WO2013157620A1 - リチウムイオン二次電池用負極活物質及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極活物質及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2013157620A1
WO2013157620A1 PCT/JP2013/061561 JP2013061561W WO2013157620A1 WO 2013157620 A1 WO2013157620 A1 WO 2013157620A1 JP 2013061561 W JP2013061561 W JP 2013061561W WO 2013157620 A1 WO2013157620 A1 WO 2013157620A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
electrode active
active material
coating layer
lithium ion
Prior art date
Application number
PCT/JP2013/061561
Other languages
English (en)
French (fr)
Inventor
西村 悦子
明秀 田中
大郊 高松
辰己 平野
圭児 岡部
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to US14/394,920 priority Critical patent/US20150125752A1/en
Priority to CN201380020453.4A priority patent/CN104247107A/zh
Publication of WO2013157620A1 publication Critical patent/WO2013157620A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium ion secondary battery and a lithium ion secondary battery using the same.
  • Lithium ion secondary batteries have a high energy density and are attracting attention as batteries for electric vehicles and power storage.
  • the electric vehicle includes a zero emission electric vehicle not equipped with an engine, a hybrid electric vehicle equipped with both an engine and a secondary battery, and a plug-in hybrid electric vehicle charged from a system power source.
  • the lithium ion secondary battery is expected to be used as a stationary power storage system that stores power and supplies power in an emergency when the power system is cut off.
  • the crystal volume of the negative electrode active material changes with the insertion and extraction of lithium ions.
  • the negative electrode active material particles that are in close contact with each other begin to gradually move away as the number of charge / discharge cycles increases, and the electron conductivity between the particles deteriorates. As a result, the capacity of the negative electrode is reduced. Therefore, there is a need for a negative electrode active material in which electronic conductivity inside the negative electrode is difficult to deteriorate.
  • Patent Document 1 Highly durable electrode materials, electrolytes, and the like have been developed in order to suppress capacity reduction or cycle deterioration during high temperature storage, and among them, many inventions relating to the electrode structure of the negative electrode have been proposed. Typical examples are (Patent Document 1) to (Patent Document 4).
  • Patent Document 1 discloses a liquid absorption characteristic such that when propylene carbonate is dropped onto the negative electrode mixture layer, the contact angle between the droplet and the negative electrode mixture layer is 10 degrees or less within 100 seconds. A technique for improving charge / discharge cycle characteristics by applying to the above is shown.
  • Patent Document 2 discloses an active material in which a conductive material is attached to the surface of the active material powder and the electrical connection between the active material powder and the conductive material is stably maintained.
  • Patent Document 3 uses a resin having an elastic modulus of 3.0 GPa or more as a binder, preferably a polyimide resin, for a negative electrode for a lithium secondary battery containing tin as an active material, thereby improving charge / discharge cycle characteristics of the negative electrode. I am letting.
  • Patent Document 4 discloses an invention in which cycle characteristics are improved by using two types of binders having different elastic moduli and setting the porosity of the negative electrode to 18% to 70%.
  • an object of the present invention is to suppress the capacity reduction of the negative electrode and to extend the life of the lithium ion secondary battery.
  • the negative electrode active material particles have a two-layer structure of a core material and a coating layer, and the coating layer expands the core material during a charge / discharge cycle. It has been found that it is important to have mechanical properties that follow shrinkage. If such a negative electrode active material is used, the capacity
  • the negative electrode active material for a lithium ion secondary battery of the present invention includes a graphite core material and a coating layer covering the surface of the core material, the thickness of the coating layer is 1 nm to 200 nm, and the volume of the coating layer The elastic modulus is smaller than the bulk modulus of the core material.
  • the negative electrode active material for a lithium ion secondary battery according to the present invention comprises graphite particles as a core material and a coating layer on the surface thereof.
  • the covering layer has a predetermined thickness, and the volume elastic modulus of the covering layer is lower than the volume elastic modulus of the core material. Due to the magnitude relationship of the bulk modulus, when the core material expands / contracts with the insertion / release of lithium ions during the charge / discharge cycle, the coating layer follows the volume change. The coating layer will not be peeled off or damaged from the core material. As a result, the deterioration of the negative electrode active material is suppressed, and the battery life is extended. Next, the structure of the lithium ion secondary battery using this negative electrode active material is demonstrated.
  • FIG. 1 schematically shows the internal structure of an embodiment of the lithium ion secondary battery of the present invention.
  • the lithium ion secondary battery is an electrochemical device that can store or use electric energy by occlusion / release of lithium ions to and from an electrode in a non-aqueous electrolyte.
  • 1 includes a positive electrode 110, a separator 111, a negative electrode 112, a battery can 113, a positive electrode current collecting tab 114, a negative electrode current collecting tab 115, an inner lid 116, an internal pressure release valve 117, a gasket 118, and a positive temperature. It has a coefficient (PTC; Positive temperature coefficient) resistance element 119 and a battery lid 120 with a positive terminal.
  • PTC Positive temperature coefficient
  • the battery lid 120 with the positive terminal has an integral structure with the inner lid 116, the internal pressure release valve 117, the gasket 118 and the PTC resistance element 119.
  • the battery can 113 of FIG. 1 is a type having a bottom, but instead of this, a cylindrical container without a bottom surface is used, a battery lid is attached to the bottom surface of the cylindrical container, and a negative electrode is connected to the battery lid. good.
  • a battery container having an arbitrary shape can be used depending on the terminal attachment method, and any container does not affect the effect of the present invention.
  • the positive electrode 110 includes a positive electrode active material, a conductive agent, a binder, and a current collector.
  • Representative examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like.
  • Li 2 Mn 3 MO 8 where M is a metal element such as Fe, Co, Ni, Cu, Zn
  • Li 1-x A x Mn 2 O 4 where A is a metal element such as Mg, Ba, Al, Fe, Co, Ni, Cr, Zn, Ca, and x is 0.01 to 0.1
  • LiNi 1-x M x O 2 where M is a metal element such as Co, Mn, Fe, and Ga, and x is 0.
  • the particle size of the positive electrode active material is specified to be equal to or less than the thickness of the mixture layer.
  • the coarse particles are previously removed by sieving classification, wind classification, etc., and particles having a thickness of the mixture layer or less are prepared.
  • the particle size was measured using a laser diffraction / scattering particle size distribution measuring device (device using a microtrack method).
  • the particle size refers to a numerical value calculated from the particle size distribution of an aggregate of spherical particles exhibiting a scattering pattern equivalent to the laser light scattering pattern.
  • the positive electrode active material is generally an oxide type and has high electric resistance
  • a conductive agent made of carbon powder is used to supplement the electric conductivity.
  • carbon materials such as acetylene black, carbon black, graphite, and amorphous carbon can be used.
  • the average particle size of the conductive agent is preferably smaller than the average particle size of the positive electrode active material and 1/10 or less of the average particle size of the positive electrode active material.
  • both the positive electrode active material and the conductive agent are powders, a binder is mixed with these powders to bond the powders together and to adhere to the current collector.
  • an aluminum foil having a thickness of 10 ⁇ m to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 ⁇ m to 100 ⁇ m and a hole diameter of 0.11 mm to 10 mm, an expanded metal, a foam metal plate, etc. are used. It is done.
  • stainless steel, titanium and the like can be applied in addition to aluminum.
  • any material can be used for the current collector without being limited by the material, shape, manufacturing method, or the like as long as it does not change during dissolution or oxidation during use of the battery.
  • the composition is not particularly limited and is changed according to the type of material mixed in the slurry, the specific surface area, the particle size distribution, and the like.
  • 89 parts by weight of the positive electrode active material, 4 parts by weight of acetylene black, and 7 parts by weight of polyvinylidene fluoride (PVDF) as a binder can be used.
  • the solvent for the positive electrode slurry is not particularly limited as long as it dissolves the binder, and is appropriately selected according to the type of the binder. For example, when PVDF is used as a binder, 1-methyl-2-pyrrolidone is frequently used as a solvent.
  • a known kneader or disperser can be used for the dispersion treatment of the positive electrode slurry.
  • the negative electrode 112 includes a negative electrode active material, a binder, and a current collector.
  • the negative electrode active material has a so-called core-shell structure in which a coating layer is formed on the surface of a core material (particle) made of graphite.
  • the core material is a carbon material having a graphene laminated structure (graphite structure).
  • the shape of the negative electrode active material is preferably a spherical shape, a block shape, or a flat spherical shape, but may be a shape having a large aspect ratio such as a flake shape or a fiber shape.
  • the particle diameter (median diameter D 50 ) at a frequency of 50% of the negative electrode active material is preferably 3 ⁇ m to 30 ⁇ m. The particle size was measured using a laser diffraction / scattering particle size distribution measuring device (device using a microtrack method).
  • the core material made of graphite is, for example, mixed with coke powder, tar pitch, silicon carbide, coal tar, etc., and the resulting mixture is pulverized and pressure-formed into a pellet, and then in a nitrogen atmosphere at about 3000 ° C. It can obtain by baking and grind
  • coke powder a powder having a particle size of 1 ⁇ m to several tens of ⁇ m can be selected.
  • the composition of each component such as coke powder and tar pitch can be changed as appropriate.
  • Other conditions such as the heat treatment temperature are not limited to those described above.
  • natural graphite is pulverized to produce a powder, and the average particle size is adjusted to a range of 5 ⁇ m to 20 ⁇ m using an air flow classifier.
  • Binder pitch is added to graphite particles obtained by granulating and forming into a substantially spherical shape using a binder, heated and mixed, and then fired at 800 ° C. to 1400 ° C.
  • the average particle size of the core material is not particularly limited, but needs to be smaller than the thickness of the negative electrode.
  • the effect of the present invention is not affected even if the type of graphite is artificial graphite or natural graphite.
  • the nuclear material made of graphite, the surface spacing d 002 of the X-ray wide angle diffraction method (002) plane is preferably in the range of 0.3345nm ⁇ 0.3370nm. Within this range, the amount of occlusion of lithium ions at a low negative electrode potential is large, and the battery energy (Wh) increases. Further, even if a two-layer structure of a core material and a coating layer is used, a large capacity exceeding 350 mAh / g can be obtained, which is preferable.
  • the c-axis length (hereinafter referred to as Lc) of the graphite crystal as the core material is preferably 20 nm to 90 nm, but is not limited thereto.
  • the coating layer on the surface of the core material Before forming the coating layer on the surface of the core material, measure the bulk modulus of the core material itself. For the measurement of the bulk modulus, for example, a method using a microprobe (probe) by a nanoindentation method is applied (Japan Society for the Promotion of Science Carbon Material 117th Committee, New Development of Carbon Materials, 197-210; Applied Physics, Vol. 79, No. 4, 341-345, 2010; and Kobe Steel Technical Report, Vol. 52, No. 2, pp. 74-77, 2002).
  • the shape of the microprobe is arbitrary, but the material and shape of the probe used when measuring the core material and the covering layer are the same. Generally, a conical shape or a regular pyramid shape is adopted.
  • Another method for measuring bulk modulus is to use an atomic force microscope (Atomic Force Microscopy) to press the probe against the surface of the core material and measure the force to measure the bulk modulus. (See Applied Physics, Vol. 79, No. 4, pp. 341-345, 2010). In addition, any method can be used as long as the surface of one particle can be compressed and its stress can be measured.
  • atomic force microscope Atomic Force Microscopy
  • the bulk modulus of the coating layer is measured with the coating layer formed on the core material. Although the influence of the bulk modulus of the core material cannot be completely eliminated, the volume modulus of elasticity of the coating layer in the present invention is defined as an actually measured value in a state where the core material exists on the base of the coating layer.
  • the bulk modulus of the core material can take various values depending on the type of raw material, heat treatment conditions, and the like. However, in order to obtain a capacity close to the theoretical capacity of 372 mAh / g, the bulk modulus of the core material is desirably in the range of 5 GPa to 20 GPa. However, when the negative electrode active material particles are subjected to compressive deformation in the pressing step during electrode production, the volume modulus of the core material is preferably 8 GPa or more. Moreover, since the flexibility is insufficient when the bulk modulus is too large, a core material having a bulk modulus of 14 GPa or less is more preferable.
  • the coating layer is made of a carbonaceous material, but may contain a small amount of nitrogen, phosphorus, oxygen, alkali metal, alkaline earth metal, transition metal or the like. If the coating layer allows lithium ions to pass therethrough and has a predetermined bulk modulus, the effect of the present invention can be obtained.
  • the thickness of the coating layer is desirably 1 nm to 200 nm, particularly 5 nm to 150 nm. If the coating layer is too thin, the electrolytic solution may permeate and reductive decomposition of the electrolytic solution may occur on the surface of the core material. On the other hand, if the coating layer is too thick, the diffusion of lithium ions may be hindered, resulting in a decrease in capacity at a large current.
  • the coating layer a coating layer mainly composed of carbon is most suitable.
  • the coating layer containing carbon as a main component preferably has a dense structure with few pores. This is because when the coating layer has a large number of pores, the solvent in the electrolytic solution penetrates the coating layer and causes reductive decomposition on the surface of the core material.
  • the coating layer mainly composed of carbon can be formed by the following procedure, for example. First, 100 parts by weight of a graphite core material is immersed in 160 parts by weight of a methanol solution of novolac type phenolic resin (manufactured by Hitachi Chemical Co., Ltd.) and dispersed to prepare a graphite particle / phenolic resin mixture solution. This solution is filtered, dried, and sequentially subjected to heat treatment in the range of 200 ° C. to 1000 ° C., whereby graphite particles (negative electrode active material) whose core material surface is coated with carbon can be obtained.
  • the composition of the mixture solution and the heat treatment temperature are not limited to the above conditions.
  • the coating layer containing carbon as a main component can be formed by a method different from the above-described method.
  • the core material is covered with polyvinyl alcohol and thermally decomposed.
  • the heat treatment temperature may be in the range of 200 ° C. to 400 ° C.
  • a temperature range of 300 ° C. to 400 ° C. is desirable because the coating layer is strongly bonded to the core material.
  • the core material can be treated with an oxygen-containing organic compound such as polyvinyl chloride or polyvinyl pyrrolidone. These compounds are mixed with graphite powder, and then heated to a thermal decomposition temperature to form a coating layer mainly composed of carbon.
  • an oxygen-containing organic compound such as polyvinyl chloride or polyvinyl pyrrolidone.
  • the thickness of the coating layer can be controlled by increasing or decreasing the amount of the carbon raw material such as the above-described phenol resin or polyvinyl alcohol with respect to the weight of the core material or adjusting the heat treatment conditions.
  • the thickness of the coating layer is the same as that of the core / shell structure by using a focused ion beam (FIB) processing apparatus. It can be measured by cutting out a cross section of the powder and using a transmission electron microscope (TEM).
  • FIB focused ion beam
  • the negative electrode active material thus produced has a two-layer structure having a core material and a coating layer covering the surface of the core material. If the coating layer has a thickness of 1 nm to 200 nm and the volume modulus of elasticity of the coating layer is smaller than the volume modulus of elasticity of the core material, it is possible to prevent the capacity decrease of the negative electrode targeted by the present invention.
  • the manufacturing method of a negative electrode active material is not limited to the above-mentioned method, As long as the volume elastic modulus of a coating layer is smaller than the volume elastic modulus of a core material, it is possible to select arbitrary methods.
  • the bulk modulus of the coating layer is 50% to 95% of the bulk modulus of the core material.
  • the ratio of the bulk modulus is determined by the density of the coating layer (ie, the density), the crystallite size, the presence or absence of pores and defects, the thickness, etc. Can be controlled.
  • the interval between the (002) planes of the core material determined by the X-ray diffraction method is in the range of 0.3345 nm to 0.3370 nm.
  • Such a negative electrode active material has a core material having graphite crystals inside, and thus becomes a high capacity negative electrode.
  • the ratio of the specific surface area of the negative electrode active material measured by the gas adsorption method to the specific surface area of the negative electrode active material calculated based on the particle size distribution of the equal volume sphere of the negative electrode active material is 1 to 30 is preferable.
  • the specific surface area is measured using nitrogen gas.
  • the ratio of specific surface areas becomes a value larger than 30. Since the surface of the core material has fine irregularities or has pores inside, the specific surface area by the gas adsorption method is a surface area reflecting such minute irregularities.
  • the specific surface area of the equal volume sphere of the particles obtained from the particle size distribution measurement is calculated as an ideal sphere having a smooth surface without considering the fine irregularities of each particle.
  • the specific surface area calculated from the particle size distribution is calculated as follows.
  • the particle size is divided into fine sections, and a product A ⁇ B of the frequency A of the number of particles in the minute section (expressed as a percentage) and the surface area B calculated by regarding the median value of the section as the particle diameter is obtained.
  • the product A ⁇ C is obtained from the particle volume C calculated by regarding the median value of the minute section as the diameter of the particle.
  • the specific surface area per unit weight (unit: cm 2) is obtained by multiplying the specific surface area per unit volume by the true density of the particles. / G) can be calculated. Since this value is the same unit as the specific surface area obtained by the gas adsorption method (BET method), the specific surface area ratio is obtained by dividing the BET specific surface area by the specific surface area per unit weight calculated from the particle size distribution.
  • the above-mentioned minute section refers to a section obtained by dividing the range of diameters that particles can take as a whole section and dividing the section into a number larger than 100, and the number of divisions is made as large as possible.
  • the interval may be divided equally, but may be increased by a ratio of a geometric series or an exponential function as the diameter increases. In the examples described later, a method of increasing the measured particle diameter interval at an exponential function ratio was adopted.
  • the core material before coating has irregularities on its surface, but when the coating layer starts to be formed on the core material, the fine irregularities are gradually covered with the coating layer having few irregularities.
  • the ratio of the specific surface area of the negative electrode active material on which the coating layer is formed is 30 or less. When the ratio of the specific surface area is the smallest, this corresponds to the case where a dense coating layer having no irregularities is formed, and the lower limit is 1.
  • the ratio of the specific surface areas is in the range of 3 to 30, it is more preferable for obtaining the effects of the present invention.
  • the ratio of the specific surface area is 30 or less, the surface has appropriate pores, lithium ions quickly reach the core material and are occluded in the core material, and conversely, lithium ions from the core material are electrolyte solution. Easily released.
  • the life of the negative electrode can be improved as the ratio of the specific surface area is smaller. This is because the contact area with the electrolytic solution is reduced, and the irreversible capacity due to reductive decomposition of the electrolytic solution is also reduced.
  • the specific surface area ratio is desirably 3 or more.
  • charge / discharge at a large current of 3C or more current corresponding to a 1/3 hour rate is possible, which is more preferable.
  • the negative electrode active material in the present invention the ratio I 1360 / I 1580 of the peak intensity of 1360 cm -1 region (D band) to the peak intensity of 1580 cm -1 region (G band) is, of 0.1-0.6 A range is desirable.
  • the G band becomes stronger as the crystallinity of the coating layer becomes higher (closer to the graphite crystal), and the D band becomes stronger as it becomes amorphous. Therefore, the ratio of the peak intensity serves as an index representing the degree of amorphousness on the surface of the negative electrode active material particles.
  • the coating layer in the present invention is made of a material having a medium amorphous property with a peak intensity ratio of 0.1 to 0.6. In the case of graphite alone, it tends to be smaller than 0.1, and in the case of an amorphous structure or a layered structure (glassy structure), it is 0.9 to 1.1.
  • the negative electrode 112 may be mixed with other materials capable of electrochemically inserting and extracting lithium ions in addition to the above-described negative electrode active material having a core / shell structure.
  • examples of such a material include carbon materials having a (002) plane spacing larger than 0.3370 nm of graphite, and carbon produced from expanded graphite, pitch-based carbonaceous material, needle coke, petroleum coke, or the like. Material is applicable. Further, carbon black or an amorphous carbon material synthesized by thermally decomposing a 5-membered or 6-membered cyclic hydrocarbon or cyclic oxygen-containing organic compound may be added. The addition amount of these other materials is preferably smaller than an equal weight ratio with respect to the weight of the negative electrode active material having the core / shell structure. If the amount is higher than that, the ratio of graphite having a higher capacity than that of amorphous carbon is decreased, and the capacity density of the negative electrode is significantly decreased.
  • the binder used for the negative electrode is not particularly limited as long as it is a resin having a bonding force, a pitch, or the like.
  • the types of binders include thermosetting resins such as phenol resin, cellulose resin, and epoxy resin, various resins such as naphthalene, anthracene, creosote oil, polyvinyl alcohol, styrene butadiene rubber, coal tar pitch, and polyethylene, or those Can be used.
  • a copper foil having a thickness of 10 ⁇ m to 100 ⁇ m, a copper perforated foil having a thickness of 10 ⁇ m to 100 ⁇ m, a hole diameter of 0.1 mm to 10 mm, an expanded metal, a metal foam plate, etc. are used.
  • copper, stainless steel, titanium, nickel and the like are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • a negative electrode slurry in which a negative electrode active material, a binder, and an organic solvent are mixed is attached to a current collector by a doctor blade method, a dipping method, a spray method, or the like, then the organic solvent is dried, and the negative electrode is pressure-formed by a roll press. Thereby, a negative electrode can be produced.
  • the mixture layer can be formed in multiple layers on the current collector by performing a plurality of times from application to drying.
  • a separator 111 is inserted between the positive electrode 110 and the negative electrode 112 manufactured by the method described above to prevent a short circuit between the positive electrode 110 and the negative electrode 112.
  • a separator 111 a polyolefin polymer sheet made of polyethylene, polypropylene or the like, or a multilayer structure separator in which a polyolefin polymer and a fluorine polymer sheet represented by tetrafluoropolyethylene are welded, an aramid fiber is added. It is possible to use a separator or the like.
  • a mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 111 so that the separator 111 does not shrink when the battery temperature becomes high. Since these separators 111 need to permeate lithium ions during battery charge / discharge, they generally have pores with a diameter of 0.01 ⁇ m to 10 ⁇ m, and preferably have a porosity of 20% to 90%.
  • the separator 111 is also inserted between the electrode arranged at the end of the electrode group and the battery can 113 so that the positive electrode 110 and the negative electrode 112 are not short-circuited through the battery can 113.
  • a non-aqueous electrolyte composed of an electrolyte and a non-aqueous solvent is held on the surfaces of the separator 111, the positive electrode 110, and the negative electrode 112 and inside the pores.
  • the positive electrode 110 is connected to the inner lid 116 via the positive electrode current collecting tab 114.
  • the negative electrode 112 is connected to the battery can 113 via the negative electrode current collecting tab 115.
  • the positive electrode current collection tab 114 and the negative electrode current collection tab 115 can take arbitrary shapes, such as wire shape and plate shape. As long as the material has a structure capable of reducing ohmic loss when a current is passed and does not react with the non-aqueous electrolyte, the shape and material of the positive electrode current collecting tab 114 and the negative electrode current collecting tab 115 are the battery cans. Depending on the structure 113, it can be arbitrarily selected from metals such as nickel, aluminum, titanium, stainless steel, and copper.
  • a positive temperature coefficient (PTC) resistive element 119 is used to stop charging / discharging of the lithium ion secondary battery 101 and protect the battery when the temperature inside the battery becomes high.
  • a material in which conductive particles such as carbon black and nickel are dispersed in a low-melting polymer can be used as the PTC material.
  • the structure of the electrode group may be the wound structure shown in FIG. 1, or may be wound in an arbitrary shape such as a flat shape, or various shapes such as a strip shape.
  • the shape of the battery case can be appropriately selected from shapes such as a cylindrical shape, a flat oval shape, and a square shape according to the shape of the electrode group.
  • the material of the battery can 113 is selected from materials that are corrosion resistant to non-aqueous electrolytes, such as aluminum, stainless steel, steel, nickel-plated steel, and the like.
  • the battery can 113 is electrically connected to the positive electrode current collecting tab 114 or the negative electrode current collecting tab 115, the battery can 113 is corroded or alloyed with lithium ions in the portion in contact with the non-aqueous electrolyte. Select the lead wire material so that the material does not deteriorate.
  • the battery lid 120 with the positive terminal is brought into close contact with the battery can 113, the whole battery is sealed, and the battery lid 120 with the positive terminal is attached to the battery can 113 by a method such as caulking.
  • a known technique such as welding or adhesion may be applied to the method for sealing the battery.
  • the position and shape of the terminals are also arbitrary, and are not limited to the terminals shown in FIG.
  • non-aqueous electrolytes that can be used in the present invention include a mixture of ethylene carbonate with dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, or the like, and lithium hexafluorophosphate (LiPF 6 ) or lithium borofluoride as an electrolyte.
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium hexafluorophosphate
  • the type of the solvent and electrolyte, the mixing ratio of the solvent and the like are not particularly limited, and other non-aqueous electrolytes can be used.
  • the electrolyte can also be used in a state of being contained in an ion conductive polymer such as polyvinylidene fluoride and polyethylene oxide. In this case, the separator becomes unnecessary.
  • Solvents that can be used for the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyltetrahydrofuran, Dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphoric acid triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, tetrahydrofuran, 1,
  • Non-aqueous solvents such as 2-diethoxyethane, chloroethylene carbonate, chloropropylene carbonate and the like can be mentioned.
  • Other solvents may be used as long as they do not decompose on the positive electrode or the
  • LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6 or a variety of such imide lithium salts represented by lithium trifluoromethane sulfonimide, Lithium salts can be used.
  • a nonaqueous electrolytic solution obtained by dissolving these salts in the above-described solvent can be used as an electrolytic solution for a lithium ion secondary battery.
  • An electrolyte other than the above may be used as long as it does not decompose on the positive electrode or the negative electrode incorporated in the lithium ion secondary battery of the present invention.
  • a flame retardant such as phosphoric acid ester, phosphite ester, cyclic phosphoric acid ester, cyclic phosphite ester, and cyclic phosphazene may be added to make the electrolyte difficult to burn.
  • a solid polymer electrolyte (polymer electrolyte) or a gel electrolyte can be used.
  • an ion conductive polymer such as a copolymer containing polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, and hexafluoropropylene can be used for the electrolyte.
  • the separator 111 can be omitted.
  • the gel electrolyte include a mixture of polyvinylidene fluoride and a nonaqueous electrolytic solution.
  • the ion conductive polymer may be replaced with a lithium ion conductive solid electrolyte, and the effects of the present invention can be obtained.
  • an ionic liquid can be used.
  • ionic liquids include 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF 4 ), a mixed complex of lithium salt LiN (SO 2 CF 3 ) 2 (LiTFSI), triglyme and tetraglyme, N -Cyclic quaternary ammonium cations such as methyl-N-propylpyrrolidinium, and imide anions such as bis (fluorosulfonyl) imide. Combinations that do not decompose from these ionic liquids at the positive and negative electrodes It can select and use for the lithium ion secondary battery of this invention.
  • a core material made of graphite was produced as follows. First, 50 parts by weight of coke powder having an average particle diameter of 5 to 40 ⁇ m, 20 parts by weight of tar pitch, 7 parts by weight of silicon carbide having an average particle diameter of 48 ⁇ m and 10 parts by weight of coal tar were mixed and mixed at 200 ° C. for 1 hour. . The obtained mixture was pulverized, pressed into pellets, and then fired at a predetermined temperature in a nitrogen atmosphere. The fired product obtained was pulverized with a hammer mill, and the particle size was controlled with an airflow classifier to obtain a core material composed of fine graphite particles. When the particle size distribution of the core material was measured using a particle size distribution meter, the particle size (median diameter, D 50 ) at a frequency of 50% was 3 ⁇ m to 40 ⁇ m.
  • a coating layer was formed.
  • two types of coating methods were applied.
  • a novolac-type phenol resin methanol solution was used as a raw material for forming a coating layer, and a carbonaceous coating layer was formed on the surface of the core material.
  • the core material was subjected to high-temperature heat treatment at 2500 ° C. to increase the crystallinity of graphite.
  • a negative electrode active material comprising graphite with seven types of coating layers by increasing the amount of phenol resin added so that the average thickness of the coating layer relative to the core material is 1 nm to 2 nm, 5 nm, 20 nm, 50 nm, 100 nm, 150 nm, and 200 nm (NM1, NM2, NM3, NM4, NM6, NM7) were prepared.
  • a core material composed of three types of graphite powder having a median diameter D 50 of 3, 10, and 30 ⁇ m was prepared, and a coating layer was formed by the same method.
  • the core material was subjected to graphite crushing and pulverization, and the particle size was controlled using an airflow classifier.
  • the negative electrode active materials produced in this way are three types, NM8, NM9, and NM10, respectively.
  • NM11 is a negative electrode active material in which the heat treatment temperature during the production of NM9 is increased to 2800 ° C. to 2900 ° C. to increase the crystallinity of the coating layer of NM9.
  • the heat treatment was performed in a non-oxidizing atmosphere.
  • Carbonaceous coating was performed using a slightly expanded core material between graphite layers (d 002 ).
  • the produced negative electrode active materials are three types of NM12, NM13, and NM14.
  • the core material was synthesized by firing petroleum pitch at 2000 ° C. to 2500 ° C. in a non-oxidizing atmosphere.
  • the fired product was pulverized and classified so as to have a median diameter D 50 shown in Table 1 to obtain a core material.
  • a negative electrode active material can be obtained by adhering naphthalene or polyvinyl alcohol to the surface and performing a heat treatment at 700 ° C. to 900 ° C.
  • NM15 is a negative electrode active material in which a coating layer is formed by thermal decomposition of a phenol resin on a core material whose median diameter D 50 is controlled to 40 ⁇ m by air flow classification.
  • the negative electrode active material NM16 made only of the core material used for NM1 the negative electrode active material NM17 containing a core material made of amorphous carbon (hard carbon), and the core material used for NM1 have a thickness of 1 nm (one A negative electrode active material NM18 having a coating layer with a core material exposed) and a negative electrode active material NM19 having a coating layer thickness of 250 nm to 300 nm were prepared.
  • NM20 is a negative electrode active material using the core material (median diameter D 50 is 30 ⁇ m) used in NM10 and having a coating layer thickness of 250 nm to 300 nm.
  • NM21 is a negative electrode active material in which a coating layer having a thickness of 250 nm to 300 nm is formed on a core material of graphitizable carbon.
  • the negative electrode active material NM17 having a core material made of amorphous carbon (hard carbon) is classified after the phenol resin is heat-treated to the pulverized graphite powder, and a powder having a median diameter D 50 of 20 ⁇ m is used as the core material.
  • a coating layer using naphthalene as a raw material is formed on the surface.
  • NM21 is a negative electrode active material in which a coating layer using naphthalene as a raw material is formed using artificial graphite obtained by synthesizing petroleum pitch by low-temperature firing at 1500 ° C. as a core material.
  • the ratio of the specific surface area in Table 1 is calculated from the specific surface area of the negative electrode active material measured by two methods as described above. That is, the ratio of the specific surface area measured by the gas adsorption method using nitrogen gas to the specific surface area calculated based on the particle size distribution of the equal volume sphere.
  • the negative active materials NM1 to NM11, NM15, NM16, and NM18 to NM20 use a common core material. Due to the high crystallinity of the nucleus material, the spacing d 002 is a value extremely close to the d 002 of the natural graphite. Since the NM12 from NM14, NM21 nuclear material is such that dropped slightly crystalline, has spread to slightly d 002. NM17 is because it is amorphous carbon (hard carbon), it was not possible to accurately determine the d 002.
  • the ratio of specific surface area tends to decrease as the thickness of the coating layer increases.
  • the fine irregularities on the surface of the core material become smaller, and the specific surface area by the gas adsorption method decreases.
  • the specific surface area obtained from the integrated value of the surface area of the equal volume sphere corresponding to the particle diameter measured by the particle size distribution measurement is hardly affected by the thickness of the coating layer. This is because the thickness of the coating layer relative to the particle diameter is so thin that it can be ignored.
  • the specific surface area of the latter hardly changes, whereas the specific surface area of the former decreases with an increase in the thickness of the coating layer.
  • the intensity ratio of the Raman peak increases as the thickness of the coating layer increases.
  • the G band does not change mainly reflecting the structure of the core material, whereas the intensity of the D band derived from the disordered structure of the coating layer relatively increases as the thickness of the coating layer increases. is there.
  • the thickness of the coating layer needs to be within an appropriate range because it affects the diffusibility of lithium ions.
  • the thickness of the coating layer is 1 nm to 200 nm.
  • the median diameter D 50 of the negative electrode active material depends on the type of the core material, NM8 is 3 ⁇ m, NM9 and NM11 to NM14 are 10 ⁇ m, NM15 is 40 ⁇ m, NM1 to NM7 and NM16 to NM19 and NM21 are 20 ⁇ m, and NM10 and NM20 are 30 ⁇ m.
  • the median diameter D 50 was controlled by adjusting the pulverization conditions and the classification conditions.
  • the thickness of the coating layer can be controlled by the amount of the raw material added during the coating process.
  • the thickness of the coating layer shown in Table 1 is an average value. Specifically, the cross section of a plurality of negative electrode active material particles is exposed by a focused ion beam device (FIB), and an average value at 10 or more measurement points is shown. A coating layer was formed on almost the entire surface except for the negative electrode active material NM18. Since the coating layer of NM18 was thin, the core material was locally exposed.
  • FIB focused ion beam device
  • the volume modulus of elasticity of the prepared negative electrode active material was measured using a conical probe. The number of measurements was 5 times for each measurement of the core material and the coating layer. Table 2 shows the range of values including the minimum value and the maximum value of the ratio of bulk modulus calculated from these measured values (volume modulus of the coating layer / volume modulus of the core material).
  • the negative electrode active material can also be obtained by processing the negative electrode after producing the negative electrode.
  • the reason for using the latter method is that if the negative electrode active material is mixed with the actual negative electrode, the volume modulus of elasticity cannot be measured directly. This is to examine whether the elastic modulus can be predicted.
  • the position where the negative electrode active material particles are exposed in the mixture layer where the negative electrode active material exists is observed.
  • known observation means such as an optical microscope and a scanning electron microscope are used.
  • the bulk elastic modulus was measured by pressing a nanoindentation probe near the center position of the negative electrode active material particles found. This is defined as the bulk modulus of the coating layer. Note that the atomic force microscope method described above may be applied.
  • the negative electrode layer is cut in a direction perpendicular to the surface of the negative electrode current collector.
  • the cross section of the particle was cut out by ion milling aiming at one particle of the negative electrode active material.
  • This cross-section exposure method is focused ion beam (FIB) method, cutting method using ultra microtome, chemical polishing, electrolytic polishing, ion polishing, or physical polishing method using abrasive (buff polishing, emery paper polishing)
  • FIB focused ion beam
  • the particle size of the negative electrode active material particles is measured before the cross-section exposure and is confirmed to be almost the same as the cross-sectional size observed after the cross-section exposure, it can be seen that the particle can be cut substantially at the center.
  • the probe of the nano indentation method was pressed on the cross section, and the volume elastic modulus was measured.
  • the probe used for the measurement is a regular triangular pyramid (Berkovic type) whose tip shape is a diamond tip.
  • the indenter with the probe attached was pushed into the particle surface of the negative electrode active material, and the volume modulus was obtained from the load applied to the indenter and the projected area under the indenter (Kobe Steel Engineering Reports, Vol. 52, No. 2). No. 74-77, 2002).
  • the measured value is taken as the bulk modulus of the core material. Note that the atomic force microscope method described above may be applied.
  • the volume elastic modulus of the core material itself used in NM1 to NM11, NM15, and NM18 to NM21 was 9 GPa to 11 GPa (average 11 GPa).
  • the bulk modulus of the core material of NM12 to NM14 was 8 GPa to 10 GPa (average 9 GPa).
  • the bulk modulus of the core material of NM21 was 6 to 8 GPa (average 7 GPa).
  • the volume modulus ratio tended to be smaller. This is apparent from the measurement results of NM1 to NM7 (see Table 2). Since the bulk elastic modulus of the coating layer is lower than the bulk elastic modulus of the core material, it is considered that the bulk elastic modulus of the coating layer itself was reflected in the measurement result by increasing the thickness of the coating layer. Since negative electrode active materials NM16 and NM17 without a coating layer cannot measure the volume modulus of elasticity of the coating layer, they are described as “not measurable” in the column of the volume modulus.
  • the ratio of the bulk modulus of the negative electrode active material has a monotonous correlation with the thickness of the coating layer.
  • the ratio of the bulk modulus is not determined only by the thickness of the coating layer and is not limited to the results shown in Table 2.
  • the bulk modulus of the coating layer is affected by the orientation in the micro size or nano size constituting the coating layer, the arrangement of crystals, the bond distance between carbon and carbon, or the like. Accordingly, the volume modulus of elasticity of the coating layer can be controlled by changing the type of raw material for forming the coating layer, the procedure for producing the coating layer, or the production conditions.
  • the volume elastic modulus of the coating layer can be changed by changing the heat treatment temperature to control the degree of denseness of the coating layer.
  • the heat treatment temperature for forming the coating layer is increased to 2500 ° C. to 3500 ° C. to improve the denseness of the coating layer and to increase the volume elastic modulus of the coating layer itself. It can be increased to 95%.
  • each of the produced batteries is represented by the symbol of the negative electrode active material used for the battery (NM1, NM2, NM3, NM4, NM5, NM6, NM7, NM8, NM9, NM10, NM11, NM12, NM13, NM14, NM15). It shall be expressed by The weight of the negative electrode active material used for each battery is 10 ⁇ 0.1 g, and the rated capacity (calculated value) of the battery calculated from the negative electrode weight and the positive electrode weight is 3.5 Ah.
  • lithium ion secondary batteries were produced using the negative electrode active materials NM16 to NM21, which are comparative examples. Each battery is designated as NM16, NM17, NM18, NM19, NM20, NM21, corresponding to the negative electrode active material used. The rated capacity of the battery was 3.5 Ah.
  • the negative electrode was prepared by separately weighing the 21 types of negative electrode active materials shown in Table 1, and adding 98 parts by weight of each negative electrode active material to 1 part by weight of styrene-butadiene rubber and 1 part by weight of carboxymethyl cellulose. A slurry was prepared, and the negative electrode slurry was applied to the surface of a rolled copper foil having a thickness of 10 ⁇ m as a current collector and dried. The negative electrode mixture density was 1.5 g / cm 3 .
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material.
  • the composition of the positive electrode mixture was 89: 4: 7 (weight ratio) in the order of the positive electrode active material, acetylene black, and PVDF.
  • 1-methyl-2-pyrrolidone was used as the solvent for the slurry.
  • a known kneader and disperser were used for the dispersion treatment of the positive electrode slurry.
  • a rolled aluminum foil having a thickness of 20 ⁇ m was used as a positive electrode current collector.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the mixing ratio of EC and EMC was 1: 2.
  • 1% vinylene carbonate was added to the non-aqueous electrolyte.
  • NM16 using the negative electrode active material of the comparative example is a core material itself, the irreversible capacity was large and the initial capacity was reduced. This is because the negative electrode was not deteriorated but the capacity of the positive electrode was reduced because the irreversible capacity was large, and the operating range of the negative electrode capable of being charged and discharged as a battery was reduced.
  • the irreversible capacity is a value obtained by converting the loss of lithium consumed by the decomposition reaction due to the decomposition reaction of the non-aqueous electrolyte due to the absence of the coating layer, into an electric quantity. Since there was no coating layer, the capacity retention rate was low.
  • NM17 using the negative electrode active material of the comparative example had a low capacity because the negative electrode active material was amorphous carbon.
  • the 3C capacity ratio was slightly larger than NM16, but the capacity retention rate was low. This is probably because the electrolyte decomposition reaction occurred on the negative electrode surface.
  • NM18 using the negative electrode active material of the comparative example also suffered from a decrease in initial capacity due to an increase in irreversible capacity due to insufficient coating. Similarly, the capacity maintenance rate was low.
  • NM19, NM20, and NM21 using the negative electrode active material of the comparative example have a sufficiently thick coating layer, the irreversible capacity itself decreases, but the coating layer that hardly contributes to charging / discharging increases. Capacity decreased.
  • the negative electrode active material has a two-layer structure of a core material and a coating layer, and the thickness of the coating layer is controlled to 1 nm to 200 nm, the capacity retention rate of the negative electrode increases. It is clear from the comparison between the results of NM1 to NM15 and the comparative example.
  • the capacity retention ratio increases when the bulk modulus of the coating layer is smaller than the bulk modulus of the core material. It was also found that the volume modulus ratio is preferably 50% or more. This is apparent from the comparison between the results of NM1 to NM14 and the comparative examples of NM19 to NM21.
  • the volume modulus of elasticity of the core material and the coating layer is defined by measured values, and the relationship between the difference and the life of the negative electrode active material is examined.
  • the ratio expressed by the volume modulus shows a better correlation with the performance of the negative electrode.
  • the core material changes its volume by occluding and releasing lithium ions. Accordingly, it is an important point of the present invention that the coating layer does not peel from the surface of the core material. The peeling of the coating layer is considered to be determined by the ratio between the core material and the bulk modulus of the coating layer rather than the respective values.
  • the coating layer could not follow the volume change of the core material, and the coating layer was expected to peel from the core material.
  • the present invention was completed by finding that the ratio between the core material and the coating layer is more important than the difference in bulk modulus between the core material and the coating layer, and clarifying the relationship between the core material and the coating layer.
  • the ratio between the specific surface area of the negative electrode active material calculated based on the particle size distribution of the equal volume sphere of the negative electrode active material and the specific surface area measured by the gas adsorption method is in the range of 1: 1 to 1:30, spacing of (002) plane of the wood is 0.3345nm ⁇ 0.3370nm, 1580cm -1 region 1360 cm -1 region the ratio of the peak intensity of the (D band) I 1360 / I 1580 to the peak intensity of the (G band)
  • the (Raman peak intensity ratio) was in the range of 0.1 to 0.6, a battery having a high capacity and a long life was obtained.
  • the specific surface area ratio is apparent from the comparison between NM1 to NM7 and NM11 and NM18 which is a comparative example.
  • the plane spacing of the (002) plane is apparent from the comparison between NM9, NM13, and NM14 and NM16 and NM17, which are comparative examples.
  • the Raman peak intensity ratio is apparent from the comparison between NM1 to NM14 and the comparative examples NM16, NM17, and NM21.
  • the negative electrode when the particle size (median diameter D 50 ) of the negative electrode active material at a frequency of 50% obtained from particle size distribution measurement is 3 ⁇ m to 30 ⁇ m, the negative electrode has a higher capacity and a longer life. Is obtained. It is clear from the comparison between NM5 and NM8 to NM10 and NM15.
  • the DC resistance measurement was performed as follows. First, the negative electrode and the positive electrode were taken out of the battery, and a three-electrode cell was assembled using the negative electrode as a working electrode, the positive electrode as a counter electrode, and metallic lithium as a reference electrode. Using this cell, the negative electrode is charged to the same level as in the case of a battery. Next, the negative electrode is discharged at a constant discharge current value in the range of 1 mA / cm 2 to 10 mA / cm 2 , and the change width of the negative electrode potential 10 seconds after the start of discharge is measured. The negative electrode potential was measured based on the reference electrode. The horizontal axis is plotted with the discharge current, the vertical axis with the potential change width, and the slope of the linear approximation formula is the DC resistance.
  • the resistance increase rate of the negative electrode active materials NM1 to NM14 tended to decrease as the capacity retention rate increased, and the resistance increase rate ranged from 5% to 15%.
  • the DC resistance of NM1 to NM7 is in the range of 5% to 15% with respect to the initial value, and the resistance tends to decrease as the thickness of the coating layer increases.
  • the smaller the particle size the greater the resistance, but the DCR increase rate was 5% to 10%.
  • the resistance increase rate of NM11 was 7%.
  • NM12 to NM14 had a resistance increase rate of 5% to 10%. In this case as well, the dependence on the thickness of the coating layer is strong, and the resistance tends to decrease as the coating layer increases.
  • the capacity retention rate was remarkably reduced, and the resistance increase rate was also large accordingly.
  • NM16 was 250%
  • NM17 was 210%
  • NM18 was 195%.
  • the capacity retention rate of the negative electrodes of NM15 and NM19 to NM21 is improved from the value of the negative electrodes of NM16 to NM18, but the resistance increase rate is in the range of 120% to 180%, and the lower the capacity retention rate is, The resistance increase rate tended to increase.
  • the negative electrode active materials NM1 to NM15 maintained a large discharge capacity of 340 mAh / g to 355 mAh / g.
  • the NM16 to NM18 in the comparative examples decreased from 250 mAh / g to 260 mAh / g, 275 mAh / g to 285 mAh / g, and 290 mAh to 300 mAh, respectively.
  • the discharge capacities from NM19 to NM21 also decreased from the initial capacity to 290 to 330 mAh / g.
  • a plurality of cylindrical lithium ion secondary batteries shown in FIG. 1 were connected to assemble a battery module (assembled battery) 201 as shown in FIG.
  • the battery module 201 is obtained by connecting eight lithium ion secondary batteries 202 in series.
  • a charging / discharging circuit 210, an arithmetic processing unit 209, a power supply load power supply 211, a power line 212, a signal line 213, and an external power cable 214 are connected to the battery module 201.
  • the system of FIG. 2 further includes a positive electrode terminal 203, a bus bar 204, a battery can 205, and a support component 206. Note that NM1 was used as the eight lithium ion secondary batteries 202 used.
  • a power supply load power supply 211 having both functions of supplying and consuming power is originally attached to an external power supply or an external load.
  • the use of this does not cause a difference in the effect of the present invention compared to actual use in an electric vehicle such as an electric vehicle, a machine tool, a distributed power storage system, a backup power supply system, or the like.
  • a charge current corresponding to a one hour rate (3.5 A) is passed from the charge / discharge circuit 210 to the positive external terminal 207 and the negative external terminal 208 to 33.6 V.
  • the constant voltage value set here is a value that is eight times the constant voltage value 4.2 V of the unit cell.
  • a power supply load power supply 211 was used to exchange power necessary for charging and discharging the battery module.
  • a reverse current was passed from the positive external terminal 207 and the negative external terminal 208 to the charge / discharge circuit 210, and power was consumed by the power supply load power supply 211.
  • the discharge current was 1 hour rate (discharge current: 3.5 A), and discharging was performed until the voltage between the positive external terminal 207 and the negative external terminal 208 reached 24V.
  • the present invention is not limited to the embodiments described above. Specific constituent materials, parts, and the like may be changed without departing from the scope of the present invention. In addition, if the constituent elements of the present invention are included, it is possible to add a known technique or replace some constituent elements with a known technique.
  • the lithium ion secondary battery of the present invention is used as a power source for portable electronic devices, mobile phones, power tools, and other consumer goods, as well as electric vehicles, trains, storage batteries for storing renewable energy, unmanned mobile vehicles, nursing care devices, etc. It is possible to use. Furthermore, the lithium ion secondary battery of the present invention can also be applied as a power source for logistics trains for searching the moon, Mars, and the like.
  • space suits, space stations, structures on earth or other celestial bodies or living space closed or open
  • spacecraft for interplanetary movement planetary rover (land rover)
  • planetary rover underwater or underwater It can be used for various power sources such as air-conditioning, temperature control, purification of sewage and air, and power for various spaces such as sealed spaces, submarines, and fish observation equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 従来、充放電サイクルの際に負極活物質の体積が変化し、負極内部の導電性ネットワークが徐々に劣化し、その結果、負極の容量が低下するという問題がある。これに対し本発明は、負極の容量低下を抑制し、リチウムイオン二次電池の長寿命化を図ることを目的とする。リチウムイオン二次電池用の負極活物質であって、黒鉛の核材と該核材の表面を覆う被覆層とを含み、前記被覆層の厚さが1nm~200nmであり、前記被覆層の体積弾性率が前記核材の体積弾性率よりも小さいことを特徴とする。

Description

リチウムイオン二次電池用負極活物質及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極活物質とそれを用いたリチウムイオン二次電池に関する。
 リチウムイオン二次電池は高いエネルギー密度を有し、電気自動車用や電力貯蔵用の電池として注目されている。特に、電気自動車としては、エンジンを搭載しないゼロエミッション電気自動車、エンジンと二次電池の両方を搭載したハイブリッド電気自動車、さらには系統電源から充電するプラグインハイブリッド電気自動車がある。また、リチウムイオン二次電池は、電力を貯蔵し、電力系統が遮断された非常時に電力を供給する定置式電力貯蔵システムとしての用途も期待されている。
 このような用途では、充放電サイクルにおける優れた耐久性が要求されている。充放電サイクルでは、リチウムイオンの吸蔵・放出に伴って、負極活物質の結晶体積が変化する。最初は密着していた負極活物質の粒子同士が、充放電サイクル数の増加に伴って次第に離れ始め、粒子間の電子伝導性が悪化する。その結果、負極の容量が低下する。したがって、負極内部の電子伝導性が悪化しにくい負極活物質が必要とされる。
 高温保存時の容量低下あるいはサイクル劣化を抑制するために、高耐久性の電極材料や電解液等が開発され、その中でも、負極の電極構造に関する発明が多数提案されている。その代表例として(特許文献1)~(特許文献4)がある。
 (特許文献1)には、負極合剤層にプロピレンカーボネートを滴下した際に、その液滴と負極合剤層との接触角が100秒以内に10度以下となるような吸液特性を負極に付与することによって、充放電サイクル特性を向上させる技術が示されている。
 (特許文献2)は、活物質粉末の表面に導電材料を付着させ、活物質粉末と導電材料との間の電気的接続を安定的に維持させた活物質を開示している。
 (特許文献3)は、バインダとして弾性率が3.0GPa以上である樹脂、好ましくはポリイミド樹脂を、スズを活物質として含むリチウム二次電池用負極に用いて、負極の充放電サイクル特性を向上させている。
 (特許文献4)は、弾性率の異なる二種類のバインダを用い、負極の空隙率を18%~70%として、サイクル特性を向上させる発明を開示している。
特開2004-22507号公報 特開2008-277128号公報 特開2007-149604号公報 特開2009-224239号公報
 上述の通り、充放電サイクルの際に負極活物質の体積が変化するので、負極内部の導電性ネットワークが徐々に劣化し、その結果、負極の容量が低下するという問題がある。これに対し本発明は、負極の容量低下を抑制し、リチウムイオン二次電池の長寿命化を図ることを目的とする。
 上記課題を解決するため、本発明者らが鋭意検討を行った結果、負極活物質の粒子が核材と被覆層の二層構造を有し、被覆層が充放電サイクル時の核材の膨張収縮に追随するような機械的特性を有することが重要であることを見出した。このような負極活物質を用いれば、充放電サイクルによる負極の容量の低下が抑制され、電池の寿命を改善することができる。
 すなわち、本発明のリチウムイオン二次電池用負極活物質は、黒鉛の核材とその核材の表面を覆う被覆層とを含み、被覆層の厚さが1nm~200nmであり、被覆層の体積弾性率が核材の体積弾性率よりも小さいことを特徴とする。
 本発明により、充放電サイクルによる容量の低下が抑制された負極を得ることができる。この負極を用いることにより、リチウムイオン二次電池の寿命を向上させることができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明のリチウムイオン二次電池の一実施形態を示す断面図である。 電池モジュールの一実施形態を示す図である。
 以下、本発明を詳細に説明する。
 本発明に係るリチウムイオン二次電池用負極活物質は、黒鉛粒子を核材とし、その表面に被覆層を具備して構成される。そして、被覆層が所定の厚さを有し、被覆層の体積弾性率が核材の体積弾性率より低いことを特徴としている。そのような体積弾性率の大小関係があるために、充放電サイクルの過程で核材がリチウムイオンの吸蔵・放出に伴って体積が膨張・収縮した場合に、その体積変化に被覆層が追随し、被覆層が核材から剥離したり、破損したりすることがなくなる。その結果、負極活物質の劣化が抑制され、電池の長寿命化が達成される。次に、この負極活物質を用いたリチウムイオン二次電池の構成について説明する。
 図1は、本発明のリチウムイオン二次電池の一実施形態の内部構造を模式的に示したものである。ここで、リチウムイオン二次電池とは、非水電解液中における電極へのリチウムイオンの吸蔵・放出により、電気エネルギーを貯蔵又は利用可能とする電気化学デバイスである。図1のリチウムイオン二次電池101は、正極110、セパレータ111、負極112、電池缶113、正極集電タブ114、負極集電タブ115、内蓋116、内圧開放弁117、ガスケット118、正温度係数(PTC;Positive temperature coefficient)抵抗素子119及び正極端子付き電池蓋120を有する。正極端子付き電池蓋120は、内蓋116、内圧開放弁117、ガスケット118及びPTC抵抗素子119と一体構造をなしている。正極端子付き電池蓋120を電池缶113へ取り付ける際には、かしめの他に、溶接、接着等の方法を適宜採用して行うことができる。
 図1の電池缶113は底のあるタイプであるが、これに代えて底面がない円筒形容器を用い、その円筒形容器の底面に電池蓋を取り付け、さらに電池蓋に負極を接続しても良い。端子の取り付け方法に応じて、任意の形状の電池容器を用いることができ、いずれの容器であっても本発明の効果に何ら影響を与えない。
 正極110は、正極活物質、導電剤、バインダ及び集電体から構成される。正極活物質の代表例としては、LiCoO2、LiNiO2、LiMn24等を挙げることができる。その他にも、LiMnO3、LiMn23、LiMnO2、Li4Mn512、LiMn2-xx2(ただし、MはCo、Ni、Fe、Cr、Zn、Ta等の金属元素であり、xは0.01~0.2である)、Li2Mn3MO8(ただし、MはFe、Co、Ni、Cu、Zn等の金属元素である)、Li1-xxMn24(ただし、AはMg、Ba、Al、Fe、Co、Ni、Cr、Zn、Ca等の金属元素であり、xは0.01~0.1である)、LiNi1-xx2(ただし、MはCo、Mn、Fe、Ga等の金属元素であり、xは0.01~0.2である)、LiFeO2、Fe2(SO43、LiCo1-xx2(ただし、MはNi、Fe、Mn等の金属元素であり、xは0.01~0.2である)、LiNi1-xx2(ただし、MはMn、Fe、Co、Al、Ga、Ca等の金属元素であり、xは0.01~0.2である)、Fe(MoO43、FeF3、LiFePO4、LiMnPO4等を挙げることができるが、これらに限定されるものではない。
 正極活物質の粒径は、合剤層の厚さ以下になるように規定される。正極活物質粉末中に合剤層の厚さ以上のサイズを有する粗粒がある場合、予めふるい分級、風流分級等により粗粒を除去し、合剤層の厚さ以下の粒子を調製する。粒径は、レーザー回折・散乱粒度分布測定装置(マイクロトラック法を利用した装置)を用いて測定した。なお、本発明において粒径とは、レーザー光の散乱パターンと同等な散乱パターンを示す球形粒子の集合体の粒度分布から算出した数値をいう。
 また、正極活物質は一般に酸化物系であり電気抵抗が高いので、それらの電気伝導性を補うために炭素粉末からなる導電剤を利用する。導電剤には、アセチレンブラック、カーボンブラック、黒鉛や非晶質炭素等の炭素材料を用いることができる。正極内部に電子ネットワークを形成するために、導電剤の平均粒径は、正極活物質の平均粒径よりも小さく、正極活物質の平均粒径の1/10以下にすることが望ましい。
 正極活物質と導電剤はともに粉末であるため、これらの粉末にバインダを混合して、粉末同士を結合させるとともに集電体へ接着させる。
 集電体には、厚さが10μm~100μmのアルミニウム箔や、厚さが10μm~100μmで且つ孔径0.11mm~10mmの孔を有するアルミニウム製の穿孔箔、エキスパンドメタル、発泡金属板等が用いられる。材質は、アルミニウムの他に、ステンレス鋼、チタン等も適用可能である。本発明では、電池の使用中に溶解、酸化等の変化をしないものであれば、材質、形状、製造方法等に制限されることなく、任意の材料を集電体に使用することができる。
 正極110を作製するために、正極スラリーを調製する必要がある。その組成は、スラリーに混合する材料の種類、比表面積、粒径分布等に応じて変更され、特に限定されない。一例として、正極活物質を89重量部、アセチレンブラックを4重量部、バインダとしてポリフッ化ビニリデン(PVDF)を7重量部とすることができる。正極スラリーの溶媒は、バインダを溶解させるものであれば良く、バインダの種類に応じて適宜選択される。例えば、PVDFをバインダとする場合には溶媒として1-メチル-2-ピロリドンが多用される。正極スラリーの分散処理には、公知の混練機、分散機を用いることができる。
 正極活物質、導電剤、バインダ及び溶媒を混合した正極スラリーを、ドクターブレード法、ディッピング法、スプレー法等によって集電体へ塗布した後、溶媒を乾燥し、ロールプレス等により加圧成形することによって正極を作製することができる。また、塗布から乾燥工程までを複数回行うことにより、複数の合剤層を集電体に積層化させることも可能である。
 負極112は、負極活物質、バインダ及び集電体を含む。負極活物質は、黒鉛からなる核材(粒子)の表面に被覆層を形成した構造、いわゆるコア・シェル構造を有している。核材は、グラフェン積層構造(グラファイト構造)を有する炭素材料である。負極活物質の形状は、球状、塊状あるいは扁平球状であることが望ましいが、燐片状、繊維状のようにアスペクト比の大きな形状であっても良い。負極活物質の頻度50%における粒径(メジアン径D50)は、3μm~30μmであることが好ましい。粒径は、レーザー回折・散乱粒度分布測定装置(マイクロトラック法を利用した装置)を用いて測定した。
 黒鉛からなる核材は、例えば、コークス粉末、タールピッチ、炭化ケイ素、コールタール等を混合し、得られた混合物を粉砕してペレット状に加圧成形し、次に窒素雰囲気中3000℃程度で焼成し、得られた焼成物をハンマーミルによって粉砕することにより得ることができる。
 上記コークス粉末としては、粒径が1μm~数十μmの粉末を選択することができる。また、コークス粉末、タールピッチ等の各成分の組成は適宜変更することができる。熱処理温度等のその他の条件も、上述の内容に限定されない。
 また、上記の人造黒鉛の代わりに天然黒鉛を用いることも可能である。例えば、天然黒鉛を粉砕し、粉末を作製し、風流分級装置を用いて、平均粒径を5μm~20μmの範囲に揃える。バインダを用いて略球状に造粒成形して得た黒鉛粒子に、バインダピッチを添加し、加熱混合した後、800℃~1400℃で焼成する。核材の平均粒径は、特に制約はないが、負極の厚さよりも小さくする必要がある。
 黒鉛の種類は、人造黒鉛又は天然黒鉛のいずれであっても本発明の効果に影響を与えない。特に、黒鉛からなる核材の、X線広角回折法による(002)面の面間隔d002が0.3345nm~0.3370nmの範囲内であることが好ましい。この範囲であれば、低い負極電位でのリチウムイオンの吸蔵量が大きく、電池のエネルギー(Wh)が増大する。また、核材と被覆層の二層構造にしたとしても、350mAh/gを超える大きな容量を得ることができ好適である。
 また、核材の黒鉛結晶のc軸長さ(以下、Lcと記す。)は20nm~90nmであることが好ましいが、これに限定されるものではない。
 核材表面に被覆層を形成する前に、核材自身の体積弾性率を測定する。体積弾性率の測定には、例えば、ナノインデンテーションの手法による極微小プローブ(探針)を用いた方法が適用される(日本学術振興会炭素材料第117委員会編、炭素材料の新展開、197~210頁;応用物理、第79巻、第4号、341~345頁、2010年;及び神戸製鋼技報、第52巻、第2号、74~77頁、2002年を参照)。極微小プローブの形状は任意であるが、核材と被覆層のそれぞれを測定する際に用いるプローブの材質と形状は同一とする。一般的には、円錐形又は正ピラミッド形が採用される。
 体積弾性率を測定する別の方法として、原子間力顕微鏡(Atomic Force Microscopy)を用いて、その探針を核材表面に圧着させ、その力を計測して体積弾性率を計測する方法を用いても良い(応用物理、第79巻、第4号、341~345頁、2010年を参照)。その他、粒子1個の表面を圧縮してその応力を計測できれば、任意の手法を用いることができる。
 被覆層の体積弾性率は、核材に被覆層を形成した状態で測定する。核材の体積弾性率の影響を完全に排除することはできないが、本発明での被覆層の体積弾性率は、被覆層の下地に核材が存在する状態での実測値と定義する。
 核材の体積弾性率は、原料の種類、熱処理条件等の違いによって、種々の値を取り得る。しかしながら、372mAh/gの理論容量に近い容量を得るためには、核材の体積弾性率は5GPa~20GPaの範囲であることが望ましい。ただし、電極作製時のプレス工程にて負極活物質粒子が圧縮変形を受ける場合には、核材の体積弾性率を8GPa以上にすることが好ましい。また、体積弾性率が大き過ぎると柔軟性が不足するので、14GPa以下の体積弾性率を有する核材がさらに好適である。本発明で規定する比表面積、d002値、Lc値、ラマンピーク強度比、D50値等の要件を満足しつつ、体積弾性率が5GPa~20GPa、望ましくは8GPa~14GPaの範囲内にある核材を選定すれば、理論容量に極めて近い高い容量を有し、かつ優れた充放電サイクル特性を得ることができる。
 次に、核材表面に被覆層を形成する方法について説明する。被覆層は、炭素質材料からなるが、少量の窒素、リン、酸素、アルカリ金属、アルカリ土類金属、遷移金属等を含有していても良い。被覆層がリチウムイオンを透過させ、所定の体積弾性率を有していれば、本発明の効果を得ることができる。
 被覆層の厚さは、1nm~200nm、特に5nm~150nmであることが望ましい。被覆層が薄過ぎると、電解液が浸透して核材表面で電解液の還元分解が起こる恐れがある。逆に被覆層が厚過ぎると、リチウムイオンの拡散を阻害し、大電流における容量の低下が起こる可能性がある。
 被覆層としては、炭素を主成分とする被覆層が最も適している。その炭素を主成分とする被覆層は、細孔の少ない緻密な構造であることが望ましい。被覆層に細孔が多くなると、電解液中の溶媒が被覆層に浸透し、核材表面で還元分解を起こすからである。
 炭素を主成分とする被覆層は、例えば、以下の手順によって形成することができる。まず、黒鉛からなる核材100重量部をノボラック型フェノール樹脂のメタノール溶液(日立化成工業株式会社製)160重量部に浸漬し、分散して黒鉛粒子・フェノール樹脂混合物溶液を作製する。この溶液をろ過、乾燥し、200℃~1000℃の範囲での熱処理を順次行うことによって、核材表面を炭素で被覆した黒鉛粒子(負極活物質)を得ることができる。無論、混合物溶液の組成や熱処理温度は、上記の条件に限定されるものではない。
 また、上述の方法とは異なる方法により、炭素を主成分とする被覆層を形成することもできる。例えば、ポリビニルアルコールで核材を被覆し、熱分解させる方法が挙げられる。この場合、熱処理温度は200℃~400℃の範囲にすれば良い。特に、300℃~400℃の範囲であれば、被覆層が核材により強固に接合されるため望ましい。
 さらに、代替方法として、ポリ塩化ビニル、ポリビニルピロリドン等の含酸素有機化合物で核材を処理することも可能である。これらの化合物を黒鉛粉末と混合した後、熱分解温度まで加熱して、炭素を主成分とする被覆層を形成する。
 なお、被覆層の厚さは、上述のフェノール樹脂、ポリビニルアルコール等の炭素原料の添加量を核材の重量に対して増減させたり、熱処理条件を調整したりすることによって制御することができる。
 被覆層の厚さは、以上のようにして黒鉛からなる核材の表面に低結晶性の被覆層を形成した後、集束イオンビーム(FIB;Focused Ion Beam)加工装置にてコア・シェル構造の粉末の断面を切り出し、透過型電子顕微鏡(TEM;Transmission Electron Microscope)を用いることによって測定することができる。
 このようにして作製された負極活物質は、核材とその核材の表面を覆う被覆層とを有する二層構造である。被覆層の厚さが1nm~200nmであり、被覆層の体積弾性率が核材の体積弾性率よりも小さければ、本発明が目的とする負極の容量低下防止を図ることができる。なお、負極活物質の製造方法は、上述の方法に限定されず、被覆層の体積弾性率が核材の体積弾性率よりも小さければ、任意の方法を選択することが可能である。
 さらに効果的に負極容量低下を防止するためには、被覆層の体積弾性率が核材の体積弾性率の50%~95%であれば良い。体積弾性率の比率は、被覆層の密度(すなわち緻密さ)、結晶子サイズ、細孔や欠陥の有無、厚さ等によって決まり、被覆層の原料、熱分解温度等の製造方法や製造条件によって制御することができる。
 また、X線回折法で決定した核材の(002)面の間隔が0.3345nm~0.3370nmの範囲にあることが好ましい。このような負極活物質は、内部に黒鉛結晶を有する核材を有していることになり、高容量な負極となる。
 また、負極活物質の等体積球の粒度分布に基づき算出した前記負極活物質の比表面積に対する、ガス吸着法により実測した負極活物質の比表面積の比(以下、比表面積の比と記す)が、1~30であることが好ましい。本発明では、窒素ガスを用いて比表面積を実測するものとする。負極活物質に被覆層がない場合、すなわち負極活物質が核材のみからなる場合は、比表面積の比は30よりも大きな値となる。核材表面には微細な凹凸があり、あるいは内部に細孔を有しているので、ガス吸着法による比表面積はそのような微小の凹凸を反映した表面積が計測される。これに対し、粒度分布計測から求めた粒子の等体積球の比表面積は、それぞれの粒子の微細な凹凸が考慮されず、表面が滑らかな理想的な球として計算されている。
 粒度分布から求める比表面積の計算方法は、以下の方法による。粒径を細かい区間で区切り、その微小区間における粒子数の頻度(百分率表示とする)Aと、その区間の中央値を粒子の直径とみなして計算した表面積Bとの積A×Bを得る。同様に、微小区間の中央値を粒子の直径とみなして計算した粒子体積Cより、積A×Cが求められる。全区間についてA×Bを累積した値を、全区間についてA×Cを累積した値で割ると、単位体積当りの比表面積(単位はcm2/cm3)が得られる。粒子の真密度を液相置換法(ピクノメーター法)等の公知の分析手法により求めれば、単位体積当りの比表面積に粒子の真密度を掛けて、単位重量当りの比表面積(単位はcm2/g)を計算することができる。この値はガス吸着法(BET法)で求めた比表面積と同じ単位になるので、BET比表面積を、粒度分布から計算した単位重量当りの比表面積で割って、比表面積の比が得られる。
 上述の微小区間とは、粒子がとり得る直径の範囲を全区間として、その区間を100よりも大きな数に分割した区間をいい、分割数は可能な限り大きくする。また、区間は等分にしても良いが、直径が大きくなるほど等比級数の比率又は指数関数の比率で増加させても良い。なお、後述の実施例では、測定した粒径の区間を指数関数の比率で増加させる方法を採った。
 被覆前の核材は、その表面に凹凸を有しているが、核材に被覆層が形成され始めると、微細な凹凸が徐々に凹凸の少ない被覆層によって被覆される。その結果、被覆層を形成した負極活物質の比表面積の比は30以下となる。比表面積の比が最も小さくなる場合は、凹凸がない緻密な被覆層が形成された場合に相当し、下限値は1である。
 比表面積の比が3~30の範囲であると、本発明の効果を得る上でさらに好適である。比表面積の比が30以下であることにより、適度な細孔を有する表面となり、リチウムイオンが核材まで速やかに到達して核材内部に吸蔵され、また逆に核材からリチウムイオンが電解液に放出されやすくなる。比表面積の比が小さいほど負極の寿命を向上させることができる。電解液との接触面積が減少し、電解液の還元分解による不可逆容量も低下するからである。また、比表面積の比が小さ過ぎると、細孔が少なくなって負極のレート特性が悪くなる傾向があるので、比表面積の比は3以上であることが望ましい。また、比表面積の比が5以上であると、3C以上の大電流(1/3時間率相当の電流)における充放電が可能となり、さらに好適である。
 逆に、比表面積の比が30を超えると、細孔が大きくなり過ぎて、電解液の溶媒が核材表面で分解し始め、不可逆容量は増加して初期容量が低下する。さらに、充放電サイクルによって被膜層が破損し、寿命が悪化する。
 さらに、本発明における負極活物質は、1580cm-1領域(Gバンド)のピーク強度に対する1360cm-1領域(Dバンド)のピーク強度の比I1360/I1580が、0.1~0.6の範囲であることが望ましい。Gバンドは被覆層の結晶性が高いほど(黒鉛の結晶に近くなるほど)強くなり、Dバンドは非晶質になるほど強くなる。したがって、前記ピーク強度の比は、負極活物質粒子の表面における非晶質の程度を表す指標となる。本発明における被覆層は、ピーク強度の比が0.1~0.6となる中程度の非晶質性を有する材質になっている。黒鉛単体の場合は0.1より小さくなりやすく、非晶質構造又は乱層構造(ガラス状構造)の場合は0.9~1.1となる。
 負極112には、上記のコア・シェル構造の負極活物質に加えて、リチウムイオンを電気化学的に吸蔵・放出可能な他の材料を混合しても良い。そのような材料としては、黒鉛の(002)面の面間隔が0.3370nmよりも大きな炭素材料が挙げられ、膨張黒鉛、あるいはピッチ系炭素質材料、ニードルコークス、石油コークス等から製造された炭素材料が適用可能である。さらに、カーボンブラックあるいは5員環又は6員環の環式炭化水素又は環式含酸素有機化合物を熱分解することによって合成した非晶質炭素材料を添加しても良い。これらの他の材料の添加量は、上記のコア・シェル構造の負極活物質の重量に対して等重量比率よりも小さくすることが好ましい。それよりも多いと、非晶質炭素よりも高容量な黒鉛の比率が減少し、負極の容量密度が顕著に低下するからである。
 負極に用いるバインダは、結合力のある樹脂、ピッチ等であれば良く、特に限定されない。バインダの種類としては、フェノール樹脂、セルロース樹脂、エポキシ樹脂等の熱硬化性樹脂や、ナフタレン、アントラセン、クレオソート油、ポリビニルアルコール、スチレンブタジエンゴム、コールタールピッチ、ポリエチレン等の種々の樹脂、あるいはそれらの混合物を用いることができる。
 負極に用いる集電体としては、厚さが10μm~100μmの銅箔、厚さが10μm~100μm、孔径0.1mm~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板等が用いられ、材質も銅の他に、ステンレス鋼、チタン、ニッケル等も適用可能である。本発明では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用することができる。
 負極活物質、バインダ及び有機溶媒を混合した負極スラリーを、ドクターブレード法、ディッピング法、スプレー法等によって集電体へ付着させた後、有機溶媒を乾燥し、ロールプレスによって負極を加圧成形することにより、負極を作製することができる。また、塗布から乾燥までを複数回行うことにより、集電体上に合剤層を多層に形成することも可能である。
 次に、図1に示すリチウムイオン電池101の作製手順を述べる。上記した方法で作製した正極110と負極112の間にセパレータ111を挿入し、正極110と負極112の短絡を防止する。セパレータ111としては、ポリエチレン、ポリプロピレン等からなるポリオレフィン系高分子シート、あるいはポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートとを溶着させた多層構造のセパレータ、アラミド繊維を添加したセパレータ等を使用することが可能である。電池温度が高くなったときにセパレータ111が収縮しないように、セパレータ111の表面にセラミックスとバインダの混合物を薄層状に形成しても良い。これらのセパレータ111は、電池の充放電時にリチウムイオンを透過させる必要があるため、一般に0.01μm~10μm径の細孔を有し、気孔率が20%~90%であることが望ましい。
 セパレータ111は、電極群の末端に配置されている電極と電池缶113の間にも挿入し、正極110と負極112が電池缶113を通じて短絡しないようにしている。セパレータ111と正極110及び負極112の表面及び細孔内部に、電解質と非水溶媒からなる非水電解液が保持されている。
 正極110は、正極集電タブ114を介して内蓋116に接続されている。負極112は、負極集電タブ115を介して電池缶113に接続されている。なお、正極集電タブ114及び負極集電タブ115は、ワイヤ状、板状等の任意の形状を採ることができる。電流を流したときにオーム損失を小さくすることのできる構造であり、かつ非水電解液と反応しない材質であれば、正極集電タブ114及び負極集電タブ115の形状及び材質は、電池缶113の構造等に応じて、ニッケル、アルミニウム、チタン、ステンレス鋼、銅等の金属より任意に選択することができる。
 正温度係数(PTC;Positive temperature coefficient)抵抗素子119は、電池内部の温度が高くなったときに、リチウムイオン二次電池101の充放電を停止させ、電池を保護するために用いる。低融点のポリマー中にカーボンブラック、ニッケル等の導電性粒子を分散させたもの等を、PTCの材質に用いることができる。
 電極群の構造は、図1に示した捲回構造のものであっても良いし、扁平状等の任意の形状に捲回したもの、あるいは短冊状等の種々の形状にすることができる。電池容器の形状は、電極群の形状に合わせ、円筒型、偏平長円形状、角型等の形状を適宜選択することができる。
 電池缶113の材質は、アルミニウム、ステンレス鋼、鋼、ニッケルメッキ鋼製等、非水電解液に対し耐食性のある材料から選択される。また、電池缶113を正極集電タブ114又は負極集電タブ115に電気的に接続する場合は、非水電解液と接触している部分において、電池容器の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、リード線の材料を選定する。
 その後、正極端子付き電池蓋120を電池缶113に密着させ、電池全体を密閉し、かしめ等の方法によって正極端子付き電池蓋120を電池缶113に取り付ける。電池を密閉する方法には、溶接、接着等の公知の技術を適用しても良い。端子の位置や形状も任意であり、図1に示された端子に限定されない。
 本発明で使用可能な非水電解液の代表例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等を混合した溶媒に、電解質として六フッ化リン酸リチウム(LiPF6)あるいはホウフッ化リチウム(LiBF4)を溶解させた溶液がある。本発明では、溶媒や電解質の種類、溶媒の混合比等は特に制限されることなく、他の非水電解液も利用可能である。電解質は、ポリフッ化ビニリデン、ポリエチレンオキサイド等のイオン伝導性高分子に含有させた状態で使用することも可能である。この場合は前記セパレータが不要となる。
 非水電解液に使用可能な溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1,2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1,2-ジエトキシエタン、クロルエチレンカーボネート、クロルプロピレンカーボネート等の非水溶媒が挙げられる。本発明のリチウムイオン二次電池に内蔵される正極あるいは負極上で分解しなければ、これ以外の溶媒を用いても良い。
 また、電解質としては、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、あるいはリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩等の多種類のリチウム塩が使用可能である。これらの塩を、上述の溶媒に溶解させた非水電解液をリチウムイオン二次電池用の電解液として使用することができる。本発明のリチウムイオン二次電池に内蔵される正極あるいは負極上で分解しなければ、上記以外の電解質を用いても良い。さらに、リン酸エステル、亜リン酸エステル、環状リン酸エステル、環状亜リン酸エステル、環状ホスファゼンのような難燃剤を添加し、電解液が燃焼されにくくしても良い。
 非水電解液の注入方法は、正極端子付き電池蓋120を電池缶113から取り外して電極群に直接添加する方法、あるいは正極端子付き電池蓋120に設けた注液口から添加する方法がある。
 非水電解液の代わりに、固体高分子電解質(ポリマー電解質)あるいはゲル電解質を用いることもできる。固体高分子電解質を用いる場合には、ポリエチレンオキサイド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ヘキサフルオロプロピレンを含む共重合体等のイオン導電性ポリマーを電解質に用いることができる。これらの固体高分子電解質を用いた場合、セパレータ111を省略することができる利点がある。また、ゲル電解質としては、ポリフッ化ビニリデンと非水電解液の混合物が挙げられる。イオン導電性ポリマーをリチウムイオン導電性固体電解質に置き換えても良く、本発明の効果を得ることができる。
 さらに、イオン性液体を用いることができる。イオン性液体の例として、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMI-BF4)、リチウム塩LiN(SO2CF32(LiTFSI)とトリグライムとテトラグライムとの混合錯体、N-メチル-N-プロピルピロリジニウム等の環状四級アンモニウム系陽イオン、ビス(フルオロスルホニル)イミド等のイミド系陰イオンが挙げられ、これらのイオン性液体から正極と負極にて分解しない組み合わせを選択して、本発明のリチウムイオン二次電池に用いることができる。
〔実施例〕
 以下、実施例及び比較例に基づいて本発明をさらに詳細に説明するが、これらに限定されるものではない。
 以下のようにして黒鉛からなる核材を作製した。まず、平均粒径が5~40μmのコークス粉末50重量部、タールピッチ20重量部、平均粒径が48μmの炭化ケイ素7重量部及びコールタール10重量部を混合し、200℃で1時間混合した。得られた混合物を粉砕し、ペレット状に加圧成形し、次いで窒素雰囲気中、所定の温度で焼成した。得られた焼成物をハンマーミルによって粉砕し、風流分級装置により粒径を制御して微細な黒鉛粒子からなる核材を得た。この核材の粒度分布を、粒度分布計を用いて測定したところ、頻度50%における粒径(メジアン径、D50)が3μm~40μmであった。
 続いて、被覆層を形成した。ここでは2種類の被覆方法を適用した。第1の方法では、ノボラック型フェノール樹脂メタノール溶液を被覆層の形成のための原料に用い、炭素質の被覆層を核材表面に形成した。核材は2500℃の高温熱処理を施し、黒鉛の結晶性を高めたものを用いた。核材に対する被覆層の平均厚さが1nm~2nm、5nm、20nm、50nm、100nm、150nm、200nmになるようにフェノール樹脂の添加量を増加させ、7種類の被覆層付き黒鉛からなる負極活物質(NM1、NM2、NM3、NM4、NM6、NM7)を作製した。
 また、メジアン径D50が3、10、30μmである3種類の黒鉛粉末からなる核材を準備し、同様の方法によって、被覆層を形成した。核材は、黒鉛の破砕、粉砕処理を行った後、風流分級装置を用いて粒径を制御した。このように作製した負極活物質は、それぞれNM8、NM9、NM10の3種類である。
 NM11は、NM9の製造時における熱処理温度を2800℃~2900℃に高めて、NM9の被覆層の結晶性を高めた負極活物質である。熱処理は、非酸化性雰囲気で行った。
 グラファイト層間(d002)のやや広がった核材を用いて、炭素質の被覆を行った。作製した負極活物質は、NM12、NM13、NM14の3種類である。核材は、非酸化性雰囲気にて石油ピッチを2000℃~2500℃で焼成することにより合成した。その焼成品を粉砕し、表1に示したメジアン径D50になるように分級して核材を得た。この表面にナフタレン又はポリビニルアルコールを付着させ、700℃~900℃の熱処理を行うことにより、負極活物質を得ることができる。表1に示したNM12、NM13、NM14の合成にはナフタレンを用い、被覆層の厚さはその添加量によって制御した。また、NM15は、風流分級にてメジアン径D50を40μmに制御した核材に、フェノール樹脂の熱分解により被覆層を形成した負極活物質である。
 比較例として、NM1に用いた核材のみからなる負極活物質NM16、非晶質炭素(ハードカーボン)からなる核材を含む負極活物質NM17、NM1に用いた核材に対し厚さ1nm(一部核材が露出)の被覆層を形成した負極活物質NM18、被覆層の厚さを250nm~300nmまで厚くした負極活物質NM19をそれぞれ作製した。NM20は、NM10に用いた核材(メジアン径D50が30μm)を用い、被覆層の厚さを250nm~300nmとした負極活物質である。NM21は、易黒鉛化炭素の核材に対し厚さ250nm~300nmの被覆層を形成した負極活物質である。
 なお、非晶質炭素(ハードカーボン)からなる核材を有する負極活物質NM17は、粉砕した黒鉛粉末にフェノール樹脂を熱処理した後に分級し、メジアン径D50を20μmとした粉末を核材とし、その表面にナフタレンを原料とした被覆層を形成したものである。NM21は、石油ピッチを1500℃の低温焼成により合成した人造黒鉛を核材とし、ナフタレンを原料とした被覆層を形成した負極活物質である。
 以上の21種類の負極活物質について、(002)面の面間隔d002、比表面積の比、及び1580cm-1(Gバンド)と1360cm-1(Dバンド)の位置にあるラマンピークの強度比(I1360/I1580)を測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中の比表面積の比は、上述のように2種類の手法によって測定した負極活物質の比表面積から算出する。すなわち、等体積球の粒度分布に基づき算出した比表面積に対する、窒素ガスを用いたガス吸着法により実測した比表面積の比である。
 表1の結果について説明する。NM1からNM11、NM15、NM16、及びNM18からNM20の負極活物質は、共通の核材を用いている。核材の結晶性が高いために、d002の間隔が天然黒鉛のd002に極めて近い値となっている。NM12からNM14、NM21の核材は結晶性をやや落としたものなので、d002がわずかに広がっている。NM17は非晶質炭素(ハードカーボン)であるため、d002を正確に決定することができなかった。
 比表面積の比は、被覆層の厚さが増加するほど減少する傾向がある。被覆層が増加するほど、核材表面の微細な凹凸が小さくなるので、ガス吸着法による比表面積が減少する。一方、粒度分布測定で計測される粒径に相当する等体積球の表面積の積算値から求められる比表面積は、被覆層の厚さにほとんど影響を受けない。粒径に対する被覆層の厚さが無視できるほどに薄いからである。後者の比表面積がほとんど変化しないのに対し、前者の比表面積が被覆層の厚さの増加につれて減少するため、比表面積の比が減少するものと考えられる。
 ラマンピークの強度比は、被覆層の厚さが増加するほど増大する。Gバンドは主に核材の構造を反映して変化しないのに対し、被覆層の厚さが増加するにつれて、被覆層の乱れた構造に由来するDバンドの強度が相対的に増大するためである。
 被覆層の厚さは、リチウムイオンの拡散性に影響を与えるので適切な範囲内である必要があり、本発明では、被覆層の厚さは1nm~200nmである。
 黒鉛の粒子サイズに対して被覆層の厚さが十分薄いので、負極活物質のメジアン径D50は核材の種類に依存し、NM8は3μm、NM9とNM11からNM14は10μm、NM15は40μm、NM1からNM7、及びNM16からNM19及びNM21は20μm、NM10とNM20は30μmとなっている。メジアン径D50は、粉砕条件と分級条件の調整により制御した。
 被覆層の厚さは、被覆処理のときに添加した原料の添加量によって制御することができる。なお、表1に示す被覆層の厚さは平均値である。具体的には、複数個の負極活物質粒子の断面を、集束イオンビーム装置(FIB)によって露出させ、10箇所以上の計測点での平均値を示している。なお、負極活物質NM18を除き、ほぼ全面に被覆層が形成されていた。NM18は、その被覆層が薄いため、局所的に核材が露出していた。
 作製した負極活物質について、円錐形のプローブを用いて体積弾性率の測定を行った。測定回数は、核材及び被覆層の測定ともに、それぞれ5回ずつ行った。それらの測定値から算出される体積弾性率の比(被覆層の体積弾性率/核材の体積弾性率)の最小値及び最大値を含む値の範囲を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 なお、参考として、上述のように被覆層を形成する前後の負極活物質一粒子から体積弾性率を計測する方法の他に、負極を作製した後にその負極を加工することによる方法でも負極活物質の体積弾性率を測定し、上記の負極活物質一粒子から計測した体積弾性率との差を評価した。後者の方法を用いた理由は、実際の負極に負極活物質が混合されてしまうと、直接的に体積弾性率を測定することができないため、後者の方法により負極作製前の負極活物質の体積弾性率を予測できるか否か検討するためである。
 まず、負極活物質が存在する合剤層における、負極活物質粒子が露出している位置を観察する。この観察には、光学顕微鏡、走査型電子顕微鏡等の公知の観察手段を用いる。見つけ出した負極活物質の粒子のほぼ中心位置に、ナノインデンテーション法の探針を押しつけて体積弾性率を測定した。これを被覆層の体積弾性率とする。なお、既に述べた原子間力顕微鏡の手法を適用しても良い。
 次に、負極活物質の核材の体積弾性率の測定方法を述べる。まず、負極集電体の面に対して垂直方向に、負極の層を切断する。次いで、負極活物質一粒子を狙ってイオンミリング法により粒子の断面を切り出した。この断面露出方法は、集束イオンビーム(FIB)法、ウルトラミクロトームを用いた切断法、化学研磨、電解研磨、イオン研磨、あるいは研磨剤を用いた物理的な研磨法(バフ研磨、エメリ紙研磨)等の公知の技術を適用しても良い。また、切断時の粒子の動き、つぶれ、破損等の変質を回避するために、液体窒素等の極低温冷媒を用いて、負極を凍結した状態で切断すると平滑な断面が得られるので、凍結状態での切断法は望ましい方法である。
 負極活物質粒子の粒径を断面露出の前に測定し、断面露出の後に観察された断面のサイズとほぼ一致することを確認すれば、粒子のほぼ中央を切断できたことがわかる。このようにして、負極活物質粒子の断面を露出させてから、その断面にナノインデンテーション法の探針を押しつけて体積弾性率を測定した。測定に用いた探針は、先端形状がダイヤモンドチップからなる正三角錐(バーコビッチ型)である。その探針を取り付けた圧子を負極活物質の粒子表面に押込み、そのときの圧子にかかる荷重と圧子の下の射影面積から体積弾性率を求めた(神戸製鋼技報、第52巻、第2号、74~77頁、2002年を参照)。計測した値を核材の体積弾性率とする。なお、既に述べた原子間力顕微鏡の手法を適用しても良い。
 被覆層の体積弾性率と核材の体積弾性率との比を計算したところ、負極の作製前における負極活物質一粒子から測定した体積弾性率の比とほぼ一致した。
 NM1からNM11、NM15、及びNM18からNM21に用いた核材自身の体積弾性率は、9GPa~11GPa(平均11GPa)であった。NM12からNM14の核材の体積弾性率は8GPa~10GPa(平均9GPa)であった。NM21の核材の体積弾性率は6~8GPa(平均7GPa)であった。
 被覆層が厚くなるほど、体積弾性率の比が小さくなる傾向にあった。これは、NM1からNM7の測定結果から明らかである(表2を参照)。被覆層の体積弾性率は核材の体積弾性率よりも低いため、被覆層が厚くなることにより、被覆層自身の体積弾性率が測定結果に反映されたためと考えられる。被覆層がない負極活物質NM16とNM17は、被覆層の体積弾性率を測定できないので、体積弾性率の比の欄に「測定できない」と記載した。
 表1及び表2の結果から、負極活物質の体積弾性率の比は、一見すると被覆層の厚さとの間に単調な相互関係があるようにみえる。しかし、体積弾性率の比は被覆層の厚さのみによって決まるものではなく、表2の結果には限定されないと考えられる。その理由は、被覆層の体積弾性率は、被覆層を構成するミクロサイズ又はナノサイズでの配向性や結晶同士の配列、あるいは炭素-炭素間の結合距離等に影響されるからである。したがって、被覆層を形成する原料の種類、被覆層の作製手順、あるいは作製条件等を変更することにより、被覆層の体積弾性率は制御可能である。例えば、熱処理温度を変化させて、被覆層の緻密さの度合いを制御すれば、被覆層の体積弾性率を変化させることができる。被覆層を形成するときの熱処理温度を2500℃~3500℃の高温にして、被覆層の緻密性を向上させ、被覆層自身の体積弾性率を高めることにより、体積弾性率の比を80%~95%まで増大させることができる。
(リチウムイオン二次電池の作製)
 次に、上述の負極活物質を用いて図1に示すようなリチウムイオン二次電池を作製した。リチウムイオン二次電池は、負極活物質ごとに5個ずつ作製した。以下、作製したそれぞれの電池は、その電池に用いた負極活物質の記号(NM1、NM2、NM3、NM4、NM5、NM6、NM7、NM8、NM9、NM10、NM11、NM12、NM13、NM14、NM15)により表すこととする。各電池に用いた負極活物質の重量は10±0.1gであり、負極重量と正極重量から計算した電池の定格容量(計算値)は3.5Ahである。
 また、比較例である負極活物質NM16からNM21を用いて、それぞれリチウムイオン二次電池を作製した。それぞれの電池を、用いた負極活物質に対応させて、NM16、NM17、NM18、NM19、NM20、NM21とする。電池の定格容量は3.5Ahであった。
 なお、負極は、表1に示した21種類の負極活物質を別々に秤量し、各負極活物質の98重量部に、スチレン-ブタジエンゴム1重量部とカルボキシメチルセルロース1重量部を添加して負極スラリーを調製し、その負極スラリーを、集電体として厚さ10μmの圧延銅箔の表面に塗布、乾燥させて作製した。負極合剤密度は、1.5g/cm3とした。
 また、正極活物質としてはLiNi1/3Co1/3Mn1/32を用いた。正極合剤の組成は、正極活物質、アセチレンブラック、PVDFの順に89:4:7(重量比)とした。スラリーの溶媒には、1-メチル-2-ピロリドンを用いた。正極スラリーの分散処理には、公知の混練機、分散機を用いた。正極の集電体には厚さ20μmの圧延アルミニウム箔を用いた。
 さらに、リチウムイオン二次電池の非水電解液として、1モル濃度(1M=1mol/dm3)のLiPF6を、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の混合溶媒に溶解させたものを用いた。ECとEMCの混合割合は体積比率で1:2とした。また、非水電解液には1%のビニレンカーボネートを添加した。
(リチウムイオン二次電池の評価)
 作製した21種類の電池(それぞれの負極活物質につき、5個ずつ作製)に、初期エージングの処理を行った。まず、開回路の状態から充電を開始した。電流は3.5Aとし、4.2Vに到達した時点でその電圧を維持し、電流が0.1Aになるまで充電を継続した。その後、30分の休止時間を設けて、3.5Aにて放電を始めた。電池電圧が3.0Vに達したときに放電を停止させ、30分の休止を行った。同じように、充電と放電を5回繰り返して、電池の初期エージングの処理を終了させた。最後のサイクル(5サイクル目)の放電容量を負極活物質の重量(10±0.1g)で割って初期容量を算出し、この容量を基準容量とした。その結果を表2に示す。
 また、3Cレート(電流10.5A)の放電容量を測定し、前記基準容量に対する容量比(3C容量比)を計算した。結果を表2に示す。
 さらに、初期エージングを済ませた21種類のリチウムイオン二次電池について、50℃の環境温度にて、初期エージングと同じ充放電条件でのサイクル試験を行った。表2に、300サイクル経過後の容量維持率の平均値を示す。
 表2の結果より、NM1、NM2、NM3、NM4、NM5、NM6、NM7、NM8、NM9、NM10、NM11、NM12、NM13、NM14及びNM15では大きな初期容量が得られた。核材のd002がやや広くなった負極活物質を用いたNM12、NM13、NM14の場合は、わずかに初期容量が低下したが、345mAh/g以上の高い放電容量を示した。負極活物質の粒径を小さくしたNM8、NM9、NM11、NM12、NM13、NM14についても、初期容量は350mAh/g以上の高い値を有していた。さらに、被覆層が200nm以下と薄いため、3C容量比も大きくなった。
 比較例の負極活物質を用いたNM16は、核材そのものであるために、不可逆容量が大きく、初期容量が低下した。これは、負極が劣化したのではなく、不可逆容量が大きいために正極の容量が減少してしまい、電池として充放電可能な負極の作動範囲が減少したためである。不可逆容量とは、被覆層がないために非水電解液の分解反応が起こり、この分解反応により消費されるリチウムの損失量を電気量で換算した値である。被覆層がないため、容量維持率も低くなった。
 比較例の負極活物質を用いたNM17は、負極活物質が非晶質炭素であるため、低容量であった。3C容量比はNM16よりもやや大きくなったが、容量維持率は低くなった。電解液分解反応が負極表面にて起こったためと考えられる。
 比較例の負極活物質を用いたNM18も同様に、被覆が不十分であるために、不可逆容量の増加に伴う初期容量の低下が起こった。同様に容量維持率も低くなった。
 比較例の負極活物質を用いたNM19、NM20、NM21は、被覆層の厚さが十分に厚いために、不可逆容量自体は減少するが、充放電に寄与しにくい被覆層が増加するので、初期容量が低下した。
 比較例の負極活物質を用いたNM21では、d002が大きくなり過ぎたため、初期容量が小さくなった。さらに、被覆層が200nmを超えるため、3C容量比が低下した。容量維持率はNM17やNM18よりも改善しているが、本発明の負極活物質(NM1からNM14)よりも低くなった。これは、被覆層が厚過ぎるために、リチウムイオンの拡散速度が低下して表面のLiが電解液と反応したためと推定される。
 以上の結果を整理すると、以下の通りである。
 第一に、負極活物質を核材と被覆層の二層構造とし、被覆層の厚さを1nm~200nmに制御すれば、負極の容量維持率が増大する。NM1からNM15の結果と、比較例との対比により明らかである。
 第二に、被覆層の体積弾性率が核材の体積弾性率よりも小さいと容量維持率が高くなることがわかった。また、体積弾性率の比は50%以上が好ましいことがわかった。NM1からNM14の結果と、NM19からNM21の比較例との対比により明らかである。
 負極の長寿命化には、核材と被覆層の体積弾性率をそれぞれ実測値で規定し、その差と負極活物質の寿命との関係を調べる方法が考えられる。しかし、本発明によれば、体積弾性率の比で表した方が負極の性能と良い相関を示すことが見出された。リチウムイオンを吸蔵放出することによって核材が体積変化をする。これに応じて、被覆層が核材表面から剥離しないようにすることが本発明の重要な点である。被覆層の剥離は、核材と被覆層の体積弾性率のそれぞれの値よりも、両者の比によって決まると考えられる。その比がある限界値を超えると、被覆層が核材の体積変化に追随できなくなって、被覆層が核材から剥離すると予想した。核材と被覆層の体積弾性率の差よりも、両者の比が重要であることを見出して、核材と被覆層の関係を明確にすることによって本発明は完成した。
 第三に、負極活物質の等体積球の粒度分布に基づき算出した負極活物質の比表面積と、ガス吸着法により実測した比表面積との比が1:1~1:30の範囲あり、核材の(002)面の面間隔が0.3345nm~0.3370nmであり、1580cm-1領域(Gバンド)のピーク強度に対する1360cm-1領域(Dバンド)のピーク強度の比I1360/I1580(ラマンピーク強度比)が0.1~0.6の範囲にあると、高容量かつ長寿命の電池が得られた。比表面積の比については、NM1からNM7及びNM11と、比較例であるNM18との対比により明らかである。(002)面の面間隔に関しては、NM9、NM13及びNM14と、比較例であるNM16とNM17との対比により明らかである。ラマンピーク強度比に関しては、NM1からNM14と、比較例であるNM16、NM17及びNM21との対比から明らかである。
 第四に、本発明の範囲の中でも、特に粒度分布計測から求めた頻度50%における負極活物質の粒径(メジアン径D50)が3μm~30μmであると、より高容量で長寿命な負極が得られる。NM5及びNM8からNM10と、NM15との対比から明らかである。
(直流抵抗の評価)
 続いてサイクル試験を実施し、300サイクル経過後の直流抵抗(DCR;Direct Current Resistance)を測定した。直流抵抗測定は、以下のように行った。まず、負極と正極を電池から取り出して、負極を作用極、正極を対極、金属リチウムを参照極とした3極式セルを組み立てた。このセルを用いて、負極を電池の場合と同じレベルまで充電する。次いで、1mA/cm2~10mA/cm2の範囲の一定の放電電流値にて負極を放電し、放電開始後10秒後の負極電位の変化幅を測定する。負極電位は参照極を基準に計測した。横軸を放電電流、縦軸を電位変化幅としてプロットし、その直線近似式の傾斜を直流抵抗とした。
 負極活物質NM1からNM14の抵抗増加率は、容量維持率の増加とともに、逆に低下する傾向があり、抵抗増加率は5%~15%の範囲であった。例えば、NM1からNM7の直流抵抗は、初期の値に対して、5%~15%の範囲になり、被覆層の厚さが大きくなるほど抵抗が減少する傾向にあった。NM8からNM10については、粒径が小さいほど抵抗が大きくなる傾向がみられたが、DCRの増加率は5%~10%であった。NM11の抵抗増加率は7%であった。NM12からNM14は、抵抗増加率は5%~10%であった。この場合も同様に、被覆層の厚さによる依存性が強く、抵抗は被覆層の増加に伴って低下する傾向があった。
 比較例のNM16からNM18の負極は、容量維持率が著しく低下しており、それに応じて、抵抗増加率も大きかった。NM16は250%、NM17は210%、NM18は195%であった。NM15、及びNM19からNM21の負極の容量維持率は、前記NM16からNM18の負極の値よりも改善されているが、抵抗増加率は120%~180%の範囲になり、容量維持率が低いほど、抵抗増加率が大きくなる傾向があった。
(負極の充放電試験)
 充放電サイクル試験を終えた後に、電池を3.0Vまで完全に放電させた。アルゴンガスを封入したグローブボックスに電池を移し、それぞれの電池をアルゴンガス雰囲気中にて解体し、負極のみを取り出した。その負極と、それぞれの電池に用いた同じ組成の非水電解液と、金属リチウムの電極とを組み合わせて、負極の充放電試験を行った。充電電流は100mA/g相当の値とし、負極電位が10mVに到達した後に、10mA/gに減少するまで10mVでの充電を継続した。その後、30分の休止を経た後に、同じ電流にて負極電位が1.0Vに達するまで放電させた。この充放電サイクル試験を3回行った。
 その結果、負極活物質NM1からNM15は、340mAh/g~355mAh/gの大きな放電容量を保持していた。比較例のNM16からNM18は、それぞれ250mAh/g~260mAh/g、275mAh/g~285mAh/g、290mAh~300mAhまで減少していた。NM19からNM21の放電容量も、初期容量に対して低下し、290~330mAh/gとなった。
(電池モジュールの作製例)
 図1に示す円筒形のリチウムイオン二次電池を複数個接続し、図2に示すような電池モジュール(組電池)201を組み立てた。この電池モジュール201は、8個のリチウムイオン二次電池202を直列に接続したものである。また、この電池モジュール201に、充放電回路210、演算処理部209、給電負荷電源211、電力線212、信号線213、外部電力ケーブル214を接続した。図2のシステムは、さらに、正極端子203、ブスバー204、電池缶205及び支持部品206を備える。なお、用いた8個のリチウムイオン二次電池202としてはNM1を用いた。
 なお、この実施例は、本発明の有効性を確認するための試験であるので、本来は外部電源又は外部負荷を取り付けるところを、電力の供給と消費の両方の機能を兼ね備えた給電負荷電源211を用いた。これを用いることは、電気自動車等の電気車両や工作機械、あるいは分散型電力貯蔵システムやバックアップ電源システム等における実使用時と比較して、本発明の効果に相違をもたらすものではない。
 図2に示すシステムを組み立てた直後の充電試験として、充放電回路210より正極外部端子207と負極外部端子208へ1時間率相当の電流値(3.5A)の充電電流を流し、33.6Vの定電圧にて1時間の充電を行った。ここで設定した定電圧値は、単電池の定電圧値4.2Vの8倍の値である。電池モジュールの充放電に必要な電力の授受には、給電負荷電源211を用いた。
 放電試験は、正極外部端子207と負極外部端子208から逆向きの電流を充放電回路210に流して、給電負荷電源211にて電力を消費させた。放電電流は、1時間率の条件(放電電流として3.5A)とし、正極外部端子207と負極外部端子208の端子間電圧が24Vに達するまで放電させた。
 このような充放電試験条件にて、充電容量3.5Ah、放電容量3.4Ah~3.5Ahの初期性能を得た。さらに、300サイクルの充放電サイクル試験を実施したところ、容量維持率94%~95%を得た。本システムをS1とする。
 また、電池NM1に代えて、負極活物質を表1のNM21に変更した電池を用いたシステムを製作した。このシステムをS2とする。上記と同じ条件にて300サイクルの充放電サイクル試験を実施した。その結果、S2の容量維持率は83%~85%となり、本発明における負極活物質が、リチウムイオン二次電池のサイクル特性の向上に有効であることがわかった。
 本発明は、以上で説明した実施例に限定されない。本発明の要旨を変更しない範囲で、具体的な構成材料、部品等を変更しても良い。また、本発明の構成要素を含んでいれば、公知の技術を追加し、あるいは一部の構成要素を公知の技術で置き換えることも可能である。
 本発明のリチウムイオン二次電池は、携帯用電子機器、携帯電話、電動工具等の民生用品の他、電気自動車、電車、再生可能エネルギーの貯蔵用蓄電池、無人移動車、介護機器等の電源として用いることが可能である。さらに、本発明のリチウムイオン二次電池は、月や火星等の探索のためのロジステック列車の電源としても適用可能である。また、宇宙服、宇宙ステーション、地球上又はその他の天体上の建造物あるいは生活空間(密閉、開放状態を問わない)、惑星間移動用の宇宙船、惑星ローバー(land rover)、水中又は海中の密閉空間、潜水艦、魚類観測用設備等の各種空間の空調、温調、汚水や空気の浄化、動力等の各種電源に利用することができる。
101 リチウムイオン二次電池
110 正極
111 セパレータ
112 負極
113 電池缶
114 正極集電タブ
115 負極集電タブ
116 内蓋
117 内圧開放弁
118 ガスケット
119 正温度係数(PCT)抵抗素子
120 正極端子付き電池蓋
201 電池モジュール
202 リチウムイオン二次電池
203 正極端子
204 ブスバー
205 電池缶
206 支持部品
207 正極外部端子
208 負極外部端子
209 演算処理部
210 充放電回路
211 給電負荷電源
212 電力線
213 信号線
214 外部電力ケーブル

Claims (6)

  1.  リチウムイオン二次電池用の負極活物質であって、黒鉛の核材と該核材の表面を覆う被覆層とを含み、前記被覆層の厚さが1nm~200nmであり、前記被覆層の体積弾性率が前記核材の体積弾性率よりも小さい前記リチウムイオン二次電池用負極活物質。
  2.  被覆層の体積弾性率が、核材の体積弾性率の50%~95%である請求項1に記載のリチウムイオン二次電池用負極活物質。
  3.  負極活物質の等体積球の粒度分布に基づき算出した負極活物質の比表面積と、ガス吸着法により実測した負極活物質の比表面積との比が1:1~1:30であり、核材の(002)面の面間隔が0.3345nm~0.3370nmであり、負極活物質の1580cm-1領域(Gバンド)のピーク強度に対する1360cm-1領域(Dバンド)のピーク強度の比I1360/I1580が0.1~0.6である請求項1又は2に記載のリチウムイオン二次電池用負極活物質。
  4.  被覆層の厚さが5nm~150nmである請求項1~3のいずれかに記載のリチウムイオン二次電池用負極活物質。
  5.  負極活物質のメジアン径D50が3μm~30μmである請求項1~4のいずれかに記載のリチウムイオン二次電池用負極活物質。
  6.  請求項1~5のいずれかに記載のリチウムイオン二次電池用負極活物質を有する負極と、正極と、電解質とを含むリチウムイオン二次電池。
PCT/JP2013/061561 2012-04-19 2013-04-19 リチウムイオン二次電池用負極活物質及びリチウムイオン二次電池 WO2013157620A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/394,920 US20150125752A1 (en) 2012-04-19 2013-04-19 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
CN201380020453.4A CN104247107A (zh) 2012-04-19 2013-04-19 锂离子二次电池用负极活性物质以及锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012095505A JP5987439B2 (ja) 2012-04-19 2012-04-19 リチウムイオン二次電池用負極活物質及びリチウムイオン二次電池
JP2012-095505 2012-04-19

Publications (1)

Publication Number Publication Date
WO2013157620A1 true WO2013157620A1 (ja) 2013-10-24

Family

ID=49383569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061561 WO2013157620A1 (ja) 2012-04-19 2013-04-19 リチウムイオン二次電池用負極活物質及びリチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20150125752A1 (ja)
JP (1) JP5987439B2 (ja)
CN (1) CN104247107A (ja)
WO (1) WO2013157620A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9720299B1 (en) * 2015-01-12 2017-08-01 Kinestral Technologies, Inc. Electrochromic multi-layer devices with cross-linked ion conducting polymer
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
JP6732294B2 (ja) * 2015-06-12 2020-07-29 エルジー・ケム・リミテッド 正極合剤及びこれを含む二次電池
EP3293802B1 (en) * 2015-09-14 2020-10-21 Toyota Jidosha Kabushiki Kaisha Method of manufacturing an all-solid-state battery system
CN105375003A (zh) * 2015-10-22 2016-03-02 芜湖凯尔电气科技有限公司 电动车动力电池材料
US20170301926A1 (en) 2016-04-14 2017-10-19 Applied Materials, Inc. System and method for maskless thin film battery fabrication
US20180040860A1 (en) * 2016-04-14 2018-02-08 Applied Materials, Inc. Thin film battery device and method of formation
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN109952672B (zh) * 2016-11-14 2022-06-24 昭和电工材料株式会社 锂离子二次电池用负极材、锂离子二次电池用负极和锂离子二次电池
JP7054871B2 (ja) * 2017-05-16 2022-04-15 パナソニックIpマネジメント株式会社 非水二次電池用負極活物質、及び、非水二次電池
US20180337424A1 (en) * 2017-05-16 2018-11-22 Panasonic Intellectual Property Management Co., Ltd. Negative-electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
CN109841803B (zh) * 2017-11-28 2021-12-07 宁德时代新能源科技股份有限公司 一种硅碳复合材料、其制备方法及含有该材料的二次电池
US11002652B2 (en) * 2018-01-04 2021-05-11 Purdue Research Foundation Apparatus to measure mechanical properties of electrodes during electrochemical reactions and method of using the same
CN114551829A (zh) * 2022-02-10 2022-05-27 珠海冠宇电池股份有限公司 一种负极材料及含有该负极材料的锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589879A (ja) * 1991-07-29 1993-04-09 Toshiba Corp リチウム二次電池
JPH1121116A (ja) * 1997-06-30 1999-01-26 Nippon Steel Corp 窒化ホウ素で被覆された炭素質粉末および炭素質繊維
JP2002216751A (ja) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd リチウム二次電池負極用複合材料及びリチウム二次電池
JP2006173121A (ja) * 2004-12-18 2006-06-29 Samsung Sdi Co Ltd 陰極活物質、その製造方法及びそれを用いた陰極とリチウム電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1478038B1 (en) * 2002-01-25 2012-03-14 Toyo Tanso Co., Ltd. Negative electrode material for lithium ion secondary battery
JP5348878B2 (ja) * 2007-02-21 2013-11-20 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法、リチウムイオン二次電池用負極ならびにリチウムイオン二次電池
JP5659696B2 (ja) * 2009-12-24 2015-01-28 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
US20120295159A1 (en) * 2010-02-03 2012-11-22 Kei Kobayashi Lithium ion secondary battery negative electrode slurry composition, a lithium ion secondary battery negative electrode, and lithium ion secondary battery
KR101181851B1 (ko) * 2010-08-09 2012-09-11 삼성에스디아이 주식회사 리튬 이차 전지용 활물질 및 이를 포함하는 리튬 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589879A (ja) * 1991-07-29 1993-04-09 Toshiba Corp リチウム二次電池
JPH1121116A (ja) * 1997-06-30 1999-01-26 Nippon Steel Corp 窒化ホウ素で被覆された炭素質粉末および炭素質繊維
JP2002216751A (ja) * 2000-11-14 2002-08-02 Mitsui Mining Co Ltd リチウム二次電池負極用複合材料及びリチウム二次電池
JP2006173121A (ja) * 2004-12-18 2006-06-29 Samsung Sdi Co Ltd 陰極活物質、その製造方法及びそれを用いた陰極とリチウム電池

Also Published As

Publication number Publication date
JP2013222681A (ja) 2013-10-28
CN104247107A (zh) 2014-12-24
JP5987439B2 (ja) 2016-09-07
US20150125752A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5987439B2 (ja) リチウムイオン二次電池用負極活物質及びリチウムイオン二次電池
JP5858295B2 (ja) 非水電解質二次電池
JP5994571B2 (ja) リチウムイオン二次電池用負極材及びリチウムイオン二次電池
EP2894703B1 (en) Nonaqueous electrolyte secondary battery
JP5003095B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP5671771B2 (ja) リチウム二次電池
JP5671772B2 (ja) リチウムイオン二次電池
JP6965745B2 (ja) リチウムイオン二次電池
JP7377502B2 (ja) 複合体、リチウムイオン伝導体、全固体リチウムイオン二次電池、全固体リチウムイオン二次電池用電極シート、四ホウ酸リチウム
JP5514394B2 (ja) 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2014211962A (ja) 非水電解液二次電池
JP2010251314A (ja) 非水電解液二次電池用負極材料及びこれを用いた非水電解液二次電池
CN111129594B (zh) 电化学装置及包含其的电子装置
JP5402974B2 (ja) 二次電池用非水系電解液及びそれを用いた二次電池
KR101483891B1 (ko) 리튬 이온 이차 전지
JPWO2014103281A1 (ja) 非水電解質二次電池用負極およびそれを用いる非水電解質二次電池
EP3780226B1 (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery
TWI586024B (zh) A negative electrode active material for lithium secondary battery, and a lithium secondary battery
JP2022545896A (ja) 二次電池、電解液及び二次電池を備える装置
JP4467317B2 (ja) 負極および非水系電解質二次電池
JP2007227367A (ja) リチウムイオン二次電池
JP2023168513A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP2010282761A (ja) リチウム二次電池
JP2014089855A (ja) 非水二次電池用負極活物質および非水二次電池
JP2017098005A (ja) 負極活物質、負極電極、リチウムイオン二次電池、非水電解質二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14394920

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13778447

Country of ref document: EP

Kind code of ref document: A1