WO2013156705A1 - Materiau photosensible et thermoresistant, procede de preparation et utilisation - Google Patents

Materiau photosensible et thermoresistant, procede de preparation et utilisation Download PDF

Info

Publication number
WO2013156705A1
WO2013156705A1 PCT/FR2013/050713 FR2013050713W WO2013156705A1 WO 2013156705 A1 WO2013156705 A1 WO 2013156705A1 FR 2013050713 W FR2013050713 W FR 2013050713W WO 2013156705 A1 WO2013156705 A1 WO 2013156705A1
Authority
WO
WIPO (PCT)
Prior art keywords
ato
weight
graphene
mixture
nanoparticles
Prior art date
Application number
PCT/FR2013/050713
Other languages
English (en)
Inventor
Abdelkader Aliane
Mohammed Benwadih
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP13719959.2A priority Critical patent/EP2838849B1/fr
Priority to JP2015506280A priority patent/JP2015523297A/ja
Priority to KR1020147026614A priority patent/KR20150010703A/ko
Priority to US14/388,504 priority patent/US10008619B2/en
Publication of WO2013156705A1 publication Critical patent/WO2013156705A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • H01C17/06506Precursor compositions therefor, e.g. pastes, inks, glass frits
    • H01C17/06513Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component
    • H01C17/06533Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the resistive component composed of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/006Thin film resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the resistivity of the photoresistant or photosensitive materials varies depending on the amount of incident light. In other words, the resistance decreases as the incident light increases.
  • the Applicant has developed a new photoresist and heat-resistant material based on tin and carbon.
  • ATO antimony doped tin dioxide
  • ITO indium-doped tin dioxide
  • the material which is the subject of the invention thus comprises graphene, and ATO and / or ⁇ .
  • said material necessarily comprises graphene, but also at least ATO and / or ⁇ .
  • the quantities expressed in terms of parts by weight advantageously have for reference an amount of between 100 and 200 parts by weight of tin material.
  • the tin material advantageously comprises, for 100 to 200 parts by weight of material:
  • ITO indium-doped tin dioxide
  • the material comprises between 10 and 20 parts by weight of ATO and / or ITO for 80 to 90 parts by weight of graphene.
  • the material which is the subject of the invention may comprise bonds between its constituents.
  • bonds may comprise bonds between its constituents.
  • nanoparticles and more particularly the nanoparticles of metal oxides or semiconductors are very sensitive to light, they can thus contribute to modulate the optical absorption of the material.
  • these nanoparticles may have a spherical shape and a diameter of between 10 and 100 nanometers, more advantageously between 20 and 50 nanometers.
  • the nanoparticles consist of a mixture of metal nanoparticles and semiconducting nanoparticles, representing between 1 and 5 parts by weight relative to the weight of the material. It may especially be a mixture of silver nanoparticles, and InGaZnO.
  • the present invention also relates to a process for the preparation of the material based on graphene and ATO and / or ITO described above, according to the following steps: preparation of a graphene ink;
  • the tin dioxide ink may comprise ATO and PITO.
  • two separate inks can be prepared, and added simultaneously or not.
  • the tin dioxide-based ink may comprise between 60 and 80% by weight of ATO and / or ITO dispersed in at least one solvent.
  • the solvent may be chosen from the group comprising, in particular, cyclopentanone, ethyl acetate, tetrahydrofuran, 3-hexanone and 2-pentanone.
  • the present invention also relates to a photoresistor and a heat resistance comprising the material described above.
  • the preparation of the photoresistor or the thermoresistance - objects of the invention is implemented in particular by depositing on a substrate the mixture comprising the ATO and / or ITO ink, the graphene ink and optionally nanoparticles.
  • the substrate consists of a material at least partially transparent to visible light. It can therefore be PEN (poly (ethylene 2,6-naphthalate)) or PET (polyethylene terephthalate). This type of substrate has the triple advantage of being flexible, transparent to the visible spectrum and the near infrared and to be inexpensive.
  • the substrate may advantageously have a thickness of between 25 micrometers and 200 microns.
  • the deposition of the mixture comprising the photoresist and / or heat-resistant material it can be produced by screen printing, by inkjet, or by any other deposition technique known to those skilled in the art.
  • the thickness of the deposit may be between 100 nanometers and several micrometers. The skilled person will adjust this thickness according to the intended application.
  • the annealing step notably makes it possible to eliminate the solvents present in the inks used to prepare the photoresistance or the heat resistance.
  • the tin-based material of the invention comprises graphene, and ATO and / or ⁇ .
  • said material necessarily comprises graphene, but also at least ATO or ⁇ .
  • the material comprises a non-zero amount of ATO or ITO.
  • the material comprises 0 part of ITO, it necessarily comprises x parts of ATO, with 0 ⁇ x ⁇ 50.
  • the material when the material comprises 0 part of ATO, it necessarily comprises y parts of ITO, with 0 ⁇ y ⁇ 50.
  • said material advantageously comprises:
  • ATO antimony-doped tin dioxide
  • ITO indium-doped tin dioxide
  • x + y may be equal to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100, with x + y ⁇ 0.
  • x + y can be between two of these values.
  • x + y can thus be between 5 and 100, between 10 and 50, or between 10 and 85.
  • FIG. 2 represents the variation of the resistance as a function of temperature for a material comprising 50% by weight of graphene and 50% by weight of ATO.
  • a graphene ink is prepared by dispersing 6 g of graphene (from VORBECK) in 10 ml of cyclopentanone, for example.
  • an ATO ink is prepared by dispersing 6 g of ATO (from DUPONT) in 10 ml of cyclopentanone.
  • the graphene and ATO inks are then mixed in order to obtain a graphene / ATO weight ratio of 4.
  • the resulting mixture is then mechanically stirred at a temperature of 60 ° C.
  • the mixture obtained above is deposited, before evaporation of the solvents, on a substrate by screen printing.
  • the PEN substrate has a thickness of 125 micrometers while 5 micrometers of mixture have been deposited.
  • an annealing is carried out at a temperature of 100 ° C. for 20 minutes.
  • the variation of the resistance of this material as a function of the temperature is illustrated in FIG. 2.
  • the resistance of the material decreases steadily at the same time as the temperature increases. While the resistance of the material is greater than 32000 ohm at 20 ° C, it is equal to 29500 ohm at 90 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thermistors And Varistors (AREA)

Abstract

Ce matériau à base d'étain comprend: 50 à 100 parts en poids de graphène; 0 à 50 parts en poids de dioxyde d'étain dopé par de l'antimoine (ATO); 0 à 50 parts en poids de dioxyde d'étain dopé par de l'indium (ITO); ledit matériau comprenant au moins de l'ΑΤΟ et/ou de l'ΙΤΟ.

Description

MATERIAU PHOTOSENSIBLE ET THERMORESISTANT, PROCEDE DE PREPARATION ET UTILISATION
DOMAINE DE L'INVENTION
La présente invention concerne un matériau photosensible et thermorésistant à base de graphène et d'oxyde d'étain. Le domaine d'utilisation de l'invention comprend les applications tactiles, telles que notamment mises en œuvre dans les écrans, les claviers, les pavés tactiles, etc. ETAT ANTERIEUR DE LA TECHNIQUE
La résistivité des matériaux photorésistants, ou photosensibles, varie en fonction de la quantité de lumière incidente. En d'autres termes, la résistance diminue lorsque la lumière incidente augmente.
Les matériaux photorésistants de l'art antérieur comprennent généralement des éléments des groupes II à VI de la classification périodique des éléments. Par exemple, le sulfure de cadmium (CdS) ou le séléniure de cadmium (CdSe) sont couramment utilisés dans les applications dans le domaine visible, notamment en raison de leur faible coût. En revanche, ces matériaux sont généralement inaptes pour les applications dans l'infrarouge. Dans ce cas, le sulfure de plomb (PbS) peut alors être utilisé.
En outre, les matériaux de l'art antérieur présentent de nombreux inconvénients parmi lesquels on peut citer leur manque de stabilité dans le temps, ou leur temps de réponse relativement long lorsque la luminosité varie.
Quant aux matériaux thermorésistants, leur résistance ou résistivité varie en fonction de la température. Ces matériaux peuvent être à base de métaux ou d'oxydes métalliques. Contrairement aux photorésistances, les thermorésistances sont généralement stables dans le temps.
Le matériau mis au point par le Demandeur peut capter dans le spectre visible ainsi que dans le proche infrarouge. En outre, il présente une résistance électrique qui diminue en fonction de la quantité de rayonnement captée. Ce matériau permet également de détecter les variations de chaleur pouvant se traduire par des variations du rayonnement proche infrarouge émis par le doigt dans le cadre d'une application tactile. EXPOSE DE L'INVENTION
Le Demandeur a mis au point un nouveau matériau photorésistant et thermorésistant à base d'étain et de carbone.
Contrairement au graphène, ce matériau présente le double avantage d'une part, d'être sensible à un large spectre de rayonnement, notamment aux longueurs d'onde du spectre visible et du spectre proche infrarouge, et d'autre part, de présenter une résistance électrique qui diminue en fonction de la quantité de rayonnement collectée. Dans le cadre d'une application tactile, il pourrait notamment s'agir d'un doigt, qui émet une quantité importante de rayonnement infrarouge. La variation du rayonnement photosensible peut ainsi être détectée même si la lumière visible ambiante est très faible. Plus précisément, la présente invention concerne un matériau à base d'étain comprenant :
100 à 50 parts en poids de graphène ;
0 à 50 parts en poids de dioxyde d'étain dopé par de l'antimoine (ATO) ;
0 à 50 parts en poids de dioxyde d'étain dopé par de l'indium (ITO).
Le matériau objet de l'invention comprend ainsi du graphène, et de l'ATO et/ou de ΓΙΤΟ. En d'autres termes, ledit matériau comprend nécessairement du graphène, mais également au moins de l'ATO et/ou de ΓΙΤΟ. Pour plus de clarté, il est précisé que les quantités exprimées en termes de parts en poids ont avantageusement pour référence une quantité comprise entre 100 et 200 parts en poids de matériau à base d'étain. En d'autres termes, le matériau à base d'étain comprend avantageusement, pour 100 à 200 parts en poids de matériau :
100 à 50 parts en poids de graphène ;
0 à 50 parts en poids de dioxyde d'étain dopé par de l'antimoine (ATO) ;
0 à 50 parts en poids de dioxyde d'étain dopé par de l'indium (ITO).
La présence d'étain par incorporation de dioxyde d'étain dopé soit par de l'antimoine, soit par de l'indium, permet de moduler la sensibilité du matériau, que ce soit en termes de sensibilité de détection à la lumière ou de variation de la résistance en fonction de la température. L'homme du métier saura donc ajuster les quantités respectives selon l'utilisation finale du matériau. Toutefois, selon un mode de réalisation préféré, le matériau comprend entre 10 et 20 parts en poids d'ATO et/ou d'ITO pour 80 à 90 parts en poids de graphène.
Selon un autre mode de réalisation particulier, le matériau à base d'étain comprend 20 parts en poids d'ATO et/ou d'ITO et 80 parts en poids de graphène, avantageusement pour 100 parts en poids de matériau.
Le matériau objet de l'invention peut comprendre des liaisons entre ses constituants. Ainsi, sans émettre une quelconque hypothèse, il est possible que ses propriétés de thermorésistance et de photorésistance résultent de la présence de ces liaisons.
Le graphène est un cristal bidimensionnel de carbone. L'empilement tridimensionnel de couches de graphène constitue le graphite. Le dioxyde d'étain dopé par de l'antimoine (ATO) présente un rapport en poids Sn/Sb avantageusement compris entre 5 et 10. La formule de ΓΑΤΟ est avantageusement Sn02 : Sb203, ou Sn02 : Sb205. De manière encore plus avantageuse, il s'agit du Sn02 : Sb203. S'agissant du dioxyde d'étain dopé par de l'indium (ITO), il présente un rapport en poids Sn/In avantageusement compris entre 5 et 10. ΓΙΤΟ correspond avantageusement à la formule Sn02 : ln203 ou Sn02 : ln205. De manière encore plus avantageuse, il s'agit du Sn02 : ln203. De manière générale, dans le matériau à base d'étain - objet de l'invention, le rapport en poids graphène/ ATO et/ou ITO est compris entre 1 et 5, encore plus avantageusement entre 3 et 4. En d'autres termes, dans le matériau, le poids du graphène représente entre 1 et 5 fois le poids de ΓΑΤΟ et/ou de ΓΙΤΟ, et plus avantageusement entre 3 et 4 fois. Selon un mode de réalisation particulier, ce rapport peut être égal à 4.
De manière avantageuse, le matériau - objet de l'invention comprend soit de ΓΑΤΟ, soit de l'ITO. En outre, selon un mode de réalisation particulier, le matériau - objet de l'invention peut comprendre des nanoparticules métalliques, et/ou semi conductrices. Les nanoparticules, selon leurs propriétés conductrices, peuvent permettre de moduler la conductivité électrique du matériau - objet de la présente invention.
En outre, les nanoparticules, et plus particulièrement les nanoparticules d'oxydes métalliques ou semi conductrices sont très sensibles à la lumière, elles peuvent ainsi contribuer à moduler l'absorption optique du matériau.
De manière avantageuse mais en aucun cas limitative, ces nanoparticules peuvent présenter une forme sphérique et un diamètre compris entre 10 et 100 nanomètres, encore plus avantageusement entre 20 et 50 nanomètres.
Toutefois, l'homme du métier saura adapter leur forme et leur taille en fonction des propriétés recherchées de manière à moduler les performances du matériau, notamment dans le but d'augmenter la sensibilité du matériau à la lumière.
Selon un mode de réalisation préféré, les nanoparticules consistent en un mélange de nanoparticules métalliques et de nanoparticules d'oxydes métalliques, représentant entre 1 et 10 parts en poids par rapport au poids du matériau. Il peut notamment s'agir de nanoparticules choisies dans le groupe comprenant les nanoparticules d'argent, Ιη203, InZnO, ZnO, CuO, O, et leurs mélanges.
Selon un autre mode de réalisation préféré, les nanoparticules consistent en un mélange de nanoparticules métalliques et de nanoparticules semi conductrices, représentant entre 1 et 5 parts en poids par rapport au poids du matériau. Il peut notamment s'agir d'un mélange de nanoparticules d'argent, et de InGaZnO.
Ainsi, la résistance électrique peut être modulée afin d'améliorer la sensibilité de la détection. La présente invention concerne également un procédé de préparation du matériau à base de graphène et d'ATO et/ou d'ITO décrit ci-avant, selon les étapes suivantes : préparation d'une encre de graphène ;
préparation d'une encre de dioxyde d'étain dopé avec de l'antimoine et/ou de l'indium ;
- addition de l'encre de graphène et de l'encre de dioxyde d'étain dopé avec de l'antimoine et/ou de l'indium ; addition, le cas échéant, d'un mélange de nanoparticules métalliques et de nanoparticules d'oxydes métalliques ou d'un mélange de nanoparticules métalliques et de nanoparticules semi conductrices ;
agitation du mélange obtenu, de préférence à une température comprise entre 30 et 60 °C ;
séchage du mélange, avantageusement par évaporation des solvants, pour donner le matériau à base de graphène et d'ATO et/ou d'ITO.
Dans le cas de la préparation d'un matériau comprenant de l'ATO et de ΓΙΤΟ, l'encre à base de dioxyde d'étain peut comprendre de l'ATO et de PITO. Selon un autre mode de réalisation, deux encres distinctes pourront être préparées, et ajoutées simultanément ou non.
L'agitation du mélange est avantageusement mécanique, et permet d'homogénéiser ledit mélange.
Selon un mode de réalisation particulier, l'encre à base de dioxyde d'étain peut comprendre entre 60 et 80 % en poids d'ATO et/ou d'ITO dispersés dans au moins un solvant. Le solvant peut être choisi dans le groupe comprenant notamment la cyclopentanone, l'acétate d'éthyle, le tétrahydrofurane, la 3-hexanone, la 2-pentanone.
D'autre part, l'encre de graphène peut comprendre entre 40 et 80 % en poids de graphène dispersés dans au moins un solvant. Le solvant peut être notamment la cyclohexanone, la cyclopentanone.
Toutefois, les différentes encres mises en œuvre dans le cadre de l'invention peuvent également être à base de solutions aqueuses.
En outre, l'homme du métier saura ajuster les concentrations respectives des encres de graphène et d'ATO et/ou d'ITO. Les valeurs précisées ci-avant sont indicatives et ne sauraient en aucun cas limiter l'invention.
La présente invention concerne également une photorésistance et une thermorésistance comprenant le matériau décrit ci-avant. La préparation de la photorésistance ou de la thermorésistance - objets de l'invention, est mise en œuvre notamment par dépôt sur un substrat du mélange comprenant l'encre d'ATO et/ou d'ITO, l'encre de graphène et éventuellement des nanoparticules. Avantageusement, le substrat est constitué d'un matériau au moins partiellement transparent à la lumière visible. Il peut donc s'agir de PEN (poly(éthylène 2,6- naphthalate)), ou de PET (polyéthylène téréphtalate). Ce type de substrat présente le triple avantage d'être flexible, transparent au spectre visible et au proche infrarouge et d'être peu onéreux.
En outre, le substrat peut avantageusement présenter une épaisseur comprise entre 25 micromètres et 200 micromètres.
Quant au dépôt du mélange comprenant le matériau photorésistant et/ou thermorésistant, il peut être réalisé par sérigraphie, par jet d'encre, ou par toute autre technique de dépôt connue de l'homme du métier.
L'épaisseur du dépôt peut être comprise entre 100 nano mètres et plusieurs micromètres. L'homme du métier saura ajuster cette épaisseur en fonction de l'application visée.
Le dépôt du mélange est avantageusement suivi d'une étape de recuit qui peut être réalisé à une température comprise entre 100 et 120 °C, pendant une durée comprise entre 10 et 60 minutes. L'homme du métier saura ajuster les conditions (durée et température) en fonction du substrat, de l'épaisseur du dépôt, et autres paramètres.
De manière générale, les solvants de l'encre de graphène et de l'encre d'ATO et/ou d'ITO ont avantageusement une température d'évaporation proche l'une de l'autre afin de former une couche déposée très uniforme. Ces températures d'évaporation sont également avantageusement compatibles avec la température de recuit. Notamment, les températures d'évaporation peuvent être avantageusement comprises entre 110 et 180 °C.
L'étape de recuit permet notamment d'éliminer les solvants présents dans les encres mises en œuvre pour préparer la photorésistance ou la thermorésistance. Comme déjà indiqué, le matériau à base d'étain objet de l'invention comprend du graphène, et de l'ATO et/ou de ΓΙΤΟ. En d'autres termes, ledit matériau comprend nécessairement du graphène, mais également au moins de l'ATO ou de ΓΙΤΟ. Le matériau comprend une quantité non nulle d'ATO ou d'ITO. Ainsi, lorsque le matériau comprend 0 part d'ITO, il comprend nécessairement x parts d'ATO, avec 0 < x < 50.
De la même manière, lorsque le matériau comprend 0 part d'ATO, il comprend nécessairement y parts d'ITO, avec 0 < y < 50. Pour 100 à 200 parts en poids de matériau, ledit matériau comprend avantageusement :
100 à 50 parts en poids de graphène ;
0 < x < 50 parts en poids de dioxyde d'étain dopé par de l'antimoine (ATO) ; 0 < y < 50 parts en poids de dioxyde d'étain dopé par de l'indium (ITO) ;
lorsque x + y est différent de 0.
Selon un mode de réalisation particulier, x + y peut être égal à 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, ou 100, avec x + y≠0. x + y peut être compris entre deux de ces valeurs. Par exemple, x + y peut ainsi être compris entre 5 et 100, entre 10 et 50, ou entre 10 et 85.
L'invention et les avantages qui en découlent ressortiront mieux des figures et exemples suivants donnés afin d'illustrer l'invention et non de manière limitative.
DESCRIPTION DES FIGURES
La figure 1 illustre la résistance du matériau objet de l'invention en fonction de son exposition à la lumière visible du jour.
La figure 2 représente la variation de la résistance en fonction de la température pour un matériau comprenant 50% en poids de graphène et 50% en poids d'ATO.
EXEMPLES DE REALISATION DE L'INVENTION
Préparation du matériau photorésistant et thermorésistant selon l'invention Une encre de graphène est préparée en dispersant 6 g de graphène (de chez VORBECK) dans 10 ml de cyclopentanone par exemple. Parallèlement, une encre d'ATO est préparée en dispersant 6 g d'ATO (de chez DUPONT) dans 10 ml de cyclopentanone.
Les encres de graphène et d'ATO sont ensuite mélangées afin d'obtenir un rapport en poids graphène/ ATO de 4.
A ce mélange sont ensuite ajoutés de 0 à 10 mg d'un mélange de nanoparticules de d'argent, Ιη203, InZnO, ZnO, CuO, NiO ou des nanoparticules d'argent, et de InGaZnO selon un autre mode de réalisation.
Le mélange résultant est ensuite agité mécaniquement à une température de 60 °C.
La solution obtenue est ensuite séchée par évaporation des solvants à 100 °C, sous air. Préparation d'une photorésistance ou d'une thermorésistance selon l'invention
Le mélange obtenu ci-dessus est déposé, avant évaporation des solvants, sur un substrat par sérigraphie. Le substrat en PEN présente une épaisseur de 125 micromètres alors que 5 micromètres de mélange ont été déposés.
Après dépôt du mélange, un recuit est réalisé à une température de 100 °C pendant 20 minutes.
Les propriétés de photosensibilité de cette photorésistance sont illustrées par la figure 1. En effet, la résistance de ce matériau varie de près de 13000 ohm lorsqu'elle n'est pas exposée à la lumière à 12000 ohm lorsqu'elle est exposée à la lumière du jour. Le temps de réaction de ce matériau est extrêmement bref, de l'ordre de 1 microseconde à 10 ms.
La variation de la résistance de ce matériau en fonction de la température est illustrée par la figure 2. La résistance du matériau diminue régulièrement en même temps que la température augmente. Alors que la résistance du matériau est supérieure à 32000 ohm à 20 °C, elle est égale à 29500 ohm à 90 °C.

Claims

REVENDICATIONS
Matériau à base d'étain comprenant :
50 à 100 parts en poids de graphène ;
0 à 50 parts en poids de dioxyde d'étain dopé par de l'antimoine (ATO) ; 0 à 50 parts en poids de dioxyde d'étain dopé par de l'indium (ITO) ;
ledit matériau comprenant au moins de ΓΑΤΟ et/ou de ΓΙΤΟ.
Matériau selon la revendication 1, caractérisé en ce qu'il comprend en outre entre 1 et 10 parts en poids d'un mélange de nanoparticules métalliques et de nanoparticules d'oxydes métalliques.
Matériau selon la revendication 2, caractérisé en ce que le mélange comprend des nanoparticules choisies dans le groupe comprenant les nanoparticules d'argent, Ιη203, InZnO, ZnO, CuO, O, et leurs mélanges.
Matériau selon la revendication 1, caractérisé en ce qu'il comprend en outre entre 1 et 5 parts en poids d'un mélange de nanoparticules métalliques et de nanoparticules semi conductrices.
Matériau selon la revendication 4, caractérisé en ce que le mélange comprend des nanoparticules d'argent, et de InGaZnO.
Matériau selon l'une des revendications précédentes, caractérisé en ce que le rapport en poids entre le graphène et ΓΑΤΟ et/ou ΓΙΤΟ est compris entre 1 et 5.
Matériau selon l'une des revendications précédentes, caractérisé en ce que le rapport en poids entre le graphène et l'ATO et/ou TITO est compris entre 3 et 4.
Matériau selon l'une des revendications précédentes, caractérisé en ce que l'ATO et ΓΙΤΟ présentent respectivement un rapport en poids Sn/Sb et Sn/In compris entre 5 et 10.
Matériau selon l'une des revendications précédentes, caractérisé en ce que l'ATO correspond à la formule Sn02:Sb203, ou Sn02:Sb205.
10. Matériau selon l'une des revendications précédentes, caractérisé en ce que ΓΙΤΟ correspond à la formule Sn02:ln203 ou Sn02:ln205.
11. Procédé de préparation du matériau à base de graphène et d'ATO et/ou d'ITO objet des revendications 1 à 10, selon les étapes suivantes :
préparation d'une encre de graphène ;
préparation d'une encre d'ATO et/ou d'ITO ;
addition de l'encre de graphène et de l'encre d'ATO et/ou d'ITO ; addition, le cas échéant, d'un mélange de nanoparticules métalliques et de nanop articules d'oxydes métalliques ou d'un mélange de nanoparticules métalliques et de nanoparticules semi conductrices ;
agitation du mélange obtenu ;
séchage du mélange pour donner le matériau à base de graphène et d'ATO et/ou d'ITO.
12. Procédé selon la revendication 11, caractérisé en ce que l'agitation du mélange obtenu est réalisée à une température comprise entre 30 et 60 °C.
13. Procédé selon la revendication 11, caractérisé en ce que le séchage du mélange, est réalisé par évaporation des solvants.
14. Photorésistance comprenant le matériau objet de l'une des revendications 1 à 10.
15. Thermorésistance comprenant le matériau objet de l'une des revendications 1 à
PCT/FR2013/050713 2012-04-20 2013-03-29 Materiau photosensible et thermoresistant, procede de preparation et utilisation WO2013156705A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13719959.2A EP2838849B1 (fr) 2012-04-20 2013-03-29 Materiau photosensible et thermoresistant, procede de preparation et utilisation
JP2015506280A JP2015523297A (ja) 2012-04-20 2013-03-29 感光性耐熱材料、その製造方法及びその使用方法
KR1020147026614A KR20150010703A (ko) 2012-04-20 2013-03-29 감광성 내열 재료, 그 제조 방법 및 그의 용도
US14/388,504 US10008619B2 (en) 2012-04-20 2013-03-29 Photosensitive and heat-resistant material, method for producing same and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1253653 2012-04-20
FR1253653A FR2989677B1 (fr) 2012-04-20 2012-04-20 Materiau photosensible et thermoresistant, procede de preparation et utilisation

Publications (1)

Publication Number Publication Date
WO2013156705A1 true WO2013156705A1 (fr) 2013-10-24

Family

ID=48237109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/050713 WO2013156705A1 (fr) 2012-04-20 2013-03-29 Materiau photosensible et thermoresistant, procede de preparation et utilisation

Country Status (6)

Country Link
US (1) US10008619B2 (fr)
EP (1) EP2838849B1 (fr)
JP (1) JP2015523297A (fr)
KR (1) KR20150010703A (fr)
FR (1) FR2989677B1 (fr)
WO (1) WO2013156705A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109684A1 (fr) * 2014-01-22 2015-07-30 武汉理工大学 Procédés pour préparer une cible d'oxyde conducteur au graphène composite et leur film conducteur transparent
CN108863293A (zh) * 2018-06-17 2018-11-23 赵娟 硫硒锌化合物光敏电阻材料的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108323170B (zh) * 2017-11-03 2020-09-22 江苏时瑞电子科技有限公司 一种用于热敏电阻的复合膜的制备方法
JP7014408B2 (ja) * 2018-01-22 2022-02-01 公立大学法人大阪 温度センサ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110113873A (ko) * 2010-04-12 2011-10-19 한국생산기술연구원 투명열차단 기능을 갖는 나노입자 조성물 및 이를 이용한 투명열차단 기능을 갖는 열저항필름의 제조방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154645B2 (ja) * 1995-01-23 2001-04-09 セントラル硝子株式会社 自動車用合せガラス
US6351068B2 (en) * 1995-12-20 2002-02-26 Mitsui Chemicals, Inc. Transparent conductive laminate and electroluminescence light-emitting element using same
JP2003339540A (ja) * 2002-05-30 2003-12-02 Thermos Kk 電気加熱保温容器
CN101192257A (zh) * 2006-11-20 2008-06-04 鸿富锦精密工业(深圳)有限公司 电子装置及该电子装置的开启方法
KR101089873B1 (ko) * 2009-10-01 2011-12-05 삼성전기주식회사 터치 스크린의 입력장치 및 그 제조방법
KR101119913B1 (ko) * 2009-10-30 2012-03-05 삼성전자주식회사 그래핀 박막을 포함하는 전자 소자 및 그 제조 방법
JP5674594B2 (ja) * 2010-08-27 2015-02-25 株式会社半導体エネルギー研究所 半導体装置及び半導体装置の駆動方法
US8796677B2 (en) * 2011-12-06 2014-08-05 Nutech Ventures Photovoltaic device
FR2989829B1 (fr) * 2012-04-20 2014-04-11 Commissariat Energie Atomique Capteur tactile photosensible

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110113873A (ko) * 2010-04-12 2011-10-19 한국생산기술연구원 투명열차단 기능을 갖는 나노입자 조성물 및 이를 이용한 투명열차단 기능을 갖는 열저항필름의 제조방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUIHUA YU ET AL: "Solution-Processed Graphene/MnO 2 Nanostructured Textiles for High-Performance Electrochemical Capacitors", NANO LETTERS, vol. 11, no. 7, 13 July 2011 (2011-07-13), pages 2905 - 2911, XP055052335, ISSN: 1530-6984, DOI: 10.1021/nl2013828 *
LIM H N ET AL: "Preparation and characterization of tin oxide, SnOnanoparticles decorated graphene", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM, NL, vol. 38, no. 5, 1 February 2012 (2012-02-01), pages 4209 - 4216, XP028409766, ISSN: 0272-8842, [retrieved on 20120209], DOI: 10.1016/J.CERAMINT.2012.02.004 *
SEO TAE ET AL: "Graphene network on indium tin oxide nanodot nodes for transparent and current spreading electrode in InGaN/GaN light emitting diode", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 98, no. 25, 24 June 2011 (2011-06-24), pages 251114 - 251114, XP012141130, ISSN: 0003-6951, DOI: 10.1063/1.3601462 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109684A1 (fr) * 2014-01-22 2015-07-30 武汉理工大学 Procédés pour préparer une cible d'oxyde conducteur au graphène composite et leur film conducteur transparent
CN108863293A (zh) * 2018-06-17 2018-11-23 赵娟 硫硒锌化合物光敏电阻材料的制备方法

Also Published As

Publication number Publication date
JP2015523297A (ja) 2015-08-13
FR2989677B1 (fr) 2015-06-19
KR20150010703A (ko) 2015-01-28
EP2838849B1 (fr) 2020-03-25
FR2989677A1 (fr) 2013-10-25
EP2838849A1 (fr) 2015-02-25
US20150053895A1 (en) 2015-02-26
US10008619B2 (en) 2018-06-26

Similar Documents

Publication Publication Date Title
US11226442B2 (en) Optical filter and ambient light sensor including optical filter
EP2838849B1 (fr) Materiau photosensible et thermoresistant, procede de preparation et utilisation
FR2977713A1 (fr) Electrode transparente conductrice multicouche et procede de fabrication associe
Dao et al. Chemically synthesized nanowire TiO2/ZnO core-shell pn junction array for high sensitivity ultraviolet photodetector
KR20150109450A (ko) 용액 처리된 pbs 광검출기를 이용한 신규 ir 이미지 센서
US8779413B1 (en) Optoelectronic devices with all-inorganic colloidal nanostructured films
FR2965268A1 (fr) Nouvelle composition pour film transparent conducteur
US11631776B2 (en) Photoelectric conversion element
EP2904651B1 (fr) Electrode transparente conductrice et procédé de fabrication associé
WO2012042264A2 (fr) Composition imprimable, procédé et utilisations
CN111799342A (zh) 一种基于硒化亚锡/硒化铟异质结的光电探测器及其制备方法
CA2887641A1 (fr) Electrode transparente et procede de fabrication associe
Kim et al. Flexible narrowband organic photodiode with high selectivity in color detection
Nair et al. Photoresponse of a printed transparent silver nanowire-zinc oxide nanocomposite
Mandavkar et al. Dual-step photocarrier injection by mixture layer of ZnO QDs and MoS2 NPs on hybrid PdAu NPs
WO2017108882A1 (fr) Dispositif optoelectronique organique, matrice de tels dispositifs et procede de fabrication de telles matrices
Kim et al. Organic Light-Dependent Resistors with Near Infrared Light-Absorbing Conjugated Polymer Films
EP3665226B1 (fr) Composition de polymères fluorés électroactifs, formulation, film, dispositif électronique et transistor organique a effet de champ
EP3331017B1 (fr) Photodétecteur infrarouge
Silva et al. Flexible and transparent electrodes of Cu2− xSe with charge transport via direct tunneling effect
JP2010277768A (ja) 透明導電膜
KR20230002773A (ko) 반도체막, 반도체막의 제조 방법, 광검출 소자 및 이미지 센서
Aktas Optical characterization of ZnCuO and CdCuO composite thin films prepared using equal ratio of Zn, Cd and Cu
TW202147464A (zh) 半導體膜、光檢測元件、影像感測器及半導體膜的製造方法
WO2014055387A1 (fr) Dispositifs optoélectroniques dotés de films nanostructurés colloïdaux totalement inorganiques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13719959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147026614

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015506280

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14388504

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013719959

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE