WO2013157360A1 - 開閉装置 - Google Patents

開閉装置 Download PDF

Info

Publication number
WO2013157360A1
WO2013157360A1 PCT/JP2013/058899 JP2013058899W WO2013157360A1 WO 2013157360 A1 WO2013157360 A1 WO 2013157360A1 JP 2013058899 W JP2013058899 W JP 2013058899W WO 2013157360 A1 WO2013157360 A1 WO 2013157360A1
Authority
WO
WIPO (PCT)
Prior art keywords
operating
grounding
movable
disconnection
closing
Prior art date
Application number
PCT/JP2013/058899
Other languages
English (en)
French (fr)
Inventor
一 浦井
康明 青山
裕明 橋本
加藤 達朗
歩 森田
六戸 敏昭
陽一 大下
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to EP13778076.3A priority Critical patent/EP2840672A4/en
Priority to JP2014511153A priority patent/JP5826379B2/ja
Priority to KR1020147029052A priority patent/KR101668341B1/ko
Priority to CN201380020081.5A priority patent/CN104247184B/zh
Priority to US14/395,287 priority patent/US9520699B2/en
Publication of WO2013157360A1 publication Critical patent/WO2013157360A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H31/00Air-break switches for high tension without arc-extinguishing or arc-preventing means
    • H01H31/003Earthing switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/36Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B13/00Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle
    • H02B13/02Arrangement of switchgear in which switches are enclosed in, or structurally associated with, a casing, e.g. cubicle with metal casing
    • H02B13/035Gas-insulated switchgear
    • H02B13/075Earthing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • H01H2003/268Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor using a linear motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2223/00Casings
    • H01H2223/002Casings sealed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • H01H3/52Driving mechanisms, i.e. for transmitting driving force to the contacts with means to ensure stopping at intermediate operative positions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/46Interlocking mechanisms
    • H01H33/50Interlocking mechanisms for interlocking two or more parts of the mechanism for operating contacts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B5/00Non-enclosed substations; Substations with enclosed and non-enclosed equipment
    • H02B5/01Earthing arrangements, e.g. earthing rods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B5/00Non-enclosed substations; Substations with enclosed and non-enclosed equipment
    • H02B5/06Non-enclosed substations; Substations with enclosed and non-enclosed equipment gas-insulated
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Definitions

  • the present invention relates to a switchgear using high voltage used in a substation or switchgear of a power system, and more particularly to a switchgear combining a plurality of functions such as a disconnecting function and grounding.
  • Patent Documents 1 to 4 disclose techniques related to a conventional power switchgear.
  • Patent Document 1 discloses a gas-insulated composite switchgear having a circuit breaker, a step switch, and a ground switch.
  • the circuit breaker is housed in a breaker container filled with an insulating gas, and a disconnector and a ground switch are housed in the same container filled with the insulating gas at the other of the breakers. Separate operating devices are attached to the circuit breaker, disconnector and ground switch.
  • Patent Document 2 describes an example of a hydraulic actuator of a closed switchgear provided with a circuit breaker, a disconnect switch, and a ground switch.
  • one hydraulic pressure generating device is commonly connected to all of the circuit breaker, disconnector and ground switch, and each of the circuit breaker, disconnector and ground switch is driven via a solenoid valve. Connected to hydraulic cylinder.
  • JP 2002-281618 A Japanese Patent Laid-Open No. 5-159668 JP 2011-29004 A JP 2004-127802 A
  • an object of the present invention is to provide a switchgear whose structure can be simplified.
  • a switchgear includes a sealed tank in which an insulating gas is sealed, a fixed contact disposed in the sealed tank, and a contact with the fixed contact.
  • An opening / closing device comprising a movable contact that opens and an operating device that generates a driving force for operating the movable contact, wherein the operating device for operating the movable contact is one,
  • the single operation device can be stopped at three or more positions of the movable contact.
  • an opening / closing device capable of stopping the movable contact at three or more positions while simplifying the structure.
  • FIG. 6 is a diagram illustrating one unit in the operation unit according to the first embodiment.
  • FIG. 3 is a perspective view for explaining one unit of the actuator according to the first embodiment.
  • FIG. 7 is a front view of FIG. 6. It is the figure which removed and showed the winding from FIG. It is a block diagram using three actuators. It is a connection diagram of three actuators.
  • FIG. 9 is a configuration example of a link system that drives a cutoff / disconnection unit according to a second embodiment. It is sectional drawing of the slide groove part of the link system which drives the interruption
  • FIG. 9 is a configuration example of a link system that drives a ground opening / closing unit according to a second embodiment. It is sectional drawing of the slide groove part of the link type
  • FIG. It is a block diagram of the circuit breaker with an insulator type disconnection function which concerns on Example 3.
  • Example 1 will be described with reference to FIGS. 1 to 4 are examples of a gas insulated composite switch having a circuit breaker, a disconnect switch, and a ground switch.
  • the composite switchgear according to the present embodiment includes a blocking unit for blocking an accident current, a disconnecting unit for disconnecting an electrical system, a grounding switching unit for grounding a high-voltage conductor, and a blocking unit, a disconnecting unit. And an operation unit for operating the ground opening / closing unit.
  • FIG. 1 shows the circuit breaker in the closed state (closed state)
  • Fig. 2 shows the circuit breaker in the open state (break state)
  • Fig. 3 shows the disconnector in the open state (disconnected state)
  • Fig. 4 shows how the ground switch is turned on. The state (grounding state) is shown.
  • the blocking portion and the disconnecting portion are fixed to an insulating support spacer 2 provided at the end of the sealed metal container 1 in a sealed metal container 1 filled with SF 6 gas.
  • a current transformer 51 that functions as a current detector for detecting a current flowing through the high voltage conductor 8 is provided.
  • An insulating rod 81 connected to the operation unit side is disposed in the insulating support cylinder 7.
  • the ground opening / closing part is provided in a sealed metal container in which a blocking part and a disconnecting part are installed.
  • the ground opening / closing portion has a grounding portion fixed electrode 91 on the bottom surface of the hermetic container, and a blade-shaped grounding portion movable electrode 92 that is rotatably installed.
  • the operating part is provided with an actuator (operating force generating part) 100 in an operating unit case 61 provided adjacent to the sealed metal container 1, and a movable element 23 that moves linearly is arranged inside the actuator 100.
  • the mover 23 is connected to the insulating rod 81 through a linear seal portion 62 provided so that the hermetic metal container 1 can be driven while being kept airtight.
  • the insulating rod 81 is connected to the movable electrode 6. That is, it becomes possible to operate the movable electrode 6 in the blocking part through the operation of the movable element 23.
  • the actuator 100 is electrically connected to the power supply unit 71 through a sealing terminal 10 provided in a state where an insulating gas is sealed on the surface of the sealed metal container 1.
  • the power supply unit 71 is further connected to the control unit 72 so as to receive a command from the control unit 72.
  • the current value detected by the current transformer 51 is input to the control unit 72.
  • the power supply unit 71 and the control unit 72 function as a control mechanism that changes the amount and phase of the current supplied to the winding 41 of the actuator 100 described below according to the current value detected by the current transformer 51.
  • the control unit 72 instructs the power supply unit 71 to control the pattern and timing of the current conducted from the power supply unit 71 to the actuator 100.
  • the control unit 72 instructs the power supply unit 71 to control the pattern and timing of the current conducted from the power supply unit 71 to the actuator 100.
  • the movable electrode 6 can be stopped at a plurality of positions of closing / breaking / disconnection / grounding by one actuator 100. According to the contents described in the present embodiment, it is necessary to separately provide an operating device for disconnection, an operating device for disconnection, etc. by enabling the operation to be stopped at three or more positions of the movable contact by one operating device. It can be eliminated and the apparatus can be simplified.
  • the first magnetic pole 11 and the second magnetic pole 12 are arranged at positions facing each other through a gap in the stator 14 configured by combining two windings 41 provided on the outer periphery of the second magnetic pole 12.
  • a mover 23 is provided that is configured by mechanically connecting the permanent magnet 21 in the direction of the operation axis of the moveable contact by a magnet fixing member or the like while alternately inverting the N pole and the S pole.
  • the magnetization direction of the permanent magnet 21 is magnetized in the Y-axis direction (vertical direction in FIG. 5), and is magnetized alternately for each adjacent magnet.
  • the magnet fixing member 22 is preferably made of a nonmagnetic material such as a nonmagnetic stainless alloy, aluminum alloy, or resin material, but is not limited thereto.
  • the actuator 100 is attached with mechanical parts in order to maintain a distance between the permanent magnet 21 and the first magnetic pole 11 and the second magnetic pole 12.
  • linear guides, roller bearings, cam followers, thrust bearings, and the like are preferable, but the present invention is not limited to this as long as the distance between the permanent magnet 21 and the first magnetic pole 11 and the second magnetic pole 12 can be maintained.
  • an attractive force (force in the Y-axis direction) is generated between the permanent magnet 21 and the first magnetic pole 11 and the second magnetic pole 12.
  • the forces are offset and the attractive force Becomes smaller. Therefore, the mechanism for holding the mover 23 can be simplified, and the mass of the movable body including the mover 23 can be reduced. Since the mass of the movable body can be reduced, high acceleration driving and high response driving can be realized. Since the stator 14 and the permanent magnet 21 are relatively driven in the Z-axis direction (left-right direction in FIG.
  • the mover 23 including the permanent magnet 21 moves in the Z-axis direction by fixing the stator 14. .
  • the force generated is a relative force generated between the two.
  • a current is passed through the winding 41 to generate a magnetic field, and a thrust according to the relative position of the stator 14 and the permanent magnet 21 can be generated. Also, by controlling the positional relationship between the stator 14 and the permanent magnet 21 and the phase and magnitude of the injected current, the magnitude and direction of the thrust can be adjusted.
  • the operation control of the mover 23 is performed by supplying a current in the actuator 100 from the power supply unit 71 according to the case where an opening command and a closing command are input to the control unit 72, and sending an electric signal to the mover 23 in the actuator 100. This is done by converting to the driving force.
  • the actuator 100 can be formed without providing a complicated link mechanism since the movable electrode is stopped at three or more positions by generating an operating force by conducting current. That is, the apparatus can be remarkably simplified.
  • FIG. 6 shows a perspective view of the structure of one unit of the actuator 100 described above.
  • a stator 14 composed of a first magnetic pole, a second magnetic pole, a magnetic body 13 connecting the first magnetic pole and the second magnetic pole, and a winding 41
  • the mover having the permanent magnet 21 relatively moves in the Z-axis direction.
  • thrust in the Z-axis direction can be obtained continuously, and the driving distance can be increased.
  • the magnetic body 13 connecting the first magnetic pole and the second magnetic pole is divided in the Y-axis direction.
  • winding 41 improves.
  • the first magnetic pole 11 and the second magnetic pole 12 can be adjusted while being shifted in the Z-axis direction.
  • the thrust can be increased by changing the magnetization direction of the permanent magnet.
  • FIG. 7 is a front view of FIG.
  • FIG. 8 is a diagram in which the windings are omitted from FIG. 7 so that the relationship between the first magnetic pole, the second magnetic pole, and the magnetic material connecting them can be easily understood in FIG.
  • the winding 41 is wound around each of the first magnetic pole 11 and the second magnetic pole 12 so as to sandwich the permanent magnet 21 therebetween. Since the winding 41 and the permanent magnet 21 are arranged facing each other, the magnetic flux generated in the winding 41 acts on the permanent magnet 21 efficiently.
  • the actuator can be reduced in size and weight.
  • the magnetic circuit is closed by the first magnetic pole 11, the second magnetic pole 12, and the magnetic body 13 connecting the first magnetic pole and the second magnetic pole, and the path of the magnetic circuit can be shortened. As a result, a large thrust can be generated.
  • the periphery of the permanent magnet 21 is covered with a magnetic material, the leakage magnetic flux to the outside can be reduced, and the influence on surrounding devices can be reduced.
  • FIG. 9 shows an example in which three units of actuators 100a, 100b, and 100c are arranged side by side in the Z-axis direction (the operation direction of the movable electrode 6) to constitute an operating device.
  • One unit of the operating force generator is as described above.
  • the three units of actuators are arranged at positions that are electrically out of phase with respect to the permanent magnet 21. If one unit is one stator, the three-unit actuator is composed of three stators. Similarly, if one unit is N stators, the three-unit actuator is 3 ⁇ N (three It consists of a stator.
  • the actuator 100b has an electrical phase of 120 ° (or 60 °) and the actuator 100c has an electrical phase of 240 ° (or 120 °) with respect to the actuator 100a.
  • the actuator arrangement when a three-phase alternating current is passed through the winding 41 of each actuator, an operation similar to that of a three-phase linear motor can be realized.
  • the windings in each actuator can be injected with currents of different magnitudes or phases from the control mechanism.
  • U, V, and W three-phase currents supplied from one AC power source are supplied separately.
  • Actuators 100a, 100b, and 100c are electrically connected to the power supply unit 71.
  • the power supply unit incorporates an inverter, receives a command from the control unit 72, controls the supply current to the three-phase motor, and realizes an arbitrarily given drive pattern.
  • a switch 73b is provided between each actuator and the power supply unit 71, and a switch 73a is provided between each actuator and each switch 73b.
  • the magnitude and direction of the thrust change depending on the magnetization direction of the permanent magnet 21 and the positional relationship between the first magnetic pole 11 and the second magnetic pole 12. Therefore, the magnitude and direction of the thrust can be controlled by changing the magnitude and positive / negative of the current depending on the position of the mover.
  • the movable element 23 can be stopped or held at an arbitrary position.
  • the two points of the start point and the end point are changed to an intermediate position, for example, a cutoff position, a disconnection point.
  • the mover 23 can be stopped or held in position.
  • the switch 73b is closed and the switch 73a is opened.
  • the change in the position of the mover 23 can be controlled by the power supply unit 71 and the control unit 72.
  • the switch 73b is opened and the switch 73a is closed.
  • the windings of the actuators 100a, 100b, and 100c are short-circuited, and a short-circuit current is generated so as to prevent the mover from moving, thereby restraining the mover position.
  • FIG. 11 shows an example of a drive pattern for changing from the closing position to the blocking position, disconnecting position, and grounding position.
  • FIG. 11 is an explanatory diagram of the time characteristics of the interruption-disconnection-grounding operation.
  • the mover of the operation unit has a start point P0 and an end point P3, and is configured so that the mover 23 can be stopped at an arbitrary position by the actuator 100, as described above. It has an intermediate fixing point P1 and an intermediate fixing point P2 corresponding to the disconnecting position.
  • P0 is the closing position of the shut-off part, and when a shut-off command is input to the operation part at time t0, it operates at high speed to the shut-off position of P1.
  • the operation time is several tens of milliseconds.
  • the switch 73b that short-circuits the winding is short-circuited to restrain the mover position and hold the shut-off position P1.
  • the switch 73b is opened, current is supplied to the winding 41 of the actuator 100, and the blocking unit is switched on.
  • the mover 23 When the mover 23 is at the position P1, and a disconnection command is input at time t1 ', it is driven to the disconnection position P2. Since it is not necessary to cut off the current at the time of disconnection, the speed V2 of the disconnection operation may be slower than the cutoff speed V1.
  • the disconnection blocking unit When a closing command is input at the disconnection position of P2, the disconnection blocking unit operates to the closing position of P0.
  • the disconnection operation can be performed directly from the state where the mover is located at the position P0 to the disconnection position P2.
  • the mover 23 is not stopped in the shut-off state of P1.
  • the operation speed may be smaller than the cutoff speed V1.
  • From t2 to t2 ′ is an arbitrary time. At this time, as described in the case where the mover 23 is stopped or held, the switch may be opened and closed, and the switch 73a for short-circuiting the winding 41 is short-circuited.
  • the mover position is constrained to hold the disconnecting position P2.
  • the operating portion movable element 23 When a grounding command is further input at the disconnection position of P2, the operating portion movable element 23 is driven to the position of P3, the grounding portion movable electrode 92 described below is input to the grounding portion fixed electrode 91, and the high-voltage conductor 8 is grounded. Is done.
  • the operating speed V3 at the time of grounding may be driven at a lower speed than V1 when the short-circuiting specification is not required.
  • control is performed to increase the excitation current of the electromagnetic actuator 100 to increase the closing speed V3.
  • the position P3 is the end point of the operation unit.
  • the grounding portion is connected to the blade-shaped grounding portion movable electrode 92 supported to be rotatable with respect to the rotating shaft 95, the grounding portion fixed electrode 91 in contact with or opening the grounding portion movable electrode 92, and the operation portion.
  • the slide pin 93 is fixed to the insulating rod and operates in conjunction with the movable electrode 6, and a tension spring 94 for maintaining the position of the grounding position.
  • the state shown in FIG. 12A corresponds to the case where the blocking part and the disconnecting part open and close from time t1 to t2 in FIG.
  • the slide pin 93 is configured to slide in contact with the grounding portion movable electrode 92, and the grounding portion movable electrode 92 maintains a substantially fixed state.
  • FIG. 12 (b) shows the positional relationship between the slide pin 93 and the grounding portion movable electrode in the disconnection state (time (t2 to t2 'in FIG. 11).
  • the slide pin 93 pushes the pin engaging portion 96 provided on the grounding portion movable electrode 92 in a direction substantially perpendicular to the operation direction of the pin, so that the grounding portion is centered on the rotating shaft 95.
  • the movable electrode 92 rotates (between times t2 ′ and t3 in FIG. 11).
  • FIG. 12D shows a grounding state (time t3 in FIG. 11), where the grounding portion movable electrode 92 and the fixed grounding electrode 91 are brought into contact with each other, and a high voltage conductor (not shown) is grounded.
  • the grounding position is held by the tension spring 94 so that the grounding portion movable electrode does not easily move in the opening direction.
  • the gas insulated switchgear according to the present embodiment configured as described above shifts from the on state of FIG. 1 to the cut off state of FIG. 2 and cuts off the current. At that time, the arc plasma is extinguished by blowing SF 6 gas having arc extinguishing performance on the arc generated in the interrupting portion, and the accident current is interrupted.
  • the electric circuit can be kept in the disconnected state by moving the movable electrode from the disconnected state to a position where the distance between the electrodes is increased.
  • These on-state, shut-off state, and disconnection state can be operated by a single actuator, the number of operating devices can be reduced, and an inexpensive and highly reliable gas insulated switchgear can be configured.
  • the ground switch is also configured to be driven by a single operating device, so that further reduction in cost and high reliability can be achieved.
  • the breaker is equipped with a mover that arranges a permanent magnet in a direction in which the driving force of the actuator is generated, and an actuator that is disposed opposite to the mover and has a magnetic pole having a winding.
  • a magnetic body refers to a member that receives an attractive force from a magnet, and representative members include iron and silicon steel plates.
  • the gas section of the opening / closing section and the operating section is separated and the operating device is driven through the linear seal section 62.
  • the opening / closing section and the operating section are the same gas section, and the operating section is also opened / closed. It may be in a state filled with the same high pressure SF 6 gas as the part.
  • the shut-off section is filled with high-pressure SF 6 gas, but the operation device case 61 of the operation section is sealed from the outside (atmosphere). There are cases where it is sealed and cases where it is not sealed.
  • the controller case 61 When sealed, the controller case 61 is filled with dry air, nitrogen, or SF 6 gas at atmospheric pressure. If the operation unit is hermetically sealed, it is less affected by the external environment, and factors that degrade performance such as humidity, rainwater, and insects can be eliminated, thus providing a highly reliable operation unit. However, since it is difficult to inspect the inside when it is sealed, it is difficult to detect an internal abnormality factor in the event of a malfunction in the operation unit or to perform a simple internal maintenance inspection. If priority is given to the ease of such internal inspection, it is not necessary to seal the metal container 1.
  • the actuator 100 is configured by two stators 14
  • the number of stators is not limited to two. Any number of stators can be driven as a breaker operating device. On the other hand, by increasing the number, it becomes possible to give a large propulsive force in proportion to the number.
  • Example 2 will be described with reference to FIGS. Descriptions of the components having the same functions as those already described are omitted here.
  • the interruption part and the disconnection part are integrally formed, and a fixed-side arc contact 103 is provided in the fixed-side electrode 3.
  • a movable-side arc contact 106 that operates integrally is provided in the movable electrode 6.
  • the blocking portion that also serves as the disconnecting portion of this embodiment is referred to as a disconnecting blocking portion.
  • the movable electrode 6 and the arc contactor 106 are connected to an insulating rod 81, and the insulating operation rod is connected to an actuator via a cutoff disconnection drive link system.
  • the ground opening / closing portion includes a rod-shaped grounding portion movable electrode 92A and a grounding portion fixed electrode 91A attached to the high voltage conductor 8.
  • the grounding part movable electrode 92A is connected to the actuator via a grounding opening / closing part drive link system so as to operate linearly.
  • the link system is configured such that the grounding portion movable electrode 92A is driven in the direction opposite to the driving direction of the actuator.
  • the disconnection interrupting unit operates between the disconnection position P1 and the disconnection position P2 (time t1 'to t2) in FIG. 11, and from the disconnection position P2 to the grounding position P3 (time t2' to t3) in FIG.
  • the ground opening / closing unit is configured to operate between the two.
  • a link system is configured so that the disconnection blocking unit and the ground switching unit can be intermittently operated.
  • FIG. 14A shows the closed state of the disconnection blocking portion
  • FIG. 14B shows the cutoff state
  • FIG. 14C shows the disconnection state.
  • the distance between the electrodes in the disconnected state is set to be about 1.1 to 1.5 times the distance between the electrodes in the disconnected state, and is designed to have a sufficient dielectric strength in the disconnected state.
  • FIG. 15 shows an example of a link system that intermittently operates the disconnection blocking unit.
  • the operation rod 123 is engaged with a mover 23 of an actuator (not shown).
  • a connecting pin 124 is attached to the operation rod, and the connecting pin 124 operates together with the movable electrode 6.
  • the connecting pin 124 operates along the groove 125.
  • FIG. 16 is a diagram showing the shape of the slide groove 125 that regulates the position of the connecting pin.
  • the slide groove 125 has a positional relationship that causes a step when the opening / closing mechanism shifts from disconnection to ground (and vice versa).
  • the pin 124 moves in the vertical direction on the paper surface according to the movement of the mover in the horizontal direction on the paper surface.
  • the pin 124 and the lever 121 engage with each other at the position of the groove 125a (between closing and disconnection), and the pin 124 and the lever 121 are disengaged at the position of the groove 125b (between disconnection and grounding). It has become.
  • FIG. 15A shows a link system state at the closing position P0 (time t0) of the disconnection blocking portion, and the connecting pin 124 is engaged by the engaging groove 121c of the lever 121a.
  • the lever 121 rotates around the rotation shaft 121b with the operation of the connecting pin until the blocking position.
  • the end of the lever 121a (not shown) is connected to the movable electrode of the disconnection interrupting part, and the disconnection interrupting part linearly operates as the lever 121a rotates.
  • FIG. 15B shows the state of the link system at the breaking position P1 (time t1 to t1 ′), and is a position in the middle of the disconnection breaking portion moving linearly.
  • the operating rod 123b is provided with a notch so that the lever holding surface 121d can be overlapped (a portion drawn by a line extending in the upper right direction in the figure).
  • the notch is provided on the notch.
  • the holding surface 121d of the operating rod is located.
  • the notch is also provided in the operation rod 133b described below, and the lever 131 overlaps the notch in the state shown in FIG.
  • FIG. 15C shows the state of the link system at the disconnection position P2 (time t2 to t2 ′).
  • FIG. 15D shows the state of the link system at the ground contact position P3 (time t3).
  • the engagement groove 121c and the connecting pin 124 are disengaged, the cutoff disconnection portion is in a fixed state, and the disconnection position is held by the lever position holding surfaces 121d and 123b.
  • FIG. 17A shows an open state of the ground opening / closing part
  • FIG. 17B shows a ground state
  • FIG. 18 shows an example of a link system in which the ground opening / closing unit is intermittently operated.
  • the operating rod 133 is engaged with a mover 23 of an actuator (not shown).
  • a connecting pin 134 is attached to the operation rod.
  • the connecting pin 134 moves along the groove 135.
  • FIG. 19 is a cross-sectional view of the slide groove 135 that regulates the position of the connecting pin.
  • the pin 134 moves in the vertical direction on the paper surface according to the movement of the mover in the horizontal direction on the paper surface.
  • the pin 134 and the lever 131 are disengaged at the position of the groove 125b, and the pin 134 and the lever 131 are engaged at the position of the groove 135a.
  • FIG. 18 (a) shows the state of the link system of the ground switching part at the closing position P0 (time t0), and the ground switching part is in the open state of FIG. 17a.
  • the engagement groove 131c and the connecting pin 134 are disengaged, the grounding portion movable electrode is in a fixed state, and the position of the grounding portion movable electrode is held by the lever position holding surface 131d and the position holding rod 133b. Even if 23 operates, the open state of the ground opening / closing part is maintained.
  • FIG. 18B shows the state of the link system at the blocking position P1 (time t1 to t1 ′). Similar to the closing position P1, the engagement groove 131c and the connecting pin 134 are disengaged, the operation force of the operating device is not received, the grounding portion movable electrode is in a fixed state, and the lever position holding surface 131d.
  • the position holding rod 133b holds the position of the grounding portion movable electrode, and the open state of the grounding opening / closing portion is maintained even if the mover operates.
  • FIG. 18C shows the state of the link system at the disconnecting position P2 (time t2 to t2 ′).
  • a state (t2 ′ to t3) in which the connecting pin 134 is engaged in the engaging groove 131c of the lever 131a and the movable element is operated to move the connecting pin (t2 ′ to t3), the lever 131a rotates around the rotation shaft 131b.
  • the lever 131a is connected to the grounding portion movable electrode at an end (not shown) of the lever 131a. As the lever 131 rotates, the grounding portion movable electrode performs a substantially linear operation in the direction opposite to the movable element.
  • FIG. 18 (d) shows the state of the link system at the grounding position P3 (end point), and the grounding switching part is in the closed position shown in FIG. 17 (b), that is, the grounding position as the switching device.
  • FIG. 19 is a diagram showing the shape of the slide groove 135 that regulates the position of the connecting pin.
  • the slide groove 135 has a positional relationship that causes a step when the opening / closing mechanism shifts from disconnection to ground (and vice versa).
  • the pin 134 moves in the vertical direction on the paper surface according to the movement of the mover in the horizontal direction on the paper surface.
  • the grounding portion movable electrode is coupled to the lever 131a, and the coupling pin 134 is engaged with the engaging groove 131c.
  • the grounded state is also maintained.
  • the position of the mover 23 is maintained by controlling the actuator winding to short-circuit.
  • pins that operate together with the movable side electrode and the grounded portion movable electrode are provided, and each pin and the operation lever are engaged to transmit the operation force from the operation device to the operation lever according to the positional relationship. It is also possible to configure as above. Also in this case, as in the first embodiment, it is possible to switch the four positions of closing / breaking / disconnecting / grounding with one operating device.
  • one or both of the circuit breaker, the disconnecting switch and the earthing switch are operated to open / close, thereby reducing the number of operating units required for the conventional switchgear.
  • the device can be made compact, and maintenance costs can be reduced by reducing the number of maintenance inspection points.
  • the gas circuit breaker according to the present embodiment includes a fixed side electrode 3 serving as a fixed side contact in an insulating container 9 such as an insulator made of an insulator, and a fixed side electrode 3 in contact with or separated from the movable side.
  • a movable electrode 6 serving as a contact and a nozzle 5 provided at the tip of the movable electrode 6 on the fixed electrode 3 side are provided, and SF 6 gas is enclosed as an insulating gas in the insulating container 9.
  • the blocking portion is a disconnection blocking portion that also serves as a disconnection portion, and another insulating container 20 that stores the operation unit is attached to the lower side of the insulating container 9 that stores the disconnection blocking portion.
  • the insulating container 20 there are an actuator 100, a movable element 23 projecting from the actuator toward the blocking section, an insulating rod 81 provided at the tip of the movable section 23 on the blocking section side, and the insulating rod 81 and the movable electrode. 4 and the linear seal part 62 which connects 4 is arrange
  • the earthing switch is installed outside the insulating container, and the operation part of the earthing switch is not common with the operation part of the disconnection interrupting part.
  • the breaking part and the disconnecting part are combined, by using an electromagnetic actuator and having an intermediate fixing point, the breaking function and the disconnecting function can be realized by a single controller, and it is inexpensive and highly reliable.
  • a gas insulated switchgear can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

 構造が簡素化できる開閉装置を提供することを目的とする。上記の課題を解決するために、本発明に係る開閉装置は、固定側電極3と、固定側電極3に対して接触または開離する可動側電極4と、可動側電極4が動作するための駆動力を発生させる操作器を備える開閉装置であって、可動側電極4を操作するための前記操作器は一つであり、該一つの操作器により可動側電極4の三つの位置以上に停止可能とすることを特徴とする。

Description

開閉装置
 本発明は電力系統の変電所や開閉所で用いられる高電圧使用の開閉装置に関するものであり、特に断路機能、接地等の複数の機能を複合した開閉装置に関する。
 変電所や開閉所に設けられる電力用開閉装置は、系統の短絡故障時に電流を遮断する遮断器、系統の開閉を行う断路器、点検時などに高電圧導体を接地する接地開閉器を具備している。従来の電力用開閉装置に関する技術として例えば特許文献1ないし特許文献4に記載されたものがある。
 特許文献1には、遮断器、段路器、接地開閉器を具備したガス絶縁複合開閉装置が開示されている。遮断器は絶縁ガスを充填した遮断部容器に収納されており、遮断部の他方には断路器、接地開閉器が絶縁ガスを充填した同一の容器に収納されている。遮断器、断路器、接地開閉器にはそれぞれ別々の操作器が取り付けられている。
 また、遮断器、断路器および接地開閉器を備えた密閉形開閉装置の油圧操作器の一例が特許文献2に記載されている。該文献では、油圧発生装置を遮断器、断路器、接地開閉器すべてに共通に1個の油圧発生装置が接続され、電磁弁を介して遮断器、断路器、接地開閉器のそれぞれを駆動する油圧シリンダに接続されている。
 そして、従来では遮断器、断路器、接地開閉器からなる開閉装置を構成するのに、これらの機器を個々に駆動する操作器が個々に据え付けられている。
 また、従来の遮断器の操作には、特許文献3に記載されたスプリングにエネルギーを蓄積するばね操作器や、特許文献4に記載されたアキュムレータにエネルギーを蓄える油圧操作器が用いられている。
特開2002-281618号公報 特開平5-159668号公報 特開2011-29004号公報 特開2004-127802号公報
 上記各特許文献には種々の開閉装置の態様が記載されているが、いずれも操作力を発生する機構や操作力を伝達する機構を、数多くの部品から実現しており、構造が複雑化してしまう。構造が複雑化した場合、メンテナンス時の負担が大きくなり、特に容器内に収納される場合においては、一層メンテナンス負担が増大する。
 そこで、本発明では構造が簡素化できる開閉装置を提供することを目的とする。
 上記の課題を解決するために、本発明に係る開閉装置は、絶縁性ガスが封入される密閉タンクと、該密閉タンク内に配置される固定接触子と、該固定接触子に対して接触及び開離する可動接触子と、前記可動接触子が動作するための駆動力を発生させる操作器を備える開閉装置であって、前記可動接触子を操作するための前記操作器は一つであり、該一つの操作器により前記可動接触子の三位置以上に停止可能とすることを特徴とする。
 本発明によれば、構造が簡素化しつつ可動接触子を三位置以上に停止することができる開閉装置を提供することが可能になる。
実施例1に係る開閉装置の投入状態を示す構成図である。 実施例1に係る開閉装置の遮断状態を示す構成図である。 実施例1に係る開閉装置の断路状態を示す構成図である。 実施例1に係る開閉装置の接地状態を示す構成図である。 実施例1に係る操作部内の一単位を示す図である。 実施例1に係るアクチュエータの一単位を説明するための斜視図である。 図6の正面図である。 図7から巻線を外して図示した図である。 三つのアクチュエータを用いた構成図である。 三つのアクチュエータの接続図である。 操作部ストロークと投入、遮断、断路、接地位置の説明図である。 実施例1に係る接地開閉部の動作を説明する図である。 実施例2に係る開閉装置の構成図である。 実施例2に係る開閉装置の断路部を兼ねた遮断部の動作を説明する図である。 実施例2に係る遮断・断路部を駆動するリンク系の構成例である。 実施例2に係る遮断・断路部を駆動するリンク系のスライド溝部の断面図である。 実施例2に係る開閉装置の接地開閉部の動作を説明する図である。 実施例2に係る接地開閉部を駆動するリンク系の構成例である。 実施例2に係る接地開閉部を駆動するリンク系のスライド溝部の断面図である。 実施例3に係る碍子形断路機能付き遮断器の構成図である。
 以下、本発明を実施する上で好適な実施例について図面を用いて説明する。尚、下記はあくまでも実施の例であって、発明の内容を下記具体的態様に限定することを意図する趣旨ではない。発明自体は、特許請求の範囲の記載を満たす範囲内で種々の態様に変形することが可能であることは言うまでもない。
 実施例1について図1ないし図12を用いて説明する。図1から図4は遮断器、断路器、接地開閉器を有するガス絶縁複合開閉器の一例である。該図に示す様に、本実施例に係る複合開閉装置は、事故電流を遮断するための遮断部と、電気系統を切り離す断路部と、高圧導体を接地する接地開閉部、および遮断部、断路部、接地開閉部を操作するための操作部から概略構成される。
 以下、遮断部、断路部、接地開閉部の一部または全部を開閉部と称する。図1は遮断器の閉極状態(投入状態)、図2は遮断器の開極状態(遮断状態)、図3は断路器の開極状態(断路状態)、図4は接地開閉器の投入状態(接地状態)を示している。
 図1ないし図4に示す様に、遮断部と断路部は内部にSF6ガスを充填させた密閉金属容器1内に、密閉金属容器1端部に設けられた絶縁支持スペーサ2に固定された固定側電極(固定側接触子)3と、可動側電極4および可動電極(可動側接触子)6と、該可動側電極4の先端で両電極間に設けられるノズル5と、操作部側に接続されると共に可動側電極4に接続される絶縁支持筒7と、可動側電極4に接続され主回路の一部を構成する主回路導体となる高電圧導体8とを有しており、操作部からの操作力を通じて可動側電極4を移動させて電気的に開閉することにより、電流の投入及び遮断が可能である。
 高電圧導体8の周囲には、高電圧導体8に流れる電流を検出するための電流検出器として働く変流器51が設けられている。絶縁支持筒7内には操作部側に接続される絶縁ロッド81が配置されている。
 接地開閉部は、遮断部と断路部が設置された密閉金属容器内に設けられている。接地開閉部は密閉容器底面部に接地部固定電極91を有し、回転自在に設置されたブレード形の接地部可動電極92を有する。
 操作部は密閉金属容器1に隣接して設けられる操作器ケース61内に、アクチュエータ(操作力発生部)100を設けており、アクチュエータ100内部には直線動作する可動子23が配置されている。可動子23は、密閉金属容器1を気密に保ったまま駆動できる様に設けられる直線シール部62を通じて絶縁ロッド81に連結されている。そして、絶縁ロッド81は可動電極6に連結されている。つまり、可動子23の動作を通じて遮断部における可動電極6を動作させることが可能になる。
 アクチュエータ100は、密閉金属容器1の表面に絶縁性ガスを封止した状態で設けられる密封端子10を通じて電源ユニット71と電気的に接続されている。そして、該電源ユニット71は、更に制御ユニット72と接続され、制御ユニット72からの指令を受けることができる様に形成されている。制御ユニット72には、変流器51で検出した電流値が入力される様になっている。電源ユニット71及び制御ユニット72は、変流器51で検出した電流値に応じて下述するアクチュエータ100の巻線41に供給する電流量や位相を変化させる制御機構として働く。
 制御ユニット72は、電源ユニット71に対し、電源ユニット71からアクチュエータ100に導通する電流のパターンやタイミングを制御する指令を出す。アクチュエータ100に導通する電流のパターンやタイミングを変化させることで、アクチュエータ100から可動電極6に付加される操作力の大きさ・タイミング等が変わり、動作するスピード・タイミング・停止位置等の細かな制御が可能になる。
 また、可動電極6を操作するためのアクチュエータ100は一つであり、一つのアクチュエータ100により、可動電極6が投入・遮断・断路・接地の複数位置に停止できる様にしている。本実施例に記載した内容によれば、一つの操作器により前記可動接触子の三位置以上に停止可能とすることで、遮断用の操作器、断路用の操作器等を個別に設ける必要が無くなり、装置を簡素化することができる。
 図5ないし図8を用いてアクチュエータの構造について説明する。第一の磁極11と、該第一の磁極11に対向して配置される第二の磁極12と、第一の磁極と第二の磁極をつなぐ磁性体13と、第一の磁極11及び第二の磁極12の外周に設けられる巻線41と、を二つ組み合わせて構成される固定子14の内部に、第一の磁極11および第二の磁極12を空隙を介して対向する位置に配置する。この空隙に、永久磁石21をN極とS極を交互に反転させつつ磁石固定部材等により可動側接触子の動作軸方向に機械的に連結して構成した可動子23を配する。
 永久磁石21の着磁方向はY軸方向(図5中、上下方向)に着磁され、隣り合う磁石毎に交互に着磁されている。磁石固定部材22は非磁性の材料、例えば、非磁性のステンレス合金、アルミ合金、樹脂材料などが好ましいが、これに限定されるものではない。アクチュエータ100は、永久磁石21と、第一の磁極11及び第二の磁極12との間隔を保つため、機械的な部品を取り付ける。例えば、リニアガイド、ローラベアリング、カムフォロア、スラストベアリングなどが好ましいが、永久磁石21と、第一の磁極11および第二の磁極12との間隔が保てれば、これに限定されるものでもない。
 一般的に永久磁石21と第一の磁極11及び第二の磁極12の間には吸引力(Y軸方向の力)が発生する。しかし、本構成においては、永久磁石21と第一の磁極11に発生する吸引力と、磁石21と第二の磁極12に発生する吸引力とが互いに逆方向になるため力が相殺され吸引力が小さくなる。そのため、可動子23を保持するための機構が簡素化でき、可動子23を含む可動体の質量を低減できる。可動体の質量を低減できるため、高加速度駆動や高応答駆動を実現することが可能になる。固定子14と永久磁石21が相対的にZ軸方向(図5中、左右方向)に駆動するため、固定子14を固定することにより永久磁石21を含む可動子23がZ軸方向へ移動する。反対に、可動子23を固定し、固定子14をZ軸方向に移動させることも可能である。この場合には、可動子と固定子が逆転することになる。あくまでも発生する力は両者の間で生じる相対的な力である。
 駆動に際しては、巻線41に電流を流すことにより、磁界が発生し、固定子14と永久磁石21の相対位置に応じた推力を発生することが可能になる。また、固定子14と永久磁石21の位置関係と、注入する電流の位相や大きさを制御することにより、推力の大きさ、及び方向の調整が可能になる。
 可動子23の動作制御は、開極指令および閉極指令が制御ユニット72に入力された場合に応じて、電源ユニット71からアクチュエータ100における電流を通電し、電気信号をアクチュエータ100での可動子23の駆動力に変換することで行う。アクチュエータ100は、電流を導通させることにより操作力を発生させることで、三位置以上に可動側電極を停止させることを実現しているので、複雑なリンク機構を設ける必要なく形成できる。即ち、装置を著しく簡素化できる。
 図6は上記したアクチュエータ100の一単位の構成の斜視図を示している。該図に示す様に、第一の磁極と、第二の磁極と、第一の磁極と第二の磁極をつなぐ磁性体13と、巻線41と、で構成された固定子14に対し、永久磁石21を有する可動子がZ軸方向に相対運動する。複数の永久磁石21を磁石固定部材等により機械的に連結することにより、連続的にZ軸方向の推力が得られ、駆動距離を長くすることが可能になる。
 本実施例では、第一の磁極と第二の磁極をつなぐ磁性体13をY軸方向で分割している。これにより、巻線41の作業性が向上する。さらに、第一の磁極11と第二の磁極12をZ軸方向にずらして調整することも可能になる。第一の磁極11と第二の磁極12をずらして配置した場合、永久磁石の着磁方向を変えることにより推力を増加させることが可能になる。
 その他、そもそも上側の磁極を用いなくともZ軸方向に駆動させることは可能であり、こう言った変形を行うことなどが具体的に考えられる。但し、本実施例の様に、第一と第二の磁極で可動子を挟み込む様に構成することで、永久磁石と磁極間の吸引力が小さく、直線駆動させても駆動方向(Z軸方向)と垂直方向(X軸方向およびY軸方向)のブレが極めて小さくなる。即ち、遮断器に適用する上では、操作力を伝える可動子が直線シール部62を通過しても、直線シール部62の変形が小さいために、シール部における機械的な負担が小さくなる。
 これは、駆動に伴う直線シール部62の摺動動作不具合だけでなく、可動側電極4の接触子の傾きを防止することにもつながるので、接触摺動部のかじりや電極からの微小金属異物が発生しにくい構造となる。かじりは遮断や投入の動作不良に結びつく可能性があり、金属異物は絶縁性能低下による絶縁事故に結びつく可能性がある。また、シール変形に伴うガス遮断器内部のSF6ガスが外部へ漏洩する量を低減できる。この様に様々な観点から、遮断器としての信頼性を向上させることが可能になる。
 図7は、図6の正面図である。図8は、図7において第一の磁極、第二の磁極及びそれらをつなぐ磁性体の関係を理解容易な様に、図7から巻線を削除した図である。両図から分かる様に、巻線41は、第一の磁極11と第二の磁極12に各々に巻かれ、永久磁石21を挟み込むように配置される。巻線41と永久磁石21が対向して配置されるため、巻線41で発生した磁束が効率よく永久磁石21に作用する。
 よって、アクチュエータを小型軽量化できる。さらに、第一の磁極11・第二の磁極12・第一の磁極と第二の磁極をつなぐ磁性体13、により磁気回路が閉じており、磁気回路の経路を短くすることが可能になる。これにより、大きな推力を発生することが可能になる。また、永久磁石21の周りが磁性体で覆われているため外部への漏れ磁束を低減でき、周りの機器への影響を低減できる。
 図9は、三単位のアクチュエータ100a、100b、100cをZ軸方向(可動電極6の動作方向)に並んで配置して操作器を構成した例を示している。操作力発生部の一単位については、上述した通りである。三単位のアクチュエータは永久磁石21に対して電気的に位相がずれた位置に配置されている。一単位を一つの固定子とすれば、三単位のアクチュエータは三つの固定子から成り、同様に一単位をN個の固定子とすれば、三単位のアクチュエータは3×N個の(3の倍数からなる)固定子から成る。
 本実施例においては、具体的にアクチュエータ100aに対して、アクチュエータ100bは電気的位相が120°(または60°)、アクチュエータ100cは電気的位相が240°(または120°)ずれている。このアクチュエータ配置において、各アクチュエータの巻線41に三相交流を流すと三相のリニアモータと同様の動作が実現できる。三単位のアクチュエータを使用することで、各アクチュエータを三つの独立したアクチュエータとして個々に電流を制御して推力を調整することが可能になる。各アクチュエータにおける巻線には、制御機構から各々異なる大きさまたは異なる位相の電流を注入することができる。
 一つのやり方としては一つの交流電源から供給されるU、V、Wの三相電流を分けて供給すると言うことが考えられる。この場合、複数の電源を具備する必要がなく、簡便である。また、この場合、上記した密封端子も3×N個とするか、同一の電流を流すアクチュエータに対しては密封端子10を共有化するか、と言った選択肢がある。
 次に、三つのアクチュエータ100a、100b、100cの接続方法の一例を図10に示す。アクチュエータ100a、100b、100cが電源ユニット71と電気的に接続されている。電源ユニットはインバータが内蔵されており、制御ユニット72からの指令を受けて、三相モータへの供給電流を制御し、任意に与えられた駆動パターンを実現する。三つのアクチュエータ100a、100b、100cの接続例では、各アクチュエータと電源ユニット71の間に各々スイッチ73bを、各アクチュエータと各スイッチ73bの間同士にはスイッチ73aを設けている。
 次に、一台の操作器で投入状態、遮断状態、断路状態、および接地状態を実現する方法を説明する。本実施例の電磁アクチュエータでは、推力は永久磁石21の磁化方向と、第一の磁極11および第二の磁極12の位置関係により推力の大きさや向きが変化する。よって、可動子の位置によって電流の大きさおよび正負を変えることで、推力の大小と方向の制御が可能になる。
 さらに、図9に示すように、アクチュエータ100を可動子23に対して直列に配置し、三相モータとして動作させた場合、可動子の位置によらず一定の推力を得ることが可能になる。
 本実施例では、任意の位置で可動子23を停止または位置保持ができるようにしており、従来の操作器では始点、終点の2箇所であったものを、中間の、例えば、遮断位置、断路位置で、可動子23を停止または位置保持が可能である。図10の接続例では、電流を制御し可動子位置を変化させる場合は、スイッチ73bを閉じて、スイッチ73aを開放する。
 これにより、電源ユニット71及び制御ユニット72によって可動子23位置の変化を制御できる。一方、可動子23を停止または位置保持させる場合には、スイッチ73bを開放し、スイッチ73aを閉じれば良い。これにより、各アクチュエータ100a、100b、100cの巻線が短絡し、可動子の移動を妨げるように短絡電流が発生し可動子位置を拘束できる。
 投入位置から、遮断位置、断路位置、接地位置に変化させる駆動パターンの例を図11に示す。図11は遮断―断路―接地動作の時間特性の説明図である。操作部の可動子は始点P0と終点P3を有し、上述した様に、アクチュエータ100により、任意の位置で可動子23を停止できるように構成されているが、本実施例では、遮断位置に相当する中間固定点P1、断路位置に相当する中間固定点P2を有している。
 P0は遮断部の投入位置であり、時刻t0において操作部に遮断指令が入力されると、P1の遮断位置まで高速に動作する。動作時間は数十ミリ秒である。時刻t1において遮断部が遮断位置P1で停止した状態で、巻線を短絡するスイッチ73bを短絡して可動子位置を拘束し、遮断位置P1を保持する。また、図示しないが、遮断位置P1において投入指令が入力されると、スイッチ73bを開放して、アクチュエータ100の巻線41に電流を供給し、遮断部が投入される。
 P1の位置に可動子23があるときに、時刻t1′において断路指令が入力されると、P2の断路位置まで駆動される。断路時には電流を遮断する必要はないので、断路動作の速度V2は遮断速度V1よりも遅くてよい。P2の断路位置において投入指令が入力されると、P0の投入位置まで断路遮断部が動作する。
 尚、断路動作は、P0の位置に可動子がある状態から、断路位置P2まで直接動作させることも可能である。この場合、P1の遮断状態で可動子23を停止させない。また、動作速度も遮断速度V1よりも小さくてよい。t2からt2′は任意の時間であり、この時には、可動子23を停止または一保持させる場合として説明した様に、スイッチを開閉しておけば良く、巻線41を短絡するスイッチ73aを短絡して可動子位置を拘束し、断路位置P2を保持する。
 P2の断路位置において更に接地指令が入力されると、P3の位置に操作部可動子23が駆動され、下述する接地部可動電極92が接地部固定電極91に投入され、高圧導体8が接地される。接地時の動作速度V3についても、短絡投入仕様を必要としない場合には、V1よりも低速で駆動してよい。短絡投入仕様が接地開閉器に要求される場合には、電磁アクチュエータ100の励磁電流を増やすように制御して投入速度V3を高速化する。
 位置P3は操作部の終点であり、この位置に操作部可動子23がある場合に、接地開閉部の開極指令が入力されると、P2の位置まで操作部可動子23が駆動される。これにより、接地が外れ、断路状態となる。
 次に、図12を用いて接地部の本実施例における構成例を説明する。接地部は、回転軸95に対して回転可能に支持されたブレード形の接地部可動電極92と、接地部可動電極92と接触または開極される接地部固定電極91と、操作部と連結された絶縁ロッドに固着されて可動電極6と連動して動作するスライドピン93と、接地位置の位置保持のための引張ばね94で構成されている。
 図12(a)の状態は、図11において、時刻t1からt2までの、遮断部および断路部が開閉動作する場合に対応している。スライドピン93は接地部可動電極92と接してスライドするように構成されており、接地部可動電極92は概略固定された状態を維持する。
 次に、図12(b)は断路状態(図11の時刻(t2~t2′)における、スライドピン93と接地部可動電極の位置関係を示している。さらに操作部が駆動され接地開閉部が開閉動作するモードに移ると、スライドピン93が、接地部可動電極92にピンの前記動作方向とは略垂直な方向に設けられるピン係合部96を押すことで回転軸95を中心に接地部可動電極92が回転する(図11における時刻t2′とt3の中間)。
 図12(d)は接地状態(図11の時刻t3)を示しており、接地部可動電極92と固定接地電極91が接触係合し、図示しない高圧導体が接地される。引張ばね94により接地部可動電極が容易に開離方向に動作しないように接地位置が保持される。
 上記の様に構成した本実施例に係るガス絶縁開閉装置は、図1の投入状態から図2の遮断状態に移行して電流を遮断する。その際、遮断部で発生したアークに消弧性能を有するSF6ガスで吹き付けることで、アークプラズマを消滅させ、事故電流を遮断する。
 さらに、遮断状態から極間距離を長くする位置まで可動電極を移動させることで、電気系統回路を断路状態に保つことができる。これらの投入状態、遮断状態、断路状態を一台のアクチュエータで操作することができ、操作器の台数を削減することができ安価でかつ信頼性の高いガス絶縁開閉装置を構成できる。さらに、本実施例では接地開閉器も一台の操作器で駆動するように構成されており、さらに安価かつ高信頼化が図れる。
 本実施例によれば、永久磁石をアクチュエータの駆動力を発生させる方向に配置する可動子と、可動子に対向して配置されると共に巻線を有する磁極を備える様なアクチュエータを遮断器に搭載しているので、巻線を駆動させる場合と比較して、可動子を軽量化することができ、また巻線を駆動させる場合の様に、可動子に配線を設ける必要がない。よって、信頼性を向上させることが可能になる。
 また、本実施例では、永久磁石を用いた場合について説明したが、永久磁石の代わりに磁性体を可動子に配置して構成することも可能である。磁性体とは磁石から吸引力を受ける部材を指し、代表的な部材としては鉄やケイ素鋼板などが挙げられる。
 本実施例では開閉部と操作部のガス区画を別にしており、操作器の駆動は直線シール部62を介して行っているが、開閉部と操作部を同一ガス区画として、操作部も開閉部と同じ高気圧SF6ガスで充填した状態でもよい。図1に示す様に遮断部と操作部のガス区画が別区画の場合は、遮断部は高気圧SF6ガスで充填されているが、操作部の操作器ケース61は外部(大気)と密閉される場合と密閉されない場合が存在する。
 密閉される場合、操作器ケース61内部は大気圧の乾燥空気や窒素、SF6ガスが充填される。操作部が密閉されていると、外部環境の影響を受けにくく、湿度や雨水や昆虫などの混入など性能を低下させる要因を排除できるため、信頼性の高い操作部が提供できる。しかし、密閉された場合には内部を点検することが困難となるため、万が一、操作部で不具合が発生した場合の内部異常要因の検出や、簡単な内部保守点検の実施が困難となる。このような内部点検の容易さを優先させるならば金属容器1を密閉させる必要はない。
 尚、本実施例では二つの固定子14でアクチュエータ100を構成した例を示しているが、固定子の個数が二つに限定されるものでないことは言うまでもない。固定子の個数は一つでも遮断器の操作器として駆動可能である。一方、個数を増加させることにより、個数に比例して大きな推進力を与えることが可能となる。
 実施例2について図13ないし図19を用いて説明する。既に説明した同一の符号を付された構成と、同一の機能を有する部分については、ここでの説明を省略する。
 遮断部と断路部は一体で構成されており、固定側電極3内には固定側のアーク接触子103が設けられている。可動電極6内には一体で動作する可動側のアーク接触子106が設けられている。本実施例の断路部を兼ねた遮断部を断路遮断部と称する。可動側電極6およびアーク接触子106は絶縁ロッド81と連結されおり、絶縁操作ロッドは遮断断路駆動リンク系を介してアクチュエータと連結されている。
 接地開閉部は棒状の接地部可動電極92Aと高電圧導体8に取り付けられた接地部固定電極91Aからなる。該接地部可動電極92Aは直線動作するように接地開閉部駆動リンク系を介してアクチュエータと連結されている。該リンク系はアクチュエータの駆動方向と逆方向に接地部可動電極92Aが駆動されるように構成されている。
 本実施例では、図11の遮断位置P1ないし断路位置P2の間(時刻t1′~t2)において断路遮断部が動作し、図11の断路位置P2から接地位置P3(時刻t2′~t3)の間において接地開閉部が動作するように構成されている。断路遮断部と接地開閉部は間欠動作可能なようにリンク系が構成されている。
 まず、図14ないし図16を用いて断路遮断部の動作を説明する。図14(a)は該断路遮断部の投入状態を示しており、図14(b)が遮断状態、図14(c)が断路状態を示している。断路状態の極間距離は、遮断状態の極間距離の1.1倍から1.5倍程度となるように設定されており、断路状態において十分な絶縁耐力を有するように設計されている。
 図15は断路遮断部を間欠動作させるリンク系の例である。操作ロッド123は図示しないアクチュエータの可動子23と係合されている。操作ロッドには連結ピン124が取り付けられており、連結ピン124は可動電極6と共に動作する。そして、連結ピン124は溝125に沿って動作する。
 図16は連結ピンの位置を規制するスライド溝125の形状を示す図である。スライド溝125は開閉機構が断路から接地に移行する際(逆も含む)に、段差を生ずるような位置関係となっている。ピン124は可動子の紙面左右方向の動作に応じて、紙面上下方向に移動する。溝125aの位置(投入~遮断~断路の間)において、ピン124とレバー121が係合し、溝125bの位置(断路~接地の間)において、ピン124とレバー121の係合が外れる構成となっている。
 実施例1と同様に図11を用いて説明すると、図15(a)は断路遮断部の投入位置P0(時刻t0)におけるリンク系の状態であり、レバー121aの係合溝121cで連結ピン124と係合しており、遮断位置までの間、連結ピンの動作に伴い、レバー121が回転軸121bを中心に回転する。レバー121aの図示しない端部で断路遮断部の可動電極と連結されおり、レバー121aの回転に伴い断路遮断部が直線動作する。
 図15(b)は遮断位置P1(時刻t1~t1′)におけるリンク系の状態であり、断路遮断部が直線運動する途中の位置である。この状態で、実施例1でも説明した様にアクチュエータの巻線を短絡すれば、遮断位置が保持される。尚、操作ロッド123bにはレバーの保持面121dが重なることができるように、切欠き部を設けており(図中、右上方向に延びる線で描いた箇所)、本状態では該切欠き部に操作ロッドの保持面121dが位置する。切欠き部は、下述する操作ロッド133bにも設けており、図18(d)の状態で切欠き部へのレバー131の重なり合いが生じる。
 図15(c)は断路位置P2(時刻t2~t2′)におけるリンク系の状態である。さらに開極方向に可動子23が動作すると、溝125に沿って、ピン124が上方向に動作し、レバー121aとの係合が外れ、可動子23がさらに開極方向に操作されても、操作器の操作力を受けることがなくなり、レバー121aと連結された断路遮断部は停止したままとなる。レバーの固定面121dと123bの面が接する状態となり、レバー121aの回転動作が規制され、断路遮断部の停止位置が機械的に保持される。
 図15(d)は接地位置P3(時刻t3)におけるリンク系の状態である。係合溝121cと連結ピン124の係合が外れており、遮断断路部は固定状態であり、レバーの位置保持面121dと123bで断路位置が保持される。
 次に、図17ないし図19を用いて接地開閉部の動作を説明する。図17(a)は該接地開閉部の開極状態を示しており、図17(b)が接地状態を示している。図18は接地開閉部を間欠動作させるリンク系の例である。操作ロッド133は図示しないアクチュエータの可動子23と係合されている。操作ロッドは連結ピン134が取り付けられている。連結ピン134は溝135に沿って動作する。
 図19は連結ピンの位置を規制するスライド溝135の断面図である。ピン134が可動子の紙面左右方向の動作に応じて、紙面上下方向に移動する。溝125bの位置において、ピン134とレバー131の係合が外れ、溝135aの位置において、ピン134とレバー131が係合する構成となっている。
 図18(a)は投入位置P0(時刻t0)における接地開閉部のリンク系の状態であり、接地開閉部は図17aの開極状態にある。係合溝131cと連結ピン134の係合が外れており、接地部可動電極は固定状態であり、レバーの位置保持面131dと位置保持ロッド133bで接地部可動電極の位置が保持され、可動子23が動作しても接地開閉部の開極状態が維持される。
 図18(b)は遮断位置P1(時刻t1~t1′)におけるリンク系の状態である。上記、投入位置P1と同様に、係合溝131cと連結ピン134の係合が外れており、操作器の操作力を受けず、接地部可動電極は固定状態であり、レバーの位置保持面131dと位置保持ロッド133bで接地部可動電極の位置が保持され、可動子が動作しても接地開閉部の開極状態が維持される。
 図18(c)は断路位置P2(時刻t2~t2′)におけるリンク系の状態である。レバー131aの係合溝131cで連結ピン134が係合しており、さらに可動子が動作し連結ピンが移動する状態(t2′~t3)では、レバー131aが回転軸131bを中心に回転する。レバー131aの図示しない端部で接地部可動電極と連結されおり、レバー131の回転に伴い接地部可動電極が可動子と逆方向に概略直線動作する。
 図18(d)は接地位置P3(終点)におけるリンク系の状態であり、接地開閉部は図17(b)に示す閉極位置、即ち開閉装置としては接地位置にある。
 図19は連結ピンの位置を規制するスライド溝135の形状を示す図である。スライド溝135は開閉機構が断路から接地に移行する際(逆も含む)に、段差を生ずるような位置関係となっている。ピン134は可動子の紙面左右方向の動作に応じて、紙面上下方向に移動する。溝135aの位置(投入~遮断~断路の間)において、ピン134とレバー131の係合が外れ、溝125bの位置(断路~接地の間)において、ピン134とレバー131が係合する構成となっている。
 接地部可動電極はレバー131aと連結されており、さらに係合溝131cで連結ピン134が係合しており、可動子23の固定状態が保持されると、接地状態も保持される。可動子23はアクチュエータの巻線を短絡するように制御することで、位置が保持される。なお、本実施例では図示しないが、機械的なラッチ機構を併用することで、位置保持の信頼性を高めることができる。
 本実施例の様に、可動側電極や接地部可動電極と共に動作するピンをそれぞれ設け、各ピンと操作レバーを係合させて操作器からの操作力を、位置関係に応じて操作レバーに伝達する様に構成することも可能である。この場合にも、実施例1と同様に一つの操作器で投入・遮断・断路・接地の4位置を切り替えることが可能になる。
 上記各実施例によれば、一台の操作器で遮断器、断路器と接地開閉器の一方もしくは両方の開閉操作が行われ、従来の開閉装置で必要とされる操作器の数を削減することで装置をコンパクトにできるとともに、保守点検箇所を削減することで保守費用を削減できる。
 実施例3について図20を用いて説明する。本実施例に係るガス遮断器は、絶縁物で構成された碍子などの絶縁容器9内に固定側接触子となる固定側電極3と、固定側電極3と接触または開離されて、可動側接触子となる可動電極6と、可動電極6における固定側電極3側の先端に設けられるノズル5を備えており、当該絶縁容器9内には絶縁ガスとしてSF6ガスが封入されている。
 絶縁ガスとしては他のガスを用いることが可能であり、具体例を挙げると、SF6とN2やCF4の混合ガスや、CO2ガスなどのSF6ガス代替ガスがある。遮断部は断路部も兼ねた断路遮断部であり、該断路遮断部を収納した絶縁容器9の下側には、操作部を収納する他の絶縁容器20が取り付けられている。
 絶縁容器20内にはアクチュエータ100と、アクチュエータ内から遮断部側に突出する可動子23と、該可動子23の遮断部側の先端に設けられる絶縁ロッド81と、該絶縁ロッド81と可動側電極4を連結する直線シール部62とを配置しており、絶縁容器20内にも絶縁容器9内と同様の絶縁ガスが封入されている。
 本実施例では接地開閉器は絶縁容器外に設置されており、また接地開閉器の操作部は、断路遮断部の操作部と共通ではない。このように遮断部と断路部が複合された開閉装置においても、電磁アクチュエータを用いて中間固定点を有することで、遮断機能と断路機能を一台の操作器により実現でき、安価かつ高信頼なガス絶縁開閉装置を提供できる。
 上記各実施例によれば、操作器に電動モータを用いることで、高速、高推力動作が必要とされる遮断動作以外の断路もしくは接地操作においては低速駆動することで、機械的ストレスを低減し、操作器の長寿命化が図れる。操作機構を集約することで、操作機構全体の部品点数を削減することで、複合開閉装置の信頼性を高めることができる。
 また、短絡投入が要求される接地開閉器に対しても、新しく装置を付加せずとも、電源から供給する電流量を増大させることで投入速度を容易に高速化ができる点で、顧客仕様にも柔軟に対応することが可能になる。
1 金属容器
2 絶縁支持スペーサ
3 固定側電極
4 可動側電極
5 ノズル
7 絶縁支持筒
8 高電圧導体
9 遮断部絶縁容器
10 密封端子
11 第一の磁極
12 第二の磁極
13 磁性体
14 固定子
20 遮断部支持絶縁容器
21 永久磁石
22 磁石固定部材
23 可動子
39、40 ガス空間
41 巻線
51 変流器
61 操作器ケース
62 直線シール部
71 電源ユニット
72 制御ユニット
73 巻線接続切替スイッチ
81 絶縁ロッド
91、91A 接地部固定電極
92、92A 接地部可動電極
93 スライドピン
94 引張ばね
95 接地ブレード電極回転軸
96 ピン係合部
100 アクチュエータ
103 固定側アーク接触子
106 可動側アーク接触子
121 断路遮断部操作レバー
123、133 操作ロッド
124、134 連結ピン
125、135 スライド溝
131 接地開閉器操作レバー

Claims (10)

  1.  絶縁性ガスが封入される密閉タンクと、
     該密閉タンク内に配置される固定接触子と、
     該固定接触子に対して接触及び開離する可動接触子と、
     該可動接触子が動作するための駆動力を発生させる操作器を備える開閉装置であって、
     前記可動接触子を操作するための前記操作器は一つであり、該一つの操作器により前記可動接触子の三つの位置以上に停止可能とすることを特徴とする開閉装置。
  2.  請求項1に記載の開閉装置であって、
     前記操作器は電流を導通させることで操作力を発生させる操作器であり、
     更に、前記操作器を駆動する電源と、該電源から前記操作器に導通する電流のパターン及び/又はタイミングを制御する制御機構を備えることを特徴とする開閉装置。
  3.  請求項2に記載の開閉装置であって、
     前記操作器は、永久磁石または磁性体をN極及びS極を交互に反転させつつ前記可動接触子の動作軸方向に配置する可動子と、該可動子のN極及びS極に対向して配置されると共に巻線を有する磁極を備え、前記可動接触子を直線状に三つの位置以上に停止可能とすることを特徴とする開閉装置。
  4.  請求項3に記載の開閉装置であって、
     前記一つの操作器は、複数の操作力発生部から構成され、
     該各操作力発生部と前記電源の間には各々スイッチが配置されており、
     前記各操作力発生部と当該各スイッチの間同士は、更に別のスイッチを介して接続されていることを特徴とする開閉装置。
  5.  請求項3に記載の開閉装置であって、
     前記可動接触子は、投入・遮断・断路・接地の四つの位置に停止し、
     接地部固定電極と接地部可動電極を更に備えることを特徴とする開閉装置。
  6.  請求項5に記載の開閉装置であって、
     更に前記可動接触子と連動して動作するピンを備え、
     前記接地部可動電極は回転軸に回転可能に支持され、前記ピンに係合して前記回転軸を中心に回転する係合部を有し、
     断路から接地位置への移行の際には、前記ピンが前記係合部を押すことで前記接地部可動電極が前記回転軸を中心に回転し、前記接地部固定電極と接触することを特徴とする開閉装置。
  7.  請求項6に記載の開閉装置であって、
     接地位置において前記接地部可動電極を支持する支持用のばねを更に備えることを特徴とする開閉装置。
  8.  請求項5に記載の開閉装置であって、
     前記操作器と共に動作する投入・遮断・断路用の連結ピンと、
     前記操作器と共に動作する接地用の連結ピンと、
     前記可動接触子と接続すると共に、投入・遮断・断路動作時に前記投入・遮断・断路用の連結ピンと係合することで前記操作器の操作力を受ける第一の操作レバーと、
     前記接地部可動電極と接続すると共に、接地動作時に前記接地用の連結ピンと係合することで前記操作器の操作力を受ける第二の操作レバーとを更に備えることを特徴とする開閉装置。
  9.  請求項2に記載の開閉装置であって、
     更に接地部固定電極と、接地部可動電極と、該接地部可動電極を操作するための操作器を備えることを特徴とする開閉装置。
  10.  絶縁性ガスが封入された密閉タンクと、
     該密閉タンク内に配置された固定接触子と、
     該固定接触子に対して接触及び開離する可動接触子と、
     該可動接触子が動作するための駆動力を発生させる操作器を備える開閉装置であって、
     前記可動接触子を操作するための前記操作器は一つであり、該一つの操作器は電流を導通させることで操作力を発生させ、
     更に、前記操作器を駆動する電源と、該電源から前記操作器に導通する電流のパターン及び/又はタイミングを制御する制御機構を備え、
     前記密閉タンク外に、更に接地部固定電極と、該接地部固定電極に対して接触及び開離する接地部可動電極と、該接地部可動電極を操作するための操作器とを有することを特徴とする開閉装置。
PCT/JP2013/058899 2012-04-18 2013-03-27 開閉装置 WO2013157360A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13778076.3A EP2840672A4 (en) 2012-04-18 2013-03-27 SWITCHING
JP2014511153A JP5826379B2 (ja) 2012-04-18 2013-03-27 開閉装置
KR1020147029052A KR101668341B1 (ko) 2012-04-18 2013-03-27 개폐 장치
CN201380020081.5A CN104247184B (zh) 2012-04-18 2013-03-27 开闭装置
US14/395,287 US9520699B2 (en) 2012-04-18 2013-03-27 Switchgear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-094331 2012-04-18
JP2012094331 2012-04-18

Publications (1)

Publication Number Publication Date
WO2013157360A1 true WO2013157360A1 (ja) 2013-10-24

Family

ID=49383325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058899 WO2013157360A1 (ja) 2012-04-18 2013-03-27 開閉装置

Country Status (6)

Country Link
US (1) US9520699B2 (ja)
EP (1) EP2840672A4 (ja)
JP (1) JP5826379B2 (ja)
KR (1) KR101668341B1 (ja)
CN (1) CN104247184B (ja)
WO (1) WO2013157360A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143567A (ja) * 2015-02-03 2016-08-08 株式会社日立製作所 ガス遮断器
JP2020049906A (ja) * 2018-09-28 2020-04-02 キヤノン株式会社 パッド電極を有する部材、インクカートリッジ、記録装置
JP6945754B1 (ja) * 2020-07-06 2021-10-06 三菱電機株式会社 開閉器、ガス絶縁開閉装置、および開閉器の制御方法
US11651917B2 (en) 2019-01-04 2023-05-16 Hyosung Heavy Industries Corporation Electrode driving device for gas insulated switchgear

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2835810A4 (en) * 2012-04-06 2015-12-30 Hitachi Ltd CIRCUIT BREAKER AND CIRCUIT BREAKER OPERATION METHOD
KR20140138840A (ko) * 2012-04-06 2014-12-04 가부시키가이샤 히타치세이사쿠쇼 가스 차단기
JP6053173B2 (ja) * 2013-11-01 2016-12-27 株式会社日立製作所 開閉装置
EP3107195A1 (de) * 2015-06-16 2016-12-21 InDriveTec AG Linearmotorantriebssystem
CN106611678A (zh) * 2015-10-26 2017-05-03 上海思源高压开关有限公司 一种直接联结的传动方式
WO2018188750A1 (en) * 2017-04-13 2018-10-18 Abb Schweiz Ag Arrangement for a power system
CN107086150B (zh) * 2017-06-16 2019-09-17 沈阳工业大学 一种旋转开断的电极结构
CN112055935B (zh) * 2018-02-09 2023-09-19 康普埃克特股份公司 线性电动机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589755A (ja) * 1991-09-26 1993-04-09 Toshiba Corp 圧縮ガス遮断器
JPH05159668A (ja) 1991-12-09 1993-06-25 Fuji Electric Co Ltd 密閉形開閉装置
JPH097468A (ja) * 1995-06-16 1997-01-10 Mitsubishi Electric Corp 開閉装置
JPH10308145A (ja) * 1997-05-01 1998-11-17 Mitsubishi Electric Corp 開閉装置
JP2002051416A (ja) * 2000-08-03 2002-02-15 Toshiba Corp ガス絶縁開閉器
JP2002281618A (ja) 2001-03-21 2002-09-27 Hitachi Ltd ガス絶縁複合開閉装置
JP2004088825A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd ガス絶縁開閉装置
JP2004127802A (ja) 2002-10-04 2004-04-22 Hitachi Ltd ガス絶縁開閉装置
JP2004288502A (ja) * 2003-03-24 2004-10-14 Mitsubishi Electric Corp 操作回路およびこれを用いた電力用開閉装置
JP2011029004A (ja) 2009-07-27 2011-02-10 Hitachi Ltd ガス遮断器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19837009A1 (de) * 1998-08-14 2000-02-17 Abb Patent Gmbh Antrieb für das bewegliche Kontaktstück eines Hochspannungsleistungsschalters
EP1119011A4 (en) * 1998-10-02 2004-03-03 Hitachi Ltd VACUUM SWITCH AND VACUUM SWITCHING APPARATUS USING THE VACUUM SWITCH
DE19929572A1 (de) * 1999-06-22 2001-01-04 Siemens Ag Magnetischer Linearantrieb
US6242708B1 (en) * 2000-01-03 2001-06-05 Eaton Corporation Isolator switch
JP2001307603A (ja) * 2000-04-19 2001-11-02 Hitachi Ltd 真空スイッチ及びそれを用いた真空スイッチギヤ
WO2002060027A1 (fr) * 2001-01-26 2002-08-01 Hitachi, Ltd. Appareillage de commutation isole par du gaz
TWI263236B (en) * 2003-05-19 2006-10-01 Hitachi Ltd Vacuum switchgear
WO2005062325A1 (ja) * 2003-12-19 2005-07-07 Mitsubishi Denki Kabushiki Kaisha 断路器
WO2006067936A1 (ja) * 2004-12-20 2006-06-29 Kabushiki Kaisha Yaskawa Denki 接地開閉装置付きガス絶縁開閉装置
KR100675984B1 (ko) * 2005-07-12 2007-01-30 엘에스산전 주식회사 가스절연 차단기
JP4555857B2 (ja) * 2007-12-21 2010-10-06 株式会社日立製作所 真空絶縁スイッチギヤ
JP5235620B2 (ja) * 2008-11-14 2013-07-10 株式会社日立製作所 真空スイッチギヤ
JP4866949B2 (ja) * 2009-09-07 2012-02-01 株式会社日立製作所 真空絶縁スイッチギヤ
CN202034295U (zh) * 2011-04-27 2011-11-09 广州白云电器设备股份有限公司 高压气体绝缘金属封闭开关设备三工位开关

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589755A (ja) * 1991-09-26 1993-04-09 Toshiba Corp 圧縮ガス遮断器
JPH05159668A (ja) 1991-12-09 1993-06-25 Fuji Electric Co Ltd 密閉形開閉装置
JPH097468A (ja) * 1995-06-16 1997-01-10 Mitsubishi Electric Corp 開閉装置
JPH10308145A (ja) * 1997-05-01 1998-11-17 Mitsubishi Electric Corp 開閉装置
JP2002051416A (ja) * 2000-08-03 2002-02-15 Toshiba Corp ガス絶縁開閉器
JP2002281618A (ja) 2001-03-21 2002-09-27 Hitachi Ltd ガス絶縁複合開閉装置
JP2004088825A (ja) * 2002-08-23 2004-03-18 Hitachi Ltd ガス絶縁開閉装置
JP2004127802A (ja) 2002-10-04 2004-04-22 Hitachi Ltd ガス絶縁開閉装置
JP2004288502A (ja) * 2003-03-24 2004-10-14 Mitsubishi Electric Corp 操作回路およびこれを用いた電力用開閉装置
JP2011029004A (ja) 2009-07-27 2011-02-10 Hitachi Ltd ガス遮断器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2840672A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016143567A (ja) * 2015-02-03 2016-08-08 株式会社日立製作所 ガス遮断器
JP2020049906A (ja) * 2018-09-28 2020-04-02 キヤノン株式会社 パッド電極を有する部材、インクカートリッジ、記録装置
JP7224830B2 (ja) 2018-09-28 2023-02-20 キヤノン株式会社 パッド電極を有する部材、インクカートリッジ、記録装置
US11685163B2 (en) 2018-09-28 2023-06-27 Canon Kabushiki Kaisha Member including pad electrode, ink cartridge and recording apparatus
US11651917B2 (en) 2019-01-04 2023-05-16 Hyosung Heavy Industries Corporation Electrode driving device for gas insulated switchgear
JP6945754B1 (ja) * 2020-07-06 2021-10-06 三菱電機株式会社 開閉器、ガス絶縁開閉装置、および開閉器の制御方法
WO2022009264A1 (ja) * 2020-07-06 2022-01-13 三菱電機株式会社 開閉器、ガス絶縁開閉装置、および開閉器の制御方法

Also Published As

Publication number Publication date
US9520699B2 (en) 2016-12-13
EP2840672A1 (en) 2015-02-25
JP5826379B2 (ja) 2015-12-02
US20150131207A1 (en) 2015-05-14
CN104247184A (zh) 2014-12-24
EP2840672A4 (en) 2015-12-02
KR101668341B1 (ko) 2016-10-21
CN104247184B (zh) 2016-07-06
KR20140140582A (ko) 2014-12-09
JPWO2013157360A1 (ja) 2015-12-21

Similar Documents

Publication Publication Date Title
JP5826379B2 (ja) 開閉装置
JP5235620B2 (ja) 真空スイッチギヤ
JP4841875B2 (ja) 真空絶縁スイッチギヤ
US8373082B2 (en) Vacuum insulated switchgear
JP6053173B2 (ja) 開閉装置
JP4555857B2 (ja) 真空絶縁スイッチギヤ
JP5452555B2 (ja) スイッチギヤ及びスイッチギヤの操作方法
KR101513600B1 (ko) 병렬 콘덴서가 있는 가스 차단기
JP2007014087A (ja) 真空絶縁スイッチギヤ
EP2835811A1 (en) Gas circuit breaker
US20150206676A1 (en) Switch
WO2013150930A1 (ja) 遮断器及び遮断器の操作方法
CN103021728A (zh) 中压配电设备
KR19990047296A (ko) 마그네틱 액튜에이터를 이용한 지중선로용 다회로자동 차단기
US20140146433A1 (en) Three-Phase Circuit-Breaker
JP2016167405A (ja) 開閉装置
KR101034555B1 (ko) 변전설비 차단기용 액츄에이터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13778076

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511153

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013778076

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147029052

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14395287

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE