WO2013161756A1 - 感光性樹脂組成物、感光性フィルム、永久マスクレジスト及び永久マスクレジストの製造方法 - Google Patents

感光性樹脂組成物、感光性フィルム、永久マスクレジスト及び永久マスクレジストの製造方法 Download PDF

Info

Publication number
WO2013161756A1
WO2013161756A1 PCT/JP2013/061774 JP2013061774W WO2013161756A1 WO 2013161756 A1 WO2013161756 A1 WO 2013161756A1 JP 2013061774 W JP2013061774 W JP 2013061774W WO 2013161756 A1 WO2013161756 A1 WO 2013161756A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
less
photosensitive
particle size
Prior art date
Application number
PCT/JP2013/061774
Other languages
English (en)
French (fr)
Inventor
名越 俊昌
田中 恵生
蔵渕 和彦
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2014512553A priority Critical patent/JP6210060B2/ja
Publication of WO2013161756A1 publication Critical patent/WO2013161756A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Definitions

  • the present invention relates to a photosensitive resin composition, a photosensitive film, a permanent mask resist, and a method for producing a permanent mask resist.
  • the present invention relates to a photosensitive resin composition suitable as a permanent mask resist used for printed wiring boards, semiconductor package substrates, and flexible wiring boards.
  • a permanent mask resist used in a high-performance semiconductor package mounted on a mobile device such as a smartphone, a tablet terminal, and a notebook personal computer is required to have a minute round hole resolution with the flip chip.
  • the opening diameter is decreasing year by year.
  • the semiconductor package substrate is becoming thinner as a whole, and warpage caused by a difference in thermal expansion coefficient between the chip and the substrate is a serious problem. Therefore, the material used is strongly required to have a thermal expansion coefficient close to that of the chip (3 ⁇ 10 ⁇ 6 / ° C.), and the permanent mask resist used for the outermost layer of the semiconductor package substrate is also the same. Therefore, low thermal expansion is required.
  • low thermal expansion is performed by increasing the filling of inorganic filler, increasing the crosslinking of the resin, and increasing the rigidity of the resin.
  • Patent Document 1 a photosensitive resin composition containing a silica filler has also been proposed in order to improve reflow resistance.
  • the inorganic filler is highly filled for low thermal expansion, the photosensitivity tends to be lowered.
  • the refractive index of the resin and the refractive index of the inorganic filler are different, light scattering increases, and it may not be possible to sufficiently meet the demand for further fine resolution.
  • high cross-linking and rigid skeletonization of the resin tend to reduce crack resistance.
  • an object of the present invention is to provide a photosensitive resin composition that not only has excellent resolution, but also has a low thermal expansion coefficient and excellent characteristics in crack resistance.
  • the present invention includes (A) a resin having an ethylenically unsaturated group and a carboxyl group, (B) a photopolymerization initiator, (C) an epoxy resin, (D) an inorganic filler, and (E) an organic filler having an amino group. And a photosensitive resin composition satisfying the following conditions (I) to (IV).
  • (I) (D) contains (d-1) a first inorganic filler and (d-2) a second inorganic filler.
  • (II) (d-1) has an average particle size of 100 nm to 500 nm, a maximum particle size of 2 ⁇ m or less, and a refractive index of 1.5 to 1.8.
  • (III) (d-2) has an average particle diameter of 5 nm to 200 nm and a refractive index of 1.2 or more and less than 1.5.
  • (IV) (E) contains an organic filler having an average particle size of 500 nm or less and a maximum particle size of 2 ⁇ m or less.
  • the above-mentioned photosensitive resin composition can be alkali-developed, has excellent resolution, has a low thermal expansion coefficient, and exhibits high crack resistance. It is considered that the combination of the two kinds of inorganic fillers and organic fillers as described above gives a low thermal expansion coefficient at the same time as high resolution for opening minute round holes. Moreover, by including the organic filler as described above, characteristics such as crack resistance, heat resistance, and plating chemical solution resistance can be greatly improved while maintaining high resolution.
  • an elastomer (rubber-modified polyamide) having a polyamide structure (F) adhesion to the base metal is improved, and crack resistance and the like are greatly improved. It is considered that N atoms contained in the elastomer greatly contribute to adhesion. Further, it is considered that the elastomer (F) having a polyamide structure also functions as an elastomer for forming a phase separation layer in the resin, and also exhibits a role of relaxing stress applied to the resin.
  • surface treatment is generally performed to make the copper surface uneven, but recently, the unevenness is reduced to form fine wiring and reduce transmission loss. There is a tendency. Therefore, improvement in the adhesion between the permanent mask resist and the copper wiring is required. Even in such a case, it is effective to contain (F) an elastomer having a polyamide structure.
  • (B) it is desirable to use a plurality of photopolymerization initiators in combination.
  • the present photopolymerization initiator may be used in terms of sensitivity and resolution. The effects of the invention can be further extracted.
  • the exposure method is shifting to the laser direct exposure method, and higher sensitivity is required for the solder resist than the conventional method in which the entire surface is exposed at once.
  • the combination of initiators as described above is particularly effective.
  • a photosensitive resin composition excellent in resolution of fine round holes, having a low thermal expansion coefficient and excellent in crack resistance, a photosensitive film using the same, a permanent mask resist, and a method for producing the same. can do.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acrylate means acrylate or methacrylate
  • (meth) acryloyl group means acryloyl group or methacryloyl group
  • the (meth) acryloxy group means an acryloxy group or a methacryloxy group.
  • EO-modified means a compound having a polyoxyethylene chain.
  • the photosensitive resin composition according to the present embodiment includes (A) a resin having an ethylenically unsaturated group and a carboxyl group, (B) a photopolymerization initiator, (C) an epoxy resin, (D) an inorganic filler, and ( E) An organic filler having an amino group is contained.
  • the resin having an ethylenically unsaturated group and a carboxyl group may be any resin having an ethylenically unsaturated group and a carboxyl group.
  • component (A) may be any resin having an ethylenically unsaturated group and a carboxyl group.
  • a reaction product obtained by adding (a3) a saturated or unsaturated polybasic acid anhydride to an esterified product of (a1) an epoxy resin and (a2) an unsaturated monocarboxylic acid can be used.
  • the (a1) epoxy resin is not particularly limited, and examples thereof include bisphenol type epoxy resin, novolac type epoxy resin, biphenyl type epoxy resin, and polyfunctional epoxy resin.
  • bisphenol type epoxy resin a resin obtained by reacting bisphenol A, bisphenol F, bisphenol S and the like with epichlorohydrin is preferable.
  • novolak type epoxy resin a resin obtained by reacting novolak resin obtained by reacting phenol, cresol, halogenated phenol or alkylphenol with formaldehyde in the presence of an acidic catalyst with epichlorohydrin is preferable.
  • epoxy resins include salicylaldehyde-phenol type or cresol type epoxy resins (EPPN502H, FAE2500, etc., manufactured by Nippon Kayaku Co., Ltd.), DER-330, 337, 361, manufactured by Dow Chemical Co., and Celoxide 2021, manufactured by Daicel Chemical Industries, Ltd. Further, TETRAD-X, C manufactured by Mitsubishi Gas Chemical Company, EPB-13, 27 manufactured by Nippon Soda Co., Ltd., etc. can be used.
  • (A2) As unsaturated monocarboxylic acid, (meth) acrylic acid, crotonic acid, cinnamic acid, saturated or unsaturated polybasic acid anhydride and (meth) acrylate compound having one hydroxyl group in one molecule Half-ester, reaction product, half-ester, saturated or unsaturated dibasic acid, reaction product of saturated or unsaturated dibasic acid and (meth) acrylate compound having one hydroxyl group in one molecule And a reaction product of an unsaturated monoglycidyl compound.
  • This half ester compound or reactant includes phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, maleic acid, succinic acid, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, tris (hydroxyethyl)
  • Examples include reactants obtained by reacting isocyanurate di (meth) acrylate, glycidyl (meth) acrylate and the like in an equimolar ratio by a conventional method.
  • These (a2) unsaturated monocarboxylic acids can be used alone or in combination of two or more. Among these, acrylic acid is preferable.
  • Saturated or unsaturated polybasic acid anhydrides include succinic anhydride, maleic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methyltetrahydrophthalic anhydride, ethyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyl Examples include hexahydrophthalic anhydride, ethylhexahydrophthalic anhydride, itaconic anhydride, trimellitic anhydride, and the like.
  • Resins having an ethylenically unsaturated group and a carboxyl group include CCR-1218H, CCR-1159H, CCR-1222H, PCR-1050, TCR-1335H, ZAR-1035, ZAR-2001H, ZFR-1185, and ZCR -1569H (Nippon Kayaku Co., Ltd., trade name), UE-EXP-2810PM, UE-EXP-2827, EXP-3073, EXP-3133 (above, DIC, trade name) are commercially available It is available.
  • a polyurethane compound obtained by reacting an epoxy acrylate compound having two or more hydroxyl groups and an ethylenically unsaturated group, a diisocyanate compound, and a diol compound having a carboxyl group may be used.
  • Such polyurethane compounds are commercially available, for example, as UXE-3011, UXE-3012, UXE-3024 (above, trade name, manufactured by Nippon Kayaku Co., Ltd.).
  • a component is used individually or in combination of 2 or more types.
  • the refractive index of the component (A) varies depending on the structure of the resin used, but is 1.4 to 1.7 when the structure described above is used. Among these, the refractive index of many resins is around 1.57 which is the refractive index of bisphenol A type epoxy resin.
  • the photosensitive resin composition of the present invention exhibits the effects of the present invention most when the component (A) having a refractive index of 1.5 to 1.6 is used.
  • the refractive index can be measured with a commercially available apparatus as shown below. For example, the refractive index can be simply measured using a refractometer Abbemat series (manufactured by Anton refrigerator) or a precision refractometer KPR series (manufactured by Shimadzu Corporation).
  • the acid value of the component (A) is preferably 20 to 180 mgKOH / g, more preferably 30 to 150 mgKOH / g, and particularly preferably 40 to 120 mgKOH / g.
  • the weight average molecular weight of the component (A) is preferably 3000 to 30000, more preferably 5000 to 20000, and particularly preferably 7000 to 15000 from the viewpoint of coating properties.
  • a weight average molecular weight (Mw) can be calculated
  • GPC gel permeation chromatography
  • component (B) As the photopolymerization initiator (hereinafter sometimes referred to as “component (B)”), a compound that generates free radicals upon irradiation with active energy rays can be used.
  • the component (B) include benzophenone, N, N, N ′, N′-tetraalkyl-4,4′-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -Butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1,4,4'-bis (dimethylamino) benzophenone (Michler's ketone), 4,4'-bis ( Aromatic ketones such as diethylamino) benzophenone and 4-methoxy-4′-dimethylaminobenzophenone; quinones such as alkylanthraquinone and phenanthrenequinone; benzo
  • an aromatic ketone a compound having an oxime ester, a thioxanthone compound, or an acylphosphine oxide compound is used. It is preferable to use an aromatic ketone or a thioxanthone compound. Moreover, it is preferable to use together the compound which has oxime ester, and an aromatic ketone, and it is more preferable to use together an aromatic ketone and a thioxanthone compound.
  • 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1 is most preferable.
  • 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1 is commercially available as IRGACURE 907 (BASF Corporation).
  • Examples of the compound having the oxime ester include 2- (acetyloxyiminomethyl) thioxanthen-9-one, 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)] , Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) and the like.
  • ethanone 1- [ Most preferred is 9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime). This is commercially available as IRGACURE OXE 02 (BASF Corporation).
  • 2,4-diethylthioxanthone is most preferable. This is commercially available as KAYACURE-DETX-S (Nippon Kayaku Co., Ltd.).
  • the exposure method is shifting to the laser direct exposure method.
  • High sensitivity is required for the permanent mask resist (solder resist) as compared with the conventional method in which the entire surface is exposed, and in such a case, the combination of the photopolymerization initiators is effective.
  • a sensitizer can be used in combination with the component (B) as necessary.
  • Known sensitizers can be used.
  • Epoxy resins include bisphenol A type epoxy resins such as bisphenol A diglycidyl ether, bisphenol F type epoxy resins such as bisphenol F diglycidyl ether, and bisphenol.
  • Bisphenol S type epoxy resin such as S diglycidyl ether, biphenol type epoxy resin such as biphenol diglycidyl ether, bixylenol type epoxy resin such as bixylenol diglycidyl ether, hydrogenated bisphenol A type epoxy such as hydrogenated bisphenol A glycidyl ether
  • examples thereof include resins, dibasic acid-modified diglycidyl ether type epoxy resins, biphenyl aralkyl type epoxy resins, and tris (2,3-epoxypropyl) isocyanurate. These are used alone or in combination of two or more.
  • bisphenol A diglycidyl ether examples include Epicoat 828, Epicoat 1001, and Epicoat 1002 (all manufactured by Mitsubishi Chemical Corporation).
  • bisphenol F diglycidyl ether examples include Epicoat 807 (trade name, manufactured by Mitsubishi Chemical Corporation) and YSLV-80 (trade name, manufactured by Nippon Steel Chemical Co., Ltd.).
  • bisphenol S diglycidyl ether examples include EBPS- 200 (Nippon Kayaku Co., Ltd., trade name), Epicron EXA-1514 (DIC Corporation, trade name) and the like.
  • Examples of the biphenol diglycidyl ether include YL6121 (trade name, manufactured by Mitsubishi Chemical Corporation).
  • Examples of the bixylenol diglycidyl ether include YX4000H (trade name, manufactured by Mitsubishi Chemical Corporation).
  • Examples of hydrogenated bisphenol A glycidyl ether include ST-2004 and ST-2007 (both manufactured by Nippon Steel Chemical Co., Ltd.).
  • Examples of the dibasic acid-modified diglycidyl ether type epoxy resin described above include ST-5100, ST-5080 (both manufactured by Nippon Steel Chemical Co., Ltd.).
  • Examples of the biphenyl aralkyl type epoxy resin include NC-3000 and NC-3000H (both manufactured by Nippon Kayaku Co., Ltd., trade names).
  • tris (2,3-epoxypropyl) isocyanurate examples include TEPIC-S, TEPIC-VL, TEPIC-PASB26 (manufactured by Nissan Chemical Industries), Araldide PT810 (manufactured by BASF, trade name) and the like. .
  • JER157S (trade name, manufactured by Mitsubishi Chemical Corporation), which is a bisphenol A novolac type epoxy resin.
  • examples include tetraphenylol ethane type epoxy resin, JERRY-931 (trade name, manufactured by Mitsubishi Chemical Corporation), Araldide 163 (manufactured by BASF), and the like.
  • tetraglycidylxylenoylethane resin ZX-1063 (manufactured by Nippon Steel Chemical Co., Ltd.).
  • Naphthalene group-containing epoxy resins such as ESN-190 and ESN-360 (both made by Nippon Steel Chemical Co., Ltd., trade names), HP-4032, EXA-4750, EXA-4700 (both made by DIC Corporation, trade names), etc. Can be mentioned.
  • HP-7200 and HP-7200H both manufactured by DIC Corporation, trade names
  • examples thereof include CP-50S and CP-50M (both manufactured by Nippon Oil & Fats Co., Ltd.), which are glycidyl methacrylate copolymer epoxy resins.
  • Examples thereof include PB-3600 and PB-4700 (both manufactured by Daicel Chemical Industries, Ltd.), which are epoxy-modified polybutadiene rubber derivatives.
  • Examples include CTBN-modified epoxy resins YR-102 and YR-450 (both manufactured by Nippon Steel Chemical Co., Ltd., trade names).
  • CTBN-modified epoxy resins YR-102 and YR-450 both manufactured by Nippon Steel Chemical Co., Ltd., trade names.
  • the component (C) is not limited to these. These epoxy resins can be used alone or in combination of two or more.
  • the inorganic filler contains at least (d-1) the first inorganic filler and (d-2) the second inorganic filler.
  • (D-1) a first inorganic filler having an average particle size of 100 nm to 500 nm, a maximum particle size of 2 ⁇ m or less, and a refractive index of 1.5 to 1.8, and (d-2) an average particle size of 5 nm.
  • Two kinds of inorganic fillers having a refractive index of 1.2 to 1.5 and a refractive index of 1.2 to less than 1.5 are used. Any inorganic filler is preferably dispersed so that the maximum particle diameter is 2 ⁇ m or less.
  • the first inorganic filler has a refractive index in the range of 1.5 to 1.8, and is aluminum oxide, aluminum hydroxide, calcium carbonate, calcium hydroxide, barium sulfate, barium carbonate, magnesium oxide. , Magnesium hydroxide, mine-derived filler (talc, mica, etc.) and the like. These are preferably pulverized by a pulverizer, classified according to circumstances, and adjusted so as to have an average particle diameter in the range of 100 nm to 500 nm and a maximum particle diameter of 2 ⁇ m or less.
  • the average particle size of the first inorganic filler is more preferably in the range of 115 nm to 500 nm, and still more preferably in the range of 130 nm to 480 nm. Further, (d-1) The maximum particle size of the first inorganic filler is more preferably 1.9 ⁇ m or less, and further preferably 1.8 ⁇ m or less.
  • the (d-2) second inorganic filler is an inorganic filler having an average particle diameter of 5 nm to 200 nm and a refractive index of 1.2 or more and less than 1.5.
  • the (d-2) second inorganic filler preferably has a thermal expansion coefficient of 5.0 ⁇ 10 ⁇ 6 / ° C. or less, more preferably 3.0 ⁇ 10 ⁇ 6 / ° C. or less. More preferably, it is 1.0 ⁇ 10 ⁇ 6 / ° C. or less.
  • any of the second inorganic fillers can be used, but from the viewpoint of particle size, fused spherical silica, fused pulverized silica, fumed silica, and sol-gel silica are preferable. Silica and sol-gel silica are more preferable. These silicas can be used after classification or the like and adjusting the particle diameter, if necessary.
  • the second inorganic filler is preferably so-called nano silica having an average particle diameter in the range of 5 nm to 200 nm, more preferably nano silica having an average particle diameter in the range of 5 nm to 150 nm, and an average particle diameter of 5 nm.
  • the second inorganic filler is desirably dispersed with a maximum particle size of 2 ⁇ m or less, more preferably dispersed with a maximum particle size of 1.5 ⁇ m or less, and dispersed with a maximum particle size of 1.3 ⁇ m or less. More preferably.
  • a silane coupling agent in order to disperse
  • silane coupling agent generally available ones can be used.
  • Alkyl silane, alkoxy silane, vinyl silane, epoxy silane, amino silane, acrylic silane, methacryl silane, mercapto silane, sulfide silane, isocyanate silane, sulfur silane , Styrylsilane, alkylchlorosilane, and the like can be used.
  • Specific compound names include methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, methyltriphenoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, diisopropyldimethoxysilane, isobutyltrimethoxy.
  • Silane diisobutyldimethoxysilane, isobutyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, cyclohexylmethyldimethoxysilane, n-octyltriethoxysilane, n-dodecylmethoxysilane, phenyltrimethoxysilane, diphenyldimethoxy Silane, triphenylsilanol, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, n-octyl Methylchlorosilane, tetraethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3- (2-aminoethyl
  • Desirable silane coupling agents to be used are those that react with the component (A) contained in the photosensitive resin composition.
  • epoxy silane, mercaptosilane, and isocyanate silane are desirable. Since these silane coupling agents strengthen the bond between silica and resin, they increase the strength of the film when used as a permanent mask resist, and contribute to improving crack resistance and the like in a temperature cycle test.
  • acryl silane or methacryl silane may be used. It is considered that it reacts with the ethylenically unsaturated group of the photopolymerizable monomer having an ethylenically unsaturated group and exhibits the same effect as when the silane coupling agent is used.
  • the refractive index of each inorganic filler can be measured with a commercially available apparatus as shown below.
  • the refractive index can be simply measured using a refractometer Abbemat series (manufactured by Anton mixer) or a precision refractometer KPR series (manufactured by Shimadzu Corporation).
  • the content of the inorganic filler is preferably 25% by mass or more and 70% by mass or less, more preferably 35% by mass or more and 60% by mass or less based on the total mass of the photosensitive resin composition. It is more desirable that the content be not less than 55% by mass.
  • the component (E) has an average particle size of 500 nm or less and a maximum particle size of 2 ⁇ m or less.
  • the average particle diameter of a component is 400 nm or less.
  • the maximum particle diameter of (E) component is 1.5 micrometers or less.
  • Such an organic filler is desirably dispersed in the composition.
  • the average particle size and the maximum particle size of the organic filler can be measured by the same method as described for the (D) inorganic filler.
  • Examples of the organic filler having an amino group include melamine, acetoguanamine, benzoguanamine, melamine-phenol-formalin resin, dicyandiamide, triazine compound, ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2, Examples thereof include triazine derivatives such as 4-diamino-6-xylyl-S-triazine, additives such as imidazole series, thiazole series and triazole series, and silane coupling agents.
  • 2MZ-AZINE, 2E4MZ-AZINE, C11Z-AZINE, 2MA-OK are available.
  • the component (E) improves the characteristics such as pre-shear cooker resistance (PCT resistance), crack resistance, heat resistance, plating agent resistance, and electric corrosion resistance in addition to the adhesion between the photosensitive resin composition layer and the metal. Can do.
  • the component (E) can also be dispersed in the resin composition using a predetermined pulverizer, disperser, classifier or the like.
  • the content of the organic filler having an amino group is desirably 0.1 parts by mass or more and 20 parts by mass or less, and 0.5 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the total solid content. Is more desirable.
  • This organic filler shows the antioxidant effect of the underlying wiring metal, but the antioxidant effect can be improved by setting it to 0.1 parts by mass or more, and the resolution can be further improved by setting it to 20 parts by mass or less. It can be sufficient, and contamination of the plating bath can be reduced.
  • component (F) An elastomer having a polyamide structure (hereinafter sometimes referred to as “component (F)”) is a block copolymer having a flexible component comprising a rubber component and a rigid component comprising an aromatic polyamide component in the molecule. It consists of a polymer.
  • the rubber component include butadiene rubber, butadiene-acrylonitrile rubber, butyl rubber, acrylonitrile rubber, silicone rubber, ethylene propylene rubber, sulfonated polyethylene, acrylic rubber, urethane rubber, silicone rubber, hydrogenated nitrile rubber, and the like.
  • the component (F) is preferably a block copolymer obtained by reacting a phenolic hydroxyl group-containing polyamide with a butadiene-acrylonitrile rubber having a carboxyl group at the terminal (polybutadiene / acrylonitrile).
  • a compound for example, KAYAFLEX BPAM155, BPAM01H (manufactured by Nippon Kayaku Co., Ltd., trade name) and the like are listed as commercial products.
  • the content of the component (F) is desirably 0.5% by mass or more and 15% by mass or less, and more desirably 1.0% by mass or more and 10% by mass or less, based on the total mass of the photosensitive resin composition. More preferably, the content is 1.0% by mass or more and 5.0% by mass or less.
  • the content is 0.5% by mass or more, adhesion, flexibility, toughness, and the like can be further improved, and when the content is 15% by mass or less, the resolution is further improved. be able to.
  • the photosensitive resin composition may contain other elastomer components as necessary.
  • examples of such an elastomer include known styrene elastomers, olefin elastomers, urethane elastomers, polyester elastomers, polyamide elastomers, acrylic elastomers, and silicone elastomers.
  • styrene elastomer examples include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, styrene-ethylene-butylene-styrene block copolymer, styrene-ethylene-propylene-styrene block copolymer, and the like.
  • the photosensitive resin composition may contain a photopolymerizable monomer as necessary.
  • the photopolymerizable monomer component that can be used in the photosensitive resin composition is not particularly limited and contains a photopolymerizable monomer having two or more ethylenically unsaturated groups in the molecule. This is preferable.
  • a photopolymerizable monomer is used individually or in combination of 2 or more types. In particular, it is desirable to contain at least one polyfunctional photopolymerizable monomer having three or more ethylenically unsaturated groups in one molecule.
  • a bisphenol A-based (meth) acrylate compound a compound obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid, or a compound obtained by reacting a glycidyl group-containing compound with an ⁇ , ⁇ -unsaturated carboxylic acid.
  • examples thereof include urethane monomers and urethane oligomers such as compounds and (meth) acrylate compounds having a urethane bond in the molecule.
  • the urethane monomer UX-5120D (Nippon Kayaku Co., Ltd., trade name) is available.
  • nonylphenoxy polyoxyethylene acrylate ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ '-(meth) acryloyloxyethyl-o-phthalate, ⁇ -hydroxyalkyl- ⁇ '-(meth) acryloyloxy
  • examples thereof include phthalic acid compounds such as alkyl-o-phthalate, (meth) acrylic acid alkyl ester, EO-modified nonylphenyl (meth) acrylate, and the like.
  • the polyfunctional photopolymerization monomer which has six or more ethylenically unsaturated groups in 1 molecule is effective in the improvement of the crack tolerance at the time of reflow mounting.
  • Trimethylolpropane triethoxytriacrylate (SR-454, trade name, manufactured by Nippon Kayaku Co., Ltd.) is commercially available as a polyfunctional photopolymerization monomer having three or more ethylenically unsaturated groups in one molecule. Is possible. Examples of the polyfunctional photopolymerizable monomer having 6 or more ethylenically unsaturated groups in one molecule include dipentaerythritol hexaacrylate and its similar structure.
  • KAYARAD DPHA KAYARAD D-310
  • KAYARAD D-330 KAYARAD DCA-20
  • 30 KAYARAD DPCA-60, 120 (all are trade names, manufactured by Nippon Kayaku Co., Ltd.), etc.
  • a pigment component can be used as necessary.
  • colorants or dyes such as phthalocyanine blue, phthalocyanine green, iodine green, disazo yellow, malachite green, crystal violet, titanium oxide, carbon black, naphthalene black, and azo organic pigments can be used.
  • the photosensitive resin composition is a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, t-butylcatechol, pyrogallol, phenothiazine, nitroso compound, thixotropic agent such as benton, montmorillonite, aerosil, amide wax, silicone, Fluorine-based and polymer-based antifoaming agents, leveling agents, and the like may be included in a range that does not affect the desired properties of the photosensitive resin composition.
  • a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, t-butylcatechol, pyrogallol, phenothiazine, nitroso compound, thixotropic agent such as benton, montmorillonite, aerosil, amide wax, silicone, Fluorine-based and polymer-based antifoaming agents, leveling agents, and the like may be included in a range that does not affect the desired properties of the photosensitive resin
  • a diluent can be used in the photosensitive resin composition as necessary.
  • a conventionally well-known organic solvent can be used as a diluent.
  • the content of the diluent is preferably 5 to 40% by mass based on the total mass of the photosensitive resin composition.
  • the photosensitive film according to the present invention comprises a support and a photosensitive resin composition layer (photosensitive layer) made of the photosensitive resin composition of the present invention formed on the support. On this photosensitive resin composition layer, you may further provide the protective film which coat
  • a polymer film having heat resistance and solvent resistance such as polyethylene terephthalate, polypropylene, polyethylene, and polyester can be used.
  • the thickness of the support (polymer film) is preferably 5 to 25 ⁇ m, more preferably 5 to 20 ⁇ m, and even more preferably 10 to 20 ⁇ m. When the thickness is 5 ⁇ m or more, tearing of the support can be sufficiently suppressed when the support is peeled off before development. When the thickness is less than 25 ⁇ m, sufficient resolution can be obtained even when exposure is performed through the support.
  • the protective film a polymer film having heat resistance and solvent resistance such as polyethylene terephthalate, polypropylene, polyethylene, and polyester can be used.
  • the thickness of the protective film is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, still more preferably 5 to 30 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the photosensitive resin composition layer is prepared by dissolving the photosensitive resin composition of the present invention in an organic solvent (diluent) to obtain a solution (coating solution) having a solid content of about 30 to 70% by mass, and then applying the solution (coating solution). (Liquid) is preferably applied on a support and dried.
  • the coating can be performed by a known method using, for example, a roll coater, comma coater, gravure coater, air knife coater, die coater, bar coater or the like.
  • the drying can be performed at 70 to 150 ° C. for about 5 to 30 minutes.
  • the amount of the residual organic solvent in the photosensitive resin composition after drying is preferably 3% by mass or less with respect to the total mass of the photosensitive resin composition from the viewpoint of preventing the diffusion of the organic solvent in the subsequent step. .
  • the thickness of the photosensitive layer comprising the photosensitive resin composition varies depending on the application, but is preferably 10 to 100 ⁇ m, more preferably 15 to 60 ⁇ m, and more preferably 20 to 50 ⁇ m after drying. Particularly preferred. When the thickness is 10 ⁇ m or more, coating can be easily performed, and when the thickness is 100 ⁇ m or less, sufficient sensitivity can be obtained even inside the photosensitive layer, and the resolution can be improved.
  • the photosensitive film may further include an intermediate layer such as a cushion layer, an adhesive layer, a light absorption layer, and a gas barrier layer.
  • the obtained photosensitive film can be stored in the form of a sheet or wound around a roll in the form of a roll.
  • An end face separator is preferably installed on the end face of the roll-shaped photosensitive film roll from the viewpoint of end face protection, and a moisture-proof end face separator is preferably installed from the viewpoint of edge fusion resistance.
  • the winding core include plastics such as polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, ABS resin (acrylonitrile-butadiene-styrene copolymer).
  • a photosensitive layer made of the above-described photosensitive resin composition is formed on a substrate on which a resist pattern is to be formed. After peeling the protective film of the photosensitive film from the photosensitive resin composition layer, the exposed surface of the photosensitive resin composition layer is laminated so as to cover the conductor layer having the circuit pattern formed on the substrate. (Adhering step). A method of laminating under reduced pressure is also preferable from the viewpoint of improving adhesion and followability.
  • the photosensitive resin composition can also be apply
  • a removal step of removing the support from the photosensitive film described above is performed, and a predetermined portion of the photosensitive resin composition layer is irradiated with actinic light (pattern irradiation) through the mask pattern, thereby exposing the irradiated portion to light.
  • An exposure step of photocuring the conductive resin composition layer is performed. Note that direct exposure may be performed in which pattern irradiation is performed without using a mask pattern.
  • the support is removed, and then a portion of the photosensitive resin composition layer that has not been photocured by wet development or dry development (unexposed).
  • the resist pattern can be formed by removing the portion and developing (developing step).
  • a dilute solution of 0.1 to 5% by mass sodium carbonate As the developer, a dilute solution of 0.1 to 5% by mass sodium carbonate, a dilute solution of 0.1 to 5% by mass potassium carbonate, a dilute solution of 0.1 to 5% by mass sodium hydroxide, 0.1 to 5% A dilute solution of mass% sodium tetraborate is preferred.
  • the pH of these developers is preferably in the range of 9-11.
  • the temperature of such an alkaline aqueous solution is adjusted according to the developability of the photosensitive layer and is preferably 20 to 50 ° C. Further, a surfactant, an antifoaming agent or the like may be mixed in the alkaline aqueous solution in order to promote development.
  • development methods include a dip method, a battle method, a spray method, a high-pressure spray method, brushing, and slapping.
  • the high pressure spray method is most suitable for improving the resolution.
  • a cupric chloride solution for the etching of the metal surface performed after development, a cupric chloride solution, a ferric chloride solution, an alkaline etching solution, or the like can be used.
  • a permanent mask resist can be formed by the same method as the above resist pattern forming method.
  • After the development step it is preferable to perform ultraviolet irradiation (ultraviolet irradiation step) or heating (heating step) using a high-pressure mercury lamp for the purpose of improving solder heat resistance, chemical resistance and the like.
  • ultraviolet irradiation ultraviolet irradiation step
  • heating heating
  • the irradiation amount can be adjusted as necessary.
  • irradiation can be performed with an irradiation dose of about 0.05 to 10 J / cm 2 .
  • the resist pattern is heated, it is preferably performed in the range of about 130 to 200 ° C. for about 15 to 90 minutes.
  • Both ultraviolet irradiation and heating may be performed. In this case, both may be performed at the same time, and after either one is performed, the other may be performed. When ultraviolet irradiation and heating are performed simultaneously, it is preferable to heat to 60 to 150 ° C. from the viewpoint of imparting better solder heat resistance and chemical resistance.
  • the permanent mask resist according to the present embodiment also serves as a protective film for the wiring after soldering the substrate.
  • the permanent mask resist according to this embodiment has various properties as a protective film, and can be used as a permanent mask resist for printed wiring boards, semiconductor package substrates, and flexible wiring boards.
  • the permanent mask resist is used as a plating resist, an etching resist or the like when, for example, plating or etching is performed on a substrate. In addition, it is left on the substrate as it is and used as a protective film for protecting the wiring and the like.
  • the above exposure step when exposure is performed using a mask or drawing data having a pattern in which a predetermined portion of a conductor layer having a circuit pattern formed on the substrate is unexposed, by developing this, A resist having an opening pattern in which an unexposed portion is removed and a part of the conductor layer is exposed is obtained. Thereafter, it is preferable to perform a process necessary for forming the above-described permanent mask resist.
  • FIG. 1 is a schematic cross-sectional view showing a semiconductor package substrate.
  • the semiconductor package 10 includes a semiconductor chip mounting substrate 50 and a semiconductor chip 120 mounted on the semiconductor chip mounting substrate 50.
  • the semiconductor chip mounting substrate 50 and the semiconductor chip 120 are bonded with an adhesive 117 made of a die bond film or a die bond paste.
  • the semiconductor chip mounting substrate 50 includes an insulating substrate 100.
  • a wire bonding wiring terminal 110 and a permanent mask resist in which an opening through which a part of the wiring terminal 110 is exposed is formed.
  • 90 is provided, and a permanent mask resist 90 and solder connection terminals 111 are provided on the opposite surface.
  • the permanent mask resist 90 is a layer made of a cured product of the photosensitive resin composition of the present embodiment.
  • Solder connection terminals 111 have solder balls 114 mounted thereon for electrical connection with the printed wiring board.
  • the semiconductor chip 120 and the wire bonding wiring terminal 110 are electrically connected using a gold wire 115.
  • the semiconductor chip 120 is sealed with a semiconductor sealing resin 116.
  • FIG. 2 is a schematic cross-sectional view showing a flip chip type semiconductor package substrate.
  • the flip chip type semiconductor package substrate 20 includes a semiconductor chip mounting substrate 50 and a semiconductor chip 120 mounted on the semiconductor chip mounting substrate 50.
  • the semiconductor chip mounting substrate 50 and the semiconductor chip 120 are filled with an underfill agent 118.
  • the semiconductor chip mounting substrate 50 has a configuration in which an insulating substrate 100b, an insulating substrate 100a, and a permanent mask resist 90 are stacked in this order.
  • the permanent mask resist 90 is a layer made of a cured product of the photosensitive resin composition of the present embodiment.
  • the insulating substrate 100b has a patterned copper wiring 80 on the surface on the insulating substrate 100a side, and the insulating substrate 100a has a patterned copper wiring 80 on the surface on the permanent mask resist 90 side.
  • the copper wiring 80 on the insulating substrate 100b and at least a part of the copper wiring 80 on the insulating substrate 100a are electrically connected by the solder connection terminal 111 formed so as to penetrate the insulating substrate 100a and the insulating substrate 100b. It is connected.
  • the permanent mask resist 90 is formed so as to cover the copper wiring 80 on the insulating substrate 100a. However, the copper wiring 80 is exposed on the copper wiring 80 corresponding to the connection terminal 111 for solder connection. An opening 112 is formed.
  • the copper wiring 80 on the insulating substrate 100 a is electrically connected via the copper wiring 80 formed on the surface of the semiconductor chip 120 facing the semiconductor chip mounting substrate 50 and the solder ball 114 provided in the opening 112. It is connected.
  • the present invention can be said to be an invention related to the application of the photosensitive resin composition, for example. That is, one aspect of the present invention is (A) a resin having an ethylenically unsaturated group and a carboxyl group, (B) a photopolymerization initiator, (C) an epoxy resin, (D) an inorganic filler, and (E) an amino group.
  • (D) is a photosensitive resin composition containing (d-1) an average particle diameter of 100 nm to 500 nm, a maximum particle diameter of 2 ⁇ m or less, and a refractive index of 1.5 to 1.
  • the substrate provided with the permanent mask resist of the present invention is then mounted with a semiconductor element (for example, wire bonding, C4 solder connection, etc.) and mounted on an electronic device such as a personal computer.
  • a semiconductor element for example, wire bonding, C4 solder connection, etc.
  • Examples 1 to 13 and Comparative Examples 1 to 9 [Preparation of photosensitive resin composition solution]
  • the components shown in Table 1 and Table 2 are mixed in the blending amounts (parts by mass) shown in the same table, and methyl ethyl ketone (MEK) is added as a diluent.
  • MEK methyl ethyl ketone
  • a photosensitive resin composition solution was obtained.
  • surface is as follows.
  • EXP-3073 Acid-modified cresol novolac epoxy acrylate (manufactured by DIC, sample name)
  • UXE-3024 Urethane-modified bisphenol A acid-modified epoxy acrylate (manufactured by Nippon Kayaku Co., Ltd., weight average molecular weight 10,000, acid value 67 mgKOH / g, trade name)
  • the weight average molecular weight (Mw) was measured by gel permeation chromatography (GPC), and was derived by conversion using a standard polystyrene calibration curve.
  • GPC gel permeation chromatography
  • GPC condition pump Hitachi L-6000 type (manufactured by Hitachi, Ltd., product name) Column: Gelpack GL-R420, Gelpack GL-R430, Gelpack GL-R440 (above, manufactured by Hitachi Chemical Co., Ltd., product name) Eluent: Tetrahydrofuran Measurement temperature: 40 ° C Flow rate: 2.05 mL / min Detector: Hitachi L-3300 type RI (manufactured by Hitachi, Ltd., product name)
  • Photopolymerization initiator I907 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (manufactured by BASF, trade name: IRGACURE 907)
  • DETX-S 2,4-diethylthioxanthone (manufactured by Nippon Kayaku Co., Ltd., trade name: KAYACURE-DETX-S)
  • OXE-02 Ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (O-acetyloxime) (manufactured by BASF, trade name: IRGACURE OXE 02)
  • YSLV-80 Bisphenol F type epoxy resin (trade name, manufactured by Nippon Steel Chemical Co., Ltd.)
  • a first inorganic filler ASA having an average particle size of 100 nm to 500 nm, a maximum particle size of 2 ⁇ m or less, and a refractive index of 1.5 to 1.8: barium sulfate (Japan) Product name by Solvay)
  • HK-001 Aluminum hydroxide (made by Showa Denko KK, trade name Hijilite HK-001)
  • BMT-3LV Boehmite type aluminum hydroxide particles (trade name, manufactured by Kawai Lime Industry Co., Ltd.)
  • CS-3N-A30 Calcium carbonate (trade name, manufactured by Ube Materials) All the fillers were pulverized and dispersed at a peripheral speed of 12 m / s using a zirconia bead having a diameter of 1.0 mm using a wet milling machine Star Mill LMZ (manufactured by Ashizawa Finetech) to prepare a dispersion.
  • the average particle size after dispersion and the maximum particle size were measured using a laser diffraction scattering type microtrack particle size distribution analyzer “MT-3100” (manufactured by Nikkiso Co., Ltd.). Average 184 nm, maximum 0.58 ⁇ m, average 480 nm, maximum 1.73 ⁇ m, average 393 nm, maximum 1.15 ⁇ m, average 135 nm, maximum 0.88 ⁇ m, average particle size is 100 nm to 500 nm, maximum particle size Was confirmed to be 2 ⁇ m or less.
  • the refractive indexes were 1.64, 1.57, 1.65, and 1.68, respectively, and it was confirmed that the refractive indexes were 1.5 to 1.8.
  • the average particle size was 50 nm and 100 nm, respectively, and the maximum particle size was 1 ⁇ m or less. It was confirmed that both the refractive index and the thermal expansion coefficient were 1.45 and 0.5 ⁇ 10 ⁇ 6 / ° C.
  • Melamine Fine melamine (trade name, manufactured by Nissan Chemical Industries, Ltd.) Dicyandiamide (Mitsubishi Chemical Corporation, trade name) All the organic fillers were used after confirming that the average particle size was 500 nm or less and the maximum particle size was 2.0 ⁇ m or less by pulverizing and dispersing in the same manner as (d-1) inorganic filler. Measurement was performed using MT3000 (manufactured by Nikkiso Co., Ltd.), a laser diffraction particle size distribution meter.
  • (Other) Component Photopolymerizable monomer having an ethylenically unsaturated group is DPHA (trade name, manufactured by Nippon Kayaku Co., Ltd.), UX-5102D (trade name, manufactured by Nippon Kayaku Co., Ltd.), and butadiene elastomer.
  • Epolide PB3600 product name, manufactured by Daicel Chemical Industries, Ltd.
  • Antage 500 product name, manufactured by Kawaguchi Chemical Industry Co., Ltd.
  • HCP-PM-5385 product name, manufactured by Toyo Ink Co., Ltd.
  • (D-1) a first inorganic filler ASA having an average particle size of 100 nm to 500 nm, a maximum particle size of 2 ⁇ m or less, and a refractive index of 1.5 to 1.8
  • (dispersion condition 1) barium sulfate
  • An inorganic filler dispersed under the same conditions as in Examples was used (average particle size 184 nm, maximum particle size 0.58 ⁇ m, refractive index 1.64).
  • ASA (dispersion condition 2): Barium sulfate was used, and an inorganic filler prepared by shortening the dispersion time was used (average particle size 345 nm, maximum particle size 3.20 ⁇ m, refractive index 1.64).
  • SG-95 Talc (average particle size 1.5 ⁇ m, maximum particle size 20.6 ⁇ m, refractive index 1.57) The average particle size and the maximum particle size were measured using a laser diffraction scattering type microtrack particle size distribution analyzer “MT-3100” (manufactured by Nikkiso Co., Ltd.).
  • the photosensitive resin composition solution was uniformly applied onto a 16 ⁇ m-thick polyethylene terephthalate film (G2-16, manufactured by Teijin Ltd., trade name) as a support to form a photosensitive resin composition layer. It was dried at 100 ° C. for about 10 minutes using a hot air convection dryer. The film thickness after drying of the photosensitive resin composition layer was 25 ⁇ m.
  • a polyethylene film (NF-15, product name, manufactured by Tamapoly Co., Ltd.) is bonded as a protective film, and the photosensitive film Got.
  • a 41-step step tablet (manufactured by Hitachi Chemical Co., Ltd.) is brought into close contact with the support of the obtained laminate for evaluation, and direct imaging exposure using an ultrahigh pressure mercury lamp as a light source. Exposure was performed using an apparatus DXP-3512 (manufactured by Oak Manufacturing Co., Ltd.).
  • the photosensitive resin composition in the unexposed area is spray-developed with a 1% by mass aqueous sodium carbonate solution at 30 ° C. for 60 seconds. A cured film of the composition was obtained.
  • the amount of exposure energy at which the number of remaining steps of the 41-step tablet after the development was 10.0 was defined as the sensitivity (unit: mJ / cm 2 ) of the photosensitive resin composition.
  • the photosensitive resin composition was evaluated using the pattern exposed with this sensitivity.
  • the sensitivity was evaluated by the amount of exposure energy at which the number of remaining steps was 10.0. That is, the 200 mJ / cm 2 or less was "3", 200 mJ / cm 2 ultra 300 mJ / cm 2 a "2" or less, the case of 300 mJ / cm 2 than to "1". Note that the smaller the exposure energy amount, the shorter the time required for exposure with higher sensitivity, and in particular, the throughput in direct imaging exposure is improved.
  • the evaluation of the resolution is the line width (unit: ⁇ m) in which exposure and spray development are performed with an exposure energy amount that the remaining number of steps is 10.0, and peeling and twist are not observed in the optical microscope observation of the resist pattern after the development processing. ) By measuring the smallest width. The smaller the value of the line width ( ⁇ m) remaining as line and space, the better the value. The results are shown in Tables 3 and 4 with the minimum width as the resolution ( ⁇ m).
  • the amount was irradiated. Thereafter, the unexposed photosensitive resin composition was spray-developed with a 1 mass% sodium carbonate aqueous solution at 30 ° C. for 60 seconds to obtain a cured film of the photosensitive resin composition. Thereafter, 1 J / cm 2 was irradiated with a conveyor type UV irradiator, and then heat curing was performed at 160 ° C./1 hour with a hot air circulation dryer, followed by post curing. In this way, a permanent mask resist was formed on the copper foil. The copper foil on which the permanent mask resist was formed was cut out with a cutter so that the line width was 5 mm. The said permanent mask resist part was fixed with the adhesive agent, the copper foil peeling test was done, and copper adhesiveness was evaluated.
  • the test was carried out using a 90 ° C direction tensile test with a tensile speed of 50 mm / min and an autograph AG-100C manufactured by Shimadzu Corporation as a measuring device. Copper adhesion was evaluated according to the following criteria. The case where the copper foil peel strength (unit: kN / m) is 1.0 or more is “3”, the case where it is 0.7 or more and less than 1.0 is “2”, the case where it is less than 0.7 1 ”. The obtained results are shown in Tables 3 and 4.
  • the thermal expansion coefficient was measured in the tensile mode.
  • the tensile load was 2 g
  • the span (distance between chucks) was 15 mm
  • the heating rate was 10 ° C./min.
  • a sample permanent mask resist for thermal expansion coefficient evaluation
  • CTE was evaluated according to the following criteria.
  • the inflection point seen in the range from 25 ° C. to 200 ° C. is Tg, and the temperature at that time is “3” when the temperature is 120 ° C. or more, “2” when the temperature is 100 ° C. or more and less than 120 ° C., and less than 100 ° C.
  • CTE used the inclination of the tangent of the curve obtained at the temperature below Tg. With the CTE value obtained in Example 1 as the reference value, the difference from this reference value is less than 30% is “3”, the difference between 30% and less than 50% is “2”, and the difference is 50% or more. The thing was set to "1".
  • the results are shown in Tables 3 and 4.
  • a permanent mask resist was formed in the same manner as in the above “evaluation of sensitivity and resolution” (exposure by exposure so that the permanent mask resist remains on the comb electrode portion, development, ultraviolet irradiation, Formed by heat treatment). Further, the obtained permanent mask resist was exposed to a condition of 130 ° C., 85% RH, 6V for 200 hours. Thereafter, the resistance value was measured and the degree of migration was observed with a 100-fold metal microscope, and evaluated according to the following criteria. That is, the resistance value of 1.0 ⁇ 10 10 ⁇ or more is maintained, and “3” is set when no migration occurs in the permanent mask resist, and the resistance value of 1.0 ⁇ 10 10 ⁇ or more is maintained. However, it was “2” when a slight migration occurred, and “1” when a resistance value was less than 1.0 ⁇ 10 10 ⁇ and a large migration occurred. The results are shown in Tables 3 and 4.
  • Spray development was carried out for 2.0 times the minimum time) to form a cured film of the photosensitive resin composition having a pattern. Thereafter, 1 J / cm 2 was irradiated with a conveyor type UV irradiator, and then heat curing was performed at 160 ° C./1 hour with a hot air circulation dryer, followed by post curing.
  • the evaluation substrate on which the permanent mask resist having the pattern thus obtained was formed was used as an evaluation substrate for crack resistance.
  • the evaluation substrate is exposed to the atmosphere of ⁇ 65 ° C. for 15 minutes, then heated at a rate of temperature increase of 180 ° C./min, and then exposed to the atmosphere of 150 ° C. for 15 minutes, and then the temperature is decreased to 180 ° C./min.
  • the heat cycle of decreasing the temperature at a rate was repeated 1000 times.
  • the crack and peeling degree of the permanent mask resist on the evaluation substrate were observed with a 100-fold metal microscope, and crack resistance was evaluated according to the following criteria. That is, when 10 places of 2 mm square openings were confirmed and cracks and peeling of the permanent mask resist film could not be observed at all, “3” was given, and cracks and peeling were observed in 2 or less of 10 places. And “1” when cracks and peeling were observed in 3 or more of 10 locations. The results are shown in Tables 3 and 4.
  • SYMBOLS 10 Semiconductor package, 20 ... Flip chip type semiconductor package, 50 ... Semiconductor chip mounting substrate, 80 ... Copper wiring, 90 ... Permanent mask resist, 100a, 100b ... Insulating substrate, 110 ... Wiring terminal for wire bonding, 111 ... Solder Connection terminal for connection, 112... Opening, 114... Solder ball, 115... Gold wire, 116... Semiconductor sealing resin, 117 ... adhesive, 118 ... underfill agent, 120.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

 本発明は、(A)エチレン性不飽和基とカルボキシル基を有する樹脂、(B)光重合開始剤、(C)エポキシ樹脂、(D)無機フィラー、及び、(E)アミノ基を有する有機フィラーを含有する感光性樹脂組成物であって、下記条件(I)~(IV)を満たす感光性樹脂組成物である。 (I)(D)が、(d-1)第一の無機フィラー及び(d-2)第二の無機フィラーを含有する。 (II)(d-1)の平均粒子径が100nm~500nm、最大粒子径が2μm以下、屈折率が1.5~1.8である。 (III)(d-2)の平均粒子径が5nm~200nm、屈折率が1.2以上1.5未満である。 (IV)(E)は、平均粒子径が500nm以下、最大粒子径が2μm以下である有機フィラーを含有する。

Description

感光性樹脂組成物、感光性フィルム、永久マスクレジスト及び永久マスクレジストの製造方法
 本発明は、感光性樹脂組成物、感光性フィルム、永久マスクレジスト及び永久マスクレジストの製造方法に関する。特に、プリント配線板用、半導体パッケージ基板用、フレキシブル配線板用に使用される永久マスクレジストとして好適な感光性樹脂組成物に関する。
 各種電子機器の高性能化に伴い、プリント配線板、半導体パッケージ基板等は、高密度化が進行し、最外層に用いられる感光性の永久マスクレジスト(ソルダーレジスト)には、より高い解像性が要求されている。特に、スマートフォン、タブレット端末、ノートパソコンをはじめとするモバイル機器に搭載される高性能半導体パッケージに用いられる永久マスクレジストには、フリップチップ化に伴い微小丸穴解像性が要求されている。バンプピッチの狭ピッチ化に伴い、その開口径は年々小さくなっている。
 一方、半導体パッケージ基板は全体として薄型化が進行しており、チップと基板との間の熱膨張係数差に起因するそりが大きな問題となっている。そのため、使用する材料は、チップの熱膨張係数(3×10-6/℃)に近い熱膨張係数とすることが強く要求されており、半導体パッケージ基板の最外層に用いられる永久マスクレジストも同様に低熱膨張化が求められている。
 一般的に低熱膨張化は、無機フィラーの高充填化、樹脂の高架橋化、及び、樹脂の剛直骨格化により行われる。
 近年においてはリフロー耐性を向上させるためにシリカフィラーを含有した感光性樹脂組成物も提案されている(特許文献1参照)。
特開2011-13622号公報
 しかし、低熱膨張化のために無機フィラーの高充填化を行うと、感光性の低下を招く傾向にある。また、樹脂の屈折率と無機フィラーの屈折率とが異なる場合、光散乱が大きくなり、さらなる微小解像性の要求には充分に対応できない場合がある。また、樹脂の高架橋化及び剛直骨格化は、クラック耐性を低下させる傾向にある。
 そこで、本発明の目的は、解像性に優れるのみならず、熱膨張係数が低く、クラック耐性においても優れた特性を発揮する感光性樹脂組成物を提供することにある。
 本発明は、(A)エチレン性不飽和基とカルボキシル基を有する樹脂、(B)光重合開始剤、(C)エポキシ樹脂、(D)無機フィラー、及び、(E)アミノ基を有する有機フィラーを含有する感光性樹脂組成物であって、下記条件(I)~(IV)を満たす感光性樹脂組成物を提供するものである。
(I)(D)が、(d-1)第一の無機フィラー及び(d-2)第二の無機フィラーを含有する。
(II)(d-1)の平均粒子径が100nm~500nm、最大粒子径が2μm以下、屈折率が1.5~1.8である。
(III)(d-2)の平均粒子径が5nm~200nm、屈折率が1.2以上1.5未満である。
(IV)(E)は、平均粒子径が500nm以下、最大粒子径が2μm以下である有機フィラーを含有する。
 上記感光性樹脂組成物は、アルカリ現像が可能であり、解像性に優れ、熱膨張係数が低く、高いクラック耐性を示す。上記のような2種の無機フィラーと有機フィラーの組み合わせが、微小の丸穴を開口する高解像性と同時に低熱膨張係数を与えるものと考えられる。また、上記のような有機フィラーを含有させることにより高解像性を維持したままで、クラック耐性、耐熱性、めっき薬液耐性といった特性を大幅に向上することができる。
 加えて、(F)ポリアミド構造を有するエラストマー(ゴム変性ポリアミド)を含有させることにより下地金属との密着性が向上し、クラック耐性等が大幅に向上する。本エラストマーに含まれるN原子が密着性に大きく寄与すると考えられる。また、(F)ポリアミド構造を有するエラストマーは、樹脂中で相分離層を形成するエラストマーとしても働き、樹脂にかかる応力を緩和する役割も示すと考える。永久マスクレジストと銅配線との密着性を向上させるために銅表面に凹凸をつける表面処理が一般的に行われているが、最近では、微細配線形成及び伝送損失の低減のため凹凸を小さくする傾向にある。よって、永久マスクレジストと銅配線との密着性の向上が要求されており、そのような場合にも(F)ポリアミド構造を有するエラストマーを含有させることが、効果を発揮する。
 (D)無機フィラーの含有量は、感光性樹脂組成物の全質量基準で25質量%以上70質量%以下であり、(d-1)の質量と(d-2)の質量との比は、(d-1)の質量:(d-2)の質量=1.0:0.1~1.0:5.0であることが望ましい。さらに(d-2)はシリカであり、その平均粒子径が5nm~100nmであることが望ましい。
 また、(B)光重合開始剤としては、複数組み合わせて使用することが望ましいが、その中で分子内にオキシムエステルを有する化合物及び芳香族ケトンを含有すると、感度、解像性の面で本発明の効果をさらに引き出すことができる。
 特に近年、露光方式が、レーザーダイレクト露光方式に移行しつつあり、全面一括で露光する従来法に比べ、ソルダーレジストに高感度が要求されている。そのような場合に、上記のような開始剤の組み合わせが、特に効果を発揮する。
 本発明によれば、微細な丸穴解像に優れ、かつ熱膨張係数が低く、またクラック耐性に優れる感光性樹脂組成物、これを用いた感光性フィルム、永久マスクレジスト及びその製造方法を提供することができる。これに加え、銅密着性、微細配線間における絶縁耐性等にも優れたアルカリ現像可能な感光性樹脂組成物、これを用いた感光性フィルム、永久マスクレジスト及びその製造方法を提供することができる。
半導体パッケージ基板を示す模式断面図である。 フリップチップ型の半導体パッケージ基板を示す模式断面図である。
 以下、本発明の好適な実施形態について詳細に説明する。
 好適な実施形態に係る感光性樹脂組成物について説明する。なお、本発明における(メタ)アクリル酸とはアクリル酸又はメタクリル酸を意味し、(メタ)アクリレートとはアクリレート又はメタクリレートを意味し、(メタ)アクリロイル基とはアクリロイル基又はメタクリロイル基を意味し、(メタ)アクリロキシ基とはアクリロキシ基又はメタクリロキシ基を意味する。また、「EO変性」とは、ポリオキシエチレン鎖を有する化合物であることを意味する。
 本実施形態に係る感光性樹脂組成物は、(A)エチレン性不飽和基とカルボキシル基を有する樹脂、(B)光重合開始剤、(C)エポキシ樹脂、(D)無機フィラー、及び、(E)アミノ基を有する有機フィラーを含有する。
 (A)エチレン性不飽和基とカルボキシル基を有する樹脂(以下、「(A)成分」という場合がある。)は、エチレン性不飽和基とカルボキシル基とを有すればどのようなものでもよいが、(a1)エポキシ樹脂と(a2)不飽和モノカルボン酸のエステル化物に、(a3)飽和又は不飽和多塩基酸無水物を付加した反応物等を用いることができる。
 上記(a1)エポキシ樹脂としては、特に制限はないが、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、多官能エポキシ樹脂等が挙げられる。ビスフェノール型エポキシ樹脂としては、ビスフェノールA、ビスフェノールF、ビスフェノールS等とエピクロルヒドリンとを反応させて得られる樹脂が好ましい。
 ノボラック型エポキシ樹脂としては、フェノール、クレゾール、ハロゲン化フェノール又はアルキルフェノール類とホルムアルデヒドとを酸性触媒下で反応して得られるノボラック樹脂類を、エピクロルヒドリンと反応させて得られる樹脂が好ましい。
 その他のエポキシ樹脂としては、サリチルアルデヒド-フェノール型又はクレゾール型エポキシ樹脂(日本化薬株式会社製EPPN502H、FAE2500等)、ダウ・ケミカル社製DER-330,337,361、ダイセル化学工業社製セロキサイド2021、三菱ガス化学社製TETRAD-X,C、日本曹達社製EPB-13,27等も使用することができる。
 (a2)不飽和モノカルボン酸としては、(メタ)アクリル酸、クロトン酸、桂皮酸、飽和若しくは不飽和多塩基酸無水物と1分子中に1個の水酸基を有する(メタ)アクリレート化合物との反応生成物である半エステル、飽和若しくは不飽和二塩基酸と1分子中に1個の水酸基を有する(メタ)アクリレート化合物との反応生成物である半エステル、又は、飽和若しくは不飽和二塩基酸と不飽和モノグリシジル化合物との反応物等が挙げられる。
 この半エステル化合物又は反応物としては、フタル酸、テトラヒドロフタル酸、へキサヒドロフタル酸、マレイン酸、コハク酸等と、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレート、グリシジル(メタ)アクリレート等とを常法により等モル比で反応させて得られる反応物などが挙げられる。これらの(a2)不飽和モノカルボン酸は、単独で又は2種以上を組み合わせて用いることができる。これらの中でも、アクリル酸が好ましい。
 (a3)飽和又は不飽和多塩基酸無水物としては、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルテトラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、無水イタコン酸、無水トリメリット酸等が挙げられる。
 (A)エチレン性不飽和基とカルボキシル基を有する樹脂としては、CCR-1218H、CCR-1159H、CCR-1222H、PCR-1050、TCR-1335H、ZAR-1035、ZAR-2001H、ZFR-1185及びZCR-1569H(以上、日本化薬株式会社製、商品名)、UE-EXP-2810PM、UE-EXP-2827、EXP-3073、EXP-3133(以上、DIC社製、商品名)等が商業的に入手可能である。
 (A)成分としては、2つ以上の水酸基及びエチレン性不飽和基を有するエポキシアクリレート化合物と、ジイソシアネート化合物と、カルボキシル基を有するジオール化合物と、を反応させて得られるポリウレタン化合物を用いても良い。このようなポリウレタン化合物は、例えば、UXE-3011、UXE-3012、UXE-3024(以上、日本化薬株式会社製、商品名)等として商業的に入手可能である。
 (A)成分は、単独で又は2種以上を組み合わせて使用される。(A)成分の屈折率は、用いる樹脂の構造により様々であるが、上記で述べた構造のものを用いた場合、1.4~1.7である。これらの中でも多くの樹脂の屈折率は、ビスフェノールA型エポキシ樹脂の屈折率である1.57付近である。本発明の感光性樹脂組成物は、(A)成分の屈折率が1.5~1.6のものを用いた場合に、本発明の効果が最も発揮される。なお、屈折率は以下に示すような市販の装置で測定可能である。例えば、屈折計Abbematシリーズ(Anton paar社製)、又は精密屈折計KPRシリーズ(島津製作所社製)を用いて、屈折率を簡易的に測定することができる。
 (A)成分の酸価は、20~180mgKOH/gであることが好ましく、30~150mgKOH/gであることがより好ましく、40~120mgKOH/gであることが特に好ましい。これにより、感光性樹脂組成物のアルカリ水溶液による現像性が良好となり、優れた解像度が得られるようになる。
 ここで、酸価は以下の方法により測定することができる。まず、測定樹脂溶液約1gを精秤した後、その樹脂溶液にアセトンを30g添加し、樹脂溶液を均一に溶解する。次いで、指示薬であるフェノールフタレインをその溶液に適量添加して、0.1NのKOH水溶液を用いて滴定を行う。そして、次式により酸価を算出する。
A=10×Vf×56.1/(Wp×I)
 なお、式中、Aは酸価(mgKOH/g)を示し、VfはKOH水溶液の滴定量(mL)を示し、Wpは測定樹脂溶液質量(g)を示し、Iは測定樹脂溶液の不揮発分の割合(質量%)を示す。
 (A)成分の重量平均分子量は、塗膜性の観点から、3000~30000であることが好ましく、5000~20000であることがより好ましく、7000~15000であることが特に好ましい。
 なお、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算値から求めることができる。重量平均分子量の測定条件については、本願明細書の実施例と同一の測定条件とする。
 (B)光重合開始剤(以下、「(B)成分」という場合がある。)としては、活性エネルギー線の照射により、遊離ラジカルを発生させる化合物を用いることができる。(B)成分としては、例えば、ベンゾフェノン、N,N,N’,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパノン-1、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(ミヒラーケトン)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン等の芳香族ケトン;アルキルアントラキノン、フェナントレンキノン等のキノン類;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンゾインアルキルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物、ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;N-フェニルグリシン、N-フェニルグリシン誘導体、9-フェニルアクリジン等のアクリジン誘導体;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、1,2-オクタンジオン,1-[4-(フェニルチオ)-フェニル,2-(O-ベンゾイルオキシム)]等のオキシムエステル類、7-ジエチルアミノ-4-メチルクマリン等のクマリン系化合物;2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン系化合物;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド等のアシルホスフィンオキサイド系化合物などが挙げられる。
 (B)成分としては、高感度化、高解像性、及び下地材質によらず開口形状を矩形にするという観点から、芳香族ケトン、オキシムエステルを有する化合物、チオキサントン化合物又はアシルホスフィンオキサイド化合物を用いることが好ましく、芳香族ケトン又はチオキサントン化合物を用いることがより好ましい。また、オキシムエステルを有する化合物と芳香族ケトンとを併用することが好ましく、芳香族ケトンとチオキサントン化合物とを併用することがさらに好ましい。
 上記芳香族ケトンとしては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパノン-1が最も好ましい。2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパノン-1は、IRGACURE 907(BASF株式会社製)として商業的に入手可能である。
 上記オキシムエステルを有する化合物としては、2-(アセチルオキシイミノメチル)チオキサンテン-9-オン、1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等が挙げられ、この中でも、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)が最も好ましい。これは、IRGACURE OXE 02(BASF株式会社製)として商業的に入手可能である。
 上記チオキサントン化合物としては、2,4-ジエチルチオキサントンが最も好ましい。これは、KAYACURE-DETX-S(日本化薬株式会社製)として商業的に入手可能である。
 特に近年、露光方式が、レーザーダイレクト露光方式に移行しつつある。全面一括で露光する従来法に比べ、永久マスクレジスト(ソルダーレジスト)に高感度が要求されており、そのような場合、上記光重合開始剤の組み合わせが効果を発揮する。
 また、(B)成分には、必要に応じて、増感剤を併用することもできる。増感剤としては、公知のものを用いることができる。
 (C)エポキシ樹脂(以下、「(C)成分」という場合がある。)としては、ビスフェノールAジグリシジルエーテル等のビスフェノールA型エポキシ樹脂、ビスフェノールFジグリシジルエーテル等のビスフェノールF型エポキシ樹脂、ビスフェノールSジグリシジルエーテル等のビスフェノールS型エポキシ樹脂、ビフェノールジグリシジルエーテル等のビフェノール型エポキシ樹脂、ビキシレノールジグリシジルエーテル等のビキシレノール型エポキシ樹脂、水添ビスフェノールAグリシジルエーテル等の水添ビスフェノールA型エポキシ樹脂、それらの二塩基酸変性ジグリシジルエーテル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、トリス(2,3-エポキシプロピル)イソシアヌレ-トなどが挙げられる。これらは単独で又は2種以上を組み合わせて使用される。
 これらの化合物としては市販のものを用いることができる。具体的には、ビスフェノールAジグリシジルエーテルとしてはエピコート828、エピコート1001、エピコート1002(いずれも三菱化学社製、商品名)等を挙げることができる。ビスフェノールFジグリシジルエーテルとしてはエピコート807(三菱化学社製、商品名)、YSLV-80(新日鐵化学株式会社製、商品名)等を挙げることができ、ビスフェノールSジグリシジルエーテルとしてはEBPS-200(日本化薬株式会社製、商品名)、エピクロンEXA-1514(DIC社製、商品名)等を挙げることができる。
 ビフェノールジグリシジルエーテルとしてはYL6121(三菱化学社製、商品名)等を挙げることができる。ビキシレノールジグリシジルエーテルとしてはYX4000H(三菱化学社製、商品名)等を挙げることができる。
 水添ビスフェノールAグリシジルエーテルとしてはST-2004、ST-2007(いずれも新日鐵化学社製、商品名)等を挙げることができる。上述した二塩基酸変性ジグリシジルエーテル型エポキシ樹脂としてはST-5100、ST-5080(いずれも新日鐵化学社製、商品名)等を挙げることができる。ビフェニルアラルキル型エポキシ樹脂としては、NC-3000、NC-3000H(いずれも日本化薬株式会社製、商品名)等を挙げることができる。トリス(2,3-エポキシプロピル)イソシアヌレ-トとしては、TEPIC-S、TEPIC-VL、TEPIC-PASB26(日産化学工業社製)、アラルダイドPT810(BASF社製、商品名)等を挙げることができる。
 その他、ビスフェノールAノボラック型エポキシ樹脂のJER157S(三菱化学社製、商品名)等が挙げられる。テトラフェニロールエタン型エポキシ樹脂のJERYL-931(三菱化学社製、商品名)、アラルダイド163(BASF社製)等が挙げられる。テトラグリシジルキシレノイルエタン樹脂のZX-1063(新日鐵化学社製)等が挙げられる。ナフタレン基含有エポキシ樹脂のESN-190、ESN-360(いずれも新日鐵化学社製、商品名)、HP-4032、EXA-4750、EXA-4700(いずれもDIC社製、商品名)等が挙げられる。ジシクロペンタジエン骨格を有するエポキシ樹脂のHP-7200、HP-7200H(いずれもDIC社製、商品名)等が挙げられる。グリシジルメタアクリレート共重合系エポキシ樹脂のCP-50S、CP-50M(いずれも日本油脂社製、商品名)等が挙げられる。エポキシ変性のポリブタジエンゴム誘導体のPB-3600、PB-4700(いずれもダイセル化学工業社製、商品名)等が挙げられる。CTBN変性エポキシ樹脂のYR-102、YR-450(いずれも新日鐵化学社、商品名)等が挙げられる。ただし、(C)成分は、これらに限られるものではない。これらのエポキシ樹脂は、単独で又は2種以上を組み合わせて用いることができる。
 (D)無機フィラー(以下、「(D)成分」という場合がある。)について説明する。本実施形態においては、(D)無機フィラーは、少なくとも(d-1)第一の無機フィラー及び(d-2)第二の無機フィラーを含有する。すなわち、(d-1)平均粒子径が100nm~500nm、最大粒子径が2μm以下、屈折率が1.5~1.8である第一の無機フィラー、(d-2)平均粒子径が5nm~200nm、屈折率が1.2以上1.5未満である第二の無機フィラー、の2種類を用いる。いずれの無機フィラーも最大粒子径が2μm以下となるように分散されることが好ましい。
 (d-1)第一の無機フィラーとしては、屈折率が1.5~1.8の範囲であり、酸化アルミニウム、水酸化アルミニウム、炭酸カルシウム、水酸化カルシウム、硫酸バリウム、炭酸バリウム、酸化マグネシウム、水酸化マグネシウム、鉱山物由来のフィラー(タルク、マイカ等)等が挙げられる。これらは、粉砕機で粉砕され、場合によっては分級を行い、平均粒子径として100nm~500nmの範囲となり、最大粒子径2μm以下となるよう調整し、分散されることが望ましい。(d-1)第一の無機フィラーの平均粒子径としては、115nm~500nmの範囲であることがより望ましく、130nm~480nmの範囲であることがさらに望ましい。また、(d-1)第一の無機フィラーの最大粒子径としては、1.9μm以下がより望ましく、1.8μm以下であることがさらに望ましい。
 一方、(d-2)第二の無機フィラーは、平均粒子径が5nm~200nm、屈折率が1.2以上1.5未満である無機フィラーである。また、(d-2)第二の無機フィラーは、熱膨張係数が5.0×10-6/℃以下であることが好ましく、3.0×10-6/℃以下であることがより好ましく、1.0×10-6/℃以下であることがさらに好ましい。
 (d-2)第二の無機フィラーの種類としては、いずれでも使用できるが、粒径の観点から、溶融球状シリカ、溶融粉砕シリカ、煙霧状シリカ、ゾルゲルシリカが好ましく、その中では、煙霧状シリカ、ゾルゲルシリカがより好ましい。これらのシリカは、必要に応じて、分級等を行い、粒径を調整したうえで用いることができる。第二の無機フィラーは、平均粒子径が5nm~200nmの範囲にある所謂ナノシリカを用いることが望ましく、平均粒子径が5nm~150nmの範囲にあるナノシリカを用いることがより望ましく、平均粒子径が5nm~100nmの範囲にあるナノシリカを用いることがさらに望ましい。第二の無機フィラーは、最大粒子径が2μm以下で分散されることが望ましく、最大粒子径が1.5μm以下で分散されることがより好ましく、最大粒子径が1.3μm以下で分散されることがさらに好ましい。また、凝集することなく感光性樹脂組成物中に分散させるためには、シランカップリング剤を用いることが好ましい。
 シランカップリング剤としては、一般的に入手可能なものを用いることができ、アルキルシラン、アルコキシシラン、ビニルシラン、エポキシシラン、アミノシラン、アクリルシラン、メタクリルシラン、メルカプトシラン、スルフィドシラン、イソシアネートシラン、サルファーシラン、スチリルシラン、アルキルクロロシラン等が使用可能である。
 具体的な化合物名としては、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、メチルトリエトキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、ジイソプロピルジメトキシシラン、イソブチルトリメトキシシラン、ジイソブチルジメトキシシラン、イソブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、シクロヘキシルメチルジメトキシシラン、n-オクチルトリエトキシシラン、n-ドデシルメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、トリフェニルシラノール、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、n-オクチルジメチルクロロシラン、テトラエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、アリルトリメトキシシラン、ジアリルジメチルシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリエトキシシラン、N-(1,3-ジメチルブチリデン)-3-アミノプロピルトリエトキシシラン、アミノシラン等がある。
 用いるシランカップリング剤として望ましいものは、感光性樹脂組成物に含まれる(A)成分と反応する種類のものが良く、例えば、エポキシシラン、メルカプトシラン、イソシアネートシランが望ましい。これらのシランカップリング剤は、シリカと樹脂の結合を強めるため、永久マスクレジストとした際に膜の強度を強め、温度サイクル試験における耐クラック性等の向上に寄与する。
 また、アクリルシラン、メタクリルシランを用いてもよい。エチレン性不飽和基を有する光重合モノマーのエチレン性不飽和基と反応し、上記シランカップリング剤を用いたときと同様の効果を発揮すると考えられる。
 其々の無機フィラーの粒径を測定する際には、公知の粒度分布計を用いることが望ましい。例えば、粒子群にレーザー光を照射し、そこから発せられる回折・散乱光の強度分布パターンから計算によって粒度分布を求めるレーザー回折散乱式粒度分布計、動的光散乱法による周波数解析を用いて粒度分布を求めるナノ粒子の粒度分布計等が挙げられる。また、其々の無機フィラーの屈折率は、以下に示すような市販の装置で測定可能である。例えば、屈折計Abbematシリーズ(Anton paar社製)、又は精密屈折計KPRシリーズ(島津製作所社製)を用いて、屈折率を簡易的に測定することができる。
 (D)無機フィラーの含有量は、感光性樹脂組成物の全質量基準で25質量%以上70質量%以下であることが望ましく、35質量%以上60質量%以下であることがより望ましく、40質量%以上55質量%以下であることがさらに望ましい。
 また、(D)無機フィラーの(d-1)の質量と(d-2)の質量との比は、(d-1)の質量:(d-2)の質量=1.0:0.1~1.0:5.0であることが望ましく、1.0:0.2~1.0:3.0であることがより望ましく、1.0:0.5~1.0:1.5であることがさらに望ましい。
 (E)アミノ基を有する有機フィラー(以下、「(E)成分」という場合がある。)について説明する。(E)成分は、平均粒子径が500nm以下、最大粒子径が2μm以下である。(E)成分の平均粒子径は、400nm以下であることが好ましい。また、(E)成分の最大粒子径は、1.5μm以下であることが好ましい。このような有機フィラーが、組成物中に分散されていることが望ましい。有機フィラーの平均粒子径及び最大粒子径については、(D)無機フィラーについて記したのと同様の方法によって測定することができる。
 さらには、最近の配線微細化の傾向からライン/スペースで、5/5μmといった微細配線間における絶縁耐性が要求されているが、上記第一の無機フィラーと同様に上記有機フィラーの最大粒子径を2μm以下とすることにより、5/5μmといった微細配線間における絶縁耐性を達成することができる。
 (E)アミノ基を有する有機フィラーとしては、メラミン、アセトグアナミン、ベンゾグアナミン、メラミン-フェノール-ホルマリン樹脂、ジシアンジアミド、トリアジン化合物、エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン等のトリアジン誘導体類、イミダゾール系、チアゾール系及びトリアゾール系、シランカップリング剤等の添加剤類が挙げられる。市販品としては、2MZ-AZINE,2E4MZ-AZINE,C11Z-AZINE、2MA-OK(いずれも四国化成工業社製、商品名)等が入手可能である。
 (E)成分は、感光性樹脂組成物層と金属との密着性の他、耐プレシャークッカー性(耐PCT性)、クラック耐性、耐熱性、めっき薬耐性及び耐電食性等の特性を向上させることができる。(E)成分も所定の粉砕機、分散機、分級機等を用いて樹脂組成物中に分散させることができる。
 (E)アミノ基を有する有機フィラーの含有量は、固形分総量100質量部に対して、0.1質量部以上20質量部以下であることが望ましく、0.5質量部以上15質量部以下であることがより望ましい。本有機フィラーは下地配線金属の酸化防止効果を示すが、0.1質量部以上とすることで、酸化防止効果を向上させることができ、20質量部以下とすることで、解像性をより充分なものとすることができ、めっき浴の汚染を低減することができる。
 (F)ポリアミド構造を有するエラストマー(以下、「(F)成分」という場合がある。)は、分子内にゴム成分からなる柔軟性成分と芳香族ポリアミド成分からなる剛直性成分とを有するブロック共重合体からなる。ゴム成分としては、ブタジエンゴム、ブタジエン-アクリロニトリルゴム、ブチルゴム、アクリルニトリルゴム、シリコーンゴム、エチレンプロビレンゴム、スルホン化ポリエチエレン、アクリルゴム、ウレタンゴム、シリコーンゴム、水素化ニトリルゴム等が挙げられる。(F)成分としては、フェノール性水酸基含有ポリアミドに、末端にカルボキシル基を有するブタジエン-アクリロニトリルゴム(ポリブタジエン/アクリロニトリル)を反応させたブロック共重合体であることが望ましい。そのような化合物としては、市販品では、例えば、KAYAFLEX BPAM155、BPAM01H(日本化薬株式会社製、商品名)等が挙げられる。
 (F)成分の含有量は、感光性樹脂組成物全質量中、0.5質量%以上15質量%以下であることが望ましく、1.0質量%以上10質量%以下であることがより望ましく、1.0質量%以上5.0質量%以下であることがさらに望ましい。含有量が0.5質量%以上とすることで、密着性、柔軟性、強靭性等をより向上させることができ、15質量%以下とすることで、解像性をより充分なものとすることができる。
 感光性樹脂組成物には、必要に応じて他のエラストマー成分を含有してもよい。そのようなエラストマーとしては、公知のスチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマー等が例示できる。スチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロックコポリマ、スチレン-イソプレン-スチレンブロックコポリマ、スチレン-エチレン-ブチレン-スチレンブロックコポリマ、スチレン-エチレン-プロピレン-スチレンブロックコポリマ等が例示できる。
 感光性樹脂組成物は、必要に応じて、光重合性モノマーを含有してもよい。感光性樹脂組成物に使用可能な光重合性モノマー成分としては、特に制限がなくエチレン性不飽和基を分子内に2つ以上有する光重合性モノマーを含有することが、感度、解像性の点で好ましい。光重合性モノマーは、単独で又は2種以上を組み合わせて使用される。特にエチレン性不飽和基を1分子内に3つ以上有する多官能光重合モノマーを1種以上含有することが望ましい。
 例えば、ビスフェノールA系(メタ)アクリレート化合物、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させて得られる化合物、分子内にウレタン結合を有する(メタ)アクリレート化合物等のウレタンモノマー又はウレタンオリゴマーなどが挙げられる。ウレタンモノマーとしては、UX-5120D(日本化薬株式会社、商品名)等が入手可能である。また、これら以外にも、ノニルフェノキシポリオキシエチレンアクリレート、γ-クロロ-β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシアルキル-β’-(メタ)アクリロイルオキシアルキル-o-フタレート等のフタル酸系化合物、(メタ)アクリル酸アルキルエステル、EO変性ノニルフェニル(メタ)アクリレート等が挙げられる。中でも、エチレン性不飽和基を1分子内に6つ以上有する多官能光重合モノマーがリフロー実装時のクラック耐性の向上に有効である。
 エチレン性不飽和基を1分子内に3つ以上有する多官能光重合モノマーとしては、トリメチロールプロパントリエトキシトリアクリレート(SR-454、日本化薬株式会社製、商品名)等が商業的に入手可能である。
 エチレン性不飽和基を1分子内に6つ以上有する多官能光重合モノマーとしては、ジペンタエリスリトールヘキサアクリレートとその類似構造体のものがあり、商業的には、KAYARAD DPHA、KAYARAD D-310、KAYARAD D-330、KAYARAD DPCA-20、30、KAYARAD DPCA-60、120(いずれも日本化薬株式会社製、商品名)等として入手可能である。
 感光性樹脂組成物には、必要に応じて顔料成分を用いることができる。例えば、フタロシアニンブルー、フタロシアニングリーン、アイオジングリーン、ジスアゾイエロー、マラカイトグリーン、クリスタルバイオレット、酸化チタン、カーボンブラック、ナフタレンブラック、アゾ系の有機顔料等の着色剤又は染料などを用いることができる。
 さらに、感光性樹脂組成物は、ハイドロキノン、ハイドロキノンモノメチルエーテル、t-ブチルカテコール、ピロガロール、フェノチアジン、ニトロソ化合物等の重合禁止剤、ベントン、モンモリロナイト、エアロジル、アミドワックス等のチキソ性付与剤、シリコーン系、フッ素系、高分子系等の消泡剤、レベリング剤などを、感光性樹脂組成物の所望の特性に影響を与えない範囲で含んでいてもよい。
 感光性樹脂組成物には、必要に応じて希釈剤を用いることができる。希釈剤としては、従来公知の有機溶剤を使用できる。
 感光性樹脂組成物を液状のまま使用する場合には、希釈剤の含有量は、感光性樹脂組成物全質量中の5~40質量%であることが好ましい。
 次に、好適な実施形態の感光性フィルムについて説明する。
 本発明に係る感光性フィルムは、支持体と、該支持体上に形成された本発明の感光性樹脂組成物からなる感光性樹脂組成物層(感光層)とを備えるものである。この感光性樹脂組成物層上には、該感光性樹脂組成物層を被覆する保護フィルムを更に備えていてもよい。
 上記支持体としては、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリエステル等の耐熱性及び耐溶剤性を有する重合体フィルムを用いることができる。上記支持体(重合体フィルム)の厚みは、5~25μmとすることが好ましく、5~20μmであることがより好ましく、10~20μmであることがさらに好ましい。この厚みが5μm以上であると、現像前の支持体剥離の際に支持体の破れ等を充分に抑制することができる。この厚みが25μm未満であると支持体を介しての露光であっても充分な解像度を得ることができる。なお、上記重合体フィルムは、一つを支持体として、他の一つを保護フィルムとして感光性樹脂組成物層の両面に積層して使用してもよい。
 上記保護フィルムとしては、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリエステル等の耐熱性及び耐溶剤性を有する重合体フィルムを用いることができる。上記保護フィルムの厚みは、1~100μmであることが好ましく、5~50μmであることがより好ましく、5~30μmであることがさらに好ましく、15~30μmであることが特に好ましい。
 上記感光性樹脂組成物層は、本発明の感光性樹脂組成物を有機溶剤(希釈剤)に溶解して固形分30~70質量%程度の溶液(塗布液)とした後に、かかる溶液(塗布液)を支持体上に塗布して乾燥することにより形成することが好ましい。
 上記塗布は、例えば、ロールコータ、コンマコータ、グラビアコータ、エアーナイフコータ、ダイコータ、バーコータ等を用いた公知の方法で行うことができる。また、上記乾燥は70~150℃、5~30分間程度で行うことができる。乾燥後の感光性樹脂組成物中の残存有機溶剤量は、後の工程での有機溶剤の拡散を防止する点から、感光性樹脂組成物全質量に対して3質量%以下とすることが好ましい。
 上記感光性樹脂組成物からなる感光層の厚みは、用途により異なるが、乾燥後の厚みで10~100μmであることが好ましく、15~60μmであることがより好ましく、20~50μmであることが特に好ましい。この厚みが10μm以上であると、容易に塗工することが可能であり、100μm以下であると、感光層内部においても充分な感度が得られ、解像度も向上させることができる。
 上記感光性フィルムは、クッション層、接着層、光吸収層、ガスバリア層等の中間層などを更に有していてもよい。また、得られた感光性フィルムはシート状で、又は巻芯にロール状に巻き取って保管することができる。なお、この際支持体が最も外側になるように巻き取られることが好ましい。上記ロール状の感光性フィルムロールの端面には、端面保護の見地から端面セパレータを設置することが好ましく、耐エッジフュージョンの見地から防湿端面セパレータを設置することが好ましい。また、梱包方法として、透湿性の小さいブラックシートに包んで包装することが好ましい。上記巻芯としては、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)等のプラスチックなどが挙げられる。
 次に、本発明の感光性フィルムを用いたレジストパターンの形成方法について説明する。
 まず、レジストパターンを形成すべき基板上に、上述した感光性樹脂組成物からなる感光層を形成する。上記感光性フィルムの保護フィルムを感光性樹脂組成物層から剥離させた後、基板上に形成された回路パターンを有する導体層を覆うように、感光性樹脂組成物層の露出した面をラミネート等により密着させる(積層工程)。密着性及び追従性向上の観点から減圧下で積層する方法も好ましい。なお、感光性樹脂組成物は、感光性樹脂組成物の溶液(ワニス)をスクリーン印刷法、ロールコータ等により塗布する方法などの公知の方法により基板上に塗布することもできる。
 次いで、必要に応じて上述した感光性フィルムから支持体を除去する除去工程を行い、マスクパターンを通して、感光性樹脂組成物層の所定部分に活性光線を照射(パターン照射)し、照射部の感光性樹脂組成物層を光硬化させる露光工程を行う。なお、マスクパターンを介さずにパターン照射する、ダイレクト露光を行ってもよい。
 さらに、感光性樹脂組成物層上に支持体が存在している場合にはその支持体を除去した後、ウエット現像又はドライ現像で感光性樹脂組成物層の光硬化されていない部分(未露光部)を除去して現像すること(現像工程)により、レジストパターンを形成することができる。
 現像方法としては、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法が適宜採用される。
 現像液としては、0.1~5質量%炭酸ナトリウムの希薄溶液、0.1~5質量%炭酸カリウムの希薄溶液、0.1~5質量%水酸化ナトリウムの希薄溶液、0.1~5質量%四ホウ酸ナトリウムの希薄溶液が好ましい。これらの現像液のpHは9~11の範囲とすることが好ましい。また、このようなアルカリ性水溶液の温度は、感光層の現像性に合わせて調節され、20~50℃とすることが好ましい。さらに、上記アルカリ性水溶液中には、現像を促進させるために界面活性剤、消泡剤等を混入させてもよい。
 本実施形態に係るレジストパターンの形成方法においては、必要に応じて、上述した2種以上の現像方法を併用して用いてもよい。現像の方式には、ディップ方式、バトル方式、スプレー方式、高圧スプレー方式、ブラッシング、スラッピング等がある。高圧スプレー方式が、解像度向上のためには最も適している。
 現像後に行われる金属面のエッチングには、塩化第二銅溶液、塩化第二鉄溶液、アルカリエッチング溶液等を用いることができる。
 次に、本発明の感光性フィルムを用いた本発明の永久マスクレジスト及びその製造方法の好適な実施形態について説明する。
 上記のレジストパターンの形成方法と同様の方法により永久マスクレジストを形成することができる。上記現像工程終了後、はんだ耐熱性、耐薬品性等を向上させる目的で、高圧水銀ランプによる紫外線照射(紫外線照射工程)又は加熱(加熱工程)を行うことが好ましい。紫外線を照射させる場合は必要に応じてその照射量を調整することができる。例えば、0.05~10J/cm程度の照射量で照射を行うことができる。また、レジストパターンを加熱する場合は、130~200℃程度の範囲で15~90分程行われることが好ましい。
 紫外線照射及び加熱は、両方を行ってもよい。この場合、両方を同時に行ってもよく、いずれか一方を実施した後に他方を実施してもよい。紫外線照射と加熱とを同時に行う場合は、はんだ耐熱性及び耐薬品性をより良好に付与する観点から、60~150℃に加熱することが好ましい。
 本実施形態に係る永久マスクレジストは、基板にはんだ付けを施した後の配線の保護膜を兼ねる。また、本実施形態に係る永久マスクレジストは、保護膜としての諸特性を有し、プリント配線板用、半導体パッケージ基板用、フレキシブル配線板用の永久マスクレジストとして用いることが可能である。
 上記永久マスクレジストは、例えば、基板に対し、めっき、エッチング等を施す場合に、めっきレジスト、エッチングレジスト等として用いられる。その他、そのまま基板上に残されて、配線等を保護するための保護膜として用いられる。
 上述の露光工程において、上記基板上に形成された回路パターンを有する導体層の所定部分が未露光となるパターンを有するマスク又は描画データを用いて露光を行った場合、これを現像することにより、未露光部分が除去され、上記導体層の一部が露出した、開口パターンを有するレジストが得られる。その後、上述の永久マスクレジストを形成するのに必要な処理を行うことが好ましい。
[半導体パッケージ]
 本実施形態の感光性樹脂組成物は、半導体パッケージ用プリント配線板の永久マスクレジストの形成に好適に用いることができる。すなわち、本発明は、上述の感光性樹脂組成物の硬化物からなる永久マスクレジストを有する半導体パッケージを提供する。図1は、半導体パッケージ基板を示す模式断面図である。半導体パッケージ10は、半導体チップ搭載用基板50と、半導体チップ搭載用基板50に搭載された半導体チップ120とを備える。半導体チップ搭載用基板50と半導体チップ120とは、ダイボンドフィルム又はダイボンドペーストからなる接着剤117で接着されている。半導体チップ搭載用基板50は、絶縁基板100を備え、絶縁基板100の一方面上には、ワイヤボンディング用配線端子110と、配線端子110の一部が露出する開口部が形成された永久マスクレジスト90が設けられ、反対側の面上には、永久マスクレジスト90とはんだ接続用接続端子111とが設けられている。永久マスクレジスト90は、上記本実施形態の感光性樹脂組成物の硬化物からなる層である。はんだ接続用接続端子111は、プリント配線板との電気的な接続を行うために、はんだボール114を搭載している。半導体チップ120とワイヤボンディング用配線端子110とは、金ワイヤ115を用いて電気的に接続されている。半導体チップ120は、半導体用封止樹脂116によって封止されている。
 なお、本実施形態の感光性樹脂組成物は、フリップチップ型の半導体パッケージにも適用することができる。図2は、フリップチップ型の半導体パッケージ基板を示す模式断面図である。フリップチップ型の半導体パッケージ基板20は、半導体チップ搭載用基板50と、半導体チップ搭載用基板50に搭載された半導体チップ120とを備える。半導体チップ搭載用基板50と半導体チップ120とは、アンダーフィル剤118で充填されている。半導体チップ搭載用基板50は、絶縁基板100bと、絶縁基板100aと、永久マスクレジスト90とがこの順で積層された構成を有する。永久マスクレジスト90は、上記本実施形態の感光性樹脂組成物の硬化物からなる層である。絶縁基板100bは、絶縁基板100a側の表面にパターン化された銅配線80を有し、絶縁基板100aは、永久マスクレジスト90側の表面にパターン化された銅配線80を有する。絶縁基板100b上の銅配線80と、絶縁基板100a上の銅配線80の少なくとも一部とは、絶縁基板100a及び絶縁基板100bを貫通するように形成されたはんだ接続用接続端子111により電気的に接続されている。また、永久マスクレジスト90は、絶縁基板100a上の銅配線80を覆うように形成されているが、はんだ接続用接続端子111に対応する銅配線80上には、銅配線80が露出するように開口部112が形成されている。絶縁基板100a上の銅配線80は、半導体チップ120の半導体チップ搭載用基板50に対向する面に形成された銅配線80と、上記開口部112に設けられたはんだボール114を介して電気的に接続されている。
 本発明は、例えば、上記感光性樹脂組成物の応用に係る発明ということもできる。すなわち、本発明の一側面は、(A)エチレン性不飽和基とカルボキシル基を有する樹脂、(B)光重合開始剤、(C)エポキシ樹脂、(D)無機フィラー、及び(E)アミノ基を有する有機フィラーを含有する感光性樹脂組成物であって、(D)は、(d-1)平均粒子径が100nm~500nm、最大粒子径が2μm以下、屈折率が1.5~1.8である第一の無機フィラーと、(d-2)平均粒子径が5nm~200nm、屈折率が1.2以上1.5未満である第二の無機フィラーとを含有し、(E)は、平均粒子径が500nm以下、最大粒子径が2μm以下である有機フィラーを含有する、感光性樹脂組成物の、感光性フィルムの製造のための応用、である。
 また、本発明の他の側面は、(A)エチレン性不飽和基とカルボキシル基を有する樹脂、(B)光重合開始剤、(C)エポキシ樹脂、(D)無機フィラー、及び(E)アミノ基を有する有機フィラーを含有する感光性樹脂組成物であって、(D)は、(d-1)平均粒子径が100nm~500nm、最大粒子径が2μm以下、屈折率が1.5~1.8である第一の無機フィラーと、(d-2)平均粒子径が5nm~200nm、屈折率が1.2以上1.5未満である第二の無機フィラーとを含有し、(E)は、平均粒子径が500nm以下、最大粒子径が2μm以下である有機フィラーを含有する、感光性樹脂組成物の、永久マスクレジスト製造用感光性樹脂組成物としての応用、である。
 本発明の永久マスクレジストを備えた基板は、その後、半導体素子などの実装(例えば、ワイヤボンディング、C4はんだ接続等)がなされ、そして、パソコン等の電子機器へ装着される。
 以上、本発明をその実施形態に基づいて詳細に説明した。しかし、本発明は上記実施形態に限定されるものでなく、その要旨を逸脱しない範囲で様々な変形が可能である。
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1~13及び比較例1~9)
[感光性樹脂組成物溶液の調製]
 まず、実施例1~13及び比較例1~9について、それぞれ表1、表2に示す各成分を同表に示す配合量(質量部)で混合し、希釈剤としてメチルエチルケトン(MEK)を加えることにより、感光性樹脂組成物溶液を得た。なお、表中の各成分の詳細は下記のとおりである。
(A)成分:エチレン性不飽和基とカルボキシル基を有する樹脂
EXP-3133:ビスフェノールFノボラック型酸変性エポキシ樹脂(DIC社製、重量平均分子量7000、酸価63mgKOH/g)
EXP-3073:酸変性クレゾールノボラック型エポキシアクリレート(DIC社製、サンプル名)
UXE-3024:ウレタン変性ビスフェノールA型酸変性エポキシアクリレート(日本化薬株式会社製、重量平均分子量10000、酸価67mgKOH/g、商品名)
[重量平均分子量の測定]
 重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC)によって測定し、標準ポリスチレンの検量線を用いて換算することにより導出した。GPCの条件を以下に示す。
GPC条件
ポンプ:日立L-6000型(株式会社日立製作所製、製品名)
カラム:Gelpack GL-R420、Gelpack GL-R430、Gelpack
GL-R440(以上、日立化成株式会社製、製品名)
溶離液:テトラヒドロフラン
測定温度:40℃
流量:2.05mL/分
検出器:日立L-3300型RI(株式会社日立製作所製、製品名)
(B)成分:光重合開始剤
I907:2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF社製、商品名:IRGACURE 907)
DETX-S:2,4-ジエチルチオキサントン(日本化薬株式会社製、商品名:KAYACURE-DETX-S)
OXE-02:エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(BASF社製、商品名:IRGACURE OXE 02)
(C)成分:エポキシ樹脂
NC-3000H:ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名)
YSLV-80:ビスフェノールF型エポキシ樹脂(新日鐵化学社製、商品名)
(D)成分:無機フィラー
(d-1)平均粒子径が100nm~500nm、最大粒子径が2μm以下、屈折率が1.5~1.8である第一の無機フィラー
ASA:硫酸バリウム(日本ソルベイ社製、商品名)
HK-001:水酸化アルミニウム(昭和電工社製、商品名ハイジライトHK-001)
BMT-3LV:ベーマイト型水酸化アルミニウム粒子(河合石灰工業株式会社製、商品名)
CS-3N-A30:炭酸カルシウム(宇部マテリアルズ社製、商品名)
 何れのフィラーも湿式微粉砕機スターミルLMZ(アシザワファインテック社製)で、直径1.0mmのジルコニアビーズを用い、周速12m/sにて粉砕、分散して分散液を調製した。分散後の平均粒子径、及び最大粒子径は、レーザー回折散乱式マイクロトラック粒度分布計「MT-3100」(日機装社製)を用いて測定した。其々、平均184nm、最大0.58μm、平均480nm、最大1.73μm、平均393nm、最大1.15μm、平均135nm、最大0.88μmであり、平均粒子径が100nm~500nmであり、最大粒子径は2μm以下であることを確認した。屈折率は其々、1.64、1.57、1.65、1.68であり、屈折率が1.5~1.8であることを確認した。
(d-2)平均粒子径が5nm~200nm、屈折率が1.2以上1.5未満である第二の無機フィラー
シリカA:ゾルゲルナノシリカでありシランカップリング剤として、メタクリルシランである3-メタクリロキシプロピルトリメトキシシランでカップリング処理したサンプル2-N(アドマテックス社製、サンプル名)
シリカB:煙霧状シリカであるSIRMIBK(CIKナノテック社製、サンプル名)を用いた。
 分散状態は、動的光散乱式ナノトラック粒度分布計「UPA-EX150」(日機装社製)を用いて測定した。其々、平均粒子径が、50nm、100nmであり、最大粒子径は1μm以下となっていることを確認した。屈折率および熱膨張係数はともに1.45、0.5×10-6/℃であることを確認した。
(E)成分:アミノ基を有する有機フィラー(平均粒子径が500nm以下、最大粒子径が2μm以下である有機フィラー)
メラミン:微粉メラミン(日産化学工業社製、商品名)
ジシアンジアミド(三菱化学株式会社製、商品名)
 何れの有機フィラーについても(d-1)無機フィラーと同様の方法で粉砕、分散し、平均粒子径が500nm以下、最大粒子径が2.0μm以下となっていることを確認して用いた。レーザー回折型粒度分布計のMT3000(日機装社製)を用いて測定した。
(F)成分:ポリアミド構造を有するエラストマー
KAYAFLEX BPAM155(日本化薬株式会社製、商品名)
(その他)成分
エチレン性不飽和基を有する光重合性モノマーとして、DPHA(日本化薬株式会社製、商品名)、UX-5102D(日本化薬株式会社製、商品名)、ブタジエン系エラストマーであるエポリードPB3600(ダイセル化学工業社製、商品名)、重合禁止剤として、アンテージ500(川口化学工業社製、商品名)、顔料として、HCP-PM-5385(東洋インキ社製、商品名)を用いた。
 比較例のみに用いた成分について説明する。
(d-1)平均粒子径が100nm~500nm、最大粒子径が2μm以下、屈折率が1.5~1.8である第一の無機フィラー
ASA(分散条件1):硫酸バリウムであり、上記実施例と同条件で分散した無機フィラーを用いた(平均粒子径184nm、最大粒子径0.58μm、屈折率1.64)。
ASA(分散条件2):硫酸バリウムであり、分散時間を短くして調製した無機フィラーを用いた(平均粒子径345nm、最大粒子径3.20μm、屈折率1.64)。
SG-95:タルク(平均粒子径1.5μm、最大粒子径20.6μm、屈折率1.57)
 平均粒子径、及び最大粒子径は、レーザー回折散乱式マイクロトラック粒度分布計「MT-3100」(日機装社製)を用いて測定した。
(d-2)平均粒子径が5nm~200nm、屈折率が1.2以上1.5未満である第二の無機フィラー
シリカC:高純度溶融石英フィラーFLB-1「シリカ」(龍森社製)を用いた(平均粒子径520nm、屈折率1.64、熱膨張係数0.5×10-6/℃、最大粒子径15.2μm)。
 平均粒子径、及び最大粒子径は、動的光散乱式ナノトラック粒度分布計「UPA-EX150」(日機装社製)を用いて測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[感光性フィルムの製造]
 次いで、この感光性樹脂組成物溶液を支持体である16μm厚のポリエチレンテレフタレートフィルム(G2-16、帝人社製、商品名)上に均一に塗布することにより感光性樹脂組成物層を形成し、それを、熱風対流式乾燥機を用いて100℃で約10分間乾燥した。感光性樹脂組成物層の乾燥後の膜厚は、25μmであった。
 続いて、感光性樹脂組成物層の支持体と接している側とは反対側の表面上に、ポリエチレンフィルム(NF-15、タマポリ社製、商品名)を保護フィルムとして貼り合わせ、感光性フィルムを得た。
[感度、解像性の評価]
 12μm厚の銅箔をガラスエポキシ基材に積層したプリント配線板用基板(E-679、日立化成株式会社製、商品名)の銅表面を砥粒ブラシで研磨し、水洗後、乾燥した。このプリント配線板用基板上にプレス式真空ラミネータ(MVLP-500、名機製作所製、商品名)を用いて、プレス熱板温度70℃、真空引き時間20秒、ラミネートプレス時間30秒、気圧4kPa以下、圧着圧力0.4MPaの条件の下、上記感光性フィルムの保護フィルムを剥離して積層し、評価用積層体を得た。
 その後、室温で1時間以上放置した後、得られた評価用積層体の支持体上に、41段ステップタブレット(日立化成株式会社製)を密着させ、超高圧水銀ランプを光源としたダイレクトイメージング露光装置DXP-3512(オーク製作所社製)を用いて露光を行った。
 露光後から室温で30分間放置した後、支持体のポリエチレンテレフタレートフィルムを除去し、30℃の1質量%炭酸ナトリウム水溶液で未露光部の感光性樹脂組成物を60秒間スプレー現像し、感光性樹脂組成物の硬化膜を得た。現像後、41段ステップタブレットの残存ステップ段数が10.0となる露光エネルギー量を感光性樹脂組成物の感度(単位;mJ/cm)とした。この感度で露光したパターンを用いて、感光性樹脂組成物の評価を行った。
 感度の評価は、残存ステップ段数が10.0となる露光エネルギー量で行った。すなわち、200mJ/cm以下を「3」とし、200mJ/cm超300mJ/cm以下を「2」、300mJ/cm超の場合を「1」とした。なお、露光エネルギー量が小さいほど、高感度で露光に要する時間が短くなり、特にダイレクトイメージング露光におけるスループットがよくなる。
 解像性の評価は、残存ステップ段数が10.0となる露光エネルギー量で露光、スプレー現像し、現像処理後のレジストパターンに対する光学顕微鏡観察において、剥がれ及びよれが観測されないライン幅(単位:μm)のうち最も小さい幅を測定することで行った。ライン・アンド・スペースとして残ったライン幅(μm)の数値が小さいほど良好な値である。この最少幅を解像度(μm)として、結果を表3、表4に示した。
[銅密着性の評価]
 35μm厚の銅箔に対し、プレス式真空ラミネータ(MVLP-500、名機製作所製、商品名)を用いて、プレス熱板温度70℃、真空引き時間20秒、ラミネートプレス時間30秒、気圧4kPa以下、圧着圧力0.4MPaの条件の下、上記感光性フィルムの保護フィルムを剥離して積層し、評価用積層体を得た。その後、室温で1時間以上放置した後、得られた評価用積層体の支持体上に、41段ステップタブレット(日立化成株式会社製)を密着させ、残存ステップ段数が10.0となる露光エネルギー量を照射した。その後、30℃の1質量%炭酸ナトリウム水溶液で未露光部の感光性樹脂組成物を60秒間スプレー現像し感光性樹脂組成物の硬化膜を得た。その後、コンベア式UV照射機で1J/cm照射、次いで、熱風循環式乾燥機で160℃/1時間の熱キュアを行い、ポストキュアを行った。このようにして、銅箔上に永久マスクレジストを形成した。
 永久マスクレジストが形成された銅箔を、線幅5mmとなるようにカッターで切り出した。上記永久マスクレジスト部分を接着剤で固定し、銅箔引き剥がし試験を行い、銅密着性の評価を行った。試験は90℃方向引張試験で引張速度を50mm/分とし、測定装置として島津製作所製オートグラフAG-100Cを用いて行った。銅密着性は次の基準で評価した。銅箔引き剥がし強さ(単位:kN/m)が1.0以上である場合を「3」、0.7以上1.0未満の場合を「2」、0.7未満である場合を「1」とした。得られた結果を表3、表4に示した。
[熱膨張係数(CTE)の評価]
 上記「感度、解像性の評価」と同様にして作製した評価用積層体(感光性積層体)の全面を露光して、現像、紫外線照射、加熱処理まで行うことで、16μm厚のポリエチレンテレフタレートフィルム(G2-16、帝人株式会社製、商品名)上に、永久マスクレジストを形成した。次いで、カッターナイフで、永久マスクレジストが形成されたポリエチレンテレフタレートフィルムを、幅3mm、長さ30mmに切り出した。永久マスクレジスト上のポリエチレンテレフタレートを剥離し、熱膨張係数評価用永久マスクレジストを得た。
 TMA装置SS6000(セイコー・インスツルメンル株式会社製)を用いて、引張りモードでの熱膨張係数の測定を行った。引張り荷重は2g、スパン(チャック間距離)は15mm、昇温速度は10℃/分とした。まず、サンプル(熱膨張係数評価用永久マスクレジスト)を装置に装着し、室温(25℃)から160℃まで加熱し、15分間放置した。その後、-60℃まで冷却し、-60℃から250℃まで昇温速度10℃/分の条件で測定を行った。CTEは次の基準で評価した。25℃から200℃までの範囲で見られる変曲点をTgとし、その時の温度が、120℃以上のものを「3」、100℃以上120℃未満のものを「2」、100℃未満のものを「1」とした。
 CTEはTg以下の温度で得られる曲線の接線の傾きを用いた。実施例1で得られたCTEの値を基準値として、この基準値からの差が30%未満のものを「3」とし、30%以上50%未満のものを「2」、50%以上のものを「1」とした。結果を表3、表4に示した。
[HAST耐性の評価]
 コア材に12μm厚の銅箔をガラスエポキシ基材に積層したプリント配線板用基板(MCL-E-679FG、日立化成株式会社、商品名)、セミアディティブ配線形成用ビルドアップ材(AS-ZII、日立化成株式会社製、商品名)を用いて、ライン/スペースが8μm/8μmのくし型電極を作製し、これを評価基板とした。
 この評価基板におけるくし型電極上に、上記「感度、解像性の評価」と同様にして永久マスクレジストを形成した(くし型電極部分に永久マスクレジストが残るように露光し現像、紫外線照射、加熱処理を行い形成)。さらに、得られた永久マスクレジストを130℃、85%RH、6V条件下に200時間晒した。その後、抵抗値の測定とマイグレーションの発生の程度を100倍の金属顕微鏡により観察し、次の基準で評価した。
 すなわち、抵抗値が1.0×1010Ω以上が保持されており、永久マスクレジストにマイグレーションが発生しなかったものは「3」とし、抵抗値が1.0×1010Ω以上が保持されていたが、僅かにマイグレーションが発生したものは「2」、抵抗値が1.0×1010Ω未満となり、マイグレーションが大きく発生したものは「1」とした。結果を表3、表4に示した。
[クラック耐性の評価]
 上記「感度、解像性の評価」と同様にして作製した評価用積層体上に、2mm角のパターンを有するフォトデータをダイレクトイメージング露光装置DXP-3512(オーク製作所製)を使用して、41段ステップタブレット(日立化成株式会社製)の現像後の残存ステップ段数が10.0となるエネルギー量で露光を行った。次いで、常温(25℃)で1時間静置した後、上記評価用積層体基板上のポリエチレンテレフタレートフィルムを剥離し、30℃の1質量%炭酸ナトリウム水溶液で、最小現像時間(未露光部が現像される最小時間)の2.0倍の時間でスプレー現像を行い、パターンを有する感光性樹脂組成物の硬化膜を形成した。その後、コンベア式UV照射機で1J/cm照射、次いで、熱風循環式乾燥機で160℃/1時間の熱キュアを行い、ポストキュアを行った。こうして得られたパターンを有する永久マスクレジストが形成された評価基板をクラック耐性の評価基板として用いた。
 評価基板を、-65℃の大気中に15分間晒した後、180℃/分の昇温速度で昇温し、次いで、150℃の大気中に15分間晒した後、180℃/分の降温速度で降温する熱サイクルを1000回繰り返した。このような環境下に晒した後、評価基板の永久マスクレジストのクラック及び剥離程度を100倍の金属顕微鏡により観察し、次の基準でクラック耐性を評価した。
 すなわち、2mm角の開口部の10箇所を確認して永久マスクレジスト膜のクラック及び剥離を全く観察できなかったものは「3」とし、クラック及び剥離が観察されたのが10箇所中2箇所以下であるものを「2」、クラック及び剥離が観察されたのが10箇所中3箇所以上であるものを「1」とした。結果を表3、表4に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
10…半導体パッケージ、20…フリップチップ型半導体パッケージ、50…半導体チップ搭載用基板、80…銅配線、90…永久マスクレジスト、100a,100b…絶縁基板、110…ワイヤボンディング用配線端子、111…はんだ接続用接続端子、112…開口部、114…はんだボール、115…金ワイヤ、116…半導体用封止樹脂、117…接着剤、118…アンダーフィル剤、120…半導体チップ。

Claims (9)

  1.  (A)エチレン性不飽和基とカルボキシル基を有する樹脂、
    (B)光重合開始剤、
    (C)エポキシ樹脂、
    (D)無機フィラー、及び、
    (E)アミノ基を有する有機フィラーを含有する感光性樹脂組成物であって、
     下記条件(I)~(IV)を満たす感光性樹脂組成物。
    (I)(D)が、(d-1)第一の無機フィラー及び(d-2)第二の無機フィラーを含有する。
    (II)(d-1)の平均粒子径が100nm~500nm、最大粒子径が2μm以下、屈折率が1.5~1.8である。
    (III)(d-2)の平均粒子径が5nm~200nm、屈折率が1.2以上1.5未満である。
    (IV)(E)は、平均粒子径が500nm以下、最大粒子径が2μm以下である有機フィラーを含有する。
  2.  (F)ポリアミド構造を有するエラストマーを更に含有する、請求項1記載の感光性樹脂組成物。
  3.  (F)は、フェノール性水酸基含有ポリアミドとポリブタジエン/アクリロニトリルのブロック共重合体である、請求項2記載の感光性樹脂組成物。
  4.  (D)の含有量は、感光性樹脂組成物の全質量基準で25質量%以上70質量%以下であり、(d-1)の質量と(d-2)の質量との比が、1.0:0.1~1.0:5.0である、請求項1~3のいずれか一項に記載の感光性樹脂組成物。
  5.  (d-2)は、平均粒子径が5nm~100nmのシリカである、請求項1~4のいずれか一項に記載の感光性樹脂組成物。
  6.  (B)として、オキシムエステルを有する化合物及び芳香族ケトンを含有する、請求項1~5のいずれか一項に記載の感光性樹脂組成物。
  7.  請求項1~6のいずれか一項に記載の感光性樹脂組成物を支持体上に備える感光性フィルム。
  8.  請求項1~6のいずれか一項に記載の感光性樹脂組成物の硬化物からなり、プリント配線板用の基板上に形成される、永久マスクレジスト。
  9.  基板上に、請求項1~6のいずれか一項に記載の感光性樹脂組成物からなる感光層を設ける積層工程と、
     前記感光層に活性光線をパターン照射する露光工程と、
     前記露光工程後の前記感光層を現像する現像工程と、
    を備える、永久マスクレジストの製造方法。
PCT/JP2013/061774 2012-04-23 2013-04-22 感光性樹脂組成物、感光性フィルム、永久マスクレジスト及び永久マスクレジストの製造方法 WO2013161756A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014512553A JP6210060B2 (ja) 2012-04-23 2013-04-22 感光性樹脂組成物、感光性フィルム、永久マスクレジスト及び永久マスクレジストの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-098110 2012-04-23
JP2012098110 2012-04-23

Publications (1)

Publication Number Publication Date
WO2013161756A1 true WO2013161756A1 (ja) 2013-10-31

Family

ID=49483069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061774 WO2013161756A1 (ja) 2012-04-23 2013-04-22 感光性樹脂組成物、感光性フィルム、永久マスクレジスト及び永久マスクレジストの製造方法

Country Status (3)

Country Link
JP (1) JP6210060B2 (ja)
TW (1) TWI584070B (ja)
WO (1) WO2013161756A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034580A (ja) * 2012-08-07 2014-02-24 Ajinomoto Co Inc 樹脂組成物
WO2014136897A1 (ja) * 2013-03-07 2014-09-12 日立化成株式会社 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
JP2016012002A (ja) * 2014-06-27 2016-01-21 日立化成株式会社 感光性樹脂組成物の硬化物、それに用いる感光性樹脂組成物及び半導体装置搭載用基板の製造方法、半導体装置の製造方法
JP5941180B1 (ja) * 2015-03-20 2016-06-29 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2016153891A (ja) * 2015-02-18 2016-08-25 株式会社タムラ製作所 感光性樹脂組成物
KR20160108161A (ko) * 2015-03-04 2016-09-19 다이요 잉키 세이조 가부시키가이샤 에칭 레지스트 조성물 및 드라이 필름
JP2016186550A (ja) * 2015-03-27 2016-10-27 三洋化成工業株式会社 感光性樹脂組成物
JP2016222889A (ja) * 2015-06-03 2016-12-28 太陽インキ製造株式会社 エッチングレジスト組成物およびドライフィルム
JP2017082089A (ja) * 2015-10-28 2017-05-18 関西ペイント株式会社 印刷用レジスト組成物及びレジスト膜形成方法
JP2017219862A (ja) * 2017-08-29 2017-12-14 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、プリント配線板、及びプリント配線板の製造方法
WO2018143220A1 (ja) * 2017-02-01 2018-08-09 太陽インキ製造株式会社 光硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
KR20180109722A (ko) * 2017-03-28 2018-10-08 아지노모토 가부시키가이샤 감광성 수지 조성물
KR20180109726A (ko) * 2017-03-28 2018-10-08 아지노모토 가부시키가이샤 감광성 수지 조성물
KR20180109755A (ko) * 2017-03-28 2018-10-08 아지노모토 가부시키가이샤 감광성 수지 조성물
KR20180109731A (ko) * 2017-03-28 2018-10-08 아지노모토 가부시키가이샤 감광성 수지 조성물
JP2018173609A (ja) * 2017-03-31 2018-11-08 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2019108557A (ja) * 2019-03-15 2019-07-04 味の素株式会社 樹脂組成物
CN110300493A (zh) * 2018-03-22 2019-10-01 太阳油墨制造株式会社 干膜、固化物和电子部件
WO2020195843A1 (ja) * 2019-03-26 2020-10-01 太陽インキ製造株式会社 ドライフィルム、硬化物、および、電子部品
WO2020202656A1 (ja) * 2019-03-29 2020-10-08 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
TWI716502B (zh) * 2015-11-27 2021-01-21 日商田村製作所股份有限公司 感光性樹脂組成物
JP2022009428A (ja) * 2016-03-31 2022-01-14 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2022103237A (ja) * 2015-12-22 2022-07-07 昭和電工マテリアルズ株式会社 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211120A1 (ja) 2021-03-31 2022-10-06 太陽インキ製造株式会社 積層硬化性樹脂構造体、ドライフィルム、硬化物および電子部品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154351A (ja) * 1999-11-24 2001-06-08 Nippon Kayaku Co Ltd 感光性樹脂組成物及びこれを用いた感光性フイルム
JP2002287358A (ja) * 2001-03-28 2002-10-03 Nippon Paint Co Ltd 難燃性フォトソルダーレジスト組成物
WO2006004158A1 (ja) * 2004-07-07 2006-01-12 Taiyo Ink Mfg. Co., Ltd. 光硬化性・熱硬化性樹脂組成物とそれを用いたドライフィルム、及びその硬化物
JP2009102623A (ja) * 2007-10-01 2009-05-14 Sanei Kagaku Kk 無機フィラー及び有機フィラー含有硬化性樹脂組成物、並びにレジスト膜被覆プリント配線板及びその製造方法
JP2010014767A (ja) * 2008-07-01 2010-01-21 Denki Kagaku Kogyo Kk アルカリ現像型光硬化性・熱硬化性ソルダーレジスト組成物およびそれを用いた金属ベース回路基板
JP2011164460A (ja) * 2010-02-12 2011-08-25 Goo Chemical Co Ltd 感光性樹脂組成物、ソルダーレジスト用組成物及びプリント配線板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154351A (ja) * 1999-11-24 2001-06-08 Nippon Kayaku Co Ltd 感光性樹脂組成物及びこれを用いた感光性フイルム
JP2002287358A (ja) * 2001-03-28 2002-10-03 Nippon Paint Co Ltd 難燃性フォトソルダーレジスト組成物
WO2006004158A1 (ja) * 2004-07-07 2006-01-12 Taiyo Ink Mfg. Co., Ltd. 光硬化性・熱硬化性樹脂組成物とそれを用いたドライフィルム、及びその硬化物
JP2009102623A (ja) * 2007-10-01 2009-05-14 Sanei Kagaku Kk 無機フィラー及び有機フィラー含有硬化性樹脂組成物、並びにレジスト膜被覆プリント配線板及びその製造方法
JP2010014767A (ja) * 2008-07-01 2010-01-21 Denki Kagaku Kogyo Kk アルカリ現像型光硬化性・熱硬化性ソルダーレジスト組成物およびそれを用いた金属ベース回路基板
JP2011164460A (ja) * 2010-02-12 2011-08-25 Goo Chemical Co Ltd 感光性樹脂組成物、ソルダーレジスト用組成物及びプリント配線板

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034580A (ja) * 2012-08-07 2014-02-24 Ajinomoto Co Inc 樹脂組成物
US10111328B2 (en) 2013-03-07 2018-10-23 Htachi Chemical Company, Ltd. Photosensitive resin composition, dry film using same, printed wiring board, and method for producing printed wiring board
WO2014136897A1 (ja) * 2013-03-07 2014-09-12 日立化成株式会社 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
JP2016012002A (ja) * 2014-06-27 2016-01-21 日立化成株式会社 感光性樹脂組成物の硬化物、それに用いる感光性樹脂組成物及び半導体装置搭載用基板の製造方法、半導体装置の製造方法
JP2016153891A (ja) * 2015-02-18 2016-08-25 株式会社タムラ製作所 感光性樹脂組成物
KR20160108161A (ko) * 2015-03-04 2016-09-19 다이요 잉키 세이조 가부시키가이샤 에칭 레지스트 조성물 및 드라이 필름
KR102541614B1 (ko) * 2015-03-04 2023-06-09 다이요 홀딩스 가부시키가이샤 에칭 레지스트 조성물 및 드라이 필름
JP5941180B1 (ja) * 2015-03-20 2016-06-29 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2016186550A (ja) * 2015-03-27 2016-10-27 三洋化成工業株式会社 感光性樹脂組成物
JP2016222889A (ja) * 2015-06-03 2016-12-28 太陽インキ製造株式会社 エッチングレジスト組成物およびドライフィルム
JP2017082089A (ja) * 2015-10-28 2017-05-18 関西ペイント株式会社 印刷用レジスト組成物及びレジスト膜形成方法
TWI716502B (zh) * 2015-11-27 2021-01-21 日商田村製作所股份有限公司 感光性樹脂組成物
JP2022103237A (ja) * 2015-12-22 2022-07-07 昭和電工マテリアルズ株式会社 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
JP7461406B2 (ja) 2015-12-22 2024-04-03 株式会社レゾナック 感光性樹脂組成物、それを用いたドライフィルム、プリント配線板、及びプリント配線板の製造方法
JP2022009428A (ja) * 2016-03-31 2022-01-14 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
WO2018143220A1 (ja) * 2017-02-01 2018-08-09 太陽インキ製造株式会社 光硬化性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
KR20180109755A (ko) * 2017-03-28 2018-10-08 아지노모토 가부시키가이샤 감광성 수지 조성물
KR20180109731A (ko) * 2017-03-28 2018-10-08 아지노모토 가부시키가이샤 감광성 수지 조성물
KR20180109722A (ko) * 2017-03-28 2018-10-08 아지노모토 가부시키가이샤 감광성 수지 조성물
KR20180109726A (ko) * 2017-03-28 2018-10-08 아지노모토 가부시키가이샤 감광성 수지 조성물
KR102611555B1 (ko) 2017-03-28 2023-12-11 아지노모토 가부시키가이샤 감광성 수지 조성물
KR102559680B1 (ko) 2017-03-28 2023-07-27 아지노모토 가부시키가이샤 감광성 수지 조성물
KR102559679B1 (ko) 2017-03-28 2023-07-27 아지노모토 가부시키가이샤 감광성 수지 조성물
KR102554514B1 (ko) 2017-03-28 2023-07-13 아지노모토 가부시키가이샤 감광성 수지 조성물
JP2018173609A (ja) * 2017-03-31 2018-11-08 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
JP2017219862A (ja) * 2017-08-29 2017-12-14 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、プリント配線板、及びプリント配線板の製造方法
CN110300493A (zh) * 2018-03-22 2019-10-01 太阳油墨制造株式会社 干膜、固化物和电子部件
JP2019108557A (ja) * 2019-03-15 2019-07-04 味の素株式会社 樹脂組成物
CN113614153A (zh) * 2019-03-26 2021-11-05 太阳油墨制造株式会社 干膜、固化物和电子部件
WO2020195843A1 (ja) * 2019-03-26 2020-10-01 太陽インキ製造株式会社 ドライフィルム、硬化物、および、電子部品
WO2020202656A1 (ja) * 2019-03-29 2020-10-08 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品

Also Published As

Publication number Publication date
JPWO2013161756A1 (ja) 2015-12-24
TW201348873A (zh) 2013-12-01
JP6210060B2 (ja) 2017-10-11
TWI584070B (zh) 2017-05-21

Similar Documents

Publication Publication Date Title
JP6210060B2 (ja) 感光性樹脂組成物、感光性フィルム、永久マスクレジスト及び永久マスクレジストの製造方法
JP6879348B2 (ja) 感光性エレメント、積層体、永久マスクレジスト及びその製造方法並びに半導体パッケージの製造方法
JP6064905B2 (ja) 感光性樹脂組成物、感光性フィルム、永久レジスト及び永久レジストの製造方法
JP5472692B2 (ja) アルカリ現像可能な感光性樹脂組成物及びそれを用いた感光性フィルム
JP6143090B2 (ja) 感光性樹脂組成物、これを用いた感光性フィルム、永久レジスト及び永久レジストの製造方法
JP5582348B2 (ja) 感光性樹脂組成物及び感光性フィルム
JP5768495B2 (ja) 感光性樹脂組成物、感光性エレメント及び永久レジスト
JP5641293B2 (ja) 感光性樹脂組成物及び感光性フィルム、永久レジスト
JP6481251B2 (ja) 感光性樹脂組成物、及び感光性エレメント
JP5804336B2 (ja) 感光性樹脂組成物及び感光性フィルム、永久レジスト
WO2019230616A1 (ja) 感光性樹脂組成物、ドライフィルム、及びプリント配線板
JP2013115170A (ja) プリント配線板及びその製造方法並びに感光性樹脂組成物
JP5938869B2 (ja) プリント配線板及びその製造方法並びに感光性樹脂組成物
JP2016139804A (ja) 半導体装置及びその製造方法
JP2016012002A (ja) 感光性樹脂組成物の硬化物、それに用いる感光性樹脂組成物及び半導体装置搭載用基板の製造方法、半導体装置の製造方法
TW202413119A (zh) 感光性元件、積層體、永久抗蝕罩幕及其製造方法以及半導體封裝的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13782590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014512553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13782590

Country of ref document: EP

Kind code of ref document: A1