WO2013140831A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2013140831A1
WO2013140831A1 PCT/JP2013/050505 JP2013050505W WO2013140831A1 WO 2013140831 A1 WO2013140831 A1 WO 2013140831A1 JP 2013050505 W JP2013050505 W JP 2013050505W WO 2013140831 A1 WO2013140831 A1 WO 2013140831A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotating electrical
electrical machine
bending portion
segment
Prior art date
Application number
PCT/JP2013/050505
Other languages
English (en)
French (fr)
Inventor
友彰 貝森
嘉己 森
高広 大森
中山 健一
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201380007970.8A priority Critical patent/CN104094502A/zh
Priority to DE112013001643.5T priority patent/DE112013001643T5/de
Priority to US14/378,512 priority patent/US20150015110A1/en
Publication of WO2013140831A1 publication Critical patent/WO2013140831A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/32Windings characterised by the shape, form or construction of the insulation
    • H02K3/34Windings characterised by the shape, form or construction of the insulation between conductors or between conductor and core, e.g. slot insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0414Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils
    • H02K15/0421Windings consisting of separate elements, e.g. bars, hairpins, segments, half coils consisting of single conductors, e.g. hairpins
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotating electrical machine.
  • Rotating electrical machines used for driving vehicles are required to be small and have high output. For this reason, rectangular wires are used for the purpose of improving the space factor and output. As a winding method in this case, there is a winding method using a rectangular wire segment.
  • a flat wire formed in a U-shape is inserted into the stator core, and the straight wire straight portions protruding from the stator core are twisted in the circumferential direction to connect to the flat wire in different slots.
  • the stator core with bolt through holes is directly attached to the motor housing or transmission case using bolts, or when the stator is shrink-fitted into the housing, the coil located on the inner wall of the housing or case and both ends of the stator core The end will be close. In such a case, there may be a problem in the insulation between the flat wire and the inner wall of the housing or the case.
  • a turn portion included in a small segment has a first crank in which conductor strands are displaced in the radial direction by substantially the same as the radial width of the small segment.
  • the turn portion of the large segment is multiplied by a value twice the radial width of the small segment, and the conductor strand is shifted in the radial direction by substantially the same value as the value obtained by adding the radial width of the large segment.
  • a rotating electrical machine for a vehicle having a crank portion is described.
  • Patent Document 1 describes a vehicular rotating electrical machine that prevents the coil end from expanding in the radial direction when the segments are used in an overlapping manner, but does not describe the insulation between the coil end and the housing or the case. .
  • stator core With conventional rectangular wire stators, bolt holes are drilled in the stator core, and the method of attaching the stator core directly to the housing or case makes it difficult to ensure sufficient insulation due to the proximity of the housing or case and the coil end. There is.
  • an object of the present invention is to provide a rotating electrical machine that can ensure insulation between a coil end and an inner wall of a housing or a case.
  • the present application includes a plurality of means for solving the above-described problems.
  • a stator core having a plurality of slots arranged in the circumferential direction and a conductor having a rectangular cross section provided with an insulating coating
  • a stator having a stator winding inserted into the slot, the stator winding having a first segment transition bending portion provided radially outside the stator and a radially inner side of the stator
  • the second segment transition bending portion provided in the first segment transition bending portion, and the layer transition bending portion angle of the first segment transition bending portion is larger than the layer transition bending portion angle of the second segment transition bending portion.
  • FIG. 1 is a schematic configuration diagram of a hybrid electric vehicle on which a rotating electrical machine according to a first embodiment is mounted.
  • Sectional drawing of the rotary electric machine of FIG. Sectional drawing which shows the stator and rotor of FIG.
  • the rotating electrical machine of the present embodiment uses a rectangular wire capable of high output and miniaturization, and is therefore suitable as a driving motor for an electric vehicle, for example.
  • the rotating electrical machine according to the present invention can be applied to a pure electric vehicle that runs only by the rotating electrical machine and a hybrid vehicle that is driven by both the engine and the rotating electrical machine.
  • a hybrid vehicle will be described as an example.
  • a vehicle 100 of a hybrid vehicle is equipped with an engine 120, first and second rotating electric machines 200 and 202, and a high-voltage battery 180.
  • the battery 180 is constituted by a secondary battery such as a lithium ion battery or a nickel metal hydride battery, and outputs high-voltage DC power of 250 to 600 volts or more.
  • the battery 180 supplies DC power to the rotating electrical machines 200 and 202 when the driving force by the rotating electrical machines 200 and 202 is required, and DC power is supplied from the rotating electrical machines 200 and 202 during regenerative travel. Transfer of direct-current power between the battery 180 and the rotating electrical machines 200 and 202 is performed via the power converter 600.
  • the vehicle is equipped with a battery for supplying low voltage power (for example, 14 volt power).
  • low voltage power for example, 14 volt power
  • Rotational torque generated by the engine 120 and the rotating electrical machines 200 and 202 is transmitted to the front wheels 110 via the transmission 130 and the differential gear 160.
  • rotating electrical machine 200 Since the rotating electrical machines 200 and 202 are configured in substantially the same manner, the rotating electrical machine 200 will be described below as a representative.
  • the rotating electrical machine 200 includes a housing 212 and a stator 230 held inside the housing 212, and the stator 230 includes a stator core 232 and a stator winding 238. .
  • a rotor 250 is rotatably held through a gap 222.
  • the rotor 250 includes a rotor core 252, a permanent magnet 254, and a non-magnetic cover plate 226, and the rotor core 252 is fixed to a columnar shaft (rotary shaft body) 218.
  • the direction along the rotation axis is “axial direction”, the rotation direction around the rotation axis is “circumferential direction”, and the radial direction from the rotation axis to the surroundings (for example, the direction from the rotation axis to the permanent magnet 254 in FIG. 3). ) Is referred to as “radial direction”.
  • the housing 212 has a pair of end brackets 214 provided with bearings 216, and the shaft 218 is rotatably held by these bearings 216.
  • the shaft 218 is provided with a resolver 224 that detects the position and rotation speed of the pole of the rotor 250.
  • FIG. 3 is a cross section taken along the line AA in FIG. In FIG. 3, the housing 212 and the stator winding 238 are not shown. In FIG. 3, a large number of slots 24 and teeth 236 are evenly arranged over the entire circumference on the inner circumference side of the stator core 232. Slot insulation (not shown) is provided in the slot 24, and a plurality of phase windings of u phase to w phase constituting the stator winding 238 are mounted. In this embodiment, distributed winding is adopted as a method of winding the stator winding 238.
  • the distributed winding is a winding method in which the phase windings are wound around the stator core 232 so that the phase windings are accommodated in two slots that are spaced apart from each other across the plurality of slots 24.
  • distributed winding is adopted as the winding method, so that the formed magnetic flux distribution is close to a sine wave shape, and it is easy to obtain reluctance torque. Therefore, it is possible to control not only a low rotational speed but also a wide rotational speed range up to a high rotational speed by utilizing field weakening control and reluctance torque, which is suitable for obtaining motor characteristics of an electric vehicle or the like.
  • the rotor core 252 is provided with a rectangular hole 253, and permanent magnets 254a and 254b (hereinafter, representative 254) are embedded in the hole 253 and fixed with an adhesive or the like.
  • the circumferential width of the hole 253 is set larger than the circumferential width of the permanent magnet 254, and magnetic gaps 256 are formed on both sides of the permanent magnet 254.
  • the magnetic gap 256 may be embedded with an adhesive, or may be solidified integrally with the permanent magnet 254 with a molding resin.
  • Permanent magnet 254 acts as a field pole for rotor 250.
  • the magnetization direction of the permanent magnet 254 is in the radial direction, and the direction of the magnetization direction is reversed for each field pole. That is, if the stator side surface of the permanent magnet 254a is N pole and the shaft side surface is S pole, the stator side surface of the adjacent permanent magnet 254b is S pole, and the shaft side surface is N pole. It has become.
  • These permanent magnets 254a and 254b are alternately arranged in the circumferential direction. In this embodiment, eight permanent magnets 254 are arranged at equal intervals, and the rotor 250 has eight poles.
  • Keys 255 project from the inner peripheral surface of the rotor core 252 at predetermined intervals.
  • a keyway 261 is recessed in the outer peripheral surface of the shaft 218.
  • the key 255 is fitted into the key groove 261 with a clearance fit, and rotational torque is transmitted from the rotor 250 to the shaft 218.
  • Permanent magnet 254 may be embedded in rotor core 252 after being magnetized, or may be magnetized by applying a strong magnetic field after being inserted into rotor core 252 before being magnetized.
  • the magnetized permanent magnet 254 is a strong magnet. If the magnet is magnetized before the permanent magnet 254 is fixed to the rotor 250, a strong attractive force is generated between the permanent magnet 254 and the rotor core 252 when the permanent magnet 254 is fixed. This suction force prevents the work. Moreover, there is a possibility that dust such as iron powder adheres to the permanent magnet 254 due to the strong attractive force. Therefore, the productivity of the rotating electrical machine is improved when the permanent magnet 254 is magnetized after being inserted into the rotor core 252.
  • both the rotating electrical machines 200 and 202 are based on the first embodiment, but only one rotating electrical machine 200 or 202 is the first embodiment, and the other configuration is adopted for the other. May be.
  • FIG. 4 is a perspective view of the stator 230 shown in FIGS.
  • the stator winding 238 is a rectangular wire, and in this embodiment, the U-shaped portion (turn portion) 240 is formed from a rectangular wire in advance using a mold or the like, and the stator core 232 having the slot insulation 235 is axially formed. insert. At this time, the linear portion is inserted into two slots that are spaced apart from each other across the plurality of slots 24.
  • the welding side coil end 239b is a view after twisting, and the lead wire and neutral wire are not shown and omitted.
  • the coil is fed by a roller by a predetermined distance, and bent at a predetermined angle using a pin or the like at a predetermined position. By repeating this, it is possible to obtain the same shape as the coil shape formed by the above mold.
  • the straight portion is inserted into the slot 24 from the axial direction in the stator core 232 in the same manner as described above.
  • the U-shaped portion 240 of the stator winding 238 is not formed by a mold but is formed by being bent by a pin or the like.
  • the insulating film at the tip of the coil end 239b is removed by the press shown in FIG.
  • a method using chemicals such as a peeling method using a press will be described.
  • a rectangular wire 273 formed in a U shape or a rectangular wire 273 before forming is passed through a guide 270 that fixes the position at the time of peeling.
  • An upper die 271 and a lower die 272 are provided at the tip of the guide 270.
  • the insulating film including the conductor portion of the rectangular wire 273 is removed, and a peeling portion is formed. .
  • a peeling part becomes thinner than the non-peeling part provided with the insulating film.
  • FIG. 6 shows a view of the stator 230 as seen from the radial direction. As shown in the figure, it can be seen that the outer row winding 241 protrudes from the stator core 232 and spreads outward in the radial direction as it goes to the U-shaped portion 240 of the folded-back coil end 239a. This is performed in order to secure a gap between the coils in order to suppress the axial height of the folded-back coil end 239a.
  • the welding side coil end 239b is also expanded in the radial direction in FIG. 6, but this is also the same idea as described above. However, when the axial height and the gap between the coils are sufficiently secured, it is not always necessary to expand the radial direction at either coil end.
  • the U-shaped portion 240 of the folded-back side coil end 239a extends in the radial direction, and in particular, the outer row winding 241 extends more radially outward than the inner row winding 242.
  • the stator 230 is usually attached to a housing or a transmission case.
  • the attachment method includes a method in which the stator core 232 is shrink-fitted and a method in which a bolt through hole is provided in the stator core 232 and bolted directly.
  • the inner wall of the housing and the outer row winding 241 are closest to each other, and if a sufficient distance cannot be secured, there may be a problem in the insulation.
  • the inner diameter of the housing adjacent to the outer row winding 241 may be increased.
  • the outer diameter of the housing may be increased more than necessary. Particularly in a rotating electric machine for a hybrid vehicle, which is strict in space, there is a possibility of interference with other parts.
  • the conventional outer row winding 241 includes center lines 2410a and 2420a of both segment transition bent portions 241a and 242a of the inner row winding 242 and the outer row winding 241, and a center line B of both windings.
  • (Layer transition bending portion angles) ⁇ 1 and ⁇ 2 were the same.
  • the insulation strengths of the segment transition bent portions 241a and 242a of the inner row winding 242 and the outer row winding 241 are substantially equal.
  • the outer row winding 241 is located on the outer side in the radial direction, so that the gap between the coils is larger than the inner row winding 242. It is sufficient if the same gap as the column winding 242 can be secured.
  • the feature of the present invention is that the layer transition bending portion angle ⁇ 1 of the outer row winding 241 is larger than the layer transition bending portion angle ⁇ 2 of the inner row winding 242 as shown in FIG. Thereby, the insulation strength of the segment transition bent portions 241 a and 242 a can be made higher in the outer row winding 241 than in the inner row winding 242.
  • the inter-coil gap between the outer row windings 241 becomes non-uniform. Therefore, as shown in FIG. 9, the inter-coil gap can be finely adjusted by shifting the position of the segment transition portion center 280 and the leg portion 281 inserted into the slot and the leg-to-leg center 281. Further, the same effect can be obtained even if the positions of the segment transition portion center 280 and the U-shaped vertex position 282 are shifted.
  • segment transition portion center 280 for shifting the position between the leg portion and the leg-to-leg center 281 or the U-shaped apex position 282 is exemplified by the outer row winding 241, but the inner row winding 242 is exemplified.
  • the center of the segment transition part may be shifted.
  • the above-mentioned center line B of the inner row winding 242 and the outer row winding 241 is a line connecting the respective leg portions of the inner row winding 242 and the outer row winding 241 and the leg center 281 between the legs. It is.
  • the layer transition bending portion angle ⁇ 1 can be set so as to provide a gap between the coils equivalent to the inner row winding 242. Accordingly, the layer transition bending portion angle ⁇ 1 can be made larger than the layer transition bending portion angle ⁇ 2, and the insulation between the outer row winding 241 and the housing inner wall can be enhanced. Further, since the gap between the coils of the outer row winding 241 can be made equal to that of the inner row winding 242, the insulation between the windings does not deteriorate.
  • the winding is illustrated in the above description, the winding shape is not limited at all.
  • the motor for driving the vehicle has been described as an example.
  • the present invention can be applied not only to driving the vehicle but also to various motors.
  • the present invention can be applied not only to motors but also to various rotating electrical machines such as generators.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. That is, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

Abstract

コイルエンドとハウジング又はケースの内壁との間の絶縁性を確保できる回転電機を提供する。 周方向に並んだ複数のスロット24を有する固定子鉄心232と、絶縁被膜を備えた矩形断面の導体で形成され、前記スロット24に挿入される固定子巻線238とを有する固定子230を備え、前記固定子巻線238は前記固定子230の径方向外側に設けられた第1のセグメント移行曲げ部241aと前記固定子の径方向内側に設けられた第2のセグメント移行曲げ部242aを有し、第1のセグメント移行曲げ部241aの層移行曲げ部角度θ1が、第2のセグメント移行曲げ部242aの層移行曲げ部角度θ2より大きい回転電機。

Description

回転電機
 本発明は、回転電機に関する。
 車両駆動用として用いられる回転電機は小型・高出力化が求められている。このため、占積率・出力向上を目的として平角線が使用されている。この場合の巻線方式として、平角線セグメントを用いた巻線方式がある。
 この巻線方式は、U字状に成形された平角線を固定子鉄心に挿入し、固定子鉄心から突出した平角線直線部を周方向にそれぞれ捻ることにより、異なるスロットの平角線との接続を行う。ボルト通し穴を有する固定子コアをモータハウジング又はトランスミッションケースにボルトを用いて直付けする場合や、固定子をハウジングに焼き嵌めする場合は、ハウジング又はケースの内壁と固定子コア両端に位置するコイルエンドは近接することとなる。このような場合、平角線とハウジング又はケースの内壁との間の絶縁性に問題が生じることがある。
 特開2006-149049号公報(特許文献1)では、小セグメントに含まれるターン部が、この小セグメントの径方向幅とほぼ同じだけ導体素線を径方向にずらした第1のクランクを有しており、大セグメントのターン部が前記小セグメントの径方向幅の2倍の値を乗算し、さらに前記大セグメントの径方向幅を加算した値とほぼ同じだけ導体素線を径方向にずらしたクランク部を有した車両用回転電機が記載されている。
特開2006-149049号公報
 特許文献1にはセグメントを重ねて用いる場合にコイルエンドが径方向に膨らむことを防止する車両用回転電機について記載されているが、コイルエンドとハウジング又はケースとの絶縁性については記載されていない。
 また、従来の平角線固定子では固定子コアにボルト穴があけられ、ハウジング又はケースに直接固定子コアを取り付ける方式では、ハウジング又はケースとコイルエンドが近接し、十分な絶縁性を確保できない場合がある。
 そこで本発明は、コイルエンドとハウジング又はケースの内壁との間の絶縁性を確保できる回転電機を提供することを課題とする。
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、周方向に並んだ複数のスロットを有する固定子鉄心と、絶縁被膜を備えた矩形断面の導体で形成され、前記スロットに挿入される固定子巻線とを有する固定子を備え、前記固定子巻線は前記固定子の径方向外側に設けられた第1のセグメント移行曲げ部と前記固定子の径方向内側に設けられた第2のセグメント移行曲げ部を有し、第1のセグメント移行曲げ部の層移行曲げ部角度が、第2のセグメント移行曲げ部の層移行曲げ部角度より大きくなるように回転電機を構成する。
 本発明によれば、コイルエンドとハウジング又はケースの内壁との間の絶縁性を確保できる回転電機を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例1の回転電機を搭載したハイブリッド型電気自動車の概略構成図。 図1の回転電機の断面図。 図2の固定子および回転子を示す断面図。 図2の固定子を示す斜視図。 平角線、中性線端部の端部剥離方法を示す図。 図2の固定子を軸方向垂直から見た図。 従来の固定子巻線形状を示す図。 本発明の固定子巻線形状を軸方向から見た図。 本発明の固定子巻線形状を示す図。
 以下、図面を用いて実施例を説明する。
[第1の実施例]
 本実施例の回転電機は、以下に説明するように、高出力・小型化が可能な平角線を用いることから、例えば、電気自動車の走行用モータとして好適である。本発明による回転電機は、回転電機のみによって走行する純粋な電気自動車や、エンジンと回転電機の双方によって駆動されるハイブリッド自動車にも適用できる。以下ではハイブリッド自動車を例に説明する。
 図1に示すように、ハイブリッド自動車の車両100には、エンジン120と、第1、第2の回転電機200、202と、高電圧のバッテリ180とが搭載されている。
 バッテリ180は、リチウムイオン電池あるいはニッケル水素電池などの2次電池で構成され、250ボルトから600ボルト、あるいはそれ以上の高電圧の直流電力を出力する。バッテリ180は、回転電機200、202による駆動力が必要な場合には回転電機200、202に直流電力を供給し、回生走行時には回転電機200、202から直流電力が供給される。バッテリ180と回転電機200、202との間の直流電力の授受は、電力変換装置600を介して行われる。
 また、図示していないが、車両には低電圧電力(例えば、14ボルト系電力)を供給するバッテリが搭載されている。
 エンジン120および回転電機200、202による回転トルクは、変速機130とデファレンシャルギア160を介して前輪110に伝達される。
 回転電機200、202は略同様に構成されているので、以下、回転電機200を代表として説明する。
 図2に示すように、回転電機200はハウジング212と、ハウジング212の内部に保持された固定子230とを有し、固定子230は固定子鉄心232と固定子巻線238とを備えている。固定子鉄心232の内側には、回転子250が空隙222を介して回転可能に保持されている。回転子250は、回転子鉄心252と、永久磁石254と、非磁性体のあて板226とを備えており、回転子鉄心252は円柱状のシャフト(回転軸体)218に固定されている。なお、この回転軸に沿う方向を「軸方向」、回転軸を中心とする回転方向を「周方向」、回転軸から周囲への放射方向(例えば図3において回転軸から永久磁石254へ向かう方向)を「径方向」と称する。
 ハウジング212は、軸受216が設けられた一対のエンドブラケット214を有しており、シャフト218はこれらの軸受216により回転自在に保持されている。シャフト218には、回転子250の極の位置や回転速度を検出するレゾルバ224が設けられている。
 図3は、図2のA-A断面である。図3では、ハウジング212、固定子巻線238の記載を省略している。図3において、固定子鉄心232の内周側には、多数のスロット24とティース236とが全周にわたって均等に配置されている。スロット24内にはスロット絶縁(図示省略)が設けられ、固定子巻線238を構成するu相~w相の複数の相巻線が装着されている。本実施例では、固定子巻線238の巻き方として分布巻を採用している。
 なお、図3では、スロットおよびティースの全てに符号を付すことはせず、代表して一部のティースとスロットにのみ符号を付した。
 分布巻とは、複数のスロット24を跨いで離間した2つのスロットに相巻線が収納されるように、相巻線が固定子鉄心232に巻かれる巻線方式である。本実施例では、巻線方式として分布巻を採用しているので、形成される磁束分布は正弦波状に近く、リラクタンストルクを得やすい。そのため、弱め界磁制御やリラクタンストルクを活用して、低回転速度だけでなく高回転速度までの広い回転数範囲についての制御が可能であり、電気自動車などのモータ特性を得るのに適している。
 回転子鉄心252には、矩形の穴253が穿設されており、穴253には永久磁石254a、254b(以下、代表して254)が埋め込まれ接着剤などで固定されている。穴253の周方向の幅は、永久磁石254の周方向の幅よりも大きく設定されており、永久磁石254の両側には磁気的空隙256が形成されている。磁気的空隙256は接着剤を埋め込んでも良いし、成型樹脂で永久磁石254と一体に固めても良い。永久磁石254は回転子250の界磁極として作用する。
 永久磁石254の磁化方向は径方向を向いており、界磁極毎に磁化方向の向きが反転している。すなわち、永久磁石254aの固定子側の面がN極、軸側の面がS極であったとすれば、隣の永久磁石254bの固定子側の面はS極、軸側の面はN極となっている。そして、これらの永久磁石254a、254bが周方向に交互に配置されている。本実施例では、各永久磁石254は等間隔に8個配置されており、回転子250は8極になっている。
 回転子鉄心252の内周面には所定間隔でキー255が突設されている。一方、シャフト218の外周面にはキー溝261が凹設されている。キー255がキー溝261にすきま嵌めで嵌合され、回転子250からシャフト218に回転トルクが伝達される。
 永久磁石254は、磁化した後に回転子鉄心252に埋め込んでも良いし、磁化する前に回転子鉄心252に挿入した後に強力な磁界を与えて磁化するようにしても良い。磁化後の永久磁石254は強力な磁石であり、回転子250に永久磁石254を固定する前に磁石を着磁すると、永久磁石254の固定時に回転子鉄心252との間に強力な吸引力が生じ、この吸引力が作業の妨げとなる。また強力な吸引力により、永久磁石254に鉄粉などのごみが付着する恐れがある。そのため、永久磁石254を回転子鉄心252に挿入した後に磁化する方が、回転電機の生産性が向上する。
 なお、以上の説明では回転電機200、202の両者が第1の実施例によるものとしたが、一方の回転電機200又は202のみを第1の実施例とし、他方については、その他の構成を採用してもよい。
 図4では図2、図3で示した固定子230の斜視図である。固定子巻線238は平角線であり、本実施例では平角線を予め型などを用いてU字部(ターン部)240を成形し、スロット絶縁235を備えた固定子鉄心232に軸方向から挿入する。このとき、複数のスロット24を跨いで離間した2つのスロットに直線部が挿入される。なお、図4では溶接側コイルエンド239bは捻り成形した後の図であり、口出し線および中性線などは図示せず省略した。
 上記の実施例は一例であり、その他別の方法がある。例えば、コイルをローラーにより所定の距離だけ送り、決められた位置でピン等を用いて所定の角度に折り曲げる。これを繰り返すことにより、上記型で成形したコイル形状と同様の形状を得ることができる。成形後、上記と同様に固定子鉄心232に軸方向から直線部をスロット24に挿入する。この場合、固定子巻線238のU字部240は型で成形されず、ピン等により折り曲げられることにより成形される。
 本実施例ではコイルエンド239b先端部の絶縁皮膜を図5に示すプレスによって皮膜除去を行っている。皮膜の除去方法は図5に示す方法以外にも薬品を使用する方法など幾つか存在するが、本実施例ではプレスによる剥離方法について述べる。
 図5に示すように本実施例で行う剥離方法は、剥離時に位置を固定するガイド270にU字に成形した平角線273、又は成形前の平角線273を通す。ガイド270の先には上型271と下型272が設けられており、上型271を下方向にプレスすることにより、平角線273の導体部を含め絶縁皮膜を除去し、剥離部を形成する。この場合、剥離部は絶縁皮膜を備えた非剥離部よりも細くなる。
 図6に固定子230を径方向から見た図を示す。同図のように外列巻線241は固定子鉄心232より突出し、折り返し側コイルエンド239aのU字部240に行くにつれ、径方向外側に広がっていることがわかる。これは折り返し側コイルエンド239aの軸方向高さを抑えるため、コイル間の隙間を確保するために実施している。
 また、溶接側コイルエンド239bにおいても図6では径方向に広げているが、これも上記と同じ考えである。しかし、軸方向高さおよびコイル間隙間が十分に確保できている場合は、どちらのコイルエンドにおいても必ずしも径方向に広げる必要はない。
 上記のように多くの場合、折り返し側コイルエンド239aのU字部240は径方向に広がっており、特に外列巻線241は内列巻線242よりも径方向外側へ広がることとなる。
 固定子230は通常、ハウジングやトランスミッションケースなどに取り付けられる。取り付け方法は固定子鉄心232を焼き嵌める方法や固定子鉄心232にボルト通し穴が設けられ直接ボルト締めする方法などがある。このようにハウジングなどに取り付けられた場合、図2で示したようにハウジング内壁とコイルエンド239は近接することとなる。
 特に、ハウジング内壁と外列巻線241は最も近接しており、十分な距離が確保できていない場合、その絶縁性に問題が生じることがある。
 上記の問題を解決するためには外列巻線241と近接するハウジング内径を大きくすれば良いが、必要以上にハウジング外径が大きくなってしまう可能性がある。特にスペースに厳しいハイブリッド自動車用の回転電機などでは、他部品と干渉してしまう可能性がある。
 従来の外列巻線241は図7で示すように、内列巻線242と外列巻線241の両セグメント移行曲げ部241a、242aの中心線2410a、2420aと、両巻線の中心線Bとのなす角度(層移行曲げ部角度)θ1、θ2は同じであった。この場合、内列巻線242と外列巻線241のセグメント移行曲げ部241a、242aの絶縁強度はほぼ同等となる。
 このときのコイル間隙間を比べると、外列巻線241の方が径方向外側に位置しているためコイル間隙間は内列巻線242よりも多くなるが、絶縁性を考えた場合、内列巻線242と同じ隙間を確保できれば良い。
 本発明の特徴は図8に示すように内列巻線242の層移行曲げ部角度θ2よりも外列巻線241の層移行曲げ部角度θ1のほうが大きいことである。これにより、セグメント移行曲げ部241a、242aの絶縁強度は内列巻線242よりも外列巻線241のほうが高くすることができる。
 よって、ハウジング内壁に最も近接する外列巻線241の絶縁強度を高めることができるため、ハウジング内壁と外列巻線241との絶縁性で問題が生じる可能性を低くすることができる。
 しかしながら、層移行曲げ部角度θ1を大きくすることで外列巻線241同士のコイル間隙間が不均一になってしまう。そこで図9に示すようにセグメント移行部中心280とスロットに挿入される脚部と脚部の脚部間中心281の位置をずらすことによってコイル間隙間を微調整することができる。また、セグメント移行部中心280とU字部頂点位置282の位置をずらしても同様の効果を得ることができる。
 図9では、脚部と脚部の脚部間中心281またはU字部頂点位置282との位置をずらすセグメント移行部中心280は外列巻線241のものを例示したが、内列巻線242のセグメント移行部中心をずらしても良い。
 なお、前述の内列巻線242と外列巻線241の中心線Bは、内列巻線242と外列巻線241のそれぞれの脚部と脚部の脚部間中心281を結んだ線である。
 上記を適用することによって、内列巻線242と同等のコイル間隙間となるような層移行曲げ部角度θ1を設定することができる。これにより、層移行曲げ部角度θ2よりも層移行曲げ部角度θ1を大きくでき、外列巻線241とハウジング内壁との絶縁性を高めることができる。さらに、外列巻線241のコイル間隙間は内列巻線242と同等にできることから、巻線間の絶縁性は低下しない。
 以上の説明ではそれぞれ巻線を図示していたが、巻線形状は何ら限定しない。 
 以上、車両駆動用のモータを例に説明したが、本発明は、車両駆動用に限らず種々のモータにも適用することができる。さらに、モータに限らず、発電機などの種々の回転電機に適用が可能である。また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。すなわち、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
24 スロット
100 車両
110 前輪
120 エンジン
130 変速機
160 デファレンシャルギア
180 バッテリ
200、202 回転電機
212 ハウジング
214 エンドブラケット
216 軸受
218 シャフト
222 空隙
224 レゾルバ
226 あて板
230 固定子
232 固定子鉄心
235 スロット絶縁
236 ティース
238 固定子巻線
239 コイルエンド
240 U字部
241 外列巻線
242 内列巻線
250 回転子
252 回転子鉄心
253 穴
254 永久磁石
255 キー
256 磁気的空隙
261 キー溝
270 ガイド
271 上型
272 下型
273 平角線
280 セグメント移行部中心
281 脚部間中心
282 U字部頂点位置
600 電力変換装置
θ1、θ2 層移行曲げ部角度

Claims (6)

  1.  周方向に並んだ複数のスロットを有する固定子鉄心と、絶縁被膜を備えた矩形断面の導体で形成され、前記スロットに挿入される固定子巻線とを有する固定子を備える回転電機において、
     前記固定子巻線は前記固定子の径方向外側に設けられた第1のセグメント移行曲げ部と前記固定子の径方向内側に設けられた第2のセグメント移行曲げ部を有し、
     第1のセグメント移行曲げ部の層移行曲げ部角度が、第2のセグメント移行曲げ部の層移行曲げ部角度より大きい回転電機。
  2.  請求項1に記載の回転電機において、
     前記第1のセグメント移行曲げ部又は前記第2のセグメント移行曲げ部の層移行曲げ部の折り曲げ中心と、スロットに挿入された各セグメントの脚部と脚部の中心とが異なっている回転電機。
  3.  請求項1に記載の回転電機において、
     前記第1のセグメント移行曲げ部又は前記第2のセグメント移行曲げ部の層移行曲げ部の折り曲げ中心と、U字部頂点の位置が異なっている回転電機。
  4.  請求項1乃至3のいずれか一つに記載の回転電機において、
     前記固定子巻線が型により成形される回転電機の固定子。
  5.  請求項1乃至3のいずれか一つに記載の回転電機において、
     前記固定子鉄心が、ボルトを通す穴を有し、ハウジング又はケースにボルトにて取り付けられる回転電機。
  6.  請求項1乃至3のいずれか一つに記載の回転電機において、
     前記固定子鉄心がハウジング又はケースに焼き嵌めされる回転電機。
PCT/JP2013/050505 2012-03-23 2013-01-15 回転電機 WO2013140831A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380007970.8A CN104094502A (zh) 2012-03-23 2013-01-15 旋转电机
DE112013001643.5T DE112013001643T5 (de) 2012-03-23 2013-01-15 Elektrische rotierende Maschine
US14/378,512 US20150015110A1 (en) 2012-03-23 2013-01-15 Electric Rotating Machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012066504A JP2013198380A (ja) 2012-03-23 2012-03-23 回転電機
JP2012-066504 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013140831A1 true WO2013140831A1 (ja) 2013-09-26

Family

ID=49222299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050505 WO2013140831A1 (ja) 2012-03-23 2013-01-15 回転電機

Country Status (5)

Country Link
US (1) US20150015110A1 (ja)
JP (1) JP2013198380A (ja)
CN (1) CN104094502A (ja)
DE (1) DE112013001643T5 (ja)
WO (1) WO2013140831A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015052964A1 (ja) * 2013-10-08 2017-03-09 三菱電機株式会社 回転電機およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5907128B2 (ja) * 2013-08-21 2016-04-20 株式会社デンソー 回転電機の固定子
ITBO20150190A1 (it) * 2015-04-16 2016-10-16 Magneti Marelli Spa Macchina elettrica presentante un avvolgimento statorico con barre rigide conformate ad "u" mediante una piegatura tridimensionale
WO2018016331A1 (ja) * 2016-07-22 2018-01-25 三菱電機株式会社 回転電機及び、回転電機の単位コイルの製造方法
JP2021122170A (ja) * 2020-01-31 2021-08-26 日立Astemo株式会社 回転電機及びこの回転電機を備えた車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166151A (ja) * 1998-11-26 2000-06-16 Denso Corp 車両用交流発電機の固定子
JP2001245447A (ja) * 1999-12-20 2001-09-07 Denso Corp ステータ弾性支持型回転電機
JP2006149049A (ja) * 2004-11-18 2006-06-08 Denso Corp 車両用回転電機
JP2010115031A (ja) * 2008-11-07 2010-05-20 Denso Corp 回転電機の固定子およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001289191A1 (en) * 2000-09-06 2002-03-22 Robert W. Ward Stator core design
JP2007244150A (ja) * 2006-03-10 2007-09-20 Toyota Industries Corp 電動モータ及び電動圧縮機
JP2009148092A (ja) * 2007-12-14 2009-07-02 Toyota Motor Corp 車両用電動機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000166151A (ja) * 1998-11-26 2000-06-16 Denso Corp 車両用交流発電機の固定子
JP2001245447A (ja) * 1999-12-20 2001-09-07 Denso Corp ステータ弾性支持型回転電機
JP2006149049A (ja) * 2004-11-18 2006-06-08 Denso Corp 車両用回転電機
JP2010115031A (ja) * 2008-11-07 2010-05-20 Denso Corp 回転電機の固定子およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015052964A1 (ja) * 2013-10-08 2017-03-09 三菱電機株式会社 回転電機およびその製造方法

Also Published As

Publication number Publication date
JP2013198380A (ja) 2013-09-30
CN104094502A (zh) 2014-10-08
DE112013001643T5 (de) 2014-12-31
US20150015110A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
WO2013035482A1 (ja) 回転電機の固定子、および回転電機
WO2012090792A1 (ja) 回転電機
EP3079234B1 (en) Rotary electric machine
JP5040303B2 (ja) 回転電機
JP5299679B2 (ja) モータジェネレータ
US10199890B2 (en) Embedded permanent magnet electric motor
US10298084B2 (en) Rotating electric machine for vehicle
US7915780B2 (en) Laminated spiral core, dynamo-electric-machine rotor provided therewith, and dynamo-electric machine
WO2017038310A1 (ja) 固定子コイル、これを備えた固定子、およびこれを備えた回転電機
WO2013140831A1 (ja) 回転電機
CN108616176A (zh) Wrsm电动机的转子结构
CN109478814B (zh) 旋转电机的定子和旋转电机
JP6793257B2 (ja) 回転電機の固定子、及び回転電機
US11205930B2 (en) Axial flux motor assemblies with variable thickness rotors and rotors having interiorly disposed magnets
US7646130B2 (en) Stator segment and method of assembly
JP2019088139A (ja) ステータおよび回転電機
JP2017169343A (ja) 回転電機、巻上機、およびエレベータ
WO2011155327A1 (ja) 電動機の突極集中巻きステータ及びその製造方法
WO2015072285A1 (ja) 固定子及びこれを備えた回転電機
JP5248048B2 (ja) 回転電機の回転子及び回転電機
CN110492630A (zh) 旋转电机
JP5805046B2 (ja) 車両用電動機および車両用発電機
JP5847485B2 (ja) 電動モータ
JP2020048340A (ja) ステータおよびモータ
WO2022208750A1 (ja) モーター構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764793

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14378512

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013001643

Country of ref document: DE

Ref document number: 1120130016435

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764793

Country of ref document: EP

Kind code of ref document: A1