WO2013152484A1 - 复合防火玻璃、复合防火玻璃的制造方法及幕帘 - Google Patents

复合防火玻璃、复合防火玻璃的制造方法及幕帘 Download PDF

Info

Publication number
WO2013152484A1
WO2013152484A1 PCT/CN2012/073810 CN2012073810W WO2013152484A1 WO 2013152484 A1 WO2013152484 A1 WO 2013152484A1 CN 2012073810 W CN2012073810 W CN 2012073810W WO 2013152484 A1 WO2013152484 A1 WO 2013152484A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
cavity
thermal expansion
glass
expansion portion
Prior art date
Application number
PCT/CN2012/073810
Other languages
English (en)
French (fr)
Inventor
邱丽
李艳华
Original Assignee
Qiu Li
Li Yanhua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiu Li, Li Yanhua filed Critical Qiu Li
Priority to PCT/CN2012/073810 priority Critical patent/WO2013152484A1/zh
Priority to EP12874187.3A priority patent/EP2808163B1/en
Publication of WO2013152484A1 publication Critical patent/WO2013152484A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/10Doors, windows, or like closures for special purposes; Border constructions therefor for protection against air-raid or other war-like action; for other protective purposes
    • E06B5/16Fireproof doors or similar closures; Adaptations of fixed constructions therefor
    • E06B5/165Fireproof windows
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/54Fixing of glass panes or like plates
    • E06B3/5409Means for locally spacing the pane from the surrounding frame
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/264Combinations of lamellar blinds with roller shutters, screen windows, windows, or double panes; Lamellar blinds with special devices
    • E06B2009/2643Screens between double windows

Definitions

  • the present invention relates to the field of fireproof glass, and more particularly to a composite fireproof glass, a method of manufacturing a composite fireproof glass, and a curtain.
  • composite fireproof glass is formed by laminating two or more layers of glass original composite water-soluble inorganic fireproof rubber interlayer.
  • Composite fireproof glass meets both fire integrity and fire and heat insulation requirements.
  • the fireproof principle of composite fireproof glass is: When a fire occurs, the special transparent chemical substance in the middle of the composite heat-insulating fireproof glass absorbs the heat in the flame and foams and expands, and becomes opaque white, effectively preventing the combustion.
  • the heat insulation and heat radiation protection function of the composite fireproof glass can protect the escape personnel or rescue workers in the glass backfire area from high temperature heat and heat radiation, and prevent combustible materials and articles in the area. Wood products and carpets are ignited by high temperature and heat radiation for a certain period of time.
  • the prior art composite fireproof glass has the following main problems in the use process due to the influence of the stability of the raw materials and the production process:
  • the existing composite heat-insulating fireproof glass has a thickness of at least several tens of millimeters, and can even reach or exceed
  • the common composite fireproof glass currently on the market has a square meter weight of 60 kg to 90 kg or even higher. This has high load-bearing requirements for the fire-proof frame and corresponding building structure of the installed glass, and of course, it will bring many adverse effects to the logistics operation.
  • the thickness control of the existing composite fire-resistant glass is difficult to control due to the problems of composite technology and raw materials.
  • the common control of the manufacturers on the market is about plus or minus 3 mm, which puts a relatively high frame mounting structure. Requirements also waste installation time and increase installation costs.
  • An object of the present invention is to provide a composite fireproof glass, a composite fireproof glass manufacturing method and a curtain having good fireproof performance, light weight and good light transmittance.
  • the present invention provides a composite fireproof glass, comprising: a first glass substrate; a second glass substrate disposed in parallel with the first glass substrate; a connecting portion connecting the first glass substrate and the second glass substrate; the cavity, located at the first Between the glass substrate and the second glass substrate; the composite fireproof glass further includes a thermal expansion portion, the heat expansion portion is a substantially evenly distributed structure made of a thermal expansion material, and the cavity is partially filled with the thermal expansion portion. Further, the thermal expansion portion is made of expandable graphite or an article containing expandable graphite.
  • the first glass substrate is a single-layer or multi-layer fire-resistant glass substrate
  • the second glass substrate is a single-piece tempered glass substrate, a single-layer or multi-layer fire-resistant glass substrate, a single-layer coated glass substrate, a coated glass substrate or a double layer or more
  • the composite fireproof glass further includes a sealing portion disposed at an edge of the cavity for sealing the cavity.
  • the thermal expansion portion is directly fixedly disposed in the cavity. Further, the thermal expansion is located at the edge and/or in the middle of the cavity. Further, the thermally expanded portion forms a substantially uniform pattern in the cavity, preferably in the form of a grid, a dot or a petal. Further, the thermal expansion portion is movably disposed in the cavity. Further, the thermal expansion portion is in the form of a curtain and is folded and stored at an edge and/or in the middle of the cavity at a normal temperature. Further, the composite fireproof glass further includes a driving device that changes the thermal expansion portion from the folded state to the expanded state when the composite fireproof glass is in a fire.
  • the thermal expansion portion is disposed on the left side and/or the right side of the cavity
  • the driving device comprises: a support rod disposed on the upper portion of the cavity; a traction wire winding roller, and two parallel traction wire winding rollers respectively disposed in the cavity The left and right ends are located on the lower side of the support rod; the traction line is wound around the two traction wire winding rollers; the plurality of connecting rings, the upper portions of the plurality of connecting rings are slidably disposed on the support rod, and the lower portion is evenly distributed Distributedly connected to the upper part of the thermal expansion portion, the central portion is uniformly connected to the traction line; the driving component is connected to the traction line for pulling the traction line.
  • the driving component is a memory alloy wire, comprising opposite first and second ends, the first end is fixedly connected to the first glass substrate or the second glass substrate, and the second end is fixedly connected to the pulling wire.
  • the memory alloy wire is located at an upper intermediate position of the cavity;
  • the traction wire comprises a first traction portion and a second traction portion on both sides of a plane formed by the axes of the two traction wire winding rollers;
  • a plurality of connecting rings are respectively disposed on the left and right sides of the memory alloy wire, and a plurality of connecting rings on the left side are fixedly connected with the first traction portion, and a plurality of connecting rings on the right side are fixed to the second traction portion connection.
  • the memory alloy wire is linear at normal temperature and starts to become a spring shape between 80 and 120 °C.
  • the composite fireproof glass further comprises a receiving box disposed on a corresponding side of the cavity which is folded and received by the thermal expansion portion, and the receiving box is closed at a normal temperature to receive the folded thermal expansion portion, and is opened in case of fire to facilitate thermal expansion of the folding. The department is unfolding.
  • the accommodating case comprises: a box body having a rectangular cross section; a spring hinge; a lid, the lid facing the inner side of the cavity and being pivotally disposed on the second glass substrate by the one or more spring hinges On the side of the side, the lid is connected to the side of the casing on the side of the first glass substrate by one or more hot melt seal points at normal temperature.
  • the present invention also provides a method for manufacturing a composite fireproof glass, comprising the steps of: a, providing a first glass substrate and a second glass substrate, and forming a cavity between the first glass substrate and the second glass substrate; b, Providing a thermal expansion portion in the cavity and partially filling the cavity with the thermal expansion portion, wherein the thermal expansion portion is a substantially evenly distributed structure made of a thermal expansion material; c. connecting the first glass substrate and the second glass substrate to the whole frame. Further, step b includes directly providing a thermal expansion portion in the cavity. Further, step b includes movably providing a thermal expansion portion within the cavity. The present invention also provides a curtain made of a material that is thermally expanded.
  • the thermal expansion portion can rapidly expand to form the fire barrier layer when it encounters a high temperature, and thus has good fireproof performance. Since the cavity between the double glazings is not completely filled at normal temperature, the weight is light and the light transmittance is good.
  • the present invention preferably employs a thermal expansion portion formed of expandable graphite or an article comprising expandable graphite.
  • the expandable graphite has a property of rapid expansion upon heat, and can rapidly expand several times to several tens of times in the event of fire, and can rapidly expand to The entire cavity of the composite fireproof glass forms a fire barrier layer to prevent the flame and the smoke from spreading.
  • the expandable graphite has a small heat transfer coefficient and good thermal stability, and can effectively block the transmission of heat insulation. Since the expandable graphite has a small density, a high expansion speed when heated, and a large expansion amount, the expandable graphite required for the composite fireproof glass is small in volume, and is more advantageous for reducing the weight of the composite fireproof glass as compared with other materials. Increase the light transmittance of composite fireproof glass.
  • FIG. 3 is a structure of a composite fireproof glass according to a second embodiment of the present invention.
  • 4 is a schematic structural view showing a heat-expanding portion of a composite fire-resistant glass in a stored state according to a third embodiment of the present invention;
  • FIG. 5 is a partially enlarged schematic view showing a portion B of FIG. 4;
  • Figure 7 is a perspective view showing a three-dimensional structure of a storage box in a composite fireproof glass according to a third embodiment of the present invention;
  • Figure 8 is a side view showing the structure of Figure 4;
  • Figure 9 is a composite view of a third embodiment of the present invention.
  • a schematic structural view of the thermal expansion portion of the fireproof glass in an unfolded state; 10 is a partial enlarged structural view of a portion D of FIG.
  • FIG. 11 is a partially enlarged schematic structural view of a portion E of FIG. 10
  • FIG. 12 is a partial structural view of a driving device for a composite fireproof glass according to a third embodiment of the present invention
  • Figure 13 is a schematic side view of Figure 9.
  • the invention provides a composite fireproof glass, comprising: a first glass substrate; a second glass substrate disposed parallel to the first glass substrate; a connecting portion connecting the first glass substrate and the second glass substrate; the cavity, located in the first glass
  • the composite fireproof glass further includes: a thermal expansion portion, the heat expansion portion is a substantially evenly distributed structure made of a thermal expansion material, and partially fills the cavity with the thermal expansion portion.
  • At least one of the first glass substrate and the second glass substrate of the glass substrate is a fire facing glass substrate which is required to have fire resistance and is not deformed or damaged at a high temperature, and may be a single layer or a plurality of layers. (Two or more layers) Fireproof glass substrate.
  • one of the two glass substrates is a fire-facing glass substrate, and the other is a back-fired glass substrate, and both of them may be a fire-facing glass substrate as needed.
  • the backfire surface glass substrate may be selected from a single-piece tempered glass substrate, a single-layer or multi-layer fire-resistant glass substrate, a single-layer coated glass substrate, a coated glass substrate, or a double-layer or more composite glass substrate.
  • Connecting Portion In the present invention, connects the first glass substrate and the second glass substrate, and the connecting portion may be connected to the two substrates by any suitable connecting member.
  • the connecting portion is a spacer that is clamped and bonded to an edge position between the two glass substrates, and the spacer may be, for example, a glass piece or a metal frame, or may be sandwiched between two. A clip or the like at the outer edge of the sheet glass substrate.
  • the connecting portion can form a seal between the two glass substrates while connecting the two glass substrates, or can only serve as a joint without a sealing function, and the cavity can be non-gas in the case where the connecting portion has no sealing effect. Secret. Sealing part
  • the composite fire resistant glass may further include a seal portion disposed at an edge of the cavity for sealing the cavity. In an embodiment, the connecting portion can simultaneously serve as a sealing portion.
  • the thermal expansion portion of the thermal expansion portion includes a thermal expansion material.
  • the thermal expansion material preferably expands at least 1.5 times its original volume at 100-200 ° C, and rapidly expands to a multiple of ten times or even tens of its original volume with an increase in temperature above 200 ° C. Hundreds of times.
  • the thermal expansion portion is small in volume before being heated, and is located in a local position within the double-glazed cavity, for example, within 20 mm from the edge. When the temperature of the fire-resistant glass substrate of the composite fire-resistant glass rises, the volume of the thermal expansion portion rapidly expands and fills the cavity of the entire double-layer glass to form a fire barrier layer.
  • the thermal insulation layer formed by the thermal expansion portion has a small thermal conductivity and is opaque, it can effectively block the three conduction modes of heat radiation, heat convection and heat conduction.
  • the heat-expandable material forming the thermal expansion portion may be a hydrated alkali metal silicate such as sodium silicate or an opportunity thermal expansion material such as urethane foam or the like, but is more preferably expandable graphite. Expandable graphite has the characteristics of rapid expansion when heated, and can expand rapidly several times to several tens of times in the event of fire. It can rapidly expand to the entire cavity of the composite fireproof glass to form a fire barrier, prevent flame and smoke from spreading, and expand.
  • Graphite has a small heat transfer coefficient and good thermal stability, which can effectively block the transmission of heat insulation.
  • the expandable graphite has a small density, a high expansion speed when heated, and a large expansion amount. Therefore, the required expandable graphite is small in volume, so that compared with other materials, It is beneficial to reduce the weight of the composite fireproof glass and increase the light transmittance of the composite fireproof glass.
  • the inventors of the present application have experimentally found that the effect of using expandable graphite is largely superior to that of hydrated alkali metal silicate or urethane styrofoam, which will be provided in the experiment provided in the first embodiment. The results were verified.
  • the thermal expansion portion may be composed of a product containing expandable graphite, for example, an expansion strip made of fire-resistant rubber using expandable graphite as a main raw material.
  • the thermal expansion is located at the edge and/or in the middle of the cavity.
  • the thermal expansion portion forms a pattern that is substantially uniformly distributed in the cavity, preferably forms a grid pattern in the cavity, and may also form a pattern such as a dot shape, a petal shape, a snowflake shape, or the like.
  • the thermal expansion portion is movably disposed within the cavity.
  • the thermal expansion portion is in the form of a curtain, and a curtain of thermal expansion material is formed which is stacked and stored at the edge and/or in the middle of the cavity at normal temperature.
  • the composite fire resistant glass preferably further comprises a drive means for changing the curtain of thermal expansion material from a folded state to a deployed state when the composite fire resistant glass is in contact with fire.
  • the heat-expanding portion in the form of a curtain may be provided only in the upper portion of the cavity. In the case of a curtain in the form of a louver, a plurality of curtain strips placed in parallel are connected by a connecting line.
  • the fixed release component can be, for example, a thin wire or a memory alloy wire, which bundles the stacked plurality of curtain strips together, and when the fire is in contact, the thin wire or the memory alloy wire can automatically release the curtain under the action of temperature change. article.
  • the fixing point of the thin wire can be automatically broken when the temperature rises to a certain value to release the curtain strip, and the memory alloy wire can be changed from the unfolded state to the contracted state by the temperature to release the curtain strip.
  • the fixed release component can also adopt a snap-on structure, for example, a buckle is arranged on the left and right sides of the upper part of the cavity, and the buckle is normally blocked by a plurality of overlapping curtain strips, and the buckle is disengaged in case of fire. The plurality of curtain strips are released to allow the curtain strip to fall.
  • the accommodating case to be specifically described in the third embodiment can also be used as a fixed release member.
  • the curtain strip is normally folded and stored in the accommodating case, and when the cover of the accommodating case is automatically opened in case of fire, the curtain strip is dropped. . From the above description, in the case where the thermal expansion portion is provided only in the upper portion of the cavity, the driving device may not be provided.
  • the curtain of the present invention comprises or is made of a thermally expandable material, in addition to the louver form described above, in the form of a full curtain or in the form of a hollow curtain.
  • the curtains of the above various forms are required to be foldably placed.
  • the driving device of the present invention changes the thermal expansion portion from the folded state to the expanded state when the composite fireproof glass is in contact with fire.
  • the driving device may also adopt other structures or manners other than the embodiment, and the power thereof may be provided by a power provided in the prior art, such as a spring, a rubber band, a gravity structure, an electric motor, and only need to be set.
  • a trigger mechanism powers the drive mechanism in the event of a fire, and changes the curtain-like thermal expansion from the folded state to the deployed state.
  • the driving device may employ a temperature sensor, an optical sensor, or the like as a driving signal, and drive the active thermal expansion portion with the battery as the driving energy. It is also possible to arrange the power portion of the drive unit outside the cavity, and to provide only the curtain and the necessary traction means and the like inside the cavity.
  • the thermal expansion can be placed on the left and/or right side of the cavity. Alternatively, it may be disposed in the middle, and when disposed in the middle of the cavity, the curtain can be deployed in the left-right direction.
  • the driving device comprises: a support rod disposed at an upper portion of the cavity; a traction wire winding roller disposed at a left and right end and/or a right end of the cavity and located at a lower side of the support rod; a traction line, surrounding the traction line a plurality of connecting rings, the upper portion of the plurality of connecting rings is slidably disposed on the support rod, and the lower portion is connected to the thermal expansion portion Upper part.
  • the connecting ring is fixedly connected to the pull wire.
  • the traction wire is fixedly connected to the driving component, and the driving component can pull the traction wire to drive the curtain-shaped thermal expansion portion from the folded state to the expanded state.
  • the driving component is a memory alloy wire, including opposite first and second ends, the first end is fixedly connected to the first glass substrate or the second glass substrate, and the second end is fixedly connected to the traction wire.
  • the memory alloy wire is linear at normal temperature and is spring-shaped between 80 and 120 °C.
  • the invention also provides a method for manufacturing a composite fireproof glass, comprising the steps of: a, providing a first glass substrate and a second glass substrate, and forming a cavity between the first glass substrate and the second glass substrate; b. a thermal expansion portion is disposed in the cavity and the thermal expansion portion partially fills the cavity, and the thermal expansion portion is a substantially evenly distributed structure made of a thermal expansion material; c.
  • a thermal expansion is provided directly in the cavity, or a thermal expansion is provided in the cavity.
  • the present invention and all its embodiments are not limited to the composite fireproof glass of double glazing, and may be used for composite fireproof glass of three or more layers.
  • the shape of the present invention and all its embodiments are not limited to rectangular glass, and may be a circular shape, a parallelogram shape, a polygon of five or more sides, or the like.
  • the present invention also provides a curtain made of a material that is thermally expanded.
  • the curtain comprises a plurality of curtain strips, the curtain strip being made of a material that is thermally expanded.
  • the composite fireproof glass 100 of the first embodiment is a rectangular composite fireproof glass with substantially parallel double-layer glass substrates, mainly including a fire-facing glass substrate 110A and a backfire glass.
  • the substrate 110B and the connecting portion 120 that connect the edge portions of the fire glass substrate 110A and the back surface glass substrate 110B to each other.
  • the connecting portion 120 may be a glass strip which is disposed outside the edges of the two glass substrate faces 110A and 110B and integrally molded by inorganic fireproof bonding.
  • thermal expansion portion 130 is a strip-like structure made of a thermal expansion material, which is respectively located on the left and right sides of the composite fireproof glass 100 and the upper and lower edges, and is directly fixed to the fire. Between the surface glass substrate 110A and the back surface glass substrate 110B. With reference to the data of Tables 1 and 2, it has been experimentally verified that the expandable graphite has excellent properties, and thus in the first embodiment and the following embodiments, only the thermal expansion portion made of expandable graphite is taken as an example for the present invention. Composite fireproof glass for explanation.
  • the double-glazed backfire surface glass substrate 110B may be a conventional 6 mm or other thickness tempered glass. Normal ordinary tempered glass can withstand thermal shocks with temperature changes exceeding 200 ° C. Therefore, the back-fired glass substrate 110B uses a single-layer tempered glass without thermal shock to cause breakage.
  • a single-piece fire-resistant glass substrate or a single-layer film or a coated glass substrate and a double-layer or multi-layer composite glass substrate may be used as the back surface glass substrate 110B.
  • a fireproof glass substrate should be used, and the fireproof glass substrate can be a common single layer or multiple layers of fireproof glass which is commercially available.
  • the fireproof glass substrate can ensure the fireproof integrity of the composite fireproof glass, block the open flame to the fire surface and toxic and harmful gases for a certain period of time, so as to ensure that the heat expansion material layer 130 has enough time to fill the entire cavity, thereby forming Fire barrier.
  • Table 1 and Table 2 according to the fire test of the composite fireproof glass made of different thermal expansion materials made of different thermal expansion materials, when the thermal expansion is made of expandable graphite, the manufacturing process and product quality are satisfied.
  • the composite fireproof glass selected in the comparative experiment has the same material, the size is 800mmx l000mm, the distance between the first and second glass substrates is 25mm, and the thermal expansion is arranged at the edge of the cavity and is distributed within 25mm from the edge of the cavity. .
  • the thermal expansion portion is made of sodium silicate, urethane foam and expandable graphite, respectively. The comprehensive results of this comparative experiment verified that the expandable graphite has more excellent physical properties and fire resistance than sodium silicate and polyurethane styrofoam. Table 1 Comparison of physical properties of composite fireproof glass with thermal expansion of different materials
  • Overheating surface overheating highest temperature, first time full time (unit: minute) and full temperature over 180 °C or average material
  • the composite fireproof glass of the above first embodiment has the following advantages in addition to excellent fireproof performance: the composite fireproof glass has a square meter weight much smaller than that of the prior art composite fireproof glass; and the composite fireproof glass adopts a partially filled thermal expansion material.
  • the partial transmittance of the unfilled thermal expansion material is the same as the transmittance of the ordinary insulating glass, thereby improving the transmittance of the composite fireproof glass as a whole; the thickness control of the composite fireproof glass and the ordinary hollow The glass process is the same, so the thickness can be well controlled; since the composite fireproof glass itself has an intermediate cavity similar to the insulating glass, its thermal conductivity is relatively small; in the case of the expandable graphite in the composite fireproof glass, the thermal expansion material is expandable graphite. There is almost no change in daily season change and sunlight, which can effectively solve the shortcomings of the current composite fireproof glass with poor weather resistance.
  • the composite fireproof glass 200 of the second embodiment mainly includes a fire facing glass substrate 210A, a back surface glass substrate 210B, and a fire facing glass substrate 210A and a backfire glass substrate 210B.
  • the connecting portion 220 where the edge portions are connected together.
  • the heat expansion portion 230 is partially filled inside the cavity formed by the fire surface glass substrate 210A, the back surface glass substrate 210B, and the connecting portion 220.
  • the heat expansion portion 230 of the second embodiment forms a uniformly distributed pattern between the double glass substrates.
  • the pattern in the second embodiment is a rectangular grid-like pattern.
  • the heat expansion portion 230 forming the uniformly distributed pattern also directly fixes the thermal expansion material between the fire surface glass substrate 210A and the back surface glass substrate 210B.
  • the "direct fixation" in the first embodiment or the second embodiment means that the coating layer is not disposed outside the thermal expansion material but the heat expansion portion 130 or 230 is directly sandwiched between the two glass substrates because the package The coating affects the expansion speed of the thermal expansion portion 130 or 230, and also affects the uniformity of expansion, and even destroys the integrity of the fire barrier to greatly impair the fire performance of the composite fireproof glass.
  • the heat-expanding portion 230 is formed as in the second embodiment in that the composite fire-resistant glass 230 can be made more rapid and uniform than the first embodiment in the event of a fire.
  • the ground expands to completely fill the entire cavity to better achieve the purpose of fire prevention, and at the same time, the composite fireproof glass 230 can also be aesthetically pleasing and decorative.
  • the effect of the second embodiment as compared with the first embodiment can be embodied in Table 3 listed later.
  • FIGS. 4 to 12 show a composite fireproof glass 300 according to a third embodiment of the present invention.
  • the composite fireproof glass 300 of the third embodiment mainly includes a joint portion that connects the fire surface glass substrate 310A, the back surface glass substrate 310B, and the edge portions of the fire surface glass substrate 310A and the back surface glass substrate 310B. 320.
  • the thermal expansion portion 330 is a curtain in the form of a louver composed of a plurality of curtain strips, and the thickness between the first glass substrate and the second glass substrate is 25 mm.
  • the thermal expansion portion 330 has a thickness of 0.8 mm.
  • the curtain-like heat expansion portion 330 is folded and housed in the fire surface glass substrate 310A, the back surface glass substrate 310B, and the joint portion 320.
  • the curtain-like heat-expanding portion 330 can be moved from the left and right sides to the middle when it is heated by the fire, and finally fills the entire cavity.
  • the thermal expansion portion 330 is movably disposed in the cavity of the composite fire resistant glass.
  • a driving device 340 can be added in the cavity. When the fire is encountered, as shown in FIGS. 9 to 12, the thermal expansion material 330 can be rapidly deployed by the driving device 340 to form a cover of the entire composite fireproof glass 300.
  • Fig. 4 is a structural schematic view showing the heat-expanding portion 330 of the composite fire-resistant glass 300 of the third embodiment in a stored state.
  • Fig. 5 is a partially enlarged schematic view showing a portion B of Fig. 4;
  • Fig. 6 is a partially enlarged schematic view showing a portion C of Fig. 5;
  • Figure 8 is a side elevational view of Figure 4.
  • the driving device 340 mainly includes a support rod 341, a glass fiber pulling wire 342, a plurality of connecting rings 343, a memory alloy wire 344, and two traction wire winding rolls 345 disposed in parallel.
  • the upper side of the connecting ring 343 has perforations, and the upper side of the plurality of connecting rings 343 is slidably attached to the support rod 341 by the perforations thereon, and is connected to the upper portion of the curtain of the thermal expansion material 330 substantially uniformly distributed below.
  • Two traction wire winding rollers 345 are respectively disposed at the left and right ends of the cavity, and are located below the support rod 341, and the glass fiber traction wires 342 are wound in an annular shape on the two traction wire winding rollers 345.
  • the upper portion of the cavity forms substantially parallel upper and lower traction portions.
  • the glass fiber traction wires 342 can also form two front and rear parallel traction portions, respectively.
  • the memory alloy wire 344 is formed by straightening a memory alloy spring, and the right end thereof is fixed to the fire surface glass substrate 310A or the backfire glass substrate 310B by a glued end, and the left end is connected to the leftmost connection on the left side. Ring 343 is then passed over the fiberglass strand 342 through the nearest connecting ring 343. The left end of the memory alloy wire 344 can also be directly joined to the fiberglass strand 342.
  • FIGS. 4 to 5 when the thermal expansion portion 330 is in the stored state, the memory alloy wire 344 is in an unfolded state.
  • Figure 7 is a perspective view showing the structure of a storage box in a composite fireproof glass according to a third embodiment of the present invention.
  • a storage box 350 is disposed on each of the left and right sides of the cavity, and the two are identical in structure and arranged opposite each other.
  • the main body of the storage box 350 is a box body 351 having a rectangular cross section, and a box cover 354 is disposed inside the cavity of the box body 351 facing the composite fireproof glass 300.
  • the box cover 354 is pivotable by two or more spring hinges 352.
  • the cover 354 and the casing 351 are attached to the fire surface glass substrate.
  • the sides of the sides are connected by a plurality of hot melt seal points 353. At normal temperature, the thermal expansion portion 330 is folded and stored in the storage box 350.
  • the hot melt sealing point 353 is thermally disconnected, and the cover 354 is automatically opened by the spring hinge 352, and then expands thermally.
  • the portion 330 can be unfolded under the driving of the driving device 340 without being obstructed by the cover 354.
  • the storage box 350 may be provided so that the heat expansion portion 330 may not become irregular due to transportation installation or the like at a normal temperature. Therefore, the appearance of the composite fireproof glass is affected, and problems such as aging of the thermal expansion portion 330 due to long-term exposure to sunlight can be avoided.
  • FIG. 9 is a structural schematic view showing the heat-expanding portion 330 of the composite fire-resistant glass in an unfolded state according to a third embodiment of the present invention.
  • Fig. 10 is a partially enlarged schematic structural view showing a portion D of Fig. 9;
  • Figure 11 is a partially enlarged schematic view showing the portion E of Figure 10;
  • Figure 12 is a partial structural schematic view of a driving device for a composite fireproof glass according to a third embodiment of the present invention.
  • Figure 13 is a side elevational view of Figure 9.
  • the memory alloy wire 344 gradually reaches a deformation temperature of 80 to 120 ° C. Under the deformation temperature, the memory alloy wire 344 automatically shrinks into a spring shape, and the tensile force generated during the shrinkage of the memory alloy wire 344 pulls The connecting ring 343 connected to one end of the left side, and the glass fiber pulling wire 342 is pulled by the connecting ring 343. On the one hand, the lower traction portion of the glass fiber pulling wire 342 is subjected to a left-to-right force to expand the left thermal expansion portion 330.
  • the traction portion located above the fiberglass traction wire 342 receives a force from right to left, unfolding the curtain of the thermal expansion portion 330 on the right side, thereby rapidly forming on the base surface of the composite fireproof glass.
  • a complete curtain consisting of a thermally expanded material. Since the complete curtain can be formed on the entire base surface of the glass substrate very quickly, in the third embodiment, even when the thermal expansion material is not completely filled with the cavity, a good fire barrier effect can be produced. As the temperature continues to rise, the complete curtain begins to expand and eventually fills the entire cavity to form a fire barrier, thereby making the fire barrier stronger.
  • a fireproof glass substrate is preferably used for the fire surface glass substrate 310A.
  • the fire-resistant glass substrate ensures that it will not break when the fire starts.
  • the data obtained through 8 experiments show that, as the composite fireproof glass of the third embodiment increases with temperature, the thermal expansion material constituting the complete curtain can rapidly expand and fill the cavity to form a fire barrier layer, which can effectively block the amount of heat insulation to the backfire surface.
  • the glass substrate 310B is transferred, and the average temperature rise of the back surface glass substrate 310B ensures that the highest temperature rise does not exceed 180 ° C and the average temperature rise does not exceed 140 ° in the case of the manufacturing process and the product quality requirements.
  • the composite fireproof glass of the third embodiment also has the advantages of the first embodiment.
  • the composite fireproof glass is more advantageous in terms of light transmittance.
  • the entire glass base surface can be quickly and automatically unfolded into a curtain shape, and then expanded, so that the entire cavity can be more uniformly and quickly compared with the first embodiment, and is not filled as compared with the second embodiment.
  • the fire insulation effect is better, and the fire barrier layer formed in the third embodiment is more uniform in expansion and higher in quality, so that it is more advantageous to realize the function of fireproof and smokeproof.
  • Table 3 is a comparison table of fire resistance performances of the first to third embodiments when the heat expansion portion is made of expandable graphite.
  • the glass substrate of each of the three embodiments has a size of 400 mm ⁇ 600 mm, and the glass substrate has the same material, and the thermal expansion portions are respectively disposed at the peripheral edges of the cavity according to the first embodiment, and the second embodiment is disposed in the cavity in a grid pattern.
  • the three embodiments are arranged on the left and right sides of the cavity in the form of a curtain of the complete curtain and the driving device is the driving device shown in Figs. 4 to 12 .
  • Table III Comparison of fire performance of composite fireproof glass of the first to third embodiments
  • the composite fireproof glass of the present invention can be manufactured by the following methods: a, providing a first glass substrate and a second glass substrate, and forming a cavity between the first glass substrate and the second glass substrate; b, being disposed in the cavity The first portion of the glass substrate and the second glass substrate are joined together to form a unitary structure.
  • a preferred solution comprises the step of directly providing a thermal expansion in the cavity in step b.
  • Another preferred solution is to arbitrarily set the thermal expansion in the cavity in step b.
  • the curtain-like thermal expansion portion can be folded and stored in the upper side of the cavity.
  • the curtain-shaped thermal expansion portion may be folded and stored in the left and/or right side of the cavity, or may be provided in the middle.
  • the drive means is disposed at the edge of the cavity.
  • the disposing the driving device on the edge of the cavity comprises: disposing the supporting rod 341 on the upper part of the cavity; respectively, the two pulling wire winding rollers 345 are respectively disposed in parallel at the left and right ends of the cavity and under the support rod 341
  • the traction wire 342 is wound in an annular shape on the two traction wire winding rollers 345; the upper portion of the plurality of connection rings 343 is slidably disposed on the support rod 341, and the lower portion is evenly connected to the upper portion of the heat expansion portion 330.
  • the middle portion is uniformly connected to the pull wire 342; the first end of the memory alloy wire 344 is fixedly connected to the glass substrate forming the cavity, and the second end of the memory alloy wire 344 opposite to the first end is pulled Line 342 is fixedly connected.
  • the step b may further include the step of disposing the accommodating case 350 in the cavity on the corresponding side folded and received by the thermal expansion portion 330; and folding and accommodating the thermal expansion portion 330 in the accommodating case 350.

Abstract

本发明提供了一种复合防火玻璃、复合防火玻璃的制造方法及幕帘。本发明的复合防火玻璃包括:第一玻璃基板;第二玻璃基板,与第一玻璃基板平行设置;连接部,连接第一玻璃基板与第二玻璃基板;空腔,位于第一玻璃基板与第二玻璃基板之间;复合防火玻璃还包括遇热膨胀部,遇热膨胀部为由遇热膨胀材料制成的大致均匀分布的结构,并且遇热膨胀部局部地填充空腔。根据本发明的复合防火玻璃,具有良好的防火性能、重量轻、透光率好。

Description

复合防火玻璃、 复合防火玻璃的制造方法及幕帘 技术领域 本发明涉及防火玻璃领域, 更具体地, 涉及一种复合防火玻璃、 复合防火玻璃的 制造方法及幕帘。 背景技术 现有技术中复合防火玻璃是由两层或多层玻璃原片复合水溶性无机防火胶夹层复 合而成的。 复合防火玻璃同时满足耐火完整性、 耐火隔热性要求。 复合防火玻璃防火 原理是: 当发生火灾时, 在复合隔热型防火玻璃中间的特殊透明化学物质大量地吸收 火焰中的热量而发泡膨胀, 同时变成不透明的白色, 高效地阻止燃烧产生的热量从向 火面向背火面传导, 同时阻止玻璃向火面火焰的热辐射向背火面传递。在这个过程中, 玻璃整体保持完整, 形成了一个可以阻隔火焰、 烟雾和燃烧产生的高温毒气扩散与蔓 延的有效屏障。 复合防火玻璃的隔热和防热辐射功能可以使火灾发生时玻璃背火区域 内的逃生人员或救援人员免遭高温热量的侵害和热辐射的灼伤, 同时防止该区域内的 可燃材料和物品如木制品、 地毯在一定时间内被高温和热辐射所引燃。 现有技术的复合防火玻璃由于原材料的稳定性及生产工艺等影响, 在使用过程中 有如下主要问题:
1. 在日常使用过程中经过温度的四季变化及日光的照射常出现防火胶变白乳化 的现象, 影响玻璃的通透性。 另外一个常见的问题是玻璃胶层内出现微小的气泡, 这 些微型气泡也常常演变为大气泡并影响玻璃的通透性。 2. 现有的复合隔热型防火玻璃的厚度至少达到几十毫米, 甚至可以达到或超过
100 毫米, 因此重量非常大, 根据厚度不同, 目前市场上常见的复合防火玻璃的平米 重量为 60公斤到 90公斤甚至更高。 这样就对安装玻璃的防火框架及相应建筑结构有 很高的承重要求, 当然也会给物流操作带来诸多不利影响。
3. 由于现有的复合防火玻璃的生产工艺复杂, 要求极高, 并且生产周期比较长, 加之很高的自重造成的高昂物流费用, 所以市场售价非常高。 拿欧洲市场举例, 每平 米的复合隔热型防火玻璃大概的价格为 400 800欧元。 4. 由于复合隔热型防火玻璃本身不具备类似中空玻璃的中间空腔,所以其导热系 数比较大, 接近普通中空玻璃的二倍。
5. 现有的复合防火玻璃的厚度控制上由于复合工艺问题及原材料的原因,其公差 很难控制, 市场上常见的厂家基本控制在正负 3毫米左右, 对框架安装结构提出了比 较高的要求, 也会浪费安装工时、 增加安装成本。
6. 现有的复合防火玻璃由于本身结构的特殊性, 其透光率最高可以达到 70%~85%, 甚至有些国产的产品透光率仅能达到 60%。 发明内容 本发明目的在于提供一种防火性能良好, 重量轻、 透光率好的复合防火玻璃、 复 合防火玻璃的制造方法以及幕帘。 本发明提供了一种复合防火玻璃, 包括: 第一玻璃基板; 第二玻璃基板, 与第一 玻璃基板平行设置; 连接部, 连接第一玻璃基板与第二玻璃基板; 空腔, 位于第一玻 璃基板与第二玻璃基板之间; 复合防火玻璃还包括遇热膨胀部, 遇热膨胀部为由遇热 膨胀材料制成的大致均匀分布的结构, 并且遇热膨胀部局部地填充空腔。 进一步地, 遇热膨胀部由可膨胀石墨制成或者由包含可膨胀石墨的制品构成。 进一步地, 第一玻璃基板为单层或多层防火玻璃基板; 第二玻璃基板为单片钢化 玻璃基板、 单层或多层防火玻璃基板、 单层贴膜玻璃基板、 镀膜玻璃基板或双层以上
进一步地, 复合防火玻璃还包括密封部, 密封部设置于空腔的边缘, 用于密封空 腔。 进一步地, 遇热膨胀部直接固定地设置于空腔内。 进一步地, 遇热膨胀部位于空腔的边缘和 /或中间。 进一步地, 遇热膨胀部在空腔内形成大致均匀的图案, 优选地形成网格状、 圆点 状或花瓣状图案。 进一步地, 遇热膨胀部活动地设置于空腔内。 进一步地, 遇热膨胀部为帘幕状, 在常温下折叠收纳在空腔的边缘和 /或中间。 进一步地, 复合防火玻璃还包括驱动装置, 驱动装置在复合防火玻璃遇火时将遇 热膨胀部从折叠状态变为展开状态。 进一步地, 遇热膨胀部设置于空腔的左侧和 /或右侧, 驱动装置包括: 支撑杆, 设 置于空腔上部; 牵引线缠绕滚, 平行的两个牵引线缠绕滚分别设置在空腔的左右两端 且位于支撑杆的下侧; 牵引线, 成环状缠绕在两个牵引线缠绕滚上; 多个连接环, 多 个连接环的上部可滑动地设置于支撑杆上,下部均匀分布地连接在遇热膨胀部的上部, 中部均匀分布地与牵引线固定连接; 驱动部件, 与牵引线连接, 用于拉动牵引线。 进一步地, 驱动部件为记忆合金金属丝, 包括相对设置的第一端和第二端, 第一 端与第一玻璃基板或第二玻璃基板固定连接, 第二端与牵引线固定连接。 进一步地, 记忆合金金属丝位于空腔上部中间位置; 牵引线包括位于两个牵引线 缠绕滚的轴线形成的平面两侧的第一牵引部和第二牵引部; 遇热膨胀部及与遇热膨胀 部连接的多个连接环分别设置于记忆合金金属丝的左侧和右侧, 位于左侧的多个连接 环与第一牵引部固定连接, 位于右侧的多个连接环与第二牵引部固定连接。 进一步地, 记忆合金金属丝在常温下呈直线形, 在 80至 120°C之间开始变为弹簧 形。 进一步地, 复合防火玻璃还包括容纳盒, 设置于空腔中遇热膨胀部折叠收纳的相 应侧, 容纳盒在常温下关闭以收纳折叠的遇热膨胀部, 在遇火时打开以便于折叠的遇 热膨胀部展开。 进一步地, 容纳盒包括: 盒体, 具有矩形截面; 弹簧合页; 盒盖, 盒盖朝向空腔 内侧并通过一个或多个弹簧合页枢转地设置在盒体的位于第二玻璃基板一侧的侧面 上, 盒盖与盒体的位于第一玻璃基板一侧的侧面之间在常温下通过一个或多个热熔胶 密封点连接。 本发明还提供了一种复合防火玻璃的制造方法, 包括如下步骤: a、提供第一玻璃 基板和第二玻璃基板, 并在第一玻璃基板和第二玻璃基板之间形成空腔; b、在空腔内 设置遇热膨胀部并且使遇热膨胀部局部地填充空腔, 遇热膨胀部为由遇热膨胀材料制 成的大致均匀分布的结构; c、 将第一玻璃基板和第二玻璃基板连接为整体结构。 进一步地, 步骤 b包括在空腔内直接固定地设置遇热膨胀部。 进一步地, 步骤 b包括在空腔内活动地设置遇热膨胀部。 本发明还提供了一种幕帘, 幕帘由遇热膨胀材料制成。 根据本发明的复合防火玻璃, 由于在双层玻璃基体之间局部填充了遇热膨胀材料 形成遇热膨胀部, 遇热膨胀部可以在遇到高温时迅速膨胀形成隔火层, 因此具有良好 的防火性能。 由于在常温下没有完全填充双层玻璃之间的空腔, 因而重量轻、 透光率 好。 本发明优选采用由可膨胀石墨或包含可膨胀石墨的制品形成的遇热膨胀部, 可膨 胀石墨具有遇热快速膨胀的特性, 在遇火时能迅速膨胀几倍至几十倍, 能迅速扩张至 复合防火玻璃的整个空腔形成隔火层, 阻止火焰及烟气蔓延, 可膨胀石墨的热传导系 数很小且有很好的热稳定性, 能有效的阻隔热量的传递。 由于可膨胀石墨密度小、 遇 热时膨胀速度快, 膨胀量大, 因此, 复合防火玻璃所需要的可膨胀石墨体积较小, 从 而与其它材料相比, 更有利于减低复合防火玻璃的重量以及增加复合防火玻璃的透光 率。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据本发明第一实施例的复合防火玻璃的结构示意图; 图 2是图 1的 A-A向结构示意图; 图 3是根据本发明第二实施例的复合防火玻璃的结构示意图; 图 4是根据本发明第三实施例的复合防火玻璃的遇热膨胀部处于收纳状态的结构 示意图; 图 5是图 4的 B部的局部放大结构示意图; 图 6是图 5中 C部的局部放大结构示意图; 图 7是根据本发明第三实施例的复合防火玻璃中收纳盒的立体结构示意图; 图 8是图 4的侧视结构示意图; 图 9是根据本发明第三实施例的复合防火玻璃的遇热膨胀部处于展开状态的结构 示意图; 图 10是图 9的 D部的局部放大结构示意图; 图 11是图 10中 E部的局部放大结构示意图; 图 12是根据本发明第三实施例的复合防火玻璃的驱动装置的局部结构示意图;以 及 图 13是图 9的侧视结构示意图。 具体实施方式 下面将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的情 况下, 本申请中的实施例及实施例中的特征可以相互组合。 本发明提供一种复合防火玻璃, 包括: 第一玻璃基板; 第二玻璃基板, 与第一玻 璃基板平行设置; 连接部, 连接第一玻璃基板与第二玻璃基板; 空腔, 位于第一玻璃 基板与第二玻璃基板之间; 复合防火玻璃还包括: 遇热膨胀部, 遇热膨胀部为由遇热 膨胀材料制成的大致均匀分布的结构, 并且遇热膨胀部局部地填充空腔。 玻璃基板 第一玻璃基板与第二玻璃基板中的至少一个为向火面玻璃基板, 该向火面玻璃基 板需要具有耐火性, 在高温下不变形、 不损坏, 其可以为单层或多层 (两层以上) 防 火玻璃基板。通常两个玻璃基板中一个为向火面玻璃基板, 另一个为背火面玻璃基板, 根据需要可以两个都为向火面玻璃基板。背火面玻璃基板可以选自单片钢化玻璃基板、 单层或多层防火玻璃基板、 单层贴膜玻璃基板、 镀膜玻璃基板或双层以上复合玻璃基 板。 连接部 本发明中, 连接部连接第一玻璃基板与第二玻璃基板, 该连接部可以选用任何合 适的连接部件, 将两个基板连接在一起。 在一个实施方式中, 该连接部为夹持并粘接 于两片玻璃基板之间边缘位置处的间隔件, 该间隔件例如可以为玻璃片或金属制框架 等, 也可以为夹持在两片玻璃基板外部边缘处的夹子等。 连接部可以在连接两片玻璃 基板的同时对两片玻璃基板之间的空腔形成密封,也可以无密封作用而仅起连接作用, 在连接部无密封作用的情况下, 空腔可以是非气密的。 密封部 复合防火玻璃还可以包括密封部, 密封部设置于空腔的边缘, 用于密封空腔。 在 一实施方式中, 连接部可以同时用作密封部。 遇热膨胀部 遇热膨胀部包括遇热膨胀材料。 该遇热膨胀材料优选地在 100~200°C下至少膨胀 原自身体积的 1.5倍以上,在摄氏 200°C以上则随温度的上升可迅速膨胀至自身原体积 的几倍十几倍甚至几十倍几百倍。 遇热膨胀部在遇热前体积很小, 位于双层玻璃空腔内局部位置, 例如位于距离边 缘 20mm范围内。 当该复合防火玻璃的向火面玻璃基板遇火温度升高后, 遇热膨胀部 的体积迅速膨胀并填充整个双层玻璃的空腔形成隔火层。 由于遇热膨胀部形成的隔火 层的导热系数很小并且不透明, 可以有效地阻隔热辐射, 热对流及热传导这三种传导 方式。 形成遇热膨胀部的遇热膨胀材料可以为水合碱金属硅酸盐如硅酸钠或有机遇热膨 胀材料如聚氨酯发泡胶等, 但更优选地为可膨胀石墨。 可膨胀石墨具有遇热快速膨胀 的特性, 在遇火时能迅速膨胀几倍至几十倍, 能迅速扩张至复合防火玻璃的整个空腔 形成隔火层, 阻止火焰及烟气蔓延, 可膨胀石墨的热传导系数很小且有很好的热稳定 性, 能有效的阻隔热量的传递。 与现有技术中常用的玻璃夹层材料相比, 可膨胀石墨 密度小、 遇热时膨胀速度快, 膨胀量大, 因此, 需要的可膨胀石墨体积较小, 从而与 其它材料相比, 更有利于减低复合防火玻璃的重量、 以及增加复合防火玻璃的透光率。 本申请的发明人经过试验, 出人预料地发现采用可膨胀石墨的效果在很大程度上 优于水合碱金属硅酸盐或聚氨酯发泡胶, 这一点将在第一实施例中提供的实验结果中 得到验证。 当选用可膨胀石墨时, 可膨胀石墨可以直接固定在两个玻璃基板之间。 需 要说明的是, 遇热膨胀部也可以由含可膨胀石墨的制品构成, 例如以可膨胀石墨为主 要原材料加防火胶制成的膨胀条等。 在一个实施方式中, 遇热膨胀部位于空腔的边缘和 /或中间。 在另一实施方式中, 遇热膨胀部形成基本上均匀地分布在空腔内的图案, 优选地 在空腔内形成网格状图案, 也可以形成例如圆点状、 花瓣状、 雪花状等图案。 在又一实施方式中,遇热膨胀部活动地设置于空腔内。其中遇热膨胀部为帘幕状, 形成一遇热膨胀材料帘幕, 其在常温下叠置收纳在空腔的边缘和 /或中间。 复合防火玻璃优选地还包括驱动装置, 在复合防火玻璃遇火时驱动装置将遇热膨 胀材料帘幕从折叠状态变为展开状态。 帘幕形式的遇热膨胀部可以仅设置在空腔上部。 以百叶形式的幕帘为例, 多个平 行放置的幕帘条通过连接线连接在一起。 连接线的一端固定在空腔的上部, 通过一固 定释放部件将多个幕帘条叠置收纳在空腔的上部。 当固定释放部件打开时, 多个幕帘 条在自身重力作用下下落, 形成一个展开的幕帘。 固定释放部件例如可以是一根细线 或者记忆合金线, 将叠置的多个幕帘条捆在一起, 当遇火时细线或记忆合金线可在温 度变化的作用下, 自动释放幕帘条。 具体地, 细线的固定点可以在温度升高至一定值 时自动断开从而释放幕帘条, 而记忆合金线可以在温度的作用下由展开状态变为收缩 状态从而释放幕帘条。 固定释放部件也可以采用卡扣的结构, 例如在空腔上部左右两 侧各设置一个卡扣, 正常情况下卡扣阻挡叠置的多个幕帘条, 遇火时卡扣脱开将叠置 的多个幕帘条放开, 使幕帘条下落展开。 又如, 将要在第三实施例中具体描述的容纳 盒也可以作为固定释放部件, 平时幕帘条折叠收纳在容纳盒内, 遇火时容纳盒的盒盖 自动打开, 则幕帘条下落展开。 通过以上的描述, 在遇热膨胀部仅设置在空腔上部的 情况下, 可以不设置驱动装置。 本发明的幕帘包含遇热膨胀材料或由遇热膨胀材料制成, 除了可以采用以上描述 的百叶形式外, 还可以是完整幕布的形式, 也可以是镂空幕布的形式。 以上各形式的 幕帘要求可折叠地放置。 本发明的驱动装置在复合防火玻璃遇火时将遇热膨胀部从折叠状态变为展开状 态。 不受实施例的限制, 该驱动装置也可以采用实施例之外其他结构或方式, 其动力 可以由现有技术中提供动力的方式提供, 例如弹簧、 橡皮筋、 重力结构、 电动机, 只 需要设置一个触发机构, 例如记忆合金或传感器, 在遇火时为驱动机构提供动力, 将 幕帘状的遇热膨胀部从折叠状态变为展开状态。 另外, 驱动装置也可以采用温度传感 器或光学传感器等作为驱动信号,用电池作为驱动能量实现活动的遇热膨胀部的驱动。 也可以将驱动装置的动力部分设置在空腔的外部, 而在空腔内部只设置幕帘及必要的 牵引装置等。 遇热膨胀部可以设置于空腔的左侧和 /或右侧。 或者可以设置在中间, 当设置在空 腔的中间时, 帘幕能够向左右方向展开。 在一个实施例中, 驱动装置包括: 支撑杆, 设置于空腔上部; 牵引线缠绕滚, 设 置在空腔的左右端和 /或右端且位于支撑杆的下侧; 牵引线, 环绕在牵引线缠绕滚上; 多个连接环, 多个连接环的上部可滑动地设置于支撑杆上, 下部连接在遇热膨胀部的 上部。 连接环与牵引线固定连接。 牵引线与驱动部件固定连接, 驱动部件可牵动该牵 引线, 进而带动幕帘状的遇热膨胀部从折叠状态变为展开状态。 在一实施方式中, 驱 动部件为记忆合金金属丝, 包括相对设置的第一端和第二端, 第一端与第一玻璃基板 或第二玻璃基板固定连接, 第二端与牵引线固定连接。 记忆合金金属丝在常温下呈直 线形, 在 80至 120°C之间为弹簧形。 本发明还提供一种复合防火玻璃的制造方法, 包括如下步骤: a、提供第一玻璃基 板和第二玻璃基板, 并在第一玻璃基板和第二玻璃基板之间形成空腔; b、在空腔内设 置遇热膨胀部并且使遇热膨胀部局部地填充空腔, 遇热膨胀部为由遇热膨胀材料制成 的大致均匀分布的结构; c、将第一玻璃基板和第二玻璃基板连接为整体结构。优选地 是在步骤 b中包括在空腔内直接固定地设置遇热膨胀部, 或者在空腔内活动地设置遇 热膨胀部。 另外, 本发明及其所有实施例也不限于双层玻璃的复合防火玻璃, 也可以用于三 层以上的复合防火玻璃。 而且本发明及其所有实施例的形状也不限于矩形玻璃, 也可 以是圆形, 平行四边形或五边以上的多边形等。 本发明还提供一种幕帘, 该幕帘由遇热膨胀材料制成。 优选地, 幕帘包括多个幕 帘条, 幕帘条由遇热膨胀材料制成。 实施例 本发明中的左侧和右侧是从向火侧向背火侧观察时所形成的方向。 第一实施例 如图 1至图 2所示, 第一实施例的复合防火玻璃 100为带有基本平行的双层玻璃 基板的矩形复合防火玻璃, 主要包括向火面玻璃基板 110A、 背火面玻璃基板 110B、 将向火面玻璃基板 110A和背火面玻璃基板 110B 四周的边缘部连接在一起的连接部 120。 连接部 120可以采用玻璃条, 玻璃条设置在两层玻璃基板面 110A和 110B的边 缘外侧, 通过无机防火胶粘接的方式进行整体成型。 向火面玻璃基板 110A和背火面 玻璃基板 110B 以及连接部 120之间围成了空腔。 在该空腔内部四周边缘处局部填充 了遇热膨胀材料从而形成了遇热膨胀部 130。 如图 1所示, 遇热膨胀部 130是由遇热 膨胀材料制成的条状结构, 该条状结构分别位于复合防火玻璃 100的左、右两侧和上、 下侧边缘, 直接固定于向火面玻璃基板 110A和背火面玻璃基板 110B之间。 参考表一和表二的数据, 经过实验验证, 可膨胀石墨具有优良的性能, 因而在本 第一实施例和以下各实施例中仅以可膨胀石墨制成的遇热膨胀部为例对本发明的复合 防火玻璃进行说明。 第一实施例中,双层玻璃的背火面玻璃基板 110B使用常规的 6MM或其他厚度钢 化玻璃即可。 正常普通钢化玻璃可承受超过 200°C温度变化的热冲击, 因此背火面玻 璃基板 110B 采用单层钢化玻璃不会发生热冲击而导致破碎的情况。 当然, 为了在遇 火时确保背火面玻璃基板 110B 的强度, 也可以采用单片防火玻璃基板或单层贴膜或 镀膜玻璃基板以及双层或多层复合玻璃基板作为背火面玻璃基板 110B。而向火面玻璃 基板 110A则宜采用防火玻璃基板, 防火玻璃基板可以为市场销售的普通单层或多层 防火玻璃。 防火玻璃基板能够保证在一定的时间内保持复合防火玻璃的耐火完整性、 阻断向火面的明火及有毒、 有害气体, 以保证遇热膨胀材料层 130有足够的时间充满 整个空腔, 从而形成隔火层。 参见表一和表二, 根据 8次对由不同遇热膨胀材料制成遇热膨胀部的进行的复合 防火玻璃的防火实验验证, 以可膨胀石墨制成遇热膨胀部时, 只要制造工艺和产品质 量满足要求, 在向火面温度达到 1000~1100°C的情况下持续测试至少 90分钟, 可以保 证背火面最高温升不超过 180°C,平均温升不超过 140°C, 能达到或超过中国国家标准 或欧洲防火玻璃的标准。 对比实验的复合防火玻璃选择的玻璃基板材质相同, 尺寸为 800mmx l000mm, 第 一和第二玻璃基板距离 25mm, 遇热膨胀部均布置在空腔四周边缘, 且分布于距离空 腔边缘 25mm以内的位置。 而遇热膨胀部分别由硅酸钠、 聚氨酯发泡胶和可膨胀石墨 制成。 该对比实验的综合结果验证了可膨胀石墨相对于硅酸钠和聚氨酯发泡胶具有更 加的优良的物理性能和防火性能。 表一 具有不同材料的遇热膨胀部的复合防火玻璃物理性能对比表
Figure imgf000010_0001
表二 具有不同材料的遇热膨胀部的复合防火玻璃防火性能对比表
背火面超温 (最高温 第几次 充满时间 (单位: 分钟)和充 升超过 180°C或平均 材料
试验 满程度 (单位: 百分比) 温升超过 140°C )时间
(单位: 分钟)
1 硅酸钠 25分钟填充百分比 15% 25分钟背火面超温 聚氨酯发泡胶 40分钟填充百分比 95% 40分钟背火面超温 可膨胀石墨 15分钟填充百分比 100% 91分钟背火面超温 硅酸钠 20分钟填充百分比 18% 20分钟背火面超温
2 聚氨酯发泡胶 19分钟填充百分比 95% 19分钟背火面超温 可膨胀石墨 19分钟填充百分比 100% 99分钟背火面超温 硅酸钠 23分钟填充百分比 25% 23分钟背火面超温
3 聚氨酯发泡胶 31分钟填充百分比 99% 31分钟背火面超温 可膨胀石墨 11分钟填充百分比 100% 101分钟背火面超温 硅酸钠 15分钟填充百分比 14% 15分钟背火面超温
4 聚氨酯发泡胶 25分钟填充百分比 95% 25分钟背火面超温 可膨胀石墨 12分钟填充百分比 100% 122分钟背火面超温 硅酸钠 10分钟填充百分比 9.5% 10分钟背火面超温
5 聚氨酯发泡胶 38分钟填充百分比 95% 38分钟背火面超温 可膨胀石墨 18分钟填充百分比 100% 98分钟背火面超温 硅酸钠 27分钟填充百分比 19% 27分钟背火面超温
6 聚氨酯发泡胶 34分钟填充百分比 75% 34分钟背火面超温 可膨胀石墨 11分钟填充百分比 100% 96分钟背火面超温 硅酸钠 21分钟填充百分比 17% 21分钟背火面超温
7 聚氨酯发泡胶 35分钟填充百分比 100% 35分钟背火面超温 可膨胀石墨 10分钟填充百分比 100% 90分钟背火面超温 硅酸钠 8分钟填充百分比 11% 8分钟背火面超温
8 聚氨酯发泡胶 45分钟填充百分比 99% 45分钟背火面超温 可膨胀石墨 14分钟填充百分比 100% 92分钟背火面超温 在采用硅酸钠或聚氨酯发泡胶的情况下,由于其遇热膨胀的性能不如可膨胀石墨, 因此, 只适用于复合防火玻璃尺寸较小的情况, 而对于大尺寸的玻璃, 由于空腔较大, 不易充满, 则只有可膨胀石墨容易达到膨胀要求。 以上第一实施例的复合防火玻璃在具有优良的防火性能外, 还具有如下优点: 该 复合防火玻璃的平米重量远小于现有技术的复合防火玻璃; 由于复合防火玻璃采用了 部分填充遇热膨胀材料, 且填充较少, 其未填充遇热膨胀材料的部分透光率和普通中 空玻璃的透光率一样, 因而整体上提高了复合防火玻璃的透光率; 复合防火玻璃的厚 度控制上和普通中空玻璃的工艺一样, 因此厚度可得到很好的控制; 由于复合防火玻 璃本身具有类似中空玻璃的中间空腔, 所以其导热系数比较小; 复合防火玻璃内的遇 热膨胀材料是可膨胀石墨的情况下, 在日常季节更替及日光照射下几乎无任何变化, 可有效解决目前的复合防火玻璃耐候性差的缺点。 以下对本发明的其它实施例进行具体描述, 对与第一实施例相类似的部分不再具 体说明。 第二实施例 如图 3所示,第二实施例的复合防火玻璃 200主要包括向火面玻璃基板 210A、背 火面玻璃基板 210B、 将向火面玻璃基板 210A和背火面玻璃基板 210B四周的边缘部 连接在一起的连接部 220。 并在向火面玻璃基板 210A、 背火面玻璃基板 210B和连接 部 220形成的空腔内部局部地填充了遇热膨胀部 230。与第一实施例的遇热膨胀部 130 不同的是,第二实施例的遇热膨胀部 230在双层玻璃基板之间形成了均匀分布的图案。 具体地, 在第二实施例中的图案为矩形网格状图案。 第二实施例中, 形成均匀分布的 图案的遇热膨胀部 230也是将遇热膨胀材料直接固定于向火面玻璃基板 210A和背火 面玻璃基板 210B之间。 第一实施例或第二实施例中的"直接固定"是指在遇热膨胀材料外不设置包覆层而 是直接将遇热膨胀部 130或 230夹在两层玻璃基板之间, 这是因为包覆层会影响遇热 膨胀部 130或 230的膨胀速度, 也会影响膨胀的均匀程度, 甚至破坏隔火层的完整性 而使复合防火玻璃的防火性能大打折扣。 除了可以实现第一实施例的效果外, 如第二实施例这样形成遇热膨胀部 230的优 点还在于, 可以使复合防火玻璃 230在遇到火情时能比第一实施例更加迅速地及均匀 地膨胀至完全填充至整个空腔, 更好地实现防火的目的, 同时也可以使复合防火玻璃 230富于美感和装饰性。 第二实施例与第一实施例相比, 其效果可以在后述列示的表三中得到体现。 第三实施例 图 4至图 12示出了本发明第三实施例的复合防火玻璃 300。该第三实施例的复合 防火玻璃 300主要包括向火面玻璃基板 310A、 背火面玻璃基板 310B、 将向火面玻璃 基板 310A和背火面玻璃基板 310B四周的边缘部连接在一起的连接部 320。 与前述的 第一和第二实施例不同的是, 遇热膨胀部 330为多个幕帘条构成的百叶形式的帘幕, 第一玻璃基板与第二玻璃基板之间的厚度为 25mm,而遇热膨胀部 330厚度为 0.8mm。 复合防火玻璃 300在正常环境中使用时, 如图 4至图 8所示的, 帘幕状的遇热膨胀部 330折叠收纳在向火面玻璃基板 310A、 背火面玻璃基板 310B和连接部 320形成的空 腔的左、 右两侧。 帘幕状的遇热膨胀部 330在遇火升温时, 可从左、 右两侧向中间推 移, 最后充满整个空腔。 因而第三实施例中, 遇热膨胀部 330是活动地设置于复合防 火玻璃的空腔中。 优选地是,可以在空腔内增设驱动装置 340,在遇到火情时,如图 9至 12所示的, 通过驱动装置 340能将遇热膨胀材料 330迅速展开形成遮蔽整个复合防火玻璃 300基 面的帘幕, 展开后的遇热膨胀材料 330随着温度的升高迅速膨胀至填充整个空腔后形 成完整的隔火层。 以下将对照图 4至图 12详细描述第三实施例的结构和原理。 图 4示出了第三实施例的复合防火玻璃 300的遇热膨胀部 330处于收纳状态的结 构示意图。 图 5是图 4的 B部的局部放大结构示意图。 图 6是图 5中 C部的局部放大 结构示意图。 图 8是图 4的侧视结构示意图。 驱动装置 340主要包括支撑杆 341、 玻璃纤维牵引线 342、 多个连接环 343、 记忆 合金金属丝 344和两个平行设置的牵引线缠绕滚 345。 连接环 343的上方具有穿孔, 多个连接环 343的上方通过其上的穿孔可自由滑动地挂在支撑杆 341上, 下方大致均 匀分布地连接在遇热膨胀材料 330的帘幕的上部。 两个牵引线缠绕滚 345分别设置于 空腔的左右两端, 并位于支撑杆 341的下方, 玻璃纤维牵引线 342呈环状缠绕在两个 牵引线缠绕滚 345上。 于是, 在第三实施例中, 空腔上部形成基本平行的上下两个牵 引部。 当然, 玻璃纤维牵引线 342也可以分别形成前后两个平行的牵引部。 记忆合金金属丝 344由记忆合金弹簧拉直形成, 其右侧一端采用胶粘的方式固定 在向火面玻璃基板 310A上或背火面玻璃基板 310B上,左侧一端连接在左侧最近的连 接环 343上, 从而通过该最近的连接环 343与玻璃纤维牵线 342上。 记忆合金金属丝 344的左侧一端也可以直接与玻璃纤维牵线 342连接。 位于记忆合金金属丝 344左侧的多个连接环 343与遇热膨胀部 330处于展开时的 位置相应地分别固定在位于玻璃纤维牵引线 342的下侧的牵引部上, 而位于记忆合金 金属丝 344右侧的多个连接环 343则与遇热膨胀部 330处于展开时的位置相应地分别 固定在玻璃纤维牵引线 342位于上方的牵引部上。 如图 4至图 5所示, 遇热膨胀部 330处于收纳状态时, 记忆合金金属丝 344处于 展开状态。 图 7是根据本发明第三实施例的复合防火玻璃中收纳盒的立体结构示意图。 第三 实施例中在空腔的左、 右两侧各设置了一个收纳盒 350, 二者结构相同并相对布置。 收纳盒 350主体结构为截面为矩形的盒体 351, 在盒体 351朝向复合防火玻璃 300的 空腔内侧设置了盒盖 354, 盒盖 354通过两个或更多个弹簧合页 352可枢转地设置在 盒体 351的背火面玻璃基板一侧的侧面上, 盒盖 354与盒体 351上向火面玻璃基板一 侧的侧面间通过多个热熔胶密封点 353连接。 在常温下, 遇热膨胀部 330折叠收纳在 收纳盒 350中,在发生火情时,热熔胶密封点 353受热断开,盒盖 354在弹簧合页 352 的作用下自动弹开, 则遇热膨胀部 330可以不受盒盖 354阻碍地在驱动装置 340的驱 动下展开。 虽然收纳盒 350并不是第三实施例中复合防火玻璃 300为实现其防火功能而必需 的, 但是设置收纳盒 350可以在正常温度下使遇热膨胀部 330不会因运输安装等过程 变得不整齐, 从而影响复合防火玻璃的外观, 也可避免遇热膨胀部 330因长期受日照 而发生老化等问题。 图 9是根据本发明第三实施例的复合防火玻璃的遇热膨胀部 330处于展开状态的 结构示意图。 图 10是图 9的 D部的局部放大结构示意图。 图 11是图 10中 E部的局 部放大结构示意图。图 12是根据本发明第三实施例的复合防火玻璃的驱动装置的局部 结构示意图。 图 13是图 9的侧视结构示意图。 当发生火情时, 向火面玻璃基板 310A受热, 热熔胶密封点 353受热断开, 盒盖 354在弹簧合页 352的作用下自动弹开。而记忆合金金属丝 344逐渐达到 80〜120°C的 变形温度, 在该变形温度的作用下, 记忆合金金属丝 344 自动收缩为弹簧形状, 在记 忆合金金属丝 344收缩过程中产生的拉力拉动其左侧一端所连接的连接环 343, 并由 连接环 343拉动玻璃纤维牵引线 342, 一方面玻璃纤维牵引线 342的位于下方的牵引 部受到从左向右的力展开左侧的遇热膨胀部 330的幕帘, 另一方面, 位于玻璃纤维牵 引线 342上方的牵引部受到从右向左的力, 展开右侧的遇热膨胀部 330的幕帘, 从而 在整个复合防火玻璃的基面上迅速形成由遇热膨胀材料构成的完整幕帘。 由于很快能 在玻璃基板的整个基面上形成完整幕帘, 第三实施例中, 即使在遇热膨胀材料没有完 全充满空腔时, 已经可以产生较好的隔火作用。 而随着温度继续上升, 该完整幕帘开 始膨胀并最终填充整个空腔而形成隔火层, 从而隔火作用更强。 与第一实施例相同的, 向火面玻璃基板 310A优选地采用防火玻璃基板。 在遭遇 火情时防火玻璃基板可以确保不会在火情初发时破碎。 经 8次实验得到的数据显示, 由于第三实施例的复合防火玻璃随着温度升高, 构成完整幕帘的遇热膨胀材料可迅速 膨胀填充空腔形成隔火层, 可有效阻隔热量向背火面玻璃基板 310B传递, 在制造工 艺和产品质量满面足要求的情况下, 背火面玻璃基板 310B的平均温升在 90分钟内可 以确保最高温升不超过 180°C, 平均温升不超过 140°C。 该第三实施例的复合防火玻璃同样具有第一实施例的优点, 由于遇热膨胀部 330 常温下收纳在空腔的侧边, 因而, 复合防火玻璃在透光率方面更具有优势, 而在遇火 初期可以迅速地自动展开成帘幕状遮蔽整个玻璃基面, 然后再膨胀, 从而与第一实施 例相比能更加均匀快速地充满整个空腔, 而和第二实施例相比, 在未充满空腔时, 即 能有较好的隔火作用, 并且, 第三实施例所形成的隔火层因膨胀十分均匀, 质量更高, 因此更加有利于使实现防火隔烟的功能。 表三为以可膨胀石墨制作遇热膨胀部时第一至第三实施例的防火性能对比表。 三 个实施例的玻璃基板尺寸均为 400mmx600mm、 玻璃基板材质相同, 而遇热膨胀部分 别按第一实施例布置在空腔四周边缘、 第二实施例以网格状图案布置在空腔内、 第三 实施例以完整幕布的幕帘形式布置在空腔的左右两侧且驱动装置为图 4至图 12所示的 驱动装置。 表三 第一至第三实施例的复合防火玻璃防火性能对照表
Figure imgf000015_0001
本发明的复合防火玻璃可以采用的制造方法如下: a、提供第一玻璃基板和第二玻璃基板, 并在第一玻璃基板和第二玻璃基板之间形 成空腔; b、在空腔内设置遇热膨胀部并且使遇热膨胀部局部地填充空腔,遇热膨胀部为由 遇热膨胀材料制成的大致均匀分布的结构; c、 将第一玻璃基板和第二玻璃基板连接为整体结构。 一个优选的方案是, 在步骤 b中包括在空腔内直接固定地设置遇热膨胀部。 另一个优选的方案是, 在步骤 b中在空腔内活动地设置遇热膨胀部。 在步骤 b中可以将帘幕状的遇热膨胀部折叠收纳在空腔内的上侧。 也可以将帘幕 状的遇热膨胀部折叠收纳在空腔内的左侧和 /或右侧, 还也可以设置在中间。 更优选地, 在步骤 b中包括将驱动装置设置在空腔的边缘。 其中, 将驱动装置设置在空腔的边缘具体包括: 将支撑杆 341设置于空腔上部; 将两个牵引线缠绕滚 345平行地分别设置在空腔的左右两端且位于支撑杆 341的下侧; 将牵引线 342成环状缠绕在两个牵引线缠绕滚 345上; 将多个连接环 343的上部可滑 动地设置于支撑杆 341上, 下部均匀分布地连接在遇热膨胀部 330的上部, 中部均匀 分布地与牵引线 342固定连接; 将记忆合金金属丝 344的第一端与形成空腔的玻璃基 板固定连接,将记忆合金金属丝 344的与第一端相对的第二端与牵引线 342固定连接。 在步骤 b还可以包括将容纳盒 350设置于空腔内遇热膨胀部 330折叠收纳的相应 侧; 以及将遇热膨胀部 330折叠并收纳在容纳盒 350内的步骤。 从以上的描述中可以看出, 本发明上述的实施例实现了如下技术效果: 复合防火 玻璃具有优良的防火性能; 平米重量远小于现有技术的复合防火玻璃; 整体上提高了 复合防火玻璃的透光率; 厚度控制上和普通中空玻璃的工艺一样,可很好的控制厚度。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种复合防火玻璃, 包括:
第一玻璃基板 (110A、 210A、 310A);
第二玻璃基板(110B、 210B、 310B), 与所述第一玻璃基板(110A、 210A、 31 OA) 平行设置;
连接部 (120、 220、 320), 连接所述第一玻璃基板 (110A、 210A、 310A) 与所述第二玻璃基板 (110B、 210B、 310B);
空腔, 位于所述第一玻璃基板 (110A、 210A、 310A) 与所述第二玻璃基 板 (110B、 210B、 310B) 之间; 其中, 所述复合防火玻璃还包括:
遇热膨胀部 (130、 230、 330), 所述遇热膨胀部 (130、 230、 330) 为由遇 热膨胀材料制成的大致均匀分布的结构,并且所述遇热膨胀部(130、 230、 330) 局部地填充所述空腔。
2. 根据权利要求 1所述的复合防火玻璃,其中, 所述遇热膨胀部(130、 230、 330) 由可膨胀石墨制成或者由包含可膨胀石墨的制品构成。
3. 根据权利要求 1所述的复合防火玻璃, 其中,
所述第一玻璃基板 (110A、 210A、 310A) 为单层或多层防火玻璃基板; 所述第二玻璃基板(110B、 210B、 310B)为单片钢化玻璃基板、 单层或多 层防火玻璃基板、单层贴膜玻璃基板、镀膜玻璃基板或双层以上复合玻璃基板。
4. 根据权利要求 1所述的复合防火玻璃,其中,所述复合防火玻璃还包括密封部, 所述密封部设置于所述空腔的边缘, 用于密封所述空腔。
5. 根据权利要求 1至 4中任一项所述的复合防火玻璃,其中,所述遇热膨胀部( 130、 230) 直接固定地设置于所述空腔内。
6. 根据权利要求 5所述的复合防火玻璃, 其中, 所述遇热膨胀部(130)位于所述 空腔的边缘和 /或中间。 根据权利要求 5所述的复合防火玻璃, 其中, 所述遇热膨胀部(230)在所述空 腔内形成大致均匀的图案, 优选地形成网格状、 圆点状或花瓣状图案。
8. 根据权利要求 1至 4中任一项所述的复合防火玻璃,其中,所述遇热膨胀部 ( 330) 活动地设置于所述空腔内。
9. 根据权利要求 8所述的复合防火玻璃,其中,所述遇热膨胀部(330)为帘幕状, 在常温下折叠收纳在所述空腔的边缘和 /或中间。
10. 根据权利要求 9所述的复合防火玻璃, 其中, 所述复合防火玻璃还包括驱动装 置(340), 所述驱动装置(340)在所述复合防火玻璃遇火时将所述遇热膨胀部
( 330) 从折叠状态变为展开状态。
11. 根据权利要求 10所述的复合防火玻璃, 其中, 所述遇热膨胀部 (330) 设置于 所述空腔的左侧和 /或右侧, 所述驱动装置 (340) 包括:
支撑杆 (341 ), 设置于所述空腔上部; 牵引线缠绕滚(345 ), 平行的两个所述牵引线缠绕滚(345 )分别设置在所 述空腔的左右两端且位于所述支撑杆 (341 ) 的下侧;
牵引线 (342), 成环状缠绕在两个所述牵引线缠绕滚 (345 ) 上; 多个连接环(343 ), 所述多个连接环(343 )的上部可滑动地设置于所述支 撑杆 (341 ) 上, 下部均匀分布地连接在所述遇热膨胀部 (330) 的上部, 中部 均匀分布地与所述牵引线 (342) 固定连接;
驱动部件, 与所述牵引线 (342) 连接, 用于拉动所述牵引线 (342)。
12. 根据权利要求 11所述的复合防火玻璃,其中,所述驱动部件为记忆合金金属丝
( 344 ), 包括相对设置的第一端和第二端, 所述第一端与所述第一玻璃基板 ( 310A)或所述第二玻璃基板(310B ) 固定连接, 所述第二端与牵引线 (342) 固定连接。
13. 根据权利要求 12所述的复合防火玻璃, 其中,
所述记忆合金金属丝 (344) 位于所述空腔上部中间位置;
所述牵引线 (342) 包括位于两个所述牵引线缠绕滚 (345 ) 的轴线形成的 平面两侧的第一牵引部和第二牵引部; 所述遇热膨胀部 (330) 及与所述遇热膨胀部 (330) 连接的所述多个连接 环 (343 ) 分别设置于所述记忆合金金属丝 (344) 的左侧和右侧, 位于左侧的 所述多个连接环(343 )与所述第一牵引部固定连接, 位于右侧的所述多个连接 环 (343 ) 与所述第二牵引部固定连接。
14. 根据权利要求 12所述的复合防火玻璃, 其中,
所述记忆合金金属丝 (344) 在常温下呈直线形, 在 80至 120°C之间开始 变为弹簧形。
15. 根据权利要求 9所述的复合防火玻璃, 其中, 所述复合防火玻璃还包括容纳盒
( 350), 设置于所述空腔中所述遇热膨胀部(330)折叠收纳的相应侧, 所述容 纳盒(350)在常温下关闭以收纳折叠的所述遇热膨胀部(330), 在遇火时打开 以便于折叠的所述遇热膨胀部 (330) 展开。
16. 根据权利要求 15所述的复合防火玻璃, 其中, 所述容纳盒 (350) 包括:
盒体 (351 ), 具有矩形截面;
弹簧合页 (352);
盒盖(354), 所述盒盖(354)朝向所述空腔内侧并通过一个或多个所述弹 簧合页(352)枢转地设置在所述盒体(351 )的位于所述第二玻璃基板(310B ) 一侧的侧面上, 所述盒盖 (354) 与所述盒体 (351 ) 的位于所述第一玻璃基板 ( 310A)一侧的侧面之间在常温下通过一个或多个热熔胶密封点 (353 )连接。
17. 一种复合防火玻璃的制造方法, 其中, 包括如下步骤:
a、提供第一玻璃基板(110A、 210A、 310A)和第二玻璃基板( 110B、 210B、 31(»),并在所述第一玻璃基板(11(^、21(^、310 )和所述第二玻璃基板(1108、 210B、 310B ) 之间形成空腔;
b、 在所述空腔内设置遇热膨胀部 (130、 230、 330) 并且使所述遇热膨胀 部 (130、 230、 330)局部地填充所述空腔, 所述遇热膨胀部 (130、 230、 330) 为由遇热膨胀材料制成的大致均匀分布的结构;
c、 将所述第一玻璃基板 (110A、 210A、 310A) 和第二玻璃基板 (110B、 210B、 310B ) 连接为整体结构。
18. 根据权利要求 17所述的制造方法,其中,所述步骤 b包括在所述空腔内直接固 定地设置所述遇热膨胀部 (130、 230)。
19. 根据权利要求 17所述的制造方法,其中,所述步骤 b包括在所述空腔内活动地 设置遇热膨胀部 (330)。
20. 一种幕帘, 所述幕帘由遇热膨胀材料制成。
PCT/CN2012/073810 2012-04-11 2012-04-11 复合防火玻璃、复合防火玻璃的制造方法及幕帘 WO2013152484A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/073810 WO2013152484A1 (zh) 2012-04-11 2012-04-11 复合防火玻璃、复合防火玻璃的制造方法及幕帘
EP12874187.3A EP2808163B1 (en) 2012-04-11 2012-04-11 Composite fireproof glass and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/073810 WO2013152484A1 (zh) 2012-04-11 2012-04-11 复合防火玻璃、复合防火玻璃的制造方法及幕帘

Publications (1)

Publication Number Publication Date
WO2013152484A1 true WO2013152484A1 (zh) 2013-10-17

Family

ID=49326999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073810 WO2013152484A1 (zh) 2012-04-11 2012-04-11 复合防火玻璃、复合防火玻璃的制造方法及幕帘

Country Status (2)

Country Link
EP (1) EP2808163B1 (zh)
WO (1) WO2013152484A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115045601A (zh) * 2022-07-07 2022-09-13 苏州锦至华建筑材料科技有限公司 一种中空内置百叶玻璃的生产方法
WO2023006008A1 (en) * 2021-07-30 2023-02-02 Saint-Gobain Glass France Insulating glazing unit, preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2293344Y (zh) * 1997-01-15 1998-10-07 青岛琴和实业公司 防火卷帘门的温度自动控制装置
CN1360659A (zh) * 1999-07-10 2002-07-24 维特罗技术圣戈班(国际)公司 配有至少两块透光防火玻璃板的止火面积单元
CN201292757Y (zh) * 2008-12-01 2009-08-19 徐能通 卷帘式一体化玻璃
JP2009215721A (ja) * 2008-03-07 2009-09-24 Ashimori Ind Co Ltd 耐火断熱シート

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI53612C (fi) * 1971-06-18 1978-06-12 Glaverbel Brandavskaermande ljusgenomslaeppande ihaolig glasningspanel
DE4023310A1 (de) * 1990-07-21 1992-01-23 Bayer Ag Intumeszenztraeger und deren verwendung
DE4136333A1 (de) * 1991-11-05 1993-05-06 Eich, Andreas, 5810 Witten, De Brandschutzverglasung
DE9420810U1 (de) * 1994-12-28 1996-05-02 Niemann Hans Dieter Abdeckung einer Isolierglasscheibe im Kantenbereich
DE102008062333A1 (de) * 2008-12-15 2010-06-17 Schott Ag Abstandshalter mit einem expandierenden Material für Brandschutzverglasungen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2293344Y (zh) * 1997-01-15 1998-10-07 青岛琴和实业公司 防火卷帘门的温度自动控制装置
CN1360659A (zh) * 1999-07-10 2002-07-24 维特罗技术圣戈班(国际)公司 配有至少两块透光防火玻璃板的止火面积单元
JP2009215721A (ja) * 2008-03-07 2009-09-24 Ashimori Ind Co Ltd 耐火断熱シート
CN201292757Y (zh) * 2008-12-01 2009-08-19 徐能通 卷帘式一体化玻璃

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023006008A1 (en) * 2021-07-30 2023-02-02 Saint-Gobain Glass France Insulating glazing unit, preparation method and application thereof
CN115045601A (zh) * 2022-07-07 2022-09-13 苏州锦至华建筑材料科技有限公司 一种中空内置百叶玻璃的生产方法

Also Published As

Publication number Publication date
EP2808163B1 (en) 2017-12-27
EP2808163A1 (en) 2014-12-03
EP2808163A4 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
TW304177B (zh)
US20100236763A1 (en) Thermal outer cover with gas barriers
JP2013527350A5 (zh)
JP2013527350A (ja) 断熱窓割り装置および方法
KR102093562B1 (ko) 화염 확산 방지기능이 향상된 세라믹울 내장형 복합단열재 제조방법 및 그 방법으로 제조된 화염 확산 방지기능이 향상된 세라믹울 내장형 복합단열재
JP5399957B2 (ja) 遮熱扉
WO2013152484A1 (zh) 复合防火玻璃、复合防火玻璃的制造方法及幕帘
WO2016203260A1 (en) Insulating elements and structures
CN208208404U (zh) 火电站用防火电缆
CN203077723U (zh) 复合防火玻璃
JP2008223261A (ja) 遮音採光断熱材
US20090193756A1 (en) Removable window insulator
CN203077707U (zh) 复合防火玻璃
CN202592825U (zh) 复合防火玻璃
JP2008238645A (ja) 断熱フィルムシート及び防耐火ガラス並びにガラスの断熱性付与方法
CN210317074U (zh) 一种新型隔热防火门
CN203077724U (zh) 复合防火玻璃
KR101355045B1 (ko) 반사형 단열재, 반사형 단열재의 제조방법 및 건축 구조체
CN210261568U (zh) 一种复合非隔热型防火玻璃
JP2001280029A (ja) 断熱性金属ドア
JP2008115682A (ja) 採光断熱材
CN205202367U (zh) 复合防火玻璃
WO2004109025A1 (en) Thermal insulation sheet and method of manufacturing the same
CN210415775U (zh) 防火防爆型钢化玻璃
CN218430351U (zh) 一种纳米隔热pet膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012874187

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12874187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE