WO2013159583A1 - 热交换设备及其压力传感器 - Google Patents

热交换设备及其压力传感器 Download PDF

Info

Publication number
WO2013159583A1
WO2013159583A1 PCT/CN2013/070927 CN2013070927W WO2013159583A1 WO 2013159583 A1 WO2013159583 A1 WO 2013159583A1 CN 2013070927 W CN2013070927 W CN 2013070927W WO 2013159583 A1 WO2013159583 A1 WO 2013159583A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
pressure sensor
deformation
medium
spacer
Prior art date
Application number
PCT/CN2013/070927
Other languages
English (en)
French (fr)
Inventor
于盛铭
陈春宇
Original Assignee
浙江三花股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花股份有限公司 filed Critical 浙江三花股份有限公司
Publication of WO2013159583A1 publication Critical patent/WO2013159583A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0618Overload protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • G01L7/088Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type correcting or regulating means for flexible diaphragms

Definitions

  • the present invention relates to the field of heat exchange technology, and more particularly to a pressure sensor for a heat exchange device.
  • the invention also relates to a heat exchange apparatus comprising the above pressure sensor.
  • the liquid-sealed pressure sensor mainly transmits external pressure to the medium in the sealed cavity through the diaphragm, and the medium transmits the pressure to the silicon sensing chip, and the pressure signal is converted into an electrical signal through the silicon sensing chip and then exported to the outside through the guiding pin.
  • FIG. 1 is a schematic structural view of a typical liquid-sealed pressure sensor.
  • the liquid-sealed pressure sensor includes a susceptor 11 having open ends.
  • the upper end opening of the susceptor 11 has a sealing glass 12 fixed therein, and the lower end opening is welded with a diaphragm 13 by a pressure ring.
  • the sheet 13 and the sealing glass 12 form a sealed dielectric chamber 14; a sealing pin 15 is inserted through the sealing glass 12, and both ends of the guiding pin 15 penetrate the sealing glass 12 in the axial direction, and the lower end has an appropriate distance from the diaphragm 13
  • the side of the base 11 is provided with an oil filling hole 16 for filling the medium oil, and the oil filling hole 16 is provided with a sealing steel ball 17, which is sealed by sealing the steel ball after the medium oil of the pressure sensor fills the medium cavity;
  • the glass 12 is mounted on the inner side of the dielectric chamber 14 with a mounting member 18, and the sensing chip 19 is fixed to the mounting member 18, and is connected to the guide pin 15 by a metal wire (not shown).
  • the diaphragm 13 deforms the medium that presses the medium chamber 14, and transmits the pressure to the sensing chip 19 through the medium, the sensing chip 19 converts the received pressure signal into an electrical signal and directs the electrical signal to the outside through the guide pin 15, thereby achieving pressure detection.
  • the sensitivity of the pressure transmission is ensured, the thickness of the diaphragm is very thin, and the diaphragm is deformed under a small pressure, and if the cooling If the refrigerant system of the system fails, the pressure of the fluid to be laterally pressurized will be too large, which will cause the deformation of the diaphragm to be too large. When it exceeds its predetermined limit deformation, the diaphragm may contact the bottom end of the guide pin.
  • An object of the present invention is to provide a pressure sensor for a heat exchange device, in which a diaphragm is not excessively deformed, thereby avoiding an influence of excessive deformation of the diaphragm on detection accuracy and service life, and having high detection. Accuracy and service life.
  • Another object of the present invention is to provide a heat exchange apparatus including the above pressure sensor.
  • the present invention provides a pressure sensor including a base and a diaphragm covering an opening of the base, the inner side of the diaphragm being a medium cavity, and the outer side thereof is for a fluid chamber accommodating the fluid to be measured, further comprising a gasket disposed in the medium chamber, wherein the gasket is provided with a medium passage penetrating through the thickness direction; in a deformation direction of the diaphragm The distance from the maximum deformation position of the diaphragm to the spacer is less than or equal to the ultimate deformation of the diaphragm.
  • the electrical signal deriving component of the pressure sensor is a guide pin penetrating the base, the opening of the medium channel is opposite to the guide pin, and the opening size is larger than the cross-sectional dimension of the guide pin .
  • the number of the media channels is plural, and each of the media channels is evenly arranged along a circumferential direction of the spacer.
  • the electrical signal deriving component of the pressure sensor is a plurality of sets of guide pins penetrating the base, each of the guide pins being opposite to an opening of each of the media channels, and an opening size of the media channel Greater than the cross-sectional dimension of the guide pin opposite thereto.
  • the spacer is a curved surface that protrudes away from the diaphragm, and the curvature of the curved surface coincides with the deformation curvature of the diaphragm at the limit deformation amount.
  • the spacer is disposed in parallel with the diaphragm.
  • the distance between the maximum deformation position of the diaphragm and the spacer is 80% of the ultimate deformation of the diaphragm.
  • the distance between the diaphragm and the spacer in the direction of deformation thereof is less than or equal to the limit deformation of the diaphragm.
  • the spacer is made of a metal material and is soldered to the base by its outer edge.
  • the present invention also provides a heat exchange apparatus including a refrigerant pipe and a pressure sensor installed in the refrigerant pipe, the pressure sensor being a pressure sensor as described above.
  • the pressure sensor provided by the present invention comprises a base open at both ends, the base is provided with a sealing glass at one end opening, and a diaphragm is arranged at the other end opening; the base, the sealing glass and the The diaphragm forms a medium cavity with a medium therein, and at least one electrical signal guiding component is penetrated through the sealing glass, the electrical signal guiding component penetrates the sealing glass, and one end thereof is located in the dielectric cavity; the pressure sensor further comprises a medium channel
  • the gasket is disposed in the dielectric chamber between the diaphragm and the inner end surface of the electrical signal guiding member, and the maximum deformation position of the diaphragm is in the deformation direction of the diaphragm. The distance of the spacer is less than or equal to the predetermined amount of deformation of the diaphragm.
  • the diaphragm When the pressure sensor is in the working state, the diaphragm is deformed by the external pressure, and the medium between the diaphragm and the gasket is pressed by the deformation of the diaphragm, and enters the gasket of the medium cavity through the medium passage.
  • the area, thereby transferring the pressure to the medium in the area, thereby transferring the pressure to the sensing chip, and the sensing chip converts the received pressure signal into an electrical signal and transmits it to the electrical signal deriving component, and the electrical signal deriving component outputs the electrical signal Outgoing to achieve pressure detection.
  • the deformation amount at other positions is smaller than the deformation amount at the maximum deformation position, and the other positions of the diaphragm do not reach the limit deformation; at this time, the deformation of the diaphragm Direction, the maximum deformation position of the diaphragm to the spacer, small At or equal to the limit deformation amount of the diaphragm, therefore, the diaphragm is in contact with the gasket at the maximum deformation position, and the gasket prevents further deformation of the diaphragm, thereby preventing the diaphragm from being broken due to excessive deformation, thereby improving The service life of the diaphragm; at the same time, due to the barrier of the gasket, the contact between the diaphragm and the electrical signal-extracting component is avoided when the diaphragm is deformed, thereby avoiding the short circuit caused by the contact between the two, ensuring the accuracy of the pressure
  • the electrical signal deriving component of the pressure sensor provided by the present invention is a guide pin, and the opening of the medium passage is opposite to the guide pin; the gasket is under a large pressure A slight deformation may occur under the action, so that the medium passage is opposite to the guide pin, and even if the gasket is deformed, it will not contact with the guide pin, thereby further ensuring the normal operation of the pressure sensor.
  • the spacer is an arc surface convex toward the direction of the dielectric cavity, the curvature of the curved surface and the diaphragm when the ultimate deformation amount is reached.
  • the deformation curvature is consistent; since the edge of the diaphragm is fixed on the pedestal, and the pressure direction of the fluid to be tested may change, the deformation amount is different at the time of deformation, and the deformation amount in the middle is larger.
  • the gasket is designed to conform to the shape of the diaphragm after deformation, which can better meet the deformation range of the diaphragm within the normal measurement range, thereby ensuring the measurement range of the pressure sensor.
  • FIG. 1 is a schematic structural view of a typical liquid-sealed pressure sensor
  • FIG. 2 is a schematic view of a mechanism of a specific embodiment of a pressure sensor according to the present invention.
  • FIG. 3 is a schematic structural view of another specific embodiment of a pressure sensor according to the present invention.
  • FIG. 4 is a schematic structural view of a specific embodiment of a medium passage provided by the present invention.
  • FIG. 5 is a schematic structural view of another embodiment of a medium passage provided by the present invention.
  • the core of the present invention is to provide a pressure sensor for a heat exchange device, wherein the diaphragm does not excessively deform, thereby avoiding the influence of excessive deformation of the diaphragm on the detection accuracy and the service life, and having high detection. Accuracy and service life.
  • Another core of the present invention is to provide a heat exchange apparatus including the above pressure sensor.
  • FIG. 2 is a schematic diagram of a mechanism of a specific embodiment of a pressure sensor according to the present invention.
  • the pressure sensor provided by the present invention includes a base 21, and the upper and lower ends of the base 21 respectively have an opening portion, and the upper end opening of the base 21 is provided with a sealing glass 22 at a lower end thereof.
  • a diaphragm 23 is disposed at the opening, the sealing glass 22 completely seals the upper end opening portion, the diaphragm 23 completely covers the lower end opening portion, and the base 21, the sealing glass 22 and the diaphragm 23 form a medium cavity 24 which is sealed during operation.
  • the medium chamber 24 is filled with a medium for transmitting pressure, and the base 21 is provided with a medium filling hole 26 through which the medium is injected into the medium chamber and sealed by the sealing steel ball 27; the inner side of the diaphragm 23 is a medium chamber.
  • each set of guide pins includes four guide pins, one of which is a positive lead pin and one of which is a negative lead pin, and the positive and negative lead pins excite an electrical signal on the sensing chip by a difference in level, and The remaining two guide pins are led out; the sealing glass 22 is mounted on the inner side of the dielectric chamber 24 with a mounting member 28, and the sensing chip is fixed to the mounting member 28, and passes through the metal wire (not shown) with the guide pin 25.
  • the spacers 29 are disposed in the dielectric chamber 24, and the spacers 29 are provided with a plurality of media passages 291.
  • the shape and specifications of the media passages 291 should be able to freely pass the medium.
  • the spacers 29 are disposed in the dielectric chamber and are located in the diaphragm. 23 between the inner end surface of the guide pin 25; in the deformation direction of the diaphragm, the distance from the maximum deformation position of the diaphragm 23 to the spacer 29 is less than or equal to the limit deformation amount of the diaphragm 23; obviously, the above distance The limit should be the distance the diaphragm is in a non-deformed condition.
  • the electrical signal deriving component is also not limited to the guide pin, and may be other components conventionally used in the art to transmit an electrical signal, for example, passing between the sensing chip and the external receiving module through the base 21. Wire connection, etc.
  • the above-mentioned limit deformation amount refers to a maximum deformation amount capable of ensuring that the diaphragm does not excessively deform (ie, does not cause the diaphragm to rupture or come into contact with the guide pin), and it should be understood that when the deformation of the diaphragm is less than or equal to the limit When the deformation amount, the deformation of the diaphragm does not cause adverse effects such as cracking, and when the deformation of the diaphragm is larger than the ultimate deformation amount, the deformation of the diaphragm may cause adverse effects such as diaphragm rupture; The value should be determined according to the actual situation such as the distance between the diaphragm and the conductive signal-derived component and the elastic modul
  • the cross section of the fluid input pipe and the diaphragm to be tested are both circular, and the pressure of the fluid is equalized, and the maximum deformation position of the diaphragm is mostly its geometric center position; when the pressure of the fluid to be measured is pressurized In the case of unevenness, the maximum deformation position of the diaphragm may also be other positions of the diaphragm.
  • the terms "upper and lower” as used herein are based on the orientation of the drawings, and are merely for convenience of description, and are not limited. In other embodiments, the upper and lower directions may be opposite to the above.
  • the pressure sensor When the pressure sensor is placed obliquely, it is not limited to being directly above and below; the “inner and eve" orientations referred to in the text are referenced to the base 21, and the inside of the base 21 is the inner side, and the base 21 The outer part is the outer side, and the inner and outer directions should be understood as a kind of orientation limitation.
  • the outer edge of the diaphragm 23 is fixed to the base 21, the closer the diaphragm 23 is to the base 21, the smaller the amount of deformation when it is pressed, and the maximum deformation position of the diaphragm 23 is generally located at the center of the diaphragm 23. That is, the position farthest from the susceptor 21, when the maximum deformation position does not reach the limit deformation amount, the other positions necessarily fail to reach the limit deformation amount, and therefore, it is only necessary to ensure that the maximum deformation position of the diaphragm 23 and the spacer 29 are deformed.
  • the distance in the direction is less than or equal to the limit deformation amount of the diaphragm 23, and when the maximum deformation position of the diaphragm 23 is at the limit deformation amount or before contact with the spacer 29, the spacer 29 can realize the function of the protection diaphragm 23.
  • the distance between the other positions of the diaphragm 23 and the spacer 29 can be arbitrarily set.
  • the distance between the diaphragm 23 and the spacer 29 in the direction of its deformation may be less than or equal to the ultimate deformation of the diaphragm 23.
  • the distance between the maximum deformation position of the diaphragm 23 and the spacer 29 is 80% of the ultimate deformation amount of the diaphragm 23; When the diaphragm does not reach the limit deformation amount, it is protected, and the excessive deformation of the diaphragm is further avoided. Obviously, the above distance should be defined as the distance the diaphragm is in a non-deformed condition.
  • the gasket 29 may be made of a metal material and welded to the base 21 through its outer edge to ensure the reliability of the connection, and the welding process is relatively simple and the precision is not high.
  • the mounting manner of the spacer 29 and the base 21 is not limited to the manner of soldering, and may be other conventionally used mounting methods in the art.
  • a card slot may be opened at a corresponding position of the base 21, and the spacer may be The 29 card is mounted in the card slot on the base 21.
  • the spacer 29 is preferably a rigid material of various materials, such as metal or wood, or a flexible material having a small amount of elastic deformation, such as rubber or the like.
  • the diaphragm 23 When the pressure sensor is in the working state, the diaphragm 23 is deformed by the external pressure, and the medium between the diaphragm 23 and the spacer 29 enters the medium chamber through the medium passage 291 under the deformation of the diaphragm 23.
  • the area above the spacer 29 of 24, thereby transferring pressure to the medium in the area, thereby transferring the pressure to the sensing chip 210, and the sensing chip 210 converts the received pressure signal into an electrical signal and transmits it to the electrical signal deriving unit.
  • the electrical signal deriving component transmits the electrical signal to achieve pressure detection.
  • the deformation amount at other positions is smaller than the deformation amount at the maximum deformation position, and the other positions of the diaphragm do not reach the limit deformation; at this time, the deformation of the diaphragm In the direction, the distance between the maximum deformation position of the diaphragm and the spacer is less than or equal to the limit deformation of the diaphragm. Therefore, the diaphragm contacts the gasket at the maximum deformation position, and the gasket blocks the diaphragm.
  • the further deformation avoids the cracking of the diaphragm due to excessive deformation, thereby improving the service life of the diaphragm; at the same time, due to the barrier of the gasket, the contact between the diaphragm and the electrical signal-extracting component is avoided, thereby avoiding two
  • the short circuit caused by the contact ensures the accuracy of the pressure detection and improves the safety performance of the pressure sensor.
  • FIG. 3 is a schematic structural diagram of another embodiment of a pressure sensor according to the present invention
  • FIG. 4 is a specific embodiment of a medium channel provided by the present invention
  • FIG. 5 is a schematic structural view of another embodiment of a medium passage provided by the present invention.
  • the spacer 29 may be an arcuate surface that protrudes toward the dielectric cavity 24, and the curvature of the curved surface and the diaphragm 23 reach an ultimate deformation amount.
  • the deformation curvature of the time coincides; since the edge of the diaphragm is fixed on the base 21, and the pressure direction of the fluid to be tested may change, the deformation amount of each of the deformations is not the same.
  • the deformation of the middle part is large, and the gasket is designed to conform to the shape of the diaphragm after deformation, which can better satisfy the deformation range of the diaphragm within the normal measurement range, thereby ensuring the measurement range of the pressure sensor.
  • the spacer 29 is not limited to the above-described form, and may be other arrangements such as the spacer 29 shown in Fig. 1 being disposed in parallel with the diaphragm 23.
  • the opening of the medium passage 291 is opposite to the guide pin 25, and the opening size of the medium passage is larger than the cross-sectional size of the guide pin; the gasket may also undergo slight deformation under the action of a large pressure, so that the medium passage and the guide pin In contrast, even if the gasket is deformed, it will not come into contact with the guide pin, thereby further ensuring the normal operation of the pressure sensor.
  • the medium passage 291 may not be opposed to the guide pin 25, and as long as the medium can pass through the medium passage 291, the function of transmitting pressure can be realized, but the sensitivity may be affected.
  • the number of the medium passages may be plural, and each of the medium passages 291 is evenly arranged along the circumferential direction of the gasket 29 so that the medium flows quickly and evenly.
  • each set of guide pins includes a positive guide pin, a negative guide pin and an output guide pin, and the guide pin can be set in multiple groups.
  • each set of guide pins or each guide The needle may have a corresponding oil passage corresponding thereto, and the opening size of the oil passage should be larger than the cross-sectional size of the opposite guide needle.
  • the cross section of the medium passage 291 may be an arcuate elongated hole, and the cross section of the medium passage 291 may be other shapes, such as a circular shape as shown in FIG. 4, or a square shape or the like.
  • each of the medium passages 291 is evenly arranged along the circumferential direction of the spacer 29.
  • the present invention also provides a heat exchange heat reserve including the above-mentioned pressure sensor.
  • a heat exchange heat reserve including the above-mentioned pressure sensor.
  • the heat exchange device may be a refrigeration system such as an air conditioner, a refrigerator or a chiller, or a heat pump unit such as a heat pump air conditioner.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

一种压力传感器,包括基座(21)和覆盖于基座(21)开口部的膜片(23),膜片(23)的内侧为介质腔(24),其外侧为用于容纳待测压流体的流体腔;位于介质腔(24)内、且开设有介质通道(291)的垫片(29);在膜片(23)的变形方向上,膜片(23)的最大变形位置到垫片(29)的距离小于或者等于膜片(23)的极限变形量。还公开了一种包括该压力传感器的热交换设备。

Description

热交换设备及其压力传感器
[0001] 本申请要求于 2012 年 4 月 28 日提交中国专利局、 申请号为 201210133656.1、发明名称为"一种热交换设备及其压力传感器"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
[0002] 本发明涉及热交换技术领域, 特别涉及一种用于热交换设备的压 力传感器。 本发明还涉及一种包括上述压力传感器的热交换设备。
背景技术
[0003] 随着我国经济建设的快速发展, 涉及热交换领域的空调制冷、 热 泵空调等行业不断朝着多元化、 多功能的方向发展。 在各种热交换设备 中, 由于工作时流动着具有压力的介质, 在设备工作过程中需要通过监 测管路流体压力的变化判断工作状况, 因此, 压力传感器是热交换设备 中不可或缺的重要部件。 液封式压力传感器主要通过膜片将外部压力传 递给密封腔内的介质, 介质再将压力传递给硅感应芯片, 并通过硅感应 芯片将压力信号转换成电信号后通过导针导出到外部。
[0004] 请参考图 1 , 图 1为一种典型的液封式压力传感器的结构示意图。
[0005] 图示液封式压力传感器包括两端开口的基座 11 ,基座 11的上端开 口部内固定密封玻璃 12, 且下端开口部通过压环焊接有膜片 13, 基座侧 壁、膜片 13和密封玻璃 12形成密封的介质腔 14; 密封玻璃 12上贯穿有 导针 15, 导针 15的两端沿轴向贯通于所述密封玻璃 12, 其下端与膜片 13 具有适当的距离, 基座 11 的侧面开设有用于填充介质油的油填充孔 16, 该油填充孔 16内设置有密封钢球 17, 当压力传感器的介质油充满介 质腔后, 通过密封钢球焊接密封; 密封玻璃 12位于介质腔 14的内侧安 装有搭载部件 18, 感应芯片 19固定在上述搭载部件 18上, 并与上述导 针 15通过金属线(图中未示出)连接。
[0006] 当管路中待侧压流体的压力作用于膜片 13上时, 膜片 13变形挤 压介质腔 14 的介质, 并通过介质将压力传递到感应芯片 19, 感应芯片 19将接收到的压力信号转变为电信号,并将该电信号通过导针 15导出到 外部, 从而实现压力的检测。
[0007] 在上述压力传感器中, 为了降低压力在传递过程中的能量损失, 保证压力传递的灵敏度, 膜片的厚度非常薄, 膜片在很小的压力作用下 就会发生变形, 而如果制冷系统的冷媒系统发生故障, 会导致待侧压流 体压力过大, 进而导致膜片的变形量过大, 当超过其预定的极限变形量 时, 膜片可能会与导针底端相接触, 也可能引起膜片破裂; 由于膜片为 金属材料, 当膜片与导针相接触时, 会造成正负极的导针相连而发生短 路, 致使系统检出压力出现错误, 影响检测精度; 当膜片发生破裂时, 会导致压力传感器失效, 降低压力传感器的使用寿命。
[0008] 因此, 如何避免膜片的过度变形, 提高压力传感器的检测精度, 延长压力传感器的使用寿命, 就成为本领域技术人员亟须解决的问题。
发明内容
[0009] 本发明的目的是提供一种用于热交换设备的压力传感器, 其膜片 不会发生过度变形, 从而避免了膜片过度变形对检测精度和使用寿命的 影响, 具有较高的检测精度和使用寿命。 本发明的另一目的是提供一种 包括上述压力传感器的热交换设备。
[0010] 为解决上述技术问题, 本发明提供一种压力传感器, 包括基座和 覆盖于所述基座的开口部的膜片, 所述膜片的内侧为介质腔, 且其外侧 为用于容纳待测压流体的流体腔, 还包括设于所述介质腔内的垫片, 所 述垫片上开设有沿厚度方向将其贯通的介质通道; 在所述膜片的变形方 向上, 所述膜片的最大变形位置到所述垫片的距离, 小于或者等于所述 膜片的极限变形量。
[0011] 优选地, 所述压力传感器的电信号导出部件为贯通所述基座的导 针, 所述介质通道的开口与所述导针相对, 且开口尺寸大于所述导针的 横截面尺寸。
[0012] 优选地, 所述介质通道的数目为多个, 且各所述介质通道沿所述 垫片的周向均匀布置。 [0013] 优选地, 所述压力传感器的电信号导出部件为贯通所述基座的多 组导针, 各所述导针分别与各所述介质通道的开口相对, 所述介质通道 的开口尺寸大于与其相对的所述导针的横截面尺寸。
[0014] 优选地, 所述垫片为向远离所述膜片的方向凸起的弧形面, 且该 弧形面的弧度与所述膜片在极限变形量时的变形弧度相吻合。
[0015] 优选地, 所述垫片与所述膜片平行设置。
[0016] 优选地, 在所述膜片的变形方向上, 所述膜片的最大变形位置与 所述垫片的距离, 为所述膜片的极限变形量的 80%。
[0017] 优选地, 所述膜片的各处与所述垫片在其变形方向上的距离, 均 小于或者等于所述膜片的极限变形量。
[0018] 优选地, 所述垫片为金属材料, 且通过其外缘焊接在所述基座上。
[0019] 本发明还提供一种热交换设备, 包括冷媒管道和安装于所述冷媒 管道中的压力传感器, 所述的压力传感器为如上所述的压力传感器。
[0020] 本发明所提供的压力传感器包括两端开口的基座, 基座的一端开 口处安装有密封玻璃, 其另一端开口处设有膜片; 所述基座、 所述密封 玻璃和所述膜片形成内有介质的介质腔, 密封玻璃上贯穿有至少一个电 信号导出部件, 电信号导出部件贯通所述密封玻璃, 且其一端位于介质 腔内; 该压力传感器还包括开设有介质通道的垫片, 所述垫片设置于介 质腔内, 位于所述膜片与所述电信号导出部件的内端面之间, 在膜片的 变形方向上, 所述膜片的最大变形位置到所述垫片的距离, 小于或者等 于所述膜片的预定变形量。
[0021] 压力传感器处于工作状态时, 膜片在外界压力的作用下发生变形, 膜片与垫片之间的介质在膜片变形的挤压下, 通过介质通道进入介质腔 的垫片之上的区域, 从而将压力传递至该区域内的介质, 进而将压力传 递至感应芯片, 感应芯片将接收到的压力信号转换成电信号并传递给电 信号导出部件, 电信号导出部件将该电信号传出, 以实现压力检测。
[0022] 当膜片的最大变形位置达到极限变形量时, 其他位置的变形量均 小于该最大变形位置的变形量, 膜片的其他位置并未达到极限变形; 此 时, 在膜片的变形方向上, 膜片的最大变形位置到所述垫片的距离, 小 于或者等于所述膜片的极限变形量, 因此, 膜片在该最大变形位置与垫 片相接触, 垫片阻止了膜片的进一步变形, 避免了膜片由于过度变形而 发生破裂, 从而提高了膜片的使用寿命; 同时, 由于垫片的阻隔, 避免 了膜片变形时与电信号导出部件发生接触, 从而避免了两者接触导致的 短路, 保证了压力检测的准确性, 提高了压力传感器的安全性能。
[0023] 在一种优选的实施方式中, 本发明所提供的所述压力传感器的电 信号导出部件为导针, 所述介质通道的开口与所述导针相对; 垫片在较 大压力的作用下也可能发生微量的变形, 令介质通道与导针相对, 即便 垫片发生变形也不会与导针相接触, 从而进一步保证了压力传感器的正 常工作。
[0024] 在另一种优选的实施方式中, 所述垫片为向所述介质腔的方向凸 起的弧形面, 该弧形面的弧度与所述膜片在达到极限变形量时的变形弧 度相吻合; 由于膜片的边缘处固定在基座上, 且待测流体的压力方向可 能会发生变化, 因此, 其在变形时各处的变形量不尽相同, 中部的变形 量较大, 将垫片设计成与膜片变形后相吻合的形状, 能够更好地满足膜 片在正常测量范围内的变形幅度, 从而保证压力传感器的测量范围。
附图说明
[0025] 图 1为一种典型的液封式压力传感器的结构示意图;
[0026] 图 2为本发明所提供的压力传感器一种具体实施方式的机构示意 图;
[0027] 图 3 为本发明所提供的压力传感器另一种具体实施方式的结构示 意图;
[0028] 图 4为本发明所提供的介质通道一种具体实施方式的结构示意图; [0029] 图 5 为本发明所提供的介质通道另一种具体实施方式的结构示意 图。
具体实施方式 [0030] 本发明的核心是提供一种用于热交换设备的压力传感器, 其膜片 不会发生过度变形, 从而避免了膜片过度变形对检测精度和使用寿命的 影响, 具有较高的检测精度和使用寿命。 本发明的另一核心是提供一种 包括上述压力传感器的热交换设备。
[0031] 为了使本技术领域的人员更好地理解本发明的技术方案, 下面结 合附图和具体实施方式对本发明作进一步的详细说明。
[0032] 请参考图 2,图 2为本发明所提供的压力传感器一种具体实施方式 的机构示意图。
[0033] 在一种具体实施方式中,本发明所提供的压力传感器包括基座 21 , 基座 21的上下两端分别具有开口部, 基座 21的上端开口部内安装有密 封玻璃 22, 其下端开口部处设有膜片 23 , 密封玻璃 22完全封住上端开 口部, 膜片 23完全覆盖住下端开口部, 基座 21、 密封玻璃 22和膜片 23 形成在工作时密封的介质腔 24, 介质腔 24内充满用于传递压力的介质, 基座 21上开设有介质填充孔 26, 介质通过该介质填充孔 26注入介质腔 后, 通过密封钢球 27密封; 膜片 23的内侧为介质腔 24, 且其外侧为用 于容纳待测压流体的流体腔,密封玻璃 22的轴向贯穿有至少一组导针 25 , 导针 25的两端贯通该密封玻璃 22, 且其下端位于上述介质腔 24内, 每 组导针包括四个导针, 其中一个是正极导针, 一个是负极导针, 正负极 导针在感应芯片上通过电平的差值激发出电信号, 并通过其余的两个导 针导出; 密封玻璃 22位于介质腔 24的内侧安装有搭载部件 28 , 感应芯 片固定在上述搭载部件 28上, 并与上述导针 25通过金属线(图中未示 出)连接; 介质腔 24内设置有垫片 29, 垫片 29上开设有若干介质通道 291 , 介质通道 291的形状和规格应该能够实现上述介质自由通过, 垫片 29设置于介质腔内, 位于膜片 23与导针 25的内端面之间; 在膜片的变 形方向上, 膜片 23的最大变形位置到垫片 29的距离, 小于或者等于膜 片 23的极限变形量; 显然地, 上述距离的限定应该是膜片处于非变形工 况下的距离。
[0034] 电信号导出部件也不局限于导针, 也可以为本领域中常规使用的 其他能够将电信号传递出去的元件, 例如在感应芯片与外界接收模块之 间通过穿过基座 21的导线连接等方式。 [0035] 上述极限变形量是指, 能够保证膜片不发生过度变形 (即不造成 膜片破裂或者与导针相接触) 的最大变形量, 应该理解为, 当膜片的变 形小于或者等于极限变形量时, 膜片的变形不会产生破裂等不良后果, 而当膜片的变形大于该极限变形量时, 膜片的变形将可能会产生膜片破 裂等不良后果; 该极限变形量的具体数值应根据膜片与导针等电信号导 出部件之间的距离和膜片材料的弹性系数等实际情况确定, 在此不作限 定。
[0036] 在通常情况下, 待测流体输入管道和膜片的横截面均为圓形, 且 流体的压力均衡, 膜片的最大变形位置多为其几何中心位置; 当待测压 流体的压力不均衡时, 膜片的最大变形位置也可能是膜片的其他位置。
[0037] 需要指出的是, 文中所涉及的 "上、 下" 是基于附图的方位, 仅 为了描述方便, 并非一种限定, 在其他实施例中, 与文中所涉的上下方 向可能是相反的, 在压力传感器倾斜放置时, 也不局限于为正上方和正 下方; 文中所涉及的 "内、 夕卜" 方位是以基座 21为参照的, 基座 21的 内部为内侧, 基座 21的外部为外侧, 内外方向应该理解为一种方位的限 定。
[0038] 由于膜片 23的外缘固定于基座 21 ,膜片 23越靠近基座 21其在受 压时的变形量越小, 通常膜片 23的最大变形位置位于膜片 23的中央位 置, 也就是距离基座 21最远的位置, 当该最大变形位置未达到极限变形 量时, 其他位置必然未达到极限变形量, 因此, 只要保证膜片 23的最大 变形位置与垫片 29在变形方向上的距离, 小于或者等于膜片 23的极限 变形量,在膜片 23的最大变形位置处于极限变形量时或者之前与垫片 29 发生接触, 垫片 29即能够实现保护膜片 23的作用, 膜片 23其他位置与 垫片 29之间的距离可以随意设置。
[0039] 显然地, 膜片 23的各处与垫片 29在其变形方向上的距离, 可以 均小于或者等于所述膜片 23的极限变形量。
[0040] 具体地, 在所述膜片的变形方向上, 所述膜片 23的最大变形位置 与所述垫片 29的距离, 为所述膜片 23的极限变形量的 80%; 这样, 在 膜片并未达到极限变形量时即对其实施保护, 进一步避免了膜片的过度 变形。 显然地, 上述距离的限定应该是膜片处于非变形工况下的距离。 [0041] 垫片 29可以为金属材料, 且通过其外缘焊接在基座 21上, 以保 证其连接可靠性, 且焊接的工艺过程较为筒单, 精度要求不高。 显然地, 垫片 29与基座 21的安装方式也不局限于焊接的方式, 也可以为本领域 中其他常规使用的安装方式, 例如可以在基座 21的相应位置开设卡槽, 将垫片 29卡装于基座 21上的卡槽内。
[0042] 垫片 29优选为各种材质的刚性材料, 例如金属或者木质等, 也可 以为弹性变形量较小的柔性材料, 例如橡胶等。
[0043] 压力传感器处于工作状态时, 膜片 23在外界压力的作用下发生变 形, 膜片 23与垫片 29之间的介质在膜片 23变形的挤压下, 通过介质通 道 291进入介质腔 24的垫片 29之上的区域, 从而将压力传递至该区域 内的介质, 进而将压力传递至感应芯片 210, 感应芯片 210将接收到的压 力信号转换成电信号并传递给电信号导出部件, 电信号导出部件将该电 信号传出, 以实现压力检测。
[0044] 当膜片的最大变形位置达到极限变形量时, 其他位置的变形量均 小于该最大变形位置的变形量, 膜片的其他位置并未达到极限变形; 此 时, 在膜片的变形方向上, 膜片的最大变形位置与所述垫片的距离, 小 于或者等于所述膜片的极限变形量, 因此, 膜片在该最大变形位置与垫 片相接触, 垫片阻止了膜片的进一步变形, 避免了膜片由于过度变形而 发生破裂, 从而提高了膜片的使用寿命; 同时, 由于垫片的阻隔, 避免 了膜片变形时与电信号导出部件发生接触, 从而避免了两者接触导致的 短路, 保证了压力检测的准确性, 提高了压力传感器的安全性能。
[0045] 还可以对本发明所提供的压力传感器进行进一步的改进。
[0046] 请参考图 3、 图 4和图 5 , 图 3为本发明所提供的压力传感器另一 种具体实施方式的结构示意图; 图 4 为本发明所提供的介质通道一种具 体实施方式的结构示意图; 图 5 为本发明所提供的介质通道另一种具体 实施方式的结构示意图。
[0047] 在另一种具体实施方式中, 垫片 29可以为向所述介质腔 24的方 向凸起的弧形面, 且该弧形面的弧度与所述膜片 23在达到极限变形量时 的变形弧度相吻合; 由于膜片的边缘处固定在基座 21上, 且待测流体的 压力方向可能会发生变化, 因此, 其在变形时各处的变形量不尽相同, 中部的变形量较大, 将垫片设计成与膜片变形后相吻合的形状, 能够更 好地满足膜片在正常测量范围内的变形幅度, 从而保证压力传感器的测 量范围。
[0048] 垫片 29也不局限于上述形式, 也可以为其他设置形式例如, 如图 1所示的垫片 29与膜片 23平行设置。
[0049] 介质通道 291的开口与导针 25相对, 且介质通道的开口尺寸大于 导针的横截面尺寸; 垫片在较大压力的作用下也可能发生微量的变形, 令介质通道与导针相对, 即便垫片发生变形也不会与导针相接触, 从而 进一步保证了压力传感器的正常工作。 [0050] 显然地, 介质通道 291也可以不与导针 25相对, 只要能够使介质 通过介质通道 291 , 也能够实现传递压力的功能, 只是灵敏度会有影响。
[0051] 所述介质通道的数目可以为多个, 且各所述介质通道 291 沿所述 垫片 29的周向均匀布置, 以便介质快速均匀地流通。
[0052] 为满足使用目的, 导针需成组设置, 每组导针包括正极导针、 负 极导针和输出导针, 导针可以设置多组, 此时, 每组导针或者每个导针 可以均有相应的过油通道与之相对应, 过油通道的开口尺寸应大于与之 相对的导针的横截面尺寸。
[0053] 如图 3所示, 介质通道 291的横截面可以为弧形长条孔, 介质通 道 291的横截面也可以为的其他形状, 例如如图 4所示的圓形, 或者方 形等。
[0054] 且各所述介质通道 291沿所述垫片 29的周向均匀布置。
[0055] 除了上述压力传感器, 本发明还提供一种包括上述压力传感器的 热交换热备, 该热交换设备的其他各部分结构请参考现有技术, 在此不 再赘述。
[0056] 具体地, 该热交换设备可以为空调、 冷藏拒或者冷水机组等制冷 系统, 也可以为热泵空调等热泵机组。
[0057] 以上对本发明所提供的一种热交换设备及其压力传感器进行了详 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。 应当 指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理的前 提下, 还可以对本发明进行若干改进和修饰, 这些改进和修饰也落入本 发明权利要求的保护范围内。

Claims

权 利 要 求
1. 一种压力传感器, 包括基座和覆盖于所述基座的开口部的膜片, 所述膜片的内侧为介质腔, 且其外侧为用于容纳待测压流体的流体腔; 其特征在于, 还包括设于所述介质腔内的垫片, 所述垫片上开设有沿厚 度方向将其贯通的介质通道; 在所述膜片的变形方向上, 所述膜片的最 大变形位置到所述垫片的距离, 小于或者等于所述膜片的极限变形量。
2、 根据权利要求 1所述的压力传感器, 其特征在于, 所述压力传感 器的电信号导出部件为贯通所述基座的导针, 所述介质通道的开口与所 述导针相对, 且开口尺寸大于所述导针的横截面尺寸。
3、 根据权利要求 1所述的压力传感器, 其特征在于, 所述介质通道 的数目为多个, 且各所述介质通道沿所述垫片的周向均匀布置。
4、 根据权利要求 3所述的压力传感器, 其特征在于, 所述压力传感 器的电信号导出部件为贯通所述基座的多组导针, 各所述导针分别与各 所述介质通道的开口相对, 所述介质通道的开口尺寸大于与其相对的所 述导针的横截面尺寸。
5、 根据权利要求 1至 4任一项所述的压力传感器, 其特征在于, 所 述垫片为向远离所述膜片的方向凸起的弧形面, 且该弧形面的弧度与所 述膜片在极限变形量时的变形弧度相吻合。
6、 根据权利要求 1至 4任一项所述的压力传感器, 其特征在于, 所 述垫片与所述膜片平行设置。
7、 根据权利要求 1至 4任一项所述的压力传感器, 其特征在于, 在 所述膜片的变形方向上, 所述膜片的最大变形位置与所述垫片的距离, 为所述膜片的极限变形量的 80%。
8、 根据权利要求 1至 4任一项所述的压力传感器, 其特征在于, 所 述膜片的各处与所述垫片在其变形方向上的距离, 均小于或者等于所述 膜片的极限变形量。
9、 根据权利要求 1至 4任一项所述的压力传感器, 其特征在于, 所 述垫片为金属材料, 且通过其外缘焊接在所述基座上。
10、 一种热交换设备, 包括冷媒管道和安装于所述冷媒管道中的压 力传感器, 其特征在于, 所述压力传感器为如权利要求 1至 9任一项所 述的压力传感器。
PCT/CN2013/070927 2012-04-28 2013-01-24 热交换设备及其压力传感器 WO2013159583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210133656.1A CN103376181B (zh) 2012-04-28 2012-04-28 一种热交换设备及其压力传感器
CN201210133656.1 2012-04-28

Publications (1)

Publication Number Publication Date
WO2013159583A1 true WO2013159583A1 (zh) 2013-10-31

Family

ID=49461637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070927 WO2013159583A1 (zh) 2012-04-28 2013-01-24 热交换设备及其压力传感器

Country Status (2)

Country Link
CN (1) CN103376181B (zh)
WO (1) WO2013159583A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515200A4 (de) * 2014-01-20 2015-07-15 Piezocryst Advanced Sensorics Drucksensor mit Wärmeleitelement
CN113302466A (zh) * 2019-01-31 2021-08-24 美蓓亚三美株式会社 力传感器装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330197A (zh) * 2014-10-16 2015-02-04 宝鸡百事得控制技术有限公司 高耐压防过载压力变送器
CN107478362B (zh) * 2017-08-21 2020-01-14 北京精密机电控制设备研究所 一种侧油封式硅压阻敏感芯体
CN115808263B (zh) * 2023-02-06 2023-10-27 苏州森斯缔夫传感科技有限公司 一种压力传感装置、封装方法及压力监测设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2540627Y (zh) * 2002-05-10 2003-03-19 李维平 一体化安装结构的硅压阻式压力传感器
JP2004045164A (ja) * 2002-07-10 2004-02-12 Saginomiya Seisakusho Inc 圧力センサーのオイル封入パイプ
CN2650097Y (zh) * 2003-05-07 2004-10-20 骆振平 发动机机油压力传感器
JP2005037312A (ja) * 2003-07-18 2005-02-10 Fuji Koki Corp 圧力センサ
CN1839300A (zh) * 2003-08-20 2006-09-27 株式会社山武 压力传感装置
CN2938053Y (zh) * 2006-06-21 2007-08-22 宝鸡恒通电子有限公司 新型硅压力传感器
CN101072987A (zh) * 2005-01-08 2007-11-14 Abb专利有限公司 具有表面波传感器的压力传感器
CN201047788Y (zh) * 2007-05-23 2008-04-16 哈尔滨市东北汽车电子工程技术研究开发中心 Oem压力传感器
CN101226092A (zh) * 2008-01-16 2008-07-23 西安维纳信息测控有限公司 Soi全硅结构充硅油耐高温压力传感器
CN101339086A (zh) * 2007-07-05 2009-01-07 上海威尔泰工业自动化股份有限公司 带高压力过载保护的压力传感器
CN101553719A (zh) * 2006-11-22 2009-10-07 丹福斯有限公司 压力传感器
CN201935774U (zh) * 2010-12-22 2011-08-17 中国船舶重工集团公司第七一五研究所 新型压力温度传感器封装体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154048B2 (ja) * 1996-10-25 2001-04-09 株式会社ゼクセルヴァレオクライメートコントロール 熱交換媒体圧力測定装置
JP4708679B2 (ja) * 2003-03-28 2011-06-22 株式会社デンソー 液封型圧力センサ
CN102374920A (zh) * 2010-08-13 2012-03-14 浙江三花股份有限公司 一种热交换设备及其压力传感器
CN202126326U (zh) * 2011-06-29 2012-01-25 浙江三花股份有限公司 一种压力传感器及压力系统
US8969978B2 (en) * 2012-04-27 2015-03-03 Melexis Technologies Nv TMAP sensor systems and methods for manufacturing those

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2540627Y (zh) * 2002-05-10 2003-03-19 李维平 一体化安装结构的硅压阻式压力传感器
JP2004045164A (ja) * 2002-07-10 2004-02-12 Saginomiya Seisakusho Inc 圧力センサーのオイル封入パイプ
CN2650097Y (zh) * 2003-05-07 2004-10-20 骆振平 发动机机油压力传感器
JP2005037312A (ja) * 2003-07-18 2005-02-10 Fuji Koki Corp 圧力センサ
CN1839300A (zh) * 2003-08-20 2006-09-27 株式会社山武 压力传感装置
CN101072987A (zh) * 2005-01-08 2007-11-14 Abb专利有限公司 具有表面波传感器的压力传感器
CN2938053Y (zh) * 2006-06-21 2007-08-22 宝鸡恒通电子有限公司 新型硅压力传感器
CN101553719A (zh) * 2006-11-22 2009-10-07 丹福斯有限公司 压力传感器
CN201047788Y (zh) * 2007-05-23 2008-04-16 哈尔滨市东北汽车电子工程技术研究开发中心 Oem压力传感器
CN101339086A (zh) * 2007-07-05 2009-01-07 上海威尔泰工业自动化股份有限公司 带高压力过载保护的压力传感器
CN101226092A (zh) * 2008-01-16 2008-07-23 西安维纳信息测控有限公司 Soi全硅结构充硅油耐高温压力传感器
CN201935774U (zh) * 2010-12-22 2011-08-17 中国船舶重工集团公司第七一五研究所 新型压力温度传感器封装体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515200A4 (de) * 2014-01-20 2015-07-15 Piezocryst Advanced Sensorics Drucksensor mit Wärmeleitelement
AT515200B1 (de) * 2014-01-20 2015-07-15 Piezocryst Advanced Sensorics Drucksensor mit Wärmeleitelement
CN113302466A (zh) * 2019-01-31 2021-08-24 美蓓亚三美株式会社 力传感器装置
CN113302466B (zh) * 2019-01-31 2024-01-05 美蓓亚三美株式会社 力传感器装置

Also Published As

Publication number Publication date
CN103376181B (zh) 2016-12-14
CN103376181A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
WO2013159583A1 (zh) 热交换设备及其压力传感器
CN105181223B (zh) 差压传感器以及差压传感器的制造方法
CN101490520B (zh) 压力检测装置
EP2793010A2 (en) Pressure sensor
CN106679896B (zh) 一种小型管子管板焊接试件氦检漏装置
US20240304934A1 (en) Battery cell with directional pressure relief and battery module
WO2014171571A1 (ko) 차압식 누설 검사 장치 및 누설 검사 방법
CN113804361A (zh) 测漏系统
KR20080113756A (ko) 누설감지기능을 구비한 단위 이중관
KR101578117B1 (ko) 기밀성이 향상된 온도소자 일체형 압력센서장치
CN210834018U (zh) 密封圈和密封泄露检测设备
CN211603290U (zh) 一种用于AI芯片测试Cobra垂直探针卡
KR101625080B1 (ko) 사이리스터 밸브 냉각용 배관 벨로우즈의 누수감지장치
CN216559492U (zh) 一种用于计量检测的压力表装置
US20200148306A1 (en) Inflatable paddle board
CN214577649U (zh) 一种带有泄漏导流槽的隔膜压缩机膜片
CN209225357U (zh) 一种充气桨板
CN217424641U (zh) 一种隔离套式压力传递装置
CN220568303U (zh) 一种电池模组测试工装
CN205352631U (zh) 一种应用于冷却器的气密性检测装置
CN221148753U (zh) 一种晶圆测试装置
CN221528380U (zh) 一种用于灌浆套筒质量检测的回弹式阻尼振动传感器
CN107024319B (zh) 一种压力表缓冲器
CN212080315U (zh) 阀门水温测量装置
CN221425843U (zh) 一种单向高过载压力传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13781873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13781873

Country of ref document: EP

Kind code of ref document: A1