reduced and the packing density can be increased. As a result, a good critical current density of the superconducting wire 10 can be obtained.
  • volume average particle diameter is a value defined by the following formula (1). That is, it can be calculated from the particle size distribution measured by a particle size distribution measuring apparatus (for example, LA950 manufactured by Horiba, Ltd.). The measurement principle is based on the laser diffraction / scattering method.
  • MV (d 1 ⁇ V 1 + d 2 ⁇ V 2 + ... + d n ⁇ V n ) / (V 1 + V 2 + ... + V n ) (1)
  • Magnesium diboride having a volume average particle diameter of 10 ⁇ m or less can be obtained (prepared) by grinding a solid of magnesium diboride and then classifying it using a sieve or the like. Then, the thus prepared magnesium diboride and boron and magnesium may be mixed to obtain a mixture, and the mixture may be filled in the metal sheath 2.
  • the amount of boron and magnesium contained in the precursor B is not particularly limited. However, based on the composition of magnesium diboride to be produced, it is preferable to fill the metal sheath 2 so that 1 mole of magnesium is to 2 moles of boron. Also, the amount of magnesium diboride contained in the precursor B is not particularly limited. However, in the raw material powder filled in the metal sheath 2 constituting the precursor B, the content of magnesium diboride is preferably 50% by mass or more and 90% by mass or less. By setting it as such a composition, the superconducting wire 10 which has higher critical current density can be obtained. In addition, magnesium diboride used as a raw material is obtained, for example, by mixing magnesium and boron and baking it under an inert atmosphere.
  • a part of the boron atom site of the contained magnesium diboride may be substituted by a carbon atom.
  • the critical current density in the high magnetic field region of the obtained superconducting wire can be increased.
  • Such partially substituted magnesium diboride is as described above in [1.
  • the superconducting wire can be prepared by the methods and materials described above.
  • the reason why the critical current density is increased is also described above [1. It is the same as the reason described in [Superconducting wire].
  • the main constitutions of the precursor A and the precursor B are as described above, but in any of the precursor A and the precursor B, even if any other component is used in an arbitrary amount as a raw material to be charged Good.
  • a component for example, a material containing carbon such as boron carbide (carbon source) can be mentioned.
  • the configuration of the metal sheath 2 in the precursor A and the precursor B is not particularly limited. Therefore, [1. The same configuration as that of the metal sheath 2 described in [Superconducting wire] may be applied. That is, it is preferable that the metal sheath 2 contains at least one metal selected from the group consisting of iron, niobium, tantalum and titanium. Moreover, it is preferable that the outer surface of the metal sheath 2 is coat
  • the superconducting wire 10 is obtained by firing the precursor A or the precursor B having the above-described configuration.
  • the superconducting wire 10 can also be obtained by firing a precursor having physical properties of both the precursor A and the precursor B. Prior to firing, the precursor A and the precursor B are wire reduced by surface reduction processing before the firing so that the obtained superconducting wire 10 has a desired thickness and length. Then, firing is performed on the precursor A and the precursor B, which have been made into wires.
  • the conditions at the time of firing are not particularly limited.
  • the obtained precursor A and the precursor B may be provided in an electric furnace, and firing may be performed at a predetermined temperature and time.
  • Such temperature and time may be, for example, 12 hours at 800 ° C.
  • the temperature may be changed stepwise or may be always constant.
  • the atmosphere at the time of firing is not particularly limited.
  • an inert atmosphere such as argon or nitrogen can be used.
  • the superconducting wire 10 can be obtained by the method described above.
  • the method for producing the precursor B can be summarized as follows. That is, precursor B is a step of obtaining magnesium diboride by mixing and calcining magnesium and boron, and a step of adjusting the volume average particle diameter of the obtained magnesium diboride to 10 ⁇ m or less And a step of mixing magnesium diboride having a volume average particle diameter of 10 ⁇ m or less, boron, and magnesium to obtain a mixture, and filling the mixture in the metal sheath 2 and forming a wire by surface reduction processing And at least through.
  • the superconducting wire 10 obtained by firing the precursor A and the precursor B has a high critical current density even in a high temperature region of, for example, about 20K. Therefore, by using such a superconducting wire 10, the superconducting magnet applied to a nuclear magnetic resonance analyzer, a magnetic resonance imaging diagnostic apparatus for medical use, etc. can be driven more easily and inexpensively. That is, it is not necessary to cool to a cryogenic temperature using expensive liquid helium for cooling the superconducting magnet, and can be cooled by a refrigerator or the like. As a result, these manufacturing costs and running costs can be reduced.
  • the above-mentioned embodiment gives and demonstrates the example (single core wire material) which uses one superconducting wire material.
  • the superconducting multi-core conductor can be obtained by stopping the processing of the single-core wire with a thicker wire diameter once, bundling such multiple single-core wires in a metal sheath and inserting it, and reducing the surface.
  • the single-core wire can be made to have a predetermined wire diameter, and the multicore conductor can also be made by twisting them together.
  • the precursor A and the precursor B of the superconducting wire are obtained by the method for producing the precursor A and the precursor B described above, and the precursor A and the precursor B of a plurality of superconducting wires are twisted to obtain a superconducting multicore conductor.
  • Precursors of can be obtained.
  • a superconducting multicore conductor can be obtained.
  • Such a superconducting multicore conductor can have a higher current capacity as compared with a superconducting single core conductor (the superconducting wire 10 described above).
  • Example 1 A superconducting wire was manufactured using magnesium powder, boron powder and magnesium diboride powder as raw material powders. And the characteristic of the produced superconducting wire was evaluated.
  • magnesium powder one having a volume average particle diameter of 40 ⁇ m was used. In addition, this volume average particle diameter was measured by the above-mentioned method. The same applies to the following materials.
  • the boron powder (B) and the magnesium diboride powder (MgB 2 ) differ depending on the superconducting wire to be produced, and those having a volume average particle diameter described in Table 1 below were used.
  • This magnesium diboride powder is mixed with a magnesium powder having a volume average particle diameter of 40 ⁇ m and a boron powder having a volume average particle diameter of 2 ⁇ m, and then filled in a metal tube of material SUS304 to seal both ends and argon Obtained by firing under an atmosphere.
  • fine powders of boron powder and magnesium diboride powder were obtained by combining dry grinding with a planetary ball mill and wet grinding with a bead mill.
  • the aforementioned magnesium powder and boron powder were mixed to obtain a composition.
  • the magnesium powder and the boron powder were mixed at a molar ratio of 1: 2.
  • the magnesium diboride powder obtained by said method was mix
  • this composition was not used, and the composition was made only of magnesium diboride powder obtained by the above method.
  • “wt%” shows "mass%.”
  • the composition was filled in an iron metal sheath.
  • the outer diameter of the metal sheath is 18 mm and the inner diameter is 13.5 mm.
  • the wire was thinned to a diameter of 0.5 mm by drawing, and a single-core wire was obtained.
  • # 2 wire number 2, hereinafter the same applies to other wires
  • # 5 breakage occurred repeatedly at the time of drawing, so thinning was not easy.
  • the wire was thinned to a diameter of 0.5 mm, the wire length became shorter as compared with other wires. For the other wire samples, it was possible to thin the wire with almost no breakage.
  • a length of 60 mm was cut from the obtained single-core wire, and fired at 800 ° C. for 12 hours in an argon atmosphere to magnify the filament-like powder-filled portion in the center with magnesium diboride. That is, the superconducting wire 10 including the magnesium diboride core 1 shown in FIG. 1 was obtained by firing.
  • J c -B characteristics The relationship (J c -B characteristics) between the external magnetic field (B (T)) and the critical current density (J c (A / mm 2 )) at a temperature of 20 K was evaluated for the obtained superconducting wire 10 by the magnetization method. Specifically, the J c -B characteristic is calculated by applying a magnetic field in a direction perpendicular to the longitudinal direction of the superconducting wire to acquire a magnetization curve, and applying an extended bean model to the obtained magnetic hysteresis loop. did.
  • the magnetization of the superconducting wire 10 was performed by a magnetic characteristic measuring apparatus MPMS manufactured by Nippon Quantum Design Co., Ltd.
  • FIG. 6 is a J c -B characteristic at 20 K of # 1 to # 4.
  • the wire # 1 is a wire using an amorphous boron powder having a purity of 99.99% and a volume average particle diameter of 0.05 ⁇ m, which is generally considered to obtain a high J c .
  • # 2 is a wire rod using crystalline boron powder having a volume average particle size of 45 ⁇ m which is easily available, and it can be seen that J c is significantly inferior to # 1 over the entire magnetic field region.
  • # 3 and # 4 use the raw material which grind
  • magnesium diboride having a small amount of voids can be obtained as described later, as compared to when amorphous boron powder is used.
  • the amount of air gaps is small, the current path of the superconducting current is increased, and thus the critical current density in the low magnetic field region is improved.
  • the crystallinity of magnesium diboride becomes good, the critical current density in the high magnetic field region decreases. Since the crystallinity of magnesium diboride is good in # 3 and # 4, it is considered that the rate of decrease in critical current density in the high magnetic field region is larger than that in # 1.
  • the critical current density in the high magnetic field region is lowered by using boron having good crystallinity, but the critical current density in the low magnetic field region is good.
  • the critical current density in the high magnetic field region can be improved by the method of ⁇ Example 2> described later.
  • FIG. 7 shows the J c -B characteristics at 20 K of # 5 to # 7.
  • # 5 was inferior in critical current density in the entire magnetic field region as compared to # 1. This is considered to be because the volume average particle diameter of magnesium diboride was too large.
  • # 6 and # 7 it was found that a higher critical current density can be obtained compared to # 1, especially in the low magnetic field region (0 T to about 3 T). This reason is also considered to be the same as the reason for # 3 and # 4 described above.
  • magnesium diboride powder having a volume average particle size of 10 ⁇ m or less in addition to magnesium powder and boron powder without using expensive and difficult to obtain high purity amorphous boron powder. It has been found that a superconducting wire having a high critical current density can be obtained.
  • FIG. 8 shows the relationship between the compounding ratio of magnesium diboride and critical current density at 20 K and 0 T of # 1, # 3, # 6 and # 8 to # 11.
  • the # 6 and # 8 to # 11 mixed with magnesium diboride had an increased critical current density compared to # 1 and # 3 not mixed with magnesium diboride. From these results, it was found that the addition of magnesium diboride powder to the mixed powder of magnesium and boron improves the critical current density.
  • the critical current density of the obtained superconducting wire can be obtained by using crystalline boron powder having a volume average particle diameter of 2 ⁇ m or less as a raw material, or blending magnesium diboride powder having a volume average particle diameter of 10 ⁇ m or less. It turned out that it can be improved.
  • the wire was analyzed in detail in order to obtain a universal feature for obtaining a high performance magnesium diboride superconducting wire.
  • the inner cylindrical magnesium diboride core was taken out by peeling the iron sheath very carefully. The mass and dimensions of the taken out magnesium diboride core were measured. Then, the core density ⁇ of magnesium diboride was defined as a value obtained by dividing the mass of the magnesium diboride core by the volume.
  • FIG. 9 shows the relationship between the magnesium diboride blending ratio and the core density ⁇ . It can be seen that # 1 using amorphous boron powder has a lower core density ⁇ as compared to other wires using crystalline boron powder. This is because the density of amorphous boron is 1.7 g / cm 3 and the density of crystalline boron is lower in the density of amorphous boron compared to 2.37 g / cm 3. It is thought that.
  • the filling ratio of the precursor of the superconducting wire into the metal sheath is at most about 90%.
  • the density of magnesium is 1.74 g / cm 3 and the density of amorphous boron is 1.7 g / cm 3 . That is, in the case of filling magnesium and amorphous boron in a metal sheath, considering that the filling rate (about 90%) and the volume shrinkage accompanying firing cause the formation of about 34%, diboration obtained after firing
  • the density of the magnesium core is at most about 1.5 g / cm 3 .
  • the density of crystalline boron is greater than the density of amorphous boron.
  • the density of the magnesium diboride core of the superconducting wire obtained using crystalline boron powder as a raw material is 1.5 g / cm 3 or more. That is, by using crystalline boron powder, the density of the magnesium diboride core can be increased as compared with the case of using amorphous boron powder.
  • FIG. 2 (a) schematically shows a longitudinal cross section of # 4
  • FIG. 3 schematically shows a longitudinal cross section of # 11 (comparative example).
  • the void 4 was present in any of the wires.
  • # 4 had the majority of the air gaps 4 extended in the longitudinal direction of the wire, the shape and direction of the air gaps 4 were random at # 11.
  • ⁇ of the air gap 4 in the air gap 4 with a size of 20 ⁇ m or more of # 4, ⁇ of the air gap 4 of 80% or more was smaller than 20 °.
  • # 11 the number of voids having ⁇ of 45 ° or more and the number of voids having ⁇ smaller than 45 ° were substantially the same, or the number of voids having ⁇ of 45 ° or more was slightly larger.
  • the air gap 4 having a ⁇ of greater than 45 ° and a size that can not be ignored compared to the diameter of the magnesium diboride core 1 will locally narrow the current path. Therefore, in addition to the reduction of the critical current density, it is considered to be a factor of the variation of the critical current density. Therefore, the reason why the critical current density of # 11 is low is considered to be due to the presence of a large number of voids 4 having a ⁇ of 45 ° or more.
  • the interface 5 between the magnesium diboride core 1 and the metal sheath 2 was linear except for # 2 and # 5 where disconnection occurred. That is, in FIG. 4 described above, all of x1, x2, and x3 were 10 ⁇ m or less. In other words, the distance between the approximate straight line 6 and the boundary curve 5 was 10 ⁇ m or less. On the other hand, in the cases of # 2 and # 5 where disconnection occurred, the interface 5 between the magnesium diboride core 1 and the metal sheath 2 had a very large undulation. In other words, the distance between the approximate straight line 6 and the boundary curve 5 exceeds 10 ⁇ m.
  • the disconnection of # 2 and # 5 is considered to be caused by such a large swell. That is, it is considered that a thin portion (weak strength) portion locally occurs in the metal sheath 2 and the portion becomes a starting point to cause a break. Therefore, in order to obtain a superconducting wire having a long wire length, it is important that the interface 5 between the magnesium diboride core 1 and the metal sheath 2 be linear.
  • “linear” means that the distance between the approximate straight line 6 and the boundary curve 5 is 10 ⁇ m or less.
  • the sizes of the magnesium diboride 7 and the boron 8 shown in FIG. 5 described above were very coarsened.
  • the size of the magnesium diboride 7 and the boron 8 is too large, the phenomenon of excessive biting into the inner wall of the metal sheath 2 occurs during surface reduction processing. As a result, as described above, a locally thin portion is generated to cause a break. From these things, in order to obtain a long superconducting wire, it is important to reduce the volume average particle size of the magnesium diboride powder and the boron powder.
  • magnesium 9 shown in FIG. 5 was observed in the form extended
  • Example 2 As raw material powders, magnesium powder, boron powder, magnesium diboride powder, and boron carbide (B4C) powder were prepared.
  • the volume average particle sizes of the magnesium powder, the boron powder, the magnesium diboride powder, and the boron carbide powder were 40 ⁇ m, 2 ⁇ m, 10 ⁇ m, and 0.05 ⁇ m, respectively.
  • the magnesium diboride powder comprises a magnesium powder having a volume average particle size of 40 ⁇ m, a boron powder having a volume average particle size of 2 ⁇ m and a boron carbide powder having a volume average particle size of 0.05 ⁇ m in molar ratio 1: 1.9: 0. After mixing at a ratio of .02, it was prepared in the same manner as in Example 1 described above.
  • a magnesium powder, a boron powder, a boron carbide powder, and the obtained magnesium diboride powder were mixed.
  • these compositions were made to have a molar ratio of 1: 1.9: 0.02: 1.
  • a superconducting wire # 6C was obtained in the same manner as in Example 1 described above.
  • boron carbide is added to # 6 described above.
  • the obtained # 6C was evaluated for J c -B characteristics in the same manner as in Example 1.
  • FIG. 10 also shows the results of # 1 and # 6.
  • # 6C of FIG. 10 the addition of boron carbide increased the critical current density particularly in the high magnetic field region (about 1.5 to 5 T).
  • the critical current density higher than # 1 which used the high purity amorphous boron powder was shown in the measured whole magnetic field area
  • magnesium diboride core 1 magnesium diboride core 2 metal sheath 4 void 5 interface (boundary curve) 6 approximate straight line 7 magnesium diboride 8 boron 9 magnesium 10 superconducting wire

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 従来よりも十分に長い線材長を有し、全長に亘って均一に高い臨界電流密度を有する超電導線材等を提供する。 二ホウ化マグネシウムコア1の密度が1.5g/cm以上であり、超電導線材(10)の長手方向の任意の縦断面に存在する空隙(4)において、空隙(4)を形成する閉曲線における最も遠い二点同士を結ぶ線分の長さをLとした場合に、長さLが20μm以上の空隙(4)のうち、前記線分と超電導線材(10)の長手方向の軸との為す角が45°以上の空隙(4)の数が、前記線分と超電導線材(10)の長手方向の軸との為す角が45°よりも小さい空隙(4)の数よりも少なく、前記縦断面における長手方向の任意の100μmの領域において、二ホウ化マグネシウムコア(1)と金属シース(2)との境界曲線について最小二乗法による仮想的な近似直線を引いたときに、当該近似直線と前記境界曲線との距離が10μm以下とする。

Description

超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体
 本発明は、超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体に関する。
 二ホウ化マグネシウム(MgB)は2001年に発見された超電導体である。金属を用いた超電導体の中では、最高の臨界温度(39K)を有する。そのため、二ホウ化マグネシウムを用いることにより、従来、液体ヘリウム温度(4.2K)に冷却して運転していた超電導機器を、液体ヘリウムを用いずにより高温(10K~20K)で運転することが可能になる。特に、核磁気共鳴分析装置(NMR(Nuclear Magnetic Resonance)装置)や医療用MRI装置(医療用磁気共鳴イメージング(Magnetic Resonance Imaging)装置)等のように、時間的変動が極めて小さい磁場を用いる機器への応用が期待されている。これは、二ホウ化マグネシウムを用いた超電導体は、銅酸化物を用いた超電導体等で顕著な磁束クリープの課題が小さくなるためである。
 線状化された超電導体(超電導線材)は、例えば、金属シースに原料粉末を充填した後に減面加工を施して線材化し、焼成を施すことで得られる。そして、このようにして得られた超電導線材は、実用的な臨界電流密度を有している。この製造方法は、パウダー・イン・チューブ法と呼称される。
 パウダー・イン・チューブ法は、充填される原料粉末に応じて、二つの方法に大別される。即ち、原料粉末としてマグネシウム粉末とホウ素粉末とを用い、金属シース内で二ホウ化マグネシウムを焼成により生成する方法は、in-Situ法と呼称される。また、原料粉末として二ホウ化マグネシウムを用い、金属シース内で二ホウ化マグネシウム同士を焼成により強固に結合させる方法は、ex-Situ法と呼称される。
 このような技術に関連して、特許文献1及び2が知られている。
特許4667638号公報 特開2003-031057公報
 二ホウ化マグネシウムを含む超電導線材を用いた超電導磁石において、所定の磁場を発生させるためには、超電導線材の臨界電流密度と線材長との積を高めることが重要である。この積の値が大きければ大きいほど、発生可能な磁場の範囲が広くなる。従って、超電導線材には、十分に長い線材長と、全長に亘って均一に高い臨界電流密度とが要求される。
 本発明は前記課題に鑑みて為されたものであり、その目的は、従来よりも十分に長い線材長を有し、全長に亘って均一に高い臨界電流密度を有する超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体を提供することにある。
 本発明者らは前記課題を解決するべく鋭意検討した結果、超電導線材に含まれる二ホウ化マグネシウムを所定の条件を満たすようにすることで前記課題を解決できることを見出し、本発明を完成させた。
 本発明によれば、従来よりも十分に長い線材長を有し、全長に亘って均一に高い臨界電流密度を有する超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体を提供することができる。
超電導線材10の斜視図である。 (a)は超電導線材10の断面図であり、(b)は図2(a)における空隙の数を説明するための図である。 従来の超電導線材11の断面図である。 二ホウ化マグネシウムコア1と金属シース2との境界を説明する図である。 二ホウ化マグネシウムコア1と金属シース2との境界を説明する図である。 印加磁場と臨界電流密度との関係を示すグラフである。 印加磁場と臨界電流密度との関係を示すグラフである。 二ホウ化マグネシウムの配合比と臨界電流密度との関係を示すグラフである。 二ホウ化マグネシウムの配合比と密度との関係を示すグラフである。 印加磁場と臨界電流密度との関係を示すグラフである。
 以下、図面を適宜参照しながら、本発明を実施するための形態(本実施形態)を説明する。なお、図示の便宜上、各図面における図の拡大率や縮小率は一定ではなく、同じ部材が全ての図面で必ずしも同じ大きさで示していないことがある。また、説明の便宜上、同一図面内で一部の部材を特に拡大又は縮小して示すこともある。
[1.超電導線材]
 本実施形態の超電導線材10は、図1に示すように、二ホウ化マグネシウムが電気的に連続してなる二ホウ化マグネシウムコア1と、二ホウ化マグネシウムコア1を被覆する金属シース2とを有するものである。そして、超電導線材10は、以下の3つの物性を満たす。
 物性1:二ホウ化マグネシウムコア1の密度が1.5g/cm以上である。
 物性2:超電導線材10の長手方向の任意の縦断面に存在する空隙において、当該空隙を形成する閉曲線における最も遠い二点同士を結ぶ線分の長さをLとした場合に、長さLが20μm以上の空隙のうち、前記線分と超電導線材10の長手方向の軸との為す角が45°以上の空隙の数が、前記線分と超電導線材10の長手方向の軸との為す角が45°よりも小さい空隙の数よりも少ない。
 物性3:前記縦断面における長手方向の任意の100μmの領域において、二ホウ化マグネシウムコア1と金属シース2との境界曲線について最小二乗法による仮想的な近似直線を引いたときに、当該近似直線と前記境界曲線との距離が10μm以下である。
 以下、各物性について説明する。
<物性1>
 超電導線材10に含まれる二ホウ化マグネシウムコア1の密度は、1.5g/cm以上になっている。ただし、二ホウ化マグネシウムコア1の密度は、好ましくは1.57g/cm以上であり、また、その上限は、二ホウ化マグネシウムの真密度が2.62g/cmであること、粉末の充填密度が90%を超えると流動性が悪化して線状化して加工が困難になることから、好ましくは2.36g/cm以下である。なお、密度は、線材の金属シースを除去して取り出した二ホウ化マグネシウムコア1に対し、電子天秤により質量を計測し、電子顕微鏡によりその寸法から体積を算出し、質量を体積で除すことによって測定することができる。
 そして、二ホウ化マグネシウムコア1の密度がこの範囲にあることにより、二ホウ化マグネシウムコア1内部の空隙を減らすことができる。これにより、超電導線材1(二ホウ化マグネシウムコア1)において、超電導電流が流れることが可能な経路を増大させ、良好な臨界電流密度を有する超電導線材1とすることができる。
<物性2>
 超電導線材10の長手方向の任意の縦断面(図1に示すA-A線断面)として図2(a)に示すように、二ホウ化マグネシウムコア1内部には空隙4が存在する。なお、この空隙4は、in-Situ法の場合、原料粉末(ホウ素、マグネシウム)を金属シース2内に仮に100%の充填割合となるように充填したとしても、充填後に金属シース2を焼成することにより発生する。即ち、原料粉末を構成する微細なホウ素とマグネシウムとの粒子を焼成すると、二ホウ化マグネシウムが生成するときに少なからず収縮するため、このような空隙4が生じることになる。また、金属シース2内に100%の充填割合で粉末を充填することは実質不可能であるため、ex-Situ法の場合にも空隙4は存在する。
 そして、図2(b)に示すように、空隙4を形成する閉曲線における最も遠い二点同士を結ぶ線分の長さをLとした場合に、Lの長さが20μm以上の空隙のうち、前記線分と超電導線材10の長手方向の軸との為す角θが45°以上の空隙の数が、前記線分と超電導線材10の長手方向の軸との為す角θが45°よりも小さい空隙の数よりも少ないようになっている。
 なお、本明細書においては、空隙4の大きさを、前記の線分の長さLで表すものとする。また、このような縦断面は、後記する実施例に記載の方法により観察することができる。
 例えば図2(b)に示す例においては、θは約20°である。そして、このようなθが45°よりも小さい(45°は含まず)空隙4の数が、θが45°以上の空隙4の数よりも多くなっている。このような条件を満たすことで、超電導線材10(二ホウ化マグネシウム1)の超電導電流が流れることが可能な経路を増大させることができる。即ち、超電導線材における二ホウ化マグネシウムコア1の直径は20μm~500μmの程度であり、Lが20μmを超えてθが45°以上の空隙4の数が多すぎる場合、二ホウ化マグネシウムコア1内の電流の通流路が塞がれる可能性が高まることになる。従って、二ホウ化マグネシウムコア1内に存在するθが45°以上の空隙4の数はできるだけ少ないことが好ましい。なお、空隙4のθの大きさが大きい場合であっても、二ホウ化マグネシウムコア1に対して空隙4の大きさが小さなときには、電流路を塞いでしまう可能性は低い。そのため、本実施形態においては、θの大きさを判断する空隙4の大きさとして、線分の長さLが20μm以上のものにしている。
 また、前記した空隙4のθの大きさはできるだけ小さいことが好ましい。具体的には、境目となるθの大きさとしては、20°よりも小さいことが好ましく、10°よりも小さいことがより好ましい。
 詳細は実施例にて後記するが、例えば本実施形態の超電導線材10に当てはまらない例として、図3に示す超電導線材11(従来の超電導線材)が挙げられる。図3に示す超電導線材11においては、二ホウ化マグネシウムコア1内部に、電流の通流方向に垂直な方向(θが約90°)の空隙4が多数存在している。このような場合には、二ホウ化マグネシウムコア1超電導電流の電流路が塞がれる可能性が高まり、長手方向に均一な臨界電流密度特性を有する良好な超電導線材10が得られない可能性がある。
<物性3>
 超電導線材10は、図4に示すように、前記縦断面における長手方向の任意の100μmの領域において、二ホウ化マグネシウムコア1と金属シース2との境界曲線5について最小二乗法による仮想的な近似直線6を引いたときに、境界曲線5と近似曲線6との距離x1,x2,x3がいずれも10μm以下になっている。これは、境界曲線5と近似直線6との間の距離のうち、最も長い距離が10μm以下になっているとも言える。なお、図示のような境界面5のうねりは、図5に示すような、硬度の大きい二ホウ化マグネシウム7やホウ素8の存在により生じる。
 この距離は、理想的には0μm、即ち、二ホウ化マグネシウムコア1と金属シース2との境界が完全な平滑状態になっていることが好ましい。ただし、現実的にはこのような状態は困難であるため、通常は10μm以下であるが、好ましくは5μm以下、より好ましくは1μm以下とすることが望ましい。
 境界曲線5と近似曲線6との距離がこの範囲にあることにより、二ホウ化マグネシウムコア1と金属シース2との境界が平滑に近い状態になる。そして、この境界を平滑に近い状態にさせることにより、長手方向に均一な臨界電流密度特性を有する良好な超電導線材10が得られる。
 また、前記したように、二ホウ化マグネシウムは、例えばホウ素、炭素、マグネシウム等と比べて硬度が大きい。従って、詳細は後記するが、二ホウ化マグネシウムコア1の原料の一部として二ホウ化マグネシウムを用いる場合、二ホウ化マグネシウム等の原料を金属シース2に充填して延伸すると、二ホウ化マグネシウムと金属シースとが接触する部分で線材が切断されることがある。即ち、二ホウ化マグネシウムは硬度が大きいため、金属シース2に過度に食い込みすぎることがある。その結果、金属シース2の強度が低下し、線材が切断されることになる。そこで、このような現象を回避するには、二ホウ化マグネシウムの粒径を10μm以下とすることが好ましい。このようにすることで、境界曲線5と近似曲線6との距離Lを10μm以下にすることができる。
<その他の物性>
 超電導線材10は、前記の3つの物性を満たしていれば、その他の物性は任意である。例えば、超電導線材10を構成する二ホウ化マグネシウムコア1は、前記のように二ホウ化マグネシウムを含む。ただし、含まれる二ホウ化マグネシウムのホウ素原子サイトの一部が炭素原子により置換されていてもよい。超電導線材10がこのような構成となることにより、結晶に格子ひずみを生じさせることができ、超電導線材10の高磁場領域における臨界電流密度を増加させることができる。
 なお、このような置換は、二ホウ化マグネシウムの調製時に、マグネシウム及びホウ素に加えて炭化ホウ素等の炭素を含む材料(炭素源)を併用して焼成することで生じさせることができる。また、置換量は、炭素を含む材料の使用量や当該材料の種類を適宜変更することで制御可能である。
 また、超電導線材10を構成する金属シース2の材料は特に制限されない。ただし、金属シース2の材料としては、マグネシウム、ホウ素、二ホウ化マグネシウム等と反応しない金属材料を用いることが好ましい。さらに、金属シース2内にこれら以外の材料が用いられる場合には、そのような材料とも反応しない金属材料を用いることが好ましい。また、同様の理由により、これらの材料との反応性が低いか、反応しても臨界電流密度が著しく低下しない材料であっても同様に適用可能である。
 このような材料としては、例えば、鉄(Fe)、ニオブ(Nb)、タンタル(Ta)、チタン(Ti)等が挙げられる。中でも、金属シース2を構成する材料としては、これらが好ましい。これらは1種を単独で用いてもよく、2種以上を任意の比率で用いてもよい。また、これらを成分とする合金が用いられてもよい。
 また、金属シース2の外表面には、銅(Cu)を含む材料によって被覆されていてもよい。このような材料で金属シース2を被覆することで、超電導線材10の加工性を向上させることができる。さらに、銅は、良好な導電性及び良好な伝熱性を有するため、このような銅を含む材料で金属シース2を被覆することにより、超電導材料に特有の熱的な不安定性を改善することができる。なお、銅を含む材料としては、銅単体又は銅化合物(銅合金等)のいずれであってもよい。また、銅を含む材料としては、銅単体と銅化合物とを組み合わせたものであってもよい。
[2.超電導線材の製造方法]
 超電導線材10は、超電導線材10の前駆体を焼成することにより得られる。以下、前駆体の物性及び焼成条件を説明しつつ、超電導線材10の製造方法を説明する。
 前駆体としては、以下のいずれかの前駆体Aや前駆体Bが用いられる。
 即ち、超電導線材10を構成する二ホウ化マグネシウムコア1が、マグネシウムとホウ素とが金属シース1に充填された後に焼成されてなるものであり、前記ホウ素は結晶性であり、前記ホウ素の体積平均粒子径が2μm以下である前駆体Aが挙げられる。
 従来は、マグネシウムとホウ素との混合物を金属シースに充填後に焼成する所謂in-Situ法が用いられていた。しかし、この方法によると、金属シース内でのマグネシウムとホウ素との焼成により反応時に収縮する。その結果、金属シース内での充填密度が低下するため(即ち、空隙が多く存在することがあり)、得られる超電導線材の臨界電流密度が低くなることがあった。
 さらに、従来は、予めマグネシウムとホウ素との混合物を焼成して二ホウ化マグネシウムを得た後、得られた二ホウ化マグネシウムを金属シースに充填する所謂ex-Situ法も用いられていた。しかし、この方法によると、金属シースに充填して延伸しても、二ホウ化マグネシウム同士の電気的な結合が良好なものにならないことがあった。その結果、超電導線材の臨界電流密度が低くなることがあった。また、二ホウ化マグネシウムの硬度が大きいため、粗大な二ホウ化マグネシウムが金属シース内部に存在すると、このような二ホウ化マグネシウムが金属シースに過度に食い込むことがあった。その結果、延伸時に超電導線材を十分な長さまで延伸させることができず、途中で断線することがあった。
 しかしながら、前駆体Aにおいては、体積平均粒子径が2μm以下の結晶性ホウ素を原料の一部として用いている。そのため、in-Situ法によっても、金属シース2内の原料粉末の体積収縮を抑制することができる。これにより、焼成後に生じうる空隙の量を少なくすることができる。そのため、得られる超電導線材10の臨界電流密度が過度に低くなることがない。
 前駆体Aに含まれるホウ素及びマグネシウムの量に特に制限は無い。ただし、生成する二ホウ化マグネシウムの組成に基づき、ホウ素2モルに対してマグネシウムが1モルとなるように金属シース2に充填することが好ましい。
 また、前駆体としては、超電導線材10を構成する二ホウ化マグネシウムコア1が、マグネシウムとホウ素と二ホウ化マグネシウムとが金属シース2に充填された後に焼成されてなるものであり、金属シース2に充填される二ホウ化マグネシウムの体積平均粒子径が10μm以下である前駆体Bも挙げられる。
 前駆体Bにおいては、二ホウ化マグネシウムコア1を形成する原料として、マグネシウム及びホウ素に加え、体積平均粒子径が10μm以下の二ホウ化マグネシウムも併せて用いている。二ホウ化マグネシウムは、焼成されてもそれ以上ほとんど収縮しない。そのため、マグネシウムとホウ素とを原料としてin-Situ法を行うことで生じうる空隙の量を減少させることができる。これにより、金属シース2内の空隙を減らし、充填密度を高めることができる。その結果、超電導線材10の良好な臨界電流密度が得られる。
 なお、本明細書において、「体積平均粒子径」は、以下の式(1)により定義される値である。即ち、粒度分布測定装置(例えば堀場製作所社製LA950)により測定した粒度分布から、算出することができる。測定原理はレーザー回折・散乱法に基づくものである。体積平均粒子径MVは粒径を体積で重みづけした平均値である。即ち、n個の粒子について各粒子の体積をV(i=1、2、3、・・・、n)とし、各粒子の直径をdとすると、体積平均粒子径MVは下記式(1)により算出される。
 MV=(d・V+d・V+…+d・V)/(V+V+…+V)  …(1)
 体積平均粒子径が10μm以下の二ホウ化マグネシウムは、二ホウ化マグネシウムの固形物を粉砕した後、篩等を用いて分級することにより得られる(調製される)。そして、このようにして調製された二ホウ化マグネシウムと、ホウ素とマグネシウムとを混合して混合物を得、当該混合物を金属シース2に充填すればよい。
 前駆体Bに含まれるホウ素及びマグネシウムの量に特に制限は無い。ただし、生成する二ホウ化マグネシウムの組成に基づき、ホウ素2モルに対してマグネシウムが1モルとなるように、金属シース2に充填することが好ましい。また、前駆体Bに含まれる二ホウ化マグネシウムの量も特に制限されない。ただし、前駆体Bを構成する金属シース2に充填される原料粉末において、二ホウ化マグネシウムの含有量は50質量%以上90質量%以下とすることが好ましい。このような組成とすることで、より高い臨界電流密度を有する超電導線材10を得ることができる。なお、原料として用いられる二ホウ化マグネシウムは、例えば、マグネシウムとホウ素とを混合して不活性雰囲気下で焼成することにより得られる。
 また、前駆体Bを構成する金属シース2に充填される二ホウ化マグネシウムは、含まれる二ホウ化マグネシウムのホウ素原子サイトの一部が炭素原子により置換されていてもよい。このような材料を用いることにより、得られる超電導線材の高磁場領域における臨界電流密度を増加させることができる。このような一部が置換された二ホウ化マグネシウムは、前記の[1.超電導線材]において説明した方法及び材料によって調製可能である。また、臨界電流密度が増加する理由も、前記した[1.超電導線材]に記載の理由と同様である。
 前駆体Aや前駆体Bの主な構成は前記の通りであるが、いずれの前駆体Aや前駆体Bにおいても、充填される原料としてその他の任意の成分が任意の量で用いられてもよい。このような成分としては、例えば、炭化ホウ素等の炭素を含む材料(炭素源)が挙げられる。
 また、前駆体Aや前駆体Bにおける金属シース2の構成については特に制限されない。従って、[1.超電導線材]で説明した金属シース2と同様の構成を適用すればよい。即ち、金属シース2が、鉄、ニオブ、タンタル及びチタンからなる群より選ばれる1種以上の金属を含むことが好ましい。また、金属シース2の外表面が、銅を含む材料によって被覆されていることが好ましい。
 以上のような構成を備える前駆体Aや前駆体Bを焼成することで、超電導線材10が得られる。なお、超電導線材10は、前駆体Aや前駆体Bの両方の物性を備える前駆体を焼成しても得られる。焼成に先だって、得られる超電導線材10が所望の太さ及び長さを有するように、前駆体Aや前駆体Bは、その焼成前に減面加工により線材化される。そして、線材化された前駆体Aや前駆体Bに対し、焼成が施されることになる。
 焼成時の条件は特に制限されない。例えば、前駆体Aや前駆体Bを得た後、得られた前駆体Aや前駆体Bを電気炉内に配設し、所定の温度及び時間で焼成を行えばよい。このような温度及び時間としては、例えば800℃で12時間等とすることができる。温度は段階的に変化させてもよく、常時一定となるようにしてもよい。さらに、焼成時の雰囲気も特に制限されない。例えば、アルゴン、窒素等の不活性雰囲気とすることができる。
 以上説明した方法により、超電導線材10を得ることができる。特に、前駆体Bの製造方法をまとめると、以下のようになる。即ち、前駆体Bは、マグネシウムとホウ素とを混合して焼成することにより二ホウ化マグネシウムを得る工程と、得られた二ホウ化マグネシウムの体積平均粒子径が10μm以下になるように調製する工程と、体積平均粒子径が10μm以下の二ホウ化マグネシウムと、ホウ素と、マグネシウムとを混合して混合物を得る工程と、当該混合物を金属シース2に充填した後、減面加工によって線材化する工程と、を少なくとも経ることにより得られる。
[3.超電導線材の用途]
 前駆体Aや前駆体Bを焼成して得られる超電導線材10は、例えば20K程度の高温領域でも、高い臨界電流密度を有する。そのため、このような超電導線材10を用いることにより、核磁気共鳴分析装置、医療用磁気共鳴イメージング診断装置等に適用される超電導磁石をより容易かつ安価に駆動させることができる。即ち、超電導磁石冷却のために高価な液体ヘリウムを用いて極低温まで冷却する必要がなく、冷凍機等によって冷却することができる。その結果、これらの製造コストやランニングコストを削減することができる。
 また、前記した実施形態は、1本の超電導線材を用いる例(単芯線材)を挙げて説明している。ただし、例えば単芯線材の加工をより太い線材径でいったんやめて、そのような複数の単芯線材を金属シースに束ねて挿入後、減面加工することにより、超電導多芯導体とすることができる。さらに、例えば、単芯線材を所定の線材径とし、それらを撚り合わせることによっても超電導多芯導体とすることができる。
 即ち、前記の前駆体Aや前駆体Bの製造方法によって超電導線材の前駆体Aや前駆体Bを得、複数の超電導線材の前駆体Aや前駆体Bを撚り合わせることにより、超電導多芯導体の前駆体を得ることができる。そして、このようにして得られた超電導多芯導体の前駆体を焼成することにより、超電導多芯導体を得ることができる。このような超電導多芯導体は、超電導単芯導体(前記した超電導線材10)と比較して、より高い電流容量を有することができる。
 以下、実施例を挙げて、本実施形態をより具体的に説明する。
<実施例1>
 原料粉末としてマグネシウム粉末、ホウ素粉末及び二ホウ化マグネシウム粉末を用いて超電導線材を作製した。そして、作製した超電導線材の特性を評価した。
 マグネシウム粉末(Mg)としては、体積平均粒子径が40μmのものを用いた。なお、この体積平均粒子径は、前記した方法によって測定した。以下の材料においても同様である。ホウ素粉末(B)及び二ホウ化マグネシウム粉末(MgB)は、作製する超電導線材毎に異なり、以下の表1記載の体積平均粒子径のものを用いた。
 なお、この二ホウ化マグネシウム粉末は、体積平均粒子径40μmのマグネシウム粉末と体積平均粒子径2μmのホウ素粉末とを混合した後、材質SUS304の金属管に充填して両端部を封止し、アルゴン雰囲気下で焼成することにより得た。また、ホウ素粉末及び二ホウ化マグネシウム粉末の微細な粉末は、遊星ボールミル装置による乾式粉砕、ビーズミル装置による湿式粉砕を組み合わせることで得た。
 前記のマグネシウム粉末及びホウ素粉末を混合し、組成物を得た。マグネシウム粉末とホウ素粉末とは、モル比で1:2となるように混合した。そして、この組成物に対し、表1に示す配合比となるように、前記の方法により得られた二ホウ化マグネシウム粉末を適宜配合した。ただし、線材番号11の超電導線材については、この組成物を用いず、前記の方法により得られた二ホウ化マグネシウム粉末のみの組成物とした。なお、表1中、「wt%」は「質量%」を示す。
Figure JPOXMLDOC01-appb-T000001
 前記組成物は、鉄製の金属シースに充填した。この金属シースの外径は18mm、内径は13.5mmである。そして、引抜加工によって直径φ0.5mmまで細線化し、単芯線材が得られた。この細線化の際、#2(線材番号2、以下他の線材についても同様)及び#5は引抜加工の際に断線が繰り返し発生したため、細線化が容易ではなかった。結局、直径φ0.5mmまで細線化したものの、他の線材と比較して線材長は短くなってしまった。他の線材試料に関しては、断線がほとんど発生することなく細線化できた。
 得られた単芯線材から60mmの長さを切り取り、アルゴン雰囲気下、800℃12時間焼成することにより、中心部のフィラメント状の粉末充填部を二ホウ化マグネシウム化した。即ち、焼成により、図1に示す二ホウ化マグネシウムコア1を含む超電導線材10が得られた。
 得られた超電導線材10について、磁化法によって温度20Kにおける外部磁場(B(T))と臨界電流密度(J(A/mm))との関係(J-B特性)を評価した。具体的には、J-B特性は、超電導線材の長手方向に垂直方向に磁場を印加して磁化曲線を取得し、得られた磁気ヒステリシスループに対して拡張Beanモデルを適用することによって算出した。なお、超電導線材10の磁化は、日本カンタム・デザイン社製の磁気特性測定装置MPMSにより行った。
 図6は、#1~#4の20KにおけるJ-B特性である。#1は、一般的に高いJが得られるとされる純度99.99%、体積平均粒子径0.05μmのアモルファスホウ素粉末を用いた線材である。#2は、入手容易な市販の体積平均粒径45μmの結晶性ホウ素粉末を用いた線材であり、全磁場領域に渡って#1と比較してJが大きく劣るのがわかる。
 #3及び#4は、#2に用いた結晶性ホウ素粉末を粉砕して微細化した原料を用いたものである。そして、#3及び#4においては、特に低磁場領域(0T~約2T)において、#1と比較して高い臨界電流密度が得られることがわかった。これは、#3及び#4では、原料として結晶性の高いホウ素を用いていることに起因するものと考えられる。
 即ち、結晶性の良いホウ素を用いた場合、アモルファスホウ素粉末を用いたときと比較して、後記するように、空隙の量が少ない二ホウ化マグネシウムを得られることができる。空隙の量が少ないと、超電導電流の電流路が増加するため、低磁場領域の臨界電流密度は向上する。一方、二ホウ化マグネシウムの結晶性が良いものになると、高磁場領域での臨界電流密度が低下する。#3及び#4では二ホウ化マグネシウムの結晶性が良いため、高磁場領域における臨界電流密度の低下の割合が#1よりも大きくなったと考えられる。換言すれば、#3及び#4では結晶性の良いホウ素を用いることにより高磁場領域での臨界電流密度は低下したが、低磁場領域での臨界電流密度は良好になったと言える。なお、高磁場領域での臨界電流密度は、後記する<実施例2>の方法によって改善させることができる。
 これらのことから、高価で入手困難な高純度のアモルファスホウ素粉末を使用しなくても、結晶性ホウ素粉末を粉砕して微細化して用いれば、十分高い臨界電流密度を有する超電導線材を得られることがわかった。また、低磁場領域においては、むしろアモルファスホウ素粉末を用いるよりも高い臨界電流密度を得られることもわかった。
 図7は、#5~#7の20KにおけるJ-B特性である。なお、比較例としての#1のデータも併記した。#5は、#1と比較して全磁場領域において臨界電流密度が劣っていた。これは、二ホウ化マグネシウムの体積平均粒子径が大きすぎたためと考えられる。しかし、#6及び#7においては、特に低磁場領域(0T~約3T)において、#1と比較して高い臨界電流密度が得られることがわかった。この理由も、前記した#3及び#4についての理由と同様であると考えられる。
 これらのことから、高価で入手困難な高純度のアモルファスホウ素粉末を使用しなくても、マグネシウム粉末、ホウ素粉末に加えて体積平均粒子径が10μm以下の二ホウ化マグネシウム粉末を加えることで、十分高い臨界電流密度を有する超電導線材を得られることがわかった。
 図8は、#1、#3、#6及び#8~#11の20K、0Tにおける二ホウ化マグネシウムの配合比と臨界電流密度との関係である。二ホウ化マグネシウムを混合した#6及び#8~#11は、二ホウ化マグネシウムを混合しない#1及び#3と比較して、臨界電流密度が増加していた。この結果から、マグネシウム及びホウ素の混合粉末に二ホウ化マグネシウム粉末を加えることによって、臨界電流密度が向上することがわかった。
 特に、二ホウ化マグネシウムの配合比が50質量%~90質量%において、#6、#9及び#10に示すように、その向上効果が高いことがわかった。また、図8での評価で用いた超電導線材に関して、それぞれの超電導線材について10本ずつ臨界電流密度を測定した。その結果、#11では臨界電流密度に±40%のバラツキがあったのに対し、それ以外での線材ではバラツキは±5%以下であった。
 以上の結果から、体積平均粒子径2μm以下の結晶性ホウ素粉末を原料としたり、体積平均粒子径10μm以下の二ホウ化マグネシウム粉末を配合したりすることで、得られる超電導線材の臨界電流密度を向上させることができることがわかった。
 次に、高性能な二ホウ化マグネシウム超電導線材を得るための普遍的な特徴を得ることを目的に、前記線材を詳細に分析した。
 #1、#3、#5、#6及び#8~#11において、鉄シースを極めて丁寧に剥がすことで、内部の円柱状の二ホウ化マグネシウムコアを取り出した。取り出した二ホウ化マグネシウムコアの質量と寸法とを測定した。そして、二ホウ化マグネシウムのコア密度ρを、二ホウ化マグネシウムコアの質量を体積で除した値として定義した。
 図9に、二ホウ化マグネシウム配合比とコア密度ρとの関係を示す。アモルファス性のホウ素粉末を用いた#1は、結晶性ホウ素粉末を用いた他の線材と比較して、コア密度ρが低いことがわかる。これは、アモルファス性のホウ素の密度は1.7g/cmであり、結晶性のホウ素の密度は2.37g/cmと比較して、アモルファス性のホウ素の密度の方が低いことに起因すると考えられる。
 また、二ホウ化マグネシウム粉末を配合した#6及び#8~#11においては、更なるコア密度ρの向上が認められた。マグネシウムの密度は1.74g/cm、結晶性ホウ素の密度は2.37g/cmであるのに対し、二ホウ化マグネシウムの密度は2.62g/cmと大きい。そのため、焼成時に体積収縮が起こり、二ホウ化マグネシウムコアに空隙が生じることになる。しかしながら、これらの線材においては、あらかじめ二ホウ化マグネシウムが配合されていたため、この体積収縮量が低減された効果であると考えられる。
 ただし、二ホウ化マグネシウム粉末の粒径が大きい#5については、コア密度ρは、二ホウ化マグネシウム粉末を配合しない#3よりも劣っていた。これは、粗大な二ホウ化マグネシウムが粉末の充填密度を低下させる要因となったと考えられる。
 このように、体積平均粒子径2μm以下の結晶性ホウ素粉末を原料としたり、体積平均粒子径10μm以下の二ホウ化マグネシウム粉末を配合したりすることが、超電導線材の臨界電流密度の改善につながった理由は、以下のように考えられる。即ち、コア密度ρが高められたことにより電流経路が増加し、その結果、臨界電流密度が向上したためであると考えられる。
 原料粉末としてアモルファス性のホウ素粉末を用い、二ホウ化マグネシウム粉末を用いない場合、超電導線材の前駆体における金属シース内への充填率は最大でも90%程度である。そして、マグネシウムの密度は1.74g/cmであり、アモルファス性のホウ素の密度は1.7g/cmである。即ち、金属シース内にマグネシウム及びアモルファス性のホウ素を充填する場合、充填率(90%程度)及び焼成に伴う体積収縮により34%程度の空隙が生じることを考慮すると、焼成後に得られる二ホウ化マグネシウムコアの密度は最大でも1.5g/cm程度である。結晶性のホウ素の密度はアモルファス性のホウ素の密度よりも大きい。従って、結晶性のホウ素粉末を原料として得られる超電導線材の二ホウ化マグネシウムコアの密度は1.5g/cm以上となる。即ち、結晶性ホウ素粉末を用いることにより、アモルファス性ホウ素粉末を用いた場合と比較して、二ホウ化マグネシウムコアの密度を高めることができる。
 また、#11は比較的高いコア密度ρにも関わらず、臨界電流密度が低く、そのバラツキも大きかった。この理由を明らかにするため、#4及び#11の縦断面を走査式電子顕微鏡(SEM)で観察した。その結果を模式的に示した様子が、前記した図2(a)及び図3である。即ち、図2(a)は#4の縦断面を模式的に示すもの、図3は#11(比較例)の縦断面を模式的に示すものである。
 なお、SEMによって縦断面を観察するにあたっては、線材を樹脂に埋め込んだ後、乾式研磨によって線材の通流方向に切断して縦断面を得、得られた縦断面をイオンミリングによって更に平滑化した状態で観察した。
 図2及び図3に示すように、いずれの線材においても空隙4が存在した。しかし、#4は、空隙4の大多数が線材長手方向に伸びていたのに対して、#11では空隙4の形状も向きもランダムであった。また、空隙4の大きさに関し、#4の20μm以上の大きさの空隙4において、80%以上の空隙4のθは20°より小さかった。一方で、#11では、θが45°以上の空隙の個数とθが45°より小さい空隙の個数とはほぼ同じ、或いは、θが45°以上の空隙の個数の方がやや多かった。
 θが45°より大きく、二ホウ化マグネシウムコア1の直径と比較して無視できない大きさの空隙4は、電流経路を局所的に狭めることになる。そのため、臨界電流密度の低下に加えて、臨界電流密度のバラツキの要因となると考えられる。従って、#11の臨界電流密度が低かった理由は、θが45°以上の空隙4が多数存在することに起因すると考えられる。
 また、断線が発生した#2及び#5以外では、二ホウ化マグネシウムコア1と金属シース2との境界面5は直線的であった。即ち、前記した図4において、x1、x2及びx3のいずれも10μm以下であった。換言すれば、近似直線6と境界曲線5との距離が10μm以下であった。一方、断線が発生した#2及び#5は、二ホウ化マグネシウムコア1と金属シース2との境界面5は、極めてうねりの大きなものであった。換言すれば、近似直線6と境界曲線5との距離が10μmを超えていた。
 #2及び#5の断線は、このような大きなうねりに起因するものであると考えられる。即ち、金属シース2に局所的に厚みの薄い(強度の弱い)部分が発生し、その部分が起点となって断線が発生したものと考えられる。そこで、線材長の長い超電導線材を得るためには、二ホウ化マグネシウムコア1と金属シース2との境界面5が直線的になるようにすることが重要である。ここでいう「直線的」とは、近似直線6と境界曲線5との距離が10μm以下にあることである。
 さらに、断線した#2及び#5においては、前記した図5に示す二ホウ化マグネシウム7及びホウ素8の大きさが非常に粗大化したものであった。このように、二ホウ化マグネシウム7及びホウ素8の大きさが大き過ぎると、減面加工時、金属シース2の内壁に過度に食い込む現象が生じる。その結果、前記のように局所的に厚みの薄い部分が発生し、断線が発生することになる。これらのことから、線材長の長い超電導線材を得るためには、二ホウ化マグネシウム粉末とホウ素粉末の体積平均粒子径を小さくすることが重要である。
 なお、図5に示すマグネシウム9は、線材長手方向に引き延ばされた形態で観察された。このことから、マグネシウム9は、二ホウ化マグネシウム7及びホウ素8と比較して減面加工時に容易に塑性変形することがわかる。従って、マグネシウム9は粗大化されていたとしても長尺化を妨げる原因にはならないものと考えられる。
<実施例2>
 原料粉末としては、マグネシウム粉末、ホウ素粉末、二ホウ化マグネシウム粉末、炭化ホウ素(B4C)粉末を準備した。マグネシウム粉末、ホウ素粉末、二ホウ化マグネシウム粉末、炭化ホウ素粉末の体積平均粒子径はそれぞれ、40μm、2μm、10μm、0.05μmとした。なお、二ホウ化マグネシウム粉末は、体積平均粒径40μmのマグネシウム粉末と体積平均粒径2μmのホウ素粉末と体積平均粒子径0.05μmの炭化ホウ素粉末とをモル比で1:1.9:0.02の割合で混合した後、前記した実施例1と同様の方法で作製した。
 そして、マグネシウム粉末、ホウ素粉末、炭化ホウ素粉末、得られた二ホウ化マグネシウム粉末を混合した。混合粉末中、これらの組成は、モル比として1:1.9:0.02:1とした。この混合粉末を用いて、前記した実施例1と同様の方法で超電導線材#6Cを得た。なお、#6Cは、前記の#6に炭化ホウ素を添加したものとなる。得られた#6Cについて、実施例1と同様の方法により、J-B特性を評価した。
 その結果を図10に示す。なお、図10には、#1及び#6の結果も併せて示している。図10の#6Cに示されるように、炭化ホウ素の添加によって、特に高磁場領域(約1.5T~5T程度)の臨界電流密度が増加していた。そして、測定した全磁場領域において、高純度のアモルファスホウ素粉末を用いた#1よりも高い臨界電流密度を示した。
 この結果は、二ホウ化マグネシウムのホウ素原子サイトの一部が炭素原子で置換されることで、格子ひずみが生じるためであると考えられる。そして、このような格子ひずみが生じることで、コヒーレンス長が低下し、粒界におけるピニング力が強化されたためであると考えられる。このように、原料粉末に対し炭化ホウ素等の炭素を含む材料を添加することで、高磁場領域の臨界電流密度を改善することができることがわかった。即ち、より広い範囲の磁場領域で高い臨界電流密度を有する超電導線材が得られることがわかった。
1 二ホウ化マグネシウムコア
2 金属シース
4 空隙
5 境界面(境界曲線)
6 近似直線
7 二ホウ化マグネシウム
8 ホウ素
9 マグネシウム
10 超電導線材

Claims (13)

  1.  二ホウ化マグネシウムが電気的に連続してなる二ホウ化マグネシウムコアと、前記二ホウ化マグネシウムコアを被覆する金属シースとを有する超電導線材であって、
     前記二ホウ化マグネシウムコアの密度が1.5g/cm以上であり、
     前記超電導線材の長手方向の任意の縦断面に存在する空隙において、当該空隙を形成する閉曲線における最も遠い二点同士を結ぶ線分の長さをLとした場合に、長さLが20μm以上の空隙のうち、前記線分と前記超電導線材の長手方向の軸との為す角が45°以上の空隙の数が、前記線分と前記超電導線材の長手方向の軸との為す角が45°よりも小さい空隙の数よりも少なく、
     前記縦断面における長手方向の任意の100μmの領域において、前記二ホウ化マグネシウムコアと前記金属シースとの境界曲線について最小二乗法による仮想的な近似直線を引いたときに、当該近似直線と前記境界曲線との距離が10μm以下である
    ことを特徴とする、超電導線材。
  2.  請求の範囲第1項に記載の超電導線材において、
     二ホウ化マグネシウムのホウ素原子サイトの一部が炭素原子により置換されている
    ことを特徴とする、超電導線材。
  3.  請求の範囲第1項又は第2項に記載の超電導線材において、
     前記金属シースが、鉄、ニオブ、タンタル及びチタンからなる群より選ばれる1種以上の金属を含む
    ことを特徴とする、超電導線材。
  4.  請求の範囲第1項又は第2項に記載の超電導線材において、
     前記金属シースの外表面が、銅を含む材料によって被覆されている
    ことを特徴とする、超電導線材。
  5.  二ホウ化マグネシウムが電気的に連続してなる二ホウ化マグネシウムコアと、前記二ホウ化マグネシウムコアを被覆する金属シースとを有する二ホウ化マグネシウム超電導線材の前駆体であって、
     前記二ホウ化マグネシウムコアは、マグネシウムとホウ素とが前記金属シースに充填された後に焼成されてなり
     前記ホウ素は結晶性であり、
     前記ホウ素の体積平均粒子径が2μm以下である
    ことを特徴とする、超電導線材の前駆体。
  6.  二ホウ化マグネシウムが電気的に連続してなる二ホウ化マグネシウムコアと、前記二ホウ化マグネシウムコアを被覆する金属シースとを有する二ホウ化マグネシウム超電導線材の前駆体であって、
     前記二ホウ化マグネシウムコアは、マグネシウムとホウ素と二ホウ化マグネシウムとが前記金属シースに充填された後に焼成されてなり
     前記金属シースに充填される二ホウ化マグネシウムの体積平均粒子径が10μm以下である
    ことを特徴とする、超電導線材の前駆体。
  7.  請求の範囲第6項に記載の超電導線材の前駆体において、
     前記金属シースに充填される原料中、二ホウ化マグネシウムの含有量は、50質量%以上90質量%以下である
    ことを特徴とする、超電導線材の前駆体。
  8.  請求の範囲第6項又は第7項に記載の超電導線材の前駆体において、
     前記金属シースに充填される二ホウ化マグネシウムのホウ素原子サイトの一部が、炭素原子により置換されている
    ことを特徴とする、超電導線材の前駆体。
  9.  請求の範囲第6項又は第7項に記載の超電導線材の前駆体において、
     前記金属シースに、炭素を含む材料が充填される
    ことを特徴とする、超電導線材の前駆体。
  10.  請求の範囲第6項又は第7項に記載の超電導線材の前駆体において、
     前記金属シースが、鉄、ニオブ、タンタル及びチタンからなる群より選ばれる1種以上の金属を含む
    ことを特徴とする、超電導線材の前駆体。
  11.  請求の範囲第6項又は第7項に記載の超電導線材の前駆体において、
     前記金属シースの外表面が、銅を含む材料によって被覆されている
    ことを特徴とする、超電導線材の前駆体。
  12.  二ホウ化マグネシウムが電気的に連続してなる二ホウ化マグネシウムコアと、前記二ホウ化マグネシウムコアを被覆する金属シースとを有する二ホウ化マグネシウム超電導線材の前駆体を製造する方法であって、
     マグネシウムとホウ素とを混合して焼成することにより二ホウ化マグネシウムを得る工程と、
     得られた二ホウ化マグネシウムの体積平均粒子径が10μm以下になるように調製する工程と、
     体積平均粒子径が10μm以下の二ホウ化マグネシウムと、ホウ素と、マグネシウムとを混合して混合物を得る工程と、
     該混合物を前記金属シースに充填した後、減面加工によって線材化する工程と、
    を有する
    ことを特徴とする、超電導線材の前駆体の製造方法。
  13.  請求の範囲第12項に記載の超電導線材の前駆体の製造方法によって超電導線材の前駆体を得、得られた超電導線材の前駆体の複数を撚り合わせてなる
    ことを特徴とする、超電導多芯導体の前駆体。
PCT/JP2013/062185 2012-04-26 2013-04-25 超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体 WO2013161930A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/396,832 US20150111755A1 (en) 2012-04-26 2013-04-25 Superconducting wire, superconducting wire precursor body and fabrication method thereof, and superconducting multi-core conductor precursor body
EP13782254.0A EP2843671A4 (en) 2012-04-26 2013-04-25 SUPERCONDITIONING WIRE, PRECURSOR BODY FOR A SUPERCONDUCTIVE WIRE, MANUFACTURING METHOD THEREFORE AND PRECURSOR BODY FOR A SUPERCONDUCTIVE MULTI-LEADER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012101572A JP2013229237A (ja) 2012-04-26 2012-04-26 超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体
JP2012-101572 2012-04-26

Publications (1)

Publication Number Publication Date
WO2013161930A1 true WO2013161930A1 (ja) 2013-10-31

Family

ID=49483234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062185 WO2013161930A1 (ja) 2012-04-26 2013-04-25 超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体

Country Status (4)

Country Link
US (1) US20150111755A1 (ja)
EP (1) EP2843671A4 (ja)
JP (1) JP2013229237A (ja)
WO (1) WO2013161930A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130672A1 (ja) * 2016-01-28 2017-08-03 株式会社日立製作所 超伝導線材、超電導線材の前駆体、超電導線材の製造方法、超電導コイル、mri及びnmr

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6105088B2 (ja) * 2013-12-10 2017-03-29 株式会社日立製作所 MgB2超電導線材およびその製造方法
US11127514B2 (en) 2015-07-24 2021-09-21 Hitachi, Ltd. Superconducting wire, superconducting coil, MRI and NMR
JP6723179B2 (ja) * 2017-03-03 2020-07-15 株式会社日立製作所 超伝導体の製造方法
EP3503230A1 (en) * 2017-12-21 2019-06-26 Abant Izzet Baysal Universitesi Magnesium diboride superconducting wire with magnesium coated iron sheath and method of obtaining

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031057A (ja) 2001-07-17 2003-01-31 National Institute For Materials Science MgB2超伝導線材の製造方法
JP2005310600A (ja) * 2004-04-22 2005-11-04 Tokyo Wire Works Ltd MgB2線材の製造方法
JP2006127898A (ja) * 2004-10-28 2006-05-18 Sumitomo Electric Ind Ltd 焼結体、焼結体の製造方法、超電導線材、超電導機器、および超電導線材の製造方法
JP2006236939A (ja) * 2005-02-28 2006-09-07 Sumitomo Electric Ind Ltd ビスマス系酸化物超電導線材、その製造方法および超電導機器
JP2006269277A (ja) * 2005-03-24 2006-10-05 Kobe Steel Ltd 粉末法Nb3Sn超電導線材の製造方法
JP2007059261A (ja) * 2005-08-25 2007-03-08 National Institute For Materials Science MgB2超電導体とその線材並びにそれらの製造方法
JP2009134969A (ja) * 2007-11-30 2009-06-18 Hitachi Ltd MgB2超電導線材の製造方法
JP4667638B2 (ja) 2001-05-09 2011-04-13 古河電気工業株式会社 MgB2超電導線の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018954B2 (en) * 2001-03-09 2006-03-28 American Superconductor Corporation Processing of magnesium-boride superconductors
ITMI20010978A1 (it) * 2001-05-11 2002-11-11 Edison Spa Metodo per la preparazione di corpi massivi superconduttori di mgb2 altamente densificati relativi manufatti solidi e loro uso
JP4481584B2 (ja) * 2003-04-11 2010-06-16 株式会社日立製作所 複合シースMgB2超電導線材およびその製造方法
JPWO2005104144A1 (ja) * 2004-04-22 2008-03-13 株式会社東京ワイヤー製作所 臨界電流特性に優れたMgB2超電導線材の製造方法
GB0706919D0 (en) * 2007-04-10 2007-05-16 Cambridge Entpr Ltd Composite electrical conductors and method for their manufacture
IT1398934B1 (it) * 2009-06-18 2013-03-28 Edison Spa Elemento superconduttivo e relativo procedimento di preparazione
JP5519430B2 (ja) * 2010-06-30 2014-06-11 株式会社日立製作所 MgB2超電導線材の製造方法
JP2013152784A (ja) * 2012-01-24 2013-08-08 Hitachi Ltd MgB2超電導線材の前駆体及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667638B2 (ja) 2001-05-09 2011-04-13 古河電気工業株式会社 MgB2超電導線の製造方法
JP2003031057A (ja) 2001-07-17 2003-01-31 National Institute For Materials Science MgB2超伝導線材の製造方法
JP2005310600A (ja) * 2004-04-22 2005-11-04 Tokyo Wire Works Ltd MgB2線材の製造方法
JP2006127898A (ja) * 2004-10-28 2006-05-18 Sumitomo Electric Ind Ltd 焼結体、焼結体の製造方法、超電導線材、超電導機器、および超電導線材の製造方法
JP2006236939A (ja) * 2005-02-28 2006-09-07 Sumitomo Electric Ind Ltd ビスマス系酸化物超電導線材、その製造方法および超電導機器
JP2006269277A (ja) * 2005-03-24 2006-10-05 Kobe Steel Ltd 粉末法Nb3Sn超電導線材の製造方法
JP2007059261A (ja) * 2005-08-25 2007-03-08 National Institute For Materials Science MgB2超電導体とその線材並びにそれらの製造方法
JP2009134969A (ja) * 2007-11-30 2009-06-18 Hitachi Ltd MgB2超電導線材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2843671A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130672A1 (ja) * 2016-01-28 2017-08-03 株式会社日立製作所 超伝導線材、超電導線材の前駆体、超電導線材の製造方法、超電導コイル、mri及びnmr
JPWO2017130672A1 (ja) * 2016-01-28 2018-10-25 株式会社日立製作所 超伝導線材、超電導線材の前駆体、超電導線材の製造方法、超電導コイル、mri及びnmr

Also Published As

Publication number Publication date
US20150111755A1 (en) 2015-04-23
EP2843671A1 (en) 2015-03-04
EP2843671A4 (en) 2015-12-16
JP2013229237A (ja) 2013-11-07

Similar Documents

Publication Publication Date Title
WO2013161930A1 (ja) 超電導線材、超電導線材の前駆体及びその製造方法、並びに、超電導多芯導体の前駆体
Poudyal et al. Processing of MnBi bulk magnets with enhanced energy product
Ma et al. Low-temperature synthesis of MgB2 superconductors
US9224937B2 (en) Precursor of MgB2 superconducting wire, and method for producing the same
WO2007049623A1 (ja) MgB2超伝導線材の製造方法
Kario et al. Critical current density enhancement in strongly reactive ex situ MgB2 bulk and tapes prepared by high energy milling
JP5520260B2 (ja) 超電導線材及びその製造方法
US11858853B2 (en) Method for making a superconducting YBCO wire or tape
JPWO2015087387A1 (ja) MgB2超電導線材およびその製造方法
JP4055375B2 (ja) 超電導線材とその作製方法及びそれを用いた超電導マグネット
JP5889116B2 (ja) MgB2超電導線材およびその製造方法
EP1806328A1 (en) Sintered body, superconducting device, sintered body manufacturing method, superconducting wiring rod and superconducting wiring rod manufacturing method
Zheng et al. Cost effective synthesis of p-type Zn-doped MgAgSb by planetary ball-milling with enhanced thermoelectric properties
EP1750287A1 (en) METHOD FOR PRODUCING Nb<sb>3</sb>Sn SUPERCONDUCTIVE WIRE BY POWDER PROCESS
US11694824B2 (en) MGB2 superconducting wire material and manufacturing method therefor
JP5356132B2 (ja) 超電導線材
Imaduddin et al. The doping effects of SiC and carbon nanotubes on the manufacture of superconducting monofilament MgB2 Wires
JP6941599B2 (ja) MgB2超伝導線材の製造方法,超伝導コイル及びMRI
JP2005310600A (ja) MgB2線材の製造方法
Chen et al. Ag Doping Effect on the Superconductivity of Nb 3 Al Prepared Using High-Energy Ball Milling Method
EP3503230A1 (en) Magnesium diboride superconducting wire with magnesium coated iron sheath and method of obtaining
Hässler MgB2 wires by in situ technique, mechanical alloying
Seeber Processing of Low T c Conductors: The Compounds PbMo6S8 and SnMo6S8
Melone et al. Texture characterization of powder-in-tube Ti/MgB2superconducting cables
Sobrero et al. Multifilamentary MgB _ 2 2 Wires Prepared by an In Situ Powder-in-Tube Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782254

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013782254

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013782254

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14396832

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE