WO2013151393A1 - 생물전환을 통한 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산을 생산하는 방법 - Google Patents

생물전환을 통한 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산을 생산하는 방법 Download PDF

Info

Publication number
WO2013151393A1
WO2013151393A1 PCT/KR2013/002885 KR2013002885W WO2013151393A1 WO 2013151393 A1 WO2013151393 A1 WO 2013151393A1 KR 2013002885 W KR2013002885 W KR 2013002885W WO 2013151393 A1 WO2013151393 A1 WO 2013151393A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
omega
transformant
fatty acid
chain fatty
Prior art date
Application number
PCT/KR2013/002885
Other languages
English (en)
French (fr)
Inventor
박진병
송지원
전은영
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130005814A external-priority patent/KR101500827B1/ko
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to CN201380029844.2A priority Critical patent/CN104364377B/zh
Priority to US14/390,768 priority patent/US9745605B2/en
Priority to JP2015504505A priority patent/JP6104361B2/ja
Priority to EP13771758.3A priority patent/EP2835425B1/en
Publication of WO2013151393A1 publication Critical patent/WO2013151393A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing heavy chain omega-hydroxyfatty acid, alpha, omega-dicarboxylic acid, omega-aminofatty acid from long-chain fatty acids through bioconversion, more specifically the present invention is Baeyer-Villiger monooxygenase ) A transformant transformed to express), a heavy chain omega-hydroxyfatty acid having 5 to 14 carbon atoms, alpha, omega-from a long chain fatty acid having 16 to 20 carbon atoms through biotransformation using the transformant.
  • Omega-Hydroxyfatty acid is a type of fatty acid that has one hydroxyl group (hydroxyl group) at the end of fatty acid (HOCH 2 (CH 2 ) nCOOH). It is used as a monomer in the production of polyethylene-based plastic and produces emulsifiers, adhesives, and coatings. It is widely used in the manufacture of cosmetics and pharmaceuticals. It can also be used as a precursor of long-chain dicarboxylic acid synthesis, which is widely used in the production of polyamide, polyester-based plastics, cosmetics and household goods.
  • Medium-chain alpha, omega-dicarboxylic acids (HOOC (CH 2 ) nCOOH) and omega-aminofatty acids (H 2 NCH 2 (CH 2 ) nCOOH) are used as monomers in the manufacture of plastics such as polyamides and polyesters. It is also used in the production of cryoprotectants, paints and coatings. In addition, there is a variety of physiological activities such as antibacterial activity is widely used in the production of cosmetics, food, household goods.
  • sebacic acid (HOOC) (CH 2 ) 8 (COOH)
  • HOOC HOOC
  • CH 2 ) 8 (COOH) a heavy chain dicarboxylic acid with 10 carbon atoms
  • Azeleic acid a heavy chain dicarboxylic acid having 9 carbon atoms
  • oleic acid US Pat. No. 5,420,316
  • a large amount of ozone, a strong oxidant is used, and various by-products are generated, and a separate purification process using a heavy metal catalyst must be essentially performed to remove the by-products.
  • a separate purification process using a heavy metal catalyst must be essentially performed to remove the by-products.
  • the present inventors are able to convert chito fatty acids from BVEI (Baeyer-Villiger monooxygenase) from long chain fatty acids having 16 to 20 carbon atoms into the form of fatty acid derivatives with ester groups introduced into the chain which can be cleaved by ester hydrolases.
  • BVEI Bath-Villiger monooxygenase
  • ester groups introduced into the chain which can be cleaved by ester hydrolases.
  • One object of the present invention is to provide a transformant capable of expressing Baeyer-Villiger monooxygenase (BVMO).
  • BVMO Baeyer-Villiger monooxygenase
  • Another object of the present invention is to provide a method for producing various degradation products from long-chain fatty acids through biotransformation using the transformant.
  • Still another object of the present invention is to provide an omega-hydroxyfatty acid prepared by the above method and represented by Chemical Formula 1.
  • the long-chain fatty acids having 16 to 20 carbon atoms contained in the medium are decomposed to omega-hydroxy fatty acids and alpha having 5 to 14 carbon atoms.
  • Decomposition products such as omega-dicarboxylic acids, omega-amino fatty acids, and alcohols can be produced in large quantities, and thus safer than omega-hydroxy fatty acids, alpha, omega-dicarboxylic acids, omega-amino fatty acids or alcohols. And can be widely used for economic production.
  • FIG. 1A illustrates the production of heavy chain omega-hydroxyfatty acids ( ⁇ -hydroxynonanoic acid with 9 carbon atoms) from long chain fatty acids (oleic acid with 18 carbon atoms) using hydratase, alcohol dehydrogenase, BVMO and ester hydrolase.
  • FIG. 1B shows a heavy chain omega-hydroxyfatty acid ( ⁇ -hydroxyundec-9-enoic acid having 11 carbon atoms) from a long chain fatty acid (ricinoleic acid having 18 carbon atoms) using alcohol dehydrogenase, BVMO and ester hydrolase. It is a schematic which shows the reaction which produces
  • FIG. 1C shows omega-hydroxyfatty acid ( ⁇ -hydroxytridec-11-enoic acid having 13 carbon atoms) from a long chain fatty acid (resqueroline acid having 20 carbon atoms) using alcohol dehydrogenase, BVMO and ester hydrolase. It is a schematic diagram showing the reaction which produces () sequentially.
  • FIG. 1D shows alpha, omega-dicarboxylic acid ( ⁇ , ⁇ -decanedioic acid having 10 carbon atoms) from long chain fatty acids (oleic acid having 18 carbon atoms) using hydratase, alcohol dehydrogenase, BVMO and ester hydrolase. ) And a schematic view showing a reaction for producing octanol in sequence.
  • FIG. 1E shows alpha, omega-dica from long-chain fatty acids (oleic acid having 18 carbon atoms) using hydratase, alcohol dehydrogenase derived from Micrococcus luteus, BVMO, ester hydrolase, and alcohol dehydrogenase derived from Pseudomonas putida
  • FIG. 1F shows a long-chain fatty acid (18 oleic acid having 18 carbon atoms) using hydratase, alcohol dehydrogenase derived from Micrococcus lutheus, BVMO, ester hydrolase, alcohol dehydrogenase derived from Pseudomonas putida, and amino transferase.
  • It is a schematic diagram which shows sequentially the reaction which produces omega-amino fatty acid ((omega] -aminononanoic acid which has 9 carbon atoms) from.
  • Figure 2 shows the change in production and ester hydrolysis reaction products of fatty acid with ester group introduced into the chain produced from oleic acid using a transformant expressing oleic acid hydrase, alcohol dehydrogenase and BVMO of the present invention.
  • This graph shows the results of GC / MS analysis.
  • Figure 3 shows the change of production and the GC of ester hydrolysis reaction products over time of fatty acid with ester group introduced into the chain produced from ricinoleic acid using a transformant expressing alcohol dehydrogenase and BVMO of the present invention.
  • the graph shows the results of the / MS analysis.
  • Figure 5 shows the change in production and ester hydrolysis reaction products over time of the fatty acid introduced ester group in the chain produced from oleic acid using a transformant expressing oleic acid hydrase, alcohol dehydrogenase and BVMO of the present invention It is a graph which shows the result of GC / MS analysis of (Sebacic acid).
  • Figure 6 using the oleic acid hydrase, alcoholic dehydrogenase derived from Micrococcus luteus and BVMO transformant of the present invention to produce a fatty acid introduced into the chain from the oleic acid, ester esterase and It is a graph showing the amount of production of the reaction product obtained over time by adding a transformant expressing an alcohol dehydrogenase derived from Pseudomonas putida.
  • Fig. 7 shows ⁇ , ⁇ produced from ricinoleic acid using transformants expressing oleic acid hydratase, alcohol dehydrogenase from Micrococcus luteus, BVMO and ester hydrolase, alcohol dehydrogenase from Pseudomonas putida
  • a graph showing the change in production of -undec-2-enedioic acid (cis-2-undecene-1,11-dioic acid) over time.
  • the present invention provides a transformant is introduced Baeyer-Villiger monooxygenase (BVMO) gene.
  • BVMO Baeyer-Villiger monooxygenase
  • BVMO Bath-Villiger monooxygenase
  • BVMO Bath-Villiger monooxygenase
  • the term "BVMO" (Baeyer-Villiger monooxygenase) of the present invention refers to a kind of monooxygenase which is an enzyme capable of catalyzing various oxidation reactions including Baeyer-Villiger oxidation reactions which oxidize ketones to produce lactones or ester compounds.
  • the activity of catalyzing the reaction to produce a fatty acid derivative e.g., 10- (octyloxy) -10-oxodecanoic acid in 10-ketostearic acid
  • a fatty acid derivative e.g., 10- (octyloxy) -10-oxodecanoic acid in 10-ketostearic acid
  • the BVMO is not particularly limited thereto, but is preferably Pseudomonas sp ., Rhodococcus sp . Brevibacterium sp ., Comanonas sp ., Acinetobacter sp ., Arthrobacter sp ., Brachymonas strain. sp .) and the like, BVMO derived from a microorganism, and more preferably Pseudomonas putida , Pseudomonas fluorescens , Pseudomonas veronii , Rhodococcus jostii ) Or BVMO derived from Pseudomonas sp .
  • BVMO derived from Pseudomonas spida.
  • the base sequence of the gene encoding the BVMO can be obtained from a known database such as GenBank of NCBI. For example, GenBank Accession No.
  • GenBank Accession No. The gene represented by CAFK01000010, a gene obtainable from the expression vector pJOE-KT2440BVMO (Biotechnol. Lett., 29: 1393-1398, 2007) and the like designed to express the BVMO gene, preferably SEQ ID NO: Polynucleotide sequences capable of encoding the amino acid sequence of 9;
  • the BVMO may be present at one or more positions of the amino acid sequence constituting the BVMO.
  • the amino acid sequence may include an amino acid sequence in which an amino acid is substituted, deleted, inserted, added or inverted, and as long as it can maintain or enhance the activity of BVMO, at least 80%, preferably 90%, relative to the amino acid sequence of BVMO Or more preferably 95% or more, particularly preferably 97% or more, and may comprise an amino acid sequence having a homology
  • the amino acid sequence of the enzyme exhibiting the activity of the polypeptide may vary depending on the strain, and is not particularly limited thereto.
  • the microorganism containing the activity of the BVMO may be used for substitution, deletion, insertion, addition, or inversion of the amino acid. It may also include naturally occurring mutant sequences or artificially mutated sequences, such as those based on individual or species differences.
  • homology refers to an identity between two different amino acid sequences or nucleotide sequences, which is a BLAST that calculates parameters such as score, identity, similarity, and the like. It can be determined by methods well known to those skilled in the art using 2.0, but is not particularly limited thereto.
  • the term “transformer” refers to a cell or microorganism which has been transformed to express the target protein after the polynucleotide encoding the target protein is introduced into the host using a vector.
  • the polynucleotide introduced into the host cell may be any form as long as it can be introduced into and expressed in the host cell.
  • the transformant provided in the present invention is a host cell containing an expression vector or a known expression vector pJOE-KT2440BVMO (Biotechnol. Lett., 29: 1393-1398, 2007), into which a polynucleotide sequence encoding a known BVMO is introduced. It can be introduced into and produced.
  • the host cell that can be used is not particularly limited as long as the host cell capable of expressing BVMO by introducing the polynucleotide sequence encoding the BVMO of the present invention, but preferably suitable for application to a bioconversion process
  • Cells of unicellular prokaryote or eukaryote can be used, more preferably E. coli, yeast, etc., most preferably E. coli BL21 (DE3) cells can be used.
  • the transformant of the present invention decomposes a long-chain fatty acid having 16 to 20 carbon atoms contained in the medium, and has a heavy chain omega-hydroxy fatty acid, alpha, omega-dicarboxylic acid, omega-amino fatty acid having 5 to 14 carbon atoms.
  • a gene encoding hydratase or lipoxygenase for this purpose, a gene encoding alcohol dehydrogenase, ester hydrolysis
  • a gene encoding an enzyme, a gene encoding an aminotransferase, or the like may be further introduced.
  • hydratase refers to an enzyme that reversibly generates a hydroxy compound by adding water to a carbon double bond, and may also remove water from the hydroxy compound by a reverse reaction. dehydratase ".
  • the hydrase is preferably Stenotrophomonas maltophilia , Lysinibacillus fusiformis , Macrococcus caseolyticus , Propionibacterium acnes It may be used derived from strains such as), but is not particularly limited thereto.
  • the hydrase may be used for the purpose of producing hydroxy fatty acid by adding a hydroxy group to a long chain fatty acid having 16 to 20 carbon atoms.
  • lipoxygenase refers to an oxygen-adding enzyme that adds molecular oxygen to unsaturated fatty acids, and recognizes the cis, cis-1,4-pentadiene structure of unsaturated fatty acids to hydrogen atoms of methylene. It refers to an enzyme that catalyzes the reaction to generate a hydroperoxide by the addition of oxygen on the opposite side (antarafacial) by stereospecific extraction.
  • the lipoxygenase may be used for the purpose of producing hydroxyfatty acid by adding a hydroxy group to a long chain fatty acid having 16 to 20 carbon atoms as in the above-described hydrase.
  • the term "alcohol dehydrogenase” refers to an enzyme that catalyzes the reaction of removing hydrogen from alcohol to produce aldehydes, ketones or carboxylic acids.
  • the alcohol dehydrogenase may be derived from Micrococcus luteus, Pseudomonas genus strain, but is not particularly limited thereto.
  • the alcohol dehydrogenase removes hydrogen from the hydroxyfatty acid produced by the hydratase or lipoxygenase to produce a chito fatty acid, or an omega-hydroxy fatty acid produced by ester hydrolase. It can be used for the purpose of producing omega-oxofatty acid ( ⁇ -oxofatty acid) or alpha, omega-dicarboxylic acid.
  • the ester hydrolase may be used for the purpose of decomposing the ester group of a fatty acid derivative having an ester group introduced into the chain produced by BVMO.
  • aminotransferase refers to an enzyme that converts an oxo group of omega-oxofatty acid to an amino group.
  • the amino transferase may be derived from a microorganism, but is not particularly limited thereto, and is preferably, but not limited to, Chromobacterium violaceum , Silicibacter pomeroyi , and Rhodococcus sproides ( Rhodococcus sphaeroides ), Mesorhizobium lotimaff ( Mesorhizobium lotimaff ), Silicibacter ( Silicibacter sp .) And the like derived from strains can be used.
  • the aminotransferase may be used to produce omega-aminofatty acids from omega-oxofatty acids produced by alcohol dehydrogenases, preferably from omega-oxofatty acids of C9, C11, C12 and C13. It can be used to produce omega-aminofatty acid.
  • pACYC / oleic acid hydratase / comprising an oleic acid hydratase gene derived from Stenotrophomonas maltophilia and an alcohol dehydrogenase gene derived from Micrococcus luteus .
  • An alcohol dehydrogenase expression vector was introduced into E. coli BL21 (DE3) strain to prepare a primary transformant that expresses hydratase and alcohol dehydrogenase, and the primary transformant was a BVMO gene derived from Pseudomonas putida.
  • An expression vector pJOE-KT2440BVMO was introduced to prepare a secondary transformant capable of simultaneously expressing oleic acid hydratase, alcohol dehydrogenase and BVMO (Example 1).
  • the present invention provides a method for producing a variety of degradation products from long-chain fatty acids through biotransformation using the transformant.
  • the method for producing a degradation product from the long chain fatty acid of the present invention comprises the steps of (a) reacting a transformant having a gene encoding BVMO and a long chain fatty acid to obtain a reactant; And (b) recovering the degradation product from the reactant.
  • the degradation product may be a heavy chain omega-hydroxy fatty acid, alpha, omega-dicarboxylic acid, omega-amino fatty acid or alcohol.
  • the decomposition product may be a medium chain omega-hydroxy fatty acid having 5 to 14 carbon atoms, alpha, omega-dicarboxylic acid, omega-amino fatty acid or normal alcohol having 2 to 14 carbon atoms, More preferably, ⁇ -hydroxynonanoic acid, ⁇ -hydroxyundec-9-enoic acid, ⁇ -hydroxytridec-11-enoic acid, ⁇ , ⁇ -nonanedioic acid (azelaic acid), ⁇ , ⁇ -decanedioic acid (sebacic acid), ⁇ -aminononanoic acid, heptanoic acid, nonanoic acid, ⁇ -hydroxyundecanoic acid, ⁇ -hydroxytridecanoic acid, ⁇ , ⁇ -undec-2-enedioic acid (cis-2-undecene-1,11-dioic acid), ⁇ -aminoundec-9 -enoic acid, ⁇ , ⁇
  • the long-chain fatty acid is not particularly limited thereto, but may be a straight-chain fatty acid having 16 to 20 carbon atoms, more preferably oleic acid, ricinoleic acid, 12-hydroxystearic acid, linoleic acid, Palmitoleic acid or lesquerolic acid.
  • reaction by reacting the long-chain fatty acid used as a substrate with a variety of enzymes such as hydrase, lipoxygenase, alcohol dehydrogenase, ester hydrolase, amino transferase produced by the transformant to the long-chain fatty acid It refers to an enzymatic reaction that catalyzes cleavage, degradation or transfer of amino groups.
  • a series of enzymes produced by the transformant is produced inside the transformant, and the produced enzyme can be secreted out of the transformant.
  • the reaction may be performed inside the transformant or may be performed outside.
  • long-chain fatty acid is added to the medium after a certain amount of carbon source included in the medium, and the long-chain fatty acid is produced by the enzymes produced from the transformant.
  • the transformant may be added to a reaction buffer containing a long chain fatty acid, and the long chain fatty acid may be cleaved, degraded, or transferred to an amino group to produce various degradation products;
  • each of the enzymes is separated from the transformant, and each of the enzymes is immobilized on a carrier, followed by addition of a reaction buffer containing a long chain fatty acid, and the immobilized enzyme cleaves or degrades the long chain fatty acid to produce various degradation products. It may also be performed in a way.
  • the content of the long-chain fatty acid contained in the medium or the reaction buffer is not particularly limited, but may be preferably added to a final concentration of 0.1 to 100g / L.
  • the term "cultivation" of the present invention means to grow microorganisms under appropriately artificially controlled environmental conditions.
  • the method of culturing the transformant in the present invention can be carried out using a method well known in the art. Specifically, the culture may be continuously cultured in a batch process or in a fed batch or repeated fed batch process, but is not limited thereto.
  • the medium used for culturing should meet the requirements of the particular strain in an appropriate manner while controlling the temperature, pH, etc. under aerobic conditions in a conventional medium containing a suitable carbon source, nitrogen source, amino acids, vitamins and the like.
  • Carbon sources that may be used include sugars such as glucose, sucrose, lactose, fats, fatty acids, glycerol. These materials can be used individually or as a mixture.
  • Nitrogen sources that can be used include inorganic nitrogen sources such as ammonia, ammonium sulfate, ammonium chloride and ammonium phosphate; Amino acids such as glutamic acid and organic nitrogen sources, such as peptone, meat extract, yeast extract, malt extract, corn steep liquor, casein hydrolyzate, can be used.
  • nitrogen sources may be used alone or in combination.
  • the temperature of the culture is usually 15 °C to 37 °C, preferably 20 °C to 30 °C, the incubation is carried out for 10 to 100 hours.
  • the step of recovering the decomposition products such as heavy chain omega-hydroxy fatty acid, alpha, omega-dicarboxylic acid, omega-amino fatty acid, alcohol from the reaction solution is dialysis, centrifugation, filtration, solvent extraction, chromatography, crystallization It may be carried out by a method known in the art such as.
  • the reaction solution may be centrifuged to remove the transformant, and the obtained supernatant may be applied to a solvent extraction method to recover a desired degradation product. If it is a method capable of recovering the decomposition product by combining the test method can be used without particular limitation.
  • a gene encoding a hydratase provided by the present invention a gene encoding an alcohol dehydrogenase, a gene encoding BVMO, a gene encoding an ester hydrolase, and a gene encoding an aminotransferase are provided to host cells in different combinations.
  • each of the prepared transformants is a long-chain fatty acid (oleic acid, ricinoleic acid, Linoleic acid, resqueroline acid, etc.), to produce a heavy chain omega-hydroxyfatty acid, alpha, omega-dicarboxylic acid, omega-aminofatty acid or alcohol having 5 to 14 carbon atoms.
  • a transformant prepared by introducing a gene encoding alcohol dehydrogenase and a gene encoding BVMO into E. coli can convert long-chain fatty acids into long-chain fatty acids having an ester group introduced into the chain.
  • the long chain fatty acid having an ester group introduced into the converted chain may be various types of heavy chain omega-hydroxyfatty acid, alpha, omega-dica. It can be converted to the leric acid, omega-amino fatty acid or alcohol.
  • transformants capable of expressing hydrase, alcohol dehydrogenase, BVMO and ester hydrolase are heavy chain omegas such as ⁇ -hydroxynonanoic acid (C9) from long chain fatty acids such as oleic acid (C18).
  • -Hydroxyfatty acid can be produced, the hydratase converts long chain fatty acid to hydroxyfatty acid, alcohol dehydrogenase removes hydrogen from the converted hydroxyfatty acid to produce chito fatty acid, BVMO produces the produced chito
  • the fatty acids are oxidized to produce long chain fatty acids having ester groups introduced into the chain, and esterases hydrolyze the ester bonds of the long chain fatty acids having ester groups introduced therein into the chain to produce heavy chain omega-hydroxyfatty acids (FIG. 1a).
  • a transformant capable of expressing alcohol dehydrogenase, BVMO and ester hydrolase is selected from ⁇ -hydroxyundec-9-enoic acid (C11) from a hydroxy long-chain fatty acid such as ricinoleic acid (C18).
  • Heavy chain omega-hydroxyfatty acid, such as) alcohol dehydrogenase removes hydrogen from the hydroxy long-chain fatty acid to produce chito fatty acid
  • BVMO oxidizes the produced chito fatty acid to introduce ester groups into the chain Produced long chain fatty acids
  • ester hydrolases hydrolyze the ester bonds of the long chain fatty acids with ester groups introduced into the resulting chains to produce heavy chain omega-hydroxyfatty acids (FIG. 1B).
  • the transformant capable of expressing alcohol dehydrogenase, BVMO and ester hydrolase is ⁇ -hydroxytridec-11-enoic from a hydroxy long chain fatty acid such as resqueroline acid (C20).
  • Heavy chain omega-hydroxyfatty acids such as acid (C13) can be produced, and alcohol dehydrogenase removes hydrogen from the hydroxy long-chain fatty acids to produce chito fatty acids, and BVMO oxidizes the produced chito fatty acids in the chain.
  • the ester group produces a long chain fatty acid, and ester hydrolases hydrolyze the ester bonds of the long chain fatty acids with ester groups introduced into the resulting chain to produce heavy chain omega-hydroxyfatty acids (FIG. 1C).
  • a transformant capable of expressing hydratase, alcohol dehydrogenase, BVMO and ester hydrolase is selected from a long chain fatty acid such as oleic acid (C18) and ⁇ , ⁇ -decanedioic acid (C10).
  • a long chain fatty acid such as oleic acid (C18) and ⁇ , ⁇ -decanedioic acid (C10).
  • the same alpha, omega-dicarboxylic acid and octanol (C8) can be produced, the hydratase converts long-chain fatty acids to hydroxyfatty acids, and the alcohol dehydrogenase removes hydrogen from the converted hydroxyfatty acids to produce a chito fatty acid.
  • BVMO oxidizes the produced chito fatty acid to produce a long chain fatty acid having an ester group introduced into the chain, and ester hydrolase hydrolyzes an ester bond of a long chain fatty acid having an ester group introduced into the produced chain, thereby alpha
  • ester hydrolase hydrolyzes an ester bond of a long chain fatty acid having an ester group introduced into the produced chain, thereby alpha
  • a transformant capable of expressing a hydrase, an alcohol dehydrogenase derived from Micrococcus luteus, BVMO, an ester hydrolase and an alcohol dehydrogenase derived from Pseudomonas putida may be oleic acid (C18).
  • Alpha, omega-dicarboxylic acids, such as ⁇ , ⁇ -nonanedioic acid (C9), can be produced from long chain fatty acids, such as hydrase, which converts long chain fatty acids to hydroxyfatty acids and alcohols from Micrococcus Luteus.
  • Dehydrogenase removes hydrogen from the converted hydroxyfatty acid to produce chito fatty acid
  • BVMO oxidizes the produced chito fatty acid to produce long chain fatty acid with ester group introduced into the chain
  • ester hydrolase is produced Omega-hydro by hydrolysis of ester bonds of long-chain fatty acids with ester groups introduced into the chain Generates a when fatty acid, alcohol dehydrogenase of Pseudomonas footage is derived from alpha, omega by removing hydrogen from the omega-hydroxy fatty acid-produces a dicarboxylic acid (Fig. 1e).
  • a transformant capable of expressing a hydratase, an alcohol dehydrogenase derived from Micrococcus luteus, BVMO, an ester hydrolase, an alcohol dehydrogenase derived from Pseudomonas putida, and an amino transferase From long-chain fatty acids such as oleic acid (C18) can produce omega-aminofatty acids, such as ⁇ -aminononanoic acid (C9), where hydrases convert long-chain fatty acids to hydroxyfatty acids and alcohol dehydrogenases from Micrococcus luteus Removes hydrogen from the converted hydroxyfatty acid to produce a chito fatty acid, BVMO oxidizes the produced chito fatty acid to produce a long chain fatty acid having an ester group introduced into the chain, and an ester hydrolase in the generated chain Hydrolysis of ester bonds of long-chain fatty acids Produces a hydroxy fatty acid, alcohol dehydrogena
  • omega-hydroxyfatty acid produced from long-chain fatty acids is converted to alpha, omega-dicarboxylic acid by alcohol dehydrogenase derived from Pseudomonas putida (Examples 5 and 6) or subjected to continuous reaction with aminotransferase.
  • alcohol dehydrogenase derived from Pseudomonas putida
  • aminotransferase To omega-aminofatty acids by way of example (Example 7).
  • Omega-hydroxy fatty acid, alpha, omega-dicarboxylic acid, omega-amino fatty acid and alcohol having 5 to 14 carbon atoms produced by the transformant are secreted from the transformant into the medium or reaction buffer, When the transformant is immobilized on an immobilized carrier, or when the transformant is fed in a fed or continuous manner, omega-hydroxyfatty acid, alpha, omega-dicarboxylic acid, omega having 5 to 14 carbon atoms Can produce amino fatty acids and alcohols in large quantities.
  • the oleic acid hydratase gene derived from stenotropomonas maltophilia and the alcohol dehydrogenase gene derived from Micrococcus luteus are introduced into the E. coli BL21 (DE3) strain, thereby hydrating enzyme and alcohol dehydrogenase.
  • An expressing transformant was prepared, and a transformant expressing hydrase, alcohol dehydrogenase and BVMO was prepared by introducing BVMO gene derived from Pseudomonas floressen into the transformant (Example 4).
  • the present invention is prepared by the above method, to provide a novel omega-hydroxy fatty acid represented by the following formula (1).
  • the compound may be prepared by the method described above.
  • transformants expressing oleic acid hydratase, alcohol dehydrogenase and BVMO can be cultured and reacted with resqueroline acid to produce fatty acids with ester groups introduced into the chain, and ester groups introduced into the produced chains.
  • ester hydrolase derived from Pseudomonas floressen By adding an ester hydrolase derived from Pseudomonas floressen to the prepared fatty acid, the novel omega-hydroxyfatty acid of Chemical Formula I can be produced.
  • the novel omega-hydroxyfatty acid produced may also be confirmed by GC / MS analysis.
  • the present invention provides a method for producing a fatty acid derivative having an ester group introduced into the chain from the chito fatty acid using the BVMO.
  • Example 1 Production of ⁇ -hydroxynonanoic acid using multi-step enzyme synthesis
  • an oleic acid hydratase gene derived from Stenotropomonas maltophilia and an alcohol dehydrogenase gene derived from Micrococcus luteus were cloned.
  • the oleic acid hydratase gene has a plasmid vector pET 28 (+) a / oleic acid hydratase (J. Biotechnol., 158: 17-23, 2012) as a template and includes the cleavage sites of restriction enzymes PvuI and XhoI. PCR was performed using the prepared primers (SEQ ID NOs: 1 and 2).
  • Reverse primer 5'-ggctcgagctatattagtttactttctttca-3 '(SEQ ID NO: 2)
  • the amplified PCR product was digested with restriction enzymes PvuI and XhoI and inserted into the plasmid vector pACYC (manufactured by Novagen) to prepare a pACYC / oleic acid hydrase expression vector.
  • alcohol dehydrogenase is a DNA base sequence (Genebank Accession No.ZP_07049769) of alcohol dehydrogenase derived from Micrococcus luteus as a template, and a primer (SEQ ID NO. PCR was performed using 3 and 4) to amplify.
  • Reverse primer 5'-atatcaagcttcagccgagcggggtgtcct-3 '(SEQ ID NO: 4)
  • the amplified PCR product was digested with restriction enzymes EcoRI and HindIII, and inserted into the prepared pACYC / oleic acid hydratase expression vector to prepare a pACYC / oleic acid hydratase / alcohol dehydrogenase expression vector.
  • E. coli BL21 (DE3) was cultured in Riesenberg medium containing 10 g / L glucose and appropriate antibiotics for plasmid maintenance.
  • Regenberg medium was 4 g / l N (NH 4 ) 2 HPO 4 , 13.5 g / l KH 2 PO 4 , 1.7 g / l citric acid, 1.4 g / l MgSO 4 and 10 ml / l trace metal solution ( 10 g / l FeSO 4 , 2.25 g / l ZnSO 4 , 1.0 g / l CuSO 4 , 0.5 g / l MnSO 4 , 0.23 g / l Na 2 B 4 O 7 , 2.0 g / l CaCl 2 and 0.1 g / l (NH 4 ) 6 Mo 7 O 24 ), and Micrococcus luteus was cultured in LB medium.
  • Example 1-1 the pACYC / oleic acid hydrolase / alcohol dehydrogenase expression vector into which the oleic acid hydratase gene derived from stenotropomonas maltophilia and the alcohol dehydrogenase gene derived from Micrococcus luteus is inserted in Example 1-1)
  • a primary transformant was prepared by introducing into E. coli BL21 (DE3) strain cultured in Example 1-2).
  • an expression vector pJOE-KT2440BVMO (Biotechnol. Lett., 29: 1393-1398, 2007) designed to express the BVMO gene derived from Pseudomonas putida was introduced into the primary transformant, thereby obtaining oleic acid hydrase and alcohol. Secondary transformants capable of expressing dehydrogenase and BVMO were constructed.
  • the secondary transformant was incubated in a Regenberg mineral medium at 30 ° C. and 200 rpm, and treated with IPTG and rhamnose to express oleic acid hydratase, alcohol dehydrogenase and BVMO and react with 1 mM oleic acid. By doing so, ⁇ -hydroxynonanoic acid was produced (FIG. 2).
  • Figure 2a is a graph showing the change in the amount of production of the fatty acid introduced ester group in the chain produced using the secondary transformant over time, ( ⁇ ) represents the concentration of oleic acid, ( ⁇ ) is 10 -Represents the concentration of hydroxystearic acid, ( ⁇ ) represents the concentration of 10-chitostearic acid, ( ⁇ ) represents the concentration of fatty acid introduced into the ester group in the chain, ( ⁇ ) represents the concentration of ⁇ -hydroxynonanoic acid Indicates.
  • Figure 2b shows the result of processing the ester hydrolase and analyzing the reaction products by GC / MS after the completion of the reaction. Most fatty acids with ester groups in the oleic acid chain were converted to n-nonanoic acid and ⁇ -hydroxynonanoic acid.
  • Example 2 Production of ⁇ -hydroxyundec-9-enoic acid from ricinoleic acid
  • Example 1 The transformant prepared in Example 1 was used to produce ⁇ -hydroxyundec-9-enoic acid from the substrate ricinoleic acid.
  • FIG. 3 is a graph showing the change in the amount of production of the fatty acid introduced ester group in the chain produced from ricinoleic acid over time using the transformant, ( ⁇ ) is the concentration of ricinoleic acid, ( ⁇ ) Represents the concentration of 12-chitooleic acid, ( ⁇ ) represents the concentration of fatty acid into which the ester group is introduced, and ( ⁇ ) represents the concentration of ⁇ -hydroxyundec-9-enoic acid.
  • Figure 3b shows the results of the ester hydrolase treatment and reaction products analyzed by GC / MS after the end of the reaction. Most fatty acids with ester groups in the chains produced by ricinoleic acid were converted to n-heptanoic acid and ⁇ -hydroxyundec-9-enoic acid.
  • Example 1 The transformant prepared in Example 1 was used to produce ⁇ -hydroxytridec-11-enoic acid from resqueroline acid as a substrate.
  • FIG. 4 shows the results of the production of ⁇ -hydroxytridec-11-enoic acid from resquerolic acid using the transformant and the ester hydrolase, and the reaction products were analyzed by GC / MS. Most of the resquerolic acid was converted to heptanoic acid and ⁇ -hydroxytridec-11-enoic acid.
  • Figure 5a is a graph showing the change in the amount of production of the fatty acid introduced ester group in the chain produced using the transformant over time, ( ⁇ ) represents the concentration of oleic acid, ( ⁇ ) is 10-hydro The concentration of oxystearic acid is shown, (i) represents the concentration of 10-chitostearic acid, and ( ⁇ ) represents the concentration of fatty acid in which an ester group is introduced into the chain.
  • Figure 5b shows the results of the ester hydrolase treatment after the reaction and the reaction products were analyzed by GC / MS. Most fatty acids with ester groups in the chain produced from oleic acid were converted to sebacic acid and normal octanol.
  • Example 5 Production of ⁇ , ⁇ -nonanedioic acid from oleic acid
  • an ester hydrolase gene derived from Pseudomonas floresense and an alcohol dehydrogenase gene derived from Pseudomonas putida were cloned.
  • the ester hydrolase gene has a plasmid vector pGASTON / ester hydrolase (Agric Biol. Chem., 54: 2039-2045, 1990) as a template, and is designed to include cleavage sites of restriction enzymes NdeI and XhoI. Amplification was performed by PCR using primers (SEQ ID NOs: 5 and 6).
  • Reverse primer 5'-gcgcctcgagtcagtggtgatggtgatgatgactccgccgccacttt-3 '
  • the amplified PCR product was digested with restriction enzymes NdeI and XhoI and inserted into the plasmid vector pCOLAduet-1 (manufactured by Novagen) to prepare a pCOLAduet-1 / ester hydrolase expression vector.
  • alcohol dehydrogenase is a DNA sequence of alcohol dehydrogenase derived from Pseudomonas putida (J. Biotechnol. 262: 17712-17718, 1987) as a template, and produced to include the cleavage sites of restriction enzymes BamHI and NotI PCR was performed using the primers (SEQ ID NOs. 7 and 8).
  • Reverse primer 5'-gcgcgcggccgcttagtggtgatggtgatgatgcatgcagacagctat-3 '
  • the amplified PCR product was digested with restriction enzymes BamI and NotI, and inserted into the prepared pCOLAduet-1 / ester hydrolase expression vector to prepare a pCOLAduet-1 / ester hydrolase / alcohol dehydrogenase expression vector. .
  • Example 5-1 pCOLAduet-1 / ester hydrolase / alcohol dehydrogenase expression vector into which the ester hydrolase derived from Pseudomonas floressen and the alcohol dehydrogenase gene derived from Pseudomonas putida are inserted, is used in Example 5-1.
  • a transformant was prepared by introducing into E. coli BL21 (DE3) strain cultured in 1-2).
  • ⁇ , ⁇ -nonanedioic acid (Azelic acid) was produced from oleic acid as a substrate.
  • a transformant prepared in Example 1 to produce a fatty acid having an ester group introduced into the chain from oleic acid, using the transformant prepared in Example 5-1) from the fatty acid introduced into the chain ester group Lesan was produced (FIG. 6).
  • Figure 6 is a graph showing the change in the amount of production of the produced azelic acid over time, ( ⁇ ) is the concentration of fatty acid introduced into the ester group in the chain, ( ⁇ ) is the concentration of omega-hydroxy nonanoic acid ( ⁇ ) shows the concentration of 9-oxononanoic acid, ( ⁇ ) shows the concentration of azeleic acid.
  • Example 6 Production of ⁇ , ⁇ -undec-2-enedioic acid from ricinoleic acid
  • a vector was introduced into the E. coli BL21 (DE3) strain to prepare a transformant.
  • FIG. 7 is a graph showing the change in production of the ⁇ , ⁇ -undec-2-enedioic acid produced from ricinoleic acid over time using the transformant, ( ⁇ ) is the concentration of ricinoleic acid ( ⁇ ) represents the concentration of 12-chitooleic acid, ( ⁇ ) represents the concentration of fatty acid in which an ester group is introduced into the chain, ( ⁇ ) represents the concentration of ⁇ -hydroxyundec-9-enoic acid, and ( ⁇ ) Represents the concentration of 9-oxoundec-9-enoic acid, and ( ⁇ ) represents the concentration of ⁇ , ⁇ -undec-2-enedioic acid.
  • Example 7 Production of ⁇ -aminononanoic acid from oleic acid
  • a vector (ChemCatChem, 5: 154-157, 2013) expressing an aminotransferase derived from silicibacter was introduced into the primary transformant to prepare ester hydrolase, alcohol dehydrogenase and aminotransferase.
  • a secondary transformant that can be expressed was prepared.
  • ⁇ -aminononanoic acid was produced from oleic acid as a substrate using the transformant prepared in Example 1 and the secondary transformant prepared in Example 6-1). Using a transformant prepared in Example 1 to produce a fatty acid having an ester group introduced into the chain from oleic acid, and using a transformant prepared in Example 6-1) ⁇ from a fatty acid having an ester group introduced into the chain -aminononanoic acid was produced (FIG. 8).
  • Figure 8 is a graph showing the change in production of the produced ⁇ -aminononanoic acid over time, ( ⁇ ) is the concentration of fatty acid introduced into the ester group in the chain, ( ⁇ ) of omega-hydroxy nonanoic acid ( ⁇ ) indicates the concentration of 9-oxononanoic acid, and ( ⁇ ) indicates the concentration of ⁇ -aminononanoic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 BVMO(Baeyer-Villiger monooxygenase)를 발현시키도록 형질전환된 형질전환체, 상기 형질전환체를 이용한 생물전환을 통하여 16 내지 20개의 탄소수를 가지는 장쇄 지방산으로부터 5 내지 14개의 탄소수를 가지는 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산 또는 알코올을 생산하는 방법, 상기 BVMO를 이용하여 키토 지방산으로부터 사슬내에 에스터기가 도입된 지방산 유도체를 생산하는 방법 및 상기 방법으로 제조된 신규한 오메가-하이드록시지방산에 관한 것이다. 본 발명의 BVMO를 발현시킬 수 있는 형질전환체를 이용한 생물전환 반응에 의하여, 배지에 포함된 16 내지 20개의 탄소수를 가지는 장쇄 지방산을 분해하여 5 내지 14개의 탄소수를 가지는 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산, 알코올 등의 분해산물을 대량으로 생성할 수 있으므로, 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산 또는 알코올의 보다 안전하고 경제적인 생산에 널리 활용될 수 있을 것이다.

Description

생물전환을 통한 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산을 생산하는 방법
본 발명은 생물전환을 통한 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산을 생산하는 방법에 관한 것으로, 보다 구체적으로 본 발명은 BVMO(Baeyer-Villiger monooxygenase)를 발현시키도록 형질전환된 형질전환체, 상기 형질전환체를 이용한 생물전환을 통하여 16 내지 20개의 탄소수를 가지는 장쇄 지방산으로부터 5 내지 14개의 탄소수를 가지는 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산 또는 알코올을 생산하는 방법, 상기 BVMO를 이용하여 키토 지방산으로부터 사슬내에 에스터기가 도입된 지방산 유도체를 생산하는 방법 및 상기 방법으로 제조된 신규한 오메가-하이드록시지방산에 관한 것이다.
오메가-하이드록시지방산은 지방산의 말단에 하이드록시기(수산화기)를 1개 가지고 있는 지방산의 일종으로(HOCH2(CH2)nCOOH) 폴리에틸렌 계열의 플라스틱 제조 시 모노머로 사용되고 있으며 유화제, 접착제, 코팅제 생산과 화장품이나 의약품의 제조에 널리 이용되고 있다. 또한, 폴리아미드, 폴리에스터 계열의 플라스틱 제조와 화장품, 생활용품 제조에 광범위하게 사용되고 있는 장쇄 디카르복실산 합성의 전구체로도 사용될 수 있다.
중쇄 알파,오메가-디카르복실산(HOOC(CH2)nCOOH)과 오메가-아미노지방산(H2NCH2(CH2)nCOOH)은 폴리아미드, 폴리에스터 등의 플라스틱 제조 시 모노머로 사용되고 있으며 유화제, 동결방지제, 페인트, 코팅제 생산에도 사용되고 있다. 또한 항균활성 등 다양한 생리활성이 있어 화장품, 식품, 생활용품 생산에도 광범위하게 이용되고 있다. 예를 들어 10개의 탄소수를 가지는 중쇄 디카르복실산인 세바식산((HOOC)(CH2)8(COOH))은 연간 50,000MT 이상이 생산되어 플라스틱, 양초, 화장품, 유화제, 동결방지제, 부식방지제 생산에 사용되고 있다. 또한 항균활성을 가지고 있어 여드름 치료제나 화장품, 생활용품 제조에도 이용되고 있다.
이러한 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산은 자연계에 거의 존재하지 않기 때문에 주로 화학합성법을 이용하여 산업적으로 생산되고 있는데, 화학합성법은 고온ㆍ고압, 강산 및/또는 환경에 심각한 문제를 일으킬 수 있는 독성 산화물을 필요로 하는 문제점이 있다(미국특허 제5,952,517호, 미국특허 제6,392,074호, 미국특허 제5,420,316호, 미국특허 20110105774). 예를 들어 세바식산은 리시놀레인산을 화학적으로 분해하여 제조하고 있다(미국특허 제5,952,517호, 미국특허 제6,392,074호). 그러나, 리시놀레산을 화학적으로 분해하기 위해서는 200-300℃ 이상의 고온 공정이 필요하고 황산과 같은 강산이 사용되며 또한 중금속 이온 촉매, 유기용매 등의 독성물질을 사용하여 제조과정이 위험할 뿐만 아니라, 제조된 후에 환경오염물질을 다량으로 배출하는 등의 문제점이 있다.
9개의 탄소수를 가지는 중쇄 디카르복실산인 아젤레산은 올레산의 오존산화분해반응(ozonolysis)을 통해 생산되고 있다(미국특허 제5,420,316호). 그러나, 상기 기술을 통해 아젤레산을 생산할 경우에는, 강산화제인 오존이 다량 사용되고, 이로 인하여 여러 가지 부산물이 생성되며, 생성되는 부산물을 제거하기 위하여 중금속 촉매를 이용하는 분리정제공정이 필수적으로 수행되어야 한다는 문제점이 있었다. 따라서, 복잡한 분리정제 공정, 환경오염, 에너지 과다 사용 등 여러 가지 문제를 가지고 있어 이를 개선하려는 연구의 필요성이 높아지고 있다. 따라서, 환경 친화적이며 단순화된 공정을 통한 제조방법이 활발히 연구되고 있으며, 이에 생체촉매반응을 이용한 공정을 개발하려는 연구가 활발히 진행되고 있다. 예를 들어, 효소를 이용한 장쇄 지방산으로부터 장쇄 오메가-하이드록시지방산의 생산방법, 석유화합물인 하이드로카본으로부터 중쇄 디카르복실산의 제조방법 등이 개발되었으나 효소를 이용한 재생 가능한 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산, 알코올 등을 제조하는 방법은 아직까지 개발되지 않았다.
본 발명자들은 BVMO(Baeyer-Villiger monooxygenase)가 16 내지 20개의 탄소수를 가지는 장쇄 지방산으로부터 유래된 키토 지방산을 에스터 가수분해효소에 의해 절단될 수 있는 사슬내에 에스터기가 도입된 지방산 유도체의 형태로 전환시킬 수 있음을 새로이 규명하여, 상기 BVMO 유전자가 도입된 형질전환 미생물을 이용할 경우 상기 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산, 알코올 등을 제조할 수 있음을 확인하고, 본 발명을 완성하였다.
본 발명의 하나의 목적은 BVMO(Baeyer-Villiger monooxygenase)를 발현시킬 수 있는 형질전환체를 제공하는 것이다.
본 발명의 다른 목적은 상기 형질전환체를 이용한 생물전환을 통하여 장쇄 지방산으로부터 다양한 분해산물을 생산하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 방법으로 제조되어 화학식 1로 표시되는 오메가-하이드록시지방산을 제공하는 것이다.
본 발명의 BVMO를 발현시킬 수 있는 형질전환체를 이용한 생물전환 반응에 의하여, 배지에 포함된 16 내지 20개의 탄소수를 가지는 장쇄 지방산을 분해하여 5 내지 14개의 탄소수를 가지는 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산, 알코올 등의 분해산물을 대량으로 생성할 수 있으므로, 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산 또는 알코올의 보다 안전하고 경제적인 생산에 널리 활용될 수 있을 것이다.
도 1a는 수화효소, 알코올 탈수소효소, BVMO 및 에스터 가수분해효소를 이용하여 장쇄 지방산(18개의 탄소수를 가지는 올레산)으로부터 중쇄 오메가-하이드록시지방산(9개의 탄소수를 가지는 ω-hydroxynonanoic acid)을 생성하는 반응을 순차적으로 나타내는 개략도이다.
도 1b는 알코올 탈수소효소, BVMO 및 에스터 가수분해효소를 이용하여 장쇄 지방산(18개의 탄소수를 가지는 리시놀레산)으로부터 중쇄 오메가-하이드록시지방산(11개의 탄소수를 가지는 ω-hydroxyundec-9-enoic acid)을 생성하는 반응을 순차적으로 나타내는 개략도이다.
도 1c는 알코올 탈수소효소, BVMO 및 에스터 가수분해효소를 이용하여 장쇄 지방산(20개의 탄소수를 가지는 레스쿠에롤린산)으로부터 오메가-하이드록시지방산(13개의 탄소수를 가지는 ω-hydroxytridec-11-enoic acid)을 생성하는 반응을 순차적으로 나타내는 개략도이다.
도 1d는 수화효소, 알코올 탈수소효소, BVMO 및 에스터 가수분해효소를 이용하여 장쇄 지방산(18개의 탄소수를 가지는 올레산)으로부터 알파,오메가-디카르복실산(10개의 탄소수를 가지는 α,ω-decanedioic acid)과 옥탄올을 생성하는 반응을 순차적으로 나타내는 개략도이다.
도 1e는 수화효소, 마이크로코커스 루테우스 유래의 알코올 탈수소효소, BVMO, 에스터 가수분해효소, 슈도모나스 푸티다 유래의 알코올 탈수소효소를 이용하여 장쇄 지방산(18개의 탄소수를 가지는 올레산)으로부터 알파,오메가-디카르복실산(9개의 탄소수를 가지는 α,ω-nonanedioic acid)을 생성하는 반응을 순차적으로 나타내는 개략도이다.
또한, 도 1f는 수화효소, 마이크로코커스 루테우스 유래의 알코올 탈수소효소, BVMO, 에스터 가수분해효소, 슈도모나스 푸티다 유래의 알코올 탈수소효소, 아미노 전이효소를 이용하여 장쇄 지방산(18개의 탄소수를 가지는 올레산)으로부터 오메가-아미노지방산(9개의 탄소수를 가지는 ω-aminononanoic acid)을 생성하는 반응을 순차적으로 나타내는 개략도이다.
도 2는 본 발명의 올레산 수화효소, 알코올 탈수소효소 및 BVMO를 발현하는 형질전환체를 이용하여 올레산으로부터 생산된 사슬내에 에스터기가 도입된 지방산의 시간의 경과에 따른 생산량의 변화와 에스터 가수분해 반응산물의 GC/MS 분석결과를 나타낸 그래프이다.
도 3은 본 발명의 알코올 탈수소효소 및 BVMO를 발현하는 형질전환체를 이용하여 리시놀레산으로부터 생산된 사슬내에 에스터기가 도입된 지방산의 시간의 경과에 따른 생산량의 변화와 에스터 가수분해 반응산물들의 GC/MS 분석결과를 나타낸 그래프이다.
도 4는 본 발명의 알코올 탈수소효소 및 BVMO를 발현하는 형질전환체를 이용하여 레스쿠에롤린산으로부터 사슬내에 에스터기가 도입된 지방산을 생산하고 이를 에스터 가수분해효소로 반응시킨 반응산물의 GC/MS 분석결과를 나타낸 것이다.
도 5는 본 발명의 올레산 수화효소, 알코올 탈수소효소 및 BVMO를 발현하는 형질전환체를 이용하여 올레산으로부터 생산된 사슬내에 에스터기가 도입된 지방산의 시간의 경과에 따른 생산량의 변화와 에스터 가수분해 반응산물(세바식산)의 GC/MS 분석결과를 나타낸 그래프이다.
도 6은 본 발명의 올레산 수화효소, 마이크로코커스 루테우스 유래의 알코올 탈수소효소 및 BVMO를 발현하는 형질전환체를 이용하여 올레산으로부터 사슬내에 에스터기가 도입된 지방산을 생산하고, 여기에 에스터 가수분해효소와 슈도모나스 푸티다 유래의 알코올 탈수소효소를 발현하는 형질전환체를 투입하고 반응하여 얻어진 반응산물의 시간의 경과에 따른 생산량를 나타낸 그래프이다.
도 7은 올레산 수화효소, 마이크로코커스 루테우스 유래의 알코올 탈수소효소, BVMO 및 에스터 가수분해효소, 슈도모나스 푸티다 유래의 알코올 탈수소효소를 발현하는 형질전환체를 이용하여 리시놀레산으로부터 생산된 α,ω-undec-2-enedioic acid(cis-2-undecene-1,11-dioic acid)의 시간의 경과에 따른 생산량의 변화를 나타낸 그래프이다.
도 8은 본 발명의 올레산 수화효소, 마이크로코커스 루테우스 유래의 알코올 탈수소효소 및 BVMO를 발현하는 형질전환체를 이용하여 올레산으로부터 사슬내에 에스터기가 도입된 지방산을 생산하고, 여기에 에스터 가수분해효소, 슈도모나스 푸티다 유래의 알코올 탈수소효소, 아미노 전이효소를 발현하는 형질전환체를 투입하고 반응하여 얻어진 반응산물의 시간의 경과에 따른 생산량를 나타낸 그래프이다.
상술한 목적을 달성하기 위한 일 실시양태로서, 본 발명은 BVMO(Baeyer-Villiger monooxygenase) 유전자가 도입된 형질전환체를 제공한다.
본 발명의 용어 "BVMO(Baeyer-Villiger monooxygenase)"란, 케톤을 산화시켜서 락톤이나 에스터화합물을 생성하는 Baeyer-Villiger 산화반응을 포함하는 다양한 산화반응을 촉매할 수 있는 효소인 monooxygenase의 일종을 의미한다. 본 발명의 목적상, 형질전환체에서 발현되어 키토 지방산으로부터 사슬내에 에스터기가 도입된 지방산 유도체(예로 10-ketostearic acid에서 10-(octyloxy)-10-oxodecanoic acid)를 생산하는 반응을 촉매하는 활성을 나타내는 한, 상기 BVMO는 특별히 이에 제한되지 않으나, 바람직하게는 슈도모나스속 균주(Pseudomonas sp.), 로도코커스속 균주(Rhodococcus sp). 브레비박테리움속 균주(Brevibacterium sp.), 코마노나스속 균주(Comanonas sp.), 아시네토박터속 균주(Acinetobacter sp.), 아트로박터속 균주(Arthrobacter sp.), 브라키모나스속 균주(Brachymonas sp.) 등의 미생물로부터 유래된 BVMO 등이 될 수 있고, 보다 바람직하게는 슈도모나스 푸티다(Pseudomonas putida), 슈도모나스 플로레센스(Pseudomonas fluorescens), 슈도모나스 베로니(Pseudomonas veronii), 로도코커스 조스티(Rhodococcus jostii) 또는 슈도모나스속 균주 HI-70(Pseudomonas sp. strain HI-70)으로부터 유래된 BVMO가 될 수 있으며, 가장 바람직하게는 슈도모나스 푸티다로부터 유래된 BVMO가 될 수 있다. 상기 BVMO를 코딩하는 유전자의 염기서열은 NCBI의 GenBank 등 공지의 데이터베이스에서 얻을 수 있는데, 그 예로서, GenBank Accession No. CAFK01000010으로 표시되는 유전자, BVMO 유전자를 발현하도록 제작된 발현벡터 pJOE-KT2440BVMO(Biotechnol. Lett., 29:1393-1398, 2007) 등으로부터 수득할 수 있는 유전자 등이 될 수 있으며, 바람직하게는 서열번호 9의 아미노산 서열을 코딩할 수 있는 폴리뉴클레오티드 서열 등이 될 수 있다.
아울러, 상기 BVMO는 키토 지방산으로부터 사슬내에 에스터기가 도입된 지방산 유도체를 생산하는 반응을 촉매하는 활성을 나타내는 BVMO를 형질전환체에서 발현시킬 수 있는 한, BVMO를 구성하는 아미노산 서열의 하나 이상의 위치에서의 1개 또는 다수개(단백질의 아미노산 잔기의 입체 구조에 있어서의 위치나 종류에 따라서 상이하지만, 구체적으로는 2 내지 20개, 바람직하게는 2 내지 10개, 보다 바람직하게는 2 내지 5개)의 아미노산이 치환, 결실, 삽입, 첨가 또는 역위된 아미노산 서열을 포함할 수 있는데, 상기 BVMO의 활성을 유지 또는 강화시킬 수 있는 한, 상기 BVMO의 아미노산 서열에 대하여, 80% 이상, 바람직하게는 90% 이상, 보다 바람직하게는 95% 이상, 특히 바람직하게는 97% 이상의 상동성을 갖는 아미노산 서열을 포함할 수 있고, 미생물의 종 또는 균주에 따라 상기 폴리펩티드가 갖는 활성을 나타내는 효소의 아미노산 서열에 차이가 있을 수 있기 때문에 특별히 이에 제한되지는 않으며, 상기 아미노산의 치환, 결실, 삽입, 첨가 또는 역위 등에는 상기 BVMO의 활성을 함유하는 미생물의 개체 또는 종의 차이에 근거하는 경우 등의 천연적으로 생기는 돌연변이 서열 또는 인위적인 변이 서열까지도 포함할 수 있다.
본 발명의 용어 "상동성"이란, 서로 다른 두 아미노산 서열 또는 염기서열 사이의 동일성을 의미하는데, 점수(score), 동일성(identity), 유사도(similarity) 등의 매개 변수(parameter)들을 계산하는 BLAST 2.0를 이용하는, 당업자에게 잘 알려진 방법으로 결정될 수 있으나, 특별히 이에 제한되지는 않는다.
본 발명의 용어 "형질전환체"란, 목적 단백질을 코딩하는 폴리뉴클레오티드가 벡터를 이용하여 숙주의 내부로 도입된 후, 상기 목적 단백질을 발현시키도록 변이된 세포 또는 미생물을 의미한다. 이때, 상기 숙주세포에 도입되는 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 한, 어떠한 형태라도 무방하다.
본 발명에서 제공하는 상기 형질전환체는 공지된 BVMO를 코딩하는 폴리뉴클레오티드 서열이 도입된 발현벡터 또는 공지된 발현벡터 pJOE-KT2440BVMO(Biotechnol. Lett., 29:1393-1398, 2007) 등을 숙주세포에 도입하여 제작할 수 있다. 이때, 사용될 수 있는 숙주세포로는 본 발명의 BVMO를 코딩하는 폴리뉴클레오티드 서열이 도입되어 BVMO를 발현시킬 수 있는 숙주세포라면 특별히 제한되지는 않으나, 바람직하게는 생물전환공정에 적용하기에 적합한 배양가능한 단세포성 원핵생물 또는 진핵생물의 세포를 사용할 수 있고, 보다 바람직하게는 대장균, 효모 등을 사용할 수 있으며, 가장 바람직하게는 대장균 BL21(DE3) 세포를 사용할 수 있다.
본 발명의 형질전환체는 배지에 포함된 16 내지 20개의 탄소수를 가지는 장쇄 지방산을 분해하여 5 내지 14개의 탄소수를 가지는 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산을 생산하는데 사용될 수 있으며, 이를 위하여, 상기 BVMO를 코딩하는 유전자 이외에 수화효소(hydratase)나 리폭시지나제(lipoxygenase)를 코딩하는 유전자, 알코올 탈수소효소(alcohol dehydrogenase)를 코딩하는 유전자, 에스터 가수분해효소(esterase)를 코딩하는 유전자, 아미노 전이효소(aminotransferase)를 코딩하는 유전자 등이 추가로 도입될 수도 있다.
본 발명의 용어 "수화효소(hydratase)"란, 탄소이중결합에 물을 가하여 하이드록시 화합물을 가역적으로 생성하는 효소를 의미하는데, 역반응에 의하여 하이드록시 화합물로부터 물을 제거할 수도 있으므로 "탈수효소(dehydratase)"라고 할 수도 있다. 상기 수화효소는 바람직하게는 스테노트로포모나스 말토필리아(Stenotrophomonas maltophilia), 리시니바실러스 후시포르미스(Lysinibacillus fusiformis), 마크로코코스 카제올리티쿠스(Macrococcus caseolyticus), 프로피오니박테리움 아크네스(Propionibacterium acnes) 등의 균주로부터 유래된 것을 사용할 수 있으나, 특별히 이에 제한되지는 않는다. 본 발명의 목적상 상기 수화효소는 16 내지 20개의 탄소수를 가지는 장쇄 지방산에 하이드록시기를 가하여 하이드록시지방산을 생성하려는 목적으로 사용될 수 있다.
본 발명의 용어 "리폭시지나제(lipoxygenase)"란, 불포화지방산에 분자상 산소를 첨가하는 산소첨가효소로서, 불포화지방산의 cis,cis-1,4-펜타디엔 구조를 인식하여 메틸렌의 수소원자를 입체특이적으로 추출하여 반대측(antarafacial)에서 산소를 첨가하여 히드로퍼옥시드를 생성하는 반응을 촉매하는 효소를 의미한다. 본 발명의 목적상 상기 리폭시지나제는 상술한 수화효소와 마찬가지로 16 내지 20개의 탄소수를 가지는 장쇄 지방산에 하이드록시기를 가하여 하이드록시지방산을 생성하려는 목적으로 사용될 수 있다.
본 발명의 용어 "알코올 탈수소효소(alcohol dehydrogenase)"란, 알코올에서 수소를 제거하여 알데하이드, 케톤 또는 카르복실산을 생성하는 반응을 촉매하는 효소를 의미한다. 상기 알코올 탈수소효소는 바람직하게는 마이크로코커스 루테우스, 슈도모나스 속 균주로부터 유래된 것을 사용할 수 있으나, 특별히 이에 제한되지는 않는다. 본 발명의 목적상 상기 알코올 탈수소효소는 상기 수화효소 또는 리폭시지나제에 의하여 생성된 하이드록시지방산으로부터 수소를 제거하여 키토 지방산을 생성하거나, 에스터 가수분해효소에 의해 생산된 오메가-하이드록시 지방산을 오메가-옥소지방산(ω-oxofatty acid) 또는 알파,오메가-디카르복실산을 생산하려는 목적으로 사용될 수 있다.
본 발명의 용어 "에스터 가수분해효소(esterase)"란, 에스터 화합물의 에스터 결합을 가수분해하는 효소를 의미한다. 본 발명의 목적상 상기 에스터 가수분해효소는 BVMO에 의해 생성된 사슬내에 에스터기가 도입된 지방산 유도체의 에스터기를 분해하려는 목적으로 사용될 수 있다.
본 발명의 용어 "아미노 전이효소(aminotransferase)"란, 오메가-옥소지방산의 옥소 그룹을 아미노기로 전환하는 효소를 의미한다. 상기 아미노 전이효소는 미생물로부터 유래된 것을 사용할 수 있는데, 특별히 이에 제한되지는 않으나, 바람직하게는 크로모박테리움 비올라세움(Chromobacterium violaceum), 실리시박터 포메로이(Silicibacter pomeroyi), 로도코커스 스패로이데스(Rhodococcus sphaeroides), 메소리조비움 로티마프(Mesorhizobium lotimaff), 실리시박터(Silicibacter sp.) 등의 균주로부터 유래된 것을 사용할 수 있다. 본 발명의 목적상 상기 아미노 전이효소는 알코올 탈수소효소에 의해 생성된 오메가-옥소지방산으로부터 오메가-아미노지방산을 생산하기 위하여 사용될 수 있고, 바람직하게는 C9, C11, C12 및 C13의 오메가-옥소지방산으로부터 오메가-아미노지방산을 생산하기 위하여 사용될 수 있다.
본 발명의 일 실시예에 의하면, 스테노트로포모나스 말토필리아(Stenotrophomonas maltophilia) 유래의 올레산 수화효소 유전자 및 마이크로코커스 루테우스(Micrococcus luteus) 유래의 알코올 탈수소효소 유전자를 포함하는 pACYC/올레산 수화효소/알코올 탈수소효소 발현벡터를 대장균 E. coli BL21(DE3) 균주에 도입하여 수화효소 및 알코올 탈수소효소를 발현하는 1차 형질전환체를 제작하고, 상기 1차 형질전환체에 슈도모나스 푸티다 유래의 BVMO 유전자 발현벡터 pJOE-KT2440BVMO를 도입하여, 올레산 수화효소, 알코올 탈수소효소 및 BVMO를 동시에 발현시킬 수 있는 2차 형질전환체를 제작하였다(실시예 1).
상술한 목적을 달성하기 위한 다른 실시양태로서, 본 발명은 상기 형질전환체를 이용한 생물전환을 통하여 장쇄 지방산으로부터 다양한 분해산물을 생산하는 방법을 제공한다.
구체적으로, 본 발명의 장쇄 지방산으로부터 분해산물을 생산하는 방법은(a) BVMO를 코딩하는 유전자가 도입된 형질전환체와 장쇄 지방산을 반응시켜서 반응물을 수득하는 단계; 및,(b) 상기 반응물로부터 분해산물을 회수하는 단계를 포함한다. 이때, 상기 분해산물은 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산 또는 알코올이 될 수 있다. 바람직하게는, 상기 분해산물은 5 내지 14개의 탄소수를 가지는 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산 또는 2 내지 14개의 탄소수를 가지는 노말 알코올이 될 수 있고, 보다 바람직하게는 ω-hydroxynonanoic acid, ω-hydroxyundec-9-enoic acid, ω-hydroxytridec-11-enoic acid, α,ω-nonanedioic acid(azelaic acid), α,ω-decanedioic acid(sebacic acid), ω-aminononanoic acid, heptanoic acid, nonanoic acid, ω-hydroxyundecanoic acid, ω-hydroxytridecanoic acid, α,ω-undec-2-enedioic acid(cis-2-undecene-1,11-dioic acid), ω-aminoundec-9-enoic acid, α,ω-tridec-2-enedioic acid, 노말 옥탄올 등이 될 수 있다.
이때, 상기 장쇄 지방산은 특별히 이에 제한되지 않으나, 바람직하게는 16 내지 20개의 탄소수를 가지는 직쇄형 지방산이 될 수 있고, 보다 바람직하게는 올레산, 리시놀레산, 12-하이드록시스테아린산, 리놀레인산, 팔미톨레인산 또는 레스쿠에롤린산(lesquerolic acid) 등이 될 수 있다.
또한, 상기 반응은 기질로 사용되는 장쇄 지방산을 상기 형질전환체에서 생산되는 수화효소, 리폭시지나제, 알코올 탈수소효소, 에스터 가수분해효소, 아미노 전이효소 등의 다양한 효소로 반응시켜서 상기 장쇄 지방산을 절단, 분해 또는 아미노기의 전이를 촉매하는 효소반응을 의미하는데, 상기 형질전환체에서 생산되는 일련의 효소는 형질전환체의 내부에서 생산되고, 생산된 효소가 형질전환체의 외부로 분비될 수 있으므로, 상기 반응은 형질전환체의 내부에서 진행될 수도 있고, 외부에서 진행될 수도 있다. 예를 들어, 상기 형질전환체를 탄소원을 포함하는 배지에서 배양하면서, 배지에 포함된 탄소원이 일정량 소모된 후에 장쇄 지방산을 배지에 가하고, 상기 형질전환체로부터 생산된 상기 효소들에 의해 장쇄 지방산을 절단, 분해 또는 아미노기를 전이시켜서 다양한 분해산물을 생산하는 방식으로 수행할 수도 있고; 상기 형질전환체를 장쇄 지방산을 포함하는 반응완충액에 넣고, 장쇄 지방산을 절단, 분해 또는 아미노기를 전이시켜서 다양한 분해산물을 생산하는 방식으로 수행될 수도 있으며; 또는 상기 각 효소들을 형질전환체로부터 분리하고, 분리된 효소들을 각각 담체에 고정화시킨 후, 장쇄 지방산이 포함된 반응완충액을 가하여, 상기 고정화된 효소가 장쇄 지방산을 절단 또는 분해하여 다양한 분해산물을 생산하는 방식으로 수행될 수도 있다. 이때, 배지 또는 반응완충액에 포함되는 장쇄 지방산의 함량은 특별히 이에 제한되지는 않으나, 바람직하게는 0.1 내지 100g/L의 최종농도가 되도록 가할 수 있다.
본 발명의 용어 "배양"이란, 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 것을 의미한다. 본 발명에서 상기 형질전환체를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되지 않는다.
배양에 사용되는 배지는 적당한 탄소원, 질소원, 아미노산, 비타민 등을 함유한 통상의 배지 내에서 호기성 조건 하에서 온도, pH 등을 조절하면서 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 사용될 수 있는 탄소원으로는 글루코즈, 수크로즈, 락토즈와 같은 당, 지방, 지방산, 글리세롤이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. 사용될 수 있는 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 인산암모늄과 같은 무기질소원; 글루탐산과 같은 아미노산 및 펩톤, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물 등 유기질소원이 사용될 수 있다. 이들 질소원은 단독 또는 조합되어 사용될 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체(예, 공기)를 주입한다. 배양물의 온도는 보통 15℃ 내지 37℃, 바람직하게는 20℃ 내지 30℃이며, 상기 배양은 10 내지 100 시간동안 수행된다.
아울러, 반응액으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산, 알코올 등의 분해산물을 회수하는 단계는 투석, 원심분리, 여과, 용매추출, 크로마토그래피, 결정화 등의 당업계에 공지된 방법에 의해 수행될 수 있다. 예를 들면, 상기 반응액을 원심분리하여 형질전환체를 제거하고 얻어진 상등액을, 용매추출법에 적용하여 목적하는 분해산물을 회수하는 방법을 사용할 수 있으나, 이외에도 상기 각 분해산물의 특성에 맞추어 공지된 실험방법을 조합하여 상기 분해산물을 회수할 수 있는 방법이라면 특별히 제한되지 않고 사용될 수 있다.
본 발명에서 제공하는 수화효소를 코딩하는 유전자, 알코올 탈수소효소를 코딩하는 유전자, BVMO를 코딩하는 유전자, 에스터 가수분해효소를 코딩하는 유전자 및 아미노 전이효소를 코딩하는 유전자를 서로 다른 조합으로 숙주세포에 도입하면, 서로 다른 기능을 갖는 다양한 형질전환체를 제조할 수 있고, 상기 제조된 각각의 형질전환체는 배지나 반응액에 존재하는 16 내지 20개의 탄소수를 가지는 장쇄 지방산(올레산, 리시놀레산, 리놀레산, 레스쿠에롤린산 등)으로부터 5 내지 14개의 탄소수를 가지는 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산 또는 알코올을 생성할 수 있다.
예를 들어, 대장균에 알코올 탈수소효소를 코딩하는 유전자 및 BVMO를 코딩하는 유전자를 도입하여 제조된 형질전환체는 장쇄 지방산을 사슬내에 에스테르기가 도입된 장쇄 지방산으로 전환시킬 수 있으며, 상기 형질전환체가 에스터 가수분해효소, 알코올 탈수소효소 또는 아미노 전이효소를 단독으로 또는 조합하여 추가로 포함할 경우, 상기 전환된 사슬내에 에스테르기가 도입된 장쇄지방산은 다양한 형태의 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산 또는 알코올로 전환될 수 있다.
본 발명의 일 실시예로서, 수화효소, 알코올 탈수소효소, BVMO 및 에스터 가수분해효소를 발현시킬 수 있는 형질전환체는 올레산(C18)과 같은 장쇄 지방산으로부터 ω-hydroxynonanoic acid(C9)와 같은 중쇄 오메가-하이드록시지방산을 생성할 수 있는데, 수화효소는 장쇄 지방산을 하이드록시지방산으로 전환시키고, 알코올 탈수소효소는 상기 전환된 하이드록시지방산으로부터 수소를 제거하여 키토 지방산을 생성하며, BVMO는 상기 생성된 키토 지방산을 산화시켜서 사슬내에 에스터기가 도입된 장쇄 지방산을 생성하고, 에스터 가수분해효소는 상기 생성된 사슬내에 에스터기가 도입된 장쇄 지방산의 에스터 결합을 가수분해하여 중쇄 오메가-하이드록시지방산을 생성한다(도 1a).
본 발명의 다른 실시예로서, 알코올 탈수소효소, BVMO 및 에스터 가수분해효소를 발현시킬 수 있는 형질전환체는 리시놀레산(C18)과 같은 하이드록시 장쇄 지방산으로부터 ω-hydroxyundec-9-enoic acid(C11)와 같은 중쇄 오메가-하이드록시지방산을 생성할 수 있는데, 알코올 탈수소효소는 상기 하이드록시 장쇄 지방산으로부터 수소를 제거하여 키토 지방산을 생성하며, BVMO는 상기 생성된 키토 지방산을 산화시켜서 사슬내에 에스터기가 도입된 장쇄 지방산을 생성하고, 에스터 가수분해효소는 상기 생성된 사슬내에 에스터기가 도입된 장쇄 지방산의 에스터 결합을 가수분해하여 중쇄 오메가-하이드록시지방산을 생성한다(도 1b).
본 발명의 또 다른 실시예로서, 알코올 탈수소효소, BVMO 및 에스터 가수분해효소를 발현시킬 수 있는 형질전환체는 레스쿠에롤린산(C20)과 같은 하이드록시 장쇄 지방산으로부터 ω-hydroxytridec-11-enoic acid(C13)와 같은 중쇄 오메가-하이드록시지방산을 생성할 수 있는데, 알코올 탈수소효소는 상기 하이드록시 장쇄 지방산으로부터 수소를 제거하여 키토 지방산을 생성하며, BVMO는 상기 생성된 키토 지방산을 산화시켜서 사슬내에 에스터기가 도입된 장쇄 지방산을 생성하고, 에스터 가수분해효소는 상기 생성된 사슬내에 에스터기가 도입된 장쇄 지방산의 에스터 결합을 가수분해하여 중쇄 오메가-하이드록시지방산을 생성한다(도 1c).
본 발명의 또 다른 실시예로서, 수화효소, 알코올 탈수소효소, BVMO 및 에스터 가수분해효소를 발현시킬 수 있는 형질전환체는 올레산(C18)과 같은 장쇄 지방산으로부터 α,ω-decanedioic acid(C10)와 같은 알파,오메가-디카르복실산과 옥탄올(C8)을 생성할 수 있는데, 수화효소는 장쇄 지방산을 하이드록시지방산으로 전환시키고, 알코올 탈수소효소는 상기 전환된 하이드록시지방산으로부터 수소를 제거하여 키토 지방산을 생성하며, BVMO는 상기 생성된 키토 지방산을 산화시켜서 사슬내에 에스터기가 도입된 장쇄 지방산을 생성하고, 에스터 가수분해효소는 상기 생성된 사슬내에 에스터기가 도입된 장쇄 지방산의 에스터 결합을 가수분해하여 알파,오메가-디카르복실산과 알코올을 생성한다(도 1d).
본 발명의 또 다른 실시예로서, 수화효소, 마이크로코커스 루테우스 유래의 알코올 탈수소효소, BVMO, 에스터 가수분해효소 및 슈도모나스 푸티다 유래의 알코올 탈수소효소를 발현시킬 수 있는 형질전환체는 올레산(C18)과 같은 장쇄 지방산으로부터 α,ω-nonanedioic acid(C9)와 같은 알파,오메가-디카르복실산을 생성할 수 있는데, 수화효소는 장쇄 지방산을 하이드록시지방산으로 전환시키고, 마이크로코커스 루테우스 유래의 알코올 탈수소효소는 상기 전환된 하이드록시지방산으로부터 수소를 제거하여 키토 지방산을 생성하며, BVMO는 상기 생성된 키토 지방산을 산화시켜서 사슬내에 에스터기가 도입된 장쇄 지방산을 생성하고, 에스터 가수분해효소는 상기 생성된 사슬내에 에스터기가 도입된 장쇄 지방산의 에스터 결합을 가수분해하여 오메가-하이드록시 지방산을 생성하며, 슈도모나스 푸티다 유래의 알코올 탈수소효소는 상기 오메가 하이드록시 지방산으로부터 수소를 제거하여 알파,오메가-디카르복실산을 생성한다(도 1e).
본 발명의 또 다른 실시예로서, 수화효소, 마이크로코커스 루테우스 유래의 알코올 탈수소효소, BVMO, 에스터 가수분해효소, 슈도모나스 푸티다 유래의 알코올 탈수소효소 및 아미노 전이효소를 발현시킬 수 있는 형질전환체는 올레산(C18)과 같은 장쇄 지방산으로부터 ω-aminononanoic acid(C9)와 같은 오메가-아미노지방산을 생성할 수 있는데, 수화효소는 장쇄 지방산을 하이드록시지방산으로 전환시키고, 마이크로코커스 루테우스 유래의 알코올 탈수소효소는 상기 전환된 하이드록시지방산으로부터 수소를 제거하여 키토 지방산을 생성하며, BVMO는 상기 생성된 키토 지방산을 산화시켜서 사슬내에 에스터기가 도입된 장쇄 지방산을 생성하고, 에스터 가수분해효소는 상기 생성된 사슬내에 에스터기가 도입된 장쇄 지방산의 에스터 결합을 가수분해하여 오메가-하이드록시 지방산을 생성하며, 슈도모나스 푸티다 유래의 알코올 탈수소효소는 상기 오메가 하이드록시 지방산으로부터 수소를 제거하여 오메가-키토 지방산을 생성하고, 아미노 전이효소는 상기 생성된 오메가-키토 지방산에 아미노기를 전이시켜서 오메가-아미노지방산을 생성한다(도 1f).
한편, 장쇄 지방산으로부터 생산된 오메가-하이드록시지방산은 슈도모나스 푸티다 유래의 알코올 탈수소효소에 의해 알파,오메가-디카르복실산으로 전환되거나(실시예 5 및 6), 아미노 전이효소와의 연속반응에 의해 오메가-아미노지방산으로 전환될 수 있다(실시예 7).
상기 형질전환체에 의하여 생성된 5 내지 14개의 탄소수를 가지는 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산 및 알코올은 상기 형질전환체에서 배지 또는 반응완충액으로 분비되므로, 상기 형질전환체를 고정화 담체에 고정시키거나, 상기 형질전환체를 유가식 또는 연속식으로 배양할 경우, 5 내지 14개의 탄소수를 가지는 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산 및 알코올을 대량으로 생산할 수 있다.
본 발명의 일 실시예에 의하면, 스테노트로포모나스 말토필리아 유래의 올레산 수화효소 유전자, 마이크로코커스 루테우스 유래의 알코올 탈수소효소 유전자를 대장균 BL21(DE3) 균주에 도입하여 수화효소 및 알코올 탈수소효소를 발현하는 형질전환체를 제작하고, 상기 형질전환체에 슈도모나스 플로레센스 유래의 BVMO 유전자를 도입하여 수화효소, 알코올 탈수소효소 및 BVMO를 발현하는 형질전환체를 제작하였다(실시예 4). 또한, 수화효소, 알코올 탈수소효소, BVMO를 발현하는 형질전환체를 배양하고 올레산과 반응한 결과, 10-하이드록시스테아르산, 10-키토스테아르산, 사슬내에 에스터기가 도입된 지방산이 생산되었고(도 5), 여기에 슈도모나스 플로레센스 유래의 에스터 가수분해효소를 투입하고 반응하여 α,ω-decanedioic acid과 옥탄올을 생산할 수 있었다.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 상기 방법으로 제조되어, 하기 화학식 1로 표시되는 신규한 오메가-하이드록시지방산을 제공한다.
화학식 1
Figure PCTKR2013002885-appb-C000001
상기 화합물은 상술한 방법에 의하여 제조될 수 있다. 예를 들어, 올레산 수화효소, 알코올 탈수소효소 및 BVMO를 발현하는 형질전환체를 배양하고 레스쿠에롤린산과 반응시켜서, 사슬내에 에스터기가 도입된 지방산을 생산할 수 있고, 상기 생산된 사슬내에 에스터기가 도입된 지방산에 슈도모나스 플로레센스 유래의 에스터 가수분해효소를 투입하여 반응시킴으로써, 상기 화학식 I의 신규한 오메가-하이드록시지방산을 생산할 수 있다. 상기 생산된 신규한 오메가-하이드록시지방산은 GC/MS 분석하여 구조를 확인할 수도 있다.
상술한 목적을 달성하기 위한 또 다른 실시양태로서, 본 발명은 상기 BVMO를 이용하여 키토 지방산으로부터 사슬내에 에스터기가 도입된 지방산 유도체를 생산하는 방법을 제공한다.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 다단계 효소합성을 이용한 ω-hydroxynonanoic acid의 생산
1) 유전자 클로닝
올레산 수화효소와 알코올 탈수소효소 유전자를 포함하는 재조합 발현벡터를 제조하기 위하여, 스테노트로포모나스 말토필리아 유래의 올레산 수화효소 유전자와 마이크로코커스 루테우스 유래의 알코올 탈수소효소 유전자를 클로닝하였다.
먼저, 올레산 수화효소 유전자는 플라스미드 벡터 pET 28(+)a/올레산 수화효소(J. Biotechnol., 158:17-23, 2012)를 주형으로 하고, 제한효소인 PvuI과 XhoI의 절단부위를 포함하도록 제작된 프라이머(서열번호 1 및 2)를 이용한 PCR을 수행하여 증폭하였다.
정방향 프라이머: 5'-gctagcatgtattacagtaatggtaactatgaa-3'(서열번호 1)
역방향 프라이머: 5'-ggctcgagctatattagtttactttctttca-3'(서열번호 2)
상기 증폭된 PCR 산물을 제한효소인 PvuI과 XhoI로 절단하고, 플라스미드 벡터 pACYC(Novagen사 제품)에 삽입하여 pACYC/올레산 수화효소 발현벡터를 제작하였다.
또한, 알코올 탈수소효소는 마이크로코커스 루테우스로부터 유래한 알코올 탈수소효소의 DNA 염기서열(Genebank Accession No.ZP_07049769)을 주형으로 하고, 제한효소인 EcoRI과 HindIII의 절단부위를 포함하도록 제작된 프라이머(서열번호 3 및 4)를 이용한 PCR을 수행하여 증폭하였다.
정방향 프라이머: 5'-atcgaattcgtccgagttcacccgtttcga-3'(서열번호 3)
역방향 프라이머: 5'-atatcaagcttcagccgagcggggtgtcct-3'(서열번호 4)
상기 증폭된 PCR 산물을 제한효소인 EcoRI과 HindIII로 절단하고, 상기 제작된 pACYC/올레산 수화효소 발현벡터에 삽입하여, pACYC/올레산 수화효소/알코올 탈수소효소 발현벡터를 제작하였다.
2) 숙주세포의 배양
대장균 E. coli BL21(DE3)은 플라스미드 유지를 위하여 10 g/ℓ 글루코스 및 적절한 항생제가 함유된 리젠버그(Riesenberg) 배지에서 배양하였다. 이때, 리젠버그 배지는 4 g/ℓ N(NH4)2HPO4, 13.5 g/ℓ KH2PO4, 1.7 g/ℓ citric acid, 1.4 g/ℓ MgSO4 및 10 ㎖/ℓ trace metal solution(10 g/ℓ FeSO4, 2.25 g/ℓ ZnSO4, 1.0 g/ℓ CuSO4, 0.5 g/ℓ MnSO4, 0.23 g/ℓ Na2B4O7, 2.0 g/ℓ CaCl2 및 0.1 g/ℓ(NH4)6Mo7O24)가 함유되어 있으며, 마이크로코커스 루테우스는 LB 배지에서 배양하였다.
3) 형질전환체를 이용한 ω-hydroxynonanoic acid의 생산
먼저, 상기 실시예 1-1)의 스테노트로포모나스 말토필리아 유래의 올레산 수화효소 유전자와 마이크로코커스 루테우스 유래의 알코올 탈수소효소 유전자가 삽입된 pACYC/올레산 수화효소/알코올 탈수소효소 발현벡터를 상기 실시예 1-2)에서 배양된 대장균 BL21(DE3) 균주에 도입하여 1차 형질전환체를 제작하였다.
다음으로, 상기 1차 형질전환체에 슈도모나스 푸티다 유래의 BVMO 유전자를 발현하도록 제작된 발현벡터 pJOE-KT2440BVMO(Biotechnol. Lett., 29:1393-1398, 2007)를 도입하여, 올레산 수화효소, 알코올 탈수소효소 및 BVMO를 발현시킬 수 있는 2차 형질전환체를 제작하였다.
이어, 상기 2차 형질전환체를 리젠버그 미네랄배지에서 30℃ 및 200 rpm의 조건으로 배양하면서, IPTG와 람노스를 처리하여 올레산 수화효소, 알코올 탈수소효소 및 BVMO를 발현시키고 1 mM의 올레산과 반응시킴으로써, ω-hydroxynonanoic acid을 생산하였다(도 2). 도 2a는 상기 2차 형질전환체를 이용하여 생산된 사슬내에 에스터기가 도입된 지방산의 시간의 경과에 따른 생산량의 변화를 나타낸 그래프로서,(●)는 올레산의 농도를 나타내고,(△)는 10-하이드록시스테아르산의 농도를 나타내며,(▽)는 10-키토스테아르산의 농도를 나타내고,(■)는 사슬내에 에스터기가 도입된 지방산의 농도를 나타내고, (▲)는 ω-hydroxynonanoic acid의 농도를 나타낸다. 도 2b는 반응 종료 후 에스터 가수분해 효소를 처리하고 반응산물들을 GC/MS로 분석한 결과를 보여주고 있다. 올레산에서 생산된 사슬내에 에스터기가 도입된 지방산이 대부분 n-nonanoic acid와 ω-hydroxynonanoic acid로 전환되었다.
실시예 2: 리시놀레산으로부터 ω-hydroxyundec-9-enoic acid의 생산
실시예 1에서 제작한 형질전환체를 이용하여 기질인 리시놀레산으로부터 ω-hydroxyundec-9-enoic acid을 생산하였다.
즉, 올레산 대신에 1 mM의 리시놀레산을 가하는 것을 제외하고는 상기 실시예 1-3)과 동일한 방법을 이용하여, ω-hydroxyundec-9-enoic acid을 생산하였다(도 3). 도 3a는 상기 형질전환체를 이용하여 리시놀레산으로부터 생산된 사슬내에 에스터기가 도입된 지방산의 시간의 경과에 따른 생산량의 변화를 나타낸 그래프로서,(△)는 리시놀레산의 농도를,(▽)는 12-키토올레산의 농도를,(■)는 사슬내에 에스터기가 도입된 지방산의 농도를 나타내고, (▲)는 ω-hydroxyundec-9-enoic acid의 농도를 각각 나타낸다. 도 3b는 반응 종료 후 에스터 가수분해 효소를 처리하고 반응산물들을 GC/MS로 분석한 결과를 보여주고 있다. 리시놀레산에서 생산된 사슬내에 에스터기가 도입된 지방산이 대부분 n-heptanoic acid와 ω-hydroxyundec-9-enoic acid로 전환되었다.
실시예 3: 레스쿠에롤린산으로부터 ω-hydroxytridec-11-enoic acid의 생산
실시예 1에서 제작한 형질전환체를 이용하여 기질인 레스쿠에롤린산으로부터 ω-hydroxytridec-11-enoic acid를 생산하였다.
즉, 올레산 대신에 1 mM의 레스쿠에롤린산을 가하는 것을 제외하고는 상기 실시예 1-3)과 동일한 방법을 이용하여, ω-hydroxytridec-11-enoic acid를 생산하였다(도 4). 도 4는 상기 형질전환체와 에스터 가수분해효소를 이용하여 레스쿠에롤린산으로부터 ω-hydroxytridec-11-enoic acid를 생산하고, 그 반응산물들을 GC/MS로 분석한 결과를 보여주고 있다. 레스쿠에롤린산이 대부분 heptanoic acid와 ω-hydroxytridec-11-enoic acid로 전환되었다.
실시예 4: 올레산으로부터 α,ω-decanedioic acid의 생산
실시예 1에서 제작된 pACYC/올레산 수화효소/알코올 탈수소효소 발현벡터와 슈도모나스 플로레센스 유래의 BVMO 유전자 발현벡터(Appl. Microbiol. Biotechnol. 73:1065-1072, 2007)를 대장균 BL21(DE3) 균주에 도입하여 형질전환체를 제작하고, 이를 이용하여 기질인 올레산으로부터 α,ω-decanedioic acid(세바식산)를 생산하였다(도 5). 도 5a는 상기 형질전환체를 이용하여 생산된 사슬내에 에스터기가 도입된 지방산의 시간의 경과에 따른 생산량의 변화를 나타낸 그래프로서,(●)는 올레산의 농도를 나타내고,(△)는 10-하이드록시스테아르산의 농도를 나타내며,(▽)는 10-키토스테아르산의 농도를 나타내고,(■)는 사슬내에 에스터기가 도입된 지방산의 농도를 나타낸다. 도 5b는 반응 종료 후 에스터 가수분해 효소를 처리하고 반응산물들을 GC/MS로 분석한 결과를 보여주고 있다. 올레산에서 생산된 사슬내에 에스터기가 도입된 지방산이 대부분 세바식산과 노말 옥탄올로 전환되었다.
실시예 5: 올레산으로부터 α,ω-nonanedioic acid의 생산
1)유전자 클로닝
에스터 가수분해효소와 알코올 탈수소효소 유전자를 포함하는 재조합 발현벡터를 제조하기 위하여, 슈도모나스 플로레센스 유래의 에스터 가수분해효소 유전자와 슈도모나스 푸티다 유래의 알코올 탈수소효소 유전자를 클로닝하였다.
먼저, 에스터 가수분해효소 유전자는 플라스미드 벡터 pGASTON/에스터 가수분해효소(Agric Biol. Chem., 54:2039-2045, 1990)를 주형으로 하고, 제한효소인 NdeI과 XhoI의 절단부위를 포함하도록 제작된 프라이머(서열번호 5 및 6)를 이용한 PCR을 수행하여 증폭하였다.
정방향 프라이머: 5'-gcgccatatgatgagcacatttgttgcaaaa-3'(서열번호 5)
역방향 프라이머: 5'-gcgcctcgagtcagtggtgatggtgatgatgactccgccgccacttt-3'
(서열번호 6)
상기 증폭된 PCR 산물을 제한효소인 NdeI과 XhoI로 절단하고, 플라스미드 벡터 pCOLAduet-1(Novagen사 제품)에 삽입하여 pCOLAduet-1/에스터 가수분해효소 발현벡터를 제작하였다.
또한, 알코올 탈수소효소는 슈도모나스 푸티다로부터 유래한 알코올 탈수소효소의 DNA 염기서열(J. Biotechnol. 262:17712-17718, 1987)을 주형으로 하고, 제한효소인 BamHI과 NotI의 절단부위를 포함하도록 제작된 프라이머(서열번호 7 및 8)를 이용한 PCR을 수행하여 증폭하였다.
정방향 프라이머: 5'-gcgcggatccgatgtacgactatataatcgtt-3'(서열번호 7)
역방향 프라이머: 5'-gcgcgcggccgcttagtggtgatggtgatgatgcatgcagacagctat-3'
(서열번호 8)
상기 증폭된 PCR 산물을 제한효소인 BamI과 NotI로 절단하고, 상기 제작된 pCOLAduet-1/에스터 가수분해효소 발현벡터에 삽입하여, pCOLAduet-1/에스터 가수분해효소/알코올 탈수소효소 발현벡터를 제작하였다.
2) 형질전환체를 이용한 α,ω-nonanedioic acid의 생산
먼저, 상기 실시예 5-1)의 슈도모나스 플로레센스 유래의 에스터 가수분해효소와 슈도모나스 푸티다 유래의 알코올 탈수소효소 유전자가 삽입된 pCOLAduet-1/에스터 가수분해효소/알코올 탈수소효소 발현벡터를 상기 실시예 1-2)에서 배양된 대장균 BL21(DE3) 균주에 도입하여 형질전환체를 제작하였다.
실시예 1에서 제작된 형질전환체와 상기 실시예 5-1)에서 제작한 형질전환체를 이용하여 기질인 올레산으로부터 α,ω-nonanedioic acid(아젤레산)를 생산하였다. 실시예 1에서 제작된 형질전환체를 이용하여 올레산으로부터 사슬내에 에스터기가 도입된 지방산을 생산하고, 상기 실시예 5-1)에서 제작한 형질전환체를 이용하여 사슬내에 에스터기가 도입된 지방산으로부터 아젤레산을 생산하였다(도 6). 도 6은 생산된 아젤레산의 시간의 경과에 따른 생산량의 변화를 나타낸 그래프로서,(■)는 사슬내에 에스터기가 도입된 지방산의 농도를 나타내고,(▲)는 오메가-하이드록시 노난산의 농도를 나타내며,(◇)는 9-옥소노난산의 농도를 나타내며,(◆)는 아젤레산의 농도를 나타낸다.
실시예 6: 리시놀레산으로부터 α,ω-undec-2-enedioic acid의 생산
실시예 1에서 제작된 pACYC/올레산 수화효소/알코올 탈수소효소 발현벡터와 슈도모나스 푸티다 유래의 BVMO 유전자 발현벡터 및 실시예 5-1)에서 제작된 pCOLAduet-1/에스터 가수분해효소/알코올 탈수소효소 발현벡터를 대장균 BL21(DE3) 균주에 도입하여 형질전환체를 제작하였다.
상기 형질전환체를 이용하여 리시놀레산(C18H34O3)으로부터 α,ω-undec-2-enedioic acid를 생산하였다(도 7). 도 7은 상기 형질전환체를 이용하여 리시놀레산으로부터 생산된 α,ω-undec-2-enedioic acid의 시간의 경과에 따른 생산량의 변화를 나타낸 그래프로서,(△)는 리시놀레산의 농도를 나타내며,(▽)는 12-키토올레산의 농도를 나타내고,(■)는 사슬내에 에스터기가 도입된 지방산의 농도를 나타내고,(▲)는 ω-hydroxyundec-9-enoic acid의 농도를 나타내며,(◇)는 9-oxoundec-9-enoic acid의 농도를 나타내며,(◆)는 α,ω-undec-2-enedioic acid의 농도를 나타낸다.
한편, 상기 형질전환체를 이용하면 레스쿠에롤린산으로부터 heptanoic acid와 α,ω-tridec-2-enedioic acid를 생산할 수 있었다.
실시예 7: 올레산으로부터 α-aminononanoic acid의 생산
1) 형질전환체 제작
먼저, 상기 실시예 5-1)의 슈도모나스 플로레센스 유래의 에스터 가수분해효소와 슈도모나스 푸티다 유래의 알코올 탈수소효소 유전자가 삽입된 pCOLAduet-1/에스터 가수분해효소/알코올 탈수소효소 발현벡터를 대장균에 도입하여 1차 형질전환체를 제작하였다.
다음으로, 상기 1차 형질전환체에 실리시박터 유래의 아미노 전이효소를 발현하는 벡터(ChemCatChem, 5:154-157, 2013)를 도입하여, 에스터 가수분해효소, 알코올 탈수소효소 및 아미노 전이효소를 발현시킬 수 있는 2차 형질전환체를 제작하였다.
2) 형질전환체를 이용한 α-aminononanoic acid의 생산
실시예 1에서 제작된 형질전환체와 실시예 6-1)에서 제작된 2차 형질전환체를 이용하여 기질인 올레산으로부터 α-aminononanoic acid를 생산하였다. 실시예 1에서 제작된 형질전환체를 이용하여 올레산으로부터 사슬내에 에스터기가 도입된 지방산을 생산하고, 상기 실시예 6-1)에서 제작한 형질전환체를 이용하여 사슬내에 에스터기가 도입된 지방산으로부터 α-aminononanoic acid를 생산하였다(도 8). 도 8은 생산된 α-aminononanoic acid의 시간의 경과에 따른 생산량의 변화를 나타낸 그래프로서,(■)는 사슬내에 에스터기가 도입된 지방산의 농도를 나타내고,(▲)는 오메가-하이드록시 노난산의 농도를 나타내며,(◇)는 9-옥소노난산의 농도를 나타내며,(◆)는 α-aminononanoic acid의 농도를 나타낸다.
한편, 상기 형질전환체를 이용하면 리시놀레산으로부터 heptanoic acid와 α-aminoundec-9-enoic acid를 생산할 수 있었다.

Claims (28)

  1. BVMO(Baeyer-Villiger monooxygenase)를 코딩하는 유전자가 도입된 형질전환체.
  2. 제1항에 있어서,
    상기 BVMO는 슈도모나스 플로레센스(Pseudomonas fluorescens), 슈도모나스 푸티다(Pseudomonas putida), 슈도모나스 베로니(Pseudomonas veronii), 로도코커스 조스티(Rhodococcus jostii) 또는 슈도모나스속 균주 HI-70(Pseudomonas sp. strain HI-70)으로부터 유래된 것인 형질전환체.
  3. 제1항에 있어서,
    수화효소(hydratase)나 리폭시지나제(lipoxygenase)를 코딩하는 유전자, 알코올 탈수소효소(alcohol dehydrogenase)를 코딩하는 유전자, 에스터 가수분해효소(esterase)를 코딩하는 유전자, 아미노 전이효소(aminotransferase)를 코딩하는 유전자 또는 이들의 조합이 추가로 도입된 것인 형질전환체.
  4. 제3항에 있어서,
    수화효소를 코딩하는 유전자, 알코올 탈수소효소를 코딩하는 유전자, BVMO를 코딩하는 유전자 및 에스터 가수분해효소를 코딩하는 유전자가 도입되어 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산 또는 알파,오메가-디카르복실산과 알코올을 생성하는 것인 형질전환체.
  5. 제4항에 있어서,
    상기 장쇄 지방산으로 올레산(C18)을 사용하는 경우, 중쇄 오메가-하이드록시지방산으로서 ω-hydroxynonanoic acid(C9)가 생성되는 것인 형질전환체.
  6. 제4항에 있어서,
    상기 장쇄 지방산으로 올레산(C18)을 사용하는 경우, 알파,오메가-디카르복실산으로서 α,ω-decanedioic acid(C10) 및 알코올로서 옥탄올(C8)이 생성되는 것인 형질전환체.
  7. 제3항에 있어서,
    알코올 탈수소효소를 코딩하는 유전자, BVMO를 코딩하는 유전자 및 에스터 가수분해효소를 코딩하는 유전자가 도입되어 하이드록시 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산을 생성하는 것인 형질전환체.
  8. 제7항에 있어서,
    상기 하이드록시 장쇄 지방산으로 리시놀레산(C18)을 사용하는 경우, 중쇄 오메가-하이드록시지방산으로서 ω-hydroxyundec-9-enoic acid(C11)가 생성되는 것인 형질전환체.
  9. 제7항에 있어서,
    상기 하이드록시 장쇄 지방산으로 레스쿠에롤린산(C20)을 사용하는 경우, 중쇄 오메가-하이드록시지방산으로서 ω-hydroxytridec-11-enoic acid(C13)가 생성되는 것인 형질전환체.
  10. 제3항에 있어서,
    수화효소를 코딩하는 유전자, 서로 다른 두 종류의 알코올 탈수소효소를 코딩하는 유전자, BVMO를 코딩하는 유전자 및 에스터 가수분해효소를 코딩하는 유전자가 도입되어 장쇄 지방산으로부터 알파,오메가-디카르복실산을 생성하는 것인 형질전환체.
  11. 제10항에 있어서,
    상기 알코올 탈수소 효소는 마이크로코커스 루테우스(Micrococcus luteus) 유래의 알코올 탈수소효소 및 슈도모나스 푸티다(Pseudomonas putida) 유래의 알코올 탈수소효소인 것인 형질전환체.
  12. 제10항에 있어서,
    상기 장쇄 지방산으로 올레산(C18)을 사용하는 경우, 알파,오메가-디카르복실산으로서 α,ω-nonanedioic acid(C9)가 생성되는 것인 형질전환체.
  13. 제3항에 있어서,
    수화효소를 코딩하는 유전자, 서로 다른 두 종류의 알코올 탈수소효소를 코딩하는 유전자, BVMO를 코딩하는 유전자, 에스터 가수분해효소를 코딩하는 유전자 및 아미노 전이효소를 코딩하는 유전자가 도입되어 장쇄 지방산으로부터 오메가-아미노지방산을 생성하는 것인 형질전환체.
  14. 제13항에 있어서,
    상기 알코올 탈수소 효소는 마이크로코커스 루테우스 유래의 알코올 탈수소효소 및 슈도모나스 푸티다 유래의 알코올 탈수소효소인 것인 형질전환체.
  15. 제13항에 있어서,
    상기 장쇄 지방산으로 올레산(C18)을 사용하는 경우, 오메가-아미노지방산으로서 ω-aminononanoic acid(C9)가 생성되는 것인 형질전환체.
  16. (a) 제1항 내지 제15항 중 어느 한 항의 형질전환체와 장쇄 지방산을 반응시켜서 반응물을 수득하는 단계; 및,
    (b) 상기 반응물로부터 분해산물을 회수하는 단계를 포함하는, 장쇄 지방산으로부터 분해산물을 생산하는 방법.
  17. 제16항에 있어서,
    상기 장쇄 지방산은 16 내지 20개의 탄소수를 가지는 직쇄형 지방산인 것인 방법.
  18. 제16항에 있어서,
    상기 장쇄 지방산은 올레산, 리시놀레산, 12-히드록시스테아린산, 리놀레인산, 팔미톨레인산, 레스쿠에롤린산(lesquerolic acid) 또는 이들의 조합인 것인 방법.
  19. 제16항에 있어서,
    상기 형질전환체를 탄소원을 포함하는 배지에서 배양하고 장쇄 지방산을 가하여 수행하는 것인 방법.
  20. 제19항에 있어서,
    상기 장쇄 지방산은 배지에 포함된 탄소원이 소모된 후에 가하는 것인 방법.
  21. 제19항에 있어서,
    상기 장쇄 지방산은 최종농도 0.1 내지 100g/L가 되도록 배지에 가하는 것인 방법.
  22. 제16항에 있어서,
    형질전환체를 장쇄 지방산을 포함하는 반응완충액에 가하여 수행하는 것인 방법.
  23. 제22항에 있어서,
    상기 장쇄 지방산의 함량은 최종농도 0.1 내지 100g/L인 것인 방법.
  24. 제16항에 있어서,
    상기 분해 산물은 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산, 알코올 또는 이들의 조합인 것인 방법.
  25. 제16항에 있어서,
    상기 분해 산물은 5 내지 14개의 탄소수를 가지는 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산, 2 내지 14개의 탄소수를 가지는 노말 알코올 또는 이들의 조합인 것인 방법.
  26. 제16항에 있어서,
    상기 분해 산물은 ω-hydroxynonanoic acid, ω-hydroxyundec-9-enoic acid, ω-hydroxytridec-11-enoic acid, α,ω-nonanedioic acid(azelaic acid), α,ω-decanedioic acid(sebacic acid), ω-aminononanoic acid, heptanoic acid, nonanoic acid, ω-hydroxyundecanoic acid, ω-hydroxytridecenoic acid, α,ω-undec-2-enedioic acid(cis-2-undecene-1,11-dioic acid), α-aminoundec-9-enoic acid, α,ω-tridec-2-enedioic acid, α-aminononanoic acid, 노말 옥탄올 또는 이들의 조합인 것인 방법.
  27. 하기 화학식 1로 표시되는 오메가-하이드록시지방산.
    [화학식 1]
    Figure PCTKR2013002885-appb-I000001
  28. BVMO(Baeyer-Villiger monooxygenase)를 이용하여 키토 지방산으로부터 사슬내에 에스터기가 도입된 지방산 유도체를 생성하는 방법.
PCT/KR2013/002885 2012-04-06 2013-04-05 생물전환을 통한 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산을 생산하는 방법 WO2013151393A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380029844.2A CN104364377B (zh) 2012-04-06 2013-04-05 通过生物转化从长链脂肪酸产生中链ω‑羟基脂肪酸、α,ω‑二羧酸和ω‑氨基脂肪酸的方法
US14/390,768 US9745605B2 (en) 2012-04-06 2013-04-05 Method for producing medium-chain ω-hydroxy fatty acids, α,ω-dicarboxylic acids, and ω-amino fatty acids from long-chain fatty acids by biotransformation
JP2015504505A JP6104361B2 (ja) 2012-04-06 2013-04-05 生物変換により長鎖脂肪酸から中鎖ω−ヒドロキシ脂肪酸、α,ω−ジカルボン酸、ω−アミノ脂肪酸を生産する方法
EP13771758.3A EP2835425B1 (en) 2012-04-06 2013-04-05 Use of BVMO (Baeyer-Villiger monooxygenases) and fatty acids

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2012-0036372 2012-04-06
KR20120036372 2012-04-06
KR20120056029 2012-05-25
KR10-2012-0056029 2012-05-25
KR10-2013-0005814 2013-01-18
KR1020130005814A KR101500827B1 (ko) 2012-05-25 2013-01-18 장쇄 지방산으로부터 중쇄 지방산 및 오메가-하이드록시지방산을 생산하는 방법

Publications (1)

Publication Number Publication Date
WO2013151393A1 true WO2013151393A1 (ko) 2013-10-10

Family

ID=52183101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002885 WO2013151393A1 (ko) 2012-04-06 2013-04-05 생물전환을 통한 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산을 생산하는 방법

Country Status (5)

Country Link
US (1) US9745605B2 (ko)
EP (1) EP2835425B1 (ko)
JP (1) JP6104361B2 (ko)
CN (1) CN104364377B (ko)
WO (1) WO2013151393A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220186A1 (de) 2013-12-12 2015-06-18 Technische Universität Dresden Hefestämme und Verfahren zur Produktion von Omega-Hydroxyfettsäuren und Dicarbonsäuren
WO2016085816A1 (en) * 2014-11-26 2016-06-02 INVISTA North America S.à.r.l. Methods of producing 6-carbon monomers from 8-carbon compounds
WO2016085811A1 (en) * 2014-11-26 2016-06-02 Invista North America S.á.r.l. Methods and materials for producing 7-carbon chemicals via a c9 route
KR101743104B1 (ko) 2015-01-27 2017-06-08 서강대학교산학협력단 12-케토올레 산의 생산능이 우수한 코리네박테리움 글루타미컴 균주 및 이의 제조방법
US10087137B2 (en) * 2014-06-23 2018-10-02 The University Of Toledo Cross metathesis approach to C11-C13 fatty-chain amino esters from oleic acid derivatives

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2746397A1 (de) * 2012-12-21 2014-06-25 Evonik Industries AG Herstellung von Omega-Aminofettsäuren
US11073522B2 (en) 2016-10-03 2021-07-27 Lincoln Memorial University Structural validation of very long chain dicarboxylic acids
JP7179534B2 (ja) * 2018-08-30 2022-11-29 ロレアル 油を含む発泡性組成物
CN110760460B (zh) * 2019-09-30 2021-03-23 浙江工业大学 一种可降解餐厨垃圾油脂组分的复配菌剂及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420316A (en) 1994-02-10 1995-05-30 Henkel Corporation Process for making carboxylic acids
US5952517A (en) 1997-02-14 1999-09-14 Caschem, Inc. Method for preparing cleaved products from castor oil or derivatives thereof
US6392074B1 (en) 2000-05-12 2002-05-21 Roger L. Logan Method for preparing sebacic acid and octanol-2
US20100285545A1 (en) * 2009-05-06 2010-11-11 Gross Richard A Biosynthetic routes to long-chain alpha,omega-hydroxyacids, diacids and their conversion to oligomers and polymers
US20110105774A1 (en) 2008-07-10 2011-05-05 Arkema France Method for synthesising 9-aminononanoic acid or the esters thereof from natural unsaturated fatty acids

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003310292A (ja) * 2002-04-26 2003-11-05 Canon Inc 分子中に芳香環を含む残基を有するアルカンからのポリヒドロキシアルカノエートの製造方法
DE102007060705A1 (de) * 2007-12-17 2009-06-18 Evonik Degussa Gmbh ω-Aminocarbonsäuren oder ihre Lactame, herstellende, rekombinante Zellen
CN101392233A (zh) * 2008-11-10 2009-03-25 清华大学 表达颗粒状甲烷单加氧酶的方法及其专用工程菌

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5420316A (en) 1994-02-10 1995-05-30 Henkel Corporation Process for making carboxylic acids
US5952517A (en) 1997-02-14 1999-09-14 Caschem, Inc. Method for preparing cleaved products from castor oil or derivatives thereof
US6392074B1 (en) 2000-05-12 2002-05-21 Roger L. Logan Method for preparing sebacic acid and octanol-2
US20110105774A1 (en) 2008-07-10 2011-05-05 Arkema France Method for synthesising 9-aminononanoic acid or the esters thereof from natural unsaturated fatty acids
US20100285545A1 (en) * 2009-05-06 2010-11-11 Gross Richard A Biosynthetic routes to long-chain alpha,omega-hydroxyacids, diacids and their conversion to oligomers and polymers

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
AGRIC BIOL. CHEM., vol. 54, 1990, pages 2039 - 2045
APPL. MICROBIOL. BIOTECHNOL., vol. 73, 2007, pages 1065 - 1072
BIOTECHNOL. LETT., vol. 29, 2007, pages 1393 - 1398
CHEMCATCHEM, vol. 5, 2013, pages 154 - 157
HILDEBRANDT, P. ET AL.: "Cloning, functional expression and biochemical characterization of a stereoselective alcohol dehydrogenase from Pseudomonas fluorescens DSM50106", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 59, no. 4-5, 26 June 2002 (2002-06-26), pages 483 - 487, XP055169235 *
J. BIOTECHNOL., vol. 158, 2012, pages 17 - 23
J. BIOTECHNOL., vol. 262, 1987, pages 17712 - 17718
KIRSCHNER, A. ET AL.: "Design of a secondary alcohol degradation pathway from Pseudomonas fluorescens DSM 50106 in an engineered Escherichia coli", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 75, no. 5, 9 March 2007 (2007-03-09), pages 1095 - 1101, XP019513723 *
KIRSCHNER, ANETT. ET AL.: "Cloning, expression, and characterization of a Baeyer-Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli", APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 73, no. 5, 31 August 2006 (2006-08-31), pages 1065 - 1072, XP019472485 *
See also references of EP2835425A4
VAN BEILEN, JAN B. ET AL.: "Cloning of Baeyer-Villiger monooxygenases from Comamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers", ENVIRONMENTAL MICROBIOLOGY, vol. 5, no. 3, March 2003 (2003-03-01), pages 174 - 182, XP055169233 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220186A1 (de) 2013-12-12 2015-06-18 Technische Universität Dresden Hefestämme und Verfahren zur Produktion von Omega-Hydroxyfettsäuren und Dicarbonsäuren
US10093950B2 (en) 2013-12-12 2018-10-09 Provivi, Inc. Yeast strains with reduced fatty alcohol oxidase activity and method for the production of Ω-hydroxy fatty acids and dicarboxylic acids
US10640796B2 (en) 2013-12-12 2020-05-05 Provivi, Inc. Yeast strains with reduced fatty alcohol oxidase activity and method for the production of omega-hydroxy fatty acids and dicarboxylic acids
EP3875584A1 (de) 2013-12-12 2021-09-08 Provivi, Inc. Hefestämme und verfahren zur produktion von omega-hydroxyfettsäuren und dicarbonsäuren
US10087137B2 (en) * 2014-06-23 2018-10-02 The University Of Toledo Cross metathesis approach to C11-C13 fatty-chain amino esters from oleic acid derivatives
WO2016085816A1 (en) * 2014-11-26 2016-06-02 INVISTA North America S.à.r.l. Methods of producing 6-carbon monomers from 8-carbon compounds
WO2016085811A1 (en) * 2014-11-26 2016-06-02 Invista North America S.á.r.l. Methods and materials for producing 7-carbon chemicals via a c9 route
KR101743104B1 (ko) 2015-01-27 2017-06-08 서강대학교산학협력단 12-케토올레 산의 생산능이 우수한 코리네박테리움 글루타미컴 균주 및 이의 제조방법

Also Published As

Publication number Publication date
EP2835425A1 (en) 2015-02-11
US20150057461A1 (en) 2015-02-26
EP2835425B1 (en) 2018-05-30
CN104364377A (zh) 2015-02-18
JP6104361B2 (ja) 2017-04-05
JP2015517808A (ja) 2015-06-25
EP2835425A4 (en) 2015-10-28
US9745605B2 (en) 2017-08-29
CN104364377B (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
WO2013151393A1 (ko) 생물전환을 통한 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산을 생산하는 방법
US8349596B2 (en) Method for the enzymatic production of 2-hydroxy-2-methyl carboxylic acids
US20210254109A1 (en) D-Glucaric Acid Producing Bacterium, and Method for Manufacturing D-Glucaric Acid
CA2622537C (en) Biocatalytic manufacturing of (meth)acrylic esters
WO2014003439A1 (ko) 에탄올 생산 경로가 봉쇄된 클루이베로마이세스 막시아누스 균주 및 이의 용도
WO2011008058A2 (ko) 오일 생성능을 가지는 미생물을 이용한 지방산 알킬에스테르의 제조방법
WO2015186990A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2014148754A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
JPH11155570A (ja) 酵素の基質特異性の改変法
WO2015012641A1 (en) L-asparatate oxidase variant and a method for producing quinolinate or nicotinic acid using the same
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2015163682A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
KR101782205B1 (ko) 생물전환 및 화학전환을 이용한 장쇄 지방산으로부터 중쇄 지방산을 제조하는 방법
WO2013172628A1 (ko) 가수분해된 발효 폐기물을 이용한 바이오 산물의 생산 방법
KR101534910B1 (ko) 장쇄 지방산으로부터 중쇄 디카르복실산, 카르복실산 및 알코올을 생산하는 방법
KR101500827B1 (ko) 장쇄 지방산으로부터 중쇄 지방산 및 오메가-하이드록시지방산을 생산하는 방법
JP5157576B2 (ja) 光学活性2−アルキル−1,1,3−トリアルコキシカルボニルプロパンの製造方法
WO2015046978A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2015194900A1 (ko) 젖산 분해 경로가 봉쇄된 클루이베로마이세스 막시아누스 및 이의 용도
EP1309674B1 (en) Stereoselective esterase from aspergillus oryzae
WO2016195439A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
WO2022098162A1 (ko) 3-하이드록시프로피온산의 생산 방법
WO2016129895A1 (ko) 다이올 생산용 재조합 미생물
WO2023135584A1 (en) Novel thraustochytrid strain for the production of biomaterials including long-chain polyunsaturated fatty acids
WO2017119576A1 (ko) 올레산 수화효소 2를 이용한 생물전환공정

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13771758

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504505

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14390768

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013771758

Country of ref document: EP