WO2011155327A1 - 電動機の突極集中巻きステータ及びその製造方法 - Google Patents

電動機の突極集中巻きステータ及びその製造方法 Download PDF

Info

Publication number
WO2011155327A1
WO2011155327A1 PCT/JP2011/061909 JP2011061909W WO2011155327A1 WO 2011155327 A1 WO2011155327 A1 WO 2011155327A1 JP 2011061909 W JP2011061909 W JP 2011061909W WO 2011155327 A1 WO2011155327 A1 WO 2011155327A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
stator
salient pole
coil
electric motor
Prior art date
Application number
PCT/JP2011/061909
Other languages
English (en)
French (fr)
Inventor
健 北折
健太郎 福井
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2012519333A priority Critical patent/JPWO2011155327A1/ja
Publication of WO2011155327A1 publication Critical patent/WO2011155327A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • H02K15/0442Loop windings
    • H02K15/045Form wound coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/06Machines characterised by the wiring leads, i.e. conducting wires for connecting the winding terminations

Definitions

  • the present invention relates to a salient pole concentrated winding stator of an electric motor mounted on an electric vehicle and a method for manufacturing the same.
  • a stator coil is wound around a plurality of teeth portions formed on an annular stator core (see, for example, Patent Document 2).
  • the stator coils wound around each tooth part are connected to each other in the same phase by the crossing part that straddles the stator coil of the other phase.
  • the crossing part is loosened, the winding becomes longer by that amount. Copper loss and material costs increase, and space factor decreases due to coil winding.
  • the stator coil may be unwound and may cause a short circuit due to contact with a metal part such as a housing, or contact with a stator coil or crossover part of another phase, resulting in a problem of reduced reliability.
  • the technique which prevents the malfunction by the slack of such a transition part is disclosed (for example, refer patent document 3, 4).
  • the stator core when performing parallel winding on the armature, the stator core is divided into half-round portions, and the winding is wound with the flyer reversed with respect to each half-turn. As a result, productivity in the winding to the armature is improved.
  • the length of the transition part when winding the split core is wound so as to be the same length as the transition part length in a state where the split core is connected in an annular shape, and the transition part is wound around the transition part. It is the optimal transition length that does not cause looseness or tension.
  • a protrusion is provided at the axial end of the insulator, and the remaining portion of the crossover is wound around the protrusion to adjust the length of the crossover, thereby generating slack. It is preventing.
  • a first object of the present invention is to improve the motor performance by increasing the space factor of the stator windings, and to simplify the stator manufacturing process.
  • An object of the present invention is to provide a salient pole concentrated winding stator of an electric motor capable of reducing the manufacturing cost and a manufacturing method thereof.
  • the second purpose is to simplify the manufacturing process of the stator, reduce the length of the transition part to reduce the copper loss, reduce the material cost, and further reduce the space factor due to the looseness of the transition part,
  • An object of the present invention is to provide a stator capable of preventing occurrence of a short circuit due to contact with a metal part or another phase.
  • the invention according to claim 1 is wound around adjacent teeth (for example, a tooth 11b in an embodiment described later) of a stator core (for example, a stator core 11 in an embodiment described later).
  • An electric motor for example, an outer rotor in an embodiment to be described later
  • a winding for example, a para-winding 14 in an embodiment to be described later
  • Type electric motor 1 salient pole concentrated winding stator (for example, salient pole concentrated winding stator 10 in an embodiment described later),
  • a coil wound around each tooth includes a first winding end (for example, a first winding end 41 in an embodiment described later) positioned on the radially outer side on one axial end side of the stator and one axial end of the stator.
  • a second winding end (for example, a second winding end 42 in an embodiment described later) located on the radially inner side of the side,
  • One of the first winding ends of the adjacent in-phase coils and the other second winding end of the same-phase coils are wound with the same winding by a crossing portion (for example, a crossing portion 14T in an embodiment described later) straddling a different phase coil.
  • the bridging portion is locked to the radially outer side of an outer winding support portion (for example, an outer winding support portion 30 in an embodiment described later) provided on the first winding end side radially outside the first winding end.
  • the second winding end side is locked to the radially inner side of the inner winding support portion (for example, the inner winding support portion 34 in the embodiment described later) provided radially inward from the second winding end.
  • An electric motor salient pole concentrated winding stator.
  • a virtual straight line connecting the outer winding support portion and the inner winding support portion has a length of the transition portion. It is characterized by being inclined so as to be shorter.
  • At least one of the outer winding support portion and the inner winding support portion is a side surface of the coil (for example, a shaft in an embodiment described later). It protrudes to the axial direction outer side from the direction one end side surface 13a).
  • the invention according to claim 4 is characterized in that, in addition to the structure of any one of claims 1 to 3, the outer winding support portion is separated from the coil in a radial direction from the inner winding support portion. To do.
  • the invention according to claim 5 is characterized in that, in addition to the structure according to any one of claims 1 to 4, the transition portion is bent.
  • At least one of the outer winding support portion and the inner winding support portion is an insulator (for example, an insulator in an embodiment described later). 12).
  • the salient pole concentrated winding stator has the coil wound around the plurality of teeth formed on the outer peripheral surface of the stator core.
  • a stator of an outer rotor type electric motor in which an annular rotor (for example, a rotor 4 in an embodiment described later) is disposed radially outside the salient pole concentrated winding stator.
  • the invention according to claim 8 is characterized in that, in addition to the configuration of claim 7, the outer rotor type electric motor is mounted on a vehicle.
  • the invention according to claim 9 is characterized in that an electric motor including the salient pole concentrated winding stator according to any one of claims 1 to 8 is mounted.
  • the invention according to claim 10 is a coil (for example, a coil in an embodiment to be described later) wound around a tooth (for example, a tooth 11b in an embodiment to be described later) of a stator core (for example, a stator core 11 in an embodiment to be described later). 13) is wound around each tooth of a stator (for example, salient pole concentrated winding stator 10 in the embodiment described later) wound with a winding (for example, a para-winding 14 in the embodiment described later) so that the phases are different from each other.
  • a stator for example, salient pole concentrated winding stator 10 in the embodiment described later
  • a winding for example, a para-winding 14 in the embodiment described later
  • the coil has a first winding end (for example, a first winding end 41 in an embodiment described later) positioned on the radially outer side on one end side in the axial direction of the stator and a radially inner side on the one axial end side of the stator. And a second winding end (for example, a second winding end 42 in an embodiment described later), One of the first winding ends of the adjacent in-phase coils and the other second winding end of the same-phase coils are wound with the same winding by a crossing portion (for example, a crossing portion 14T in an embodiment described later) straddling a different phase coil.
  • a crossing portion for example, a crossing portion 14T in an embodiment described later
  • the winding has a radially outer side of an outer winding support portion (for example, an outer winding support portion 30 in an embodiment described later) in which the first winding end side of the crossover portion is provided radially outward from the first winding end.
  • the second winding end side is engaged with the inner winding support portion (for example, the inner winding support portion 34 in the embodiment described later) provided radially inward from the second winding end.
  • a method of manufacturing a salient pole concentrated winding stator of a stopped and wound electric motor (for example, an outer rotor type electric motor 1 in an embodiment described later),
  • the winding is locked to one of the radially outer side of the outer winding support part and the radially inner side of the inner winding support part, and the winding is wound around the stator while applying tension.
  • the same winding is obtained by locking the winding to the other of the outer side of the outer side winding support part and the inner side of the inner side of the inner side winding support part and deriving the winding while applying tension.
  • Is provided with a step of forming a coil group (for example, a coil group 18 in an embodiment described later) including a plurality of coils having the same phase.
  • the invention according to Claim 11 further includes a step of simultaneously inserting the coils constituting the coil group into the teeth of the stator core from radially outward.
  • the invention according to claim 12 is wound around adjacent teeth (for example, teeth 11b in the later-described embodiment) of a stator core (for example, stator core 11 in the later-described embodiment).
  • An electric motor for example, an outer rotor type in an embodiment to be described later
  • a winding for example, a winding 14 in an embodiment to be described later
  • a coil for example, a coil 13 in the embodiment to be described later
  • a salient pole concentrated winding stator (for example, a stator 10 in an embodiment described later) of the electric motor 1),
  • the coil has a first winding end (for example, a first winding end 41 in an embodiment described later) positioned radially outward on one end side in the axial direction of the stator and a radially inner side on one end side in the axial direction of the stator.
  • a second winding end (for example, a second winding end 42 in the embodiment described later),
  • One of the first winding ends of the adjacent in-phase coils and the other second winding end of the same-phase coils are wound with the same winding by a crossing portion (for example, a crossing portion 14T in an embodiment described later) straddling a different phase coil.
  • An insulator for example, an insulator 12 in an embodiment described later
  • An outer support point for example, an outer support point D in an embodiment described later
  • an outer winding support portion for example, an outer winding support portion 30 in an embodiment described later
  • an inner support point for example, described later
  • An inner winding support portion (for example, an inner winding support portion 34 in an embodiment described later) that supports the winding at an inner support point E) in the embodiment,
  • the crossover portion has the first winding end side locked to the radially outer side of the outer winding support portion, and the second winding end side locked to the radially inner side of the inner winding support portion,
  • the inner support point, and an intersection point where the imaginary line drawn in the radial direction of the stator core in parallel with the center line of the teeth starting from the inner support point and the radially outer end of the teeth intersect for example, implementation described later
  • a perpendicular bisector for example, a vertical bisector G in an embodiment described later
  • a line segment for example, a line segment S in an embodiment described later
  • the length of the transition portion before assembly to the stator core (for example, a predetermined length L in an embodiment described later) is the inner support point. And a distance between the outer support point (for example, a distance L1 in the embodiment described later) and a distance between the intersection and the outer support point (for example, a distance L2 in the embodiment described later).
  • the length of the transition portion before assembly to the stator core is set to the same length as the distance between the inner support point and the outer support point. It is characterized by being.
  • the length of the transition portion before assembly to the stator core is set longer than the distance between the inner support point and the outer support point. It is characterized by.
  • the invention according to claim 16 includes, in addition to the configuration of any one of claims 12 to 15, an imaginary straight line connecting the outer support point and the inner support point of the same coil (for example, an embodiment described later)
  • the outer winding support portion and the inner winding support portion are arranged so that the imaginary straight line M) is inclined in a direction in which the length of the transition portion is shortened.
  • the invention according to claim 17 is characterized in that, in addition to the configuration of any one of claims 12 to 16, the outer winding support portion is provided in the insulator.
  • the invention according to claim 18 is characterized in that an electric motor including the salient pole concentrated winding stator according to any one of claims 12 to 17 is mounted.
  • tension is applied to the windings by the outer winding support portion and the inner winding support portion that lock the windings, whereby the winding is directly applied to the insulator or the teeth. Even if it winds, the winding thickness by the springback of a coil
  • the length of the transition portion can be shortened, and the copper loss can be reduced and the material cost can be reduced.
  • the crossing portion arranged across the different phase coils is difficult to contact the different phase coils.
  • the tension can be surely applied to the crossing portion by bending, and the space factor is increased by suppressing the winding-up due to the spring back, and the motor performance is improved.
  • the stator of the outer rotor type electric motor can be easily manufactured.
  • the winding can be wound in a tensioned state, and even if the winding is wound directly around the insulator or the teeth, the winding-up due to the springback is suppressed and the space factor is reduced. Can be increased.
  • the coils of the same phase can be wound with the same winding, the connection between the coils of the same phase is not required, thus reducing the manufacturing cost and shortening the length of the crossover portion to reduce the copper loss. Reduction of material cost is possible.
  • the eleventh aspect of the present invention it is not necessary to connect coils having the same phase to each other, the number of connecting members can be reduced, the number of assembling steps can be greatly reduced, the manufacturing process can be simplified, and the stator is inexpensive. Can be manufactured.
  • the coils after the coils are independently formed, they can be inserted and assembled into the teeth from the outside of the stator core in the radial direction, and the manufacturing process of the stator is simplified and the manufacturing cost is reduced. can do.
  • the length of the transition portion can be shortened, the copper loss can be reduced and the material cost can be reduced. Further, it is possible to increase the space factor by suppressing the thickening due to the loosening of the crossing portion, and it is possible to prevent the occurrence of a short circuit due to the contact with the metal portion or another phase.
  • the coil can be easily inserted into the teeth, tension can be applied to the transition portion, and the space factor can be increased by suppressing the winding thickness.
  • the crossover portion when the coil is assembled to the stator core, the crossover portion can be loosened, and even if an impact or vibration is applied, it is difficult to disconnect. Moreover, even if the crossing portion expands and contracts due to a temperature change, it is possible to prevent the occurrence of disconnection or coating peeling.
  • the length of the transition portion can be shortened, the copper loss can be reduced and the material cost can be reduced.
  • the seventeenth aspect of the present invention it is possible to easily form the outer winding support portion having an optimum shape for supporting the winding in a tensioned state, thereby reducing the manufacturing cost.
  • FIG. 6 is a sectional view taken along line BB in FIG. 5.
  • (A)-(c) is a front view which shows the process in which a coil
  • FIG. 1 is a longitudinal sectional view of an outer rotor type electric motor to which the stator of the present invention is applied.
  • the electric motor of the present embodiment is a three-phase, eight-pole outer rotor type electric motor 1, a stator 10 fixed to a motor housing 2 with bolts 3, and a slight gap on the outer peripheral side of the stator 10. And an annular rotor 4 disposed via the.
  • annular rotor yoke 6 in which a magnet 6b is embedded in a rotor core 6a formed by laminating electromagnetic steel plates is fixed to an inner peripheral surface 5a of an edge portion of a framed support member 5, and the motor housing 2 is provided.
  • a rotating shaft 8 that is rotatably supported by ball bearings 7 and 7 fitted therein.
  • the rotor 4 is rotationally driven by a rotating magnetic field generated in the stator 10.
  • a resolver 9 that detects the rotational speed of the rotary shaft 8 is disposed between the base portion 5 b of the support member 5 and the stator 10.
  • the stator 10 includes a stator core 11 and a plurality (24 in this embodiment) of coils 13 (13u, 13v, 13w).
  • the stator core 11 is formed by laminating a plurality of electromagnetic steel plates in the axial direction of the stator 10, that is, in a direction perpendicular to the paper surface in FIG. 3, and is formed to project radially outward from the annular support portion 11a.
  • a plurality (24) of teeth 11b are arranged in the circumferential direction.
  • the coil 13 is formed of a predetermined number of conductive wires 14 (in this embodiment, a para-winding composed of two conductive wires, hereinafter referred to as a para-winding) 14 made of a synthetic resin having insulating properties. It is formed by winding around each tooth 11b of the stator core 11 by means of salient pole concentrated winding via the insulator 12 made.
  • Each of the coils 13 includes eight U-phase, V-phase, and W-phase three-phase coils, and the U-phase coil 13u, the V-phase coil 13v, and the W-phase coil 13w are arranged in this order in the clockwise direction. It is wound around the teeth 11b. That is, the in-phase coils 13 (for example, the U-phase coil 13 u) disposed across the other-phase coils 13 (for example, the V-phase coil 13 v and the W-phase coil 13 w) straddle the other-phase coils 13. It is connected by the crossing part 14T routed.
  • Eight coils 13 (U-phase, V-phase and W-phase coils 13u, 13v, 13w) for each phase include one coil group 18 (U-phase, V-phase and W-phase coil groups 18u, 18v, 18w), respectively.
  • 8 coils 13 (U-phase, V-phase and W-phase coils 13u, 13v, 13w) belonging to each coil group 18 (U-phase, V-phase and W-phase coil groups 18u, 18v, 18w) are identical.
  • One end of the U-phase para winding 14u of the U-phase coil group 18u is connected to the U-phase connection terminal 15u
  • one end of the V-phase para winding 14v of the V-phase coil group 18v is connected to the V-phase connection terminal 15v
  • one end of the W-phase para winding 14w of the W-phase coil group 18w is connected to the W-phase connection terminal 15w.
  • the other end of the para-winding 14 (U-phase, V-phase, and W-phase para-winding 14u, 14u, 14v) of each coil group 18 (U-phase, V-phase, and W-phase coil groups 18u, 18v, 18w).
  • the part is connected to the midpoint terminal 16.
  • a plurality (six in this embodiment) of convex portions 11 c each having a bolt hole 17 are formed on the inner peripheral side of the support portion 11 a of the stator core 11.
  • the stator 10 is fixed to the motor housing 2 by the bolt 3 inserted through the bolt hole 17 (see FIG. 1).
  • the insulator 12 includes a body portion 24 around which the para-winding 14 is wound, an outer peripheral side flange portion 25 and an inner peripheral side provided at both radial ends of the body portion 24. And a collar portion 26.
  • the body portion 24 is formed in a cylindrical shape having a rectangular hole with a square hole 24a penetrating in the radial direction by the walls 20 and 21 opposed in the axial direction of the stator 10 and the walls 22 and 23 opposed in the circumferential direction of the stator 10. It is formed.
  • the size of the square hole 24a is slightly larger than the teeth 11b of the stator core 11, and the teeth 11b can be inserted therethrough.
  • a plurality of concave grooves 27 for positioning the para-winding 14 when the para-winding 14 is wound are provided in the walls 22 and 23 in a direction orthogonal to the axis of the square hole 24a. .
  • An outer partition wall 28 extending outward in the radial direction is formed at the end of the outer peripheral flange 25 on the wall 20 side.
  • An outer winding projecting toward one axial end opposite to the body portion 24 in the axial direction is provided at a corner between one circumferential end surface (left end surface in FIG. 5) 28a and the radially inner side surface 28b of the outer partition wall 28.
  • a support portion 30 is formed.
  • the outer winding support 30 has a side C connecting the radial intermediate portion of the circumferential one end surface 28a of the outer partition wall 28 and a portion of the radially inner side surface 28b that is approximately 3 center from the circumferential end.
  • a step portion 30 a parallel to the side C is provided between the inclined surface 30 c of the outer winding support portion 30 and the outer partition wall 28.
  • a guide protrusion 31 having a side surface substantially parallel to the one side C is formed at the intermediate portion in the circumferential direction of the outer partition wall 28 and at the radially inner portion thereof, facing the radially inner portion of the inclined surface 30c. Yes.
  • a groove 32 is formed between the inclined surface 30 c of the outer winding support 30 and the side surface of the guide protrusion 31.
  • the axial direction one end side part of the inner peripheral side collar part 26 is formed so as to be gradually widened from the one end surface side in the circumferential direction toward the other end surface (right end surface in FIG. 5) when viewed from the radial direction.
  • the thickness is gradually increased from the circumferential intermediate portion toward the other circumferential end surface.
  • a substantially triangular prism-shaped inner winding support 34 that protrudes toward one end in the axial direction is provided at the corner between the other circumferential end surface and the radially outer side surface of the inner circumferential flange 26.
  • an inclined surface 33 that is inclined inward in the radial direction from the circumferential intermediate portion toward the other circumferential end surface is formed at one axial end side portion of the inner circumferential flange portion 26.
  • a groove portion 35 is formed to face the radially inward inclined surface 34a of the inner winding support portion 34.
  • a parallax that is first wound along the wall 20 from the other end surface side in the circumferential direction to the one end surface side in the circumferential direction at the boundary portion between the axial end portion of the inner peripheral side flange portion 26 and the wall 20.
  • a guide portion 36 that is inclined with respect to the inner peripheral side flange portion 26 that guides the winding 14 is formed, and between the guide portion 36 and the inner peripheral side flange portion 26, a groove portion 35 is connected to the trunk portion.
  • a step portion 36a for guiding the para-winding 14 heading to 24 in the axial direction is formed.
  • the outer winding support portion 30 and the inner winding support portion 34 of the insulator 12 are such that a virtual straight line M connecting the outer winding support portion 30 and the inner winding support portion 34 passes through a circumferential intermediate portion of the insulator 12. Therefore, the length of the transition portion 14T can be shortened.
  • the coil 13 is formed by winding the para-winding 14 around the trunk portion 24 of the insulator 12 a plurality of times.
  • the coil 13 wound around the trunk portion 24 of the insulator 12 includes a first winding end 41 located on the radially outer side of the trunk portion 24 and a second winding end located on the radially inner side of the trunk portion 24. 42.
  • the para-winding 14 extending from the first winding end 41 toward the crossing portion 14T passes through the groove 32, and the inclined surface 30c is arranged such that the para-winding 14 is axially aligned with the radially outward inclined surface 30c.
  • the curved surface 30b of the outer winding support 30 is locked and supported at the outer support point D.
  • the para-winding 14 extending from the second winding end 42 toward the crossing portion 14T passes through the groove 35 obliquely downward so that the para-winding 14 is axially aligned with the radially inwardly inclined surface 34a, Locked to the inner winding support 34 and supported at the inner support point E.
  • the outer side winding support part 30 is farther from the coil 13 in the radial direction than the inner side winding support part 34, and the distance from the outermost diameter part of the coil 13 to the outermost diameter part of the outer winding support part 30.
  • H1 is larger than the distance H2 from the innermost diameter portion of the coil 13 to the innermost diameter portion of the inner winding support portion 34. This reliably prevents the para-winding 14 from interfering on the inner diameter side where the space is narrow.
  • FIG. 9 is an enlarged side view showing the vicinity of the outer partition wall 28 of the coil.
  • the outer winding support portion 30 and the inner winding support portion 34 protrude outward in the axial direction from the side surface 13a on one end side of the coil 13 in the axial direction. Be placed.
  • the distance X from the side surface 13 a of the wound coil 13 to the step portion 30 a of the outer winding support 30 is set to be longer than the width d of the para-winding 14.
  • the 1st winding end 41 side is supported by the outer side support point D of the outer side winding support part 30, and the 2nd winding end 42 side is the inner side of the inner side winding support part 34 of the coil 13 adjacent in the coil 13 of the same phase.
  • Even if the crossover portion 14T supported by the support point E is disposed across the different-phase coil 13, the crossover portion 14T is positioned away from the para-winding 14 of each coil 13 in the axial direction, so that contact is ensured. Is prevented.
  • FIG. 10 is an explanatory view showing a state in which the para-winding is wound around the insulator, and a plurality of (in this embodiment, eight) insulators 12 are held at predetermined intervals by the holder 50 with the outer partition wall 28 down. Is done.
  • the para-winding 14 is discharged by a nozzle 51 of a winding device that can rotate and move up and down around the insulator 12, and is wound around the plurality of insulators 12 sequentially.
  • the nozzle 51 that has finished winding the first winding end 41 of the para-winding 14 around the first insulator 12 ⁇ / b> A moves obliquely downward along the shape of the outer winding support 30, and moves the para-winding 14.
  • the para-winding 14 is supported by the outer support point D of the outer winding support 30 by being inserted into the groove 32 and wound around the curved surface 30 b and moving obliquely upward while applying tension.
  • winding 14 is inserted in the groove part 35 of the inner coil
  • the para-winding 14 is wound around the insulator 12 over a plurality of layers. More specifically, the para-winding 14 that has passed through the groove 35 between the inner winding support 34 and the inclined surface 33 is wound from the top to the bottom in the drawing to form the first layer winding 141. (FIG. 11 (a)).
  • the second layer winding 142 is located above the first layer winding 141 from the bottom to the top to substantially half the position of the first layer winding 141.
  • the third layer winding 143 is wound on the second layer winding 142 by further reversing the winding direction downward (FIG. 11B), and the outer winding support 30.
  • FIG. 11C Through the groove portion 32 between the winding guide 31 and the winding guide 31, and is guided downward by the step portion 30a
  • the same para-winding 14 is sequentially wound around the plurality of (eight) insulators 12 in succession, so that a plurality of coils 13 continuously wound by the same para-winding 14 can be obtained.
  • a coil group 18 is formed.
  • the para-winding 14 between the outer support point D of the first insulator 12A and the inner support point E of the second insulator 12B is a portion that becomes a transition portion 14T (see FIG. 2).
  • the length L is wound in a state set to a predetermined length.
  • the holder 50 holds the insulators 12 and 12 so that the distance between the outer support point D and the inner support point E of the adjacent insulators 12 and 12 becomes a predetermined length L. Wind the wire 14.
  • U-phase, V-phase, and U-phase, V-phase, and W-phase coil groups 18u, 18v, and 18w composed of a plurality of (eight) coils 13 wound continuously by the same para-winding 14;
  • the W-phase coils 13 u, 13 v, and 13 w are arranged in an annular shape radially outward corresponding to the teeth 11 b of the stator core 11. Then, all the coils 13 are simultaneously moved in the direction of reducing the diameter (arrow direction), and the square holes 24 a of the insulator 12 are inserted into the teeth 11 b of the stator core 11.
  • the space between the adjacent insulators 12 and 12 gradually increases toward the radially outward direction.
  • the coil 13 wound around the insulator 12 is formed so that the number of layers wound radially outward from the radially inner side is increased and the radially outer portion is expanded in the circumferential direction.
  • the space is filled with the para-winding 14 without waste, and the space factor can be improved.
  • the length in the circumferential direction is shortened, so that the transition portion 14T is slackened, but the stator core is formed in the square hole 24a of the insulator 12.
  • the transition portion 14T is locked to the outer support point D of the outer winding support portion 30 and the inner support point E of the inner winding support portion 34, as shown in FIG.
  • the slack is absorbed and tension is applied to the transition portion 14T.
  • one end of the U-phase para-coil 14u of the U-phase coil group 18u disposed on the stator core 11 is connected to the U-phase connection terminal 15u, and similarly, the V-phase para-coil 14v of the V-phase coil group 18v is connected. Is connected to the V-phase connection terminal 15v, and one end of the W-phase para winding 14w of the W-phase coil group 18w is connected to the W-phase connection terminal 15w. Then, the other end of each para-winding 14 (U-phase, V-phase, and W-phase para-winding 14u, 14v, 14w) is connected to the midpoint terminal 16 (see FIG. 2).
  • each coil 13 is connected to the second winding end 42 of the adjacent coil 13 with the first winding end 41 in the in-phase coil 13 straddling the coil 13 of the different phase via the crossing portion 14T.
  • the stator 10 connected to the phase star is assembled.
  • the coil 13 is connected to the first winding end 41 and the radially inner side on the radially outer side on the one axial end side of the stator 10. 2 winding ends 42.
  • One first winding end 41 and the other second winding end 42 of the in-phase coil 13 adjacent to each other are connected by the same para-winding 14 by a crossing portion 14T straddling the different-phase coil 13. Since the first winding end 41 side is locked to the outer side in the radial direction of the outer winding support portion 30 and the second winding end 42 side is locked to the inner side in the radial direction of the inner winding support portion 34.
  • the para-winding 14 is tensioned by the outer winding support portion 30 and the inner winding support portion 34 to be locked, so that the winding-up due to the springback can be suppressed and the space factor can be increased, and the motor performance Will improve.
  • the outer winding support portion 30 located radially outside the first winding end 41 of the same coil and the inner winding support portion 34 located radially inside of the second winding end 42, the outer winding support portion 30. Since the virtual straight line M connecting the inner winding support part 34 and the inner winding support part 34 is inclined so that the length of the transition part 14T is shortened, the length of the transition part 14T can be shortened, and the copper loss is reduced. Cost reduction is planned.
  • the bridge portion 14T disposed across the coil 13 of the different phase It becomes difficult to contact 13 and the insulation between phase coils is ensured.
  • outer winding support portion 30 is farther away from the coil 13 in the radial direction than the inner winding support portion 34, it is possible to effectively use the space on the outer side in the radial direction so that the para winding 14 It is possible to reliably apply tension to the para-winding 14 while preventing the interference.
  • the crossover part 14T is formed by bending, the slackness of the crossover part 14T can be absorbed and tension can be reliably applied to the para-winding 14, and the space factor can be reduced by suppressing the winding thickness due to the springback.
  • the motor performance is improved.
  • outer winding support 30 and the inner winding support 34 are provided in the insulator 12, the outer winding support 30 having an optimum shape for supporting the para-winding 14 in a state where tension is applied. And the inner side winding support part 34 can be formed easily and manufacturing cost can be suppressed.
  • the outer winding support portion 30 and the inner winding support portion 34 are not necessarily provided in the insulator 12, and may be provided in the tooth 11b and the para-winding 14 may be directly wound around the tooth 11b.
  • the salient pole concentrated winding stator 10 is a stator of an outer rotor type electric motor in which an annular rotor 4 is disposed on the radially outer side, the stator of the outer rotor type electric motor can be easily manufactured.
  • the outer rotor type electric motor is mounted on a vehicle, it is suitably used as an electric motor for driving an electric vehicle such as HEV, EV, FCV and the like.
  • the para-winding 14 is locked to one of the radially outer side of the outer winding support portion 30 and the radially inner side of the inner winding support portion 34 so that tension is applied to the para-winding 14 around the stator 10.
  • the para-winding 14 is engaged with the other of the outer side of the outer winding support 30 and the inner side of the inner winding support 34 in the radial direction so that tension is applied.
  • a coil group 18 composed of a plurality of coils 13 having the same phase is formed by the same para-winding 14, so that the para-winding 14 can be wound in a tensioned state and wound by springback.
  • the space factor can be increased by suppressing fatness.
  • the coils 13 constituting the coil group 18 are simultaneously inserted into the teeth 11b of the stator core 11 from the outside in the radial direction, it is not necessary to connect the coils 13 having the same phase, and the number of connecting members is reduced and the assembly is performed. The number of steps can be greatly reduced, the manufacturing process can be simplified, and the stator can be manufactured at low cost.
  • FIG. 13 is a front view of the stator of the second embodiment.
  • symbol is attached
  • the stator 10 includes an in-phase coil 13 (for example, a U-phase) that is disposed with a coil 13 of another phase (for example, a V-phase coil 13 v and a W-phase coil 13 w) interposed therebetween.
  • a crossing portion 14T straddling the coils 13u) is formed in a substantially linear shape.
  • the outer support point D of the insulator 12 includes the inner support point E of the adjacent insulator 12 in phase and the teeth starting from the inner support point E.
  • this intersection F means the position of the inner side support point E just before inserting the insulator 12 in the radial direction outer side edge part of the teeth 11b.
  • the outer support point D of the insulator 12 is a line segment S connecting the two points of the position F of the inner support point E just before insertion of the adjacent insulator 12 in phase and the inner support point E after insertion. It is set so as to be located radially outside of the perpendicular bisector G of
  • the length L of the portion that becomes the transition portion 14T of the para-winding 14 before the assembly to the stator core 11 is less than the distance L1 between the inner support point E and the outer support point D, and the intersection point. It is set to a distance L2 or more between F and the outer support point D.
  • the outer side winding support part 30 and the inner side winding support part 34 are arrange
  • the length L of the crossover part 14T becomes short.
  • the U-phase coil group 18u first, the insulator 12 of the first U-phase coil 13uA. Is inserted into the teeth 11b of the stator core 11 from outside in the radial direction and assembled. Next, the insulator 12 of the second U-phase coil 13uB is inserted into the three teeth 11b adjacent in the counterclockwise direction of the stator core 11 and assembled from the outside in the radial direction.
  • the third to eighth U-phase coil insulators are inserted into every second tooth 11b in the circumferential direction of the stator core 11 from the outside in the radial direction, and one turn of the stator 10 is assembled.
  • one end of the para-winding 14u of the U-phase coil group 18u is connected to the U-phase connection terminal 15u (see FIG. 13).
  • the eight V-phase and W-phase coils 13v and 13w of the V-phase and W-phase coil groups 18v and 18w are similarly inserted in the teeth 11b of the stator core 11 from the outside in the radial direction and assembled.
  • One end of the para-winding 14v of the V-phase coil group 18v is connected to the V-phase connection terminal 15v
  • one end of the para-winding 14w of the W-phase coil group 18w is connected to the W-phase connection terminal 15w.
  • the other end of each para-winding 14u, 14v, 14w is connected to the midpoint terminal 16 (see FIG. 13).
  • each coil 13 is connected to the second winding end 42 of the adjacent coil 13 with the first winding end 41 in the in-phase coil 13 straddling the coil 13 of the different phase via the crossing portion 14T.
  • the stator 10 connected to the phase star is assembled.
  • the outer winding support 30 side of the adjacent in-phase coils 13 faces each other. Since the outer support point D of the coil 13 is positioned radially outward from the vertical bisector G, the coil 13 is formed independently and then inserted into the teeth 11b from the radially outer side of the stator core 11 and assembled.
  • the manufacturing process of the stator 10 can be simplified and the manufacturing cost can be reduced.
  • the length L of the transition portion 14T before assembly to the stator core 11 is less than the distance L1 between the inner support point E and the outer support point D, and the intersection point F and the outer support point. Since the distance L is set to be greater than or equal to the distance L2, the length L of the transition portion 14T can be shortened. Thereby, copper loss can be reduced and material costs can be reduced. Further, it is possible to increase the space factor by suppressing the thickening due to the loosening of the crossover portion 14T, and it is possible to prevent the occurrence of a short circuit due to the contact with the metal portion or another phase.
  • the imaginary straight line M connecting the outer support point D and the inner support point E of the same coil 13 is inclined in the direction in which the length L of the transition portion 14T is shortened. Since the outer winding support portion 30 and the inner winding support portion 34 are disposed, the length L of the transition portion 14T can be shortened. Thereby, copper loss can be reduced and material costs can be reduced.
  • the outer winding support 30 is provided on the insulator 12, the outer winding support having an optimum shape for supporting the para-winding 14 in a tensioned state. 30 can be formed easily, and the manufacturing cost can be reduced.
  • the length L of the transition portion 14T before assembly to the stator core 11 is the same as the distance L1 between the inner support point E and the outer support point D.
  • the length may be set. According to the present modification, the coil 13 can be easily inserted into the teeth 11b, tension can be applied to the transition portion 14T, and the space factor can be increased by suppressing the winding thickness.
  • the length L of the transition portion 14T before assembly to the stator core 11 is longer than the distance L1 between the inner support point E and the outer support point D. It may be set. According to this modification, when the coil 13 is assembled to the stator core 11, the crossover portion 14 ⁇ / b> T can be loosened, and even if an impact or vibration is applied, it is difficult to disconnect. Moreover, even if the crossover portion 14T expands and contracts due to a temperature change, it is possible to prevent the occurrence of disconnection or coating peeling.
  • this invention is not limited to embodiment mentioned above, A deformation
  • the winding is locked on the radially inner side of the inner winding support.
  • the winding is wound around the stator while applying tension, the winding is locked to the outer side in the radial direction of the outer winding support portion, and the winding is led out while applying tension.
  • a coil group composed of a plurality of coils may be formed by locking the windings and deriving the windings while applying tension.
  • Japanese Patent Application 2010-133301 Japanese patent application filed on June 10, 2010
  • Japanese Patent Application 2010-133302 Japanese patent application
  • Japanese Patent Application 2010- 154122 Japanese Patent Application
  • Japanese Patent Application No. 2010-154123 Japanese Patent Application No. 2010-154123

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

 コイル13は、ステータ10の軸方向一端側の径方向外側に位置する第1巻き端41と、径方向内側に位置する第2巻き端42とを有し、第1巻き端41は、渡り部14Tを介して同相のコイル13の中で隣接するコイル13の第2巻き端42に繋がる。渡り部14Tは、第1巻き端41側が外側巻線支持部30の径方向外側に係止されると共に、第2巻き端42側が内側巻線支持部34の径方向内側に係止される。

Description

電動機の突極集中巻きステータ及びその製造方法
 本発明は、電気自動車に搭載される電動機の突極集中巻きステータ及びその製造方法に関する。
 従来の電動機や発電機等のステータとしては、スプリングバックによるコイルの巻太りを低減するため、極ごとに予め巻線を予備成形したコイルをインシュレータに挿入し、このインシュレータを更に円環状のステータコアに形成されたティース部に挿入するようにした回転電機が知られている(例えば、特許文献1参照。)。
 従来の他の電動機や発電機等のステータとしては、円環状のステータコアに形成された複数のティース部に、フライヤによってステータコイルを巻回したものが知られている(例えば、特許文献2参照)。また、各ティース部に巻回したステータコイルは、他相のステータコイルを跨ぐ渡り部によって同相のステータコイル同士が接続されるが、渡り部に弛みが生じると、その分だけ巻線が長くなり銅損や材料費が増大すると共に、コイルの巻太りにより占積率が低下する。また、ステータコイルがほどけて、ハウジングなどの金属部分への接触、或いは他相のステータコイルや渡り部との接触によるショート発生の可能性があり、信頼性が低下する問題があった。そして、このような渡り部の弛みによる不具合を防止する技術が開示されている(例えば、特許文献3、4参照)。
 特許文献2に記載の電機子の巻線構造では、電機子に並列巻線を行う際、ステータコアを半周分ずつに分け、それぞれの半周に対してフライヤを逆転させて巻線を巻回することにより、電機子への巻線における生産性向上を図っている。また、特許文献3に記載の電動機では、分割コアに巻線する際の渡り部長さを、分割コアを円環状に連結した状態の渡り部長さと同一長さとなるように巻回して、渡り部に弛みや引張りが生じない最適の渡り部長さとしている。また、特許文献4に記載の電動機の固定子とその接続装置では、絶縁物の軸方向端部に突起を設け、渡り部の余り分を突起に巻き付けて渡り部長さを調整して弛み発生を防止している。
日本国特開2008‐312290号公報 日本国特開2002‐199638号公報 日本国特開2000‐134844号公報 日本国特開2002‐209359号公報
 しかしながら、特許文献1に記載の回転電機では、予備成形した巻線をインシュレータにスムースに挿入できるようにするため、巻線をインシュレータの胴部の外側形状より大きく巻回する必要があり、その分、占積率が低下するという課題があった。また、極ごとに個別に巻線を予備成形した各極コイルを、ステータコアのティース部に挿入した後、同相の隣接するコイル同士を結線しなければならず、結線部材を要すると共に、組み付け工数が増大して製造コストが嵩むという問題があり、改善の余地があった。
 また、特許文献2に記載の電機子の巻線構造では、円環状のティースに巻線を巻回する際、他相と複雑に重なり合うため、製造に手間がかかると共に、フライヤに複雑な動きが要求されて製造コストが増加する可能性があった。また、特許文献3に記載の電動機では、分割コア構造の電動機に限定される技術であるため、一体型ステータコアの電動機に適用することができなかった。また、特許文献4に記載の電動機の固定子とその接続装置は、突起に余分な渡り部を巻き付けて渡り部長さを調整する工程が必要であり、製造工数が増大する問題がある。また、例えば、直径1.75mm程度の太線の場合、巻線の剛性が高く、突起に巻き付けることが困難であった。
 本発明は、前述した課題に鑑みてなされたものであり、その第1の目的は、ステータの巻線の占積率を高めてモータ性能の向上を図ると共に、ステータの製造工程を簡素化して、製造コストの低減が可能な電動機の突極集中巻きステータ及びその製造方法を提供することにある。
 その第2の目的は、ステータの製造工程を簡素化すると共に、渡り部長さを短くして銅損の低減や、材料費削減を図り、更に、渡り部の弛みによる占積率の低下や、金属部分や他相との接触によるショート発生を防止することができるステータを提供することにある。
 上記第1の目的を達成するために、請求項1に係る発明は、ステータコア(例えば、後述の実施形態におけるステータコア11)の隣り合うティース(例えば、後述の実施形態におけるティース11b)に巻回されるコイル(例えば、後述の実施形態におけるコイル13)が異相となるように、巻線(例えば、後述の実施形態におけるパラ巻線14)が巻かれた電動機(例えば、後述の実施形態におけるアウターロータ型電動機1)の突極集中巻きステータ(例えば、後述の実施形態における突極集中巻きステータ10)であって、
 各ティースに巻かれたコイルは、前記ステータの軸方向一端側の径方向外側寄りに位置する第1巻き端(例えば、後述の実施形態における第1巻き端41)と、前記ステータの軸方向一端側の径方向内側寄りに位置する第2巻き端(例えば、後述の実施形態における第2巻き端42)とを有し、
 互いに隣接する同相のコイルの一方の前記第1巻き端と、他方の前記第2巻き端とは、異相のコイルを跨ぐ渡り部(例えば、後述の実施形態における渡り部14T)によって同一の巻線で繋げられ、
 前記渡り部は、第1巻き端側が前記第1巻き端より径方向外側に設けられる外側巻線支持部(例えば、後述の実施形態における外側巻線支持部30)の径方向外側に係止されると共に、第2巻き端側が前記第2巻き端より径方向内側に設けられる内側巻線支持部(例えば、後述の実施形態における内側巻線支持部34)の径方向内側に係止されることを特徴とする電動機の突極集中巻きステータ。
 請求項2に係る発明は、請求項1の構成に加えて、同一の前記コイルの前記第1巻き端より径方向外側に位置する前記外側巻線支持部及び前記第2巻き端より径方向内側に位置する前記内側巻線支持部において、前記外側巻線支持部と前記内側巻線支持部とを結ぶ仮想直線(例えば、後述の実施形態における仮想直線M)が、前記渡り部の長さが短くなるように傾斜していることを特徴とする。
 請求項3に係る発明は、請求項1又は2の構成に加えて、前記外側巻線支持部及び前記内側巻線支持部の少なくとも一方は、前記コイルの側面(例えば、後述の実施形態における軸方向一端側側面13a)より軸方向外側に突出することを特徴とする。
 請求項4に係る発明は、請求項1~3のいずれかの構成に加えて、前記外側巻線支持部が、前記内側巻線支持部より径方向において前記コイルより離れていることを特徴とする。
 請求項5に係る発明は、請求項1~4のいずれかの構成に加えて、前記渡り部は、折り曲げられていることを特徴とする。
 請求項6に係る発明は、請求項1~5のいずれかの構成に加えて、前記外側巻線支持部及び前記内側巻線支持部の少なくとも一方は、インシュレータ(例えば、後述の実施形態におけるインシュレータ12)に設けられることを特徴とする。
 請求項7に係る発明は、請求項1~6のいずれかの構成に加えて、前記突極集中巻きステータは、前記ステータコアの外周面に形成された複数の前記ティースに前記コイルが巻回されて構成され、前記突極集中巻きステータの径方向外側に円環状のロータ(例えば、後述の実施形態におけるロータ4)が配設されるアウターロータ型電動機のステータであることを特徴とする。
 請求項8に係る発明は、請求項7の構成に加えて、前記アウターロータ型電動機は、車両に搭載されることを特徴とする。
 請求項9に係る発明は、請求項1~8のいずれかに記載の突極集中巻きステータを備えた電動機を搭載したことを特徴とする。
 請求項10に係る発明は、ステータコア(例えば、後述の実施形態におけるステータコア11)の隣り合うティース(例えば、後述の実施形態におけるティース11b)に巻回されるコイル(例えば、後述の実施形態におけるコイル13)が異相となるように巻線(例えば、後述の実施形態におけるパラ巻線14)が巻かれたステータ(例えば、後述の実施形態における突極集中巻きステータ10)の各ティースに巻かれたコイルは、前記ステータの軸方向一端側の径方向外側寄りに位置する第1巻き端(例えば、後述の実施形態における第1巻き端41)と、前記ステータの軸方向一端側の径方向内側寄りに位置する第2巻き端(例えば、後述の実施形態における第2巻き端42)とを有し、
 互いに隣接する同相のコイルの一方の前記第1巻き端と、他方の前記第2巻き端とは、異相のコイルを跨ぐ渡り部(例えば、後述の実施形態における渡り部14T)によって同一の巻線で繋げられ、
 前記巻線は、前記渡り部の第1巻き端側が前記第1巻き端より径方向外側に設けられる外側巻線支持部(例えば、後述の実施形態における外側巻線支持部30)の径方向外側に係止されると共に、第2巻き端側が前記第2巻き端より径方向内側に設けられる内側巻線支持部(例えば、後述の実施形態における内側巻線支持部34)の径方向内側に係止されて巻回された電動機(例えば、後述の実施形態におけるアウターロータ型電動機1)の突極集中巻きステータの製造方法であって、
 前記外側巻線支持部の径方向外側と前記内側巻線支持部の径方向内側の一方に巻線を係止させて、張力を付与しながら前記ステータの周囲に巻線を巻回するとともに、前記外側巻線支持部の径方向外側と前記内側巻線支持部の径方向内側の他方に巻線を係止させて、張力を付与しながら前記巻線を導出させることで、同一の巻線によって複数の同相のコイルからなるコイル群(例えば、後述の実施形態におけるコイル群18)を形成する工程を備えることを特徴とする。
 請求項11に係る発明は、請求項10の構成に加えて、前記コイル群を構成する前記各コイルを、前記ステータコアの前記ティースに、径方向外方から同時に挿入する工程をさらに備えることを特徴とする。
 上記第2の目的を達成するために、請求項12に係る発明は、ステータコア(例えば、後述の実施形態におけるステータコア11)の隣り合うティース(例えば、後述の実施形態におけるティース11b)に巻回されるコイル(例えば、後述の実施形態におけるコイル13)が異相となるように、巻線(例えば、後述の実施形態における巻線14)が巻かれた電動機(例えば、後述の実施形態におけるアウターロータ型電動機1)の突極集中巻きステータ(例えば、後述の実施形態におけるステータ10)であって、
 前記コイルは、前記ステータの軸方向一端側の径方向外側に位置する第1巻き端(例えば、後述の実施形態における第1巻き端41)と、前記ステータの軸方向一端側の径方向内側に位置する第2巻き端(例えば、後述の実施形態における第2巻き端42)と、を有し、
 互いに隣接する同相のコイルの一方の前記第1巻き端と、他方の前記第2巻き端とは、異相のコイルを跨ぐ渡り部(例えば、後述の実施形態における渡り部14T)によって同一の巻線で繋げられ、
 前記巻線が巻回されるインシュレータ(例えば、後述の実施形態におけるインシュレータ12)は、前記第1巻き端より径方向外側に設けられ、外側支持点(例えば、後述の実施形態における外側支持点D)で前記巻線を支持する外側巻線支持部(例えば、後述の実施形態における外側巻線支持部30)と、前記第2巻き端より径方向内側に設けられ、内側支持点(例えば、後述の実施形態における内側支持点E)で前記巻線を支持する内側巻線支持部(例えば、後述の実施形態における内側巻線支持部34)と、を備え、
 前記渡り部は、前記第1巻き端側が前記外側巻線支持部の径方向外側に係止されると共に、前記第2巻き端側が前記内側巻線支持部の径方向内側に係止され、
 前記内側支持点、及び前記内側支持点を起点として前記ティースの中心線と平行に前記ステータコアの径方向に引いた仮想線と前記ティースの径方向外側端部とが交わる交点(例えば、後述の実施形態における交点F)、の2点を結ぶ線分(例えば、後述の実施形態における線分S)の垂直2等分線(例えば、後述の実施形態における垂直2等分線G)を引いた時、隣接する前記同相のコイルの内、前記外側巻線支持部側が対向する前記コイルの前記外側支持点が、前記垂直2等分線より径方向外側に位置することを特徴とする。
 請求項13に係る発明は、請求項12の構成に加えて、前記ステータコアへの組み付け前における前記渡り部の長さ(例えば、後述の実施形態における所定の長さL)は、前記内側支持点と前記外側支持点間の距離(例えば、後述の実施形態における距離L1)未満、且つ前記交点と前記外側支持点間の距離(例えば、後述の実施形態における距離L2)以上に設定されることを特徴とする。
 請求項14に係る発明は、請求項12の構成に加えて、前記ステータコアへの組み付け前における前記渡り部の長さは、前記内側支持点と前記外側支持点間の距離と同じ長さに設定されることを特徴とする。
 請求項15に係る発明は、請求項12の構成に加えて、前記ステータコアへの組み付け前における前記渡り部の長さは、前記内側支持点と前記外側支持点間の距離より長く設定されることを特徴とする。
 請求項16に係る発明は、請求項12~15のいずれか1項の構成に加えて、同一の前記コイルの前記外側支持点と前記内側支持点とを結ぶ仮想直線(例えば、後述の実施形態における仮想直線M)が、前記渡り部の長さが短くなる方向に傾斜するように、前記外側巻線支持部及び前記内側巻線支持部が配置されることを特徴とする。
 請求項17に係る発明は、請求項12~16のいずれか1項の構成に加えて、前記外側巻線支持部は、前記インシュレータに設けられることを特徴とする。
 請求項18に係る発明は、請求項12~17のいずれかに記載の突極集中巻きステータを備えた電動機を搭載したことを特徴とする。
 請求項1及び9の発明によれば、巻線には、巻線を係止する外側巻線支持部及び内側巻線支持部によって張力が付与され、これにより、直接インシュレータ又はティースに巻線を巻きつけても巻線のスプリングバックによる巻太りが抑制されて占積率を高めることができ、モータ性能が向上する。また、同相のコイル間を同一の巻線で巻回することができるので、同相のコイル間をそれぞれ結線する必要がなく、製造コストが低減する。
 請求項2の発明によれば、渡り部の長さを短くすることができ、銅損低下、材料費削減が図られる。
 請求項3の発明によれば、異相のコイルを跨いで配置される渡り部が、異相のコイルと接触し難くなる。
 請求項4の発明によれば、径方向外側のスペースを有効に用いることでスペースの狭い内径側における巻線の干渉を防止しながら巻線に張力を付与することができる。
 請求項5の発明によれば、折り曲げによって渡り部に確実に張力を付与することができ、スプリングバックによる巻太りを抑制して占積率を高め、モータ性能が向上する。
 請求項6の発明によれば、張力が付与された状態の巻線を支持するのに最適な形状の外側巻線支持部及び内側巻線支持部を容易に形成することができ、製造コストを抑制することができる。
 請求項7の発明によれば、アウターロータ型電動機のステータを容易に製作することができる。
 請求項8の発明によれば、HEV、EV、FCVなどの電気自動車の駆動用電動機として好適に使用される。
 請求項10の発明によれば、巻線に張力を付与した状態で巻回することができ、直接インシュレータ又はティースに巻線を巻きつけてもスプリングバックによる巻太りを抑制して占積率を高めることができる。また、同相のコイル間を同一の巻線で巻回することができるので、同相のコイル間の結線を不要にして製造コストを低減すると共に、渡り部の長さを短くして銅損の低下、材料費の削減が可能となる。
 請求項11の発明によれば、同相のコイル同士をそれぞれ結線する必要がなく、結線部材を削減すると共に、組み付け工数を大幅に削減して、製造工程を簡素化することができ、ステータを安価に製造することができる。
 請求項12及び18の発明によれば、コイルを独立して成形した後、ステータコアの径方向外方からティースに挿入して組み付けることができ、ステータの製造工程が簡素化されて製造コストを低減することができる。
 請求項13の発明によれば、渡り部の長さを短くすることができるので、銅損を低減することができると共に、材料費を削減することができる。また、渡り部が弛むことによる巻太りを抑制して占積率を高めることができ、金属部分や他相との接触によるショートの発生を防止することができる。
 請求項14の発明によれば、コイルのティースへの挿入が容易になると共に、渡り部に張力を付与することができ、巻太りを抑制して占積率を高めることができる。
 請求項15の発明によれば、コイルをステータコアへ組み付けたとき、渡り部に緩みを持たせることができ、衝撃や振動が加わったとしても断線し難くすることができる。また、温度変化により渡り部が膨張、収縮したとしても、断線や被覆はがれの発生を防止することができる。
 請求項16の発明によれば、渡り部の長さを短くすることができるので、銅損を低減することができると共に、材料費を削減することができる。
 請求項17の発明によれば、テンションがかかった状態の巻線を支持するのに最適な形状の外側巻線支持部を容易に形成することができ、製造コストを低減することができる。
本発明のステータが適用されるアウターロータ型電動機の要部縦断面図である。 第1実施形態のステータの正面図である。 ステータコアの正面図である。 インシュレータの斜視図である。 インシュレータの正面図である。 図5におけるA‐A線断面図である。 図5におけるB‐B線断面図である。 インシュレータに巻線が巻回されたコイルの正面図である。 コイルの要部拡大側面図である。 インシュレータに巻線を巻回する工程を示す説明図である。 (a)~(c)は巻線がインシュレータに複数層に亘って巻回される工程を示す正面図である。 本発明の第1実施形態における巻線が巻回されたインシュレータをステータコアのティースに装着する状態を示す説明図である。 第2実施形態のステータの正面図である。 本発明の第2実施形態における巻線が巻回されたインシュレータをステータコアのティースに装着する状態を示す説明図である。 第2実施形態の第1変形例における巻線が巻回されたインシュレータをステータコアのティースに装着する状態を示す説明図である。 第2実施形態の第2変形例における巻線が巻回されたインシュレータをステータコアのティースに装着する状態を示す説明図である。
 以下、本発明の各実施の形態を、添付図面に基づいて説明する。なお、図面は符号の向きに見るものとする。
<第1実施形態>
 図1は本発明のステータが適用されるアウターロータ型電動機の縦断面図である。図1に示すように、本実施形態の電動機は、3相8極のアウターロータ型電動機1であり、モータハウジング2にボルト3により固定されたステータ10と、ステータ10の外周側に僅かな隙間を介して配置される円環状のロータ4と、を備える。
 ロータ4は、電磁鋼板が積層されてなるロータコア6aに磁石6bが埋め込まれた円環状のロータヨーク6が、縁付円盤状の支持部材5の縁部内周面5aに固定されており、モータハウジング2に内嵌する玉軸受7、7によって回転自在に支持された回転軸8に一体回転可能に固定されている。ロータ4は、ステータ10に発生させる回転磁界によって回転駆動される。支持部材5の基部5bとステータ10との間には、回転軸8の回転速度を検出するレゾルバ9が配設されている。
 ステータ10は、図2および図3に示すように、ステータコア11と、複数(本実施形態では24個)のコイル13(13u、13v、13w)とを備える。ステータコア11は、複数の電磁鋼板がステータ10の軸方向、即ち、図3において紙面と垂直方向に積層されて構成され、円環状の支持部11aから半径方向外側に向かって放射状に突出形成され、周方向に並ぶ複数(24個)のティース11bを有する。コイル13は、所定本数の導線からなる巻線(本実施形態では、2本の導線からなるパラ巻線であり、以下パラ巻線と呼ぶ。)14を、絶縁特性を有する合成樹脂などで形成されたインシュレータ12を介してステータコア11のそれぞれのティース11bの周囲に突極集中巻きによって巻回することで形成される。
 コイル13は、それぞれ8個ずつのU相、V相及びW相の3相のコイルからなり、U相コイル13u、V相コイル13v、及びW相コイル13wが、時計方向にこの順で配置されてティース11bに巻回されている。即ち、他相のコイル13(例えば、V相コイル13v、及びW相コイル13w)を挟んで配置される同相のコイル13(例えば、U相コイル13u)同士は、他相のコイル13を跨いで配索される渡り部14Tにより接続されている。
 各相8個ずつのコイル13(U相、V相及びW相コイル13u、13v、13w)は、1つのコイル群18(U相、V相及びW相コイル群18u、18v、18w)をそれぞれ構成し、各コイル群18(U相、V相及びW相コイル群18u、18v、18w)に属する8個のコイル13(U相、V相及びW相コイル13u、13v、13w)は、同一のパラ巻線14(U相、V相及びW相パラ巻線14u、14v、14w)によって連続して巻回されている。
 U相コイル群18uのU相パラ巻線14uの一方の端部がU相接続端子15uに接続され、V相コイル群18vのV相パラ巻線14vの一方の端部がV相接続端子15vに接続され、W相コイル群18wのW相パラ巻線14wの一方の端部がW相接続端子15wに接続されている。また、各コイル群18(U相、V相及びW相コイル群18u、18v、18w)のパラ巻線14(U相、V相及びW相パラ巻線14u、14u、14v)の他方の端部は、中点端子16に接続されている。
 ステータコア11の支持部11aの内周側には、ボルト穴17をそれぞれ有する複数(本実施形態では6個)の凸部11cが形成されている。このボルト穴17に挿通されるボルト3によりステータ10がモータハウジング2に固定される(図1参照)。
 図4から図7に示すように、インシュレータ12は、パラ巻線14が巻回される胴部24と、該胴部24の径方向両端部に設けられた外周側鍔部25及び内周側鍔部26と、を有する。胴部24は、ステータ10の軸方向において対向する壁20,21及びステータ10の周方向において対向する壁22、23によって、径方向に貫通する角穴24aを有して断面矩形の筒状に形成される。角穴24aの大きさは、ステータコア11のティース11bより僅かに大きく、ティース11bが挿通可能である。壁22、23には、パラ巻線14を巻回する際、パラ巻線14を位置決めするための複数の凹溝27が、角穴24aの軸芯に対して直交する方向に設けられている。
 外周側鍔部25の壁20側の端部には、径方向外方に延出する外側隔壁28が形成されている。外側隔壁28の周方向一端面(図5中、左端面)28aと径方向内側面28bとの隅部には、軸方向において胴部24と反対側の軸方向一端側に突出する外側巻線支持部30が形成される。外側巻線支持部30は、外側隔壁28の周方向一端面28aの径方向中間部分と、径方向内側面28bの周方向一端から略1/3中心寄りの部分とを結ぶ一辺C、外側隔壁28の周方向一端面28aの内側寄り部分、及び、径方向内側面28bの周方向一端寄り部分を軸方向に延出することで略三角柱状に形成され、該一辺Cを軸方向に延出することで形成される径方向外向き傾斜面30cと、外側隔壁28の周方向一端面28aを軸方向に延出した端面30dとの頂部は曲面状に形成された湾曲面30bを構成している。
 また、外側巻線支持部30の傾斜面30cと、外側隔壁28との間には、該一辺Cと平行な段部30aが設けられている。さらに、外側隔壁28の周方向中間部で、且つ径方向内側部分には、傾斜面30cの径方向内側部分と対向し、該一辺Cと略平行な側面を有するガイド突部31が形成されている。そして、外側巻線支持部30の傾斜面30cとガイド突部31の側面との間に溝部32を形成する。
 また、内周側鍔部26の軸方向一端側部分は、径方向から見て、周方向一端面側から他端面(図5中、右端面)側に向かって徐々に幅広に形成されており、また、軸方向から見て、周方向中間部から周方向他端面に向かって徐々に肉厚に形成されている。内周側鍔部26の周方向他端面と径方向外側面との隅部には、軸方向一端側に突出する略三角柱状の内側巻線支持部34が設けられている。また、内周側鍔部26の軸方向一端側部分には、周方向中間部から周方向他端面に向かうにつれて径方向内側に傾斜する傾斜面33が形成されており、この傾斜面33は、内側巻線支持部34の径方向内向き傾斜面34aと対向して溝部35を形成する。さらに、内周側鍔部26の軸方向一端側部分と、壁20との境界部分には、周方向他端面側から周方向一端面側へと壁20に沿って最初に巻回されるパラ巻線14を案内する、内周側鍔部26に対して傾斜した案内部36が形成されており、また、案内部36と内周側鍔部26との間には、溝部35から胴部24へ向かうパラ巻線14を軸方向に案内する段部36aが形成される。
 また、インシュレータ12の外側巻線支持部30と内側巻線支持部34とは、外側巻線支持部30と内側巻線支持部34を結ぶ仮想直線Mがインシュレータ12の周方向中間部を通過して径方向に延びる径方向中心線CLに対して傾斜して配置され、これにより、渡り部14Tの長さを短くすることができる。
 コイル13は、図8に示すように、インシュレータ12の胴部24の周囲にパラ巻線14が複数回に亘って巻回されて形成される。そして、インシュレータ12の胴部24に巻回されたコイル13は、胴部24の径方向外側寄りに位置する第1巻き端41と、胴部24の径方向内側寄りに位置する第2巻き端42と、を有する。そして、第1巻き端41から渡り部14Tに向けて延びるパラ巻線14は、溝部32を通過し、パラ巻線14が径方向外向き傾斜面30cに軸方向に並ぶようにして傾斜面30cに沿って斜め上方に延び、さらに、外側巻線支持部30の湾曲面30bに沿って巻き掛けられて係止され、外側支持点Dで支持される。また、第2巻き端42から渡り部14Tに向けて延びるパラ巻線14は、パラ巻線14が径方向内向き傾斜面34aに軸方向に並ぶようにして溝部35を斜め下方に通過し、内側巻線支持部34に係止されて内側支持点Eで支持される。このとき、外側巻線支持部30が、内側巻線支持部34より径方向においてコイル13から離れており、コイル13の最外径部から外側巻線支持部30の最外径部までの距離H1は、コイル13の最内径部から内側巻線支持部34の最内径部までの距離H2より大きくなっている。これにより、スペースの狭い内径側でパラ巻線14が干渉するのが確実に防止される。
 図9はコイルの外側隔壁28付近を拡大して示す側面図であり、コイル13の軸方向一端側の側面13aよりも外側巻線支持部30と内側巻線支持部34が軸方向外側突出して配置される。巻回されたコイル13の側面13aから外側巻線支持部30の段部30aまでの距離Xは、パラ巻線14の幅dより長く設定されている。これにより、第1巻き端41側が外側巻線支持部30の外側支持点Dで支持され、第2巻き端42側が同相のコイル13の中で隣接するコイル13の内側巻線支持部34の内側支持点Eで支持される渡り部14Tは、異相コイル13を跨いで配置されても、各コイル13のパラ巻線14から軸方向外方に離間して位置しているので、接触が確実に防止される。
 図10はインシュレータにパラ巻線を巻回する状態を示す説明図であり、複数(本実施形態では8個)のインシュレータ12が、保持具50に外側隔壁28を下にして所定の間隔で保持される。パラ巻線14は、インシュレータ12の周囲を回転、且つ上下移動可能な巻線装置のノズル51によって吐出され、複数のインシュレータ12に順次巻回される。
 具体的に、第1のインシュレータ12Aにパラ巻線14の第1巻き端41を巻き終わったノズル51は、外側巻線支持部30の形状に沿って斜め下方に移動してパラ巻線14を溝部32に挿通させるとともに湾曲面30bに巻き掛けられ、張力を付与しながら斜め上方に移動して、パラ巻線14を外側巻線支持部30の外側支持点Dで支持させる。そして、第2のインシュレータ12Bに移動し、パラ巻線14を内側巻線支持部34の溝部35に挿通して内側支持点Eで支持し、張力を付与しながらノズル51からパラ巻線14を導出して第2のインシュレータ12Bに巻回する。以後同様にして、第3~第8のインシュレータ12に連続して同一のパラ巻線14を巻回する。
 パラ巻線14の各インシュレータ12への巻回は、図11に示すように、パラ巻線14がインシュレータ12に複数層に亘って巻回される。より具体的に説明すると、内側巻線支持部34と傾斜面33との間の溝部35を通ったパラ巻線14は、図中上から下に巻かれて第1層巻線141を形成する(図11(a))。第1層巻線141が外周側鍔部25に達すると、第2層巻線142が、第1層巻線141の略半分の位置まで下から上に向かって第1層巻線141の上に巻回され(図11(b))、更に、巻回方向を下方に反転して、第3層巻線143が第2層巻線142の上に巻回され、外側巻線支持部30と巻線ガイド31との間の溝部32を通り、段部30aに案内されて下方に引き出される(図11(c))。
 このように、同一のパラ巻線14を順次、複数(8個)のインシュレータ12に連続して巻回することにより、同一のパラ巻線14によって連続して巻回された複数のコイル13を有するコイル群18が形成される。
 図10において、第1のインシュレータ12Aの外側支持点Dと、第2のインシュレータ12Bの内側支持点Eとの間のパラ巻線14は、渡り部14T(図2参照)となる部分であり、その長さLは、所定の長さに設定された状態で巻回される。換言すれば、保持具50は、隣接するインシュレータ12、12の外側支持点Dと内側支持点Eとの距離が、所定の長さLとなるようにインシュレータ12、12を保持して、パラ巻線14を巻回する。
 次に、ステータ10の組み付けについて図12を参照して説明する。同一のパラ巻線14で連続して巻回された複数(8個)のコイル13からなるU相、V相、及びW相の各コイル群18u,18v,18wのU相、V相、及びW相コイル13u,13v,13wは、図12に示すように、それぞれ2つおきにステータコア11のティース11bに対応して径方向外方に円環状に配置される。そして、全コイル13を、縮径する方向(矢印方向)に同時に移動させて、インシュレータ12の角穴24aをステータコア11のティース11bに挿入する。
 ここで、インシュレータ12が、ステータコア11のティース11bに挿入されて径方向外方に向かう放射状に配置されたとき、隣接するインシュレータ12、12間の空間は径方向外方に向かうに従って次第に大きくなる。しかしながら、上述したように、インシュレータ12に巻回されたコイル13は、径方向内側より径方向外側に巻かれる層数を多くし、径方向外側部分が周方向に膨らむように形成したので、該空間は無駄なくパラ巻線14で埋められ、占積率を向上することができる。
 ステータコア11の径方向外方に円環状に配置されたコイル13が縮径方向に移動すると、周方向長さが短くなる分、渡り部14Tに弛みが生じるが、インシュレータ12の角穴24aにステータコア11のティース11bを挿入した後、渡り部14Tを外側巻線支持部30の外側支持点Dと内側巻線支持部34の内側支持点Eに係止した状態で、図2に示すように、渡り部14Tを略S字状に折り曲げ成形することにより、この弛みを吸収して渡り部14Tに張力が付与される。
 次いで、ステータコア11に配置されたU相コイル群18uのU相パラ巻線14uの一方の端部をU相接続端子15uに接続し、同様に、V相コイル群18vのV相パラ巻線14vの一方の端部をV相接続端子15vに接続し、更にW相コイル群18wのW相パラ巻線14wの一方の端部をW相接続端子15wに接続する。そして、各パラ巻線14(U相、V相、及びW相パラ巻線14u、14v、14w)の他方の端部を中点端子16に接続する(図2参照)。
 これにより、各コイル13は、第1巻き端41が同相のコイル13の中で隣接するコイル13の第2巻き端42に、異相のコイル13を跨いで、渡り部14Tを介して繋がり、3相スター結線されたステータ10が組み付けられる。
 以上説明したように、本実施形態に係る電動機の突極集中巻きステータ10によれば、コイル13は、ステータ10の軸方向一端側における径方向外側に第1巻き端41と径方向内側に第2巻き端42とを有する。互いに隣接する同相のコイル13の一方の第1巻き端41と、他方の第2巻き端42とは、異相のコイル13を跨る渡り部14Tによって同一のパラ巻線14で繋げられる。渡り部14Tは、第1巻き端41側が外側巻線支持部30の径方向外側に係止されると共に、第2巻き端42側が内側巻線支持部34の径方向内側に係止されるので、パラ巻線14には、係止する外側巻線支持部30及び内側巻線支持部34によって張力が付与され、スプリングバックによる巻太りが抑制されて占積率を高めることができ、モータ性能が向上する。また、結線部材を用いて同相のコイル13間を結線する必要がなく、製造コストが低減する。
 また、同一コイルの第1巻き端41より径方向外側に位置する外側巻線支持部30及び第2巻き端42より径方向内側に位置する内側巻線支持部34において、外側巻線支持部30と内側巻線支持部34とを結ぶ仮想直線Mが、渡り部14Tの長さが短くなるように傾斜しているので、渡り部14Tの長さを短くすることができ、銅損低下、材料費削減が図られる。
 更に、外側巻線支持部30及び内側巻線支持部34の少なくとも一方は、コイル13の側面13aより軸方向外側に突出するので、異相のコイル13を跨いで配置される渡り部14Tが、コイル13と接触し難くなり、位相コイル間の絶縁が確保される。
 更にまた、外側巻線支持部30が、内側巻線支持部34より径方向においてコイル13より離れているので、径方向外側のスペースを有効に用いることでスペースの狭い内径側でパラ巻線14の干渉を防止しながらパラ巻線14に確実に張力を付与することができる。
 また、渡り部14Tが、折り曲げ形成されるので、渡り部14Tの弛みを吸収してパラ巻線14に確実に張力を付与することができ、スプリングバックによる巻太りを抑制して占積率を高め、モータ性能が向上する。
 更に、外側巻線支持部30及び内側巻線支持部34は、インシュレータ12に設けられるので、張力が付与された状態のパラ巻線14を支持するのに最適な形状の外側巻線支持部30及び内側巻線支持部34を容易に形成することができ、製造コストを抑制することができる。なお、外側巻線支持部30及び内側巻線支持部34は、必ずしもインシュレータ12に設ける必要はなく、ティース11bに設けてパラ巻線14を直接ティース11bに巻回してもよい。
 更にまた、突極集中巻きステータ10は、径方向外側に円環状のロータ4が配設されるアウターロータ型電動機のステータであるので、アウターロータ型電動機のステータを容易に製作することができる。
 また、アウターロータ型電動機は、車両に搭載されるので、HEV、EV、FCVなどの電気自動車の駆動用電動機として好適に使用される。
 更に、外側巻線支持部30の径方向外側と内側巻線支持部34の径方向内側の一方にパラ巻線14を係止させて、張力を付与しながらステータ10の周囲にパラ巻線14を巻回するとともに、外側巻線支持部30の径方向外側と内側巻線支持部34の径方向内側の他方にパラ巻線14を係止させて、張力を付与しながらパラ巻線14を導出させることで、同一のパラ巻線14によって複数の同相のコイル13からなるコイル群18を形成するので、パラ巻線14に張力を付与した状態で巻回することができ、スプリングバックによる巻太りを抑制して占積率を高めることができる。また、同相のコイル13間の結線を不要にして製造コストを低減すると共に、渡り部の長さを短くして銅損の低下、材料費の削減が可能となる。
 また、コイル群18を構成する各コイル13を、ステータコア11のティース11bに、径方向外方から同時に挿入するので、同相のコイル13同士を結線する必要がなく、結線部材を削減すると共に、組み付け工数を大幅に削減して、製造工程を簡素化することができ、ステータを安価に製造することができる。
<第2実施形態>
 続いて、本発明の第2実施形態のステータについて図13を参照して説明する。図13は、第2実施形態のステータの正面図である。なお、第2実施形態のステータについて、第1実施形態のステータと同一の構成要素については同一の符号を付して、相違部分について詳細に説明する。
 第2実施形態のステータ10は、図13に示すように、他相のコイル13(例えば、V相コイル13v、及びW相コイル13w)を挟んで配置される同相のコイル13(例えば、U相コイル13u)同士を跨ぐ渡り部14Tが略直線状に成形される。
 ここで、本実施計形態のステータ10では、図14に示すように、インシュレータ12の外側支持点Dが、同相の隣接するインシュレータ12の内側支持点Eと、この内側支持点Eを起点としてティース11bの周方向中心線と平行にステータコア11の径方向に引いた仮想線とティース11bの径方向外側端部とが交わる交点Fと、の2点を結ぶ線分Sの垂直2等分線Gより径方向外側に位置するように設定される。なお、この交点Fは、インシュレータ12をティース11bの径方向外側端部に挿入する直前における内側支持点Eの位置を意味する。従って、言い換えると、インシュレータ12の外側支持点Dが、同相の隣接するインシュレータ12の挿入直前の内側支持点Eの位置Fと、挿入後の内側支持点Eと、の2点を結ぶ線分Sの垂直2等分線Gより径方向外側に位置するように設定される。
 また、図14に示すように、ステータコア11への組み付け前におけるパラ巻線14の渡り部14Tとなる部分の長さLは、内側支持点Eと外側支持点D間の距離L1未満、且つ交点Fと外側支持点D間の距離L2以上に設定される。これにより、コイル13をステータコア11のティース11bに挿入したとき、渡り部14Tに張力が付与されて弛むことがない。従って、渡り部14Tの弛みによる巻太りが抑制されて占積率が高められ、金属部分や他相との接触によるショートの発生が防止される。
 また、第2実施形態においても、図8に示すように、同一のコイル13の外側巻線支持部30における外側支持点Dと内側巻線支持部34における内側支持点Eとを結ぶ仮想直線Mが、渡り部14Tの長さLが短くなる方向に傾斜するように、外側巻線支持部30及び内側巻線支持部34が配置される。これにより、渡り部14Tの長さLが短くなる。
 次に、ステータ10の組み付けについて図14を参照して説明する。U相、V相、及びW相コイル群18u,18v,18wの1つ、例えば、U相コイル群18uの8個のU相コイル13uの内、先ず、第1のU相コイル13uAのインシュレータ12を、ステータコア11のティース11bに径方向外方から挿入して組み付ける。次いで、第2のU相コイル13uBのインシュレータ12を、ステータコア11の反時計方向の3個隣りのティース11bに径方向外方から挿入して組み付ける。以後同様にして、第3~第8のU相コイルのインシュレータを、ステータコア11の円周方向の2個おきのティース11bに径方向外方から挿入して、ステータ10の1周分を組み付ける。次いで、U相コイル群18uのパラ巻線14uの一方の端部をU相接続端子15uに接続する(図13参照)。
 次いで、V相及びW相コイル群18v,18wの8個のV相及びW相コイル13v,13wについても、同様に、順次、ステータコア11のティース11bに径方向外方から挿入して組み付けた後、V相コイル群18vのパラ巻線14vの一方の端部をV相接続端子15vに接続し、W相コイル群18wのパラ巻線14wの一方の端部をW相接続端子15wに接続する。そして、各パラ巻線14u,14v,14wの他方の端部を中点端子16に接続する(図13参照)。
 これにより、各コイル13は、第1巻き端41が同相のコイル13の中で隣接するコイル13の第2巻き端42に、異相のコイル13を跨いで、渡り部14Tを介して繋がり、3相スター結線されたステータ10が組み付けられる。
 以上説明したように、本実施形態のステータ10によれば、内側支持点E、及び内側支持点Eを起点としてティース11bの中心線と平行にステータコア11の径方向に引いた仮想線とティース11bの径方向外側端部とが交わる交点F、の2点を結ぶ線分Sの垂直2等分線Gを引いた時、隣接する同相のコイル13の内、外側巻線支持部30側が対向するコイル13の外側支持点Dが、垂直2等分線Gより径方向外側に位置するため、コイル13を独立して成形した後、ステータコア11の径方向外方からティース11bに挿入して組み付けることができ、ステータ10の製造工程が簡素化されて製造コストを低減することができる。
 また、本実施形態のステータ10によれば、ステータコア11への組み付け前における渡り部14Tの長さLは、内側支持点Eと外側支持点D間の距離L1未満、且つ交点Fと外側支持点D間の距離L2以上に設定されるため、渡り部14Tの長さLを短くすることができる。これにより、銅損を低減することができると共に、材料費を削減することができる。また、渡り部14Tが弛むことによる巻太りを抑制して占積率を高めることができ、金属部分や他相との接触によるショートの発生を防止することができる。
 また、本実施形態のステータ10によれば、同一のコイル13の外側支持点Dと内側支持点Eとを結ぶ仮想直線Mが、渡り部14Tの長さLが短くなる方向に傾斜するように、外側巻線支持部30及び内側巻線支持部34が配置されるため、渡り部14Tの長さLを短くすることができる。これにより、銅損を低減することができると共に、材料費を削減することができる。
 また、本実施形態のステータ10によれば、外側巻線支持部30がインシュレータ12に設けられるため、テンションがかかった状態のパラ巻線14を支持するのに最適な形状の外側巻線支持部30を容易に形成することができ、製造コストを低減することができる。
 なお、本実施形態の第1変形例として、図15に示すように、ステータコア11への組み付け前における渡り部14Tの長さLは、内側支持点Eと外側支持点D間の距離L1と同じ長さに設定されていてもよい。本変形例によれば、コイル13のティース11bへの挿入が容易になると共に、渡り部14Tに張力を付与することができ、巻太りを抑制して占積率を高めることができる。
 また、本実施形態の第2変形例として、図16に示すように、ステータコア11への組み付け前における渡り部14Tの長さLは、内側支持点Eと外側支持点D間の距離L1より長く設定されていてもよい。本変形例によれば、コイル13をステータコア11へ組み付けたとき、渡り部14Tに緩みを持たせることができ、衝撃や振動が加わったとしても断線し難くすることができる。また、温度変化により渡り部14Tが膨張、収縮したとしても、断線や被覆はがれの発生を防止することができる。
 尚、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
 第1実施形態のようなアウターロータでは、径方向外側に巻かれる巻線の層数を多くして占積率を向上させるため、内側巻線支持部の径方向内側に巻線を係止させて、張力を付与しながらステータの周囲に巻線を巻回し、外側巻線支持部の径方向外側に巻線を係止させて、張力を付与しながら巻線を導出させて、複数のコイルからなるコイル群を形成することが好ましい。ただし、本発明は、外側巻線支持部の径方向外側に巻線を係止させて、張力を付与しながらステータの周囲に巻線を巻回し、内側巻線支持部の径方向内側の他方に巻線を係止させて、張力を付与しながら巻線を導出させて、複数のコイルからなるコイル群を形成するようにしてもよい。
 本出願は、2010年6月10日出願の日本特許出願(特願2010-133061)及び日本特許出願(特願2010-133062)、2010年7月6日出願の日本特許出願(特願2010-154122)、日本特許出願(特願2010-154123)に基づくものであり、その内容はここに参照として取り込まれる。
1       アウターロータ型電動機(電動機)
4       ロータ
10     ステータ(突極集中巻きステータ)
11     ステータコア
11b   ティース
12     インシュレータ
13     コイル
13a      側面
13u      U相コイル
13v      V相コイル
13w      W相コイル
14     パラ巻線(巻線)
14T     渡り部
14u   U相パラ巻線
14v     V相パラ巻線
14w     W相パラ巻線
18     コイル群
18u      U相コイル群
18v      V相コイル群
18w     W相コイル群
30     外側巻線支持部
34     内側巻線支持部
41     第1巻き端
42     第2巻き端
D       外側支持点
E       内側支持点
F       交点
G       垂直2等分線
H1    コイルの最外径部から外側巻線支持部の最外径部までの距離
H2    コイルの最内径部から内側巻線支持部の最内径部までの距離
M     仮想直線
L     渡り部の長さ
L1      内側支持点と外側支持点間の距離
L2      交点と外側支持点間の距離
X       コイルの側面から外側巻線支持部までの軸方向距離
S       内側支持点と交点とを結ぶ線分

Claims (18)

  1.  ステータコアの隣り合うティースに巻回されるコイルが異相となるように、巻線が巻かれた電動機の突極集中巻きステータであって、
     各ティースに巻かれたコイルは、前記ステータの軸方向一端側の径方向外側寄りに位置する第1巻き端と、前記ステータの軸方向一端側の径方向内側寄りに位置する第2巻き端とを有し、
     互いに隣接する同相のコイルの一方の前記第1巻き端と、他方の前記第2巻き端とは、異相のコイルを跨ぐ渡り部によって同一の巻線で繋げられ、
     前記渡り部は、第1巻き端側が前記第1巻き端より径方向外側に設けられる外側巻線支持部の径方向外側に係止されると共に、第2巻き端側が前記第2巻き端より径方向内側に設けられる内側巻線支持部の径方向内側に係止されることを特徴とする電動機の突極集中巻きステータ。
  2.  同一の前記コイルの前記第1巻き端より径方向外側に位置する前記外側巻線支持部及び前記第2巻き端より径方向内側に位置する前記内側巻線支持部において、前記外側巻線支持部と前記内側巻線支持部とを結ぶ仮想直線が、前記渡り部の長さが短くなるように傾斜していることを特徴とする請求項1に記載の電動機の突極集中巻きステータ。
  3.  前記外側巻線支持部及び前記内側巻線支持部の少なくとも一方は、前記コイルの側面より軸方向外側に突出することを特徴とする請求項1又は2に記載の電動機の突極集中巻きステータ。
  4.  前記外側巻線支持部が、前記内側巻線支持部より径方向において前記コイルより離れていることを特徴とする請求項1~3のいずれか1項に記載の電動機の突極集中巻きステータ。
  5.  前記渡り部は、折り曲げられていることを特徴とする請求項1~4のいずれか1項に記載の電動機の突極集中巻きステータ。
  6.  前記外側巻線支持部及び前記内側巻線支持部の少なくとも一方は、インシュレータに設けられることを特徴とする請求項1~5のいずれか1項に記載の電動機の突極集中巻きステータ。
  7.  前記突極集中巻きステータは、前記ステータコアの外周面に形成された複数の前記ティースに前記コイルが巻回されて構成され、前記突極集中巻きステータの径方向外側に円環状のロータが配設されるアウターロータ型電動機のステータであることを特徴とする請求項1~6のいずれか1項に記載の電動機の突極集中巻きステータ。
  8.  前記アウターロータ型電動機は、車両に搭載されることを特徴とする請求項7に記載の電動機の突極集中巻きステータ。
  9.  請求項1~8のいずれか1項に記載の突極集中巻きステータを備えた電動機を搭載したことを特徴とする電気自動車。
  10.  ステータコアの隣り合うティースに巻回されるコイルが異相となるように巻線が巻かれたステータの各ティースに巻かれたコイルは、前記ステータの軸方向一端側の径方向外側寄りに位置する第1巻き端と、前記ステータの軸方向一端側の径方向内側寄りに位置する第2巻き端とを有し、
     互いに隣接する同相のコイルの一方の前記第1巻き端と、他方の前記第2巻き端とは、異相のコイルを跨ぐ渡り部によって同一の巻線で繋げられ、
     前記巻線は、前記渡り部の第1巻き端側が前記第1巻き端より径方向外側に設けられる外側巻線支持部の径方向外側に係止されると共に、第2巻き端側が前記第2巻き端より径方向内側に設けられる内側巻線支持部の径方向内側に係止されて巻回された電動機の突極集中巻きステータの製造方法であって、
     前記外側巻線支持部の径方向外側と前記内側巻線支持部の径方向内側の一方に巻線を係止させて、張力を付与しながら前記ステータの周囲に巻線を巻回するとともに、前記外側巻線支持部の径方向外側と前記内側巻線支持部の径方向内側の他方に巻線を係止させて、張力を付与しながら前記巻線を導出させることで、同一の巻線によって複数の同相のコイルからなるコイル群を形成する工程を備えることを特徴とする電動機の突極集中巻きステータの製造方法。
  11.  前記コイル群を構成する前記各コイルを、前記ステータコアの前記ティースに、径方向外方から同時に挿入する工程をさらに備えることを特徴とする請求項10に記載の電動機の突極集中巻きステータの製造方法。
  12.  ステータコアの隣り合うティースに巻回されるコイルが異相となるように、巻線が巻かれた電動機の突極集中巻きステータであって、
     前記コイルは、前記ステータの軸方向一端側の径方向外側に位置する第1巻き端と、前記ステータの軸方向一端側の径方向内側に位置する第2巻き端と、を有し、
     互いに隣接する同相のコイルの一方の前記第1巻き端と、他方の前記第2巻き端とは、異相のコイルを跨ぐ渡り部によって同一の巻線で繋げられ、
     前記巻線が巻回されるインシュレータは、前記第1巻き端より径方向外側に設けられ、外側支持点で前記巻線を支持する外側巻線支持部と、前記第2巻き端より径方向内側に設けられ、内側支持点で前記巻線を支持する内側巻線支持部と、を備え、
     前記渡り部は、前記第1巻き端側が前記外側巻線支持部の径方向外側に係止されると共に、前記第2巻き端側が前記内側巻線支持部の径方向内側に係止され、
     前記内側支持点、及び前記内側支持点を起点として前記ティースの中心線と平行に前記ステータコアの径方向に引いた仮想線と前記ティースの径方向外側端部とが交わる交点、の2点を結ぶ線分の垂直2等分線を引いた時、隣接する前記同相のコイルの内、前記外側巻線支持部側が対向する前記コイルの前記外側支持点が、前記垂直2等分線より径方向外側に位置することを特徴とする電動機の突極集中巻きステータ。
  13.  前記ステータコアへの組み付け前における前記渡り部の長さは、前記内側支持点と前記外側支持点間の距離未満、且つ前記交点と前記外側支持点間の距離以上に設定されることを特徴とする請求項12に記載の突極集中巻きステータ。
  14.  前記ステータコアへの組み付け前における前記渡り部の長さは、前記内側支持点と前記外側支持点間の距離と同じ長さに設定されることを特徴とする請求項12に記載の突極集中巻きステータ。
  15.  前記ステータコアへの組み付け前における前記渡り部の長さは、前記内側支持点と前記外側支持点間の距離より長く設定されることを特徴とする請求項12に記載の突極集中巻きステータ。
  16.  同一の前記コイルの前記外側支持点と前記内側支持点とを結ぶ仮想直線が、前記渡り部の長さが短くなる方向に傾斜するように、前記外側巻線支持部及び前記内側巻線支持部が配置されることを特徴とする請求項12~15のいずれか1項に記載の電動機の突極集中巻きステータ。
  17.  前記外側巻線支持部は、前記インシュレータに設けられることを特徴とする請求項12~16のいずれか1項に記載の電動機の突極集中巻きステータ。
  18.  請求項12~17のいずれか1項に記載の突極集中巻きステータを備えた電動機を搭載したことを特徴とする電気自動車。
PCT/JP2011/061909 2010-06-10 2011-05-24 電動機の突極集中巻きステータ及びその製造方法 WO2011155327A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012519333A JPWO2011155327A1 (ja) 2010-06-10 2011-05-24 電動機の突極集中巻きステータ及びその製造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-133062 2010-06-10
JP2010133062 2010-06-10
JP2010133061 2010-06-10
JP2010-133061 2010-06-10
JP2010-154122 2010-07-06
JP2010154122 2010-07-06
JP2010-154123 2010-07-06
JP2010154123 2010-07-06

Publications (1)

Publication Number Publication Date
WO2011155327A1 true WO2011155327A1 (ja) 2011-12-15

Family

ID=45097935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061909 WO2011155327A1 (ja) 2010-06-10 2011-05-24 電動機の突極集中巻きステータ及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2011155327A1 (ja)
WO (1) WO2011155327A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102098A1 (fr) * 2012-12-27 2014-07-03 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'une machine électrique
WO2014102097A1 (fr) * 2012-12-27 2014-07-03 Compagnie Generale Des Etablissements Michelin Connecteur electrique et machine electrique comportant un tel connecteur
CN104426274A (zh) * 2013-09-11 2015-03-18 株式会社牧田 电动工具
GB2533154A (en) * 2014-12-12 2016-06-15 Protean Electric Ltd A coil winding arrangement
US9923438B2 (en) 2013-05-28 2018-03-20 Mitsubishi Electric Corporation Method for manufacturing a rotary electric machine
US11355983B2 (en) 2018-12-14 2022-06-07 Makita Corporation Electric motor and method of manufacturing such an electric motor
WO2022242835A1 (en) * 2021-05-18 2022-11-24 Shematic Sa Outrunner motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315250A (ja) * 2001-04-09 2002-10-25 Moric Co Ltd 回転電気機器のステータ
JP2009038939A (ja) * 2007-08-03 2009-02-19 Nissan Motor Co Ltd 回転電機の分割コアステータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299292A (ja) * 2002-04-02 2003-10-17 Asmo Co Ltd 回転機器及びその製造方法
JP2008289278A (ja) * 2007-05-17 2008-11-27 Mitsuba Corp インナーロータ型回転発電機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002315250A (ja) * 2001-04-09 2002-10-25 Moric Co Ltd 回転電気機器のステータ
JP2009038939A (ja) * 2007-08-03 2009-02-19 Nissan Motor Co Ltd 回転電機の分割コアステータ

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014102097A1 (fr) * 2012-12-27 2014-07-03 Compagnie Generale Des Etablissements Michelin Connecteur electrique et machine electrique comportant un tel connecteur
FR3000627A1 (fr) * 2012-12-27 2014-07-04 Michelin & Cie Connecteur electrique et machine electrique comportant un tel connecteur
FR3000629A1 (fr) * 2012-12-27 2014-07-04 Michelin & Cie Procede de fabrication d'une machine electrique
WO2014102098A1 (fr) * 2012-12-27 2014-07-03 Compagnie Generale Des Etablissements Michelin Procédé de fabrication d'une machine électrique
CN104885336A (zh) * 2012-12-27 2015-09-02 米其林企业总公司 电连接器以及包括该电连接器的电机
US9923438B2 (en) 2013-05-28 2018-03-20 Mitsubishi Electric Corporation Method for manufacturing a rotary electric machine
US10903718B2 (en) 2013-09-11 2021-01-26 Makita Corporation Power tool
EP2849316A3 (en) * 2013-09-11 2016-01-06 Makita Corporation Electric motor with a connecting plate for a portable power tool
US9948162B2 (en) 2013-09-11 2018-04-17 Makita Corporation Power tool
CN104426274B (zh) * 2013-09-11 2020-06-19 株式会社牧田 电动工具
CN104426274A (zh) * 2013-09-11 2015-03-18 株式会社牧田 电动工具
US11715995B2 (en) 2013-09-11 2023-08-01 Makita Corporation Power tool
GB2533154A (en) * 2014-12-12 2016-06-15 Protean Electric Ltd A coil winding arrangement
GB2533154B (en) * 2014-12-12 2017-06-07 Protean Electric Ltd A coil winding arrangement
US11139703B2 (en) 2014-12-12 2021-10-05 Protean Electric Limited Coil winding arrangement
US11355983B2 (en) 2018-12-14 2022-06-07 Makita Corporation Electric motor and method of manufacturing such an electric motor
WO2022242835A1 (en) * 2021-05-18 2022-11-24 Shematic Sa Outrunner motor

Also Published As

Publication number Publication date
JPWO2011155327A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5306411B2 (ja) 回転電機
WO2011155327A1 (ja) 電動機の突極集中巻きステータ及びその製造方法
US8350436B2 (en) Outer-rotor salient-pole concentrated winding motor
WO2012090792A1 (ja) 回転電機
KR20120041127A (ko) 고정자, 브러시리스 모터 및 이의 제조방법
JP5481307B2 (ja) 電動機の突極集中巻きステータ
CN110445268B (zh) 用于旋转电机的定子
EP2031735B1 (en) Stator and electric motor
US11469637B2 (en) Stator comprising an insulator having a restriction portion and covering a tooth
WO2020174817A1 (ja) 回転電機のステータ、回転電機、回転電機のステータの製造方法、および、回転電機の製造方法
WO2013154054A1 (ja) ブラシレスモータ
JP5290718B2 (ja) 電機子の製造方法
JP2012019573A (ja) 電動機の三相突極集中巻きステータ及びその製造方法
WO2013140831A1 (ja) 回転電機
JP5481351B2 (ja) 外転型の電動機
JP5481302B2 (ja) 外転型の電動機
EP2717440B1 (en) Rotary electric motor salient pole armature winding
JP2012105372A (ja) 外転型の電動機
JP5441846B2 (ja) 電動機の突極集中巻きコイル及びその製造方法
US20200287436A1 (en) Armature
TW201742356A (zh) 軸向間隙型旋轉電機
CN108781006B (zh) 旋转电机、旋转电机的制造方法
WO2022004338A1 (ja) モータ
JP6302698B2 (ja) 回転電機ユニット
EP4366139A1 (en) Rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11792284

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012519333

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11792284

Country of ref document: EP

Kind code of ref document: A1