WO2013157116A1 - ガントリー型粒子線照射装置、およびこれを備えた粒子線治療装置 - Google Patents

ガントリー型粒子線照射装置、およびこれを備えた粒子線治療装置 Download PDF

Info

Publication number
WO2013157116A1
WO2013157116A1 PCT/JP2012/060570 JP2012060570W WO2013157116A1 WO 2013157116 A1 WO2013157116 A1 WO 2013157116A1 JP 2012060570 W JP2012060570 W JP 2012060570W WO 2013157116 A1 WO2013157116 A1 WO 2013157116A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
gantry
emittance
ridge
ridge filter
Prior art date
Application number
PCT/JP2012/060570
Other languages
English (en)
French (fr)
Inventor
菅原 賢悟
和之 花川
泰三 本田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP12874411.7A priority Critical patent/EP2840579B1/en
Priority to US14/380,784 priority patent/US9079025B2/en
Priority to PCT/JP2012/060570 priority patent/WO2013157116A1/ja
Priority to JP2014511039A priority patent/JP5784824B2/ja
Priority to CN201280072478.4A priority patent/CN104246907B/zh
Priority to TW101123195A priority patent/TWI457154B/zh
Publication of WO2013157116A1 publication Critical patent/WO2013157116A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges

Definitions

  • the present invention relates to a particle beam irradiation apparatus that applies particle beams, such as irradiating particle beams to treat cancer.
  • the particle beam therapy system takes out high-energy charged particles accelerated by an accelerator such as a synchrotron as a beam-like particle beam from the accelerator, and uses the particle beam transport system composed of a vacuum duct and a deflecting electromagnet. It is transported to the irradiation chamber and irradiated to the affected area of the patient by the particle beam irradiation device.
  • an accelerator such as a synchrotron
  • the particle beam transport system composed of a vacuum duct and a deflecting electromagnet. It is transported to the irradiation chamber and irradiated to the affected area of the patient by the particle beam irradiation device.
  • Particle beams such as proton beams and carbon beams have a peak relative value at a position deeper than the surface of the body where they stop, that is, immediately before the range of the particle beam. This peak value is called a Bragg peak BP (Bragg Peak).
  • this Bragg peak BP is irradiated to a tumor formed in a human organ to treat the cancer. In addition to cancer, it can also be used to treat deep parts of the body.
  • a treated site including a tumor is generally called an irradiation target.
  • the position of the black peak BP is determined by the energy of the irradiated particle beam. The higher the energy of the particle beam, the deeper the Bragg peak BP can be.
  • FIG. 12 is a perspective view showing the structure of the ridge filter, which is a structure in which triangular prisms whose side surfaces are stepped are arranged. This structure is manufactured, for example, by cutting out a rectangular aluminum member so that the outside is stepped.
  • the particle beam is arranged so as to pass through the triangular prism structure in the direction of the axis indicated by Z2 in FIG. Depending on the distance traveled, the energy of the particle beam is absorbed. Therefore, the energy after the particle beam passes through the ridge filter can be changed by changing the height from the lowermost surface of the structure of each staircase. In addition, the number of particles passing through a specific thickness portion of the structure can be changed according to the width of the staircase.
  • the particle beam that has passed through the ridge filter becomes a particle beam with an expanded energy width as a whole.
  • a Bragg peak BP having a width in the depth direction is formed, and the affected part having a width in the depth direction can be irradiated with the particle beam.
  • a particle beam emitted from a circular accelerator such as a synchrotron accelerator has different properties, that is, asymmetry, depending on the in-plane direction perpendicular to the traveling direction of the particle beam due to the principle restriction of the slow emission method.
  • the traveling direction of the particle beam is the Z direction, perpendicular to the Z direction, the direction in the beam orbital plane of the accelerator is the X direction, and the direction perpendicular to the Z direction and the X direction is the Y direction
  • the emitted particle beam is It has a relatively small emittance in the X direction and a relatively large emittance in the Y direction.
  • the ridge filter has an asymmetric shape in the axial direction of the triangular prism, that is, the direction of the ridge and the direction perpendicular to the ridge.
  • the ridge filter is passed through the ridge filter without making the emittance symmetric, the asymmetric direction of the emittance Asymmetry appears in the effect of the ridge filter due to the directional relationship between the ridge filter and the asymmetric direction of the ridge filter.
  • An object of the present invention is to obtain a particle beam irradiation apparatus capable of realizing an energy width expansion with little change due to a gantry angle.
  • the particle beam emitted from the circular accelerator is in a plane perpendicular to the traveling direction of the particle beam at the exit position of the circular accelerator, the direction in the circular orbital surface of the circular accelerator is the X direction, and the traveling direction of the particle beam. If the direction perpendicular to the X direction in the plane perpendicular to the Y direction is the Y direction, the X direction emittance is small and the Y direction emittance is large, and the particle beam is transported by the particle beam transport system after exiting the circular accelerator.
  • the irradiation nozzle includes a ridge filter, and the position where the particle beam enters the irradiation nozzle is the emission position of the circular accelerator
  • the angle of the gantry through which the particle beam is transported so that the emittance in the X direction and the emittance in the Y direction are separated and the emittance is maintained.
  • a reference angle of Suntory, in which a direction perpendicular to the ridge direction and the ridge filter emittance in the X direction is maintained gantry in the state of the reference angle is set up the ridge filter to be inclined a predetermined angle.
  • a gantry-type particle beam irradiation apparatus capable of realizing an energy width expansion with little change depending on the angle of the gantry can be obtained.
  • FIG. 1 It is a conceptual diagram which shows the example of the installation angle of the ridge filter of the particle beam irradiation apparatus by Embodiment 1 of this invention. It is a figure explaining the effect of the particle beam irradiation apparatus by Embodiment 1 of this invention. It is another figure explaining the effect of the particle beam irradiation apparatus by Embodiment 1 of this invention. It is another figure explaining the effect of the particle beam irradiation apparatus by Embodiment 1 of this invention. It is a perspective view which shows the ridge filter of the particle beam irradiation apparatus by Embodiment 2 of this invention. It is a top view which shows the rotation mounting base equipped with the ridge filter of the particle beam irradiation apparatus by Embodiment 2 of this invention. It is a top view which shows another rotation mounting base with which the ridge filter of the particle beam irradiation apparatus by Embodiment 2 of this invention was mounted
  • FIG. 1 is a schematic configuration diagram for explaining a particle beam irradiation apparatus mounted on a particle beam therapy apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional side view showing a schematic configuration of an irradiation nozzle of the particle beam irradiation apparatus according to Embodiment 1 of the present invention.
  • Charged particles such as protons and carbon incident on the synchrotron accelerator 100 from the ion source 101 are accelerated by the synchrotron accelerator 100 configured in a ring shape by an electromagnet, an acceleration cavity, a vacuum duct, and the like.
  • the accelerated charged particles are emitted from the emitter 102 to the outside of the synchrotron accelerator 100 as a particle beam.
  • the emitted particle beam is transported through the particle beam transport system 200 configured by a vacuum duct or an electromagnet, and is incident on the gantry type particle beam irradiation apparatus 1.
  • a general gantry-type particle beam irradiation apparatus 1 (sometimes simply referred to as “gantry 1”) includes a deflection electromagnet for bending the traveling direction of the particle beam twice or three times. It is configured to irradiate the target with a particle beam.
  • the gantry-type particle beam irradiation apparatus 1 is configured to rotate around the traveling axis of the incident particle beam, that is, the axis in the direction indicated by Z12 in FIG.
  • the irradiation nozzle 4 is configured as schematically shown in FIG.
  • FIG. 2 is a cross-sectional view of the irradiation nozzle 4 viewed from the Y2 axis direction with the angle of the gantry 1 being the angle of FIG.
  • the particle beam PB incident on the irradiation nozzle 4 is deflected and moved in a direction perpendicular to the particle beam traveling direction by the scanning electromagnet 41, and the affected part of the patient 20 placed on the treatment table 30 as an irradiation target is scanned with the particle beam. .
  • a dose monitor 42 Downstream of the scanning electromagnet 41, a dose monitor 42 that monitors the irradiation dose and a ridge filter 43 that is an energy width expanding device are arranged. Since the irradiation nozzle 4 is mounted on the gantry 1, the irradiation nozzle 4 rotates around the patient 20 as shown by the arrow curve, and is configured to irradiate the patient 20 with particle beams from
  • the particle beam is emitted from the emitter 102 of the synchrotron accelerator 100 to the outside of the synchrotron accelerator 100.
  • the synchrotron accelerator 100 charged particles are accelerated each time they pass through the acceleration cavity while circling a trajectory formed by an electromagnet.
  • a plane including the center of the orbit formed by the charged particles orbiting is called an orbiting orbit plane of the accelerator. Since the synchrotron accelerator 100 has a large orbit (usually small for medical use and a diameter of 10 to 20 m) with a diameter of several tens of meters, the orbital surface is usually a horizontal plane.
  • the beam axis of the particle beam from which the charged particle is emitted as the particle beam from the synchrotron accelerator 100 is included in the orbital plane. As shown in FIG. 1, the beam axis immediately after the particle beam is emitted, that is, the axis in the traveling direction of the particle beam is defined as the Z11 axis.
  • the emitter 102 is configured to be separated from the circular orbit so as to cut out the charged particles in the outer peripheral portion of the circular orbit from the bundle of charged particles that circulate in the synchrotron accelerator 100 and to be emitted out of the synchrotron accelerator 100. Yes.
  • the axis that is perpendicular to the Z11 axis and in the orbital plane at the position of the emitter 102 is defined as the X11 axis. Furthermore, an axis perpendicular to both the Z11 axis and the X11 axis is taken as a Y11 axis.
  • the charged particles distributed in the X11 axis direction in the synchrotron accelerator 100 are emitted so as to be cut out, and the charged particles distributed in the Y11 axis direction are emitted in the same distribution in the synchrotron accelerator 100.
  • the properties of the emitted particle beam are particle beams having different properties in the X11 axis direction and the Y11 axis direction.
  • the particle beam emitted by this emission method has a relatively small emittance in the X11 direction and a relatively large emittance in the Y11 direction.
  • the emittance is an area of the phase space distribution of the particle beam, and the magnitude of the emittance in each direction of the X11 and Y11 does not change while the particle beam travels through the particle beam transport system 200 composed only of an electromagnet. .
  • each direction (direction in which emittance in each direction is maintained) on the particle beam, that is, each direction axis in the emitter 102.
  • the particle beam at the gantry incident position 10 is a particle beam having a relatively small emittance in the X12 direction and a relatively large emittance in the Y12 direction.
  • the direction of travel of this particle beam is bent by a gantry-type particle beam irradiation apparatus and incident on the irradiation nozzle 4 at each irradiation nozzle incident position 11 (direction in which the emittance of each direction is maintained) is X13, Y13 and Z13.
  • 0 degree which is a reference for the rotation angle of the gantry 1
  • 0 degree is set as an angle in the state as shown in FIG. That is, a state in which the surface formed by the particle beam being bent in the gantry and formed by the beam axis of the particle beam is perpendicular to the orbital surface of the synchrotron accelerator 100 is defined as a reference angle of 0 degree for the gantry 1.
  • the particle beam incident on the irradiation nozzle 4 has an emittance in the X11 direction and an emittance in the Y11 direction at the emission position of the synchrotron accelerator 100.
  • the particle beams are not coupled and the emittance in each direction is kept separated.
  • the traveling direction of the particle beam is the Z2 axis
  • the direction that coincides with X13 is the X2 axis
  • the direction that coincides with Y13 is the Y2 axis.
  • the X2, Y2, and Z2 axes are axes fixed to the irradiation nozzle 4 that rotates as the gantry 1 rotates. That is, the X2 axis, the Y2 axis, and the Z2 axis are moving axes that rotate as the gantry 1 rotates.
  • FIG. 3 shows a schematic configuration diagram of the entire particle beam therapy system in a state where the gantry 1 is rotated 90 degrees from the reference angle state of FIG. Even when the gantry 1 is rotated 90 degrees, the emittance in the X11 direction and the emittance in the Y11 direction at the emission position of the synchrotron accelerator 100 are not coupled, and the emittance in each direction is separated and maintained, as in the reference angle state. The particle beam remains as it is. However, in the state rotated by 90 degrees, each directional axis riding on the particle beam at the irradiation nozzle incident position 11, that is, an axis corresponding to each directional axis in the emitter 102 becomes X14, Y14, and Z14 shown in FIG.
  • X2, Y2, and Z2 fixed to the irradiation nozzle 4 change in the direction fixed to the irradiation nozzle 4 and rotated as shown in FIG.
  • X14 and Y14 which are the axes riding on the particle beam (directions in which emittance in each direction is maintained), are the axes riding on the particle beam in a state where the gantry 1 is the reference angle of 0 degrees, and X13 and Y13.
  • the direction is changed by 90 degrees.
  • the axis on the particle beam rotates differently from the irradiation nozzle 4.
  • the X2 axis of the irradiation nozzle 4 is defined as a direction in which the emittance of the particle beam is small, that is, a direction that coincides with the X13 direction.
  • the direction in which the emittance of the particle beam is small that is, the direction of X14 becomes a direction that coincides with the Y2 axis of the irradiation nozzle 4.
  • the ridge filter 43 installed in the irradiation nozzle 4 rotates with the irradiation nozzle 4 as the gantry 1 rotates.
  • the ridge filter is installed so that the direction in which the ridge 431 of the ridge filter 43 extends is, for example, the Y2 direction as shown in FIG.
  • the direction in which the emittance is small that is, the direction X13 in FIG. 1 coincides with the direction perpendicular to the ridge of the ridge filter.
  • the direction in which the emittance is small that is, the direction X14 in FIG. 3 is the direction of the Y2 axis that is the direction in which the ridge of the ridge filter extends.
  • the direction perpendicular to the ridge of the ridge filter is a direction of large emittance.
  • FIG. 4 shows how the direction emittance changes.
  • the particle beam incident on the ridge filter 43 is combined with the emittance in the direction of small emittance and the direction of large emittance, that is, the emittance in the X12 direction and the Y12 direction of the gantry incident position 10.
  • this coupling is maximum when the angle of the gantry 1 is 45 degrees.
  • the particle beam after passing through the ridge filter has the energy distribution of the structure of the ridge filter as it is in the direction perpendicular to the ridge of the ridge filter.
  • This energy The irradiation target is irradiated with the distribution, and a spotted (non-uniform) irradiation distribution is formed in the irradiation target.
  • the particle beam mixes as the particle beam advances after passing through the ridge filter. Therefore, the irradiation target is irradiated with a particle beam having a uniform energy distribution whose energy width is expanded by the ridge filter, and a uniform irradiation distribution is formed at the irradiation target. Therefore, as in the past, when the gantry angle is 0 degree, the ridge filter is installed so that the direction perpendicular to the ridge of the ridge filter coincides with the direction in which the emittance of the particle beam incident on the ridge filter is small. In this case, depending on the angle of the gantry 1, the irradiation distribution becomes uneven (uneven).
  • the particle beam irradiation distribution at the irradiation target is made uniform after passing through the ridge filter. it can. Or it can suppress that an irradiation distribution becomes a spot.
  • the present inventors can install the ridge filter by tilting the direction of the ridge of the ridge filter with respect to the X2 axis and the Y2 axis set in the irradiation nozzle 4, so that the angle of the gantry 1 is any angle.
  • FIG. 5 is a conceptual diagram showing an example of the installation angle of the ridge filter of the particle beam irradiation apparatus according to Embodiment 1 of the present invention.
  • the angle ⁇ formed by the X2 axis fixed to the irradiation nozzle 4 and the direction perpendicular to the ridge 431 of the ridge filter 43 is 45 degrees.
  • FIG. 6 when the ridge filter 43 is installed such that the direction perpendicular to the ridge 431 of the ridge filter 43 is inclined 45 degrees with respect to the X2 axis, the emittance of the particle beam in the direction perpendicular to the ridge of the ridge filter depends on the angle of the gantry 1. How the changes.
  • FIG. 6 shows an example of the installation angle of the ridge filter of the particle beam irradiation apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 shows a case where the ridge filter 43 is installed so that the direction perpendicular to the ridge 431 of the ridge filter 43 coincides with the X2 axis, that is, the angle ⁇ shown in FIG.
  • a change of the emittance of the particle beam in a direction perpendicular to the ridge of the ridge filter is indicated by a dotted line b.
  • the change in the emittance of the particle beam in the direction perpendicular to the ridge of the ridge filter is shown by a one-dot chain line c. Is shown.
  • the change in emittance of the particle beam in the direction perpendicular to the ridge of the ridge filter changes dramatically depending on the installation angle of the ridge filter 43.
  • FIG. 7 shows how the emittance of the particle beam changes in the direction perpendicular to the ridge of the ridge filter when the ridge filter 43 is installed so that the angle ⁇ shown in FIG. 5 is 30 degrees.
  • the emittance varies from approximately 10.4 at a gantry 1 angle of 0 degrees to approximately 14.8 at a gantry 1 angle of 90 degrees. Since the emittance is 10.4 at a minimum, even in this case, the irradiation distribution does not become uneven. The minimum value 10.4 is 70.3% relative to the maximum value 14.8.
  • the present invention is to install the ridge filter by tilting the direction perpendicular to the ridge of the ridge filter 43 with respect to the X2 axis.
  • the angle of inclination is 45 degrees, but it is not necessary to be exactly 45 degrees. If the angle of inclination is 20 degrees or more and 70 degrees or less, a great effect can be obtained.
  • the ridge filter is inclined at a predetermined angle with respect to the X2 axis in a direction perpendicular to the ridge of the ridge filter 43, more preferably 20 degrees to 70 degrees, and most preferably 45 degrees.
  • the X2 axis that is, the axis serving as a reference for tilting the ridge filter
  • the emittance of the particle beam in the X11 direction which is perpendicular to the traveling direction of the particle beam and is in the orbital plane of the accelerator, and the emittance in the Y11 direction perpendicular to this
  • the rotation angle of the gantry through which the particle beam is transported to the ridge filter (or the irradiation nozzle) with the emittance in each direction being maintained without being coupled is defined as the reference angle.
  • the direction in which the emittance in the X11 direction when the gantry angle is the reference angle is the direction of the axis (X2) serving as a reference for tilting the ridge filter.
  • the direction perpendicular to the ridge of the ridge filter is inclined with respect to the direction of the reference axis (X2).
  • the reference angle of the gantry has been described as 0 degrees in the above description, the emittance in the X11 direction and the emittance in the Y11 direction are separated without being coupled, and the particle beam up to the ridge filter is maintained while maintaining the emittance in each direction.
  • the angle of the gantry to which is transported appears not only at 0 degrees, but also every 90 degrees, as shown in FIG. Therefore, the reference angle is not necessarily 0 degree, and may be 90 degrees, 180 degrees, or 270 degrees.
  • the present invention can be expressed as follows.
  • the direction of the gantry angle at which the plane formed by the center line of the particle beam in the gantry is perpendicular to the orbiting plane of the accelerator and the emittance in the X11 direction at the position of the ridge filter (X13) is used as the reference axis.
  • the ridge filter is installed by tilting the direction perpendicular to the ridge of the filter with respect to the direction of the reference axis.
  • the surface formed by the center line of the particle beam in the gantry is not a flat surface, but by rotating the gantry,
  • the emittance of the particle beam in the X11 direction which is perpendicular to the traveling direction of the particle beam and in the orbital plane of the accelerator, is separated from the emittance in the Y11 direction perpendicular thereto, and the emittance in each direction is maintained.
  • the rotation angle of the gantry is used as a reference angle, and the direction in which the emittance in the X11 direction at this time is maintained is set as a reference axis direction for tilting the ridge filter.
  • the ridge filter may be installed by tilting the direction perpendicular to the ridge of the ridge filter with respect to the direction of the reference axis.
  • FIG. FIG. 9 is a perspective view showing the ridge filter 43 of the particle beam irradiation apparatus according to the second embodiment of the present invention.
  • the base 432 of the ridge filter has a rectangular shape, and is attached so that one side of the rectangular shape coincides with the direction X2 which is the reference direction axis of the irradiation nozzle.
  • a direction perpendicular to the ridge of the ridge filter is inclined with respect to one side of the rectangle of the base 432 of the ridge filter so as to have an angle ⁇ .
  • the base 432 of the ridge filter is attached to the same irradiation nozzle 4 as before, and the direction perpendicular to the ridge of the ridge filter is the X2 axis. Since it is attached so as to be inclined, the particle beam irradiation apparatus according to the present invention can be easily obtained without modifying the irradiation nozzle of the conventional particle beam irradiation apparatus.
  • a plurality of types of ridge filters 43 having different characteristics are attached to a plurality of holders provided on a rotating mounting base 434, and appropriate for the patient to be irradiated.
  • the ridge filter is configured to be selected by rotating the rotary mount 434.
  • a particle beam according to the present invention is attached to a rotary mounting base 434 by attaching a ridge filter 43 as shown in FIG. 12 in which a direction perpendicular to the ridge 431 of the ridge filter is provided in parallel with one side of a rectangular base 433.
  • a ridge filter 43 as shown in FIG. 12 in which a direction perpendicular to the ridge 431 of the ridge filter is provided in parallel with one side of a rectangular base 433.
  • the synchrotron accelerator 100 has been described as an example of the accelerator.
  • the emittance of the particle beam emitted from other circular accelerators such as a cyclotron accelerator has directivity. ing. That is, as with the synchrotron accelerator, the emittance of the particle beam is small in the direction in the orbital plane of the accelerator, perpendicular to the direction of emission of the particle beam, and large in the direction perpendicular thereto. Therefore, the present invention is applied not only to the particle beam emitted from the synchrotron accelerator but also to the particle beam emitted from the circular accelerator, so that the first embodiment and the embodiment described by taking the synchrotron accelerator as an example The effect described in 2 is achieved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

 円形加速器から出射された粒子線が、X方向のエミッタンスが小さく、Y方向のエミッタンスが大きな粒子線であり、この粒子線を照射ノズルから照射目標に照射する、ガントリーを備えたガントリー型粒子線照射装置において、照射ノズルはリッジフィルタを備え、照射ノズルに粒子線が入射する位置で、円形加速器の出射位置におけるX方向のエミッタンスおよびY方向のエミッタンスが分離されてそれぞれのエミッタンスが保たれるように粒子線が輸送されるガントリーの角度をガントリーの基準角度とし、ガントリーが基準角度の状態においてX方向のエミッタンスが保たれた方向とリッジフィルタの尾根に垂直な方向が所定の角度傾くようにリッジフィルタを設置した。

Description

ガントリー型粒子線照射装置、およびこれを備えた粒子線治療装置
 この発明は、粒子線を照射して癌の治療を行うなど粒子線を応用する粒子線照射装置に関するものである。
 粒子線治療装置は、シンクロトロンなどの加速器によって加速された高エネルギー荷電粒子をビーム状の粒子線として加速器から取り出し、取り出した粒子線を真空ダクトおよび偏向電磁石などで構成される粒子線輸送系により照射室に輸送して、粒子線照射装置により患者の患部に照射する構成となっている。
 陽子線、炭素線などの粒子線は、体の表面から深い部分で、それらの粒子が止まる位置、すなわちその粒子線の飛程の直前に相対線量がピーク値となる。このピーク値は、ブラッグピークBP(Bragg Peak)と呼ばれる。
 このブラッグピークBPを、人の臓器にできた腫瘍に照射して、癌の治療を行なうのが粒子線癌治療方法である。癌以外にも、体の深い部分を治療する場合にも用いることができる。腫瘍を含む被治療部位は、一般には照射目標と呼ばれる。ブラックピークBPの位置は、照射される粒子線のエネルギーで決まり、エネルギーの高い粒子線ほどブラッグピークBPは深い位置にできる。粒子線治療では、粒子線を照射目標の全体に一様な線量分布とする必要があり、このブラッグピークBPを照射目標の全域に与えるために、粒子線の「照射体積の拡大」が行なわれる。
 深さ方向の照射体積の拡大に用いられる素子として、リッジフィルタと呼ばれる素子がある(例えば特許文献1)。リッジフィルタは、粒子線のエネルギーの幅を拡大する素子である。図12は、リッジフィルタの構造を示す斜視図であり、側面が階段状になった三角柱を並べた構造体である。この構造体は、例えば、直方体のアルミの部材を削り出して、外側が階段状になるように製作する。粒子線が三角柱の構造体を図12のZ2で示す軸の向きに通過するように配置される。通過した距離に応じて粒子線のエネルギーが吸収される。従って各階段の構造体の最下面からの高さを変えることによって粒子線がリッジフィルタを通過した後のエネルギーを変えることができる。また、階段の幅によって前記構造体の特定の厚さの部分を通過する粒子数を変えることができる。
 リッジフィルタを通過した粒子線は、全体としてエネルギー幅が拡大された粒子線となる。このエネルギー幅が拡大された粒子線を患部に照射することで、深さ方向に幅を持ったブラッグピークBPが形成され、深さ方向に幅がある患部に粒子線を照射することができる。
 一方、シンクロトロン加速器などの円形加速器から出射される粒子線は、遅い出射方法の原理的な制約により、粒子線の進行方向に垂直な面内の方向により異なる性質、すなわち非対称性を有する。粒子線の進行方向をZ方向、Z方向に垂直で、加速器のビーム周回軌道面内の方向をX方向、Z方向とX方向に垂直な方向をY方向とすると、出射された粒子線は、X方向に比較的小さいエミッタンス、Y方向には比較的大きいエミッタンスを持つ。このエミッタンスの非対称性が、照射方向を変化させて患部に照射する構成であるガントリー型の粒子線照射装置で特に問題となるため、粒子線輸送系に散乱体を配置してエミッタンスの対称化を行っている例がある(例えば特許文献2)。また、ガントリーには装置全体を小型にするために、ビームラインをねじった構成にしたコークスクリュー型と呼ばれるものもある(例えば特許文献3)。
国際公開 WO2009/058725号 特開2006-351339号公報 米国特許第4,917,344号明細書
 特許文献2によれば、粒子線輸送系に散乱体を配置することでエミッタンスの対称化は実現できるが、散乱体が必要であり、散乱体により、粒子線のエネルギーが低下したりビームの利用効率が低下したりするという問題がある。一方、リッジフィルタは三角柱の軸方向、すなわち尾根の方向と、この尾根と直交する方向で非対称な形状となっており、エミッタンスを対称化せずにリッジフィルタを通過させると、エミッタンスの非対称の方向と、リッジフィルタの非対称の方向との、方向関係により、リッジフィルタの効果に非対称性が現れる。
 本発明は、エミッタンスが非対称性を有する粒子線を、リッジフィルタを備えたガントリー型の粒子線照射装置により照射目標に照射する場合に、粒子線のエネルギーが低下したりビームの利用効率が低下したりせずに、ガントリーの角度による変化が小さいエネルギー幅拡大が実現できる粒子線照射装置を得ることを目的とする。
 この発明は、円形加速器から出射された粒子線が、円形加速器の出射位置における粒子線の進行方向に垂直な面内で、円形加速器の周回軌道面内の方向をX方向、粒子線の進行方向に垂直な面内でX方向と直交する方向をY方向とした場合、X方向のエミッタンスが小さく、Y方向のエミッタンスが大きな粒子線であり、円形加速器の出射後、粒子線輸送系により輸送された粒子線を、照射ノズルから照射目標に照射する、ガントリーを備えたガントリー型粒子線照射装置において、照射ノズルはリッジフィルタを備え、照射ノズルに粒子線が入射する位置で、円形加速器の出射位置におけるX方向のエミッタンスおよびY方向のエミッタンスが分離されてそれぞれのエミッタンスが保たれるように粒子線が輸送されるガントリーの角度をガントリーの基準角度とし、ガントリーが基準角度の状態においてX方向のエミッタンスが保たれた方向とリッジフィルタの尾根に垂直な方向が所定の角度傾くように前記リッジフィルタを設置したものである。
 ガントリーの角度による変化が小さいエネルギー幅拡大が実現できるガントリー型粒子線照射装置を得ることができる。
本発明の実施の形態1による粒子線治療装置に搭載された粒子線照射装置を説明するための概略構成図である。 本発明の実施の形態1による粒子線照射装置の照射ノズルの概略構成を示す断面図である。 本発明の実施の形態1による粒子線治療装置に搭載された粒子線照射装置を説明するための別の概略構成図である。 従来の粒子線照射装置のガントリー角度に対する、リッジフィルタの尾根に垂直な方向の粒子線のエミッタンスの変化を示す図である。 本発明の実施の形態1による粒子線照射装置のリッジフィルタの設置角度の例を示す概念図である。 本発明の実施の形態1による粒子線照射装置の効果を説明する図である。 本発明の実施の形態1による粒子線照射装置の効果を説明する別の図である。 本発明の実施の形態1による粒子線照射装置の効果を説明するさらに別の図である。 本発明の実施の形態2による粒子線照射装置のリッジフィルタを示す斜視図である。 本発明の実施の形態2による粒子線照射装置のリッジフィルタを装着した回転取付台を示す平面図である。 本発明の実施の形態2による粒子線照射装置のリッジフィルタを装着した別の回転取付台を示す平面図である。 一般的なリッジフィルタを示す斜視図である。
実施の形態1.
 図1は、本発明の実施の形態1による粒子線治療装置に搭載された粒子線照射装置を説明するための概略構成図である。また、図2は、本発明の実施の形態1による粒子線照射装置の照射ノズルの概略構成を示す断面側面図である。シンクロトロン加速器100にイオン源101から入射された陽子や炭素などの荷電粒子が、電磁石、加速空洞、真空ダクトなどでリング状に構成されたシンクロトロン加速器100で加速される。加速された荷電粒子は粒子線として出射器102からシンクロトロン加速器100外に出射される。出射された粒子線は、真空ダクトや電磁石で構成された粒子線輸送系200内を輸送され、ガントリー型の粒子線照射装置1に入射される。
 一般的なガントリー型粒子線照射装置1(単に「ガントリー1」と呼ぶこともある)は、粒子線の進行方向を2回あるいは3回曲げるための偏向電磁石を備えており、照射ノズル4から照射目標に粒子線を照射するように構成されている。ガントリー型粒子線照射装置1は矢印Aで示すように、全体が、入射される粒子線の進行軸、すなわち図1においてZ12で示す方向の軸の周りに回転するよう構成されている。
 照射ノズル4は、概略図2に示すように構成されている。図2は、ガントリー1の角度が図1の角度で、照射ノズル4をY2軸の方向から見た断面図である。照射ノズル4に入射する粒子線PBを、走査電磁石41により粒子線進行方向と垂直な方向に偏向して移動させ、照射目標である治療台30に載った患者20の患部を粒子線で走査する。走査電磁石41の下流には、照射線量をモニタする線量モニタ42や、エネルギー幅拡大機器であるリッジフィルタ43が配置されている。照射ノズル4はガントリー1に搭載されているため、矢印曲線で示すように患者20の周りを回転するようになっており、患者20に、種々の方向から粒子線を照射できるように構成されている。
 ここで、本発明に関係が深い粒子線の方向について詳細に説明する。粒子線は、シンクロトロン加速器100の出射器102からシンクロトロン加速器100外部に出射される。シンクロトロン加速器100内で荷電粒子は電磁石によって形成される軌道を周回しながら、加速空洞を通過する毎に加速される。この荷電粒子が周回して形成する軌道の中心を含む面を加速器の周回軌道面と呼ぶ。シンクロトロン加速器100は、通常直径数10mといった大きい軌道(医療用は小型であり直径10mから20m)を有するため、周回軌道面は通常水平面となる。荷電粒子がシンクロトロン加速器100から粒子線として出射された粒子線のビーム軸は、周回軌道面内に含まれることとなる。図1に示すように、粒子線が出射された直後のビーム軸、すなわち粒子線の進行方向の軸をZ11軸とする。出射器102は、シンクロトロン加速器100内を周回する荷電粒子の束のうち周回軌道の外周部分の荷電粒子を切り出すように周回軌道から切り離して、シンクロトロン加速器100外に出射させるように構成されている。
 出射器102の位置で、Z11軸に垂直で周回軌道面内にある軸をX11軸とする。さらに、Z11軸とX11軸の双方に垂直な軸をY11軸とする。シンクロトロン加速器100内においてX11軸方向に分布する荷電粒子は、切り出されるように出射され、Y11軸方向に分布する荷電粒子は、シンクロトロン加速器100内そのままの分布で出射される。その結果、出射される粒子線の性質はX11軸方向とY11軸方向で異なった性質を有する粒子線となる。この出射方法で出射された粒子線は、X11方向には比較的小さいエミッタンスを有し、Y11方向には比較的大きなエミッタンスを有する。
 エミッタンスは、粒子線の位相空間分布の面積であり、上記X11、Y11の各方向のエミッタンスの大きさは、粒子線が電磁石のみから構成される粒子線輸送系200を進行する間には変化しない。粒子線輸送系200を進行してガントリーに入射する位置であるガントリー入射位置10では、粒子線に乗った各方向(各方向のエミッタンスが保たれる方向)軸、すなわち出射器102における各方向軸はX12、Y12、Z12となる。したがって、ガントリー入射位置10における粒子線は、X12方向には比較的小さいエミッタンスを有し、Y12方向には比較的大きなエミッタンスを有する粒子線となっている。この粒子線が、ガントリー型の粒子線照射装置で進行方向を曲げられ、照射ノズル4に入射する照射ノズル入射位置11での各方向(各方向のエミッタンスが保たれる方向)軸は、X13、Y13、Z13となる。
 ここで、照射ノズル4の軸を決定しておく。今、ガントリー1の回転角の基準となる0度を、図1のような状態の角度とする。すなわち、ガントリー内で粒子線が曲げられて粒子線のビーム軸が形成する面がシンクロトロン加速器100の周回軌道面と垂直となる状態をガントリー1の基準角度0度とする。ガントリー1の基準角度をこのように定義すると、ガントリー1が0度の状態では、照射ノズル4へ入射する粒子線は、シンクロトロン加速器100の出射位置でのX11方向のエミッタンスとY11方向のエミッタンスが結合されず、各方向のエミッタンスが分離されて保たれたままの粒子線となっている。照射ノズル4の軸は、粒子線の進行方向をZ2軸とし、X13に一致する方向をX2軸、Y13に一致する方向をY2軸とする。このX2軸、Y2軸、Z2軸は、ガントリー1の回転と共に回転する照射ノズル4に固定された軸とする。すなわち、X2軸、Y2軸、Z2軸は、ガントリー1の回転と共に回転する移動軸である。
 図3に、ガントリー1が、図1の基準角度の状態から90度回転した状態の粒子線治療装置全体の概略構成図を示す。ガントリー1が90度回転した状態においても、基準角度の状態と同様、シンクロトロン加速器100の出射位置でのX11方向のエミッタンスとY11方向のエミッタンスが結合されず、各方向のエミッタンスが分離されて保たれたままの粒子線となっている。ただし、90度回転した状態では、照射ノズル入射位置11における粒子線に乗った各方向軸、すなわち出射器102における各方向軸に相当する軸は、図3に示すX14、Y14、Z14となる。一方、照射ノズル4に固定されたX2、Y2、Z2は図3に示すように照射ノズル4に固定されて回転された方向に変化する。図1のX2、Y2、Z2も、図3のX2、Y2、Z2も、照射ノズル4との関係は同一である。しかし、粒子線に乗った軸(各方向のエミッタンスが保たれる方向)であるX14、Y14は、ガントリー1が基準角度である0度の状態における粒子線に乗った軸、X13、Y13とは、照射ノズル4を基準にすると、90度入れ替わった方向になっている。
 図1および図3で説明したように、ガントリー1が回転することで、粒子線に乗った軸は照射ノズル4とは違う回転をする。ガントリー1の角度が0度のとき、照射ノズル4のX2軸を粒子線のエミッタンスが小さい方向、すなわちX13の方向と一致する方向に定義した。しかし、ガントリー1の角度が90度回転すると、粒子線のエミッタンスが小さい方向、すなわちX14の方向は、照射ノズル4のY2軸と一致する方向となる。
 照射ノズル4に設置されているリッジフィルタ43は、ガントリー1の回転に従って、照射ノズル4と共に回転する。リッジフィルタを、図12に示すようにリッジフィルタ43の尾根431が延びる方向が例えばY2方向となるように設置したとする。この場合、ガントリー1の角度が0度において、エミッタンスが小さい方向、すなわち図1のX13の方向がリッジフィルタの尾根と垂直な方向と一致する。一方、図3に示すガントリー1の角度が90度の状態では、エミッタンスが小さい方向、すなわち図3のX14の方向は、リッジフィルタの尾根の延びる方向であるY2軸の方向となっている。このときリッジフィルタの尾根と垂直な方向はエミッタンスの大きな方向となっている。
 リッジフィルタ43を、図12に示すようにリッジフィルタの尾根が延びる方向がY2方向となるように設置した場合に、ガントリー1が0度から90度まで回転したとき、リッジフィルタの尾根に垂直な方向のエミッタンスがどのように変化するかを図4に示す。ガントリー1が回転するに従い、リッジフィルタ43に入射する粒子線は、エミッタンスの小さい方向とエミッタンスの大きい方向、すなわちガントリー入射位置10のX12方向とY12方向のエミッタンスが結合して、小さなエミッタンスが次第に大きくなり、ガントリー1の角度が45度でこの結合が最大となる。ガントリー1の角度が45度からさらに大きくなるとこの結合は減少するが、リッジフィルタに入射する粒子線のリッジフィルタの尾根に垂直な方向の成分は、ガントリー入射位置10のY12方向の成分、すなわちエミッタンスが大きい成分が増加するため、エミッタンスは大きいまま推移する。よって、リッジフィルタの尾根に垂直な方向のエミッタンスは、ガントリー1の角度ととともに、図4のような変化をする。従来は、リッジフィルタの尾根の方向は以上のように設置されていた(例えば特許文献1)。
 リッジフィルタを通過後の粒子線は、リッジフィルタの尾根と垂直な方向に、リッジフィルタの構造そのままのエネルギー分布を有し、この方向にエミッタンスが小さい粒子線がリッジフィルタに入射した場合、このエネルギー分布を有したまま照射目標に照射され、照射目標において斑な(不均一な)照射分布を形成することになる。
 これに対し、リッジフィルタの尾根と垂直な方向のエミッタンスが大きな粒子線が、リッジフィルタに入射した場合、リッジフィルタを通過後、粒子線が進行するにつれて粒子線は混ざり合う。このため、リッジフィルタでエネルギー幅が広げられた均一なエネルギー分布を有する粒子線が照射目標に照射され、照射目標において均一な照射分布を形成する。よって、従来のように、ガントリーの角度が0度のときに、リッジフィルタの尾根と垂直な方向と、リッジフィルタに入射する粒子線のエミッタンスが小さい方向とが一致するようにリッジフィルタが設置されている場合、ガントリー1の角度によっては照射分布が斑に(不均一)なってしまうことになる。
 ガントリー1が回転しても、常にリッジフィルタの尾根に垂直な方向のエミッタンスが大きな粒子線がリッジフィルタに入射するようにすれば、リッジフィルタ通過後、照射目標における粒子線の照射分布を均一にできる。あるいは照射分布が斑になるのを抑制できることになる。本発明者らは、照射ノズル4に設定されたX2軸およびY2軸に対して、リッジフィルタの尾根の方向を傾けて設置することにより、ガントリー1の角度がどのような角度であっても、リッジフィルタの尾根と垂直な方向のエミッタンスが小さくならないことを見出した。照射ノズル4に設定されたX2軸およびY2軸に対して、リッジフィルタの尾根の方向を傾けて設置することにより、ガントリー1の角度が0度であっても、照射目標において斑な照射分布を形成しないガントリー型粒子線照射装置が得られることを見出したのである。以下、この構成について説明する。
 図5は、本発明の実施の形態1による粒子線照射装置のリッジフィルタの設置角度の例を示す概念図である。照射ノズル4に固定されたX2軸と、リッジフィルタ43の尾根431と垂直な方向とが成す角度θを45度としている。図6に、リッジフィルタ43を、リッジフィルタ43の尾根431と垂直な方向がX2軸と45度傾くように設置した場合、ガントリー1の角度によってリッジフィルタの尾根と垂直な方向の粒子線のエミッタンスがどのように変化するかを示す。図6において、太実線aで示す曲線が、リッジフィルタ43の尾根431と垂直な方向をX2軸に対して45度傾けた場合の、リッジフィルタの尾根と垂直な方向の粒子線のエミッタンスの変化を示している。このように、ガントリー1が回転しても、リッジフィルタの尾根と垂直な方向の粒子線のエミッタンスはほぼ同じ大きさでほとんど変化しないことがわかる。
 図6には、図4と同じ、リッジフィルタ43の尾根431と垂直な方向がX2軸と一致する方向、すなわち図5に示す角度θが0度となるようにリッジフィルタ43を設置した場合の、リッジフィルタの尾根と垂直な方向の粒子線のエミッタンスの変化の様子を点線bで示している。また、リッジフィルタ43の尾根431と垂直な方向がY2軸と一致する方向にリッジフィルタ43を設置した場合の、リッジフィルタの尾根と垂直な方向の粒子線のエミッタンスの変化の様子を一点鎖線cで示している。図6で解るように、リッジフィルタ43の設置角度によって、リッジフィルタの尾根と垂直な方向の粒子線のエミッタンスの変化の様子は劇的に変わる。
 リッジフィルタの尾根と垂直な方向の粒子線のエミッタンスの変化が、図6の太実線aのような場合は、ガントリー1が回転しても、照射目標における照射分布の変化は少なく、斑な照射分布になることはない。これに対して、粒子線のエミッタンスの変化が点線bの場合、ガントリー1の角度が0度付近で照射分布が斑になる。また粒子線のエミッタンスの変化が一点鎖線cの場合、ガントリー1の角度が90度付近で照射分布が斑になる。
 図7に、図5に示す角度θが30度となるようにリッジフィルタ43を設置した場合の、リッジフィルタの尾根と垂直な方向の粒子線のエミッタンスの変化の様子を示す。この場合、エミッタンスは、ガントリー1の角度0度における約10.4から、ガントリー1の角度90度における約14.8まで変化する。エミッタンスは最小で10.4であるので、この場合においても照射分布が斑になることはない。最小値10.4は、最大値14.8に対して70.3%である。図8に、リッジフィルタの設置角度θ(図5に示すθ)を横軸とし、ガントリーが回転した場合の、リッジフィルタの尾根と垂直な方向の粒子線のエミッタンスの最小値(最大値に対する割合)を縦軸として示す。図8に示すように、θが0度や90度から少し異なるだけでも急激にエミッタンスの最小値が増加することがわかる。特にθが20度以上70度以下の範囲であれば、エミッタンスの最小値が50%以上となり、照射分布が斑になることはない。以上のように、本発明は、リッジフィルタ43の尾根と垂直な方向を、X2軸に対して傾けてリッジフィルタを設置することにある。最も好ましいのは傾ける角度45度であるが、正確に45度とする必要はなく、傾ける角度を20度以上70度以下とすれば大きな効果が得られる。
 本発明によれば、リッジフィルタを、リッジフィルタ43の尾根と垂直な方向を、X2軸に対して所定の角度傾けて、より好ましくは20度~70度傾けて、最も好ましくは45度傾けて設置することにより、ガントリーが回転しても照射目標における粒子線の照射分布が斑にならない照射が実現できる。
 ここで、X2軸、すなわち、リッジフィルタを傾ける基準となる軸について説明する。ガントリーが回転したときに、加速器の出射時の、粒子線の出射進行方向と垂直で、加速器の周回軌道面内方向であるX11方向の粒子線のエミッタンスと、これと垂直なY11方向のエミッタンスとが結合せずに分離されて各方向のエミッタンスが保たれたままリッジフィルタ(あるいは照射ノズル)まで粒子線が輸送されるガントリーの回転角度を基準角度とする。ガントリーの角度が基準角度のときの、X11方向のエミッタンスが保たれた方向を、リッジフィルタを傾ける基準となる軸(X2)の方向とする。本発明は、リッジフィルタの尾根と垂直な方向を、この基準となる軸(X2)の方向に対して傾けて設置するものである。
 なお、ガントリーの基準角度は、上記の説明では0度として説明したが、X11方向のエミッタンスとY11方向のエミッタンスが結合せずに分離され、各方向のエミッタンスが保たれたままリッジフィルタまで粒子線が輸送されるガントリーの角度は、0度のみならず、図3で示す90度、あるいは180度、270度と、90度ごとに出現する。よって、基準角度は必ずしも0度でなくても良く、90度、180度あるいは270度であっても良い。
 ガントリー1が、図1のように、ガントリー内で曲げられた粒子線の中心線が形成する面が平面となる構成のガントリーとすると、本発明は以下のように表現できる。ガントリー内の粒子線の中心線が形成する平面が加速器の周回軌道面と垂直になるガントリーの角度において、リッジフィルタの位置でX11方向のエミッタンスが保たれた方向(X13)を基準軸とし、リッジフィルタの尾根と垂直な方向をこの基準軸の方向に対して傾けてリッジフィルタを設置するものである。
 また、ガントリーが特許文献3のような、いわゆるコークスクリュー型のガントリーでは、ガントリー内の粒子線の中心線が形成する面は平面とはならないが、ガントリーを回転することにより、加速器の出射時の、粒子線の出射進行方向と垂直で、加速器の周回軌道面内方向であるX11方向の粒子線のエミッタンスと、これと垂直なY11方向のエミッタンスとが分離され、各方向のエミッタンスが保たれたままリッジフィルタ(あるいは照射ノズル)まで粒子線が輸送されるガントリーの角度が存在する。このガントリーの回転角度を基準角度として、このときのX11方向のエミッタンスが保たれた方向を、リッジフィルタを傾ける基準となる軸の方向とする。リッジフィルタの尾根と垂直な方向をこの基準軸の方向に対して傾けてリッジフィルタを設置すればよい。
実施の形態2.
 図9は、本発明の実施の形態2による粒子線照射装置の、リッジフィルタ43を示す斜視図である。リッジフィルタの基台432が矩形の形状であり、その矩形の形状の1辺が照射ノズルの基準の方向軸であるX2の方向に一致する方向となるように取付けられる。リッジフィルタの尾根と垂直な方向をこのリッジフィルタの基台432の矩形の1辺と角度θとなるように傾けて配置する。リッジフィルタの尾根の方向をこのように配置することで、従来と同じ照射ノズル4にリッジフィルタの基台432を従来と同じように取り付けることで、リッジフィルタの尾根と垂直な方向がX2軸と傾くように取り付けられるため、従来の粒子線照射装置の照射ノズルを改造することなく、容易に本発明による粒子線照射装置が得られる。
 粒子線治療装置では、図10に示すように、特性が異なる複数の種類のリッジフィルタ43を、回転する回転取付台434に複数設けられたホルダに取り付け、照射対象である患者に応じて適切なリッジフィルタを、回転取付台434を回転させて選択するように構成されている。このとき、図9のように、リッジフィルタの尾根と垂直な方向をこのリッジフィルタの基台432の矩形の1辺と角度θ(図9ではθ=45度)となるように傾けて配置したリッジフィルタであれば、従来の回転取付台434と同じホルダに取り付けることで、本発明による粒子線照射装置が得られる。一方、リッジフィルタの尾根431と垂直な方向が矩形の基台433の1辺と平行に設けられている、図12のようなリッジフィルタ43を回転取付台434に取り付けて、本発明による粒子線照射装置を得る場合は、図11のように、回転取付台434に設けるホルダを傾けて設置しておく必要がある。このような配置では回転取付台434上での利用効率が悪く、設置精度も悪くなる恐れがある。
 以上の実施の形態1、実施の形態2では、加速器としてシンクロトロン加速器100を例にして説明したが、サイクロトロン加速器など、その他の円形加速器においても出射される粒子線のエミッタンスは方向性を有している。すなわち、シンクロトロン加速器と同様、粒子線の出射進行方向と垂直で、加速器の周回軌道面内方向で粒子線のエミッタンスが小さく、これと垂直な方向のエミッタンスは大きい。よって、本発明は、シンクロトロン加速器から出射される粒子線のみならず、円形加速器から出射される粒子線に適用することで、シンクロトロン加速器を例にして説明した実施の形態1、実施の形態2で述べた効果を奏する。
 1:ガントリー         4:照射ノズル
10:粒子線のガントリー入射位置 11:粒子線の照射ノズル入射位置
20:患者            30:治療台
43:リッジフィルタ
100:シンクロトロン加速器(円形加速器)
102:出射器          200:粒子線輸送系
431:リッジフィルタの尾根   432:リッジフィルタの基台

Claims (6)

  1.  円形加速器から出射された粒子線が、前記円形加速器の出射位置における前記粒子線の進行方向に垂直な面内で、前記円形加速器の周回軌道面内の方向をX方向、前記粒子線の進行方向に垂直な面内でX方向と直交する方向をY方向とした場合、X方向のエミッタンスが小さく、Y方向のエミッタンスが大きな粒子線であり、前記円形加速器の出射後、粒子線輸送系により輸送された前記粒子線を、照射ノズルから照射目標に照射する、ガントリーを備えたガントリー型粒子線照射装置において、
     前記照射ノズルはリッジフィルタを備え、前記照射ノズルに前記粒子線が入射する位置で、前記円形加速器の出射位置におけるX方向のエミッタンスとY方向のエミッタンスとが分離されてそれぞれのエミッタンスが保たれるように前記粒子線が輸送される前記ガントリーの角度をガントリーの基準角度とし、前記ガントリーが前記基準角度の状態において前記X方向のエミッタンスが保たれた方向と前記リッジフィルタの尾根に垂直な方向が所定の角度傾くように前記リッジフィルタを設置したことを特徴とするガントリー型粒子線照射装置。
  2.  前記所定の角度が20度以上、70度以下であることを特徴とする請求項1に記載の粒子線照射装置。
  3.  前記所定の角度が45度であることを特徴とする請求項1に記載の粒子線照射装置。
  4.  前記リッジフィルタは、矩形の基台を備え、前記リッジフィルタの尾根に垂直な方向が、前記基台の1辺が延びる方向に対して前記所定の角度傾いていることを特徴とする請求項1に記載の粒子線照射装置。
  5.  前記ガントリーが、ガントリー内で曲げられた粒子線の中心線が形成する面が平面となる構成のガントリーであり、前記平面が前記円形加速器の周回軌道面と垂直になるときの前記ガントリーの角度において、前記照射ノズルにおける前記粒子線の前記X方向のエミッタンスが保たれた方向を基準軸とし、前記リッジフィルタの尾根と垂直な方向を前記基準軸の方向に対して傾けて前記リッジフィルタを設置したことを特徴とする請求項1に記載のガントリー型粒子線照射装置。
  6.  円形加速器と、この円形加速器から出射された粒子線を輸送する粒子線輸送系と、患者を載せる治療台と、請求項1に記載のガントリー型粒子線照射装置とを備えたことを特徴とする粒子線治療装置。
PCT/JP2012/060570 2012-04-19 2012-04-19 ガントリー型粒子線照射装置、およびこれを備えた粒子線治療装置 WO2013157116A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12874411.7A EP2840579B1 (en) 2012-04-19 2012-04-19 Gantry type particle beam irradiation system and particle beam therapy system comprising same
US14/380,784 US9079025B2 (en) 2012-04-19 2012-04-19 Gantry-type particle beam irradiation system and particle beam therapy system comprising same
PCT/JP2012/060570 WO2013157116A1 (ja) 2012-04-19 2012-04-19 ガントリー型粒子線照射装置、およびこれを備えた粒子線治療装置
JP2014511039A JP5784824B2 (ja) 2012-04-19 2012-04-19 ガントリー型粒子線照射装置、およびこれを備えた粒子線治療装置
CN201280072478.4A CN104246907B (zh) 2012-04-19 2012-04-19 台架型粒子射线照射装置及具备该装置的粒子射线治疗装置
TW101123195A TWI457154B (zh) 2012-04-19 2012-06-28 高架型粒子束照射裝置及具備該高架型粒子束照射裝置之粒子束治療裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/060570 WO2013157116A1 (ja) 2012-04-19 2012-04-19 ガントリー型粒子線照射装置、およびこれを備えた粒子線治療装置

Publications (1)

Publication Number Publication Date
WO2013157116A1 true WO2013157116A1 (ja) 2013-10-24

Family

ID=49383098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060570 WO2013157116A1 (ja) 2012-04-19 2012-04-19 ガントリー型粒子線照射装置、およびこれを備えた粒子線治療装置

Country Status (6)

Country Link
US (1) US9079025B2 (ja)
EP (1) EP2840579B1 (ja)
JP (1) JP5784824B2 (ja)
CN (1) CN104246907B (ja)
TW (1) TWI457154B (ja)
WO (1) WO2013157116A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017086171A (ja) * 2015-11-02 2017-05-25 株式会社東芝 粒子線照射装置および粒子線照射方法
JP2021135111A (ja) * 2020-02-25 2021-09-13 大学共同利用機関法人 高エネルギー加速器研究機構 フィードバックデフレクターシステム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360653B2 (en) * 2014-05-09 2016-06-07 Lg Innotek Co., Ltd. Lens moving apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917344A (en) 1988-04-07 1990-04-17 Loma Linda University Medical Center Roller-supported, modular, isocentric gantry and method of assembly
JP2005037214A (ja) * 2003-05-19 2005-02-10 Kawakami Hideyuki 放射線照射用コンペンセータ、コンペンセータ製造装置および放射線照射装置
JP2006351339A (ja) 2005-06-15 2006-12-28 Natl Inst Of Radiological Sciences 荷電粒子線照射装置
WO2009139037A1 (ja) 2008-05-12 2009-11-19 三菱電機株式会社 荷電粒子ビーム照射装置
WO2009139043A1 (ja) * 2008-05-13 2009-11-19 三菱電機株式会社 粒子線治療装置および粒子線治療方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4072359B2 (ja) * 2002-02-28 2008-04-09 株式会社日立製作所 荷電粒子ビーム照射装置
JP3655292B2 (ja) * 2003-04-14 2005-06-02 株式会社日立製作所 粒子線照射装置及び荷電粒子ビーム照射装置の調整方法
JP4435059B2 (ja) * 2005-09-13 2010-03-17 三菱電機株式会社 粒子線がん治療システム及び照射方法
CN201161068Y (zh) * 2008-02-29 2008-12-10 中国科学院近代物理研究所 改变离子束三维适形调强治疗中展宽Bragg峰宽度的装置
JP4691574B2 (ja) * 2008-05-14 2011-06-01 株式会社日立製作所 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
JP5646312B2 (ja) * 2010-04-02 2014-12-24 三菱電機株式会社 粒子線照射装置及び粒子線治療装置
WO2012120678A1 (ja) * 2011-03-10 2012-09-13 三菱電機株式会社 粒子線治療装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4917344A (en) 1988-04-07 1990-04-17 Loma Linda University Medical Center Roller-supported, modular, isocentric gantry and method of assembly
JP2005037214A (ja) * 2003-05-19 2005-02-10 Kawakami Hideyuki 放射線照射用コンペンセータ、コンペンセータ製造装置および放射線照射装置
JP2006351339A (ja) 2005-06-15 2006-12-28 Natl Inst Of Radiological Sciences 荷電粒子線照射装置
WO2009139037A1 (ja) 2008-05-12 2009-11-19 三菱電機株式会社 荷電粒子ビーム照射装置
WO2009139043A1 (ja) * 2008-05-13 2009-11-19 三菱電機株式会社 粒子線治療装置および粒子線治療方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2840579A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017086171A (ja) * 2015-11-02 2017-05-25 株式会社東芝 粒子線照射装置および粒子線照射方法
JP2021135111A (ja) * 2020-02-25 2021-09-13 大学共同利用機関法人 高エネルギー加速器研究機構 フィードバックデフレクターシステム

Also Published As

Publication number Publication date
US20150031934A1 (en) 2015-01-29
EP2840579B1 (en) 2016-11-30
CN104246907B (zh) 2016-10-05
TW201343216A (zh) 2013-11-01
CN104246907A (zh) 2014-12-24
EP2840579A1 (en) 2015-02-25
US9079025B2 (en) 2015-07-14
JPWO2013157116A1 (ja) 2015-12-21
EP2840579A4 (en) 2015-10-21
TWI457154B (zh) 2014-10-21
JP5784824B2 (ja) 2015-09-24

Similar Documents

Publication Publication Date Title
JP4547043B2 (ja) 荷電粒子ビーム照射装置
US8653473B2 (en) Charged particle beam irradiation device
EP2579265B1 (en) Particle beam irradiation system
JP4072359B2 (ja) 荷電粒子ビーム照射装置
JP4474549B2 (ja) 照射野形成装置
TWI462761B (zh) 粒子束治療裝置
JP6519932B2 (ja) Mriを備える粒子治療装置
JP4435059B2 (ja) 粒子線がん治療システム及び照射方法
US20140319383A1 (en) Charged particle beam irradiation system
JP5784824B2 (ja) ガントリー型粒子線照射装置、およびこれを備えた粒子線治療装置
CN110124213B (zh) 一种多叶光栅及具有该多叶光栅的放射治疗装置
TWI771964B (zh) 帶電粒子線照射裝置
EP3068489A1 (en) Particle therapy system
JP2015097683A (ja) 粒子線治療システム
JP2010075584A (ja) 粒子線照射システム及びこの制御方法
JP3964769B2 (ja) 医療用荷電粒子照射装置
JP4348470B2 (ja) 粒子線照射装置
WO2016162998A1 (ja) 治療計画装置および粒子線治療装置
JP2006208200A (ja) 荷電粒子ビーム照射システム
JP2000084097A (ja) 粒子線エネルギー変更装置及び粒子線照射装置
JP6488086B2 (ja) ビーム輸送装置の調整方法および粒子線治療システム
JP2014138669A (ja) 荷電粒子線治療装置
US20220288421A1 (en) Particle beam irradiation system and particle beam irradiation facility
JP2018143659A (ja) 荷電粒子線治療装置
JP2001061978A (ja) 粒子線照射方法及びその装置並びに粒子線治療装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014511039

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14380784

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012874411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012874411

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE