WO2013154054A1 - ブラシレスモータ - Google Patents

ブラシレスモータ Download PDF

Info

Publication number
WO2013154054A1
WO2013154054A1 PCT/JP2013/060522 JP2013060522W WO2013154054A1 WO 2013154054 A1 WO2013154054 A1 WO 2013154054A1 JP 2013060522 W JP2013060522 W JP 2013060522W WO 2013154054 A1 WO2013154054 A1 WO 2013154054A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
phase
coil
brushless motor
main body
Prior art date
Application number
PCT/JP2013/060522
Other languages
English (en)
French (fr)
Inventor
淳 宮木
純 近藤
山本 勉
茂広 米田
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to CN201380017893.4A priority Critical patent/CN104205579B8/zh
Publication of WO2013154054A1 publication Critical patent/WO2013154054A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/09Machines characterised by wiring elements other than wires, e.g. bus rings, for connecting the winding terminations

Definitions

  • the present invention relates to a brushless motor used in, for example, a motorcycle.
  • This application claims priority based on Japanese Patent Application No. 2012-092148 for which it applied to Japan on April 13, 2012, and uses the content here.
  • an inner rotor type brushless motor has a stator that is fitted and fixed to a motor case, and a rotor that is disposed at the center in the radial direction of the motor case and is rotatably supported with respect to the stator.
  • a plurality of permanent magnets are provided on the outer peripheral surface of the rotor.
  • the stator includes a substantially cylindrical stator core and a plurality of teeth projecting radially inward from the stator core.
  • Each tooth is provided with a resin insulator, which is an electrically insulating material, and a coil is wound through the insulator.
  • a resin insulator which is an electrically insulating material
  • a coil is wound through the insulator.
  • a means for supplying power to the coil a state in which a plurality of metal bus bars are electrically insulated from each other in a resin mold body formed in a substantially annular shape in order to reduce the size and improve the assemblability.
  • a bus bar unit embedded in (1) is used.
  • the bus bar unit described in Patent Document 1 is laminated in such a state that a flat-phase bus bar (three phases of U phase, V phase, and W phase) and a neutral point bus bar are separated in the axial direction. Molded by the body.
  • the outer peripheral surface of the resin mold body is integrally formed with a leg portion protruding toward the stator core side, while the insulator is formed with a concave portion capable of fitting the leg portion at a portion corresponding to the leg portion. .
  • the bus bar unit is fixed by stacking the bus bar unit on the insulator so that the leg portion is fitted in the recess.
  • each phase terminal projecting from each phase bus bar and each neutral point terminal projecting from the neutral point bus bar are directed radially outward from the outer peripheral surface of the resin mold body. And projecting radially.
  • Each phase terminal is connected to the winding start end of each phase coil, while the neutral point terminal is connected to the winding end of each phase coil.
  • each phase coil is connected by what is called a star connection system.
  • the present invention has been made in view of the above-described circumstances, and provides a brushless motor that can be reduced in size.
  • a brushless motor includes a stator core, a rotor that is disposed radially inside the stator core, and is rotatably supported with respect to the stator core, and the stator core via an insulator.
  • a plurality of wound coils of a phase are provided with a ring-shaped bus bar unit for supplying power.
  • the bus bar unit is provided for each phase, and includes a plurality of curved phase bus bars having phase terminals connected to one end of the coil, and a ring-shaped bus bar made of an insulating member that holds the plurality of phase bus bars.
  • a holder. The diameter of the inner peripheral surface of the bus bar holder was set to be larger than the diameter of the outer peripheral surface of the insulator, and the bus bar unit was arranged on the outer side in the radial direction than the insulator.
  • an insulator and a bus-bar unit can be wrapped in an axial direction. For this reason, the height from the stator core to the bus bar unit can be suppressed correspondingly, and as a result, the axial length of the brushless motor can be shortened, and the brushless motor can be miniaturized.
  • the bus bar unit is disposed on the radially outer side of the insulator, it is easy to secure a space above the stator core in the axial direction, and the heat dissipation effect of the heat generated by the coil can be enhanced. For this reason, the temperature rise of a brushless motor can be suppressed and it becomes possible to raise the motor efficiency of a brushless motor.
  • the plurality of phase bus bars are formed by curving the thickness direction of the strip-shaped metal plate, and the respective phase bus bars are arranged side by side in the radial direction. At least one of the bus bars for each phase is formed such that the radius of curvature changes from the middle in the circumferential direction.
  • the bus bar holder has a holder body formed in a ring shape.
  • a plurality of grooves into which the plurality of phase bus bars can be inserted from one side in the axial direction are formed in the holder body side by side in the radial direction. At least a part of the opening edge of each groove is formed with a retaining claw for preventing the plurality of phase bus bars from coming off.
  • the two coils are wound around the teeth of the stator core so as to form a parallel circuit.
  • the total resistance of the coil wound around each tooth can be suppressed while reducing the wire diameter of the coil. For this reason, winding work can be facilitated as much as the diameter of the coil can be reduced.
  • the bus bar unit includes a grommet, and the grommet is formed from one plane of the grommet, and has a gasket circulation hole for injecting a liquid sealing material, and the other grommet. And a gasket retaining groove that is formed over the entire area and communicates with the gasket circulation hole.
  • the insulator and the bus bar unit can be wrapped in the axial direction. For this reason, the height from the stator core to the bus bar unit can be suppressed correspondingly, and as a result, the axial length of the brushless motor can be shortened, and the brushless motor can be miniaturized.
  • FIG. 1 is a cross-sectional view including the central axis O of the brushless motor 1.
  • a brushless motor 1 is used in, for example, an electric motorcycle, and is provided so as to be rotatable with respect to a stator 3 press-fitted into a bottomed cylindrical stator housing 2 and the stator 3.
  • a boss 2c that protrudes outward in the axial direction is formed at the center in the radial direction on the bottom 2b of the stator housing 2, and a bearing 5 is press-fitted therein.
  • the bearing 5 is for rotatably supporting the rotating shaft 6 of the rotor 4.
  • the opening side (left side in FIG. 1) of the stator housing 2 may be described as one side in the axial direction
  • the bottom 2b side (right side in FIG. 1) may be described as the other side in the axial direction.
  • FIG. 2 is a plan view of the brushless motor 1 with the bracket 7 removed
  • FIG. 3 is a plan view of the split core 61.
  • the stator 3 has a substantially cylindrical stator core 10, and the outer peripheral surface of the stator core 10 is press-fitted into the inner peripheral surface of the cylindrical portion 2 d of the stator housing 2.
  • the stator core 10 uses a split core system that can be split in the circumferential direction.
  • the divided core 61 divided from the stator core 10 is formed by, for example, laminating a plurality of plate materials made of a magnetic material in the axial direction, and has a core body 62 extending in the circumferential direction.
  • the core body 62 is a portion that forms an annular magnetic path of the stator core 10 and is a portion that is fitted into the inner peripheral surface of the stator housing 2, and is formed in a substantially arc shape in an axial plan view. .
  • Both end portions in the circumferential direction of the core body 62 are connection portions 63a and 63b that are connected to the other core body 62 by press-fitting.
  • One connecting portion 63a has a convex shape
  • the other connecting portion 63b has a concave shape that can receive one connecting portion 63a.
  • a tooth portion 64 is integrally extended from the substantially central portion in the circumferential direction toward the center of rotation so as to extend along the radial direction.
  • Each tooth portion 64 is formed in a substantially T shape in a plan view in the axial direction, and includes a winding drum portion 65a extending in the radial direction and an inner peripheral portion 65b extending in the circumferential direction.
  • a coil 12 is wound around the winding body 65a via an insulator 11.
  • the insulator 11 is an insulating material for insulation between the tooth portion 64 and the coil 12.
  • the insulator 11 is formed to rise from a base portion 11a that covers the outer peripheral surface of the winding drum portion 65a, an inner peripheral wall portion 11b that rises from a radially inner edge of the base portion 11a, and a radially outer edge of the base portion 11a.
  • the outer peripheral wall portion 11c is integrally formed.
  • the coil 12 is wound so as to be housed in a concave coil housing portion 11d formed by the base portion 11a, the inner peripheral wall portion 11b, and the outer peripheral wall portion 11c.
  • each tooth portion 64 is assigned three phases of U phase, V phase, and W phase so that two teeth portions 64 adjacent in the circumferential direction are in phase, and the coil 12 is wound. It corresponds to the phase of the tooth portion 64 that is made. That is, the brushless motor 1 of this embodiment is a three-phase brushless motor including three-phase coils 12 of a U phase, a V phase, and a W phase.
  • the brushless motor 1 of this embodiment employs so-called double winding in which two coils 12 are wound around each tooth portion 64 and the ends of the two coils 12 are connected to each other. This double winding method will be described in detail below.
  • (Coil winding method) 4 and 5 are explanatory views showing a method of winding the coil 12 around the tooth portion 64 of each divided core 61, and are perspective views of the divided core 61.
  • the number of turns of the coil 12 to each tooth portion 64 is 28 times. That is, as shown in FIG. 3, the coil 12 passes 28 times on one side in the radial direction of the tooth portion 64, in other words, the coil 12 passes 56 times in total on both radial sides of the tooth portion 64. become.
  • numbers are assigned to the coils 12 that pass through both radial side surfaces of the tooth portion 64.
  • the loop portion 12a is formed in the coil 12 in the middle of winding around the tooth portion 64 (between the 28th and 29th times in the present embodiment), and then the loop portion 12a is cut, thereby forming the teeth. While the coil 12 is continuously wound around the portion 64, double winding can be performed. That is, the first to 28th coils 12 become the first (first layer) coil 12 (see X1 in FIG. 3), and the 29th to 56th coils 12 are the second (second layer). The coil 12 is obtained (see the X2 part in FIG. 3).
  • the rotor 4 includes a rotating shaft 6, a rotor core 41 that is fitted and fixed to the rotating shaft 6, and a magnet 13 that is disposed in the rotor core 41 along the circumferential direction.
  • the rotating shaft 6 is rotatably supported at both ends by a bearing 5 provided on the bottom 2 b of the stator housing 2 and a bearing 21 provided on the bracket 7.
  • the rotor core 41 is formed by laminating a plurality of electromagnetic steel plates formed in a substantially disc shape along the central axis O, and has a press-fit hole 43 into which the rotary shaft 6 can be press-fitted in the center in the radial direction. Is formed. Further, the axial length of the rotor core 41 is set to be substantially the same as the axial length of the stator core 10. Further, a plurality of slits 44 penetrating in the axial direction are formed in the outer circumferential portion of the rotor core 41 at equal intervals in the circumferential direction. In these slits 44, the magnet 13 is inserted and fixed.
  • the magnet 13 is a permanent magnet made of segmented neodymium or the like formed in a block shape, and is arranged in the slit 44 so that the magnetic poles change in the circumferential direction in order.
  • the length of the magnet 13 in the axial direction is set to substantially match the length of the rotor core 41 in the axial direction.
  • the brushless motor 1 generates a magnetic field in the stator core 10 by supplying current supplied from an external power source to the coils 12 of each phase via the bus bar unit 50. ing.
  • the rotor 4 is rotated by the attractive force and the repulsive force between the magnetic field and the magnet 13.
  • FIG. 6 is a plan view of the bus bar unit 50.
  • the front side of the drawing is the one side (left side in FIG. 1) of the stator housing 2.
  • the bus bar unit 50 connects the coils 12 of each phase by a so-called star connection method, and electrically connects the coils 12 of each phase and an external power source (not shown). belongs to.
  • the bus bar unit 50 is formed in a substantially ring shape, and is disposed coaxially with the stator core 10 on one side of the stator core 10.
  • the bus bar unit 50 includes each phase bus bar (U-phase bus bar 30U, V-phase bus bar 30V, W-phase bus bar 30W) connected to one terminal portion of each phase coil 12. ), And the neutral point bus bar 30N connected to the other terminal portion of the coil 12 of each phase, and the phase bus bars 30U, 30V, 30W and the neutral point bus bar 30N are arranged side by side in the radial direction. And a bus bar holder 51 that holds the head in a state where it is in contact.
  • FIG. 7 is a plan view of the U-phase bus bar 30U.
  • the U-phase bus bar 30U is obtained by stamping a strip-shaped metal plate made of copper or the like by pressing or the like, and is curved so that the thickness direction thereof follows the opening 2a of the stator housing 2.
  • the bus bar main body 31U is formed in a substantially arc shape.
  • the bus bar main body 31U is curved so as to have a substantially semicircular shape, and its radius of curvature changes with the substantially center in the extending direction as a boundary. That is, the bus bar main body 31U is formed by continuously forming a first main body 131U having a radius of curvature R1 and a second main body 231U having a radius of curvature R2.
  • the radius of curvature R1 and the radius of curvature R2 are R1> R2 (1) It is set to satisfy.
  • U-phase terminals 35U are formed in the bus bar main body 31U at positions corresponding to the two locations from which the terminal portions of the U-phase coil 12 are drawn, respectively. That is, one U-phase terminal 35U is formed on one end side of the first main body 131U of the bus bar main body 31U and one end side of the second main body 231U.
  • the U-phase terminal 35U is for connecting the U-phase bus bar 30U and the terminal portion of the U-phase coil 12.
  • the U-phase terminal 35U is integrally formed with a tongue piece portion 36U that is bent from one axial side of the bus bar main body 31U toward the inside in the radial direction, and a coil holding portion 37U provided at the tip of the tongue piece portion 36U. Has been.
  • the coil holding portion 37U is formed in a substantially U shape so that the terminal portion of the U-phase coil 12 can be fixed by caulking.
  • maintenance part 37U is arrange
  • the coil holding part 37U and the terminal part of the coil 12 may be welded to further strengthen the connection between the two parts 37U and 12. it can.
  • a power feeding portion 39U that is bent and extended from one axial side toward the radially outer side is integrally formed at one end of the first main body 131U of the bus bar main body 31U.
  • the power feeding unit 39U is electrically connected to the terminal 23 (see FIG. 1).
  • the terminal 23 is connected to an external power supply (not shown) so that the current of the external power supply can be supplied to the U-phase bus bar 30U.
  • FIG. 8 is a plan view of the V-phase bus bar 30V.
  • the V-phase bus bar 30V has a bus bar body 31V that is curved so as to have a substantially semicircular shape.
  • the bus bar body 31V has a radius of curvature that is substantially in the center in the extending direction.
  • the first main body 131V and the second main body 231V are formed continuously, and the first main body 131V so as to correspond to the position where the terminal portion of the V-phase coil 12 is pulled out.
  • the basic configuration such as the point that one V-phase terminal 35V is formed for each of the second main bodies 231V, and the power feeding portion 39V that connects the terminal 23 to the bus bar main body 31V, are integrally formed. It is the same as U-phase bus bar 30U (the same applies to W-phase bus bar 30W below).
  • the difference between the V-phase bus bar 30V and the U-phase bus bar 30U is that the curvature radius of the bus bar body 31V in the V-phase bus bar 30V is different from the curvature radius of the bus bar body 31U in the U-phase bus bar 30U.
  • the position of the power feeding unit 39V with respect to the bus bar main body 31V and the position of the power feeding unit 39U with respect to the bus bar main body 31U are different (the same applies to the W-phase bus bar 30W below).
  • the curvature radius of the first body 131V is set to R3, while the curvature radius of the second body 231V is set to R4.
  • the curvature radius R3 and the curvature radius R4 are R2 ⁇ R3 ⁇ R4 (2) It is set to satisfy.
  • the power feeding portion 39V integrally formed with the bus bar main body 31V is disposed so as to be adjacent to the power feeding portion 39U of the U-phase bus bar 30U and at the substantially center in the extending direction of the bus bar main body 31V.
  • the power feeding unit 39V is disposed in the vicinity of the connection portion between the first main body 131V and the second main body 231V.
  • FIG. 9 is a plan view of the W-phase bus bar 30W.
  • the radius of curvature of the first main body 131W constituting one of the bus bar main bodies 31W of the W-phase bus bar 30W is set to R5.
  • the radius of curvature of the second main body 231W constituting the other side of the bus bar main body 31W is set to R6.
  • these curvature radius R5 and curvature radius R6 are: R1 ⁇ R5 ⁇ R6 (3) It is set to satisfy.
  • the two W-phase terminals 35W are provided on one end side of the first main body 131W and one end side of the second main body 231W, respectively. Furthermore, the power feeding unit 39W is disposed at one end of the first main body 131W.
  • each phase bus bar 30U, 30V, 30W has a connection bus bar 30J for connecting in series the coils 12 of the same phase adjacent in the circumferential direction.
  • FIG. 10 is a plan view of the connecting bus bar 30J.
  • the basic configuration of the connection bus bar 30J is the same as that of the above-described phase bus bars 30U, 30V, 30W. That is, the connecting bus bar 30J has a bus bar main body 31J formed by continuously forming a first main body 131J and a second main body 231J.
  • the bus bar main body 31J extends so as to straddle the terminal portions on the side where the adjacent in-phase coils 12 are connected in series.
  • the radius of curvature of the first main body 131J is set to R7, while the radius of curvature of the second main body 231J is set to R8. And these curvature radius R7 and curvature radius R8 are: R7 ⁇ R8 (4) And the size is set so as not to interfere with the bus bar main bodies 31U, 31V, 31W in a state where the bus bars for the phases 30U, 30V, 30W are arranged in the radial direction.
  • connection terminals 35J are formed at both ends of the bus bar main body 31J in the extending direction, that is, at one end of the first main body 131J and one end of the second main body 231J, respectively.
  • connection terminal 35J is the same as that of the phase terminals 35U, 35V, and 35W, detailed description thereof is omitted.
  • FIG. 11 is a perspective view of the neutral point bus bar 30N.
  • the neutral point bus bar 30N is formed by punching a band-shaped metal plate made of copper or the like by pressing or the like, as with each phase bus bar 30U, 30V, 30W.
  • the bus bar main body 31N is formed in a substantially annular shape with a curved direction.
  • the radius R9 of the bus bar body 31N is R7 ⁇ R9 (5) R8 ⁇ R9 (6) It is set to satisfy.
  • neutral point terminals 35N are formed in the bus bar main body 31N at positions corresponding to the terminal portions on the side connected as the neutral points of the coils 12 of the respective phases. That is, in this embodiment, six neutral point terminals 35N are formed on the bus bar main body 31N.
  • the configuration of the neutral point terminal 35N is the same as that of the phase terminals 35U, 35V, and 35W, detailed description thereof is omitted.
  • bus bar holder 51 Next, the bus bar holder 51 will be described with reference to FIGS. 1, 6, 12, and 13. 12 is an enlarged perspective view of a portion A in FIG. 6, and FIG. 13 is a plan view of the portion A in FIG. 6 as viewed from the back side. As shown in FIGS. 1 and 6, the bus bar holder 51 has a holder main body 52 that can accommodate the bus bars 30U, 30V, 30W for each phase including the connection bus bar J and the bus bar 30N for the neutral point. .
  • the holder body 52 is formed in a substantially ring shape by an insulating member such as resin.
  • the bus bar main bodies 31U, 31V, 31W, 31J, 31N of the respective phase bus bars 30U, 30V, 30W including the connection bus bar 30J and the neutral point bus bar 30N are inserted from one side in the axial direction.
  • Possible groove portions 53U, 53V, 53W, 53J, 53N are formed. That is, each of the groove portions 53U, 53V, 53W, 53J, and 53N is formed so as to open on one side in the axial direction.
  • a pedestal portion 55 on which the power feeding portions 39U, 39V, 39W of the respective phase bus bars 30U, 30V, 30W can be placed is formed extending outward in the radial direction.
  • the pedestal portion 55 is formed in a substantially rectangular shape so as to be long in the circumferential direction in the plan view in the axial direction.
  • the power feeding portions 39U, 39V, 39W are arranged in parallel in the order of the U phase, the V phase, and the W phase along the longitudinal direction of the pedestal portion 55, that is, the circumferential direction of the holder main body 52.
  • the groove portions 53U, 53V, 53W, 53J, and 53N are formed such that the power feeding portions 39U, 39V, and 39W are arranged in parallel in the order of the U phase, the V phase, and the W phase. That is, six groove portions 53J into which the bus bar main body 31J of the connection bus bar 30J can be inserted are formed on the innermost peripheral side of the holder main body 52. Further, a groove 53N into which the bus bar main body 31N of the neutral point bus bar 30N can be inserted is formed on the outer side in the radial direction than the groove 53J.
  • a groove 53V into which the bus bar main body 31V of the V-phase bus bar 30V can be inserted is formed on the outer side in the radial direction than the groove 53N.
  • a groove 53U into which the bus bar main body 31U of the U-phase bus bar 30U can be inserted and a groove 53W into which the bus bar main body 31W of the W-phase bus bar 30W can be inserted are formed radially outward from the groove 53V. .
  • a part of the opening edge of each of the grooves 53U, 53V, 53W, 53J, and 53N is provided in each phase from each of the grooves 53U, 53V, 53W, 53J, and 53N.
  • the retaining claws 57a and 57b for preventing the bus bars 30U, 30V, 30W for connection, the bus bar 30J for connection, and the bus bar 30N for neutral point from coming off are formed.
  • a die-cutting hole 58 (not shown) is formed on the other side in the axial direction of the portion where the retaining claws 57a, 57b of the holder body 52 are formed.
  • the punching hole 58 By using the punching hole 58, the undercut portions (not shown) of the retaining claws 57a and 57b can be easily formed. Thereby, the manufacturing cost of the holder main body 52 can be reduced.
  • the holder main body 52 has the connecting bus bar 30J, the neutral point bus bar 30N, and the V phase in order from the radially inner side.
  • the bus bar 30V is disposed, and the U-phase bus bar 30U and the W-phase bus bar 30W are disposed on the outermost peripheral side of the holder body 52.
  • the first main bodies 131U, 131V, 131W, and 131J and the second main bodies 231U, 231V, and the second main bodies 231U, 231V, and 31J constituting the bus bar main bodies 31U, 31V, 31W, and 31J of the bus bars 30U, 30V, and 30W for the respective phases.
  • the curvature radii R1 to R8 of 231W and 231J and the radius R9 of the bus bar body 31N of the neutral point bus bar 30N are set so as to satisfy the expressions (1) to (6), respectively.
  • the gap between the bus bar bodies 31U to 31N in the radial direction is minimized.
  • the second main body 231U of the U-phase bus bar 30U and the second main body 231W of the W-phase bus bar 30W are displaced inward in the radial direction toward the tip. It is possible to prevent an extra gap from being formed between the two main bodies 231U and 231W and the bus bar main body 31N of the neutral point bus bar 30N.
  • the inner diameter E1 of the holder body 52 is set larger than the diameter E2 (see FIG. 1) of the outer peripheral wall portion 11c of the insulator 11 attached to the stator core 10.
  • the bus bar unit 50 is in a state where it is disposed radially outside the insulator 11 and is disposed at a position where it wraps in the axial direction with the insulator 11.
  • an enlarged diameter portion 92 that receives the bus bar unit 50 is formed by a step at a position corresponding to the bus bar unit 50.
  • the outer peripheral surface of the holder main body 52 is fitted into the enlarged diameter portion 92, and the bus bar unit 50 is positioned in the radial direction.
  • the bus bar unit 50 is positioned in the axial direction in such a manner that the holder main body 52 is placed on the stepped surface 92 a of the enlarged diameter portion 92.
  • a positioning groove 56 is formed along the axial direction on the outer peripheral surface of the holder main body 52, while a convex portion (not shown) facing the positioning groove 56 is formed on the enlarged diameter portion 92 of the stator housing 2. Is formed. Thereby, the circumferential positioning of the bus bar unit 50 is performed.
  • the terminals 35U, 35V, 35W, 35J, and 35N extend from the holder main body 52 toward the radially inner side in a state where the bus bar unit 50 is disposed on the radially outer side than the insulator 11, these The terminals 35U, 35V, 35W, 35J, and 35N are positioned substantially above the teeth 64 in the axial direction. For this reason, the routing path
  • the bus bar unit 50 configured in this way, the coils 12 of each phase are connected as follows.
  • FIG. 14 is a connection diagram of the coil 12. That is, as shown in the figure, each phase terminal 35U, 35V, 35W of each phase bus bar 30U, 30V, 30W of bus bar unit 50, connection terminal 35J of connection bus bar 30J, and neutral point bus bar 30N are connected. By connecting a predetermined terminal portion of each phase coil 12 to each terminal 35N, each phase coil 12 is connected in a so-called star connection system. Moreover, when winding the coil 12 around each tooth part 64, what is called double winding which winds the two coils 12 to each tooth part 64 and connects the terminals of these two coils 12 is adopted. (See FIGS. 3 and 5).
  • the coils 12Ua and 12Ub of the U-phase coil 12 are connected in parallel.
  • the coils 12Ua and 12Ub and the coils 12Uc and 12Ud are connected in series.
  • the coils 12Ua, 12Ub, 12Uc, 12Ud and the coils 12Ue, 12Uf, 12Ug, 12Uh are connected in parallel.
  • the coils 12 of each phase constitute a parallel circuit.
  • the V-phase coil 12 and the W-phase coil 12 are configured in the same manner as the U-phase coil 12. For this reason, description about the V-phase coil 12 and the W-phase coil 12 is omitted.
  • bracket 1 and 2
  • an outer flange portion 2e is formed in the opening 2a of the stator housing 2
  • a bracket 7 is provided so as to be placed on the outer flange portion 2e.
  • the bracket 7 is formed in a substantially disc shape so as to close the opening 2 a of the stator housing 2.
  • An insertion hole 71 through which the rotation shaft 6 is inserted is formed at the radial center of the bracket 7.
  • a bearing 21 for rotatably supporting the rotary shaft 6 is provided on the inner surface side of the insertion hole 71 (the surface on the stator 3 side, the right surface in FIG. 1).
  • a seal portion 72 is provided for ensuring the sealing performance between the insertion hole 71 and the rotary shaft 6.
  • a plurality of (three in this embodiment) through holes 73 for fastening and fixing the bracket 7 and the stator housing 2 with bolts (not shown) or the like are provided at equal intervals in the circumferential direction on the outer peripheral portion of the bracket 7. Is formed.
  • the outer flange portion 2e of the stator housing 2 is formed with a tongue piece portion 18 extending outward in the radial direction at a location corresponding to the through hole 73 of the bracket 7.
  • a through hole 18 a corresponding to the through hole 73 of the bracket 7 is formed in the tongue piece 18.
  • the tongue piece 18 is formed with an attachment hole 18b for fixing the brushless motor 1 to the vehicle body of the electric motorcycle, and for positioning the stator housing 2 and the bracket 7 together.
  • a hole 18c into which a positioning pin (not shown) is inserted is provided.
  • a substantially rectangular grommet receiving portion 19 is elongated in the circumferential direction at a location corresponding to the power feeding portions 39U, 39V, 39W of the bus bar unit 50 in an axial plan view. Is formed.
  • the grommet receiving portion 19 is for holding the grommet 54 attached to the power feeding portions 39U, 39V, 39W of the bus bar unit 50 in cooperation with the bracket 7.
  • a grommet storage recess 74 that can receive the grommet 54 is formed on the outer periphery of the bracket 7.
  • the grommet 54 is for improving the sealing performance between the stator housing 2 and the bracket 7 and between the stator housing 2 and the bracket 7 and the power feeding portions 39U, 39V, and 39W of the bus bar unit 50.
  • the grommet 54 is formed in a substantially rectangular parallelepiped shape so as to be elongated along the circumferential direction of the stator housing 2 by an elastic material such as rubber, in other words, so as to be elongated in the arrangement direction of the power feeding portions 39U, 39V, 39W. Is formed.
  • the insertion hole 54a which can penetrate these electric power feeding part 39U, 39V, 39W is formed in the position corresponding to electric power feeding part 39U, 39V, 39W.
  • the grommet 54 is formed with a gasket retaining groove 55 a along the longitudinal direction on one side surface 54 b that contacts the grommet receiving portion 19 of the stator housing 2.
  • gasket circulation holes 55 b are formed along the axial direction of the stator housing 2. Each gasket circulation hole 55b communicates with the gasket pool groove 55a.
  • the gasket pool groove 55a and the gasket circulation hole 55b are places where the liquid gasket G applied when the brushless motor 1 is assembled is filled.
  • the liquid gasket G is injected into the gasket circulation hole 55 b formed in the grommet 54. Then, the liquid gasket G is filled into the gasket pool groove 55a through the gasket circulation hole 55b. For this reason, even when the liquid gasket G is applied after the bus bar unit 50 is assembled to the stator housing 2, the liquid gasket G is easily spread between the grommet receiving portion 19 and the grommet 54 of the stator housing 2. Can be made. Thus, after applying the liquid gasket G along the outer flange portion 2e of the stator housing 2, the stator housing 2 and the bracket 7 are fastened and fixed by bolts (not shown), thereby completing the assembly of the brushless motor 1. .
  • terminals 35U, 35V, 35W, 35J, and 35N extend from the holder main body 52 toward the radially inner side in a state where the bus bar unit 50 is disposed on the radially outer side than the insulator 11, each of these terminals
  • the terminals 35U, 35V, 35W, 35J, and 35N are positioned substantially above the teeth 64 in the axial direction. For this reason, the routing path
  • the bus bar unit 50 is disposed on the radially outer side than the insulator 11, it is easy to secure a space in the upper axial direction of each tooth portion 64, and the heat dissipation effect of the heat generated in the coil 12 can be enhanced. . For this reason, the temperature rise of the brushless motor 1 can be suppressed, and the motor efficiency of the brushless motor 1 can be increased. Since the heat generated from the stator core 10 is less likely to be transmitted to the bus bar unit 50, the temperature rise of the bus bar unit 50 can be more reliably suppressed. As a result, the motor efficiency of the brushless motor 1 can be further increased. Become.
  • the bus bar bodies 31U, 31V, 31W, 31J of the bus bars for the phases 30U, 30V, 30W and the connection bus bar 30J are respectively connected to the first bodies 131U, 131V, 131W, 131J having different radii of curvature and the second bodies 231U. , 231V, 231W, and 231J. That is, the curvature radii R1 to R8 of the first main body 131U, 131V, 131W, 131J and the second main body 231U, 231V, 231W, 231J and the radius R9 of the bus bar main body 31N of the neutral point bus bar 30N are respectively expressed by equations. (1) to (6) are set to be satisfied.
  • the gap between the bus bar bodies 31U to 31N in the radial direction can be minimized.
  • there is an excess gap between the second main body 231U of the U-phase bus bar 30U and the second main body 231W of the W-phase bus bar 30W and the bus bar main body 31N of the neutral point bus bar 30N. Can be prevented. Therefore, the radial direction of the bus bar unit 50 can be reduced, and as a result, the brushless motor 1 can be reduced in size.
  • each bus bar 30U, 30V, 30W is formed in the middle of the bus bar main body 31U, 31V, 31W, 31J in the extending direction of each phase bus bar 30U, 30V, 30W and the connection bus bar 30J.
  • 30J can be changed to reduce the diameter of the bus bar unit 50 in the radial direction.
  • each phase bus bar 30U, 30V, 30W and connection bus bar 30J are formed by continuously changing the radius of curvature of each bus bar body 31U, 31V, 31W, 31J without forming a bent portion. Becomes easy, and the manufacturing cost can be reduced.
  • the holder main body 52 in which the respective groove portions 53U, 53V, 53W, 53J, 53N are formed. Is used. Then, by forming the retaining claws 57a and 57b on part of the opening edges of the groove portions 53U, 53V, 53W, 53J and 53N of the holder main body 52, the connection bus bars 30J from the holder main body 52 are included. It is possible to reliably prevent the phase bus bars 30U, 30V, 30W and the neutral point bus bar 30N from coming off.
  • each phase bus bar 30U, 30V, 30W including the connection bus bar 30J and the neutral point bus bar 30N it is not necessary to mold them with a resin mold body. No need for large-scale equipment.
  • the facilities for manufacturing the bus bar unit 50 can be simplified as compared with the prior art, and the manufacturing cost of the bus bar unit 50 can be reduced.
  • each bus-bar 30U, 30V, 30W, 30J, 30N and the holder main body 52 can be manufactured easily, and manufacturing cost can be reduced.
  • each bus-bar main body 31U, 31V, 31W, 31J is made into the shape different from the shape of each groove part 53U, 53V, 53W, 53J, and the case where it hold
  • the bus bar bodies 31U, 31V, 31W, 31J can be securely held.
  • a die-cutting hole 58 (not shown) is formed on the other side in the axial direction where the retaining claws 57a and 57b of the holder main body 52 are formed.
  • the punching hole 58 By using the punching hole 58, the undercut portions (not shown) of the retaining claws 57a and 57b can be easily formed. Thereby, the structure of a metal mold
  • the loop part 12a is formed in the coil 12 in the middle of winding around the tooth part 64 (between the 28th and 29th times in this embodiment).
  • the time of winding work can be shortened compared with normal double winding.
  • the cost of the apparatus for winding the coil 12 can be reduced. That is, for example, in the case of performing double winding, there may be a need for equipment for winding two coils around the tooth portion 64 simultaneously using two nozzles. However, in the present embodiment, a single nozzle is used, and the single winding can be operated by simply operating this single nozzle. Therefore, the cost of the apparatus for winding the coil 12 can be reliably reduced.
  • a gasket retaining groove 55a is formed on one side surface 54b of the grommet 54 attached to the power feeding portions 39U, 39V, 39W of the bus bar unit 50, and gasket circulation holes 55b are formed on both ends in the longitudinal direction of the grommet 54.
  • the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
  • the present invention is not limited to this, and the structure of the brushless motor 1 of this embodiment can be applied to various electric motors including the bus bar unit 50.
  • the case where the winding number of the coil 12 to each teeth part 64 was 28 times was demonstrated.
  • the number of windings around the tooth portion 64 is not limited to 28, and the number of windings can be changed as appropriate in order to obtain desired motor characteristics.
  • the bus bar unit 50 is connected to one terminal portion of the coil 12 of each phase (U-phase bus bar 30U, V-phase bus bar 30V, W-phase bus bar 30W).
  • a neutral point bus bar 30N connected to the other terminal portion of the coil 12 of each phase, and the coil 12 of each phase is connected by a so-called star connection method by the neutral point bus bar 30N.
  • the present invention is not limited to this, and the configuration of the present invention can be applied to a so-called delta connection method that does not have a neutral point. In this case, the bus bar unit 50 does not have the neutral point bus bar 30N.
  • the grommet 54 was formed with elastic materials, such as rubber
  • the present invention is not limited to this, and any material that can ensure a sealing property between the stator housing 2 and the bracket 7 may be used.
  • the grommet 54 may be formed of a resin material instead of rubber.
  • the grommet 54 attached to the power feeding portions 39U, 39V, and 39W of the bus bar unit 50 has a gasket along the longitudinal direction on one side surface 54b that abuts the grommet receiving portion 19 of the stator housing 2.
  • the case where the retaining groove 55a is formed to improve the sealing performance between the grommet receiving portion 19 and the grommet 54 of the stator housing 2 has been described.
  • the present invention is not limited to this, and the grommet 54 may be formed with the following gasket pool groove 155a.
  • FIG. 15 is a plan view of a grommet 154 in a modification of the present embodiment.
  • gasket circulation holes 55 b are formed along the axial direction of the stator housing 2 at both ends of the grommet 54 in the longitudinal direction.
  • two gasket retaining grooves 155 that are substantially L-shaped in an axial plan view are formed on one side surface 54 b that contacts the grommet receiving portion 19 of the stator housing 2.
  • the gasket pool groove 155 will be described in detail. Each gasket pool groove 155 communicates with the gasket circulation hole 55b.
  • the gasket pool groove 155 includes a first groove portion 155a that extends radially outward from the gasket circulation hole 55b along the extending direction of the power feeding portions 39U, 39V, and 39W, and the gasket housing hole 55b. And a second groove 155b extending outward along the circumferential direction.
  • the first groove portion 155a and the second groove portion 155b are formed so as to communicate with each other and have a substantially L shape in an axial plan view.
  • the insulator and the bus bar unit can be wrapped in the axial direction. For this reason, the height from the stator core to the bus bar unit can be suppressed correspondingly, and as a result, the axial length of the brushless motor can be shortened, and the brushless motor can be miniaturized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

 このブラシレスモータ(1)のバスバーユニット(50)は、相毎に設けられ、コイル(12)の一端と接続される相端子を有する湾曲状の複数の相用バスバーと、複数の相用バスバーを保持する絶縁部材からなるリング状のバスバーホルダ(51)とを備え、バスバーホルダ(51)の内径(E1)を、インシュレータ(11)の外周面の直径(E2)よりも大きく設定し、インシュレータ(11)よりも径方向外側に、バスバーユニット(50)を配置した。

Description

ブラシレスモータ
 本発明は、例えば自動二輪車等に用いられるブラシレスモータに関する。
 本願は、2012年4月13日に、日本に出願された特願2012-092148号に基づき優先権を主張し、その内容をここに援用する。
 一般に、インナーロータ型のブラシレスモータは、モータケースに内嵌固定されたステータと、モータケースの径方向中央に配置されステータに対して回転自在に支持されたロータとを有している。ロータの外周面には、複数の永久磁石が設けられている。ステータは、略円筒状のステータコアと、このステータコアから径方向内側に突設された複数のティースとを備えている。
 各ティースには、電気的絶縁材である樹脂製のインシュレータが装着され、このインシュレータを介してコイルが巻装されている。そして、コイルに外部電源からの電力が供給されると、コイルに発生する磁束と永久磁石との間に吸引力、または反発力が生じロータが回転する。
 ここで、コイルへの給電手段として、小型化や組付け性の向上を図るために、略円環状に形成された樹脂モールド体に、金属製の複数のバスバーを互いに電気的に絶縁された状態で埋設したバスバーユニットを用いる場合がある(例えば、特許文献1参照)。
 特許文献1に記載のバスバーユニットは、平板状の各相(U相、V相、W相の三相)のバスバーと中性点用バスバーとが軸方向に離間した状態で積層され、樹脂モールド体によりモールドされている。樹脂モールド体の外周面には、ステータコア側に向かって突出する脚部が一体成形されている一方、インシュレータには、脚部に対応する部位に脚部を嵌合可能な凹部が形成されている。この凹部に脚部を嵌合させるように、インシュレータ上にバスバーユニットを重ねることにより、バスバーユニットが固定される。
 また、各相のバスバーに突設されている各相用端子と、中性点用バスバーに突設されている中性点用端子とは、それぞれ樹脂モールド体の外周面から径方向外側に向かって放射状に突出した状態となっている。
 各相用端子には、各相コイルの巻き始め端部が接続される一方、中性点用端子には各相コイルの巻き終わり端部が接続される。これにより、各相コイルは、所謂スター結線方式にて結線されている。
特開2010-233327号公報
 ところで、上述のブラシレスモータのさらなる小型化、軽量化の要望が高い。とりわけ、自動二輪車にあっては、車体が傾くので、車体側方への傾斜角(バンク角)を考慮し、自動二輪車に搭載されるブラシレスモータの軸短化が望まれている。
 しかしながら、上述の従来技術にあっては、インシュレータ上にバスバーユニットを重ねるようにしてこのバスバーユニットを固定しているので、ステータコアからバスバーユニットまでの高さを抑えにくい。このため、ブラシレスモータの軸長が長くなり、大型化してしまうという課題がある。
 そこで、この発明は、上述した事情に鑑みてなされたものであって、小型化を図ることができるブラシレスモータを提供するものである。
 本発明の第1の態様によれば、ブラシレスモータは、ステータコアと、このステータコアの径方向内側に配置され、前記ステータコアに対して回転自在に支持されているロータと、前記ステータコアにインシュレータを介して巻回された複数の相のコイルに、給電を行うためのリング状のバスバーユニットとを備える。前記バスバーユニットは、相毎に設けられ、前記コイルの一端と接続される相端子を有する湾曲状の複数の相用バスバーと、前記複数の相用バスバーを保持する絶縁部材からなるリング状のバスバーホルダとを備える。前記バスバーホルダの内周面の直径を、前記インシュレータの外周面の直径よりも大きく設定し、前記インシュレータよりも径方向外側に、前記バスバーユニットを配置した。
 このように構成することで、インシュレータとバスバーユニットを軸方向でラップさせることができる。このため、この分、ステータコアからバスバーユニットまでの高さを抑えることができ、この結果、ブラシレスモータの軸方向の長さを短くすることができ、ブラシレスモータの小型化を図ることができる。
 また、インシュレータよりも径方向外側にバスバーユニットを配置することから、ステータコアの軸方向上方に空間を確保しやすく、コイルで発生した熱の放熱効果を高めることができる。このため、ブラシレスモータの温度上昇を抑えることができ、ブラシレスモータのモータ効率を高めることが可能になる。
 さらに、ステータコアの軸方向上方に空間が確保できれば、この空間にコイルの端末部を引き出し、コイルの端末部とバスバーユニットの各端子を接続させることが可能になる。このため、コイルの端末部の配索経路を単純化することができる。
 本発明の第2の態様によれば、前記複数の相用バスバーは、帯状の金属板の厚さ方向を湾曲形成して成り、各相用バスバーが径方向に並んで配置される。各相用バスバーのうちの少なくとも1つは、周方向の途中から曲率半径が変化するように形成されている。
 このように構成することで、複数の相用バスバーの径方向の間に、余分なスペースが形成されてしまうのを抑制できる。このため、バスバーユニットの径方向を縮径化でき、この結果、ブラシレスモータを小型化することが可能になる。
 本発明の第3の態様によれば、前記バスバーホルダは、リング状に形成されたホルダ本体を有する。このホルダ本体に、軸方向一方側から前記複数の相用バスバーを挿入可能な複数の溝が径方向に並んで形成されている。各溝の開口縁の少なくとも一部に、前記複数の相用バスバーの抜けを防止するための抜け止め爪が形成されている。
 このように構成することで、複数の相用バスバーを、従来のように、樹脂モールド体によりモールドすることがなくなるので、モールドするための大掛かりな設備が必要なくなる。このため、バスバーユニットを製造するための設備が簡素化でき、バスバーユニットの製造コストを低減できる。
 また、各溝と、複数の相用バスバーとの寸法公差を高精度に管理することなく、各相用バスバーの溝からの抜けを防止することができる。このため、バスバーユニットの製造コストを低減できる。
 さらに、複数の相用バスバーの形状を、溝の形状と異なる形状とし、各相用バスバーの弾性で保持する場合に対し、確実に各相用バスバーを保持することが可能になる。
 本発明の第4の態様によれば、前記ステータコアの各ティースに、それぞれ2本の前記コイルが並列回路を成すように巻回されている。
 このように構成することで、コイルの線径を細径化しながら各ティースに巻回されるコイルの総抵抗を抑制することができる。このため、コイルを細径化できる分、巻回作業を容易にすることができる。
 本発明の第5の態様によれば、前記バスバーユニットはグロメットを備え、前記グロメットは、前記グロメットの一方の平面から形成され、液状シール材を注入するためのガスケット流通孔と、前記グロメットの他方の平面の全域に渡って形成され、前記ガスケット流通孔に連通するガスケット溜り溝とを備えている。
 このように構成することで、ガスケット流通孔に液状シール材を注入すると、この液状シール材が、ガスケット流通孔を通ってガスケット溜り溝に充填される。このため、グロメットを所定の位置に組み付けた後、グロメットの他方の平面に液状シール材を塗布する場合であっても、グロメットの他方の平面に液状シール材を行き渡らせることができる。
 上記のブラシレスモータによれば、インシュレータとバスバーユニットを軸方向でラップさせることができる。このため、この分、ステータコアからバスバーユニットまでの高さを抑えることができ、この結果、ブラシレスモータの軸方向の長さを短くすることができ、ブラシレスモータの小型化を図ることができる。
本発明の実施形態におけるブラシレスモータの断面図である。 本発明の実施形態におけるブラシレスモータのブラケットを取り外した状態の平面図である。 本発明の実施形態における分割コアの平面図である。 本発明の実施形態における各分割コアのティース部へのコイルの巻回方法を示す説明図である。 本発明の実施形態における各分割コアのティース部へのコイルの巻回方法を示す説明図である。 本発明の実施形態におけるバスバーユニットの平面図である。 本発明の実施形態におけるU相用バスバーの平面図である。 本発明の実施形態におけるV相用バスバーの平面図である。 本発明の実施形態におけるW相用バスバーの平面図である。 本発明の実施形態における接続用バスバーの平面図である。 本発明の実施形態における中性点用バスバーの斜視図である。 図6のA部の拡大斜視図である。 図6のA部を裏側からみた平面図である。 本発明の実施形態におけるコイルの結線図である。 本発明の実施形態の変形例におけるグロメットの平面図である。
(ブラシレスモータ)
 次に、この発明の実施形態を図面に基づいて説明する。
 図1は、ブラシレスモータ1の中心軸Oを含む断面図である。
 図1に示すように、ブラシレスモータ1は、例えば、電動自動二輪車に用いられるものであって、有底筒状のステータハウジング2に圧入されたステータ3と、ステータ3に対して回転自在に設けられたロータ4と、ステータ3に巻回されているコイル12に電流を供給するためのバスバーユニット50と、ステータハウジング2の開口部2aを閉塞するように設けられているブラケット7とを有している。
 ステータハウジング2の底部2bには、径方向中央に、軸方向外側に突出するボス部2cが形成され、ここに軸受5が圧入されている。この軸受け5は、ロータ4の回転シャフト6を回転自在に支持するためのものである。
 尚、以下の説明では、ステータハウジング2の開口側(図1における左側)を軸方向の一方側とし、底部2b側(図1における右側)を軸方向の他方側として説明する場合がある。
 図2は、ブラシレスモータ1のブラケット7を取り外した状態の平面図、図3は、分割コア61の平面図である。
 図1~図3に示すように、ステータ3は、略円筒状のステータコア10を有しており、このステータコア10の外周面がステータハウジング2の筒部2dの内周面に圧入されている。
 ここで、ステータコア10は、周方向に分割可能な分割コア方式が用いられている。ステータコア10から分割された分割コア61は、例えば磁性材料から成る板材を軸方向に複数枚積層して形成されたものであって、周方向に延びるコア本体62を有している。コア本体62は、ステータコア10の環状の磁路を形成する部分であり、且つステータハウジング2の内周面に内嵌される部分であって、軸方向平面視で略円弧状に形成されている。
 コア本体62の周方向の両端部は、他のコア本体62に圧入によって連結される連結部63a,63bになっている。一方の連結部63aは凸形状を有し、他方の連結部63bは、一方の連結部63aを受け入れ可能な凹形状を有している。これにより、各コア本体62を連結して略円筒状のステータコア10を形成することが可能になっている。
 各コア本体62の内周側には、周方向の略中央部からティース部64が径方向に沿うように回転中心に向かって一体に延設されている。各ティース部64は、軸方向平面視で略T字状に形成されたものであって、径方向に延びる巻胴部65aと、周方向に延びる内周部65bとで構成されている。
 巻胴部65aには、インシュレータ11を介してコイル12が巻回されている。インシュレータ11は、ティース部64とコイル12との絶縁を図るための絶縁材である。インシュレータ11は、巻胴部65aの外周面を被覆するベース部11aと、ベース部11aの径方向内側縁から立ち上がり形成された内周壁部11bと、ベース部11aの径方向外側縁から立ち上がり形成された外周壁部11cとが一体成形されている。これらベース部11a、内周壁部11b、及び外周壁部11cとにより形成される凹状のコイル収納部11dに収納されるように、コイル12が巻回される。
 ここで、各ティース部64は、それぞれ周方向に隣接する2つのティース部64が同相となるように、U相、V相、W相の3相が割り当てられており、コイル12は、巻回されているティース部64の相に対応するようになっている。すなわち、この実施形態のブラシレスモータ1は、U相、V相、W相の3相のコイル12を備えた3相ブラシレスモータになっている。
 また、この実施形態のブラシレスモータ1は、各ティース部64に2本のコイル12を巻回し、これら2本のコイル12の端末同士を結線する所謂ダブル巻が採用されている。このダブル巻の巻回方法について、以下に詳述する。
(コイルの巻回方法)
 図4、図5は、各分割コア61のティース部64へのコイル12の巻回方法を示す説明図であって、分割コア61の斜視図である。
 ここで、以下の説明では、各ティース部64へのコイル12の巻回数が28回であるとする。すなわち、図3に示すように、ティース部64の径方向一側面に、コイル12が28回ずつ通過、換言すれば、ティース部64の径方向両側面に、コイル12が合計56回通過することになる。尚、図3には、ティース部64の径方向両側面を通過するコイル12に、それぞれ番号を付している。
 このように、ティース部64の径方向側面にコイル12が合計56回通過する場合、図4に示すように、28回目のコイル12と29回目のコイル12との間にループ部12aを形成する。そして、29回目以降のコイル12は、再び通常通りにティース部64に巻回する。
 ティース部64にコイル12を56回巻回した後、図5に示すように、ループ部12aを切断する。そして、切断することにより形成された28回目のコイル12の端末部を、1回目のコイル12の端末部に接続すると共に、29回目のコイル12の端末部を、56回目のコイル12の端末部に接続する。これにより、ティース部64へのコイル12の巻回が完了する。
 このように、ティース部64への巻回途中(本実施形態では28回目と29回目との間)に、コイル12にループ部12aを形成し、後にこのループ部12aを切断することにより、ティース部64に1本のコイル12を連続して巻回しながら、ダブル巻とすることができる。すなわち、1回目から28回目までのコイル12が1本目(1層目)のコイル12となり(図3におけるX1部参照)、29回目から56回目までのコイル12が2本目(2層目)のコイル12となる(図3におけるX2部参照)。
 図1、図2に戻り、ロータ4は、回転シャフト6と、回転シャフト6に外嵌固定されているロータコア41と、ロータコア41内に周方向に沿って配置されるマグネット13とを備えている。
 回転シャフト6は、この両端がステータハウジング2の底部2bに設けられている軸受5と、ブラケット7に設けられている軸受21とにより回転自在に支持されている。
 ロータコア41は、略円板状に形成された複数の電磁鋼板を中心軸Oに沿って積層することにより形成されたものであって、径方向中央に回転シャフト6を圧入可能な圧入孔43が形成されている。また、ロータコア41の軸方向の長さは、ステータコア10の軸方向の長さと略同一となるように設定されている。さらに、ロータコア41の外周部には、軸方向に貫通する複数のスリット44が周方向に等間隔に形成されている。これらスリット44内に、マグネット13が挿入されて固定される。
 マグネット13は、ブロック状に形成されたセグメント型のネオジム等からなる永久磁石であって、周方向に磁極が順番に変わるようにスリット44内に配置されている。マグネット13の軸方向の長さは、ロータコア41の軸方向の長さと略一致するように設定されている。
 このような構成のもと、ブラシレスモータ1は、外部電源からの供給される電流を、バスバーユニット50を介して各相のコイル12に供給することにより、ステータコア10に磁界を発生させるようになっている。そして、この磁界とマグネット13との間の吸引力、及び反発力により、ロータ4が回転する。
(バスバーユニット)
 図6は、バスバーユニット50の平面図である。尚、図6は、紙面手前側がステータハウジング2の一方側(図1における左側)となる。
 図1、図6に示すように、バスバーユニット50は、各相のコイル12を所謂スター結線方式にて結線すると共に、各相のコイル12と不図示の外部電源とを電気的に接続するためのものである。バスバーユニット50は略リング状に形成されており、ステータコア10の一方側に、このステータコア10と同軸上に配置されている。
 また、図6に示すように、バスバーユニット50は、各相のコイル12の一方の端末部と接続される各相用バスバー(U相用バスバー30U、V相用バスバー30V、W相用バスバー30W)と、各相のコイル12の他方の端末部と接続される中性点用バスバー30Nと、これら各相用バスバー30U,30V,30W及び中性点用バスバー30Nを径方向に並んで配置させた状態で保持するバスバーホルダ51とを備えている。
(U相用バスバー)
 次に、図7~図9に基づいて、各相用バスバー(U相用バスバー30U、V相用バスバー30V、W相用バスバー30W)について説明する。
 図7は、U相用バスバー30Uの平面図である。
 同図に示すように、U相用バスバー30Uは、銅等からなる帯状の金属板材をプレス加工等により打ち抜いたものであって、厚さ方向をステータハウジング2の開口部2aに沿うように湾曲させて略円弧状に形成されたバスバー本体31Uを有している。
 より具体的には、バスバー本体31Uは、略半円形状となるように湾曲形成されており、その曲率半径が延在方向略中央を境に変化している。すなわち、バスバー本体31Uは、曲率半径がR1に設定された第1本体131Uと、曲率半径がR2に設定された第2本体231Uとが連続形成されたものである。ここで、曲率半径R1と曲率半径R2は、
 R1>R2・・・(1)
 を満たすように設定されている。
 また、バスバー本体31Uには、U相のコイル12の端末部が引き出される2箇所それぞれに対応する位置に、各々U相端子35Uが形成されている。すなわち、バスバー本体31Uの第1本体131Uの一端側と、第2本体231Uの一端側とに、それぞれ1つずつU相端子35Uが形成されている。
 U相端子35Uは、U相用バスバー30Uと、U相のコイル12の端末部とを接続するためのものである。U相端子35Uは、バスバー本体31Uの軸方向一方側から径方向内側に向かって屈曲形成された舌片部36Uと、この舌片部36Uの先端に設けられたコイル保持部37Uとが一体成形されている。
 コイル保持部37Uは、U相のコイル12の端末部をカシメ固定可能なように略U字状に形成されている。そして、コイル保持部37Uは、周方向からコイル12の端末部を受け入れ可能、且つ軸方向に沿ってコイル12の端末部が挿通可能なように配置されている。
 尚、コイル保持部37Uにコイル12の端末部をカシメ固定した後、コイル保持部37Uとコイル12の端末部とを溶接することにより、両者37U,12の接続をより強固なものとすることができる。
 また、バスバー本体31Uの第1本体131Uの一端には、軸方向一方側から径方向外側に向かって屈曲延出された給電部39Uが一体成形されている。給電部39Uは、ターミナル23(図1参照)に電気的に接続される。ターミナル23は、不図示の外部電源に接続されており、外部電源の電流をU相用バスバー30Uに供給できるようになっている。
(V相用バスバー)
 図8は、V相用バスバー30Vの平面図である。
 同図に示すように、V相用バスバー30Vは、略半円形状となるように湾曲形成されたバスバー本体31Vを有している点、バスバー本体31Vは、この曲率半径が延在方向略中央を境に変化しており、第1本体131Vと第2本体231Vとが連続形成されたものである点、V相のコイル12の端末部が引き出される箇所に対応するように、第1本体131V、及び第2本体231Vのそれぞれに1つずつV相端子35Vが形成されている点、バスバー本体31Vにターミナル23が接続される給電部39Vが一体成形されている点等の基本的構成は、U相用バスバー30Uと同様である(以下のW相用バスバー30Wについても同様)。
 ここで、V相用バスバー30Vと、U相用バスバー30Uとの相違点は、V相用バスバー30Vにおけるバスバー本体31Vの曲率半径と、U相用バスバー30Uにおけるバスバー本体31Uの曲率半径とが異なる点、及びバスバー本体31Vに対する給電部39Vの位置と、バスバー本体31Uに対する給電部39Uの位置とが異なる点にある(以下のW相用バスバー30Wについても同様)。
 すなわち、バスバー本体31Vにおいて、第1本体131Vは、曲率半径がR3に設定されている一方、第2本体231Vは、曲率半径がR4に設定されている。そして、曲率半径R3、及び曲率半径R4は、
 R2≒R3≒R4・・・(2)
 を満たすように設定されている。
 また、バスバー本体31Vに一体成形されている給電部39Vは、U相用バスバー30Uの給電部39Uに隣接するように、且つバスバー本体31Vの延在方向略中央に位置するように配置されている。換言すれば、第1本体131Vと第2本体231Vとの接続部近傍に給電部39Vが配置された状態になっている。
(W相用バスバー)
 図9は、W相用バスバー30Wの平面図である。
 同図に示すように、W相用バスバー30Wのバスバー本体31Wの一方を構成する第1本体131Wの曲率半径は、R5に設定されている。また、バスバー本体31Wの他方を構成する第2本体231Wの曲率半径は、R6に設定されている。そして、これら曲率半径R5、及び曲率半径R6は、
 R1≒R5≒R6・・・(3)
 を満たすように設定されている。
 また、2つのW相端子35Wは、それぞれ第1本体131Wの一端側と、第2本体231Wの一端側とに設けられている。さらに、給電部39Wは、第1本体131Wの一端に配置されている。
 ここで、U相用バスバー30Uと、W相用バスバー30Wは、回転シャフト6、及びV相用バスバー30Vの給電部39Vの中心を通る直線L1を中心にして、ほぼ線対称に形成されている。
 また、各相用バスバー30U,30V,30Wは、それぞれ周方向に隣接する同相のコイル12同士を直列接続するための接続用バスバー30Jを有している。
(接続バスバー)
 図10は、接続用バスバー30Jの平面図である。
 同図に示すように、接続用バスバー30Jの基本的構成も前述の各相用バスバー30U,30V,30Wと同様である。すなわち、接続用バスバー30Jは、第1本体131Jと第2本体231Jとが連続形成されて成るバスバー本体31Jを有している。
 バスバー本体31Jは、隣接する同相のコイル12の各々直列接続する側の端末部同士に跨るように延在している。
 また、第1本体131Jの曲率半径はR7に設定されている一方、第2本体231Jの曲率半径はR8に設定されている。そして、これら曲率半径R7、及び曲率半径R8は、
 R7≒R8・・・(4)
 を満たし、且つ各相用バスバー30U,30V,30Wを径方向に並べた状態で各バスバー本体31U,31V,31Wと干渉しない大きさに設定されている。
 さらに、バスバー本体31Jの延在方向両端、つまり、第1本体131Jの一端、及び第2本体231Jの一端には、それぞれ接続端子35Jが形成されている。ここで、接続端子35Jの構成は、各相端子35U,35V,35Wと同一構成であるので、詳細な説明を省略する。
(中性点用バスバー)
 次に、図11に基づいて、中性点用バスバー30Nについて説明する。
 図11は、中性点用バスバー30Nの斜視図である。
 同図に示すように、中性点用バスバー30Nは、各相用バスバー30U,30V,30Wと同様に、銅等からなる帯状の金属板材をプレス加工等により打ち抜いたものであって、厚さ方向を湾曲させて略円環状に形成されたバスバー本体31Nを有している。バスバー本体31Nの半径R9は、
 R7<R9・・・(5)
 R8<R9・・・(6)
 を満たすように設定されている。
 また、バスバー本体31Nには、各相のコイル12の中性点として結線される側の端末部に対応する位置に、それぞれ中性点端子35Nが形成されている。すなわち、この実施形態においては、バスバー本体31Nに6つの中性点端子35Nが形成されている。
 ここで、中性点端子35Nの構成は、各相端子35U,35V,35Wと同一構成であるので、詳細な説明を省略する。
(バスバーホルダ)
 次に、図1、図6、図12、図13に基づいて、バスバーホルダ51について説明をする。図12は、図6のA部の拡大斜視図、図13は、図6のA部を裏側からみた平面図である。
 図1、図6に示すように、バスバーホルダ51は、接続バスバーJを含む各相用バスバー30U,30V,30Wと、中性点用バスバー30Nとを収容可能なホルダ本体52を有している。
 ホルダ本体52は、樹脂等の絶縁部材により略リング状に形成されている。ホルダ本体52には、接続用バスバー30Jを含む各相用バスバー30U,30V,30W、及び中性点用バスバー30Nの各々バスバー本体31U,31V,31W,31J,31Nを、軸方向一方側から挿入可能な溝部53U,53V,53W,53J,53Nが形成されている。すなわち、各溝部53U,53V,53W,53J,53Nは、軸方向一方側が開口するように形成されている。
 また、ホルダ本体52の外周縁には、各相用バスバー30U,30V,30Wの給電部39U,39V,39Wを載置可能な台座部55が径方向外側に向かって延出形成されている。台座部55は、軸方向平面視で周方向に長くなるように略長方形状に形成されている。そして、台座部55の長手方向、つまり、ホルダ本体52の周方向に沿って各給電部39U,39V,39WがU相、V相、W相の順に並列配置されている。
 各溝部53U,53V,53W,53J,53Nは、各給電部39U,39V,39WがU相、V相、W相の順に並列配置されるように形成されている。すなわち、ホルダ本体52の最内周側に、接続用バスバー30Jのバスバー本体31Jを挿入可能な溝部53Jが6つ形成されている。また、この溝部53Jよりも径方向外側に、中性点用バスバー30Nのバスバー本体31Nを挿入可能な溝部53Nが形成されている。さらに、この溝部53Nよりも径方向外側に、V相用バスバー30Vのバスバー本体31Vを挿入可能な溝部53Vが形成されている。そして、この溝部53Vよりも径方向外側に、U相用バスバー30Uのバスバー本体31Uを挿入可能な溝部53Uと、W相用バスバー30Wのバスバー本体31Wを挿入可能な溝部53Wとが形成されている。
 ここで、図12、図13に詳示するように、各溝部53U,53V,53W,53J,53Nの開口縁の一部には、それぞれ各溝部53U,53V,53W,53J,53Nから各相用バスバー30U,30V,30W、接続用バスバー30J、及び中性点用バスバー30Nの抜けを防止するための抜け止め爪57a,57bが形成されている。
 ホルダ本体52の抜け止め爪57a,57bが形成されている箇所の軸方向他方側には、不図示の金型の型抜き用の孔58が形成されている。この型抜き用の孔58を利用することにより、抜け止め爪57a,57bのアンダーカット部(不図示)を容易に形成することができる。これにより、ホルダ本体52の製造コストを低減できる。
 このように、ホルダ本体52に各溝部53U,53V,53W,53J,53Nを形成することにより、ホルダ本体52には径方向内側から順に、接続用バスバー30J、中性点用バスバー30N、V相用バスバー30Vが配置され、ホルダ本体52の最外周側に、U相用バスバー30U、及びW相用バスバー30Wが配置される。
 ここで、各相用バスバー30U,30V,30W、及び接続用バスバー30Jのバスバー本体31U,31V,31W,31Jを構成する第1本体131U,131V,131W,131J、及び第2本体231U,231V,231W,231Jの各曲率半径R1~R8と、中性点用バスバー30Nのバスバー本体31Nの半径R9は、それぞれ式(1)~式(6)を満たすように設定されている。
 これにより、径方向における各バスバー本体31U~31Nの隙間が最小限に抑えられている。とりわけ、図6に示すように、U相用バスバー30Uの第2本体231Uと、W相用バスバー30Wの第2本体231Wとが、先端に向かうに従って径方向内側に変位した状態になり、これら第2本体231U,231Wと、中性点用バスバー30Nのバスバー本体31Nとの間に、余分な隙間ができてしまうのが抑制される。
 また、ホルダ本体52の内径E1は、ステータコア10に装着されているインシュレータ11の外周壁部11cの直径E2(図1参照)よりも大きく設定されている。これにより、図1に示すように、バスバーユニット50は、インシュレータ11よりも径方向外側に配置された状態で、且つインシュレータ11と軸方向でラップする位置に配置された状態になる。ステータコア10が圧入固定されているステータハウジング2の筒部2dには、バスバーユニット50に対応する位置に、バスバーユニット50を受け入れる拡径部92が段差により形成されている。
 この拡径部92にホルダ本体52の外周面が内嵌され、バスバーユニット50の径方向の位置決めが行われる。また、拡径部92の段差面92aにホルダ本体52が載置された形でバスバーユニット50の軸方向の位置決めが行われる。さらに、ホルダ本体52の外周面には、軸方向に沿って位置決め溝56が形成されている一方、ステータハウジング2の拡径部92には、位置決め溝56に臨まされる凸部(不図示)が形成されている。これにより、バスバーユニット50の周方向の位置決めが行われる。
 ここで、インシュレータ11よりも径方向外側にバスバーユニット50が配置された状態で、ホルダ本体52から径方向内側に向かって各端子35U,35V,35W,35J,35Nが延出しているので、これら各端子35U,35V,35W,35J,35Nが各ティース部64のほぼ軸方向上方に位置した形になる。このため、各ティース部64から引き出されたコイル12の端末部の配索経路を単純化することができる。
 このように構成されたバスバーユニット50によって、各相のコイル12は以下のように結線される。
 図14は、コイル12の結線図である。
 すなわち、同図に示すように、バスバーユニット50の各相用バスバー30U,30V,30Wの各相端子35U,35V,35W、接続用バスバー30Jの接続端子35J、及び中性点用バスバー30Nの接続端子35Nに、それぞれ各相のコイル12の所定の端末部が接続されることにより、各相のコイル12は、所謂スター結線方式にて結線された状態になる。また、各ティース部64にコイル12を巻回するにあたって、それぞれのティース部64に2本のコイル12を巻回し、これら2本のコイル12の端末同士を結線する所謂ダブル巻が採用されている(図3、図5参照)。
 具体的には、例えば、U相のコイル12は、コイル12Ua,12Ubが並列に接続される。また、コイル12Ua,12Ubと、コイル12Uc,12Udが、直列に接続される。さらに、コイル12Ua,12Ub、12Uc,12Udと、コイル12Ue,12Uf、12Ug,12Uhが、並列に接続される。このようにして、各相のコイル12は、それぞれ並列回路を構成している。
 尚、V相のコイル12及びW相のコイル12もU相のコイル12と同様に構成されている。このため、V相のコイル12及びW相のコイル12についての記載は省略する。
(ブラケット)
 図1、図2に戻り、ステータハウジング2の開口部2aには、外フランジ部2eが形成されており、この外フランジ部2eに載置されるようにブラケット7が設けられている。
 ブラケット7は、ステータハウジング2の開口部2aを閉塞するように略円板状に形成されている。ブラケット7の径方向中央には、回転シャフト6が挿通される挿通孔71が形成されている。この挿通孔71の内面側(ステータ3側の面、図1における右側の面)に、回転シャフト6を回転自在に支持するための軸受21が設けられている。一方、挿通孔71の外面側(図1における左側)には、挿通孔71と回転シャフト6との間のシール性を確保するためのシール部72が設けられている。
 また、ブラケット7の外周部には、このブラケット7とステータハウジング2とを不図示のボルト等で締結固定するための複数(この実施形態では3つ)の貫通孔73が周方向に等間隔で形成されている。
 ここで、ステータハウジング2の外フランジ部2eには、ブラケット7の貫通孔73に対応する箇所に、径方向外側に向かって延出する舌片部18が形成されている。この舌片部18に、ブラケット7の貫通孔73に対応する貫通孔18aが形成されている。
 舌片部18には、貫通孔18aの他に、電動自動二輪車の車体にブラシレスモータ1を固定するための取り付け孔18bが形成されていると共に、ステータハウジング2とブラケット7との位置決めを行うための位置決めピン(不図示)が挿入される孔18cが設けられている。
 また、ステータハウジング2の外フランジ部2eには、バスバーユニット50の給電部39U,39V,39Wに対応する箇所に、軸方向平面視で略長方形状のグロメット受部19が周方向に長くなるように形成されている。このグロメット受部19は、ブラケット7と協働してバスバーユニット50の給電部39U,39V,39Wに取り付けられているグロメット54を挟持するためのものである。ブラケット7の外周部には、グロメット54を受け入れ可能なグロメット収納凹部74が形成されている。
 グロメット54は、ステータハウジング2とブラケット7との間、及びこれらステータハウジング2やブラケット7と、バスバーユニット50の給電部39U,39V,39Wとの間のシール性を高めるためのものである。グロメット54は、例えば、ゴム等の弾性材によりステータハウジング2の周方向に沿って長くなるように、換言すれば、給電部39U,39V,39Wの配列方向に長くなるように、略直方体状に形成されている。そして、給電部39U,39V,39Wに対応する位置に、これら給電部39U,39V,39Wを挿通可能な挿通孔54aが形成されている。
 また、グロメット54には、ステータハウジング2のグロメット受部19に当接する一側面54bに、長手方向に沿うガスケット溜り溝55aが形成されている。また、グロメット54の長手方向両端側には、ステータハウジング2の軸方向に沿うガスケット流通孔55bが形成されている。
 各ガスケット流通孔55bは、ガスケット溜り溝55aと連通されている。これらガスケット溜り溝55a、及びガスケット流通孔55bは、ブラシレスモータ1の組み立て時に塗布される液状ガスケットGが充填される箇所である。
(ブラシレスモータの組み立て)
 ここで、ブラシレスモータ1を組み立てるにあたって、ステータハウジング2の筒部2dにステータ3を圧入し、さらに、その上からグロメット54を装着した状態でバスバーユニット50をセットすると共にロータ4をセットし、最後にステータハウジング2の開口部2aを閉塞するようにブラケット7を組付ける。このブラケット7を組付ける際、このブラケット7とステータハウジング2との間のシール性を高めるために、液状ガスケットGが塗布される。
 すなわち、図2に詳示するように、ステータハウジング2にステータ3、ロータ4、及びバスバーユニット50を組付けた後であって、ブラケット7を組付ける前に、ステータハウジング2の外フランジ部2eと、ブラケット7の外周部との間に、液状ガスケットGが塗布される。また、グロメット54におけるグロメット受部19とは反対側の他側面54cに、液状ガスケットGが塗布される。
 さらに、グロメット54に形成されているガスケット流通孔55bに液状ガスケットGを注入する。すると、液状ガスケットGが、ガスケット流通孔55bを通ってガスケット溜り溝55aに充填される。このため、ステータハウジング2にバスバーユニット50を組付けた後に液状ガスケットGを塗布する場合であっても、ステータハウジング2のグロメット受部19とグロメット54との間に、液状ガスケットGを容易に行き渡らせることができる。
 このように、ステータハウジング2の外フランジ部2eに沿って液状ガスケットGを塗布した後、ステータハウジング2とブラケット7とを不図示のボルトによって締結固定することにより、ブラシレスモータ1の組み立てが完了する。
(効果)
 したがって、上述の実施形態によれば、バスバーユニット50のホルダ本体52の内径E1を、ステータコア10に装着されているインシュレータ11の外周壁部11cの直径E2よりも大きく設定することにより、ステータハウジング2内において、バスバーユニット50とインシュレータ11とを軸方向でラップする位置に配置することができる。
 このため、この分、ステータコア10からバスバーユニット50までの高さH1(図1参照)を抑えることができる。この結果、ブラシレスモータ1の軸方向の長さを短くすることができ、ブラシレスモータ1の小型化を図ることができる。
 また、インシュレータ11よりも径方向外側にバスバーユニット50が配置された状態で、ホルダ本体52から径方向内側に向かって各端子35U,35V,35W,35J,35Nが延出しているので、これら各端子35U,35V,35W,35J,35Nが各ティース部64のほぼ軸方向上方に位置した形になる。このため、各ティース部64から引き出されたコイル12の端末部の配索経路を単純化することができる。
 さらに、インシュレータ11よりも径方向外側にバスバーユニット50が配置されていることから、各ティース部64の軸方向上方に空間を確保しやすく、コイル12で発生した熱の放熱効果を高めることができる。このため、ブラシレスモータ1の温度上昇を抑えることができ、ブラシレスモータ1のモータ効率を高めることが可能になる。
 そして、ステータコア10から生じた熱がバスバーユニット50に伝達されにくくなるので、より確実にバスバーユニット50の温度上昇を抑えることができ、この結果、さらにブラシレスモータ1のモータ効率を高めることが可能になる。
 また、各相用バスバー30U,30V,30W、及び接続用バスバー30Jのバスバー本体31U,31V,31W,31Jを、それぞれ曲率半径の異なる第1本体131U,131V,131W,131Jと、第2本体231U,231V,231W,231Jとを連続形成することにより構成している。すなわち、第1本体131U,131V,131W,131J、及び第2本体231U,231V,231W,231Jの各曲率半径R1~R8と、中性点用バスバー30Nのバスバー本体31Nの半径R9を、それぞれ式(1)~式(6)を満たすように設定している。
 このため、径方向における各バスバー本体31U~31Nの隙間が最小限に抑えることができる。とりわけ、U相用バスバー30Uの第2本体231U、及びW相用バスバー30Wの第2本体231Wと、中性点用バスバー30Nのバスバー本体31Nとの間に、余分な隙間ができてしまうのを防止できる。よって、バスバーユニット50の径方向を縮径化でき、この結果、ブラシレスモータ1を小型化することが可能になる。
 ここで、各相用バスバー30U,30V,30W、及び接続用バスバー30Jのバスバー本体31U,31V,31W,31Jの延在方向の途中に屈曲部を形成することにより、各バスバー30U,30V,30W,30Jの径を変化させ、バスバーユニット50の径方向を縮径化することも考えられる。しかしながら、屈曲部を形成せずに連続的に各バスバー本体31U,31V,31W,31Jの曲率半径を変化させることにより、各相用バスバー30U,30V,30W、及び接続用バスバー30Jを形成するのが容易になり、製造コストを抑えることができる。
 さらに、接続用バスバー30Jを含む各相用バスバー30U,30V,30W、及び中性点用バスバー30Nを一体化するために、各溝部53U,53V,53W,53J,53Nが形成されたホルダ本体52を用いている。そして、ホルダ本体52の各溝部53U,53V,53W,53J,53Nの開口縁の一部に、それぞれ抜け止め爪57a,57bを形成することにより、ホルダ本体52からの接続用バスバー30Jを含む各相用バスバー30U,30V,30W、及び中性点用バスバー30Nの抜けを確実に防止できる。このように、接続用バスバー30Jを含む各相用バスバー30U,30V,30W、及び中性点用バスバー30Nを一体化するために、これらを樹脂モールド体によってモールドする必要がないので、モールドするための大掛かりな設備が必要なくなる。バスバーユニット50を製造するための設備を従来よりも簡素化でき、バスバーユニット50の製造コストを低減できる。
 また、抜け止め爪57a,57bを形成して抜け止めとしていることから、接続用バスバー30Jを含む各相用バスバー30U,30V,30W、及び中性点用バスバー30Nと、各溝部53U,53V,53W,53J,53Nの寸法公差を高精度に管理する必要がない。このため、各バスバー30U,30V,30W,30J,30N、及びホルダ本体52を容易に製造することができ、製造コストを低減できる。
 そして、各バスバー本体31U,31V,31W,31Jの形状を、各溝部53U,53V,53W,53Jの形状と異なる形状とし、各バスバー本体31U,31V,31W,31Jの弾性で保持する場合に対し、確実に各バスバー本体31U,31V,31W,31Jを保持することが可能になる。
 また、ホルダ本体52の抜け止め爪57a,57bが形成されている箇所の軸方向他方側に、不図示の金型の型抜き用の孔58を形成している。この型抜き用の孔58を利用することにより、抜け止め爪57a,57bのアンダーカット部(不図示)を容易に形成することができる。これにより、不図示の金型の構造を簡素化でき、この結果、ホルダ本体52の製造コストを低減できる。
 さらに、各ティース部64にコイル12を巻回するにあたって、それぞれのティース部64に2本のコイル12を巻回し、これら2本のコイル12の端末同士を結線する所謂ダブル巻を採用している。これにより、各相のコイル12がそれぞれ並列回路を成しているので、コイル12の線径を細径化しながら各ティース部64に巻回されるコイル12の総抵抗を抑制することができる。このため、コイル12を細径化できる分、巻回作業を容易にすることができると共に、太径のコイルと比較してデッドスペースを減少させることができ、占積率を向上させることができる。
 そして、各ティース部64にコイル12を巻回するにあたって、ティース部64への巻回途中(本実施形態では28回目と29回目との間)に、コイル12にループ部12aを形成し、後にこのループ部12aを切断することにより、ティース部64に1本のコイル12を連続して巻回しながら、ダブル巻としている。
 このため、通常のダブル巻と比較して巻回作業の時間を短縮することができる。また、コイル12を巻装するための装置のコストを低減することができる。すなわち、例えば、ダブル巻を行う場合、2本のノズルを用いて2本のコイルを同時にティース部64に巻装するための設備が必要となる場合がある。しかしながら、本実施形態では、1本のノズルを用い、この1本のノズルを操作するだけでダブル巻とすることができる。よって、コイル12を巻装するための装置のコストを確実に低減することができる。
 また、バスバーユニット50の給電部39U,39V,39Wに装着されるグロメット54の一側面54bにガスケット溜り溝55aを形成すると共に、グロメット54の長手方向両端側に、ガスケット流通孔55bが形成されている。このため、ステータハウジング2にバスバーユニット50を組付けた後に液状ガスケットGを塗布する場合であっても、ステータハウジング2のグロメット受部19とグロメット54との間に、液状ガスケットGを容易に行き渡らせることができる。よって、ステータハウジング2とブラケット7との間のシール性を確実に高めることができる。
 尚、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上述の実施形態では、ブラシレスモータ1は、電動自動二輪車に用いられるものである場合について説明した。しかしながら、これに限られるものではなく、バスバーユニット50を備えた種々の電動モータに本実施形態のブラシレスモータ1の構造を適用することが可能である。
 また、上述の実施形態では、各ティース部64へのコイル12の巻回数を28回とした場合について説明した。しかしながら、ティース部64への巻回数は、28回に限られるものではなく、所望のモータ特性を得るために適宜巻回数を変更することが可能である。
 さらに、上述の実施形態では、バスバーユニット50は、各相のコイル12の一方の端末部と接続される各相用バスバー(U相用バスバー30U、V相用バスバー30V、W相用バスバー30W)と、各相のコイル12の他方の端末部と接続される中性点用バスバー30Nとを有し、この中性点用バスバー30Nにより、各相のコイル12を所謂スター結線方式にて結線している場合について説明した。しかしながら、これに限られるものではなく、中性点を有さない、所謂デルタ結線方式についても、本発明の構成を適用することができる。この場合、バスバーユニット50は、中性点用バスバー30Nを有さない構成となる。
 そして、上述の実施形態では、グロメット54は、例えば、ゴム等の弾性材により形成されている場合について説明した。しかしながら、これに限られるものではなく、ステータハウジング2とブラケット7との間のシール性を確保できる材料により形成されていればよい。例えば、ゴムに代わって樹脂材によりグロメット54を形成してもよい。
 また、上述の実施形態では、バスバーユニット50の給電部39U,39V,39Wに取り付けられているグロメット54には、ステータハウジング2のグロメット受部19に当接する一側面54bに、長手方向に沿うガスケット溜り溝55aを形成し、ステータハウジング2のグロメット受部19とグロメット54との間のシール性を高めている場合について説明した。しかしながら、これに限られるものではなく、グロメット54に、以下のようなガスケット溜り溝155aを形成してもよい。
(変形例)
 図15は、本実施形態の変形例におけるグロメット154の平面図である。尚、図15において、上述の実施形態と同一態様には同一符号を付して説明を省略する。
 同図に示すように、グロメット54の長手方向両端側には、ステータハウジング2の軸方向に沿うガスケット流通孔55bが形成されている。また、グロメット54の長手方向両端側には、ステータハウジング2のグロメット受部19に当接する一側面54bに、軸方向平面視で略L字状のガスケット溜り溝155が2つ形成されている。
 ガスケット溜り溝155について詳述すると、各ガスケット溜り溝155は、それぞれガスケット流通孔55bと連通されている。ガスケット溜り溝155は、ガスケット流通孔55bから給電部39U,39V,39Wの延在方向に沿うように径方向外側に向かって延出する第1溝部155aと、ガスケット流通孔55bからステータハウジング2の周方向に沿うように外側に向かって延出する第2溝部155bとを有している。そして、これら第1溝部155aと第2溝部155bとが連通形成され、軸方向平面視で略L字状になっている。このようにグロメット54にガスケット溜り溝155を形成した場合であっても、前述の実施形態と同様の効果を奏することができる。
 上述のブラシレスモータによれば、インシュレータとバスバーユニットを軸方向でラップさせることができる。このため、この分、ステータコアからバスバーユニットまでの高さを抑えることができ、この結果、ブラシレスモータの軸方向の長さを短くすることができ、ブラシレスモータの小型化を図ることができる。
1 ブラシレスモータ
4 ロータ
10 ステータコア
11 インシュレータ
12 コイル
12a ループ部
30J 接続用バスバー(相用バスバー)
30N 中性点用バスバー
30U U相用バスバー(相用バスバー)
30V V相用バスバー(相用バスバー)
30W W相用バスバー(相用バスバー)
31J,31N,31U,31V,31W バスバー本体
35J 接続端子(相端子)
35N 中性点端子
35U U相端子(相端子)
35V V相端子(相端子)
35W W相端子(相端子)
50 バスバーユニット
51 バスバーホルダ
52 ホルダ本体
53J,53N,53U,53V,53W 溝部(溝)
54 グロメット
54b 一側面(他方の平面)
55a ガスケット溜り溝
55b ガスケット流通孔
57a,57b 抜け止め爪
64 ティース部(ティース)
E1 内径
E2 直径
G 液状ガスケット(液状シール材)
R1~R9 曲率半径

Claims (5)

  1.  ステータコアと、
     このステータコアの径方向内側に配置され、前記ステータコアに対して回転自在に支持されているロータと、
     前記ステータコアにインシュレータを介して巻回された複数の相のコイルに、給電を行うためのリング状のバスバーユニットとを備えたブラシレスモータであって、
     前記バスバーユニットは、
      相毎に設けられ、前記コイルの一端と接続される相端子を有する湾曲状の複数の相用バスバーと、
     前記複数の相用バスバーを保持する絶縁部材からなるリング状のバスバーホルダとを備え、
     前記バスバーホルダの内周面の直径を、前記インシュレータの外周面の直径よりも大きく設定し、前記インシュレータよりも径方向外側に、前記バスバーユニットを配置したブラシレスモータ。
  2.  前記複数の相用バスバーは、帯状の金属板の厚さ方向を湾曲形成して成り、各相用バスバーが径方向に並んで配置され、
     各相用バスバーのうちの少なくとも1つは、周方向の途中から曲率半径が変化するように形成されている請求項1に記載のブラシレスモータ。
  3.  前記バスバーホルダは、リング状に形成されたホルダ本体を有し、このホルダ本体に、軸方向一方側から前記複数の相用バスバーを挿入可能な複数の溝が径方向に並んで形成されており、
     各溝の開口縁の少なくとも一部に、前記複数の相用バスバーの抜けを防止するための抜け止め爪が形成されている請求項1又は請求項2に記載のブラシレスモータ。
  4.  前記ステータコアの各ティースに、それぞれ2本の前記コイルが並列回路を成すように巻回されている請求項1~請求項3の何れか1項に記載のブラシレスモータ。
  5.  前記バスバーユニットはグロメットを備え、
     前記グロメットは、
      前記グロメットの一方の平面から形成され、液状シール材を注入するためのガスケット流通孔と、
      前記グロメットの他方の平面の全域に渡って形成され、前記ガスケット流通孔に連通するガスケット溜り溝とを備えている請求項1~請求項4の何れか1項に記載のブラシレスモータ。
PCT/JP2013/060522 2012-04-13 2013-04-05 ブラシレスモータ WO2013154054A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380017893.4A CN104205579B8 (zh) 2012-04-13 2013-04-05 无刷电动机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-092148 2012-04-13
JP2012092148A JP5818737B2 (ja) 2012-04-13 2012-04-13 ブラシレスモータ

Publications (1)

Publication Number Publication Date
WO2013154054A1 true WO2013154054A1 (ja) 2013-10-17

Family

ID=49327619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060522 WO2013154054A1 (ja) 2012-04-13 2013-04-05 ブラシレスモータ

Country Status (3)

Country Link
JP (1) JP5818737B2 (ja)
CN (1) CN104205579B8 (ja)
WO (1) WO2013154054A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018964A1 (fr) * 2014-03-24 2015-09-25 Valeo Equip Electr Moteur Element d'interconnexion pour le branchement des bobines du stator
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
WO2016184720A1 (de) * 2015-05-18 2016-11-24 Robert Bosch Gmbh Stator für eine elektrische maschine, sowie verfahren zur herstellung eines solchen
WO2018174252A1 (en) * 2017-03-24 2018-09-27 Nidec Corporation Electric motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287784B2 (ja) * 2014-11-28 2018-03-07 日本電産株式会社 モータ
JP2020043734A (ja) * 2018-09-13 2020-03-19 本田技研工業株式会社 回転電機用ステータコアおよび回転電機
KR20200087474A (ko) * 2019-01-11 2020-07-21 엘지이노텍 주식회사 모터

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325482A (ja) * 2006-06-05 2007-12-13 Nippon Densan Corp ブラシレスモータ
JP2008187875A (ja) * 2007-01-31 2008-08-14 Aichi Elec Co 回転機用巻線接続装置、回転機用固定子及び回転機
JP2009261220A (ja) * 2008-03-19 2009-11-05 Toyota Motor Corp 固定子製造方法
JP2012029348A (ja) * 2010-07-20 2012-02-09 Yaskawa Electric Corp 固定子、回転電機、および巻線方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035616A (ja) * 2006-07-28 2008-02-14 Aisin Seiki Co Ltd モータ
JP4617342B2 (ja) * 2007-10-29 2011-01-26 三菱電機株式会社 スタータ
JP4546546B2 (ja) * 2008-01-10 2010-09-15 ホーチキ株式会社 直列ユニット
JP5578072B2 (ja) * 2008-03-13 2014-08-27 日本電産株式会社 バスバー端子、バスバーユニット、および、モータ
JP5334441B2 (ja) * 2008-03-28 2013-11-06 三洋電機株式会社 電動機
JP2010028914A (ja) * 2008-07-16 2010-02-04 Sumitomo Electric Ind Ltd 樹脂モールドコイル、樹脂モールドステータ及びステータの製造方法
JP4924595B2 (ja) * 2008-12-09 2012-04-25 日産自動車株式会社 集中巻モータ用の集中配電部材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007325482A (ja) * 2006-06-05 2007-12-13 Nippon Densan Corp ブラシレスモータ
JP2008187875A (ja) * 2007-01-31 2008-08-14 Aichi Elec Co 回転機用巻線接続装置、回転機用固定子及び回転機
JP2009261220A (ja) * 2008-03-19 2009-11-05 Toyota Motor Corp 固定子製造方法
JP2012029348A (ja) * 2010-07-20 2012-02-09 Yaskawa Electric Corp 固定子、回転電機、および巻線方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018964A1 (fr) * 2014-03-24 2015-09-25 Valeo Equip Electr Moteur Element d'interconnexion pour le branchement des bobines du stator
WO2015145007A3 (fr) * 2014-03-24 2016-03-10 Valeo Equipements Electriques Moteur Élément d'interconnexion pour le branchement des bobines du stator
US10256692B2 (en) 2014-03-24 2019-04-09 Valeo Equipements Electriques Moteur Interconnection element for connection of stator coils
EP3072943A1 (en) 2015-03-26 2016-09-28 Idemitsu Kosan Co., Ltd. Dibenzofuran/carbazole-substituted benzonitriles
WO2016184720A1 (de) * 2015-05-18 2016-11-24 Robert Bosch Gmbh Stator für eine elektrische maschine, sowie verfahren zur herstellung eines solchen
WO2018174252A1 (en) * 2017-03-24 2018-09-27 Nidec Corporation Electric motor
JP2020511920A (ja) * 2017-03-24 2020-04-16 日本電産株式会社 電動機
US11038392B2 (en) 2017-03-24 2021-06-15 Nidec Corporation Electric motor

Also Published As

Publication number Publication date
CN104205579B (zh) 2016-11-09
CN104205579A (zh) 2014-12-10
CN104205579B8 (zh) 2017-04-12
JP2013223293A (ja) 2013-10-28
JP5818737B2 (ja) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5818737B2 (ja) ブラシレスモータ
JP4404199B2 (ja) 同期電動機
JP6068953B2 (ja) 電動モータ
JP6135982B2 (ja) モータ
US7514829B2 (en) Busbar unit for an electric motor
EP3176912B1 (en) Stator and rotating machine
JP2014087087A (ja) ステータユニットおよびモータ
US10840656B2 (en) Bus bar unit and rotary electric machine having the same
JP6706583B2 (ja) ブラシレスモータ
JP5612405B2 (ja) ブラシレスモータ
JP5232547B2 (ja) 回転電機
JP2009225572A (ja) ステータ及びブラシレスモータ
JP5839627B2 (ja) ブラシレスモータ
WO2011155327A1 (ja) 電動機の突極集中巻きステータ及びその製造方法
JP2011045202A (ja) 回転電機用電機子及び絶縁部材
JP2014103834A (ja) 回転電機のステータ
JP6331950B2 (ja) ステータ
JP6485486B2 (ja) 三相モータ
US20200083773A1 (en) Motor
JP2019103354A (ja) 回転電機
CN211930351U (zh) 定子以及无刷马达
JP6496229B2 (ja) 回転電機
JP2012196043A (ja) 直流モータの巻線巻装方法、及び直流モータ
JP2012244839A (ja) 回転電機のステータ
JP2010063233A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775097

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775097

Country of ref document: EP

Kind code of ref document: A1