WO2023006008A1 - Insulating glazing unit, preparation method and application thereof - Google Patents

Insulating glazing unit, preparation method and application thereof Download PDF

Info

Publication number
WO2023006008A1
WO2023006008A1 PCT/CN2022/108421 CN2022108421W WO2023006008A1 WO 2023006008 A1 WO2023006008 A1 WO 2023006008A1 CN 2022108421 W CN2022108421 W CN 2022108421W WO 2023006008 A1 WO2023006008 A1 WO 2023006008A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass pane
glass
sealing portion
glazing unit
insulating glazing
Prior art date
Application number
PCT/CN2022/108421
Other languages
French (fr)
Inventor
Claude-Sebastien LERBOURG
Romain Decourcelle
Original Assignee
Saint-Gobain Glass France
Saint-Gobain Research Shanghai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France, Saint-Gobain Research Shanghai filed Critical Saint-Gobain Glass France
Publication of WO2023006008A1 publication Critical patent/WO2023006008A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/88Curtain walls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present disclosure relates to the field of glass manufacturing, in particular to an insulating glazing unit, a preparation method thereof and application of the insulating glazing unit.
  • Insulating glazing unit is widely used in architectural decoration, trimming and renovation, and it has become an essential material for modern buildings because of its good heat insulation, sound insulation and safety.
  • insulating glass has been widely used.
  • An example of an insulating glass 10 is shown in Fig. 1A, two pieces of glass 11, 12 are separated by a spacer frame 14, and contact surfaces of the spacer frame 14 and the glasses are bonded by a first sealant 16, so that a hollow cavity 13 is formed between the glasses and filled with gas, thereby achieving good heat and sound insulation performance.
  • An unsealed space at the ends of the glasses is sealed and filled with a second sealant 17.
  • the air pressure in the hollow cavity 13 will also change due to the change of the external environment temperature.
  • the gas in the hollow cavity 13 when the air temperature rises in summer or daytime, the gas in the hollow cavity 13 will be heated and expand, which will push the glasses 11, 12 outwards, resulting in glass bulges. However, when the air temperature drops in winter or at night, the gas in the hollow cavity 13 will be cold and shrink, which will also generate inward suction to the glasses 11, 12, causing the glasses to recess.
  • the deformation of the glass surface not only affects the appearance, but also causes cracks in the sealed parts around the glass, resulting in cracks and easy air leakage, and makes the external water vapor enter into the hollow cavity from the cracks.
  • a desiccant molecular sieve 15 in the spacer frame 14 absorbs moisture and saturates, and then transmits the moisture into the hollow cavity through a plurality of vent holes on the spacer frame.
  • the humidity in the hollow cavity increases, resulting in fogging, water droplets or bubbles on the inner surface of the glass, which affects the appearance and visual effect, as well as the thermal preservation and insulation performance. Under extreme weather conditions, the excessive change of air pressure in the hollow cavity will also cause the glass to break, which greatly shortens the life of the insulating glass.
  • two hollow cavities 23a, 23b are respectively formed between the glasses 21, 22 and between the glasses 22, 28 by sealing spacer frames 24a, 24b and the surfaces of the glasses via first sealants 26a, 26b, and the ends of the glasses are sealed and filled with second sealants 27a, 27b.
  • the service life of the insulating glazing unit is usually 10 years, up to 15 years. This means that after this period of time, no manufacturer can ensure that the hollow cavity still contains more than 90%gas, which will reduce the insulation performance of the glass.
  • efficient and durable insulating glass is the key point with respect to modern buildings (new construction and renovation) , so that an economical and effective solution to prolong the service life of the insulating glass is expected by the market.
  • the purpose of the present disclosure is to improve the existing insulating glazing unit to solve the above problems.
  • an insulating glazing unit which at least comprises a first glass pane and a second glass pane, the peripheries of the first glass pane and the second glass pane are sealed by a sealing structure to form a hollow cavity.
  • the sealing structure comprises a spacer frame connected with inner surfaces of the first glass pane and the second glass pane via a first sealant, and a molecular sieve is arranged in the spacer frame; a second sealant for sealing outer side of the spacer frame, wherein the second sealant comprises expanded thermoplastic polyurethane, and the second sealant at least seals an area between the first glass pane and the second glass pane.
  • expanded thermoplastic polyurethane is integrated into the sealing structure of the insulating glazing unit and used as the second sealant for sealing the outside of the spacer frame, and thus the mechanical properties, sealing performance and service life of the insulating glazing unit are improved by utilizing the characteristics of expanded thermoplastic polyurethane.
  • the present disclosure can be applied to various occasions.
  • the embodiments of the present disclosure may further include any one or more of the following alternative forms.
  • the second sealant comprises a first sealing portion disposed in the area between the first glass pane and the second glass pane, and a second sealing portion extending to end edges of the first glass pane and the second glass pane; the materials of the first sealing portion is the same as or different from that of the second sealing portion and at least the second sealing portion is expanded thermoplastic polyurethane.
  • the outer surface of the second sealing portion is flat or curved.
  • the first sealing portion is polyurethane or silicone.
  • the second sealing portion is prefabricated and comprises an embedding part embedded in the first sealing portion and a covering part extending to cover the end edges of the first glass pane and the second glass pane.
  • an accommodating portion is provided between the embedding part and the covering part of the second sealing portion to accommodate portion of the first sealing portion.
  • the embedding part of the second sealing portion is provided with a retention portion, and the retention portion is fixed with the first sealing portion after being embedded in the first sealing portion.
  • the second sealing portion further comprises a bent portion extending from the end of the covering part and covering outer surface of the first glass pane and/or the second glass pane.
  • the first glass pane and the second glass pane are selected from one or two of ordinary glass, float glass, tempered glass, semi-tempered glass, colored glass, coated glass, laminated glass, heat-resistant glass, fireproof glass, vacuum glass or photovoltaic glass.
  • the insulating glazing unit further comprises a third glass pane, and the peripheries of the third glass pane and the first glass pane or the second glass pane are sealed by the sealing structure to form another hollow cavity.
  • the first glass pane, the second glass pane and the third glass pane are selected from one, two or three of ordinary glass, float glass, tempered glass, semi-tempered glass, colored glass, coated glass, laminated glass, heat-resistant glass, fireproof glass, vacuum glass or photovoltaic glass.
  • a method for preparing the above-mentioned insulating glazing unit comprising:
  • S4 curing the second sealant to at least seal an area between the first glass pane and the second glass pane.
  • S3 comprises:
  • S311 injecting a first sealing portion into the outer side of the spacer frame and filling the area between the first glass pane and the second glass pane, wherein the first sealing portion is expanded thermoplastic polyurethane.
  • S3 further comprises:
  • S312 injecting a second sealing portion into the outer side of the spacer frame for sealing the first sealing portion and flowing to the end edges of the first glass pane and the second glass pane, and the second sealing portion is expanded thermoplastic polyurethane.
  • S3 comprises:
  • S322 providing a prefabricated second sealing portion, embedding the second sealing portion into the first sealing portion and covering the end edges of the first glass pane and the second glass pane, wherein the material of the first sealing portion is the same as or different from that of the second sealing portion, and at least the second sealing portion is expanded thermoplastic polyurethane.
  • the method further comprises:
  • S5 to S8 are implemented after or at the same time as S1 to S4 are implemented.
  • the insulating glazing unit is used as door, window, curtain wall, vehicle glass, aircraft glass or ship glass.
  • the insulating glazing unit of the present disclosure has prolonged service life and improved mechanical strength, and eliminates the influence of external environment changes on the appearance and performance of the insulating glazing unit.
  • the preparation process of expanded thermoplastic polyurethane is green and easy to be implemented. Therefore, the preparation cost of the insulating glazing unit does not increase significantly, and the application environment is wide.
  • Fig. 1A is a schematic cross-sectional view of a conventional insulating glazing unit
  • Fig. 1B is a schematic cross-sectional view of another existing insulating glazing unit
  • Fig. 2 is a schematic cross-sectional view of a first embodiment of the insulating glazing unit of the present disclosure
  • Fig. 3 is a schematic cross-sectional view of a second embodiment of the insulating glazing unit of the present disclosure
  • Fig. 4 is a schematic cross-sectional view of a third embodiment of the insulating glazing unit of the present disclosure.
  • Figs. 5A and 5B are schematic cross-sectional views of a fourth embodiment of the insulating glazing unit of the present disclosure, Fig. 5A illustrates a state where a prefabricated second sealing portion is to be embedded into a first sealing portion, and Fig. 5B illustrates a state where the second sealing portion has been embedded into the first sealing portion;
  • Figs. 6A and 6B are schematic cross-sectional views of a fifth embodiment of the insulating glazing unit of the present disclosure;
  • Fig. 6A illustrates a state where a prefabricated second sealing portion is to be embedded into a first sealing portion
  • Fig. 6B illustrates a state where the second sealing portion has been embedded into the first sealing portion;
  • Figs. 7A and 7B are schematic cross-sectional views of a sixth embodiment of the insulating glazing unit of the present disclosure;
  • Fig. 7A illustrates a state where a prefabricated second sealing portion is to be embedded into a first sealing portion
  • Fig. 7B illustrates a state where the second sealing portion has been embedded into the first sealing portion;
  • Figs. 8A and 8B are schematic cross-sectional views of a seventh embodiment of the insulating glazing unit of the present disclosure; Fig. 8A illustrates a state where a prefabricated second sealing portion is to be embedded into a first sealing portion, Fig. 8B illustrates a state where the second sealing portion has been embedded into the first sealing portion.
  • connection should be understood broadly. For example, it can be fixed connection, detachable connection or integrated; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction between two elements.
  • installation and “connection” should be understood broadly. For example, it can be fixed connection, detachable connection or integrated; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction between two elements.
  • glass is an amorphous inorganic nonmetallic material, which is generally made of a variety of inorganic minerals (such as quartz sand, borax, boric acid, barite, barium carbonate, limestone, feldspar, soda ash, etc. ) as main raw materials, and a small amount of auxiliary raw materials. Its main components are silica and other oxides.
  • the thickness of the glass is the thickness commonly used in the art, and the thickness of the cavity between the glasses is suitable for a conventional range, which is usually based on the thickness and area of the glass, but not limited as shown in the figures and described in the following detailed description.
  • the glass of the present disclosure may also be curved glass. In various embodiments, it is described as an independent glass body or glass pane. However, in some cases, the surface of the glass (especially on the inner surface of the glass facing the cavity) can also use a special coating to improve thermal insulation and/or comfort.
  • the glass is an inorganic material, its performance is very stable, and it can last as long as buildings.
  • the sealing failure is mainly due to the design of glass strength and the unreasonable selection of sealing structure and sealant.
  • Different material properties, different application parts and structural forms, and different application environments and regions restrict the selection of the sealant of the insulating glass.
  • the present disclosure aims to improve the insulation performance and service life of the insulating glazing unit by improving the material and structure of the second sealant sealing the outer side of the spacer frame of the insulating glazing unit.
  • Figs. 2 to 8B respectively illustrate different embodiments of the insulating glazing unit according to the present disclosure.
  • the insulating glazing unit having two glass panes is described as an example. It should be understood that each embodiment is equally applicable to the insulating glazing unit having three or more glass panes, and the periphery of each glass pane is sealed by the sealing structure of the present disclosure to form an independent hollow cavity between the two glass panes.
  • the first glass pane and the second glass pane can be selected from one or two of ordinary glass, float glass, tempered glass, semi-tempered glass, colored glass, coated glass, laminated glass, heat-resistant glass, fireproof glass, vacuum glass or photovoltaic glass. When applied to three-layer glass panes, it can be selected from one, two or three of the above-mentioned glasses.
  • an insulating glazing unit 100 includes a first glass pane 101 and a second glass pane 102, and the peripheries therebetween is sealed by a sealing structure to form a hollow cavity 103.
  • a sealing structure for example, the thickness of the first glass pane 101 and the second glass pane 102 are 4mm, and the thickness of the hollow cavity 103 therebetween is 16 mm.
  • the hollow cavity 103 is filled with air or argon.
  • the sealing structure includes a spacer frame 104 connected to inner surfaces of the first glass pane 101 and the second glass pane 102 by a first sealant 106, and a second sealant 107 for sealing outer side of the spacer frame 105.
  • the spacer frame 104 can be made of polymer or metal (e.g., aluminum, stainless steel, etc. ) , and its surface is provided with a plurality of small holes, in which a molecular sieve 105 is arranged to absorb moisture.
  • the first sealant 106 is made of polyisobutylene (PIB) , and the thickness of which is usually 0.5mm.
  • the second sealant 107 is expanded thermoplastic polyurethane, which fills and seals an area between the first glass pane 101 and the second glass pane 102 outside the spacer frame 104.
  • Expanded thermoplastic polyurethane is a kind of round or rice-shaped foaming bead (popcorn) with a size of about 2mm. It is as elastic as rubber but lighter, and can be compressed to obtain higher density. It has high elasticity even under continuous load, and has stable performance even at low temperature (-20°C) . Expanded thermoplastic polyurethane can be processed on the injection molding machine that produces traditional expanded polypropylene, and the pressure can be adjusted according to the geometry and density. Another method of processing expanded thermoplastic polyurethane is to combine foamed beads with polyurethane (PU) adhesive to achieve good adhesion, which makes it possible to use large-scale processing techniques, such as gluing and foam sealing. Expanded thermoplastic polyurethane can also be preformed into a plate shape, and then it can be converted into the required configuration by using the traditional splitting, punching or water jet cutting machine.
  • PU polyurethane
  • expanded thermoplastic polyurethane is integrated into the sealing structure of the insulating glazing unit, when the insulating glazing unit is applied to door, window, curtain wall, vehicle glass, aircraft glass or ship glass and other environments, the sealing structure among the glass panes has high elasticity even under continuous load, and the sealing effect can be well adapted to the load change.
  • the expanded thermoplastic polyurethane still has stable performance in a large temperature range (-20°C ⁇ temperature range ⁇ 60°C) , the influence of external environmental temperature change on the appearance and performance of the insulating glazing unit is eliminated.
  • the appearance of the insulating glazing unit can be consistent with that of the existing products, but the sealing performance is greatly improved, the corresponding service life is also greatly prolonged, and the application is extensive.
  • an insulating glazing unit 200 includes a first glass pane 201 and a second glass pane 202, and a hollow cavity 203 is formed therebetween via a spacer frame 204 sealed by a first sealant 206.
  • a molecular sieve 205 is arranged in the spacer frame 204.
  • the second sealant for sealing the outside of the spacer frame 204 includes not only a first sealing portion 207a arranged in the area between the first glass pane 201 and the second glass pane 202, but also a second sealing portion 207b extending to the end edge 208 of the first glass pane 201 and the end edge 209 of the second glass pane 202, and both the first sealing portion 207a and the second sealing portion 207b are expanded thermoplastic polyurethane.
  • Fig. 4 illustrates a third embodiment. Similar to the second embodiment shown in Fig. 3, an insulating glazing unit 300 includes a first glass pane 301 and a second glass pane 302, and a hollow cavity 303 is formed therebetween via a spacer frame 304 sealed by a first sealant 306. A molecular sieve 305 is arranged in the spacer frame 304.
  • the second sealant for sealing the outside of the spacer frame 304 includes a first sealing portion 307a arranged in the area between the first glass pane 301 and the second glass pane 302, and a second sealing portion 307b extending to the end edge 308 of the first glass pane 301 and the end edge 309 of the second glass pane 302, and both the first sealing portion 307a and the second sealing portion 307b are expanded thermoplastic polyurethane.
  • the outer surface of the second sealing portion 307b is a curved surface, which makes the insulating glazing unit suitable for different installation and use environments.
  • the second sealing portion of the second sealant extending to the end edges of the first glass pane and the second glass pane is made of the same material as the first sealing portion arranged in the area between the first glass pane and the second glass pane, that is, both of them are expanded thermoplastic polyurethane, which is beneficial to the simplification of the process.
  • an insulating glazing unit 400 includes a first glass pane 401 and a second glass pane 402, and a hollow cavity 403 is formed therebetween via a spacer frame 404 sealed by a first sealant 406.
  • a molecular sieve 405 is arranged in the spacer frame 404.
  • the second sealant used to seal the outside of the spacer frame 404 includes a first sealing portion 407 arranged in the area between the first glass pane 401 and the second glass pane 402, and the first sealing portion 407 can be selected from polyurethane or silicone.
  • the second sealant also includes a second sealing portion 410 extending to the end edge 408 of the first glass pane 401 and the end edge 409 of the second glass pane 402.
  • the second sealing portion 410 is a prefabricated component made of expanded thermoplastic polyurethane, and includes an embedding part 411 that can be embedded in the first sealing portion 407, and covering parts 412, 413 that extend to cover the end edge 408 of the first glass pane 401 and the end edge 409 of the second glass pane 402, respectively, so as to be constructed into a substantially C shape as shown in the figure.
  • the outer surface of the second sealing portion 410 may alternatively be a plane or a curved surface.
  • Fig. 5A illustrates a state that the second sealing portion 410 will be embedded into the first sealing portion 407 along the arrow direction
  • Fig. 5B illustrates a state that the second sealing portion 410 has been embedded into the first sealing portion 407.
  • the initial amount of the first sealing portion 407 is adjusted according to the volume of the second sealing portion 410 to be embedded.
  • the second sealing portion 410 completely adheres to the first sealing portion 407, and the second sealant has a strong adhesive force with the edge of the glass.
  • the first sealing portion 407 may be filled between the covering parts 412, 413 of the second sealing portion 410 and the end edge 408 of the first glass pane 401 and the end edge 409 of the second glass pane 402, as shown in Fig. 5B, to increase the adhesion and sealing performance.
  • an accommodating portion 414 may be further provided between the embedding part 411 and the covering parts 412, 413 of the second sealing portion 410 to accommodate portion of the first sealing portion 407, thereby improving the connection stability between the first sealing portion 407 and the second sealing portion 410.
  • Figs. 6A and 6B illustrate a fifth embodiment. Similar to the embodiment shown in Figs. 5A and 5B, an insulating glazing unit 500 includes a first glass pane 501 and a second glass pane 502, and a hollow cavity 503 is formed therebetween via a spacer frame 504 sealed by a first sealant 506. A molecular sieve 505 is arranged in the spacer frame 505.
  • the second sealant for sealing the outside of the spacer frame 504 includes a first sealing portion 507 arranged in the area between the first glass pane 501 and the second glass pane 502, and a second sealing portion 510 extending to the end edge 508 of the first glass pane 501 and the end edge 509 of the second glass pane 502, wherein both the first sealing portion 507 and the second sealing portion 510 are expanded thermoplastic polyurethane.
  • an accommodating portion 514 may be further provided between an embedding part 511 of the second sealing portion 510 and covering parts 512, 513 to accommodate portion of the first sealing portion 507.
  • the first sealing portion 507 may be filled between the covering parts 512, 513 of the second sealing portion 510 and the end edge 508 of the first glass pane 501 and the end edge 509 of the second glass pane 502.
  • FIGs. 7A and 7B illustrate a sixth embodiment similar to the embodiment shown in Figs. 5A and 5B.
  • An insulating glazing unit 600 includes a first glass pane 601 and a second glass pane 602, and a hollow cavity 603 is formed therebetween via a spacer frame 604 sealed by a first sealant 606.
  • a molecular sieve 605 is arranged in the spacer frame 604.
  • the second sealant includes, for example, a first sealing portion 607 made of polyurethane or silicone, and a second sealing portion 610 made of expanded thermoplastic polyurethane.
  • the second sealing portion 610 is a prefabricated component that can be embedded in the first sealing portion 607, and an accommodating part 617 can be further arranged between an embedding part 611 and covering parts 612, 613 of the second sealing portion 610 to accommodate portion of the first sealing portion 607.
  • the embedding part 611 of the second sealing portion 610 is further provided with a retention portion 616, and after being embedded in the first sealing portion 607, the retention portion 611 can be fixed with the first sealing portion 607 to increase the connection stability and prevent the second sealing portion from accidentally falling off or pulling out.
  • the second sealing portion 610 is configured to be substantially T-shaped.
  • bent portions 614, 615 extending from the ends of the covering parts 612, 613 and covering the outer surfaces of the first glass pane 601 and the second glass pane 602, respectively. It can also increase the connection stability of the second sealing portion and the sealing effect as well as the protection effect on the end of the glass.
  • the first sealing portion 607 is filled between the covering parts 612, 613 of the second sealing portion 610 and the end edge 608 of the first glass pane 601 and the end edge 609 of the second glass pane 602.
  • first sealing portion 607 can be filled between the bend portions 614, 615 and the outer surfaces of the first glass pane 601 and the second glass pane 602 due to the existence of the bend portions 614, 615. It can be understood that the bend portion can also be only arranged on the outer surface of one glass pane.
  • Figs. 8A and 8B illustrate a seventh embodiment similar to the embodiment shown in Figs. 6A and 6B.
  • An insulating glazing unit 700 includes a first glass pane 701 and a second glass pane 702, and a hollow cavity 703 is formed therebetween via a spacer frame 704 sealed by a first sealant 706.
  • a molecular sieve 705 is arranged in the spacer frame 704.
  • the second sealant includes a first sealing portion 707 and a second sealing portion 710, both of which are expanded thermoplastic polyurethane.
  • the second sealing portion 710 is a prefabricated component that can be embedded in the first sealing portion 707, and is configured similarly to the second sealing portion shown in Figs. 7A and 7B, respectively.
  • the second sealing portion 710 of this embodiment includes an embedding part 711 and covering parts 712, 713, and an accommodating portion 717 may be further provided between the embedding part and the covering part to accommodate portion of the first sealing portion 707.
  • the embedding part 711 of the second sealing portion 710 is further provided with a retention portion 716, and bent portions 714, 715 extending from the ends of the covering parts 712, 713 and covering the outer surfaces of the first glass pane 701 and the second glass pane 702, respectively.
  • the first sealing portion 707 in the embedded state is filled between the covering parts 712, 713 of the second sealing portion 710 and the end edge 708 of the first glass pane 701 and the end edge 709 of the second glass pane 702.
  • the first sealing portion 707 may be filled between the bent portions 714, 715 and the outer surfaces of the first glass pane 701 and the second glass pane 702.
  • the insulating glazing unit of the present disclosure has prolonged service life and improved mechanical strength.
  • the unique characteristics of expanded thermoplastic polyurethane due to the unique characteristics of expanded thermoplastic polyurethane, the aging performance of traditional insulating glazing unit will be greatly enhanced, and the water permeability and gas leakage will also be greatly improved.
  • the fatigue property under climatic load of the second sealant which is fully or partially made of expanded thermoplastic polyurethane is improved, so that the service life of the insulating glazing unit may be increased up to 50 years instead of the current 10 years.
  • the mechanical properties of expanded thermoplastic polyurethane make the edge of the glass protected from mechanical impact during transportation and installation, especially the design of covering the edge of the glass shown in Figs. 5A to 8B.
  • the insulating glazing unit shown in Figs. 5A to 8B is easy to install in a frame (made of wood, aluminum, polyvinyl chloride, etc., for example) , which is convenient and quick, without using several brackets to hold it on a generally larger frame.
  • S4 curing the second sealant to at least seal an area between the first glass pane and the second glass pane.
  • S3 includes S311: injecting the second sealant 107 into the outer side of the spacer frame 104 and filling the area between the first glass pane 101 and the second glass pane 102, wherein the second sealant 107 is expanded thermoplastic polyurethane.
  • S3 includes S311: injecting the first sealing portion 207a (or 307a) into the outer side of the spacer frame 204 (or 304) and filling the area between the first glass pane 201 (or 301) and the second glass pane 202 (or 302) , the first sealing portion 207a (or 307a) is expanded thermoplastic polyurethane; and S312: injecting the second sealing portion 207b (or 307b) into the outer side of the spacer frame, the second sealing portion 207b (or 307b) seals the first sealing portion 207a (or 307a) and flows to the end edges of the first glass pane and the second glass pane, and the second sealing portion 207b (or 307b) is expanded thermoplastic polyurethane.
  • a workstation needs to be added to the production line for embedding the prefabricated second sealing portion in the edge of the glass pane. This is easy to be realized, and the preform of expanded thermoplastic polyurethane is easy to be produced or directly obtained from suppliers, and then cut and applied according to the actual size of the glass pane.
  • S3 includes S321: injecting the first sealing portion 407 (or 507, 607, 707) into the outer side of the spacer frame 404 (or 504, 604, 704) and filling the area between the first glass pane 401 (or 501, 601, 701) and the second glass pane 402 (or 502, 602, 702) ; and S322: providing a prefabricated second sealing portion 410 (or 510, 610, 710) , embedding the second sealing portion into the first sealing portion and covering the end edges of the first glass pane and the second glass pane.
  • S321 injecting the first sealing portion 407 (or 507, 607, 707) into the outer side of the spacer frame 404 (or 504, 604, 704) and filling the area between the first glass pane 401 (or 501, 601, 701) and the second glass pane 402 (or 502, 602, 702) ; and S322: providing a prefabricated second sealing portion 410 (or 510, 610, 710) , embedding the
  • the materials of the first sealing portion and the second sealing portion are different, the first sealing portion is polyurethane or silicone, and the second sealing portion is expanded thermoplastic polyurethane.
  • the first sealing portion and the second sealing portion are made of the same material, both of which are expanded thermoplastic polyurethane.
  • the present disclosure is not only applicable to single-cavity insulating glazing unit, but also to two-cavity or multi-cavity insulating glazing unit with three or more layers of glass panes.
  • the preparation method further comprises:
  • S5 to S8 are implemented after or at the same time as S1 to S4 are implemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

The present disclosure relates to an insulating glazing unit, its preparation method and application. The insulating glazing unit at least comprises a first glass pane and a second glass pane, wherein the peripheries of the first glass pane and the second glass pane are sealed by a sealing structure to form a hollow cavity. The sealing structure comprises a spacer frame connected with inner surfaces of the first glass pane and the second glass pane via a first sealant, and a molecular sieve arranged in the spacer frame; a second sealant for sealing outer side of the spacer frame, wherein the second sealant comprises expanded thermoplastic polyurethane, and the second sealant at least seals an area between the first glass pane and the second glass pane. The insulating glazing unit of the present disclosure has prolonged service life and improved mechanical strength, and eliminates the influence of external environment changes on the appearance and performance of the insulating glazing unit.

Description

INSULATING GLAZING UNIT, PREPARATION METHOD AND APPLICATION THEREOF FIELD OF THE INVENTION
The present disclosure relates to the field of glass manufacturing, in particular to an insulating glazing unit, a preparation method thereof and application of the insulating glazing unit.
BACKGROUND OF THE INVENTION
Insulating glazing unit (IGU) is widely used in architectural decoration, trimming and renovation, and it has become an essential material for modern buildings because of its good heat insulation, sound insulation and safety. As a typical insulating glazing unit, insulating glass has been widely used. An example of an insulating glass 10 is shown in Fig. 1A, two pieces of  glass  11, 12 are separated by a spacer frame 14, and contact surfaces of the spacer frame 14 and the glasses are bonded by a first sealant 16, so that a hollow cavity 13 is formed between the glasses and filled with gas, thereby achieving good heat and sound insulation performance. An unsealed space at the ends of the glasses is sealed and filled with a second sealant 17. During use, the air pressure in the hollow cavity 13 will also change due to the change of the external environment temperature. For example, when the air temperature rises in summer or daytime, the gas in the hollow cavity 13 will be heated and expand, which will push the  glasses  11, 12 outwards, resulting in glass bulges. However, when the air temperature drops in winter or at night, the gas in the hollow cavity 13 will be cold and shrink, which will also generate inward suction to the  glasses  11, 12, causing the glasses to recess. The deformation of the glass surface not only affects the appearance, but also causes cracks in the sealed parts around the glass, resulting in cracks and easy air leakage, and makes the external water vapor enter into the hollow cavity from the cracks. A desiccant molecular sieve 15 in the spacer frame 14 absorbs moisture and saturates, and then transmits the moisture into the hollow cavity through a plurality of vent holes on the spacer frame. The humidity in the hollow cavity increases, resulting in fogging, water droplets or bubbles on the inner surface of the glass, which affects the appearance and visual effect, as  well as the thermal preservation and insulation performance. Under extreme weather conditions, the excessive change of air pressure in the hollow cavity will also cause the glass to break, which greatly shortens the life of the insulating glass. Similarly, as an example of an insulating glass 20 shown in Fig. 1B, in the way that a plurality of pieces of glass (for example, three pieces shown in the figure) constitute the insulating glass, two hollow cavities 23a, 23b are respectively formed between the  glasses  21, 22 and between the  glasses  22, 28 by sealing  spacer frames  24a, 24b and the surfaces of the glasses via  first sealants  26a, 26b, and the ends of the glasses are sealed and filled with  second sealants  27a, 27b. Similarly, in the process of using in different environments, it has become a hot issue to be solved urgently how to ensure lasting sealing and pressure stability in the hollow cavity.
At present, the service life of the insulating glazing unit is usually 10 years, up to 15 years. This means that after this period of time, no manufacturer can ensure that the hollow cavity still contains more than 90%gas, which will reduce the insulation performance of the glass. With the continuous pressure of reducing CO 2 emission from buildings, efficient and durable insulating glass is the key point with respect to modern buildings (new construction and renovation) , so that an economical and effective solution to prolong the service life of the insulating glass is expected by the market.
SUMMARY OF THE INVENTION
The purpose of the present disclosure is to improve the existing insulating glazing unit to solve the above problems.
To this end, according to one aspect of the present disclosure, an insulating glazing unit is provided, which at least comprises a first glass pane and a second glass pane, the peripheries of the first glass pane and the second glass pane are sealed by a sealing structure to form a hollow cavity. The sealing structure comprises a spacer frame connected with inner surfaces of the first glass pane and the second glass pane via a first sealant, and a molecular sieve is arranged in the spacer frame; a second sealant for sealing outer side of the spacer frame, wherein the second sealant comprises expanded thermoplastic polyurethane, and the second sealant at least seals an area between the first glass pane and the second glass pane.
According to the present disclosure, expanded thermoplastic polyurethane is integrated into the sealing structure of the insulating glazing unit and used as the second sealant for sealing the outside of the spacer frame, and thus the mechanical properties, sealing performance and service life of the insulating glazing unit are improved by utilizing the characteristics of expanded thermoplastic polyurethane. In addition, through the different designs of the material and structure of the second sealant, the present disclosure can be applied to various occasions.
According to the above technical concept, the embodiments of the present disclosure may further include any one or more of the following alternative forms.
In some alternative forms, the second sealant comprises a first sealing portion disposed in the area between the first glass pane and the second glass pane, and a second sealing portion extending to end edges of the first glass pane and the second glass pane; the materials of the first sealing portion is the same as or different from that of the second sealing portion and at least the second sealing portion is expanded thermoplastic polyurethane.
In some alternative forms, the outer surface of the second sealing portion is flat or curved.
In some alternative forms, the first sealing portion is polyurethane or silicone.
In some alternative forms, the second sealing portion is prefabricated and comprises an embedding part embedded in the first sealing portion and a covering part extending to cover the end edges of the first glass pane and the second glass pane.
In some alternative forms, an accommodating portion is provided between the embedding part and the covering part of the second sealing portion to accommodate portion of the first sealing portion.
In some alternative forms, the embedding part of the second sealing portion is provided with a retention portion, and the retention portion is fixed with the first sealing portion after being embedded in the first sealing portion.
In some alternative forms, the second sealing portion further comprises a bent portion extending from the end of the covering part and covering outer surface of the first glass pane and/or the second glass pane.
In some alternative forms, the first glass pane and the second glass pane are selected from one or two of ordinary glass, float glass, tempered glass, semi-tempered glass, colored glass, coated glass, laminated glass, heat-resistant glass, fireproof glass, vacuum glass or photovoltaic glass.
In some alternative forms, the insulating glazing unit further comprises a third glass pane, and the peripheries of the third glass pane and the first glass pane or the second glass pane are sealed by the sealing structure to form another hollow cavity.
In some alternative forms, the first glass pane, the second glass pane and the third glass pane are selected from one, two or three of ordinary glass, float glass, tempered glass, semi-tempered glass, colored glass, coated glass, laminated glass, heat-resistant glass, fireproof glass, vacuum glass or photovoltaic glass.
According to another aspect of the present disclosure, there is provided a method for preparing the above-mentioned insulating glazing unit. The method comprising:
S1: providing a first glass pane and a second glass pane;
S2: connecting a spacer frame with inner surfaces of the first glass pane and the second glass pane via a first sealant to form a hollow cavity;
S3: providing a second sealant on outer side of the spacer frame;
S4: curing the second sealant to at least seal an area between the first glass pane and the second glass pane.
In some alternative forms, S3 comprises:
S311: injecting a first sealing portion into the outer side of the spacer frame and filling the area between the first glass pane and the second glass pane, wherein the first sealing portion is expanded thermoplastic polyurethane.
In some alternative forms, S3 further comprises:
S312: injecting a second sealing portion into the outer side of the spacer frame for sealing the first sealing portion and flowing to the end edges of the first glass pane and the second glass pane, and the second sealing portion is expanded thermoplastic polyurethane.
In some alternative forms, S3 comprises:
S321: injecting a first sealing portion into the outer side of the spacer frame and filling the area between the first glass pane and the second glass pane; and
S322: providing a prefabricated second sealing portion, embedding the second sealing portion into the first sealing portion and covering the end edges of the first glass pane and the second glass pane, wherein the material of the first sealing portion is the same as or different from that of the second sealing portion, and at least the second sealing portion is expanded thermoplastic polyurethane.
In some alternative forms, the method further comprises:
S5: providing a third glass pane;
S6: connecting another spacer frame with the inner surfaces of the third glass pane and the first glass pane or the second glass pane via the first sealant to form another hollow cavity;
S7: providing the second sealant on outer side of the another spacer frame;
S8: curing the second sealant outside the another spacer frame to at least seal an area between the third glass pane and the first glass pane or the second glass pane.
In some alternative forms, S5 to S8 are implemented after or at the same time as S1 to S4 are implemented.
According to another aspect of the present disclosure, application of the above-mentioned insulating glazing unit is provided. The insulating glazing unit is used as door, window, curtain wall, vehicle glass, aircraft glass or ship glass.
The insulating glazing unit of the present disclosure has prolonged service life and improved mechanical strength, and eliminates the influence of external environment changes on the appearance and performance of the insulating glazing unit. As an environment-friendly material, the preparation process of expanded thermoplastic polyurethane is green and easy to be implemented. Therefore, the preparation cost of the insulating glazing unit does not increase significantly, and the application environment is wide.
BRIEF DESCRIPTION OF THE DRAWINGS
Other features and advantages of the present disclosure will be better understood by the following alternative embodiments described in detail in conjunction with the accompanying drawings, in which the same reference numerals identify the same or similar components, and in different embodiments, the same or similar components are labeled with the same one  or two last digits, in the drawings:
Fig. 1A is a schematic cross-sectional view of a conventional insulating glazing unit;
Fig. 1B is a schematic cross-sectional view of another existing insulating glazing unit;
Fig. 2 is a schematic cross-sectional view of a first embodiment of the insulating glazing unit of the present disclosure;
Fig. 3 is a schematic cross-sectional view of a second embodiment of the insulating glazing unit of the present disclosure;
Fig. 4 is a schematic cross-sectional view of a third embodiment of the insulating glazing unit of the present disclosure;
Figs. 5A and 5B are schematic cross-sectional views of a fourth embodiment of the insulating glazing unit of the present disclosure, Fig. 5A illustrates a state where a prefabricated second sealing portion is to be embedded into a first sealing portion, and Fig. 5B illustrates a state where the second sealing portion has been embedded into the first sealing portion;
Figs. 6A and 6B are schematic cross-sectional views of a fifth embodiment of the insulating glazing unit of the present disclosure; Fig. 6A illustrates a state where a prefabricated second sealing portion is to be embedded into a first sealing portion, and Fig. 6B illustrates a state where the second sealing portion has been embedded into the first sealing portion;
Figs. 7A and 7B are schematic cross-sectional views of a sixth embodiment of the insulating glazing unit of the present disclosure; Fig. 7A illustrates a state where a prefabricated second sealing portion is to be embedded into a first sealing portion, Fig. 7B illustrates a state where the second sealing portion has been embedded into the first sealing portion;
Figs. 8A and 8B are schematic cross-sectional views of a seventh embodiment of the insulating glazing unit of the present disclosure; Fig. 8A illustrates a state where a prefabricated second sealing portion is to be embedded into a first sealing portion, Fig. 8B illustrates a state where the second sealing portion has been embedded into the first sealing portion.
DETAILED DESCRIPTION OF EMBODIMENTS
The implementation and use of the embodiments are discussed in detail below. However, it should be understood that the specific embodiments discussed merely exemplify the specific ways of implementing and using the present disclosure, and do not limit the scope of the disclosure. When describing the structural positions of various components, such as the directions of upper, lower, top, bottom, etc., the description is not absolute, but relative. When the various components are arranged as shown in the figures, these directional expressions are appropriate, but when the positions of the various components in the figures would be changed, these directional expressions would also be changed accordingly.
In this context, the expression "including" or similar expressions "including" , "containing" and "having" which are synonymous are open, and do not exclude additional unlisted elements, steps or ingredients. The expression "consisting of…" excludes any element, step or ingredient that is not specified. The expression "consisting essentially of…" means that the scope is limited to the specified elements, steps or ingredients, plus the optional elements, steps or ingredients that do not materially affect the basic and new features of the claimed subject matter. It should be understood that the expression "comprising" covers the expressions "consisting essentially of" and "consisting of" .
In this context, the terms "first" , "second" , "third" and so on are not used to limit the sequence and the number of components unless otherwise stated.
In this context, the meanings of "a plurality of" and "multiple layers" refer to two or more than two, unless otherwise specified.
In this context, unless otherwise specified, the terms such as "installation" and "connection" should be understood broadly. For example, it can be fixed connection, detachable connection or integrated; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction between two elements. For those skilled in the art, the specific meanings of the above terms in this context can be understood according to specific situations.
In this context, "glass" is an amorphous inorganic nonmetallic material, which is generally made of a variety of inorganic minerals (such as quartz sand, borax, boric acid,  barite, barium carbonate, limestone, feldspar, soda ash, etc. ) as main raw materials, and a small amount of auxiliary raw materials. Its main components are silica and other oxides. In the described embodiments, the thickness of the glass is the thickness commonly used in the art, and the thickness of the cavity between the glasses is suitable for a conventional range, which is usually based on the thickness and area of the glass, but not limited as shown in the figures and described in the following detailed description. In addition, although it is shown as plane glass in the figures, the glass of the present disclosure may also be curved glass. In various embodiments, it is described as an independent glass body or glass pane. However, in some cases, the surface of the glass (especially on the inner surface of the glass facing the cavity) can also use a special coating to improve thermal insulation and/or comfort.
In the research and application of the insulating glazing unit, it is found that the glass is an inorganic material, its performance is very stable, and it can last as long as buildings. The sealing failure is mainly due to the design of glass strength and the unreasonable selection of sealing structure and sealant. Different material properties, different application parts and structural forms, and different application environments and regions restrict the selection of the sealant of the insulating glass. The present disclosure aims to improve the insulation performance and service life of the insulating glazing unit by improving the material and structure of the second sealant sealing the outer side of the spacer frame of the insulating glazing unit.
Figs. 2 to 8B respectively illustrate different embodiments of the insulating glazing unit according to the present disclosure. In each embodiment, the insulating glazing unit having two glass panes is described as an example. It should be understood that each embodiment is equally applicable to the insulating glazing unit having three or more glass panes, and the periphery of each glass pane is sealed by the sealing structure of the present disclosure to form an independent hollow cavity between the two glass panes. Furthermore, in various embodiments, the first glass pane and the second glass pane can be selected from one or two of ordinary glass, float glass, tempered glass, semi-tempered glass, colored glass, coated glass, laminated glass, heat-resistant glass, fireproof glass, vacuum glass or photovoltaic glass. When applied to three-layer glass panes, it can be selected from one, two or three of the above-mentioned glasses.
First, referring to a first embodiment shown in Fig. 2, an insulating glazing unit 100 includes a first glass pane 101 and a second glass pane 102, and the peripheries therebetween is sealed by a sealing structure to form a hollow cavity 103. For example, the thickness of the first glass pane 101 and the second glass pane 102 are 4mm, and the thickness of the hollow cavity 103 therebetween is 16 mm. The hollow cavity 103 is filled with air or argon. The sealing structure includes a spacer frame 104 connected to inner surfaces of the first glass pane 101 and the second glass pane 102 by a first sealant 106, and a second sealant 107 for sealing outer side of the spacer frame 105. The spacer frame 104 can be made of polymer or metal (e.g., aluminum, stainless steel, etc. ) , and its surface is provided with a plurality of small holes, in which a molecular sieve 105 is arranged to absorb moisture. As conventionally provided, the first sealant 106 is made of polyisobutylene (PIB) , and the thickness of which is usually 0.5mm. In this embodiment, the second sealant 107 is expanded thermoplastic polyurethane, which fills and seals an area between the first glass pane 101 and the second glass pane 102 outside the spacer frame 104.
Expanded thermoplastic polyurethane (E-TPU) is a kind of round or rice-shaped foaming bead (popcorn) with a size of about 2mm. It is as elastic as rubber but lighter, and can be compressed to obtain higher density. It has high elasticity even under continuous load, and has stable performance even at low temperature (-20℃) . Expanded thermoplastic polyurethane can be processed on the injection molding machine that produces traditional expanded polypropylene, and the pressure can be adjusted according to the geometry and density. Another method of processing expanded thermoplastic polyurethane is to combine foamed beads with polyurethane (PU) adhesive to achieve good adhesion, which makes it possible to use large-scale processing techniques, such as gluing and foam sealing. Expanded thermoplastic polyurethane can also be preformed into a plate shape, and then it can be converted into the required configuration by using the traditional splitting, punching or water jet cutting machine.
According to the present disclosure, expanded thermoplastic polyurethane is integrated into the sealing structure of the insulating glazing unit, when the insulating glazing unit is applied to door, window, curtain wall, vehicle glass, aircraft glass or ship glass and other environments, the sealing structure among the glass panes has high elasticity even under  continuous load, and the sealing effect can be well adapted to the load change. At the same time, because the expanded thermoplastic polyurethane still has stable performance in a large temperature range (-20℃<temperature range<60℃) , the influence of external environmental temperature change on the appearance and performance of the insulating glazing unit is eliminated. In addition, in the embodiment shown in Fig. 2, the appearance of the insulating glazing unit can be consistent with that of the existing products, but the sealing performance is greatly improved, the corresponding service life is also greatly prolonged, and the application is extensive.
In a second embodiment shown in Fig. 3, an insulating glazing unit 200 includes a first glass pane 201 and a second glass pane 202, and a hollow cavity 203 is formed therebetween via a spacer frame 204 sealed by a first sealant 206. A molecular sieve 205 is arranged in the spacer frame 204. Unlike the embodiment shown in Fig. 2, the second sealant for sealing the outside of the spacer frame 204 includes not only a first sealing portion 207a arranged in the area between the first glass pane 201 and the second glass pane 202, but also a second sealing portion 207b extending to the end edge 208 of the first glass pane 201 and the end edge 209 of the second glass pane 202, and both the first sealing portion 207a and the second sealing portion 207b are expanded thermoplastic polyurethane.
Fig. 4 illustrates a third embodiment. Similar to the second embodiment shown in Fig. 3, an insulating glazing unit 300 includes a first glass pane 301 and a second glass pane 302, and a hollow cavity 303 is formed therebetween via a spacer frame 304 sealed by a first sealant 306. A molecular sieve 305 is arranged in the spacer frame 304. Furthermore, the second sealant for sealing the outside of the spacer frame 304 includes a first sealing portion 307a arranged in the area between the first glass pane 301 and the second glass pane 302, and a second sealing portion 307b extending to the end edge 308 of the first glass pane 301 and the end edge 309 of the second glass pane 302, and both the first sealing portion 307a and the second sealing portion 307b are expanded thermoplastic polyurethane. Unlike the embodiment shown in Fig. 3, the outer surface of the second sealing portion 307b is a curved surface, which makes the insulating glazing unit suitable for different installation and use environments.
In the above embodiments shown in Figs. 3 and 4, the second sealing portion of the  second sealant extending to the end edges of the first glass pane and the second glass pane is made of the same material as the first sealing portion arranged in the area between the first glass pane and the second glass pane, that is, both of them are expanded thermoplastic polyurethane, which is beneficial to the simplification of the process.
In a fourth embodiment shown in Figs. 5A and 5B, the materials of the first sealing portion and the second sealing portion may be different, but it is preferable that the second sealing portion is expanded thermoplastic polyurethane. In other words, according to the concept of the present disclosure, the sealing of the end of the glass and the edge thereof can be achieved by adding the second sealing portion made of expanded thermoplastic polyurethane on the basis of the existing insulating glazing unit. Specifically, in Fig. 5A, an insulating glazing unit 400 includes a first glass pane 401 and a second glass pane 402, and a hollow cavity 403 is formed therebetween via a spacer frame 404 sealed by a first sealant 406. A molecular sieve 405 is arranged in the spacer frame 404. In this embodiment, the second sealant used to seal the outside of the spacer frame 404 includes a first sealing portion 407 arranged in the area between the first glass pane 401 and the second glass pane 402, and the first sealing portion 407 can be selected from polyurethane or silicone. In addition, the second sealant also includes a second sealing portion 410 extending to the end edge 408 of the first glass pane 401 and the end edge 409 of the second glass pane 402. Advantageously, the second sealing portion 410 is a prefabricated component made of expanded thermoplastic polyurethane, and includes an embedding part 411 that can be embedded in the first sealing portion 407, and covering  parts  412, 413 that extend to cover the end edge 408 of the first glass pane 401 and the end edge 409 of the second glass pane 402, respectively, so as to be constructed into a substantially C shape as shown in the figure. Similar to the above embodiment, the outer surface of the second sealing portion 410 may alternatively be a plane or a curved surface.
Fig. 5A illustrates a state that the second sealing portion 410 will be embedded into the first sealing portion 407 along the arrow direction, and Fig. 5B illustrates a state that the second sealing portion 410 has been embedded into the first sealing portion 407. It should be understood that the initial amount of the first sealing portion 407 is adjusted according to the volume of the second sealing portion 410 to be embedded. In the embedded state, after  drying and curing for a certain period of time (for example, 24 hours to 48 hours) , the second sealing portion 410 completely adheres to the first sealing portion 407, and the second sealant has a strong adhesive force with the edge of the glass. In some cases, the first sealing portion 407 may be filled between the covering  parts  412, 413 of the second sealing portion 410 and the end edge 408 of the first glass pane 401 and the end edge 409 of the second glass pane 402, as shown in Fig. 5B, to increase the adhesion and sealing performance. In some embodiments, an accommodating portion 414 may be further provided between the embedding part 411 and the covering  parts  412, 413 of the second sealing portion 410 to accommodate portion of the first sealing portion 407, thereby improving the connection stability between the first sealing portion 407 and the second sealing portion 410.
Figs. 6A and 6B illustrate a fifth embodiment. Similar to the embodiment shown in Figs. 5A and 5B, an insulating glazing unit 500 includes a first glass pane 501 and a second glass pane 502, and a hollow cavity 503 is formed therebetween via a spacer frame 504 sealed by a first sealant 506. A molecular sieve 505 is arranged in the spacer frame 505. In this embodiment, the second sealant for sealing the outside of the spacer frame 504 includes a first sealing portion 507 arranged in the area between the first glass pane 501 and the second glass pane 502, and a second sealing portion 510 extending to the end edge 508 of the first glass pane 501 and the end edge 509 of the second glass pane 502, wherein both the first sealing portion 507 and the second sealing portion 510 are expanded thermoplastic polyurethane. Similarly, after the second sealing portion 510 shown in Fig. 6B is embedded in the first sealing portion 507, in some embodiments, an accommodating portion 514 may be further provided between an embedding part 511 of the second sealing portion 510 and covering  parts  512, 513 to accommodate portion of the first sealing portion 507. In addition, in some cases, the first sealing portion 507 may be filled between the covering  parts  512, 513 of the second sealing portion 510 and the end edge 508 of the first glass pane 501 and the end edge 509 of the second glass pane 502.
Figs. 7A and 7B illustrate a sixth embodiment similar to the embodiment shown in Figs. 5A and 5B. An insulating glazing unit 600 includes a first glass pane 601 and a second glass pane 602, and a hollow cavity 603 is formed therebetween via a spacer frame 604 sealed by  a first sealant 606. A molecular sieve 605 is arranged in the spacer frame 604. The second sealant includes, for example, a first sealing portion 607 made of polyurethane or silicone, and a second sealing portion 610 made of expanded thermoplastic polyurethane. The second sealing portion 610 is a prefabricated component that can be embedded in the first sealing portion 607, and an accommodating part 617 can be further arranged between an embedding part 611 and covering  parts  612, 613 of the second sealing portion 610 to accommodate portion of the first sealing portion 607. Different from the embodiment shown in Figs. 5A and 5B, the embedding part 611 of the second sealing portion 610 is further provided with a retention portion 616, and after being embedded in the first sealing portion 607, the retention portion 611 can be fixed with the first sealing portion 607 to increase the connection stability and prevent the second sealing portion from accidentally falling off or pulling out. In addition, the second sealing portion 610 is configured to be substantially T-shaped. Specifically, it further includes  bent portions  614, 615 extending from the ends of the covering  parts  612, 613 and covering the outer surfaces of the first glass pane 601 and the second glass pane 602, respectively. It can also increase the connection stability of the second sealing portion and the sealing effect as well as the protection effect on the end of the glass. When the second sealing portion 610 is embedded in the first sealing portion 607, in some cases, the first sealing portion 607 is filled between the covering  parts  612, 613 of the second sealing portion 610 and the end edge 608 of the first glass pane 601 and the end edge 609 of the second glass pane 602. Also, the first sealing portion 607 can be filled between the  bend portions  614, 615 and the outer surfaces of the first glass pane 601 and the second glass pane 602 due to the existence of the  bend portions  614, 615. It can be understood that the bend portion can also be only arranged on the outer surface of one glass pane.
Figs. 8A and 8B illustrate a seventh embodiment similar to the embodiment shown in Figs. 6A and 6B. An insulating glazing unit 700 includes a first glass pane 701 and a second glass pane 702, and a hollow cavity 703 is formed therebetween via a spacer frame 704 sealed by a first sealant 706. A molecular sieve 705 is arranged in the spacer frame 704. The second sealant includes a first sealing portion 707 and a second sealing portion 710, both of which are expanded thermoplastic polyurethane. In this embodiment, the second sealing portion 710 is a prefabricated component that can be embedded in the first sealing portion  707, and is configured similarly to the second sealing portion shown in Figs. 7A and 7B, respectively. Specifically, the second sealing portion 710 of this embodiment includes an embedding part 711 and covering  parts  712, 713, and an accommodating portion 717 may be further provided between the embedding part and the covering part to accommodate portion of the first sealing portion 707. Furthermore, the embedding part 711 of the second sealing portion 710 is further provided with a retention portion 716, and  bent portions  714, 715 extending from the ends of the covering  parts  712, 713 and covering the outer surfaces of the first glass pane 701 and the second glass pane 702, respectively. In some cases, the first sealing portion 707 in the embedded state is filled between the covering  parts  712, 713 of the second sealing portion 710 and the end edge 708 of the first glass pane 701 and the end edge 709 of the second glass pane 702. Also, the first sealing portion 707 may be filled between the  bent portions  714, 715 and the outer surfaces of the first glass pane 701 and the second glass pane 702.
By using the sealing material of expanded thermoplastic polyurethane to seal the outer side of the spacer frame, the insulating glazing unit of the present disclosure has prolonged service life and improved mechanical strength. On the one hand, due to the unique characteristics of expanded thermoplastic polyurethane, the aging performance of traditional insulating glazing unit will be greatly enhanced, and the water permeability and gas leakage will also be greatly improved. Moreover, due to the high elasticity and stability of expanded thermoplastic polyurethane in a wide range of temperatures, the fatigue property under climatic load of the second sealant which is fully or partially made of expanded thermoplastic polyurethane is improved, so that the service life of the insulating glazing unit may be increased up to 50 years instead of the current 10 years. On the other hand, the mechanical properties of expanded thermoplastic polyurethane make the edge of the glass protected from mechanical impact during transportation and installation, especially the design of covering the edge of the glass shown in Figs. 5A to 8B. Similarly, when applied to architectural glass such as residential or commercial buildings, it can keep integrity and tightness thereof even in extremely harsh climate. In addition, when applied to window frames and other occasions, the insulating glazing unit shown in Figs. 5A to 8B is easy to install in a frame (made of wood, aluminum, polyvinyl chloride, etc., for example) , which is  convenient and quick, without using several brackets to hold it on a generally larger frame.
It is known that expanded thermoplastic polyurethane is an environment-friendly material, and its preparation process is green and environment-friendly, easy to be implemented, with no significant increase in cost. For the embodiments shown in Figs. 2 to 4, there is no need to change the existing preparation process, only the second sealant needs to be replaced with expanded thermoplastic polyurethane. Exemplary preparation method includes:
S1: providing a first glass pane and a second glass pane;
S2: connecting a spacer frame with inner surfaces of the first glass pane and the second glass pane via a first sealant to form a hollow cavity;
S3: providing a second sealant on outer side of the spacer frame;
S4: curing the second sealant to at least seal an area between the first glass pane and the second glass pane.
According to the embodiment shown in Fig. 2, S3 includes S311: injecting the second sealant 107 into the outer side of the spacer frame 104 and filling the area between the first glass pane 101 and the second glass pane 102, wherein the second sealant 107 is expanded thermoplastic polyurethane.
For the embodiments shown in Figs. 3 and 4, S3 includes S311: injecting the first sealing portion 207a (or 307a) into the outer side of the spacer frame 204 (or 304) and filling the area between the first glass pane 201 (or 301) and the second glass pane 202 (or 302) , the first sealing portion 207a (or 307a) is expanded thermoplastic polyurethane; and S312: injecting the second sealing portion 207b (or 307b) into the outer side of the spacer frame, the second sealing portion 207b (or 307b) seals the first sealing portion 207a (or 307a) and flows to the end edges of the first glass pane and the second glass pane, and the second sealing portion 207b (or 307b) is expanded thermoplastic polyurethane.
For the embodiments shown in Figs. 5A to 8B, a workstation needs to be added to the production line for embedding the prefabricated second sealing portion in the edge of the glass pane. This is easy to be realized, and the preform of expanded thermoplastic polyurethane is easy to be produced or directly obtained from suppliers, and then cut and applied according to the actual size of the glass pane.
For the embodiments shown in Figs. 5A to 8B, S3 includes S321: injecting the first sealing portion 407 (or 507, 607, 707) into the outer side of the spacer frame 404 (or 504, 604, 704) and filling the area between the first glass pane 401 (or 501, 601, 701) and the second glass pane 402 (or 502, 602, 702) ; and S322: providing a prefabricated second sealing portion 410 (or 510, 610, 710) , embedding the second sealing portion into the first sealing portion and covering the end edges of the first glass pane and the second glass pane. In the embodiments shown in Figs. 5A, 5B and Figs. 7A, 7B, the materials of the first sealing portion and the second sealing portion are different, the first sealing portion is polyurethane or silicone, and the second sealing portion is expanded thermoplastic polyurethane. In the embodiments shown in Figs. 6A, 6B and Figs. 8A, 8B, the first sealing portion and the second sealing portion are made of the same material, both of which are expanded thermoplastic polyurethane.
As mentioned above, the present disclosure is not only applicable to single-cavity insulating glazing unit, but also to two-cavity or multi-cavity insulating glazing unit with three or more layers of glass panes. Correspondingly, for example, for the insulating glazing unit with three layers of glass panes, the preparation method further comprises:
S5: providing a third glass pane;
S6: connecting another spacer frame with the inner surfaces of the third glass pane and the first glass pane or the second glass pane via the first sealant to form another hollow cavity;
S7: providing the second sealant on outside of the another spacer frame;
S8 curing the second sealant outside the another spacer frame to at least seal an area between the third glass pane and the first glass pane or the second glass pane.
Optionally, based on different production situations, S5 to S8 are implemented after or at the same time as S1 to S4 are implemented.
It should be understood here that the embodiments shown in the drawings only illustrate the optional architectures, shapes, sizes and arrangements of various optional components of the insulating glazing unit according to the present disclosure; however, it is only illustrative rather than restrictive, and other shapes, sizes and arrangements can be adopted without departing from the spirit and scope of the present disclosure.
The technical content and technical features of the present disclosure have been disclosed above. However, it can be understood that those skilled in the art can make various changes and improvements to the above disclosed concept under the creative idea of the present disclosure, all of which fall within the protection scope of the present disclosure. The description of the above embodiments is illustrative rather than restrictive, and the protection scope of the present disclosure is determined by the claims.

Claims (18)

  1. An insulating glazing unit, at least comprising a first glass pane and a second glass pane, the peripheries of the first glass pane and the second glass pane being sealed by a sealing structure to form a hollow cavity, the sealing structure comprising:
    a spacer frame connected with inner surfaces of the first glass pane and the second glass pane via a first sealant, a molecular sieve being arranged in the spacer frame;
    a second sealant for sealing outer side of the spacer frame,
    wherein the second sealant comprises expanded thermoplastic polyurethane, and the second sealant at least seals an area between the first glass pane and the second glass pane.
  2. The insulating glazing unit according to claim 1, wherein the second sealant comprises a first sealing portion disposed in the area between the first glass pane and the second glass pane, and a second sealing portion extending to end edges of the first glass pane and the second glass pane; and wherein the material of the first sealing portion is the same as or different from that of the second sealing portion, and at least the second sealing portion is expanded thermoplastic polyurethane.
  3. The insulating glazing unit according to claim 2, wherein the outer surface of the second sealing portion is flat or curved.
  4. The insulating glazing unit according to claim 2, wherein the first sealing portion is polyurethane or silicone.
  5. The insulating glazing unit according to claim 2, wherein the second sealing portion is prefabricated and comprises an embedding part embedded in the first sealing portion and a covering part extending to cover the end edges of the first glass pane and the second glass pane.
  6. The insulating glazing unit according to claim 5, wherein an accommodating portion is provided between the embedding part and the covering part of the second sealing portion  to accommodate portion of the first sealing portion.
  7. The insulating glazing unit according to claim 5, wherein the embedding part of the second sealing portion is provided with a retention portion, and the retention portion is fixed with the first sealing portion after being embedded in the first sealing portion.
  8. The insulating glazing unit according to claim 5, wherein the second sealing portion further comprises a bent portion extending from the end of the covering part and covering outer surface of the first glass pane and/or the second glass pane.
  9. The insulating glazing unit according to anyone of claims 1 to 8, wherein the first glass pane and the second glass pane are selected from one or two of ordinary glass, float glass, tempered glass, semi-tempered glass, colored glass, coated glass, laminated glass, heat-resistant glass, fireproof glass, vacuum glass or photovoltaic glass.
  10. The insulating glazing unit according to anyone of claims 1 to 8, wherein the insulating glazing unit further comprises a third glass pane, and the peripheries of the third glass pane and the first glass pane or the second glass pane are sealed by the sealing structure to form another hollow cavity.
  11. The insulating glazing unit according to claim 10, wherein the first glass pane, the second glass pane and the third glass pane are selected from one, two or three of ordinary glass, float glass, tempered glass, semi-tempered glass, colored glass, coated glass, laminated glass, heat-resistant glass, fireproof glass, vacuum glass or photovoltaic glass.
  12. A method for preparing an insulating glazing unit according to anyone of claims 1 to 11, wherein the method comprises:
    S1: providing a first glass pane and a second glass pane;
    S2: connecting a spacer frame with inner surfaces of the first glass pane and the second glass pane via a first sealant to form a hollow cavity;
    S3: providing a second sealant on outer side of the spacer frame;
    S4: curing the second sealant to at least seal an area between the first glass pane and the second glass pane.
  13. The method according to claim 12, wherein S3 comprises:
    S311: injecting a first sealing portion into the outer side of the spacer frame and filling the area between the first glass pane and the second glass pane, wherein the first sealing portion is expanded thermoplastic polyurethane.
  14. The method according to claim 13, wherein S3 further comprises:
    S312: injecting a second sealing portion into the outer side of the spacer frame for sealing the first sealing portion and flowing to the end edges of the first glass pane and the second glass pane, wherein the second sealing portion is expanded thermoplastic polyurethane.
  15. The method according to claim 12, wherein S3 comprises:
    S321: injecting a first sealing portion into the outer side of the spacer frame and filling the area between the first glass pane and the second glass pane; and
    S322: providing a prefabricated second sealing portion, embedding the second sealing portion into the first sealing portion and covering the end edges of the first glass pane and the second glass pane, wherein the material of the first sealing portion is the same as or different from that of the second sealing portion, and at least the second sealing portion is expanded thermoplastic polyurethane.
  16. The method according to anyone of claims 12 to 15, wherein the method further comprises:
    S5: providing a third glass pane;
    S6: connecting another spacer frame with the inner surfaces of the third glass pane and the first glass pane or the second glass pane via the first sealant to form another hollow cavity;
    S7: providing the second sealant on outer side of the another spacer frame;
    S8: curing the second sealant outside the another spacer frame to at least seal an area between the third glass pane and the first glass pane or the second glass pane.
  17. The method according to claim 16, wherein S5 to S8 are implemented after or at the same time as S1 to S4 are implemented.
  18. Application of an insulating glazing unit according to anyone of claims 1 to 11, wherein the insulating glazing unit is used as door, window, curtain wall, vehicle glass, aircraft glass or ship glass.
PCT/CN2022/108421 2021-07-30 2022-07-28 Insulating glazing unit, preparation method and application thereof WO2023006008A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110870687.4 2021-07-30
CN202110870687.4A CN114920470A (en) 2021-07-30 2021-07-30 Insulating glass unit, and preparation method and application thereof

Publications (1)

Publication Number Publication Date
WO2023006008A1 true WO2023006008A1 (en) 2023-02-02

Family

ID=82804054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108421 WO2023006008A1 (en) 2021-07-30 2022-07-28 Insulating glazing unit, preparation method and application thereof

Country Status (2)

Country Link
CN (1) CN114920470A (en)
WO (1) WO2023006008A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036516A2 (en) * 2000-10-28 2002-05-10 National Starch And Chemical Investment Holding Corporation Window glazing composition and use thereof
GB2470580A (en) * 2009-05-28 2010-12-01 Spectus Window Systems Ltd Window Assembly
CN102165602A (en) * 2008-07-02 2011-08-24 圣戈班性能塑料谢纳有限公司 Framed device, seal, and method for manufacturing same
WO2013152484A1 (en) * 2012-04-11 2013-10-17 Qiu Li Composite fireproof glass, manufacturing method thereof and curtain
JP2015004167A (en) * 2013-06-19 2015-01-08 旭硝子株式会社 Double glazing window and method for assembling the same
CN205662468U (en) * 2016-05-20 2016-10-26 濮阳市昌盛胶业科技有限公司 Novel hollow glass
CN207700985U (en) * 2017-11-21 2018-08-07 广州市顺与利钢化玻璃制品有限公司 A kind of heat insulation type hollow glass
CN211573201U (en) * 2019-10-09 2020-09-25 嘉善博雅钢化玻璃有限公司 Novel hollow glass
CN112983204A (en) * 2021-03-18 2021-06-18 温州前瞻玻璃科技有限公司 Hollow glass with PUR (polyurethane) glue edge sealing and manufacturing method thereof
CN113003952A (en) * 2021-03-18 2021-06-22 温州前瞻玻璃科技有限公司 Hollow glass and manufacturing method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036516A2 (en) * 2000-10-28 2002-05-10 National Starch And Chemical Investment Holding Corporation Window glazing composition and use thereof
CN102165602A (en) * 2008-07-02 2011-08-24 圣戈班性能塑料谢纳有限公司 Framed device, seal, and method for manufacturing same
GB2470580A (en) * 2009-05-28 2010-12-01 Spectus Window Systems Ltd Window Assembly
WO2013152484A1 (en) * 2012-04-11 2013-10-17 Qiu Li Composite fireproof glass, manufacturing method thereof and curtain
JP2015004167A (en) * 2013-06-19 2015-01-08 旭硝子株式会社 Double glazing window and method for assembling the same
CN205662468U (en) * 2016-05-20 2016-10-26 濮阳市昌盛胶业科技有限公司 Novel hollow glass
CN207700985U (en) * 2017-11-21 2018-08-07 广州市顺与利钢化玻璃制品有限公司 A kind of heat insulation type hollow glass
CN211573201U (en) * 2019-10-09 2020-09-25 嘉善博雅钢化玻璃有限公司 Novel hollow glass
CN112983204A (en) * 2021-03-18 2021-06-18 温州前瞻玻璃科技有限公司 Hollow glass with PUR (polyurethane) glue edge sealing and manufacturing method thereof
CN113003952A (en) * 2021-03-18 2021-06-22 温州前瞻玻璃科技有限公司 Hollow glass and manufacturing method thereof

Also Published As

Publication number Publication date
CN114920470A (en) 2022-08-19

Similar Documents

Publication Publication Date Title
US10358862B2 (en) Window having vacuum insulated glass (VIG) unit and frame including vacuum insulated structure(s)
EP2893112B1 (en) Spacer system for installing vacuum insulated glass (vig) window unit in window frame designed to accommodate thicker ig window unit
CA2629768C (en) High r-value window unit with vacuum ig unit and insulating frame
KR102567521B1 (en) Spacers with reinforcing elements
CN205047064U (en) Four sealing sections can al -alloy door &amp; window
CN101205742A (en) Warm-edge vacuum glass insulation curtain wall
US12065873B2 (en) Spacer having improved adhesion
CN212154561U (en) Heat-insulating aluminum alloy door and window
WO2023006008A1 (en) Insulating glazing unit, preparation method and application thereof
CN214740793U (en) Glass fiber reinforced polyurethane casement window
CN210460381U (en) Three-glass two-cavity structure with built-in manual sunshade curtain
CN210003123U (en) novel splicing embedded composite material window section bar component
CN202558776U (en) Vacuum glass
CN201778621U (en) Hollow mosaic glass without welding points
US20240110433A1 (en) Spacer with coextruded hollow profile
CN101205123A (en) Permeation-proof warm edge insulating glass
CN106032738A (en) Building glass doors and windows and curtain wall glass movable hollow thermal insulation method
CN218716248U (en) Anti-deformation glass
CN111395651A (en) Weather-resistant hollow glass and preparation method thereof
CN216894132U (en) Glass fiber polyurethane energy-saving fire-resistant window
CN218669055U (en) Light multilayer hollow glass
CA3142978C (en) Spacer for insulated glass units
CN216894133U (en) Window profile with glass fiber polyurethane reinforced core and energy-saving fire-resistant bridge-cut-off aluminum alloy window
CN214607508U (en) Heat insulation vehicle window for high and cold areas of motor train unit
CN101205786A (en) Warm-edge vacuum glass insulation door and window

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848613

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22848613

Country of ref document: EP

Kind code of ref document: A1