WO2013147264A1 - 硫酸化化合物を含む幹細胞増殖用培地 - Google Patents

硫酸化化合物を含む幹細胞増殖用培地 Download PDF

Info

Publication number
WO2013147264A1
WO2013147264A1 PCT/JP2013/059745 JP2013059745W WO2013147264A1 WO 2013147264 A1 WO2013147264 A1 WO 2013147264A1 JP 2013059745 W JP2013059745 W JP 2013059745W WO 2013147264 A1 WO2013147264 A1 WO 2013147264A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfated
compound
group
medium
pharmaceutically acceptable
Prior art date
Application number
PCT/JP2013/059745
Other languages
English (en)
French (fr)
Inventor
陽子 栗山
尚 杉本
学 北澤
訓 岡元
将 千田
育恵 原田
賢 大橋
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to CN201380025206.3A priority Critical patent/CN104334714A/zh
Priority to EP13768772.9A priority patent/EP2832848B1/en
Priority to KR20147030483A priority patent/KR20150003233A/ko
Priority to CA2868718A priority patent/CA2868718C/en
Priority to AU2013240972A priority patent/AU2013240972A1/en
Priority to JP2014508234A priority patent/JP6070693B2/ja
Priority to SG11201406115VA priority patent/SG11201406115VA/en
Publication of WO2013147264A1 publication Critical patent/WO2013147264A1/ja
Priority to US14/497,926 priority patent/US9890359B2/en
Priority to US15/847,246 priority patent/US10689622B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0663Bone marrow mesenchymal stem cells (BM-MSC)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/34Sugars
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)

Definitions

  • the present invention relates to a medium for proliferating stem cells containing a fibroblast growth factor, a method for culturing stem cells using the medium, and the like.
  • stem cells embryonic stem cells, induced pluripotent stem cells, etc.
  • a medium containing serum for example, fetal bovine serum (FBS) is widely used in cell culture as an important additive for cell growth.
  • FBS fetal bovine serum
  • the xenogeneic component can be an infection source of blood-borne pathogens or a heterologous antigen.
  • the culture results may vary due to differences between serum lots. Therefore, in recent years, it has become mainstream to culture stem cells using a chemically defined medium (chemically defined medium), and development of a serum-free medium has been promoted.
  • Fibroblast growth factor is a protein having a molecular weight of 16,000 to 20,000 that promotes proliferation of fibroblasts and endothelial cells.
  • FGF includes basic fibroblast growth factor (bFGF), acidic fibroblast growth factor (aFGF), keratinocyte growth factor (KGF), etc., and more than 20 types of FGF are known in humans and mice. It has been.
  • FGF is generally added to a medium in order to stably cultivate stem cells, and is one of highly important components even in a serum-free medium.
  • FGF is expensive compared with other components and has low stability in a medium, which is a factor that requires a high frequency medium exchange in cell culture.
  • Patent Document 1 discloses that carrageenan stabilizes bFGF.
  • a protective agent containing sulfated polysaccharides such as heparin, dextran sulfate, and carrageenan contains 5 times (w / w) of bFGF (180 ⁇ g / 200 ⁇ l) hydrolyzed with trypsin (Examples). 1) and protection from thermal denaturation (Example 3).
  • Patent Document 2 discloses a method for stabilizing FGF or its mutein, which comprises contacting FGF or its mutein with sulfated glucan in an aqueous medium. The examples in this document disclose that the addition of sulfated glucan stably maintains the activity of FGF in an aqueous medium.
  • Non-Patent Document 1 describes that heparin or hexuronylhexosaminoglycan sulfate (HHS-4) protects bFGF from inactivation and enhances its physiological activity.
  • heparin While only seen when cells are contacted with a concentration of heparin (20 ⁇ g / ml) or HHS-4 (200 ⁇ g / ml), heparin has a high concentration (eg 10 ⁇ g / ml or more, depending on the concentration of bFGF) Describes the suppression of cell growth, which appears to be due to toxicity.
  • polysulfated polysaccharides such as dextran polysulfate and heparin or biologically active molecular fragments thereof function to protect progenitor cells including multipotent cells, improve survival rate, and regulate differentiation.
  • a composition comprising progenitor cells together with a polysulfated polysaccharide or biologically active molecular fragment thereof is disclosed. It is stated that the concentration of polysulfated polysaccharide in the composition is in the range of 500 ng / ml to 10 mg / ml.
  • the composition may further contain FGF, the relationship between the above-described functions of the polysulfated polysaccharide and FGF is not disclosed at all.
  • Patent Document 4 describes that a macromolecule composed of a saccharide such as a glucose polymer works to promote the growth of human mesenchymal stem cells.
  • the effective concentration of a macromolecule composed of a saccharide is 2.5 mg / mg. It is disclosed to be in the range of ml to 100 mg / ml.
  • An object of the present invention is to provide means for promoting the proliferation of stem cells in a medium for stem cell proliferation containing FGF.
  • a further object of the present invention is to provide a method for culturing stem cells using a medium for proliferating stem cells containing FGF.
  • sulfated compounds can act to suppress a decrease in the amount of FGF protein in the medium for stem cell proliferation, and promote proliferation of stem cells in the presence of FGF.
  • the concentration of the sulfated compound necessary to exert the effect of promoting the proliferation of stem cells in the presence of FGF was examined in detail.
  • the sulfated compound was added in a concentration range in which the effect of suppressing the decrease in the protein amount of FGF was low. Even when added to the medium, there was a compound in which a significant stem cell proliferation promoting effect was observed in the presence of FGF.
  • the present inventors have completed the present invention.
  • FGF fibroblast growth factor
  • the medium (however, the content of the sulfated compound when the sulfated compound is a sulfated polysaccharide is 250 ng / ml or less).
  • the sulfated saccharide is (I) 1 or 2 or more of the following general formula (a)
  • nb is an integer of 3 to 100, nb number of R 1b are each independently a functional group, which may have a substituent, Including one or more sulfate groups)
  • III the following general formula (c)
  • nc is 1, 2 or 3, R 1c to R 4c are the same or different and each is a functional group which may have a substituent, nc R 5c are each independently a functional group optionally having a substituent, Including one or more sulfate groups)
  • the sulfated saccharide is at least one selected from the group consisting of sulfated monosaccharides, sulfated disaccharides, sulfated polysaccharides, sulfated sugar alcohols and sulfated cyclitols, [2] or [3]
  • the sulfated saccharide or a pharmaceutically acceptable salt thereof includes dextran sulfate Na, cellulose SO 3 Na, xanthan gum SO 3 Na, pectin SO 3 Na, fucoidan, alginate SO 3 Na, inulin SO 3 Na, malto.
  • Heptaose SO 3 Na stachyose SO 3 Na, maltotriose SO 3 Na, maltitol SO 3 Na, sucrose 8SO 3 K, glucose SO 3 Na, myo-6 inositol SO 3 K, ⁇ -cyclodextrin SO 3 Na,
  • the sulfated saccharide or a pharmaceutically acceptable salt thereof includes dextran sulfate Na, fucoidan, xanthan gum SO 3 Na, pectin SO 3 Na, maltoheptaose SO 3 Na, maltotriose SO 3 Na, maltitol.
  • [8] The medium according to any of [2] to [7], wherein the sulfated saccharide or a pharmaceutically acceptable salt thereof is dextran sulfate Na having an average molecular weight of 2,500 to 7,500.
  • the sulfated polymer is a sulfo group-containing polyvinyl alcohol, a sulfo group-containing polyvinyl amine, a sulfo group-containing polyallylamine, a sulfo group-containing polyethyleneimine, a sulfo group-containing ⁇ -polylysine, a sulfo group-containing ⁇ -polyglutamate methyl / ⁇ -.
  • a sulfo group-containing branched polyglycerin derivative or a pharmaceutically acceptable salt thereof is branched polyglycerin-monomethyltetraethylene glycol-SO 3 Na, branched polyglycerin-2-furfuryl-SO 3 Na, or The medium according to [14] above, which is branched polyglycerin-isopropyloxy-SO 3 Na.
  • a sulfurized polymer of saccharides crosslinked with a diisocyanate compound or a pharmaceutically acceptable salt thereof is maltotriose-hexamethylene diisocyanate-SO 3 Na or dextran-hexamethylene diisocyanate-SO 3 Na
  • the medium according to [18], wherein the sugar lactone sulfate or a pharmaceutically acceptable salt thereof is gluconolactone-SO 3 Na.
  • the medium according to [1], wherein the sulfated compound is a sulfate of an organic acid.
  • the stem cells are mesenchymal stem cells, embryonic stem cells, or induced pluripotent stem cells.
  • a method (provided that the content of the sulfated compound when the sulfated compound is a sulfated polysaccharide is 250 ng / ml or less).
  • the sulfated compound is a sulfated saccharide (provided that the content of sulfated saccharide when the sulfated saccharide is a sulfated polysaccharide is 250 ng / ml or less).
  • the sulfated saccharide is (I) 1 or 2 or more of the following general formula (a)
  • nb is an integer of 3 to 100, nb number of R 1b are each independently a functional group, which may have a substituent, Including one or more sulfate groups)
  • III the following general formula (c)
  • nc is 1, 2 or 3, R 1c to R 4c are the same or different and each is a functional group which may have a substituent, nc R 5c are each independently a functional group optionally having a substituent, Including one or more sulfate groups)
  • the method according to [25] which is at least one selected from the group consisting of compounds represented by: [27]
  • the sulfated saccharide is at least one selected from the group consisting of sulfated monosaccharide, sulfated disaccharide, sulfated polysaccharide, sulfated sugar alcohol, and sulfated cyclitol, [25] or [26] The method described in 1.
  • the sulfated saccharide or a pharmaceutically acceptable salt thereof includes dextran sulfate Na, cellulose SO 3 Na, xanthan gum SO 3 Na, pectin SO 3 Na, fucoidan, alginate SO 3 Na, inulin SO 3 Na, malto Heptaose SO 3 Na, stachyose SO 3 Na, maltotriose SO 3 Na, maltitol SO 3 Na, sucrose 8SO 3 K, glucose SO 3 Na, myo-6 inositol SO 3 K, ⁇ -cyclodextrin SO 3 Na, The method according to any one of [25] to [28], which is at least one selected from the group consisting of mannitol SO 3 Na, xylitol SO 3 Na, and erythritol SO 3 Na.
  • the sulfated saccharide or a pharmaceutically acceptable salt thereof includes dextran sulfate Na, fucoidan, xanthan gum SO 3 Na, pectin SO 3 Na, maltoheptaose SO 3 Na, maltotriose SO 3 Na, maltitol.
  • [31] The method according to any one of [25] to [30], wherein the sulfated saccharide or a pharmaceutically acceptable salt thereof is dextran sulfate Na having an average molecular weight of 2,500 to 7,500.
  • the method according to [34] which is a compound represented by the formula (1) and comprising one or more sulfo groups.
  • [36] The method according to [34] or [35], wherein the content of sulfur in the sulfated polymer is 5% by weight or more.
  • the sulfated polymer is a sulfo group-containing polyvinyl alcohol, a sulfo group-containing polyvinyl amine, a sulfo group-containing polyallylamine, a sulfo group-containing polyethyleneimine, a sulfo group-containing ⁇ -polylysine, a sulfo group-containing ⁇ -polyglutamate methyl / ⁇ -.
  • a branched polyglycerin derivative containing a sulfo group or a pharmaceutically acceptable salt thereof is branched polyglycerin-monomethyltetraethylene glycol-SO 3 Na, branched polyglycerin-2-furfuryl-SO 3 Na, or The method according to [37] above, which is branched polyglycerin-isopropyloxy-SO 3 Na.
  • the sulfated compound is a sulfated polymer of a saccharide crosslinked with a diisocyanate compound.
  • Sulfur oxide of a crosslinked polymer of a saccharide with a diisocyanate compound or a pharmaceutically acceptable salt thereof is maltotriose-hexamethylene diisocyanate-SO 3 Na or dextran-hexamethylene diisocyanate-SO 3 Na
  • the method according to [39] wherein [41] The method according to [24], wherein the sulfated compound is a sugar lactone sulfate.
  • the sugar lactone sulfate or pharmaceutically acceptable salt thereof is gluconolactone-SO 3 Na.
  • the method according to [24], wherein the sulfated compound is a sulfate of an organic acid.
  • stem cells can be efficiently propagated. Therefore, the frequency of medium exchange during culture can be lowered, and the culture cost of stem cells can be reduced.
  • the present invention is a medium for proliferating stem cells containing fibroblast growth factor, comprising a sulfated compound or a pharmaceutically acceptable salt thereof at a concentration that promotes the proliferation of stem cells in the presence of FGF.
  • a medium hereinafter also referred to as a medium of the present invention.
  • a sulfated compound refers to a sulfate of any compound that can act to promote the proliferation of stem cells in the presence of FGF.
  • a sulfated compound or a pharmaceutically acceptable salt thereof “acts in promoting the proliferation of stem cells in the presence of FGF” means that it does not contain a sulfated compound or a pharmaceutically acceptable salt thereof. Based on the number of stem cells cultured in the presence of FGF under the same conditions as a reference (100%), when a sulfated compound or a pharmaceutically acceptable salt thereof is contained in the medium, it is usually 100% or more, preferably 120%. % Of cells can be obtained. FGF should just exist in the density
  • the sulfated compounds in the present invention are preferably sulfated saccharides, sulfated polymers, sulfates of crosslinked polymers of saccharides with diisocyanate compounds, sulfates of sugar lactones or sulfates of organic acids.
  • the sulfated compound is a sulfated saccharide.
  • the sulfated saccharide is a saccharide sulfate.
  • the “saccharide” is not particularly limited as long as it is known in the art, and may be a novel one.
  • the saccharide may be a natural product or a synthetic product.
  • the sulfated saccharide added to the medium of the present invention is preferably a sulfated monosaccharide, sulfated disaccharide, sulfated polysaccharide, sulfated sugar alcohol, or sulfated cyclitol.
  • One aspect of the sulfated saccharide is: (I) 1 or 2 or more of the following general formula (a)
  • na 1, 2 or 3
  • R 1a and R 3a are the same or different and each is a functional group which may have a substituent
  • na R 2a are each independently a functional group which may have a substituent.
  • the “structural unit derived from the compound represented by the general formula (a)” is derived from the compound represented by the general formula (a) as a monomer and contained in the sulfated saccharide I. (Hereinafter also referred to as the structural unit a for convenience).
  • the “functional group” means an atom or an atomic group that exists in the molecule of an organic compound and causes the characteristic reactivity of the compound. Specifically, hydrogen, carbon , Nitrogen, oxygen and the like.
  • the functional group include a hydroxyl group, alkoxy group, amino group, acylamino group, carboxyl group, ester group, amide group, formyl group, carbonyl group, hydroxyalkyl group, alkyl group (for example, methyl, ethyl, n-propyl, Linear or branched such as isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, tert-pentyl, neopentyl, 2-pentyl, 3-pentyl, n-hexyl, 2-hexyl Alkyl groups, cyclic alkyl groups such as cyclopropyl
  • substituted in the “functional group optionally having substituent (s)” is not particularly limited as long as it is usually used when constituting a saccharide, but a hydroxyl group, amino group, carboxyl group, formyl Group, carbonyl group and the like are exemplified. Furthermore, these functional groups may be substituted with a sulfate group, a phosphate group, an acetyl group, an amide group, or the like. When two or more substituents are present, they may be the same or different.
  • the functional group constituting R 1a to R 3a is preferably a hydroxyl group, an alkoxy group, an amino group, an acylamino group, a carboxyl group, a hydroxyalkyl group, or an alkyl group (eg, methyl).
  • the substituent that the functional group may have is preferably a hydroxyl group.
  • —OH in the structural unit represented by the general formula (a) may have a substituent when it is located at the terminal of the sulfated saccharide without being involved in the connection of the structural units.
  • substituents include a sulfuric acid group, a phosphoric acid group, an acetyl group, and an amide group.
  • each structural unit may be the same or different.
  • the structural units may be linked via a spacer (linking group), but are preferably linked by a glycosidic bond without a spacer.
  • the glycosidic bond may be ⁇ -type or ⁇ -type.
  • the type of glycosidic bond is not particularly limited. For example, ⁇ -1,2 bond, ⁇ -1,2 bond, ⁇ -1,3 bond, ⁇ -1,3 bond, ⁇ -1,4 bond, ⁇ -1,4 bond, ⁇ -1,5 bond, ⁇ -1,5 bond, ⁇ -1,6 bond, ⁇ -1,6 bond, etc., and any of them may be used.
  • a plurality of bonding modes may be included in the.
  • the number of structural units a in sulfated saccharide I preferable for mesenchymal stem cell growth is usually 1 to 5,000, preferably 1 to 500, more preferably 1 to 50, and most preferably 1 to 30.
  • the number of the structural unit a in the sulfated saccharide I preferable for pluripotent stem cell proliferation is usually 1 to 100,000, preferably 1 to 10,000, more preferably 1 to 5,000, and most preferably 1 to 1,000. is there.
  • Sulfated saccharide I contains one or more sulfate groups. It is sufficient that the sulfated saccharide I as a whole contains one or two or more sulfate groups, and each of the structural units does not need to contain a sulfate group.
  • the sulfate group is a sulfate group in R 1a to R 3a in the structural unit a, or a sulfate group as a substituent for —OH in the structural unit a, and usually any functional group capable of sulfation such as a hydroxyl group. It introduce
  • the number of sulfate groups in the sulfated saccharide I may vary depending on the number of structural units, the number of functional groups capable of sulfation, etc., but is preferably about 1.5 residues / structural unit a.
  • a compound containing one structural unit a and containing one or more sulfate groups corresponds to a sulfated monosaccharide.
  • the monosaccharide those known in the art can be employed without any particular limitation, and may be a novel monosaccharide.
  • the number of carbons constituting the saccharide is not limited, and may be any of four carbon sugars, five carbon sugars, six carbon sugars, seven carbon sugars, and the like.
  • Specific examples of monosaccharides include glucose, galactose, mannose, talose, idose, altrose, allose, growth, xylose, arabinose, rhamnose, fucose, fructose, ribose, deoxyribose, glucosamine, galactosamine, glucuronic acid, Examples include galacturonic acid.
  • the sulfated monosaccharide is a sulfate of these monosaccharides, and preferably a sulfate of glucose (for example, glucose SO 3 H).
  • a compound containing two or more structural units a and containing one or more sulfate groups corresponds to a sulfated disaccharide or a sulfated polysaccharide.
  • a disaccharide is a saccharide in which the monosaccharide dimolecules are combined by a glycosidic bond to form a single molecule, and those known in the art can be used without any particular limitation. Also good.
  • the type of glycosidic bond is not particularly limited, and ⁇ -1,2 bond, ⁇ -1,2 bond, ⁇ -1,3 bond, ⁇ -1,3 bond, ⁇ -1,4 bond, ⁇ -1,4 Bond, ⁇ -1,5 bond, ⁇ -1,5 bond, ⁇ -1,6 bond, ⁇ -1,6 bond, ⁇ -1, ⁇ -1 bond, ⁇ - Any of 1, 2, and 2 bonds may be used.
  • disaccharide examples include sucrose, lactose, maltose, trehalose, cellobiose, and maltitol.
  • the sulfated disaccharide is a sulfate of these disaccharides, and preferably a sulfate of sucrose (for example, sucrose 8SO 3 H) and a sulfate of maltitol (for example, maltitol SO 3 H).
  • a polysaccharide is a sugar in which three or more molecules of the above monosaccharide are linked by a glycosidic bond to form a single molecule, and those known in the art can be used without any particular limitation. Good.
  • the polysaccharide may be composed of only one kind of the saccharides, or may be composed of a combination of two or more kinds.
  • the polysaccharide may be linear, branched or cyclic.
  • polysaccharide examples include amylose, amylopectin, glycogen, dextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, dextran, pullulan, cellulose and derivatives thereof (for example, hydroxyethylcellulose, hydroxypropylcellulose, etc.), laminaran , Curdlan, callose, mannan, glucomannan, galactomannan, xylan, glucuronoxylan, arabinoxylan, araban, galactan, galacturonan, chitin, chitosan, xyloglucan, pectinic acid and pectin, alginic acid, arabinogalactan, glycosaminoglucan (For example, heparin, heparan sulfate, hyaluronic acid, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan
  • inulin can be mentioned dextran, cellulose, xanthan gum, fucoidan, alginic acid, inulin, alpha-cyclodextrin, maltoheptaose, stachyose and maltotriose are preferable.
  • Sulfated polysaccharides are sulfates of these polysaccharides, and those that are already sulfated among the above saccharides (for example, heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, ketalan sulfate, fucoidan).
  • Etc. includes the saccharide itself.
  • sulfated polysaccharides include dextran sulfate, cellulose sulfate (ie, cellulose SO 3 H), xanthan gum sulfate (ie, xanthan gum SO 3 H), fucoidan, alginic acid sulfate (ie, alginic acid SO 3 H), Inulin sulfate (ie, inulin SO 3 H), ⁇ -cyclodextrin sulfate (ie, ⁇ -cyclodextrin SO 3 H), maltoheptaose sulfate (ie, maltoheptaose SO 3 H), stachyose Sulfur oxide (ie, stachyose SO 3 H) and maltotriose sulfate (ie, maltotriose SO 3 H) are preferred.
  • nb is an integer of 3 to 100, nb number of R 1b are each independently a functional group, which may have a substituent, Including one or more sulfate groups) (Hereinafter, sulfated saccharide II).
  • Examples of the functional group and the substituent that the functional group may have are the same as those described above, and the functional group constituting R 1b is preferably a hydroxyl group.
  • Sulfated saccharide II contains one or more sulfate groups.
  • the sulfate group is a sulfate group present in R 1b in the general formula (b), and is usually introduced by sulfation of any functional group capable of sulfation such as a hydroxyl group, and the position thereof is not particularly limited. .
  • the number of sulfate groups in the sulfated saccharide II may vary depending on the number of functional groups capable of being sulfated, but is preferably about 1.5 residues / sulfated saccharide II.
  • Sulfated saccharide II corresponds to sulfated sugar alcohol.
  • Sugar alcohol is a compound produced by reducing the carbonyl group of the monosaccharide.
  • the thing well-known in the said technical field can be employ
  • the sugar alcohol include glycerin, erythritol, threitol, arabinitol, xylitol, sorbitol, mannitol, boremitol, and perseitol, and erythritol, xylitol, and mannitol are preferable.
  • the sulfated sugar alcohol is a sulfate of these sugar alcohols, such as glycerol sulfate (ie, glycerin SO 3 H), erythritol sulfate (ie, erythritol SO 3 H), xylitol sulfate (ie, xylitol). SO 3 H) and sulfoxides of mannitol (ie mannitol SO 3 H) are preferred.
  • nc is 1, 2 or 3
  • R 1c to R 4c are the same or different and each is a functional group which may have a substituent
  • nc R 5c are each independently a functional group optionally having a substituent, Including one or more sulfate groups
  • sulfated saccharide III a functional group which may have a substituent
  • sulfated saccharide III a functional group optionally having a substituent, Including one or more sulfate groups
  • Examples of the functional group and the substituent that the functional group may have are the same as those described above, and the functional group constituting R 1c to R 5c is preferably a hydroxyl group.
  • Sulfated saccharide III contains one or more sulfate groups.
  • the sulfate group is a sulfate group present in one or more of R 1c to R 5c in the general formula (c), and is usually introduced by sulfation of any functional group capable of sulfation such as a hydroxyl group.
  • the position is not particularly limited.
  • the number of sulfate groups in the sulfated saccharide III may vary depending on the number of functional groups capable of being sulfated, but is preferably about 1.5 residues / sulfated saccharide III.
  • Sulfated saccharide III corresponds to sulfated cyclitol.
  • Cycitol is a polyhydroxycycloalkane and is also called cyclic sugar alcohol or cyclit.
  • cyclitol those known in the art can be employed without particular limitation, and novel cyclitol may be used. Many isomers are known for cyclitol, but any isomer may be used.
  • the number of carbon atoms constituting the ring is not particularly limited, but is preferably a six-membered ring.
  • Examples of cyclitol include inositol (1,2,3,4,5,6-cyclohexanehexaol), inositol derivatives (derivatives in which a hydroxy group is substituted with an amino group, a ketone group, a carboxyl group, or the like).
  • inositol eg, myo-inositol
  • Sulfated cyclitol is a sulfate of these cyclitols, and inositol sulfate (for example, myo-inositol 6SO 3 H) is preferable.
  • the content of sulfur in the sulfated saccharide is usually 5% by weight or more, preferably 10% by weight or more, more preferably 15% by weight or more, and the upper limit is usually 40% by weight or less, preferably 35% by weight or less, More preferably, it is 30% by weight or less, and within this range, it can work to promote the proliferation of stem cells in the presence of FGF.
  • the sulfur content is a percentage by weight of sulfur derived only from sulfate groups in the sulfated saccharide, and is a method known in the art (eg, rosin acid method, elemental analysis or emission spectroscopy). Analysis).
  • the sulfur content of sucrose 8SO 3 K used in Examples described later is 19.5 wt% (sulfate group content 48.8 wt%), and the sulfur content of dextran sulfate Na is 19.15 wt% (sulfate groups). The content is 47.9% by weight.
  • the sulfated saccharide includes an optical isomer, a stereoisomer, a tautomer, a rotational isomer, or a mixture thereof in an arbitrary ratio.
  • optical isomers can be obtained by using optically active synthetic intermediates or optically resolving synthetic intermediates or final racemates according to conventional methods.
  • stable isotopes and radioactive isotopes are also included.
  • the sulfated saccharide contained in the medium of the present invention may be in the form of a pharmaceutically acceptable salt.
  • salts include salts of sulfate groups and bases present in sulfated saccharides.
  • alkali metal salts such as sodium salt and potassium salt
  • alkaline earth metal salts such as calcium salt and magnesium salt
  • inorganic base salts such as aluminum salt and ammonium salt
  • Examples include organic base salts with 6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine, N, N′-dibenzylethylenediamine, and the like, and they can be prepared from free forms by conventional methods.
  • a sodium salt or a potassium salt of a sulfate group is preferable.
  • sucrose 8SO 3 K, dextran sulfate Na (molecular weight 5,000, 25,000, 500,000, etc.) Cellulose SO 3 Na, xanthan gum SO 3 Na, alginate SO 3 Na, inulin SO 3 Na, ⁇ -cyclodextrin SO 3 Na, erythritol SO 3 Na, xylitol SO 3 Na, mannitol SO 3 Na, myo-inositol 6SO 3 K, etc. Is mentioned.
  • Xylitol SO 3 Na is a novel compound.
  • the average molecular weight of the sulfated saccharide or a pharmaceutically acceptable salt thereof is not particularly limited, and varies depending on the type of sulfated saccharide to be used and the type of salt. 1 million, preferably 100 to 700,000, more preferably 300 to 500,000, and most preferably 500 to 100,000. Preferred for pluripotent stem cell proliferation is usually 50 to 50 million, preferably 100 to 5 million, more preferably 3 to 2.5 million, and most preferably 500 to 500,000. If the average molecular weight is too large (for example, over 1 million in the growth of mesenchymal stem cells), the addition of a certain concentration or more tends to suppress cell proliferation, which may be caused by toxicity or cell adhesion inhibition.
  • the average molecular weight can be measured using gel permeation chromatography or the like.
  • the average molecular weight of dextran sulfate Na is usually 1,000 to 700,000, preferably 1,000 to 300,000, more preferably 1,000 to 100,000, and most preferably 2,500 to 7,500. .
  • the sulfated compound is a sulfated polymer.
  • the sulfated polymer is a sulfate of any polymer.
  • the polymer may be known in the art, may be novel, and may be a natural product or a synthetic product.
  • sulfated saccharides are not included in the sulfated polymer.
  • polystyrene resin examples include polyester, polyvinyl, polyamide, polyamine, polyether, polycarbonate, polyalkyl, polyaryl, polyimide, polyurethane, epoxy resin, and the like, and polymers by combinations thereof are also included in the polymer in the present invention.
  • the polymer may be in any form of a linear polymer, a branched polymer (for example, a comb polymer, a star polymer, a dendritic polymer, etc.), a crosslinked polymer, and the like.
  • the polymer may be produced by polymerizing one kind of monomer, or may be a copolymer.
  • a copolymer the sequence of monomers to be polymerized, the presence or absence of branching, etc. are not particularly limited, and any of a random copolymer, a block copolymer, a graft copolymer and the like may be used.
  • the polymer used in the present invention varies depending on the type of monomer constituting the polymer, but is usually a polymer of monomers of about 1 to 1500, preferably about 3 to 1000, and has a molecular weight of about 200 to 400,000, preferably Is about 500 to 100,000.
  • the sulfated polymer contains one or more “functional groups optionally having substituents”.
  • the “functional group” means an atom or an atomic group that exists in the molecule of an organic compound and causes the characteristic reactivity of the compound. Specifically, hydrogen, carbon , Nitrogen, oxygen and the like.
  • the functional group include functional groups composed of hydrogen, carbon, nitrogen, oxygen, etc., for example, a hydroxyl group, an alkoxy group, an amino group, an acylamino group, a carboxyl group, an ester group, an amide group, a formyl group, a carbonyl group.
  • alkyl group for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, tert-pentyl, neopentyl, 2-pentyl, Linear or branched alkyl groups such as 3-pentyl, n-hexyl and 2-hexyl, cyclic alkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl), pyrrolidine, tetrahydrofuran, tetrahydrothiophene, etc.
  • alkyl group for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-buty
  • Heterocyclic aliphatic, etc. Lumpur or heteroaryl group (e.g., phenyl, naphthyl, pyridinyl, pyrimidyl, pyrazinyl, triazinyl, indolizyl, imidazolyl, thiazolyl, oxazolyl, purinyl, groups such as quinolinyl), and the like.
  • the functional group is preferably a hydroxyl group, an amino group or an alkyl group. When two or more functional groups are present, they may be the same or different.
  • substituted in the “functional group optionally having substituent (s)” is not particularly limited as long as it is usually used when constituting a polymer, but is a sulfo group, a phosphate group, an acyl group. And an amide group. When two or more substituents are present, they may be the same or different.
  • the sulfated polymer can be obtained by introducing one or more sulfo groups into the polymer. It is not necessary that each monomer constituting the sulfated polymer contains a sulfo group.
  • the sulfo group is a functional group in the monomer constituting the sulfated polymer, including those introduced by sulfation of any functional group that can be sulfated, such as a hydroxyl group and an amino group in the monomer, There is no particular limitation.
  • the number of sulfo groups in the sulfated polymer is not particularly limited, and may vary depending on the number of monomers to be polymerized (degree of polymerization), the number of functional groups capable of being sulfated, and the like.
  • the method for introducing a sulfo group into the polymer is not particularly limited.
  • a monomer having a sulfo group introduced in advance can be polymerized to obtain a sulfated polymer, or the monomer can be polymerized to give a polymer, and then the resulting polymer can be sulfated to obtain a sulfated polymer.
  • the sulfation can be performed according to a method known in the art.
  • n A's may be the same (polymer) or different (copolymer), and the bonding (polymerization) mode is not particularly limited, and is linear, branched (for example, comb, star) Type, dendritic, etc.), cross-linked type and the like.
  • the sequence of monomers to be polymerized, the presence or absence of branching, etc. are not particularly limited, and any of a random copolymer, a block copolymer, a graft copolymer and the like may be used.
  • n means the number of structural units A in the sulfated polymer, that is, the degree of polymerization. In the present invention, n is 1 to 1500, preferably 3 to 1000, more preferably 3 to 700.
  • Aliphatic hydrocarbons include saturated aliphatic hydrocarbons (eg, ethane, 2-methylbutane, pentane, 2,2-dimethylbutane, 2,3-dimethylbutane, hexane, 2-methylpentane, 3-methylpentane, 2 , 2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, heptane, 2-methylhexane, 3-methylhexane, 2,2,3-trimethylbutane, 2 , 2-dimethylhexane, 2,5-dimethylhexane, 3,4-dimethylhexane, hexamethylethane, 2-methylheptane, 4-methylheptane, octane, 2,2,4-trimethylpentane, 2,3 , 4-
  • aromatic hydrocarbon examples include benzene, toluene, xylene, indene, naphthalene, phenanthrene and the like.
  • polymer structural unit examples include structural units such as polyester, polyvinyl, polyamide, polyamine, polyether, polycarbonate, polyaryl, polyimide, polyurethane, and epoxy resin.
  • R 1 is a functional group which may have a substituent.
  • the “functional group optionally having substituent (s)” is the same as described above, and the functional group constituting R 1 is preferably an alkyl group (eg, methyl), a carbonyl group, a hydroxyl group, an alkoxyl group. Amino group, acylamino group, hydroxylalkyl group, and aryl group (eg, phenyl).
  • the substituent that the functional group may have is preferably a sulfo group.
  • the content of sulfur in the sulfated polymer is usually 5% by weight or more, preferably 10% by weight or more, more preferably 15% by weight or more, and the upper limit is 40% by weight or less. In the presence, it can work to promote proliferation of stem cells.
  • the sulfur content is a percentage by weight of sulfur in the sulfated polymer, and can be measured by a rosin acid method, elemental analysis or emission spectroscopic analysis known in the art.
  • the sulfur content of polyallylamine SO 3 Na used in Examples described later is 19.43% by weight (sulfo group content is 48.6% by weight).
  • the sulfated polymer also includes optical isomers, stereoisomers, tautomers, rotamers, or mixtures thereof in any ratio.
  • optical isomers can be obtained as a single product by a synthesis method and a separation method known per se.
  • optical isomers can be obtained by using optically active synthetic intermediates or optically resolving synthetic intermediates or final racemates according to conventional methods.
  • stable isotopes and radioactive isotopes are also included.
  • sulfated polymer examples include sulfo group-containing polyvinyl alcohol (that is, polyvinyl alcohol SO 3 H), sulfo group-containing polyvinyl amine (that is, polyvinyl amine SO 3 H), polyethylene sulfonic acid, sulfo group-containing polyallyl amine (that is, Polyallylamine SO 3 H), sulfo group-containing polyethyleneimine (ie, polyethyleneimine SO 3 H), sulfo group-containing ⁇ -polylysine (ie, ⁇ -polylysine SO 3 H), sulfo group-containing ⁇ -polyglutamate methyl / ⁇ - 5-hydroxynorvaline (2/8) copolymer (ie, methyl ⁇ -polyglutamate / ⁇ -5-hydroxynorvaline (5-SO 3 H) (2/8) copolymer), ⁇ -polyglutamic acid - ⁇ -taurine, sulfo group-containing poly
  • the sulfo group-containing branched polyglycerin derivative is a compound in which any functional group is bonded to any substitutable position of the sulfo group-containing branched polyglycerin (that is, branched polyglycerin SO 3 H). It is.
  • Sulfo group-containing branched polyglycerin derivatives or pharmaceutically acceptable salts thereof are specifically branched polyglycerin-monomethyltetraethylene glycol-SO 3 Na, branched polyglycerin-2-furfuryl-SO 3 Na And branched polyglycerin-isopropyloxy-SO 3 Na.
  • Branched polyglycerin-isopropyloxy-SO 3 Na is a novel compound.
  • sulfo group-containing polyvinyl alcohol sulfo group-containing polyvinyl amine, polyethylene sulfonic acid, sulfo group-containing polyallylamine, sulfo group-containing ⁇ -polyglutamate methyl / ⁇ -5-hydroxynorvaline (2/8) copolymer, ⁇ -polyglutamic acid- ⁇ -taurine and triserine containing sulfo group.
  • the sulfated polymer contained in the medium of the present invention may be in the form of a pharmaceutically acceptable salt.
  • a salt of a sulfo group or the like and a base include alkali metal salts such as sodium salt and potassium salt; alkaline earth metal salts such as calcium salt and magnesium salt; inorganic base salts such as aluminum salt and ammonium salt; trimethylamine, triethylamine, pyridine, picoline, 2, Examples include organic base salts with 6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine, N, N′-dibenzylethylenediamine, and the like, and they can be prepared from free forms by conventional methods.
  • the pharmaceutically acceptable salt of the sulfated polymer is preferably a sodium salt of a sulfo group, and examples thereof include polyvinyl alcohol SO 3 Na, polyvinyl amine SO 3 Na, polyethylene sulfonate Na and the like.
  • the weight average molecular weight of the sulfated polymer or a pharmaceutically acceptable salt thereof is not particularly limited, and varies depending on the type of sulfated polymer employed and the type of salt, but is usually 200 to 400,000, preferably 500 to 100,000. More preferably, it is 500 to 50,000. When the weight average molecular weight exceeds 400,000, the solubility in the medium tends to decrease.
  • the weight average molecular weight can be measured using gel permeation chromatography or the like.
  • the sulfated compound is a sulfated polymer of saccharides crosslinked with a diisocyanate compound or a pharmaceutically acceptable salt thereof.
  • the saccharide is the same as that in the sulfated saccharide and is not particularly limited, but is preferably maltotriose and dextran.
  • a diisocyanate compound For example, well-known aliphatic diisocyanate, alicyclic diisocyanate, alicyclic aromatic diisocyanate, and aromatic diisocyanate are mentioned, Preferably it is aliphatic diisocyanate, More preferably, it is hexamethylene diisocyanate. It is.
  • maltotriose-hexamethylene diisocyanate-SO 3 Na or dextran-hexamethylene diisocyanate-SO 3 is preferable.
  • a sulfated polymer of saccharides crosslinked with a diisocyanate compound or a pharmaceutically acceptable salt thereof can be produced by a method known in the art.
  • maltotriose-hexamethylene diisocyanate-SO 3 Na and dextran-hexamethylene diisocyanate-SO 3 Na can be synthesized by the method described in the examples below.
  • maltotriose-hexamethylene diisocyanate-SO 3 Na is a novel compound.
  • the sulfated compound is a sugar lactone sulfate or a pharmaceutically acceptable salt thereof.
  • Sugar lactone refers to a cyclic ester compound derived from an oxidation reaction of a saccharide.
  • the saccharide is the same as that in the sulfated saccharide and is not particularly limited. Examples thereof include monosaccharides, disaccharides and polysaccharides, and glucose is preferable.
  • the sugar lactone sulfate or pharmaceutically acceptable salt thereof is preferably gluconolactone-SO 3 Na.
  • a sugar lactone sulfate or a pharmaceutically acceptable salt thereof can be produced by a method known in the art. For example, gluconolactone-SO 3 Na can be synthesized by the method described in Examples below.
  • Gluconolactone-SO 3 Na is a novel compound.
  • the sulfated compound is a sulfate of an organic acid or a pharmaceutically acceptable salt thereof.
  • the organic acid is not particularly limited as long as it has at least one substituent capable of sulfation such as a hydroxyl group, and examples thereof include malic acid, tartaric acid, citric acid and the like, and tartaric acid is preferable.
  • the organic acid sulfate or pharmaceutically acceptable salt thereof is preferably tartaric acid-SO 3 Na.
  • a sulfate of an organic acid or a pharmaceutically acceptable salt thereof can be produced by a method known in the art. For example, tartaric acid-SO 3 Na can be synthesized by the method described in Examples below.
  • the concentration of the sulfated compound or the pharmaceutically acceptable salt thereof in the medium of the present invention can be set to any range as long as it can work to promote the proliferation of stem cells in the presence of FGF, and the sulfated compound to be employed However, if the concentration of the sulfated compound or a pharmaceutically acceptable salt thereof is low, the effect of promoting the proliferation of stem cells may be weakened in the presence of FGF. It may involve cell growth suppression due to toxicity or adhesion inhibition. Therefore, the culture medium of the present invention is characterized by containing sulfated or a pharmaceutically acceptable salt thereof at a concentration that promotes proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 2.5 pg / ml to 10 ⁇ g / ml, preferably 25 pg / ml to 250 ng / ml. If so, it can work to promote proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 2.5 pg / ml to 10 ⁇ g / If it is ml, preferably 25 pg / ml to 2.5 ⁇ g / ml, it can work to promote proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 2.5 pg / ml to 25 ⁇ g / ml, preferably If it is 25 pg / ml to 10 ⁇ g / ml, it can work to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 50 ng / ml to 200 ng / ml or 500 ng / ml to 100 ⁇ g. / Ml, preferably 75 ng / ml to 150 ng / ml or 2.5 ⁇ g / ml to 25 ⁇ g / ml can act to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 100 ng / ml to 10 ⁇ g / ml, preferably If it is 250 ng / ml to 2.5 ⁇ g / ml, it can work to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 2.5 ng / ml to 1.0 ⁇ g / ml, preferably If it is 25 ng / ml to 250 ng / ml, it can act to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 250 pg / ml to 2.5 ⁇ g / ml, preferably 2.5 ng / ml to If it is 250 ng / ml, it can work to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 2.5 pg / ml to 250 pg / ml or 5 ng / ml to 250 ng / ml, preferably 5 pg / ml to 200 pg / ml or 10 ng / ml to 250 ng / ml can act to promote proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 2.5 ng / ml to 500 ng / ml, preferably 25 ng / ml to 250 ng / ml. If it is ml, it can work to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 25 pg / ml to 250 ng / ml, preferably 250 pg. / Ml to 250 ng / ml can act to promote proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 25 pg / ml to 2.5 ⁇ g / ml, preferably 250 pg. / Ml to 250 ng / ml can act to promote proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 25 pg / ml to 2.0 ng / ml or 5 ng. / Ml to 500 ng / ml, preferably 25 pg / ml to 150 pg / ml or 25 ng / ml to 250 ng / ml can act to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 2.5 pg / ml to 10 ⁇ g / ml, preferably 25 pg / ml If it is 2.5 ⁇ g / ml, it can work to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 10 ng / ml to 50 ⁇ g / ml, preferably 25 ng / ml to 2.5 ⁇ g. / Ml can act to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 250 pg / ml to 200 ng / ml, preferably 250 pg / ml to 100 ng / ml. If so, it can work to promote proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 5 ng / ml to 250 ng / ml, preferably 25 ng / ml to 250 ng / ml. If so, it can work to promote proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 250 pg / ml to 250 ng / ml, preferably 25 ng / ml to 250 ng / ml. If present, it can work to promote proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 12.5 pg / ml to 2 ng / ml or 5 ng / ml to 200 ng / ml.
  • 25 pg / ml to 250 pg / ml or 25 ng / ml to 100 ng / ml can act to promote the proliferation of stem cells in the presence of FGF.
  • the sulfated polymer or a pharmaceutically acceptable salt thereof is a methyl ⁇ -polyglutamate / ⁇ -5-hydroxynorvaline (5-SO 3 Na) (2/8) copolymer
  • concentration in the medium is 12.5 pg / ml to 2 ng / ml or 5 ng / ml to 250 ⁇ g / ml, preferably 25 pg / ml to 250 pg / ml or 25 ng / ml to 2.5 ⁇ g / ml, in the presence of FGF It can work to promote the proliferation of stem cells.
  • the concentration in the medium of the present invention is 12.5 pg / ml to 2 ng / ml or 5 ng / ml to If it is 250 ⁇ g / ml, preferably 25 pg / ml to 250 pg / ml or 25 ng / ml to 2.5 ⁇ g / ml, it can work to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 125 pg / ml to 5 ng / ml, preferably 250 pg / ml to 2.5 ng / ml. If it is ml, it can work to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 10 pg / ml to 1 ⁇ g / ml, preferably 25 pg / ml to 250 ng. / ml can act to promote proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 12.5 pg / ml to 12.5 ng. / ml, preferably 25 pg / ml to 2.5 ng / ml, can act to promote proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is preferably 12.5 pg / ml to 50 ng / ml, preferably If it is 25 pg / ml to 25 ng / ml, it can work to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 25 pg / ml to 2.0 ng / ml or 5 ng / Ml to 100 ng / ml, preferably 25 pg / ml to 250 pg / ml or 10 ng / ml to 100 ng / ml can act to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 25 pg / ml to 2.0 ng / ml.
  • 100 ng / ml to 500 ng / ml, preferably 25 pg / ml to 250 pg / ml or 100 ng / ml to 250 ng / ml can act to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 25 pg / ml to 2.0 ng / ml, preferably 25 pg / ml. If it is ⁇ 250 pg / ml, it can work to promote the proliferation of stem cells in the presence of FGF.
  • the concentration in the medium of the present invention is 500 pg / ml to 20 ng / ml, preferably 1 ng / ml to 10 ng / ml. If so, it can work to promote proliferation of stem cells in the presence of FGF.
  • the sulfated compound or a pharmaceutically acceptable salt thereof can act to suppress a decrease in the amount of FGF protein in the medium for stem cell growth.
  • the suppression of the decrease in the amount of FGF protein means that when the amount of FGF protein in the solution is measured immunologically after incubation for a certain period of time in the presence of a sulfated compound or a pharmaceutically acceptable salt thereof, It means that a decrease in the amount of FGF protein is suppressed.
  • Whether or not the decrease in the amount of FGF protein is suppressed can be evaluated by a known method such as the method described in Examples. For example, when the amount of FGF protein when incubated under conditions known not to reduce the amount of FGF protein (eg, 4 ° C.
  • the amount of FGF protein after incubation is less than 10% (eg, 37 If the amount of FGF protein after incubation is 10% or more (preferably 30% or more, more preferably 50% or more, most preferably 70% or more), the amount of FGF protein It can be said that the decrease was suppressed.
  • a sulfated compound or a pharmaceutically acceptable salt thereof that can suppress a decrease in the protein amount of FGF tends to work for promoting proliferation of stem cells in the presence of FGF
  • the sulfated compound or a pharmaceutically acceptable salt thereof In order to select a sulfated compound or a pharmaceutically acceptable salt thereof to be subjected to a culture test, the sulfated compound or the pharmaceutically acceptable salt thereof is selected. You may evaluate whether an acceptable salt can suppress the fall of the protein amount of FGF.
  • the concentration range of the sulfated compound or pharmaceutically acceptable salt thereof in the medium of the present invention is determined by a method using a cell growth system such as the method described in Examples.
  • the concentration range of the sulfated compound or a pharmaceutically acceptable salt thereof in the culture medium of the present invention is usually adjusted to reduce the effect on cells such as cytotoxicity. You may set to a low concentration which does not suppress a protein amount fall.
  • sucrose and xylitol sulfate or salts thereof decrease the protein amount of FGF at a concentration of 2.5 ⁇ g / ml or less.
  • stem cell proliferation can be promoted in the presence of FGF even in the concentration range of 25 pg / ml to 2.5 ⁇ g / ml.
  • polyvinylamine sulfate or a salt thereof does not suppress a decrease in the protein amount of FGF at a concentration of 25 ng / ml or less, but it is 10 ng / ml to 25 ng / ml (preferably 12 Even in the concentration range of 5 ng / ml to 25 ng / ml), the proliferation of stem cells can be promoted in the presence of FGF.
  • polyallylamine sulfate or a salt thereof does not suppress a decrease in the amount of FGF protein at a concentration of 25 ng / ml or less, but 12.5 pg / ml to 2 ng / ml or 5 ng Even in the concentration range of / ml to 25 ng / ml (preferably 25 pg / ml to 250 pg / ml or 5 ng / ml to 25 ng / ml), proliferation of stem cells can be promoted.
  • a sulfate of a methyl ⁇ -polyglutamate / ⁇ -5-hydroxynorvaline (2/8) copolymer or a salt thereof does not suppress the decrease in the amount of FGF protein at a concentration of 25 ⁇ g / ml or less, but it is preferably 12.5 pg / ml to 2 ng / ml or 5 ng / ml to 20 ⁇ g / ml (preferably Can promote the proliferation of stem cells in the presence of FGF even in the concentration range of 25 pg / ml to 250 pg / ml or 25 ng / ml to 2.5 ⁇ g / ml).
  • ⁇ -polyglutamic acid- ⁇ -taurine or a salt thereof does not suppress a decrease in the amount of FGF protein at a concentration of 2.5 ⁇ g / ml or less.
  • Proliferation of stem cells in the presence of FGF even in the concentration range of 5 pg / ml to 2 ng / ml or 5 ng / ml to 20 ⁇ g / ml (preferably 25 pg / ml to 250 pg / ml or 25 ng / ml to 2.5 ⁇ g / ml) Can be promoted.
  • triserine sulfate or a salt thereof does not suppress a decrease in the amount of FGF protein at a concentration of 2.5 ⁇ g / ml or less, but 125 pg / ml to 5 ng / ml (preferably 250 pg). / Ml to 2.5 ng / ml) can promote the proliferation of stem cells in the presence of FGF.
  • dextran-hexamethylene diisocyanate-SO 3 Na does not suppress a decrease in the amount of FGF protein at a concentration of 25 ng / ml or less, but 25 pg / ml to 2.0 ng / ml or 5 ng / ml to 25 ng / ml. In the presence of FGF, the proliferation of stem cells can be promoted.
  • maltotriose-hexamethylene diisocyanate-SO 3 Na does not suppress a decrease in the amount of FGF protein at a concentration of 250 pg / ml or less, but FGF even in a concentration range of 25 pg / ml to 250 pg / ml. In the presence, it can promote stem cell proliferation.
  • gluconolactone-SO 3 Na does not suppress a decrease in the amount of FGF protein at a concentration of 2.5 ⁇ g / ml or less, but in the presence of FGF even in a concentration range of 25 pg / ml to 2.0 ng / ml. Can promote the proliferation of stem cells.
  • tartaric acid-SO 3 Na does not suppress the decrease in the amount of FGF protein at a concentration of 250 ⁇ g / ml or less, but promotes the proliferation of stem cells in the presence of FGF even in the concentration range of 500 pg / ml to 20 ng / ml. Can do.
  • the sulfated polymer has an addition concentration in the order of ng to ⁇ g / ml is necessary for suppressing the decrease in the amount of FGF protein, but even with an addition concentration of pg / ml. Stem cell proliferation can be promoted in the presence of FGF.
  • the medium of the present invention contains fibroblast growth factor (FGF).
  • FGF fibroblast growth factor
  • Examples of FGF include basic fibroblast growth factor (bFGF) and acidic fibroblast growth factor (aFGF). Since FGF has a high effect of promoting proliferation of stem cells, bFGF is added to the medium of the present invention. It is preferable to use it.
  • FGF may be derived from any animal (for example, rat, mouse, guinea pig, rabbit, sheep, horse, pig, cow, monkey, human, etc.), but may be appropriately selected according to the type of stem cell to be cultured. it can. When culturing human-derived stem cells, it is preferably human-derived.
  • FGF include human bFGF (see, for example, Endocrine Rev., 8, 95, 1987), bovine bFGF (see, for example, Proc. Natl. Acad. Sci. Biol., 138, 454-463, 1990), rat bFGF (see, for example, Biochem. Biophys. Res. Commun., 157, 256-263, 1988) and the like.
  • the FGF contained in the medium of the present invention is an isolated / purified natural, synthetic or recombinant protein, mutant protein (including insertion, substitution and deletion mutants) as long as it can promote the proliferation of stem cells. , Fragments, and chemically modified derivatives thereof.
  • the concentration of FGF contained in the medium of the present invention is not particularly limited as long as it is a concentration that can promote the proliferation of stem cells, and is usually 1 ng / ml to 300 ng / ml, preferably 1 ng / ml when FGF is added to the medium. It is ⁇ 200 ng / ml, more preferably 4 ng / ml to 100 ng / ml.
  • concentration of FGF is less than 1 ng / ml, there is a tendency that the effect of promoting proliferation of stem cells cannot be obtained even in the presence of a sulfated compound. Further, when the concentration of FGF exceeds 300 ng / ml, the culture cost tends to increase.
  • stem cell means an immature cell having self-renewal ability and differentiation / proliferation ability.
  • Stem cells include subpopulations such as pluripotent stem cells, multipotent stem cells, and unipotent stem cells depending on differentiation ability.
  • a pluripotent stem cell means a cell having an ability to differentiate into all tissues and cells constituting a living body.
  • a multipotent stem cell means a cell having the ability to differentiate into multiple types of tissues and cells, although not all types.
  • a unipotent stem cell means a cell having the ability to differentiate into a specific tissue or cell.
  • pluripotent stem cells examples include embryonic stem cells (ES cells), embryonic germ cells (EG cells), and induced pluripotent stem cells (iPS cells).
  • ES cells embryonic stem cells
  • EG cells embryonic germ cells
  • iPS cells induced pluripotent stem cells
  • Stem cells established by culturing early embryos produced by nuclear transfer of somatic cell nuclei are also preferred as pluripotent stem cells (Nature, 385, 810 (1997); Science, 280, 1256 (1998) Nature Biotechnology, 17, 456 (1999); Nature, 394, 369 (1998); Nature Genetics, 22, 127 (1999); Proc. Natl. Acad. Sci. USA, 96, 14984 (1999); Nature Genetics, 24, 109 (2000)).
  • multipotent stem cells examples include somatic stem cells such as mesenchymal stem cells, hematopoietic stem cells, nervous system stem cells, bone marrow stem cells, and reproductive stem cells.
  • the multipotent stem cell is preferably a mesenchymal stem cell, more preferably a bone marrow mesenchymal stem cell.
  • a mesenchymal stem cell broadly means a population of stem cells or precursor cells thereof that can differentiate into all or some mesenchymal cells such as osteoblasts, chondroblasts, and lipoblasts.
  • the medium of the present invention can be suitably used for the proliferation of any stem cell, but preferably a mesenchymal stem cell (for example, bone marrow mesenchymal stem cell etc.), embryonic stem cell or induced pluripotent stem cell. For growth.
  • a mesenchymal stem cell for example, bone marrow mesenchymal stem cell etc.
  • embryonic stem cell for example, embryonic stem cell or induced pluripotent stem cell.
  • the medium of the present invention can be suitably used for the growth of stem cells derived from any animal.
  • Stem cells that can be cultured using the medium of the present invention include, for example, rodents such as mice, rats, hamsters, guinea pigs, rabbit eyes such as rabbits, ungulates such as pigs, cows, goats, horses, sheep, Stem cells derived from cats such as dogs, cats, primates such as humans, monkeys, rhesus monkeys, marmosets, orangutans, chimpanzees, etc., preferably stem cells derived from primates.
  • a medium known per se can be used, and it is not particularly limited as long as it does not inhibit the growth of stem cells.
  • RPMI-1640, ⁇ -MEM Ham's Medium F-12, Ham's Medium F-10, Ham's Medium F12K, Medium 199, ATCC-CRCM30, DM-160, DM-201, BME, Fischer, McCoy's 5A, Leibovitz's L- 15, RITC80-7, MCDB105, MCDB107, MCDB131, MCDB153, MCDB201, NCTC109, NCTC135, Waymouth's MB752 / 1, CMRL-1066, Williams' medium E, Brinster's BMOC-3 Medium, E8 medium (Nature Methods, 2011, 8, 424-429), ReproFF2 medium (Reprocell), and mixed media thereof.
  • a medium modified for stem cell culture a mixture of the above basal medium and another medium (for example,
  • the medium of the present invention can contain additives known per se.
  • the additive is not particularly limited as long as it does not inhibit the proliferation of stem cells.
  • growth factors such as insulin
  • iron sources such as transferrin
  • polyamines such as putrescine
  • minerals such as sodium selenate) Etc.
  • saccharides eg glucose etc.
  • organic acids eg pyruvic acid, lactic acid etc.
  • serum proteins eg albumin etc.
  • amino acids eg L-glutamine etc.
  • reducing agents eg 2-mercaptoethanol etc.
  • vitamins Eg, ascorbic acid, d-biotin, etc.
  • steroids eg, ⁇ -estradiol, progesterone, etc.
  • antibiotics eg, streptomycin, penicillin, gentamicin, etc.
  • buffering agents eg, HEPES, etc.
  • the additive conventionally used for the culture of the stem cell can also be included suitably.
  • Each additive is preferably
  • the medium of the present invention may contain serum.
  • the serum is not particularly limited as long as it is an animal-derived serum, as long as it does not inhibit the proliferation of stem cells, but is preferably a mammal-derived serum (eg, fetal bovine serum, human serum, etc.).
  • the serum concentration may be within a concentration range known per se. However, since serum components are known to contain human ES cell differentiation factors and the like, and the culture results may vary due to differences between serum lots, the serum content is A lower value is preferable, and most preferably no serum is contained. Further, when the cultured stem cells are used for medical purposes, it is preferable that the xenogeneic component does not contain serum since it may become an infection source of a blood-borne pathogen or a heterologous antigen. When serum is not included, an alternative additive of serum (for example, Knockout Serum Replacement (KSR) (Invitrogen), Chemically-defined Lipid concentrated (Gibco), etc.) may be used.
  • KSR Knockout Serum
  • the present invention further relates to a method for culturing stem cells using a medium for proliferating stem cells containing FGF, the method comprising adding a sulfated compound or a pharmaceutically acceptable salt thereof to the medium (hereinafter, Also referred to as the method of the present invention.
  • the sulfated compound or a pharmaceutically acceptable salt thereof, FGF, stem cell and medium are as described above.
  • the method of the present invention is characterized in that a sulfated compound or a pharmaceutically acceptable salt thereof is added to a medium at a concentration that acts to promote proliferation of stem cells in the presence of FGF.
  • concentration of the sulfated compound or a pharmaceutically acceptable salt thereof added to the medium is not particularly limited as long as it is a concentration that can work to promote proliferation of stem cells in the presence of FGF.
  • the addition of the sulfated compound or a pharmaceutically acceptable salt thereof to the medium may be before or after contacting the medium with the stem cells. Moreover, you may add suitably to the culture medium in culture
  • the concentration of FGF in the medium is not particularly limited as long as it can promote the proliferation of stem cells, and is usually 1 ng / ml to 300 ng / ml, preferably 1 ng / ml to 200 ng / ml when FGF is added to the medium. More preferably, it is 4 ng / ml to 100 ng / ml.
  • concentration of FGF is less than 1 ng / ml, there is a tendency that the effect of promoting proliferation of stem cells cannot be obtained even in the presence of a sulfated compound. Further, when the concentration of FGF exceeds 300 ng / ml, the culture cost tends to increase.
  • FGF may be added to the medium before or after contacting the medium with the stem cells, or before or after the sulfated compound or a pharmaceutically acceptable salt thereof is added to the medium. It may be. Moreover, you may add suitably to the culture medium in culture
  • the culture medium of the present invention can be preferably used in the culture method of the present invention since a sulfated compound is added in advance and the work during the culture can be reduced.
  • the incubator used for stem cell culture is not particularly limited as long as stem cells can be cultured. Flask, tissue culture flask, dish, petri dish, tissue culture dish, multi-dish, microplate, microwell Plates, multiplates, multiwell plates, microslides, chamber slides, petri dishes, tubes, trays, culture bags, and roller bottles may be mentioned.
  • the incubator may be cell-adhesive or non-cell-adhesive, and is appropriately selected according to the purpose.
  • a cell-adhesive incubator is coated with any cell-supporting substrate such as an extracellular matrix (ECM, also called extracellular matrix) for the purpose of improving the adhesion with cells on the surface of the incubator. possible.
  • ECM extracellular matrix
  • the cell support substrate can be any substance intended to adhere to stem cells or feeder cells (if used). When feeder cells are not used, it is preferable to perform culture using an extracellular matrix or an active fragment thereof, or an artificial substance that mimics their functions.
  • the extracellular matrix is not particularly limited as long as it is commonly used for culturing cells for the purpose of improving the adhesion between the surface of the incubator and the cells.
  • the active fragment of an extracellular matrix should just be the fragment which has cell adhesion activity equivalent to this extracellular matrix, These can also use a well-known thing.
  • the E8 fragment of laminin 511, the E8 fragment of laminin 332, etc. which are disclosed by Unexamined-Japanese-Patent No. 2011-78370 are mentioned.
  • the extracellular matrix and active fragments thereof may be commercially available, and can be obtained from, for example, Life Technologies, BD Falcon, Biolamina and the like. These extracellular substrates and active fragments thereof may be used in combination of two or more.
  • Matrigel which is a mixture of complex basement membrane components including proteins and polysaccharides, extracted and purified from mouse EHS sarcoma that overproduces basement membranes may be used.
  • the extracellular matrix and its active fragment may be suspended in an appropriate solution and applied to a container suitable for culturing cells.
  • Artifacts that mimic the function of the extracellular matrix are not particularly limited as long as they are commonly used for cell culture.
  • Corning's Synthemax registered trademark
  • Ultraweb registered trademark
  • Sigma-Aldrich Known products such as Hy-STEM series, polylysine and polyornithine can be used.
  • the extracellular matrix used in the present invention or an active fragment thereof, or an artifact that mimics the function thereof is preferably Matrigel, laminin 511 or an active fragment of laminin 511, more preferably an active fragment of laminin 511 ( That is, the E8 fragment of laminin 511).
  • the cell seeding method is not particularly limited.
  • colony seeding or single cell seeding may be performed, but in order to produce pluripotent stem cells for regenerative medicine at an industrial level, strictly procedures and schedules are used. It is necessary to perform work by a plurality of workers under the condition that the above is managed. Therefore, single cell seeding is preferable because the number of cells to be seeded can be strictly adjusted.
  • single cell seeding is performed, colonies of pluripotent stem cells are dissociated into single cells and then seeded in a medium.
  • Single cell seeding may be performed by a method known per se.
  • the cells are detached from the substrate with a scraper (IWAKI, 9000-220, etc.).
  • the cell is dissociated into a single cell by pipetting, and then seeded in a medium.
  • a ROCK inhibitor such as Y-27632 (Nacalai Tesque: 08945-84) to the medium in order to survive pluripotent stem cells. Since the ROCK inhibitor is not necessary for the growth of pluripotent stem cells after the day after seeding, it is preferably removed from the medium.
  • the culture temperature is not particularly limited, but may be about 30-40 ° C., preferably about 37 ° C.
  • the CO 2 concentration can be about 1-10%, preferably about 2-5%.
  • the oxygen partial pressure can be 1-10%.
  • the obtained solid was dissolved in pure water (2 ml), 30% aqueous sodium acetate solution (1.5 ml) was added, and the mixture was stirred at room temperature for 2 hr. Ethanol (12 ml) was added to the reaction solution, and the precipitate was filtered. The obtained solid was dissolved in pure water (5 ml), dialyzed overnight using Spectra / Por MWCO 6,000-8,000, and freeze-dried to obtain a white solid (425 mg).
  • Synthesis Examples 2 to 4 Synthesis of xanthan gum SO 3 Na (xanthan gum sulfate Na), alginic acid SO 3 Na and inulin SO 3 Na The following compounds were also sodium sulfated under the same conditions as cellulose SO 3 Na.
  • Synthesis Example 5 Synthesis of ⁇ -cyclodextrin SO 3 Na ( ⁇ -CD ⁇ SO 3 Na) ⁇ -cyclodextrin ( ⁇ -CD) (200 mg, manufactured by Junsei Co., Ltd.) was dissolved in dehydrated dimethylformamide (6 ml). After that, sulfur trioxide trimethylamine complex (600 mg) was added and stirred at 70 ° C. overnight. The solvent was removed by decantation, and acetone was added and stirred, followed by filtration. The obtained solid was dissolved in pure water (2 ml), 30% aqueous sodium acetate solution (1.5 ml) was added, and the mixture was stirred at room temperature for 2 hr.
  • Synthesis Example 15 Synthesis of maltotriose-hexamethylene diisocyanate-SO 3 Na Maltotriose (200 mg, manufactured by Tokyo Chemical Industry Co., Ltd.) and triethylamine (28 ⁇ l, manufactured by Junsei Kagaku) were added to dehydrated dimethylformamide (6 ml). After stirring at 70 ° C., hexamethylene diisocyanate (96 ⁇ l, manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred overnight. The reaction mixture was concentrated, water was added, the mixture was concentrated and lyophilized to give a white solid (102 mg). The obtained white solid (102 mg) was sodium sulfated using dehydrated dimethylformamide (3 ml) and sulfur trioxide trimethylamine complex (460 mg) under the same conditions as in Synthesis Example 1 to give a white solid (332 mg) Got.
  • Synthesis Example 16 Synthesis of dextran-hexamethylene diisocyanate-SO 3 Na Dextran (200 mg, manufactured by Wako Pure Chemical Industries) and triethylamine (8.4 ⁇ l, manufactured by Junsei Kagaku) were added to dehydrated dimethylformamide (200 ml) at 70 ° C. After stirring, hexamethylene diisocyanate (9.6 ⁇ l, manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred overnight. The reaction mixture was concentrated, water was added, and the mixture was concentrated and lyophilized to obtain a white solid (193 mg). The resulting white solid (100 mg) was sodium sulfated using dehydrated dimethylformamide (20 ml) and sulfur trioxide trimethylamine complex (1 g) under the same conditions as in Synthesis Example 1 to give a white solid (194 mg) Got.
  • Synthesis Example 17 Synthesis of gluconolactone-SO 3 Na ⁇ -gluconolactone (300 mg, manufactured by Junsei Co., Ltd.) was dissolved in dehydrated dimethylformamide (6 ml), and then sulfur trioxide trimethylamine complex (1.14 g) was added. And stirred at 70 ° C. overnight. After concentrating the solvent, the slurry was washed with acetone and ethanol, and then an aqueous sodium hydrogen carbonate solution was added to the residue and stirred.
  • Synthesis Example 18 Synthesis of tartaric acid-SO 3 Na Tartaric acid (300 mg, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in dehydrated dimethylformamide, sulfur trioxide trimethylamine complex (835 mg) was added, and the mixture was stirred at 70 ° C. overnight. The solvent was concentrated, supported on ion exchange resin IRA96SB, and eluted with 1% aqueous triethylamine solution (200 ml). It was supported on ion exchange resin FPC3500, eluted with water (100 ml), concentrated and dried to obtain a white solid (430 mg).
  • Evaluation of bFGF stabilization in Lonza serum-free medium (1) Preparation of bFGF stabilization evaluation sample In a medium (Lonza serum-free medium) prepared according to the protocol using Lonza's complete synthetic medium kit (00190632, Takara Bio Inc.) Regarding the stabilization of bFGF, the influence of the addition of the test compounds described in Table 4 was evaluated. The test compound was dissolved in phosphate buffered saline, diluted 10-fold with serum-free medium, and adjusted to the concentrations shown in Table 4 (test sample). The test sample was allowed to stand at 37 ° C.
  • bFGF concentration is 70% or more than that of 4 ° C control ++: bFGF concentration is 50% or more and less than 70% of that of 4 ° C control +: bFGF concentration is 30% or more and 50% of that of 4 ° C control Less than-: The bFGF concentration is 10% or more and less than 30% of that of the 4 ° C control ⁇ : The bFGF concentration is less than 10% of that of the 4 ° C control
  • the concentration at which the effect was observed for each compound was as follows: dextran sulfate (5000), 250 pg / ml or more; dextran sulfate (25000), 2.5 ng / ml or more; dextran sulfate (500,000), 2.5 ng carrageenan, 2.5 ⁇ g / ml or more; cellulose SO 3 Na, 2.5 ng / ml or more; xanthan gum SO 3 Na, 25 ng / ml or more; fucoidan, 2.5 ng / ml or more; alginate SO 3 Na, 2.5 ng / ml Inulin SO 3 Na, 2.5 ng / ml or more; Maltoheptaose SO 3 Na, 25 ng / ml and 2.5 ⁇ g / ml or more; Stachyose
  • the concentrations at which this effect was observed for each compound are as follows: Maltotriose-hexamethylene diisocyanate-SO 3 Na, 2.5 ng / ml, 250 ng / ml to 2.5 mg / ml; Dextran-hexamethylene diisocyanate-SO 3 Na, 25 ng / ml to 2.5 mg / ml; Gluconolactone-SO 3 Na, 25 ⁇ g / ml, 2.5 mg / ml; Tartaric acid-SO 3 Na, 250 ng / ml, 2.5 mg / ml.
  • meso-erythritol SO 3 Na, sucrose 8SO 3 K and maltoheptaose SO 3 Na were incubated at 37 ° C. for 3 days to suppress the decrease in bFGF concentration in the medium. In some cases, a lower concentration was observed than when incubated for 7 days.
  • concentrations at which this effect was observed for each compound are as follows: meso-erythritol SO 3 Na, 25 ⁇ g / ml or more; Sucrose 8SO 3 K, 250 ng / ml or more; Maltoheptaose SO 3 Na, 25 ng / ml or more.
  • BFGF Stabilization Evaluation in Essential 8 Medium or ReproFF2 Medium (Essential 8 medium) prepared according to the protocol using Essential 8 dedicated medium kit (A14666SA, Invitrogen) or bFGF in ReproFF2 medium prepared in the same manner The effect of adding various test compounds at a concentration of 250 pg / ml to 2.5 mg / ml was evaluated.
  • the test compound was dissolved in phosphate buffered saline, diluted 10-fold with serum-free medium, and adjusted to the concentrations shown in Table 4 (test sample). After the test sample was allowed to stand at 37 ° C. for 7 days in a sealed falcon tube, the bFGF concentration was quantified by ELISA measurement.
  • phosphate buffered saline containing no test compound was diluted 10-fold with Essential 8 medium or ReproFF2 medium, and allowed to stand at 37 ° C. or 4 ° C. for 7 days as a control.
  • the concentrations at which this effect was observed for each compound are as follows: Dextran sulfate Na (5000), 25 ng / ml or more; Dextran sulfate Na (25000), 2.5 ng / ml, 250 ng / ml or more; Dextran sulfate Na (500,000), 250 pg / ml, 25 ng / ml or more; Dextran-hexamethylene diisocyanate-SO 3 Na, 250 ng / ml or more; Carrageenan, 250 ng / ml or more; Cellulose SO 3 Na, 25 ng / ml or more; Xanthan gum SO 3 Na, 250 ng / ml to 250 ⁇ g / ml; Fucoidan, 25 ng / ml or more; Alginic acid SO 3 Na, 250 ng / ml or more; Chondroitin sulfate Na, 250 ⁇ g / ml or more;
  • the concentrations at which this effect was observed for each compound are as follows: Dextran sulfate Na (5000), 250 pg / ml or more; Dextran sulfate Na (25000), 250 pg / ml or more; Dextran sulfate Na (500,000), 2.5 ng / ml or more; Carrageenan, 2.5 ng / ml or more; Chondroitin sulfate Na, 250 pg / ml to 2.5 ng / ml, 250 ng / ml, 25 ⁇ g / ml or more; Sucrose SO 3 K, 250 pg / ml or more; Polyethylene sulfonate Na, 2.5 ng / ml, 250 ng / ml or more.
  • Example I-2 Evaluation in cell proliferation system 1. Evaluation in Mesenchymal Stem Cell Proliferation System (1) Cell Proliferation Mesenchymal stem cell dedicated medium (Lonza, MSCGM), or inactivated fetal bovine serum (Invitrogen, GIBCO FBS) and penicillin-streptomycin (Sigma-Aldrich) Human bone marrow-derived mesenchymal stem cells (Lonza, Human Mesenchymal Stem Cell) cultured in Dulbecco's modified Eagle's medium (Invitrogen, GIBCO D-MEM) containing Lonza's serum-free medium .
  • Cell Proliferation Mesenchymal stem cell dedicated medium (Lonza, MSCGM), or inactivated fetal bovine serum (Invitrogen, GIBCO FBS) and penicillin-streptomycin (Sigma-Aldrich)
  • Human bone marrow-derived mesenchymal stem cells (Lonza, Human Mesenchymal Stem Cell) cultured in D
  • mesenchymal stem cells adapted to serum-free culture are suspended in Lonza serum-free medium and 20,000 cells / well each in a 24-well culture plate (Nippon Becton Dickinson, Falcon culture plate), or 6-well culture plates (Nippon Becton Dickinson, Falcon culture plate) were plated by 50,000 cells / well in, then filter sterilized by the addition of test compound solution adjusted to a predetermined concentration, of 5% CO 2/37 °C The cells were cultured for 7 to 8 days in an incubator (Thermo Scientific, Former incubator) under conditions. The culture medium was exchanged 2 to 3 days after sowing. At this time, the test compound solution was added again in the same manner as at the time of sowing.
  • Sodium lauryl sulfate solution (1.0 ml) was also added to a cell pellet of known cell number and placed at 37 ° C. for 4 hours. For cells in 24-well culture plates, a portion (50 ⁇ l) of this lysate was transferred to a 96-well black microplate. The solution obtained by treating the cell pellet was sequentially diluted with a sodium lauryl sulfate solution to prepare a calibration curve preparation solution. A part (50 ⁇ l) of these calibration curve preparation solutions was also transferred to a 96-well black microplate.
  • the concentrations at which this effect was observed for each compound are as follows: Dextran-hexamethylene diisocyanate-SO 3 Na, 25 pg / ml to 250 pg / ml, 25 ng / ml; Maltotriose-hexamethylene diisocyanate-SO 3 Na, 25 pg / ml to 250 pg / ml, 250 ng / ml; Gluconolactone-SO 3 Na, 25 pg / ml to 250 pg / ml; Tartaric acid-SO 3 Na, 2.5 ng / ml.
  • iPS cells induced pluripotent stem cells
  • the 201B7 strain purchased from iPS Academia Japan was coated with a basement membrane matrix (Matrigel manufactured by Becton Dickinson, Japan, or a fragment containing laminin 511 active domain purchased from Osaka University) (Nippon Becton Dickinson, Falcon).
  • a culture dish or Falcon culture plate the cells were grown in a feeder-less medium for human ES / iPS cells (Reprocell, ReproFF2).
  • the medium was removed, the cells were detached from the culture plate by trypsin-EDTA (Sigma Aldrich) or TrypLE Select (Invitrogen), and the number of cells was measured. The number of cells was measured by the method described in “Revised cell culture introductory note, pp. 77-83, 2010, Yodosha”.
  • the culture was similarly performed in a medium supplemented with phosphate buffered saline containing no test compound.
  • a dissociated state single cell state
  • IPS cells suspended in a medium containing Y-27632 were seeded at 100,000 cells / well and cultured for 6 to 8 days. The day after the seeding, the medium was switched to a medium containing only the test compound (without Y-27632). When changing the medium, it was performed every 2-3 days. At this time, the test compound solution was added again in the same manner as at the time of sowing. After culturing for 6 to 8 days, the number of cells was measured by the same method as described above.
  • Essential 8 medium Invitrogen
  • Human serum albumin Sigma Aldrich
  • the evaluation criteria are as follows. A: The cell number is 120% or more than that of the control. O: The cell number is 100% or more and less than 120% of the control. Less than 50% of control (blank: not evaluated)
  • cell growth was promoted in the medium supplemented with dextran sulfate Na (5000) as compared with the control ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ and ⁇ in Table 10-1).
  • ReproFF2 medium using Matrigel cell growth was promoted at concentrations of 10 ng / ml to 50 ng / ml.
  • Essential 8 medium using Matrigel cell growth was promoted at concentrations of 5 ng / ml to 250 ng / ml.
  • cell growth was promoted at a concentration of 50 ng / ml.
  • Example I-3 Measurement of sulfur content in test compound The relationship between the sulfur content (sulfur content) in the test compound and the cell growth promoting effect was examined.
  • the sulfur content was measured using ICPS-8100 manufactured by Shimadzu Corporation and analyzed using ICPS-8000 series Ver1.03.
  • the standard for ICP-MS manufactured by Accu Standard was used as the standard for sulfur.
  • Sulfur standard solutions of 0, 1, 10, 30, and 50 ppm were prepared, and the sulfur content of an evaluation sample containing the test compound at 0.01% by weight was measured by a calibration curve method.
  • Synthesis Example 2 Synthesis of polyvinylamine SO 3 Na After dissolving polyvinylamine hydrochloride (300 mg, manufactured by Polysciences) in pure water (25 ml), adjusting the pH to 9.13 while adding 2N sodium hydroxide, Sulfur trioxide trimethylamine complex (2.1 g) was added and stirred overnight. After removing the solvent of the obtained reaction liquid by decantation, the mixture was stirred in 30% sodium acetate (20 ml) for 30 minutes. The reaction solution was dissolved in pure water (20 ml), dialyzed overnight using Spectra / Por MWCO 6,000-8,000, and freeze-dried to obtain a white solid (450 mg).
  • Synthesis Example 3 Synthesis of polyallylamine SO 3 Na After dissolving polyallylamine L (1.5 g, 20% aqueous solution, Nacalai) in pure water (25 ml), 2N sodium hydroxide (5.26 ml) was added, Sulfur trioxide trimethylamine complex (2.9 g) was added and stirred overnight. The obtained reaction solution was concentrated and then stirred in 30% sodium acetate (10 ml) for 2 hours. The reaction solution was dissolved in pure water (20 ml), dialyzed overnight using Spectra / Por MWCO1,000, and freeze-dried to obtain a white solid (670 mg).
  • Synthesis Example 4 Synthesis of Polyethyleneimine SO 3 Na Polyethyleneimine (1.07 g, manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in dehydrated dimethylformamide (18 ml), sulfur trioxide trimethylamine complex (4.2 g) was added and stirred overnight. . After removing the solvent of the obtained reaction solution by decantation, the slurry was washed with acetone, filtered, and stirred in 30% sodium acetate (20 ml) for 30 minutes. The reaction solution was dissolved in pure water (20 ml), dialyzed overnight using Spectra / Por MWCO1,000, and lyophilized to obtain a white solid (400 mg).
  • Synthesis Example 5 Synthesis of branched polyglycerin SO 3 Na Trimethyloylpropane (127 mg, manufactured by Tokyo Chemical Industry Co., Ltd.) and potassium methoxide (23.8 mg, manufactured by Kanto Chemical Co.) dehydrated methanol (0.095 ml, Kanto Chemical) The solution was added and stirred for 15 minutes. Excess solvent was removed under reduced pressure, and glycidol (5.5 ml, manufactured by Kanto Chemical Co., Inc.) was added dropwise at 95 ° C. over 6 hours. The reaction solution was stirred overnight, then dissolved in methanol (40 ml) and stirred for 30 minutes.
  • Synthesis Example 6 Synthesis of ⁇ -L-polylysine SO 3 Na L-Lys (Z) -NCA (1 g, contracted to Suzhou Tianma, China) was stirred in dehydrated chloroform (20 ml, manufactured by Kanto Chemical Co., Ltd.). A solution of triethylamine (0.047 ml, manufactured by Kanto Chemical Co., Inc.) in dehydrated chloroform (1 ml) was added at 0 ° C. and stirred for 3 days. The reaction solution was dissolved in trifluoroacetic acid (10 ml, Junsei Chemical Co., Ltd.), hydrobromic acid / acetic acid solution (2 ml, 30%, Tokyo Kasei Co., Ltd.) was added and stirred overnight.
  • trifluoroacetic acid 10 ml, Junsei Chemical Co., Ltd.
  • hydrobromic acid / acetic acid solution 2 ml, 30%, Tokyo Kasei Co., Ltd.
  • Dichloroethane of ⁇ -L-methyl-polyglutamic acid A solution was obtained. Dehydrated dichloroethane (9 ml) was added to a portion (3 g) of the resulting reaction solution, and a lithium borohydride tetrahydrofuran solution (0.7 ml, 3 mol / L, manufactured by Kanto Chemical Co., Ltd.) was added dropwise under an argon atmosphere overnight. Stir. A saturated aqueous ammonium chloride solution was added to the reaction solution and stirred for a while, and then the pH of the reaction solution was adjusted to 1 with 1N hydrochloric acid.
  • the reaction mixture was concentrated, washed with a slurry in methanol / ether (25 ml / 25 ml), filtered, and washed with pure water and methanol to give a white solid (232 mg).
  • the obtained solid (200 mg) was dissolved in dehydrated dimethylformamide (10 ml), sulfur trioxide trimethylamine complex (700 mg) was added, and the mixture was stirred at 70 ° C. overnight.
  • 30% sodium acetate (5 ml) was added and stirred for 30 minutes.
  • the reaction solution was dissolved in pure water (20 ml), dialyzed overnight using Spectra / Por MWCO1,000, and freeze-dried to obtain a white solid (130 mg).
  • Synthesis Example 8 Synthesis of ⁇ -L-polyglutamic acid- ⁇ -taurine After dissolving ⁇ -methyl-polyglutamic acid (250 mg) synthesized in Synthesis Example 7 in dehydrated dimethylformamide (10 ml), O- (7- Aza-1H-benzotriazol-1-yl) -N ', N', N ', N'-tetramethyluronium hexafluorophosphate (690 mg, manufactured by Watanabe Chemical Co.), 1-hydroxy-7-aza Benzotriazole (247 mg, manufactured by Watanabe Chemical Co., Ltd.), diisopropylethylamine (317 ⁇ l, manufactured by Tokyo Chemical Industry Co., Ltd.) and taurine (227 mg, manufactured by Wako Pure Chemical Industries, Ltd.) were added and stirred overnight at room temperature.
  • Synthesis Example 10 Synthesis of branched polyglycerin-monomethyltetraethylene glycol-SO 3 Na Tetraethylene glycol monomethyl ether (15 g, manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in dehydrated tetrahydrofuran (45 ml, manufactured by Kanto Chemical Co., Ltd.) under an argon stream. Sodium hydride (1.88 g, manufactured by Kanto Chemical Co., Inc.) was added in small portions and stirred for 3 hours. Epichlorohydrin (31 g, manufactured by Tokyo Chemical Industry Co., Ltd.) was slowly added dropwise and stirred overnight. The reaction solution was filtered through celite and washed with methylene chloride (200 ml).
  • Synthesis Example 12 Synthesis of branched polyglycerin-isopropyloxy-SO 3 Na Under a stream of argon, a solution of trimethyloylpropane (127 mg) in potassium methoxide (23.8 mg) in dehydrated methanol (0.095 ml) was added and stirred for 15 minutes. . Excess solvent was removed under reduced pressure, and glycidol (5.5 ml) was added dropwise at 95 ° C. over 6 hours. After the reaction solution was stirred overnight, glycidyl furfuryl ether (5.46 ml, manufactured by Aldrich) was added dropwise at 95 ° C. over 6 hours, and the reaction solution was further stirred overnight.
  • Example II-1 bFGF Stabilization Evaluation in Medium (1) Preparation of bFGF Stabilization Evaluation Sample Medium (Lonza serum-free medium) prepared according to the protocol using a complete synthetic medium kit for exclusive use of Lonza (00190632, Takara Bio Inc.) The effect of the addition of the test compounds shown in Table 12 was evaluated on the stabilization of bFGF in the medium.
  • the test compound was dissolved in phosphate buffered saline, diluted 10-fold with serum-free medium, and adjusted to the concentrations shown in Table 13 (test sample). After the test sample was allowed to stand at 37 ° C. for 7 days in a sealed falcon tube, the bFGF concentration was quantified by ELISA measurement.
  • a phosphate buffered saline containing no test compound diluted 10-fold with a serum-free medium and allowed to stand at 37 ° C. or 4 ° C. for 7 days was used as a control.
  • bFGF concentration is 70% or more than that of 4 ° C control ++: bFGF concentration is 50% or more and less than 70% of that of 4 ° C control +: bFGF concentration is 30% or more and 50% of that of 4 ° C control Less than -: The bFGF concentration is 10% or more and less than 30% of that of the 4 ° C control ⁇ : The bFGF concentration is less than 10% of that of the 4 ° C control
  • the bFGF concentration in the medium was controlled at 4 ° C. when incubated at 37 ° C. for 7 days. Of less than 10%. Even at 37 ° C control, the bFGF concentration in the medium decreased to less than 10% of the 4 ° C control.
  • the evaluation sample containing the sulfated polymer an effect of suppressing the decrease in the bFGF concentration in the medium was observed.
  • the concentration at which the effect was observed for each compound is as follows: polyvinyl alcohol SO 3 Na, 25 pg / ml or more; polyvinylamine SO 3 Na, 25 ng / ml or more; polyallylamine SO 3 Na, 250 ng / ml polyethyleneimine SO 3 Na, 250 pg / ml and 2.5 mg / ml or more; polyethylene sulfonate Na, 25 ng / ml or more; branched polyglycerin SO 3 Na, 25 ng / ml or more; polylysine SO 3 Na, 2.5 ⁇ g / ml or more; ⁇ -polyglutamic acid methyl / ⁇ -5-hydroxynorvaline (5-SO 3 Na) (2/8) copolymer, 250 ⁇ g / ml or more; ⁇ -polyglutamic acid- ⁇ -taurine, 25 ⁇ g / ml or more; Triserine SO 3 Na, 25 ⁇ g /
  • BFGF Stabilization Evaluation in Essential 8 Medium or ReproFF2 Medium bFGF in ReproFF2 medium prepared in the same way (Essential 8 medium) prepared according to the protocol using Essential 8 dedicated medium kit (A14666SA, Invitrogen) The effect of adding various test compounds at a concentration of 250 pg / ml to 2.5 mg / ml was evaluated.
  • the test compound was dissolved in phosphate buffered saline, diluted 10-fold with serum-free medium, and adjusted to the concentrations shown in Table 12 (test sample). After the test sample was allowed to stand at 37 ° C. for 7 days in a sealed falcon tube, the bFGF concentration was quantified by ELISA measurement.
  • phosphate buffered saline containing no test compound was diluted 10-fold with Essential 8 medium or ReproFF2 medium, and allowed to stand at 37 ° C. or 4 ° C. for 7 days as a control.
  • the results when using Essential 8 medium are shown in Table 14-1.
  • the concentration of each compound in which the effect of suppressing the decrease in bFGF concentration in the medium was observed is as follows. Polyvinyl alcohol SO 3 Na, 25 ng / ml or more; Polyvinylamine SO 3 Na, 250 ng / ml or more; Polyallylamine SO 3 Na, 250 ng / ml or more; Polyethyleneimine SO 3 Na, 2.5 mg / ml or more; Polyethylene sulfonate Na, 250 ng / ml or more; Branched polyglycerin SO 3 Na, 250 ng / ml or more; Branched polyglycerin-2-furfuryl-SO 3 Na, 25 ng / ml or more; Branched polyglycerol-methoxytetraethylene glycol-SO 3 Na, 250 ng / ml or more; Polylysine SO 3 Na, 25 ⁇ g / ml or more; ⁇ -pol
  • Example II-3 Determination of sulfur content in test compound The test compound was measured in the same manner as in I-3 above. The results are shown in Table 17.
  • stem cells can be proliferated more efficiently than conventionally used media in culturing stem cells using a medium containing FGF. According to the present invention, since the frequency of medium exchange during culture can be reduced, the culture cost of stem cells can be reduced, which contributes to further use promotion of stem cells in medical treatment, research and development, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Developmental Biology & Embryology (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Transplantation (AREA)
  • Hematology (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明は、線維芽細胞成長因子(FGF)を含む幹細胞増殖用培地であって、FGF存在下で幹細胞の増殖促進に働く濃度で硫酸化化合物又はその薬学的に許容可能な塩を含むことを特徴とする、培地、FGFを含む幹細胞増殖用培地を用いた幹細胞の培養方法であって、FGF存在下で幹細胞の増殖促進に働く濃度で硫酸化化合物又はその薬学的に許容可能な塩を培地に添加することを特徴とする、方法等を提供する。

Description

硫酸化化合物を含む幹細胞増殖用培地
 本発明は、線維芽細胞成長因子を含む幹細胞増殖用培地、当該培地を用いた幹細胞の培養方法等に関する。
 従来、幹細胞(胚性幹細胞、人工多能性幹細胞など)の培養は、血清を含有する培地を用いて行なわれてきた。例えば、ウシ胎仔血清(FBS)等は、細胞増殖に重要な添加物として細胞培養に汎用されている。しかしながら培養後の幹細胞を医療目的で使用する場合、異種由来成分は、血液媒介病原菌の感染源や異種抗原となる可能性がある。また血清のロット間差により培養結果にばらつきが生じる可能性もある。そのため近年では、化学的組成が明らかな培地(chemically defined medium)を用いて幹細胞を培養することが主流となってきており、無血清培地の開発が進められている。
 線維芽細胞成長因子(FGF)は、線維芽細胞や内皮細胞の増殖を促進する分子量16,000~20,000のタンパク質である。FGFには、塩基性線維芽細胞成長因子(bFGF)、酸性線維芽細胞成長因子(aFGF)、角質細胞成長因子(KGF)などが含まれ、ヒトおよびマウスにおいてはそれぞれ20種以上のFGFが知られている。FGFは、幹細胞の培養を安定して行なうために一般的に培地に添加されており、無血清培地においても重要性が高い成分の1つとなっている。しかしながら、FGFは他の成分と比較して高価である上に、培地中での安定性が低いことが知られており、細胞培養において高頻度の培地交換が要求される要因ともなっている。
 これまでに、硫酸化多糖類がFGFを分解、変性、失活等から保護する作用を有することが報告されている。
 特許文献1には、カラギーナンがbFGFを安定化することが開示されている。当該文献の実施例には、ヘパリン、デキストラン硫酸、カラギーナン等の硫酸化多糖類を含む保護剤が、5倍量(w/w)のbFGF(180μg/200μl)を、トリプシンによる加水分解(実施例1)及び熱による変性(実施例3)から保護することが記載されている。トリプシンによる加水分解からの保護には、当該保護剤に対するbFGFの重量比が5~7以下である必要があることも開示されている(実施例2)。
 特許文献2には、FGFもしくはそのムテインと硫酸化グルカンとを水性媒体中で接触させることを特徴とするFGFもしくはそのムテインの安定化方法等が開示されている。当該文献の実施例には、硫酸化グルカンの添加により水性媒体中でFGFの活性が安定に保持されることが開示されている。
 また非特許文献1には、ヘパリン又はヘキシウロニルヘキソサミノグリカン硫酸(HHS-4)がbFGFを不活性化から保護しその生理活性を増強することが記載されているが、当該効果は高濃度のヘパリン(20μg/ml)又はHHS-4(200μg/ml)を細胞と接触させた場合にのみ見られる一方で、ヘパリンについては高濃度(bFGFの濃度にもよるが例えば10μg/ml以上)では毒性によるとみられる細胞増殖抑制が見られることが記載されている。
 また特許文献3には、デキストラン多硫酸、ヘパリン等の多硫酸化多糖類又はその生物学的に活性な分子断片が、多分化能細胞を含む前駆細胞の保護、生存率改善及び分化調節に機能することが示されており、多硫酸化多糖類又はその生物学的に活性な分子断片と一緒に前駆細胞を含む組成物が開示されている。当該組成物中の多硫酸化多糖類の濃度は、500 ng/ml~10 mg/mlの範囲であることが記載されている。当該組成物にはさらにFGFも含まれ得ることが記載されているが、多硫酸化多糖類の上記機能とFGFとの関係については全く開示されていない。
 また特許文献4には、グルコースのポリマー等の糖質からなる高分子がヒト間葉系幹細胞の増殖促進に働くことが記載されているが、糖質からなる高分子の有効濃度は2.5 mg/ml~100 mg/mlの範囲であることが開示されている。
 一方、多糖以外の高分子有機化合物の硫酸化物全般が、FGFを分解、変性、失活等から保護する作用を有するか否か、或いは細胞培養において細胞の増殖に影響を与えるか否かについては全く知られていなかった。
国際公開第92/13526号パンフレット 特開平02-138223号公報 国際公開第2009/070842号パンフレット 国際公開第2011/108993号パンフレット
J. Cell. Physiol., 1986, 128, 475-484
 本発明は、FGFを含む幹細胞増殖用培地において、幹細胞の増殖を促進させる手段を提供することを目的とする。更に本発明は、FGFを含む幹細胞増殖用培地を用いた幹細胞の培養方法等を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意検討した結果、硫酸化化合物が、幹細胞増殖用培地中のFGFのタンパク質量低下の抑制に働き得ること、及びFGFの存在下で幹細胞の増殖促進に働くことを見出した。FGF存在下での幹細胞の増殖促進効果を発揮するために必要な硫酸化化合物の濃度を詳細に検討したところ、意外にも、FGFのタンパク質量低下の抑制効果が低い濃度範囲で硫酸化化合物を培地に添加した場合でも、FGF存在下での顕著な幹細胞の増殖促進効果が認められる化合物が存在した。本発明者らは、これらの知見に基づいて更に研究を重ねた結果、本発明を完成するに至った。
 即ち、本発明は以下の通りである。
[1]線維芽細胞成長因子(FGF)を含む幹細胞増殖用培地であって、FGF存在下で幹細胞の増殖促進に働く濃度で硫酸化化合物又はその薬学的に許容可能な塩を含むことを特徴とする、培地(但し、硫酸化化合物が硫酸化多糖である場合における硫酸化化合物の含有量は250ng/ml以下)。
[2]硫酸化化合物が、硫酸化糖類である、[1]に記載の培地(但し、硫酸化糖類が硫酸化多糖である場合における硫酸化糖類の含有量は250ng/ml以下)。
[3]前記硫酸化糖類が、
(I)1又は2以上の下記一般式(a)
Figure JPOXMLDOC01-appb-C000009
(式中、
naは1、2又は3であり、
1a及びR3aは、同一又は異なってそれぞれ、置換基を有していてもよい官能基であり、
na個のR2aは、独立してそれぞれ、置換基を有していてもよい官能基である)
で表される化合物から誘導される構成単位を含み、1又は2以上の硫酸基を含む化合物、
(II)下記一般式(b)
Figure JPOXMLDOC01-appb-C000010
(式中、
nbは3~100の整数であり、
nb個のR1bは、独立してそれぞれ、置換基を有していてもよい官能基であり、
1又は2以上の硫酸基を含む)
で表される化合物、及び
(III)下記一般式(c)
Figure JPOXMLDOC01-appb-C000011
(式中、
ncは1、2又は3であり、
1c~R4cは、同一又は異なってそれぞれ、置換基を有していてもよい官能基であり、
nc個のR5cは、独立してそれぞれ、置換基を有していてもよい官能基であり、
1又は2以上の硫酸基を含む)
で表される化合物からなる群から選択される少なくとも1つである、[2]に記載の培地。
[4]硫酸化糖類が、硫酸化単糖、硫酸化二糖、硫酸化多糖、硫酸化糖アルコール及び硫酸化シクリトールからなる群から選択される少なくとも1つである、[2]又は[3]に記載の培地。
[5]硫酸化糖類における硫黄の含有度が、5重量%以上である、[2]~[4]のいずれかに記載の培地。
[6]前記硫酸化糖類又はその薬学的に許容可能な塩が、デキストラン硫酸Na、セルロースSONa、キサンタンガムSONa、ペクチンSONa、フコイダン、アルギン酸SONa、イヌリンSONa、マルトヘプタオースSONa、スタキオースSONa、マルトトリオースSONa、マルチトールSONa、スクロース8SOK、グルコースSONa、myo-6イノシトールSOK、α-シクロデキストリンSONa、マンニトールSONa、キシリトールSONa及びエリスリトールSONaからなる群から選択される少なくとも1つである、[2]~[5]のいずれかに記載の培地。
[7]前記硫酸化糖類又はその薬学的に許容可能な塩が、デキストラン硫酸Na、フコイダン、キサンタンガムSONa、ペクチンSONa、マルトヘプタオースSONa、マルトトリオースSONa、マルチトールSONa及びスクロース8SOKからなる群から選択される少なくとも1つである、[6]に記載の培地。
[8]前記硫酸化糖類又はその薬学的に許容可能な塩が、平均分子量2,500~7,500のデキストラン硫酸Naである、[2]~[7]のいずれかに記載の培地。
[9]前記硫酸化糖類又はその薬学的に許容可能な塩が、スクロース8SOKである、[2]~[7]のいずれかに記載の培地。
[10]前記スクロース8SOKの含有量が、25pg/ml~10μg/mlである、[9]に記載の培地。
[11]硫酸化化合物が、硫酸化ポリマー(但し、硫酸化糖類は除く)である、[1]に記載の培地。
[12]前記硫酸化ポリマーが、下記一般式(I)
Figure JPOXMLDOC01-appb-C000012
(式中、
Aは、ポリマー構成単位であり、
nは1~1500の整数であり、
は、置換基を有していてもよい官能基である)
で表され、且つ1又は2以上のスルホ基を含む化合物である、[11]に記載の培地。
[13]硫酸化ポリマーにおける硫黄の含有度が、5重量%以上である、[11]又は[12]に記載の培地。
[14]硫酸化ポリマーが、スルホ基含有ポリビニルアルコール、スルホ基含有ポリビニルアミン、スルホ基含有ポリアリルアミン、スルホ基含有ポリエチレンイミン、スルホ基含有α-ポリリジン、スルホ基含有α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(2/8)共重合体、α-ポリグルタミン酸-γ-タウリン、スルホ基含有トリセリン、スルホ基含有セリン、スルホ基含有分岐型ポリグリセリン及びその誘導体、並びにポリエチレンスルホン酸からなる群から選択される少なくとも1つである、[11]~[13]のいずれかに記載の培地。
[15]スルホ基含有分岐型ポリグリセリンの誘導体又はその薬学的に許容可能な塩が、分岐型ポリグリセリン-モノメチルテトラエチレングリコール-SONa、分岐型ポリグリセリン-2-フルフリル-SONa又は分岐型ポリグリセリン-イソプロピルオキシ-SONaである、上記[14]記載の培地。
[16]硫酸化化合物が、ジイソシアネート化合物による糖類の架橋重合体の硫酸化物である、[1]に記載の培地。
[17]ジイソシアネート化合物による糖類の架橋重合体の硫酸化物又はその薬学的に許容可能な塩が、マルトトリオース-ヘキサメチレンジイソシアナート-SONa又はデキストラン-ヘキサメチレンジイソシアナート-SONaである、[16]に記載の培地。
[18]硫酸化化合物が、糖ラクトンの硫酸化物である、[1]に記載の培地。
[19]糖ラクトンの硫酸化物又はその薬学的に許容可能な塩が、グルコノラクトン-SONaである、[18]に記載の培地。
[20]硫酸化化合物が、有機酸の硫酸化物である、[1]に記載の培地。
[21]有機酸の硫酸化物又はその薬学的に許容可能な塩が、酒石酸-SONaである、[20]に記載の培地。
[22]線維芽細胞成長因子が塩基性線維芽細胞成長因子である、[1]~[21]のいずれかに記載の培地。
[23]前記幹細胞が、間葉系幹細胞、胚性幹細胞又は人工多能性幹細胞である、[1]~[22]のいずれかに記載の培地。
[24]FGFを含む幹細胞増殖用培地を用いた幹細胞の培養方法であって、FGF存在下で幹細胞の増殖促進に働く濃度で硫酸化化合物又はその薬学的に許容可能な塩を培地に添加することを特徴とする、方法(但し、硫酸化化合物が硫酸化多糖である場合における硫酸化化合物の含有量は250ng/ml以下)。
[25]硫酸化化合物が、硫酸化糖類である、[24]に記載の方法(但し、硫酸化糖類が硫酸化多糖である場合における硫酸化糖類の含有量は250ng/ml以下)。
[26]前記硫酸化糖類が、
(I)1又は2以上の下記一般式(a)
Figure JPOXMLDOC01-appb-C000013
(式中、
naは1、2又は3であり、
1a及びR3aは、同一又は異なってそれぞれ、置換基を有していてもよい官能基であり、
na個のR2aは、独立してそれぞれ、置換基を有していてもよい官能基である)
で表される化合物から誘導される構成単位を含み、1又は2以上の硫酸基を含む化合物、
(II)下記一般式(b)
Figure JPOXMLDOC01-appb-C000014
(式中、
nbは3~100の整数であり、
nb個のR1bは、独立してそれぞれ、置換基を有していてもよい官能基であり、
1又は2以上の硫酸基を含む)
で表される化合物、及び
(III)下記一般式(c)
Figure JPOXMLDOC01-appb-C000015
(式中、
ncは1、2又は3であり、
1c~R4cは、同一又は異なってそれぞれ、置換基を有していてもよい官能基であり、
nc個のR5cは、独立してそれぞれ、置換基を有していてもよい官能基であり、
1又は2以上の硫酸基を含む)
で表される化合物からなる群から選択される少なくとも1つである、[25]に記載の方法。
[27]硫酸化糖類が、硫酸化単糖、硫酸化二糖、硫酸化多糖、硫酸化糖アルコール及び硫酸化シクリトールからなる群から選択される少なくとも1つである、[25]又は[26]に記載の方法。
[28]硫酸化糖類における硫黄の含有度が、5重量%以上である、[25]~[27]のいずれかに記載の方法。
[29]前記硫酸化糖類又はその薬学的に許容可能な塩が、デキストラン硫酸Na、セルロースSONa、キサンタンガムSONa、ペクチンSONa、フコイダン、アルギン酸SONa、イヌリンSONa、マルトヘプタオースSONa、スタキオースSONa、マルトトリオースSONa、マルチトールSONa、スクロース8SOK、グルコースSONa、myo-6イノシトールSOK、α-シクロデキストリンSONa、マンニトールSONa、キシリトールSONa及びエリスリトールSO3Naからなる群から選択される少なくとも1つである、[25]~[28]のいずれかに記載の方法。
[30]前記硫酸化糖類又はその薬学的に許容可能な塩が、デキストラン硫酸Na、フコイダン、キサンタンガムSONa、ペクチンSONa、マルトヘプタオースSONa、マルトトリオースSONa、マルチトールSONa及びスクロース8SOKからなる群から選択される少なくとも1つである、[29]に記載の方法。
[31]前記硫酸化糖類又はその薬学的に許容可能な塩が、平均分子量2,500~7,500のデキストラン硫酸Naである、[25]~[30]のいずれかに記載の方法。
[32]前記硫酸化糖類又はその薬学的に許容可能な塩が、スクロース8SOKである、[25]~[30]のいずれかに記載の方法。
[33]前記スクロース8SOKの含有量が、25pg/ml~10μg/mlである、[32]に記載の方法。
[34]硫酸化化合物が、硫酸化ポリマー(但し、硫酸化糖類は除く)である、[24]に記載の方法。
[35]前記硫酸化ポリマーが、下記一般式(I)
Figure JPOXMLDOC01-appb-C000016
(式中、
Aは、ポリマー構成単位であり、
nは1~1500の整数であり、
は、置換基を有していてもよい官能基である)
で表され、且つ1又は2以上のスルホ基を含む化合物である、[34]に記載の方法。
[36]硫酸化ポリマーにおける硫黄の含有度が、5重量%以上である、[34]又は[35]に記載の方法。
[37]硫酸化ポリマーが、スルホ基含有ポリビニルアルコール、スルホ基含有ポリビニルアミン、スルホ基含有ポリアリルアミン、スルホ基含有ポリエチレンイミン、スルホ基含有α-ポリリジン、スルホ基含有α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(2/8)共重合体、α-ポリグルタミン酸-γ-タウリン、スルホ基含有トリセリン、スルホ基含有セリン、スルホ基含有分岐型ポリグリセリン及びその誘導体、並びにポリエチレンスルホン酸からなる群から選択される少なくとも1つである、[34]~[36]のいずれかに記載の方法。
[38]スルホ基含有分岐型ポリグリセリンの誘導体又はその薬学的に許容可能な塩が、分岐型ポリグリセリン-モノメチルテトラエチレングリコール-SONa、分岐型ポリグリセリン-2-フルフリル-SONa又は分岐型ポリグリセリン-イソプロピルオキシ-SONaである、上記[37]記載の方法。
[39]硫酸化化合物が、ジイソシアネート化合物による糖類の架橋重合体の硫酸化物である、[24]に記載の方法。
[40]ジイソシアネート化合物による糖類の架橋重合体の硫酸化物又はその薬学的に許容可能な塩が、マルトトリオース-ヘキサメチレンジイソシアナート-SONa又はデキストラン-ヘキサメチレンジイソシアナート-SONaである、[39]に記載の方法。
[41]硫酸化化合物が、糖ラクトンの硫酸化物である、[24]に記載の方法。
[42]糖ラクトンの硫酸化物又はその薬学的に許容可能な塩が、グルコノラクトン-SONaである、[41]に記載の方法。
[43]硫酸化化合物が、有機酸の硫酸化物である、[24]に記載の方法。
[44]有機酸の硫酸化物又はその薬学的に許容可能な塩が、酒石酸-SONaである、[43]に記載の方法。
[45]線維芽細胞成長因子が塩基性線維芽細胞成長因子である、[24]~[44]のいずれかに記載の方法。
[46]前記幹細胞が、間葉系幹細胞、胚性幹細胞又は人工多能性幹細胞である、[24]~[45]のいずれかに記載の方法。
[47]キシリトールSONa、マルトトリオース-ヘキサメチレンジイソシアナート-SONa及びグルコノラクトン-SONaからなる群より選択される硫酸化化合物又はその薬学的に許容可能な塩。
[48]α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(5-SONa)(2/8)共重合体、トリセリン-SONa及び分岐型ポリグリセリン-イソプロピルオキシ-SONaからなる群より選択される硫酸化化合物又はその薬学的に許容可能な塩。
 本発明の培地を用いれば、幹細胞を効率よく増殖させることができる。そのため培養中の培地交換の頻度を下げることができ、幹細胞の培養コストを削減することが可能となる。
 本発明は、線維芽細胞成長因子を含む幹細胞増殖用培地であって、FGF存在下で幹細胞の増殖促進に働く濃度で硫酸化化合物又はその薬学的に許容可能な塩を含むことを特徴とする、培地(以後、本発明の培地とも称する)を提供する。
 本発明において、硫酸化化合物とは、任意の化合物の硫酸化物であって、FGF存在下で幹細胞の増殖促進に働き得るものをいう。
 本発明において、硫酸化化合物又はその薬学的に許容可能な塩が「FGF存在下で幹細胞の増殖促進に働く」とは、硫酸化化合物又はその薬学的に許容可能な塩を含有しないこと以外は同じ条件でFGF存在下で培養した幹細胞の細胞数を基準(100%)として、硫酸化化合物又はその薬学的に許容可能な塩を培地に含有させた場合に、通常100%以上、好ましくは120%以上の細胞数が得られることをいう。ここでFGFは、後述するような幹細胞の増殖を促進し得る濃度で存在すればよい。FGF存在下で幹細胞の増殖促進に働くか否かは、実施例に記載の方法等の公知の細胞増殖系を使用する方法で評価することができる。
 本発明における硫酸化化合物は、好ましくは、硫酸化糖類、硫酸化ポリマー、ジイソシアネート化合物による糖類の架橋重合体の硫酸化物、糖ラクトンの硫酸化物又は有機酸の硫酸化物である。
 本発明の一態様において、硫酸化化合物は、硫酸化糖類である。本発明において、硫酸化糖類は、糖類の硫酸化物である。「糖類」としては、当該技術分野で公知のものであれば特に限定されず、また新規なものであってもよい。糖類は、天然物でも合成品でもよい。本発明の培地に添加される硫酸化糖類は、好ましくは、硫酸化単糖、硫酸化二糖、硫酸化多糖、硫酸化糖アルコール又は硫酸化シクリトールである。
 硫酸化糖類の一態様は、
(I)1又は2以上の下記一般式(a)
Figure JPOXMLDOC01-appb-C000017
(式中、
naは1、2又は3であり、
1a及びR3aは、同一又は異なってそれぞれ、置換基を有していてもよい官能基であり、
na個のR2aは、独立してそれぞれ、置換基を有していてもよい官能基である)
で表される化合物から誘導される構成単位を含み、1又は2以上の硫酸基を含む化合物(以下、硫酸化糖類I)である。
 ここで、「一般式(a)で表される化合物から誘導される構成単位」とは、単量体である一般式(a)で表される化合物から誘導され、硫酸化糖類Iに含有される単位である(以下、便宜上、構成単位aとも称する)。
 本明細書中、「官能基」とは、有機化合物の分子内に存在し、その化合物の特徴的な反応性の原因となるような原子又は原子団を意味し、具体的には水素、炭素、窒素、酸素等で構成される。
 官能基としては、例えば、水酸基、アルコキシ基、アミノ基、アシルアミノ基、カルボキシル基、エステル基、アミド基、ホルミル基、カルボニル基、ヒドロキシアルキル基、アルキル基(例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、tert-ペンチル、ネオペンチル、2-ペンチル、3-ペンチル、n-ヘキシル、2-ヘキシル等の直鎖または分岐状のアルキル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル等の環状のアルキル基、ピロリジン、テトラヒドロフラン、テトラヒドロチオフェン等の複素環式脂肪族等)、アリール基(例えば、フェニル、ナフチル、ピリジル、ピリミジル、ピラジニル、トリアジニル、インドリジル、イミダゾリル、チアゾリル、オキサゾリル、プリニル、キノリニル等の基)等が挙げられる。
 「置換基を有していてもよい官能基」における「置換基」としては、通常、糖類を構成する際に利用されるものであれば特に限定されないが、水酸基、アミノ基、カルボキシル基、ホルミル基、カルボニル基等が例示される。さらにこれらの官能基は、硫酸基、リン酸基、アセチル基、アミド基等で置換されていてもよい。置換基が2以上存在する場合は、それらは同一でも異なっていてもよい。
 R1a~R3aを構成する官能基としては、好ましくは、水酸基、アルコキシ基、アミノ基、アシルアミノ基、カルボキシル基、ヒドロキシアルキル基、アルキル基(例、メチル)が挙げられる。該官能基が有していてもよい置換基としては、水酸基が好ましい。
 また一般式(a)で表される構成単位中の-OHは、構成単位同士の連結に関与せず硫酸化糖類の末端に位置する場合には、置換基を有していてもよい。置換基としては、例えば、硫酸基、リン酸基、アセチル基、アミド基等が挙げられる。
 硫酸化糖類Iが、構成単位aを2以上含む化合物である場合、各構成単位は同一でも異なっていてもよい。構成単位同士は、スペーサー(連結基)を介して連結されていてもよいが、スペーサーを介さずグリコシド結合により連結されていることが好ましい。グリコシド結合は、α型であってもβ型であってもよい。グリコシド結合の様式としては、特に限定されないが、例えば、α-1,2結合、β-1,2結合、α-1,3結合、β-1,3結合、α-1,4結合、β-1,4結合、α-1,5結合、β-1,5結合、α-1,6結合、β-1,6結合等が挙げられ、それらのいずれであってもよく、1分子中に複数の結合様式が含まれていてもよい。
 間葉系幹細胞増殖に好ましい硫酸化糖類Iにおける構成単位aの数は、通常1~5,000、好ましくは1~500、より好ましくは1~50、最も好ましくは1~30である。多能性幹細胞増殖に好ましい硫酸化糖類Iにおける構成単位aの数は、通常1~10万、好ましくは1~1万、より好ましくは1~5,000、最も好ましくは1~1,000である。
 硫酸化糖類Iは、1又は2以上の硫酸基を含む。硫酸化糖類I全体として1又は2以上の硫酸基を含んでいればよく、構成単位がそれぞれ硫酸基を含む必要はない。硫酸基は、構成単位a中のR1a~R3a中の硫酸基、又は構成単位a中の-OHの置換基としての硫酸基であり、通常は水酸基等の硫酸化が可能な任意の官能基の硫酸化によって導入され、その位置は特に限定されない。また硫酸化糖類I中の硫酸基の数は、構成単位数や硫酸化が可能な官能基の数等によって異なり得るが、好ましくは約1.5残基/構成単位aである。
 構成単位aを1つ含み、1又は2以上の硫酸基を含む化合物は、硫酸化単糖に相当する。
 単糖としては、当該技術分野で公知のものを特に限定なく採用することができ、また新規な単糖であってもよい。糖を構成する炭素の数は限定されず、例えば、四炭糖、五炭糖、六炭糖、七炭糖等のいずれであってもよい。単糖としては、具体的には、例えばグルコース、ガラクトース、マンノース、タロース、イドース、アルトロース、アロース、グロース、キシロース、アラビノース、ラムノース、フコース、フラクトース、リボース、デオキシリボース、グルコサミン、ガラクトサミン、グルクロン酸、ガラクツロン酸等が挙げられる。硫酸化単糖は、これらの単糖の硫酸化物であり、好ましくはグルコースの硫酸化物(例えば、グルコースSOH等)である。
 構成単位aを2以上含み、1又は2以上の硫酸基を含む化合物は、硫酸化二糖又は硫酸化多糖に相当する。
 二糖は、前記単糖二分子がグリコシド結合により結合して一分子となった糖であり、当該技術分野で公知のものを特に限定なく採用することができ、また新規な二糖であってもよい。グリコシド結合の様式は特に限定されず、α-1,2結合、β-1,2結合、α-1,3結合、β-1,3結合、α-1,4結合、β-1,4結合、α-1,5結合、β-1,5結合、α-1,6結合、β-1,6結合、α-1,α-1結合、α-1,β-1結合、α-1,β-2結合等のいずれであってもよい。二糖としては、具体的には、例えばスクロース、ラクトース、マルトース、トレハロース、セロビオース、マルチトール等が挙げられる。硫酸化二糖は、これらの二糖の硫酸化物であり、好ましくはスクロースの硫酸化物(例えば、スクロース8SOH等)およびマルチトールの硫酸化物(例えば、マルチトールSOH等)である。
 多糖は、前記単糖三分子以上がグリコシド結合により結合して一分子となった糖であり、当該技術分野で公知のものを特に限定なく採用することができ、また新規な多糖であってもよい。多糖は、前記糖類のうち一種類のみで構成されるものでもよいし、二種類以上が組み合わさって構成されるものでもよい。多糖は、直鎖状、分岐状及び環状のいずれであってもよい。
 多糖としては、例えば、アミロース、アミロペクチン、グリコーゲン、デキストリン、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、デキストラン、プルラン、セルロース及びその誘導体(例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等)、ラミナラン、カードラン、カロース、マンナン、グルコマンナン、ガラクトマンナン、キシラン、グルクロノキシラン、アラビノキシラン、アラバン、ガラクタン、ガラクツロナン、キチン、キトサン、キシログルカン、ペクチン酸及びペクチン、アルギン酸、アラビノガラクタン、グリコサミノグルカン(例えば、ヘパリン、ヘパラン硫酸、ヒアルロン酸、コンドロイチン4-硫酸、コンドロイチン6-硫酸、デルマタン硫酸、ケタラン硫酸等)、グアーガム、キサンタンガム、フコイダン、イヌリンなどが挙げられ、デキストラン、セルロース、キサンタンガム、フコイダン、アルギン酸、イヌリン、α-シクロデキストリン、マルトヘプタオース、スタキオース及びマルトトリオースが好ましい。硫酸化多糖は、これらの多糖の硫酸化物であり、上記糖類のうち既に硫酸化されているもの(例えば、ヘパリン、ヘパラン硫酸、コンドロイチン4-硫酸、コンドロイチン6-硫酸、デルマタン硫酸、ケタラン硫酸、フコイダン等)については、当該糖類自体も含まれる。硫酸化多糖としては、デキストラン硫酸、セルロースの硫酸化物(即ち、セルロースSOH)、キサンタンガムの硫酸化物(即ち、キサンタンガムSOH)、フコイダン、アルギン酸の硫酸化物(即ち、アルギン酸SOH)、イヌリンの硫酸化物(即ち、イヌリンSOH)、α-シクロデキストリンの硫酸化物(即ち、α-シクロデキストリンSOH)、マルトヘプタオースの硫酸化物(即ち、マルトヘプタオースSOH)、スタキオースの硫酸化物(即ち、スタキオースSOH)及びマルトトリオースの硫酸化物(即ち、マルトトリオースSOH)が好ましい。
 硫酸化糖類の別の態様は、
(II)下記一般式(b)
Figure JPOXMLDOC01-appb-C000018
(式中、
nbは3~100の整数であり、
nb個のR1bは、独立してそれぞれ、置換基を有していてもよい官能基であり、
1又は2以上の硫酸基を含む)
で表される化合物(以下、硫酸化糖類II)である。
 官能基、並びに該官能基が有していてもよい置換基としては上述と同様のものが挙げられるが、R1bを構成する官能基として好ましくは、水酸基が挙げられる。
 硫酸化糖類IIは、1又は2以上の硫酸基を含む。硫酸基は、上記の一般式(b)におけるR1b中に存在する硫酸基であり、通常は水酸基等の硫酸化が可能な任意の官能基の硫酸化によって導入され、その位置は特に限定されない。また硫酸化糖類II中の硫酸基の数は、硫酸化が可能な官能基の数等によって異なり得るが、好ましくは約1.5残基/硫酸化糖類IIである。
 硫酸化糖類IIは、硫酸化糖アルコールに相当する。
 糖アルコールは、前記単糖のカルボニル基が還元されて生成する化合物である。当該技術分野で公知のものを特に限定なく採用することができ、また新規な糖アルコールであってもよい。糖アルコールとしては、例えば、グリセリン、エリスリトール、トレイトール、アラビニトール、キシリトール、ソルビトール、マンニトール、ボレミトール、ペルセイトール等が挙げられ、エリスリトール、キシリトール及びマンニトールが好ましい。硫酸化糖アルコールは、これらの糖アルコールの硫酸化物であり、グリセリンの硫酸化物(即ち、グリセリンSOH)、エリスリトールの硫酸化物(即ち、エリスリトールSOH)、キシリトールの硫酸化物(即ち、キシリトールSOH)及びマンニトールの硫酸化物(即ち、マンニトールSOH)が好ましい。
 硫酸化糖類の別の態様は、
(III)下記一般式(c)
Figure JPOXMLDOC01-appb-C000019
(式中、
ncは1、2又は3であり、
1c~R4cは、同一又は異なってそれぞれ、置換基を有していてもよい官能基であり、
nc個のR5cは、独立してそれぞれ、置換基を有していてもよい官能基であり、
1又は2以上の硫酸基を含む)
で表される化合物である(以下、硫酸化糖類III)。
 官能基、並びに該官能基が有していてもよい置換基としては上述と同様のものが挙げられるが、R1c~R5cを構成する官能基として、好ましくは、水酸基が挙げられる。
 硫酸化糖類IIIは、1又は2以上の硫酸基を含む。硫酸基は、上記の一般式(c)におけるR1c~R5cの1又は2以上に存在する硫酸基であり、通常は水酸基等の硫酸化が可能な任意の官能基の硫酸化によって導入され、その位置は特に限定されない。また硫酸化糖類III中の硫酸基の数は、硫酸化が可能な官能基の数等によって異なり得るが、好ましくは約1.5残基/硫酸化糖類IIIである。
 硫酸化糖類IIIは、硫酸化シクリトールに相当する。
 シクリトールは、ポリヒドロキシシクロアルカンであり、環状糖アルコール又はシクリットとも呼ばれる。シクリトールとしては、当該技術分野で公知のものを特に限定なく採用することができ、また新規なシクリトールであってもよい。またシクリトールには多くの異性体が知られているが、いずれの異性体であってもよい。環を構成する炭素の数も特に限定されないが、好ましくは六員環である。シクリトールとしては、例えば、イノシトール(1,2,3,4,5,6-シクロヘキサンヘキサオール)、イノシトールの誘導体(ヒドロキシ基をアミノ基、ケトン基、カルボキシル基等に置換した誘導体)等が挙げられるが、イノシトール(例えば、myo-イノシトール等)が好ましい。硫酸化シクリトールは、これらのシクリトールの硫酸化物であり、イノシトールの硫酸化物(例えば、myo-イノシトール6SOH)が好ましい。
 硫酸化糖類における硫黄の含有度は、通常5重量%以上、好ましくは10重量%以上であり、更に好ましくは15重量%以上であり、上限は通常40重量%以下、好ましくは35重量%以下、より好ましくは30重量%以下であり、この範囲であればFGF存在下で幹細胞の増殖促進に働き得る。ここで硫黄の含有度は、硫酸化糖類中の硫酸基のみに由来する硫黄の割合を重量%で示したものであり、当該分野に公知の方法(例、ロジソン酸法、元素分析または発光分光分析)により測定することができる。例えば、後述の実施例で使用したスクロース8SOKの硫黄含量は19.5重量%(硫酸基含有度で48.8重量%)、デキストラン硫酸Naの硫黄含量は19.15重量%(硫酸基含有度47.9重量%)である。
 硫酸化糖類には、光学異性体、立体異性体、互変異性体、回転異性体、あるいは、それらの任意比率による混合物も包含される。これらは自体公知の合成手法、分離手法によりそれぞれを単品として得ることができる。例えば、光学異性体は、光学活性な合成中間体を用いる、または、合成中間体もしくは最終物のラセミ体を常法に従って光学分割することにより得ることができる。
 さらに、安定同位体や放射性同位体も含まれる。
 本発明の培地に含まれる硫酸化糖類は、薬学的に許容可能な塩の形態であってもよい。かかる塩としては、硫酸化糖類中に存在する硫酸基等と塩基との塩が挙げられる。具体的には、ナトリウム塩、カリウム塩などのアルカリ金属塩;カルシウム塩、マグネシウム塩などのアルカリ土類金属塩;アルミニウム塩、アンモニウム塩などの無機塩基塩;トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6-ルチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミン等との有機塩基塩が挙げられ、フリー体から常法により調製することができる。硫酸化糖類の薬学的に許容可能な塩としては、硫酸基のナトリウム塩又はカリウム塩が好ましく、例えば、スクロース8SOK、デキストラン硫酸Na(分子量5,000、25,000、50万等)、セルロースSONa、キサンタンガムSONa、アルギン酸SONa、イヌリンSONa、α-シクロデキストリンSONa、エリスリトールSONa、キシリトールSONa、マンニトールSONa、myo-イノシトール6SOK等が挙げられる。
 尚、キシリトールSONaは新規化合物である。
 硫酸化糖類又はその薬学的に許容可能な塩の平均分子量は、特に限定されず、採用する硫酸化糖類の種類と塩の種類によって異なるが、間葉系幹細胞増殖に好ましいのは、通常50~100万、好ましくは100~70万、より好ましくは300~50万、最も好ましくは500~10万である。多能性幹細胞増殖に好ましいのは、通常50~5000万、好ましくは100~500万、より好ましくは300~250万、最も好ましくは500~50万である。平均分子量が大きすぎると(例えば間葉系幹細胞増殖においては100万を超えると)、一定濃度以上の添加により毒性または細胞接着阻害などによるとみられる細胞増殖抑制がみられる傾向がある。平均分子量は、ゲル浸透クロマトグラフィー等を用いて測定することができる。
 例えば、デキストラン硫酸Naの平均分子量としては、通常1,000~70万、好ましくは1,000~30万、より好ましくは1,000~10万、最も好ましくは2,500~7,500である。
 本発明の一態様において、硫酸化化合物は、硫酸化ポリマーである。本発明において、硫酸化ポリマーは、任意のポリマーの硫酸化物である。ポリマーは、複数のモノマーが重合することにより生成する化合物であれば、当該技術分野で公知のものであっても、新規なものであってもよく、また天然物でも合成品でもよい。
 本発明において、硫酸化ポリマーに硫酸化糖類は含まれない。
 ポリマーの種類としては、例えば、ポリエステル、ポリビニル、ポリアミド、ポリアミン、ポリエーテル、ポリカーボネート、ポリアルキル、ポリアリール、ポリイミド、ポリウレタン、エポキシ樹脂等が挙げられ、これらの組合せによるポリマーも本発明におけるポリマーに含まれる。
 ポリマーは、直鎖型ポリマー、分岐型ポリマー(例えば、くし型ポリマー、星型ポリマー、樹状ポリマー等)、架橋ポリマー等のいずれの形態のものであってもよい。
 ポリマーは、1種類のモノマーが重合することにより生成するものであってもよいし、共重合体であってもよい。共重合体である場合には、重合するモノマーの配列、分岐の有無等は特に限定されず、ランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれであってもよい。
 本発明において用いられるポリマーは、該ポリマーを構成するモノマーの種類によっても異なるが、通常、1~1500程度、好ましくは3~1000程度のモノマーの重合体であり、分子量200~40万程度、好ましくは500~10万程度である。
 硫酸化ポリマーは、1又は2以上の「置換基を有していてもよい官能基」を含む。本明細書中、「官能基」とは、有機化合物の分子内に存在し、その化合物の特徴的な反応性の原因となるような原子又は原子団を意味し、具体的には水素、炭素、窒素、酸素等で構成される。
 官能基としては、水素、炭素、窒素、酸素等で構成される官能基が挙げられ、例えば、水酸基、アルコキシ基、アミノ基、アシルアミノ基、カルボキシル基、エステル基、アミド基、ホルミル基、カルボニル基、ヒドロキシルアルキル基、アルキル基(例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、tert-ペンチル、ネオペンチル、2-ペンチル、3-ペンチル、n-ヘキシル、2-ヘキシル等の直鎖または分岐状のアルキル基、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル等の環状のアルキル基等)、ピロリジン、テトラヒドロフラン、テトラヒドロチオフェン等の複素環式脂肪族等、アリール又はヘテロアリール基(例えば、フェニル、ナフチル、ピリジニル、ピリミジル、ピラジニル、トリアジニル、インドリジル、イミダゾリル、チアゾリル、オキサゾリル、プリニル、キノリニル等の基)等が挙げられる。硫酸基の導入しやすさから、官能基としては水酸基、アミノ基及びアルキル基が好ましい。官能基が2以上存在する場合は、それらは同一でも異なってもよい。
 「置換基を有していてもよい官能基」における「置換基」としては、通常、ポリマーを構成する際に利用されるものであれば特に限定されないが、スルホ基、リン酸基、アシル基、アミド基等が例示される。置換基が2以上存在する場合は、それらは同一でも異なっていてもよい。
 硫酸化ポリマーは、上記ポリマーに1又は2以上のスルホ基を導入することによって得ることができる。硫酸化ポリマーを構成するモノマーがそれぞれスルホ基を含む必要はない。スルホ基は、硫酸化ポリマーを構成するモノマー中の官能基であり、モノマー中の水酸基、アミノ基等の硫酸化され得る任意の官能基の硫酸化によって導入されたものも含まれ、その位置は特に限定されない。また硫酸化ポリマー中のスルホ基の数も特に限定されず、重合するモノマーの数(重合度)や硫酸化が可能な官能基の数等によって異なり得る。
 ポリマーにスルホ基を導入する方法は、特に限定されない。スルホ基があらかじめ導入されたモノマーを重合化して硫酸化ポリマーを得ることも、モノマーを重合化してポリマーとした後、得られたポリマーを硫酸化することによって硫酸化ポリマーを得ることもできる。硫酸化は当分野で公知の手法に準じて行うことができる。
 硫酸化ポリマーの一態様は、下記一般式(I)
Figure JPOXMLDOC01-appb-C000020
(式中、
Aは、ポリマー構成単位であり、
nは1~1500の整数であり、
は、置換基を有していてもよい官能基である)
で表され、且つ1又は2以上のスルホ基を含む化合物である。
 n個のAは同一(重合体)であっても異なっていても(共重合体)よく、その結合(重合)様式も特に限定されず、直鎖型、分岐型(例えば、くし型、星型、樹状等)、架橋型等のいずれであってもよい。共重合体である場合には、重合するモノマーの配列、分岐の有無等は特に限定されず、ランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれであってもよい。
 nは、硫酸化ポリマー中の構成単位Aの数、すなわち重合度を意味するが、本発明においてはnは1~1500、好ましくは3~1000、より好ましくは3~700である。
 式(I)中Aは、ポリマー構成単位であれば、特にその構造は限定されないが、例えば炭化水素(脂肪族炭化水素、芳香族炭化水素)に由来し、酸素、窒素等を含み得る。脂肪族炭化水素としては、飽和脂肪族炭化水素(例、エタン、2-メチルブタン、ペンタン、2,2-ジメチルブタン、2,3-ジメチルブタン、ヘキサン、2-メチルペンタン、3-メチルペンタン、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、3,3-ジメチルペンタン、へプタン、2-メチルヘキサン、3-メチルヘキサン、2,2,3-トリメチルブタン、2,2-ジメチルヘキサン、2,5-ジメチルヘキサン、3,4-ジメチルヘキサン、ヘキサメチルエタン、2-メチルへプタン、4-メチルへプタン、オクタン、2,2,4-トリメチルペンタン、2,3,4-トリメチルペンタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、1-ペンタデカン)や不飽和脂肪族炭化水素(例、エチレン、プロピレン、ブテン、ペンテン等のアルケン類、アセチレン、メチルアセチレンなどのアルキン類、ブタジエン、ペンタジエン等のアルカジエン類、シクロペンテン、シクロヘキセンなどのシクロアルケン類)を挙げることができる。芳香族炭化水素としては、ベンゼン、トルエン、キシレン、インデン、ナフタレン、フェナントレンなどを例示することができる。
 ポリマー構成単位としては、具体的には、ポリエステル、ポリビニル、ポリアミド、ポリアミン、ポリエーテル、ポリカーボネート、ポリアリール、ポリイミド、ポリウレタン、エポキシ樹脂等の構成単位が挙げられる。
 式(I)中Rは、置換基を有していてもよい官能基である。「置換基を有していてもよい官能基」は、上述と同様のものであり、Rを構成する官能基としては、好ましくはアルキル基(例、メチル)、カルボニル基、水酸基、アルコキシル基、アミノ基、アシルアミノ基、ヒドロキシルアルキル基、アリール基(例、フェニル)が挙げられる。該官能基が有していてもよい置換基としては、スルホ基が好ましい。
 硫酸化ポリマーにおける硫黄の含有度は、通常5重量%以上、好ましくは10重量%以上であり、更に好ましくは15重量%以上であり、上限は40重量%以下であり、この範囲であればFGF存在下で幹細胞の増殖促進に働き得る。ここで硫黄の含有度は、硫酸化ポリマー中の硫黄の割合を重量%で示したものであり、当該分野に公知の方法ロジゾン酸法、元素分析または発光分光分析により測定することができる。例えば、後述の実施例で使用したポリアリルアミンSONaの硫黄含有度は、19.43重量%(スルホ基含有度で48.6重量%)である。
 硫酸化ポリマーには、光学異性体、立体異性体、互変異性体、回転異性体、あるいは、それらの任意比率による混合物も包含される。これらは自体公知の合成手法、分離手法によりそれぞれを単品として得ることができる。例えば、光学異性体は、光学活性な合成中間体を用いる、または、合成中間体もしくは最終物のラセミ体を常法に従って光学分割することにより得ることができる。
 さらに、安定同位体や放射性同位体も含まれる。
 硫酸化ポリマーとしては、例えば、スルホ基含有ポリビニルアルコール(即ち、ポリビニルアルコールSOH)、スルホ基含有ポリビニルアミン(即ち、ポリビニルアミンSOH)、ポリエチレンスルホン酸、スルホ基含有ポリアリルアミン(即ち、ポリアリルアミンSOH)、スルホ基含有ポリエチレンイミン(即ち、ポリエチレンイミンSOH)、スルホ基含有α-ポリリジン(即ち、α-ポリリジンSOH)、スルホ基含有α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(2/8)共重合体(即ち、α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(5-SOH)(2/8)共重合体)、α-ポリグルタミン酸-γ-タウリン、スルホ基含有トリセリン(即ち、トリセリンSOH)、スルホ基含有セリン(即ち、セリンSOH)、スルホ基含有分岐型ポリグリセリン(即ち、分岐型ポリグリセリンSOH)及びその誘導体等が挙げられるが、これらに限定されない。ここでスルホ基含有分岐型ポリグリセリンの誘導体とは、スルホ基含有分岐型ポリグリセリン(即ち、分岐型ポリグリセリンSOH)の任意の置換可能な位置に任意の官能基が結合している化合物である。スルホ基含有分岐型ポリグリセリンの誘導体又はその薬学的に許容可能な塩は、具体的には分岐型ポリグリセリン-モノメチルテトラエチレングリコール-SONa、分岐型ポリグリセリン-2-フルフリル-SONa、分岐型ポリグリセリン-イソプロピルオキシ-SONa等が挙げられる。尚、分岐型ポリグリセリン-イソプロピルオキシ-SONaは新規化合物である。好ましくは、スルホ基含有ポリビニルアルコール、スルホ基含有ポリビニルアミン、ポリエチレンスルホン酸、スルホ基含有ポリアリルアミン、スルホ基含有α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(2/8)共重合体、α-ポリグルタミン酸-γ-タウリン及びスルホ基含有トリセリンである。
 本発明の培地に含まれる硫酸化ポリマーは、薬学的に許容可能な塩の形態であってもよい。かかる塩としては、スルホ基等と塩基との塩が挙げられる。具体的には、ナトリウム塩、カリウム塩などのアルカリ金属塩;カルシウム塩、マグネシウム塩などのアルカリ土類金属塩;アルミニウム塩、アンモニウム塩などの無機塩基塩;トリメチルアミン、トリエチルアミン、ピリジン、ピコリン、2,6-ルチジン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミン等との有機塩基塩が挙げられ、フリー体から常法により調製することができる。硫酸化ポリマーの薬学的に許容可能な塩としては、スルホ基のナトリウム塩が好ましく、例えば、ポリビニルアルコールSONa、ポリビニルアミンSONa、ポリエチレンスルホン酸Na等が挙げられる。
 硫酸化ポリマー又はその薬学的に許容可能な塩の重量平均分子量は、特に限定されず、採用する硫酸化ポリマーの種類と塩の種類によって異なるが、通常200~40万、好ましくは500~10万、より好ましくは500~5万である。重量平均分子量が40万を超えると、培地への溶解性が低下する傾向がある。重量平均分子量は、ゲル浸透クロマトグラフィー等を用いて測定することができる。
 また、本発明の一態様において、硫酸化化合物は、ジイソシアネート化合物による糖類の架橋重合体の硫酸化物又はその薬学的に許容可能な塩である。糖類は、上記硫酸化糖類におけるものと同様であり、特に限定されないが、好ましくはマルトトリオース及びデキストランである。ジイソシアネート化合物としては、特に限定されないが、例えば、公知の脂肪族ジイソシアネート、脂環式ジイソシアネート、脂環芳香族ジイソシアネート及び芳香族ジイソシアネートが挙げられ、好ましくは脂肪族ジイソシアネートであり、より好ましくはヘキサメチレンジイソシアネートである。ジイソシアネート化合物による糖類の架橋重合体の硫酸化物又はその薬学的に許容可能な塩としては、好ましくは、マルトトリオース-ヘキサメチレンジイソシアナート-SONa又はデキストラン-ヘキサメチレンジイソシアナート-SONaである。
 ジイソシアネート化合物による糖類の架橋重合体の硫酸化物又はその薬学的に許容可能な塩は、当該分野において公知の方法により製造することができる。例えば、マルトトリオース-ヘキサメチレンジイソシアナート-SONa、デキストラン-ヘキサメチレンジイソシアナート-SONaは、後述の実施例に記載の方法により合成することができる。
 尚、マルトトリオース-ヘキサメチレンジイソシアナート-SONaは新規化合物である。
 また、本発明の一態様において、硫酸化化合物は、糖ラクトンの硫酸化物又はその薬学的に許容可能な塩である。糖ラクトンとは、糖類の酸化反応により誘導される環状エステル化合物をいう。糖類は、上記硫酸化糖類におけるものと同様であり、特に限定されないが、例えば、単糖、二糖及び多糖が挙げられ、好ましくはグルコースである。糖ラクトンの硫酸化物又はその薬学的に許容可能な塩としては、好ましくはグルコノラクトン-SONaである。
 糖ラクトンの硫酸化物又はその薬学的に許容可能な塩は、当該分野において公知の方法により製造することができる。例えば、グルコノラクトン-SONaは、後述の実施例に記載の方法により合成することができる。
 尚、グルコノラクトン-SONaは新規化合物である。
 また、本発明の一態様において、硫酸化化合物は、有機酸の硫酸化物又はその薬学的に許容可能な塩である。有機酸は、水酸基等の硫酸化が可能な置換基を1つ以上有する限り特に限定されず、例えばリンゴ酸、酒石酸、クエン酸などが挙げられるが、好ましくは酒石酸である。有機酸の硫酸化物又はその薬学的に許容可能な塩としては、好ましくは酒石酸-SONaである。
 有機酸の硫酸化物又はその薬学的に許容可能な塩は、当該分野において公知の方法により製造することができる。例えば、酒石酸-SONaは、後述の実施例に記載の方法により合成することができる。
 本発明の培地中の硫酸化化合物又はその薬学的に許容可能な塩の濃度は、FGF存在下で幹細胞の増殖促進に働き得る限り、任意の範囲に設定することができ、採用する硫酸化化合物の種類によって異なるが、硫酸化化合物又はその薬学的に許容可能な塩の濃度が低いとFGF存在下で幹細胞の増殖促進効果が弱くなる場合があり、その濃度が高いと硫酸化化合物自体の細胞毒性または接着阻害による細胞増殖抑制を伴う場合がある。従って、本発明の培地は、FGF存在下で幹細胞の増殖促進に働く濃度で硫酸化又はその薬学的に許容可能な塩を含むことを特徴とする。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩が硫酸化多糖である場合、本発明の培地中の濃度が、2.5pg/ml~10μg/ml、好ましくは25pg/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がデキストラン硫酸Na(平均分子量2,500~7,000)である場合、本発明の培地中の濃度が、2.5pg/ml~10μg/ml、好ましくは25pg/ml~2.5μg/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がスクロース8SOK(分子量1,287)である場合、本発明の培地中の濃度が、2.5pg/ml~25μg/ml、好ましくは25pg/ml~10μg/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がマンニトールSONa(分子量最大794)である場合、本発明の培地中の濃度が、50ng/ml~200ng/ml又は500ng/ml~100μg/ml、好ましくは75ng/ml~150ng/ml又は2.5μg/ml~25μg/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がアルギン酸SONa(分子量1万~60万)である場合、本発明の培地中の濃度が、100ng/ml~10μg/ml、好ましくは250ng/ml~2.5μg/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がフコイダン(分子量20万~100万)である場合、本発明の培地中の濃度が、2.5ng/ml~1.0μg/ml、好ましくは25ng/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がセルロースSONaである場合、本発明の培地中の濃度が、250pg/ml~2.5μg/ml、好ましくは2.5ng/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がキサンタンガムSONa(分子量200万以上)である場合、本発明の培地中の濃度が、2.5pg/ml~250pg/ml又は5ng/ml~250ng/ml、好ましくは5pg/ml~200pg/ml又は10ng/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がペクチンSONaである場合、本発明の培地中の濃度が、2.5ng/ml~500ng/ml、好ましくは25ng/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がマルトヘプタオースSONa(分子量最大3498)である場合、本発明の培地中の濃度が、25pg/ml~250ng/ml、好ましくは250pg/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がキシリトールSONa(分子量最大662)である場合、本発明の培地中の濃度が、25pg/ml~2.5μg/ml、好ましくは250pg/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がmeso-エリスリトールSONa(分子量最大530)である場合、本発明の培地中の濃度が、25pg/ml~2.0ng/ml又は5ng/ml~500ng/ml、好ましくは25pg/ml~150pg/ml又は25ng/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がマルトトリオースSONaである場合、本発明の培地中の濃度が、2.5pg/ml~10μg/ml、好ましくは25pg/ml~2.5μg/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化糖類又はその薬学的に許容可能な塩がマルチトールSONaである場合、本発明の培地中の濃度が、10ng/ml~50μg/ml、好ましくは25ng/ml~2.5μg/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化ポリマー又はその薬学的に許容可能な塩がポリビニルアルコールSONaである場合、本発明の培地中の濃度が、250pg/ml~200ng/ml、好ましくは250pg/ml~100ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化ポリマー又はその薬学的に許容可能な塩がポリビニルアミンSONaである場合、本発明の培地中の濃度が、5ng/ml~250ng/ml、好ましくは25ng/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化ポリマー又はその薬学的に許容可能な塩がポリエチレンスルホン酸Naである場合、本発明の培地中の濃度が、250pg/ml~250ng/ml、好ましくは25ng/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化ポリマー又はその薬学的に許容可能な塩がポリアリルアミンSONaである場合、本発明の培地中の濃度が、12.5pg/ml~2ng/ml又は5ng/ml~200ng/ml、好ましくは25pg/ml~250pg/ml又は25ng/ml~100ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化ポリマー又はその薬学的に許容可能な塩がα-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(5-SONa)(2/8)共重合体である場合、本発明の培地中の濃度が、12.5pg/ml~2ng/ml又は5ng/ml~250μg/ml、好ましくは25pg/ml~250pg/ml又は25ng/ml~2.5μg/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化ポリマー又はその薬学的に許容可能な塩がα-グルタミン酸-γ-タウリンNaである場合、本発明の培地中の濃度が、12.5pg/ml~2ng/ml又は5ng/ml~250μg/ml、好ましくは25pg/ml~250pg/ml又は25ng/ml~2.5μg/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化ポリマー又はその薬学的に許容可能な塩がトリセリンSONaである場合、本発明の培地中の濃度が、125pg/ml~5ng/ml、好ましくは250pg/ml~2.5ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化ポリマー又はその薬学的に許容可能な塩が分岐型ポリグリセリンSONaである場合、本発明の培地中の濃度が、10pg/ml~1μg/ml、好ましくは25pg/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化ポリマー又はその薬学的に許容可能な塩が分岐型ポリグリセリン-モノメチルテトラエチレングリコール-SONaである場合、本発明の培地中の濃度が、12.5pg/ml~12.5ng/ml、好ましくは25pg/ml~2.5ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化ポリマー又はその薬学的に許容可能な塩が分岐型ポリグリセリン-イソプロピルオキシ-SONaである場合、本発明の培地中の濃度が、12.5pg/ml~50ng/ml、好ましくは25pg/ml~25ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化化合物又はその薬学的に許容可能な塩がデキストラン-ヘキサメチレンジイソシアナート-SONaである場合、本発明の培地中の濃度が、25pg/ml~2.0ng/ml又は5ng/ml~100ng/ml、好ましくは25pg/ml~250pg/ml又は10ng/ml~100ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化化合物又はその薬学的に許容可能な塩がマルトトリオース-ヘキサメチレンジイソシアナート-SONaである場合、本発明の培地中の濃度が、25pg/ml~2.0ng/ml又は100ng/ml~500ng/ml、好ましくは25pg/ml~250pg/ml又は100ng/ml~250ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化化合物又はその薬学的に許容可能な塩がグルコノラクトン-SONaである場合、本発明の培地中の濃度が、25pg/ml~2.0ng/ml、好ましくは25pg/ml~250pg/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 例えば、硫酸化化合物又はその薬学的に許容可能な塩が酒石酸-SONaである場合、本発明の培地中の濃度が、500pg/ml~20ng/ml、好ましくは1ng/ml~10ng/mlであれば、FGF存在下で幹細胞の増殖促進に働き得る。
 硫酸化化合物又はその薬学的に許容可能な塩は、幹細胞増殖用培地中のFGFのタンパク質量低下の抑制に働き得る。ここでFGFのタンパク質量低下の抑制とは、硫酸化化合物又はその薬学的に許容可能な塩の存在下で一定時間インキュベーションした後、溶液中のFGFタンパク質量を免疫学的に測定した場合に、FGFタンパク質量の減少が抑制されることをいう。FGFのタンパク質量低下が抑制されたか否かは、実施例に記載の方法などの公知の方法で評価することができる。例えば、FGFタンパク質量を低下させないことが公知の条件(例えば4℃7日間等)でインキュベーションした時のFGFタンパク質量を100%として、インキュベーション後のFGFタンパク質量が10%未満となる条件(例えば37℃7日間等)でインキュベーションした場合に、インキュベーション後のFGFタンパク質量が10%以上(好ましくは30%以上、より好ましくは50%以上、最も好ましくは70%以上)であれば、FGFタンパク質量の低下が抑制されたということができる。
 FGFのタンパク質量低下を抑制し得る硫酸化化合物又はその薬学的に許容可能な塩は、FGF存在下で幹細胞の増殖促進に働く傾向があるため、硫酸化化合物又はその薬学的に許容可能な塩がFGF存在下で幹細胞の増殖促進に働くか否かを評価する前に、培養試験に供する硫酸化化合物又はその薬学的に許容可能な塩の選定のために当該硫酸化化合物又はその薬学的に許容可能な塩がFGFのタンパク質量低下を抑制し得るか否かを評価してもよい。しかしながら、FGFのタンパク質量低下を抑制する濃度範囲であっても、硫酸化化合物又はその薬学的に許容可能な塩自体の細胞毒性または接着阻害による細胞増殖抑制が強く表れて、FGF存在下で幹細胞の増殖を促進しない場合がある。また実施例I-1やII-1の方法においてFGFのタンパク質量低下の抑制が確認されない濃度範囲であっても、微弱なFGFのタンパク質量低下の抑制またはそれ以外の硫酸化化合物の働きに起因して、FGF存在下で幹細胞の増殖が促進される場合がある。従って、本発明の培地中の硫酸化化合物又はその薬学的に許容可能な塩の濃度範囲については、実施例に記載の方法等の細胞増殖系を使用する方法で決定される。
 また、硫酸化化合物の種類によっては、細胞毒性等の細胞に与える影響を低減させるために、本発明の培地中の硫酸化化合物又はその薬学的に許容可能な塩の濃度範囲を、通常FGFのタンパク質量低下を抑制しないような低濃度に設定してもよい。
 例えば、後述の実施例に示すように、スクロースやキシリトールの硫酸化物又はその塩(例えば、スクロース8SOK、キシリトールSONaなど)は、2.5μg/ml以下の濃度ではFGFのタンパク質量低下を抑制しないが、25pg/ml~2.5μg/mlの濃度範囲であってもFGF存在下で幹細胞の増殖を促進し得る。
 また例えば、ポリビニルアミンの硫酸化物又はその塩(例えば、ポリビニルアミンSONa)は、25ng/ml以下の濃度ではFGFのタンパク質量低下を抑制しないが、10ng/ml~25ng/ml(好ましくは12.5ng/ml~25ng/ml)の濃度範囲であってもFGF存在下で幹細胞の増殖を促進し得る。
 また例えば、ポリアリルアミンの硫酸化物又はその塩(例えば、ポリアリルアミンSONa)は、25ng/ml以下の濃度ではFGFのタンパク質量低下を抑制しないが、12.5pg/ml~2ng/ml又は5ng/ml~25ng/ml(好ましくは25pg/ml~250pg/ml又は5ng/ml~25ng/ml)の濃度範囲であってもFGF存在下で幹細胞の増殖を促進し得る。
 また例えば、α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(2/8)共重合体の硫酸化物またはその塩(例えば、α-ポリグルタミン酸メチル/5-ヒドロキシ-α-ノルバリン(5-SONa)(2/8)共重合体)は、25μg/ml以下の濃度ではFGFのタンパク質量低下を抑制しないが、12.5pg/ml~2ng/ml又は5ng/ml~20μg/ml(好ましくは25pg/ml~250pg/ml又は25ng/ml~2.5μg/ml)の濃度範囲であってもFGF存在下で幹細胞の増殖を促進し得る。
 また例えば、α-ポリグルタミン酸-γ-タウリン又はその塩(例えば、α-ポリグルタミン酸-γ-タウリンNa)は、2.5μg/ml以下の濃度ではFGFのタンパク質量低下を抑制しないが、12.5pg/ml~2ng/ml又は5ng/ml~20μg/ml(好ましくは25pg/ml~250pg/ml又は25ng/ml~2.5μg/ml)の濃度範囲であってもFGF存在下で幹細胞の増殖を促進し得る。
 また例えば、トリセリンの硫酸化物又はその塩(例えば、トリセリンSONa)は、2.5μg/ml以下の濃度ではFGFのタンパク質量低下を抑制しないが、125pg/ml~5ng/ml(好ましくは250pg/ml~2.5ng/ml)の濃度範囲であってもFGF存在下で幹細胞の増殖を促進し得る。
 また例えば、デキストラン-ヘキサメチレンジイソシアナート-SONaは、25ng/ml以下の濃度ではFGFのタンパク質量低下を抑制しないが、25pg/ml~2.0ng/ml又は5ng/ml~25ng/mlの濃度範囲であってもFGF存在下で幹細胞の増殖を促進し得る。
 また例えば、マルトトリオース-ヘキサメチレンジイソシアナート-SONaは、250pg/ml以下の濃度ではFGFのタンパク質量低下を抑制しないが、25pg/ml~250pg/mlの濃度範囲であってもFGF存在下で幹細胞の増殖を促進し得る。
 また例えば、グルコノラクトン-SONaは、2.5μg/ml以下の濃度ではFGFのタンパク質量低下を抑制しないが、25pg/ml~2.0ng/mlの濃度範囲であってもFGF存在下で幹細胞の増殖を促進し得る。
 また例えば、酒石酸-SONaは、250μg/ml以下の濃度ではFGFのタンパク質量低下を抑制しないが、500pg/ml~20ng/mlの濃度範囲であってもFGF存在下で幹細胞の増殖を促進し得る。
 例えば、後述の実施例に示すように、硫酸化ポリマーは、ng~μg/mlのオーダーでの添加濃度がFGFのタンパク質量低下抑制に必要であるが、pg/mlの添加濃度であってもFGF存在下で幹細胞の増殖を促進し得る。
 本発明の培地は、線維芽細胞成長因子(FGF)を含む。FGFとしては、塩基性線維芽細胞成長因子(bFGF)、酸性線維芽細胞成長因子(aFGF)などが挙げられるが、幹細胞の増殖を促進する効果が高いことから、本発明の培地にはbFGFを用いることが好ましい。
 FGFは任意の動物(例えば、ラット、マウス、モルモット、ウサギ、ヒツジ、ウマ、ブタ、ウシ、サル、ヒトなど)由来であってよいが、培養される幹細胞の種類に応じて適宜選択することができる。ヒト由来の幹細胞を培養する場合にはヒト由来であることが好ましい。FGFとしては、例えば、ヒトbFGF(例えばEndocrine Rev., 8, 95, 1987参照)、ウシbFGF(例えばProc. Natl. Acad. Sci. USA, 81, 6963, 1984参照)、マウスbFGF(例えばDev. Biol., 138, 454-463, 1990参照)、ラットbFGF(例えばBiochem. Biophys. Res. Commun., 157, 256-263, 1988参照)等が例示される。
 また本発明の培地に含まれるFGFは、幹細胞の増殖を促進し得る範囲において、単離/精製された天然、合成又は組換えタンパク質、変異体タンパク質(挿入、置換及び欠失変異体を含む)、フラグメント、及び化学修飾されたそれらの誘導体を含む。
 本発明の培地に含まれるFGFの濃度は、幹細胞の増殖を促進し得る濃度であれば特に限定されず、FGFの培地への添加時において通常1ng/ml~300ng/ml、好ましくは1ng/ml~200ng/ml、より好ましくは4ng/ml~100ng/mlである。FGFの濃度が1ng/ml未満であると、硫酸化化合物の存在下でも幹細胞の増殖促進効果が得られない傾向がある。またFGFの濃度が300ng/mlを超えると、培養コストが大きくなる傾向がある。
 本明細書中、「幹細胞」とは、自己複製能及び分化/増殖能を有する未熟な細胞を意味する。幹細胞には、分化能力に応じて、多能性幹細胞(pluripotent stem cell)、複能性幹細胞(multipotent stem cell)、単能性幹細胞(unipotent stem cell)等の亜集団が含まれる。多能性幹細胞とは、生体を構成する全ての組織や細胞へ分化し得る能力を有する細胞を意味する。複能性幹細胞とは、全ての種類ではないが、複数種の組織や細胞へ分化し得る能力を有する細胞を意味する。単能性幹細胞とは、特定の組織や細胞へ分化し得る能力を有する細胞を意味する。
 多能性幹細胞としては、胚性幹細胞(ES細胞)、胚性生殖細胞(EG細胞)、人工多能性幹細胞(iPS細胞)等を挙げることが出来る。体細胞の核を核移植することによって作製された初期胚を培養することによって樹立した幹細胞も、多能性幹細胞としてまた好ましい(Nature, 385, 810 (1997); Science, 280, 1256 (1998); Nature Biotechnology, 17, 456 (1999); Nature, 394, 369 (1998); Nature Genetics, 22, 127 (1999); Proc. Natl. Acad. Sci. USA, 96, 14984 (1999); Nature Genetics, 24, 109 (2000))。
 複能性幹細胞としては、間葉系幹細胞、造血系幹細胞、神経系幹細胞、骨髄幹細胞、生殖幹細胞等の体性幹細胞等を挙げることが出来る。複能性幹細胞は、好ましくは間葉系幹細胞、より好ましくは骨髄間葉系幹細胞である。間葉系幹細胞とは、骨芽細胞、軟骨芽細胞及び脂肪芽細胞等の間葉系の細胞全て又はいくつかへの分化が可能な幹細胞又はその前駆細胞の集団を広義に意味する。
 本発明の培地は、いずれの幹細胞の増殖にも好適に使用することができるが、好ましくは、間葉系幹細胞(例えば、骨髄間葉系幹細胞等)、胚性幹細胞又は人工多能性幹細胞の増殖用である。
 また本発明の培地は、いずれの動物由来の幹細胞の増殖にも好適に使用することができる。本発明の培地を使用して培養され得る幹細胞は、例えば、マウス、ラット、ハムスター、モルモット等のげっ歯類、ウサギ等のウサギ目、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の有蹄目、イヌ、ネコ等のネコ目、ヒト、サル、アカゲザル、マーモセット、オランウータン、チンパンジーなどの霊長類等由来の幹細胞であり、好ましくは、霊長類等由来の幹細胞である。
 本発明の培地の基礎培地には、自体公知のものを用いることができ、幹細胞の増殖を阻害しない限り特に限定されないが、例えばDMEM、EMEM、IMDM(Iscove's Modified Dulbecco's Medium)、GMEM(Glasgow's MEM)、RPMI-1640、α-MEM、Ham's Medium F-12、Ham's Medium F-10、Ham's Medium F12K、Medium 199、ATCC-CRCM30、DM-160、DM-201、BME、Fischer、McCoy's 5A、Leibovitz's L-15、RITC80-7、MCDB105、MCDB107、MCDB131、MCDB153、MCDB201、NCTC109、NCTC135、Waymouth's MB752/1、CMRL-1066、Williams' medium E、Brinster's BMOC-3 Medium、E8 medium(Nature Methods, 2011, 8, 424-429)、ReproFF2培地(リプロセル社)、及びこれらの混合培地等が挙げられる。また、幹細胞培養用に改変された培地や、上記基礎培地と他の培地との混合物(例えば、実施例に記載の間葉系幹細胞培地(MSCGM)を含んだDMEM等)等を用いてもよい。
 本発明の培地は、自体公知の添加物を含むことができる。添加物としては、幹細胞の増殖を阻害するものでない限り特に限定されないが、例えば成長因子(例えばインスリン等)、鉄源(例えばトランスフェリン等)、ポリアミン類(例えばプトレシン等)、ミネラル(例えばセレン酸ナトリウム等)、糖類(例えばグルコース等)、有機酸(例えばピルビン酸、乳酸等)、血清タンパク質(例えばアルブミン等)、アミノ酸(例えばL-グルタミン等)、還元剤(例えば2-メルカプトエタノール等)、ビタミン類(例えばアスコルビン酸、d-ビオチン等)、ステロイド(例えばβ-エストラジオール、プロゲステロン等)、抗生物質(例えばストレプトマイシン、ペニシリン、ゲンタマイシン等)、緩衝剤(例えばHEPES等)等が挙げられる。また、従来から幹細胞の培養に用いられてきた添加物も適宜含むことができる。添加物は、それぞれ自体公知の濃度範囲内で含まれることが好ましい。
 本発明の培地は、血清を含んでいてもよい。血清としては、動物由来の血清であれば、幹細胞の増殖を阻害するものでない限り特に限定されないが、好ましくは哺乳動物由来の血清(例えばウシ胎仔血清、ヒト血清等)である。血清の濃度は、自体公知の濃度範囲内であればよい。ただし、血清成分にはヒトES細胞の分化因子等も含まれていることが知られており、また血清のロット間差により培養結果にばらつきが生じる可能性もあることから、血清の含有量は低いほど好ましく、血清を含まないことが最も好ましい。更に、培養後の幹細胞を医療目的で使用する場合、異種由来成分は血液媒介病原菌の感染源や異種抗原となる可能性があるため、血清を含まないことが好ましい。血清を含まない場合、血清の代替添加物(例えばKnockout Serum Replacement(KSR)(Invitrogen)、Chemically-defined Lipid concentrated(Gibco)等)を用いてもよい。
 本発明は更に、FGFを含む幹細胞増殖用培地を用いた幹細胞の培養方法であって、培地に硫酸化化合物又はその薬学的に許容可能な塩を添加することを特徴とする、方法(以下、本発明の方法とも称する)を提供する。
 硫酸化化合物又はその薬学的に許容可能な塩、FGF、幹細胞及び培地については、上述の通りである。
 本発明の方法は、FGF存在下で幹細胞の増殖促進に働く濃度で硫酸化化合物又はその薬学的に許容可能な塩を培地に添加することを特徴とする。硫酸化化合物又はその薬学的に許容可能な塩の培地への添加濃度は、FGF存在下で幹細胞の増殖促進に働き得る濃度であれば、特に限定されない。
 硫酸化化合物又はその薬学的に許容可能な塩の培地への添加は、培地と幹細胞とを接触させる前であっても後であってもよい。また幹細胞の培養中の培地に適宜追加してもよい。
 本発明の方法においては、培養中に培地交換を適宜行なってもよく、その場合、新しい培地にもFGF存在下で幹細胞の増殖促進に働き得る濃度で硫酸化化合物又はその薬学的に許容可能な塩が添加される。
 培地中のFGFの濃度は、幹細胞の増殖を促進し得る濃度であれば特に限定されず、FGFの培地への添加時において通常1ng/ml~300ng/ml、好ましくは1ng/ml~200ng/ml、より好ましくは4ng/ml~100ng/mlである。FGFの濃度が1ng/ml未満であると、硫酸化化合物の存在下でも幹細胞の増殖促進効果が得られない傾向がある。またFGFの濃度が300ng/mlを超えると、培養コストが大きくなる傾向がある。
 FGFの培地への添加は、培地と幹細胞とを接触させる前であっても後であってもよく、硫酸化化合物又はその薬学的に許容可能な塩を培地に添加する前であっても後であってもよい。また幹細胞の培養中の培地に適宜追加してもよい。
 本発明の培地は、あらかじめ硫酸化化合物が添加されており、培養時の作業を減らすことができるため、本発明の培養方法において好ましく用いられ得る。
 幹細胞の培養に用いられる培養器は、幹細胞の培養が可能なものであれば特に限定されないが、フラスコ、組織培養用フラスコ、ディッシュ、ペトリデッシュ、組織培養用ディッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート、マイクロスライド、チャンバースライド、シャーレ、チューブ、トレイ、培養バック、及びローラーボトルが挙げられ得る。
 培養器は、細胞接着性であっても細胞非接着性であってもよく、目的に応じて適宜選ばれる。細胞接着性の培養器は、培養器の表面の細胞との接着性を向上させる目的で、細胞外マトリックス(ECM、細胞外基質ともいう)等の任意の細胞支持用基質でコーティングされたものであり得る。細胞支持用基質は、幹細胞又はフィーダー細胞(用いられる場合)の接着を目的とする任意の物質であり得る。
 フィーダー細胞を使用しない場合には、細胞外基質若しくはその活性断片、又はそれらの機能をミミックする人工物を使用して、培養を行うことが好ましい。
 細胞外基質は、培養器の表面と細胞との接着を改善する目的で細胞の培養に通常使用されるものであれば特に限定されず、例えば、ラミニン(ラミニン511、ラミニン332等)、フィブロネクチン、ビトロネクチン、コラーゲン、エラスチン、アドへサミン等の公知のものを使用することができる。また細胞外基質の活性断片は、該細胞外基質と同等の細胞接着活性を有するその断片であればよく、これらも公知のものを使用することができる。例えば、特開2011-78370号公報に開示されている、ラミニン511のE8フラグメント、ラミニン332のE8フラグメント等が挙げられる。細胞外基質及びその活性断片は、市販品であってもよく、例えば、ライフテクノロジーズ、BDファルコン、バイオラミナ等から入手可能である。これらの細胞外基質及びその活性断片は、2種類以上を組み合わせて使用してもよい。また基底膜を過剰産生するマウスEHS肉腫から抽出、精製した、タンパク質や多糖類を含む複雑な基底膜成分の混合物であるマトリゲル(商品名)を使用してもよい。細胞外基質及びその活性断片は、適当な溶液中に懸濁し、細胞を培養するのに適した容器に塗布すればよい。
 細胞外基質の機能をミミックする人工物も、細胞の培養に通常使用されるものであれば特に限定されず、例えば、コーニング社のシンセマックス(登録商標)やウルトラウェブ(登録商標)、シグマアルドリッチ社のHy-STEMシリーズ、ポリリジン、ポリオルニチン等の公知のものを使用することができる。
 本発明において使用される細胞外基質若しくはその活性断片、又はそれらの機能をミミックする人工物は、好ましくはマトリゲル、又はラミニン511若しくはラミニン511の活性断片であり、より好ましくはラミニン511の活性断片(即ち、ラミニン511のE8フラグメント)である。
 本発明の方法において、細胞播種方法は特に限定されない。多能性幹細胞を培養する場合には、コロニー播種であってもシングルセル播種であってもよいが、産業レベルで再生医療用の多能性幹細胞を製造するためには、厳密に手順及びスケジュールが管理された条件で、複数の作業者によって作業がなされる必要がある。そのため、播種する細胞数の厳密な調整が可能なシングルセル播種が好ましい。
 シングルセル播種を行う場合、多能性幹細胞のコロニーを単一の細胞にまで解離した後、培地中に播種する。シングルセル播種は、自体公知の方法により行えばよい。例えば、細胞剥離液(トリプシン溶液等)で細胞間接着、細胞-基質間接着を弱くしたあと、スクレーパー(IWAKI社、9000-220等)等で細胞を基質から剥がし(この状態で細胞は細胞塊を形成した状態で溶液中に浮遊しており、完全なシングルセルではない)、その後ピペッティングにより細胞をシングルセルにまで解離させた後、培地に播種すればよい。播種時には、多能性幹細胞の生存のために、Y-27632(ナカライテスク社:08945-84)などのROCK阻害剤を培地に添加しておくことが好ましい。ROCK阻害剤は、播種の翌日以降は、多能性幹細胞の増殖に必要ないため、培地から除去することが好ましい。
 その他の培養条件は、適宜設定できる。例えば、培養温度は、特に限定されるものではないが約30~40℃、好ましくは約37℃であり得る。CO濃度は、約1~10%、好ましくは約2~5%であり得る。酸素分圧は、1~10%であり得る。
 以下に実施例を示して、本発明をより詳細に説明するが、これらは本発明の範囲を限定するものではない。
<I.硫酸化糖類、ジイソシアネート化合物による糖類の架橋重合体の硫酸化物、糖ラクトンの硫酸化物及び有機酸の硫酸化物の評価>
合成例1 セルロースSO 3 Na(セルロース硫酸Na)の合成
 セルロース(200 mg、メルク社製)を脱水ジメチルホルムアミド(6 ml)中に溶解したのち、三酸化硫黄トリメチルアミン錯体(600 mg、アルドリッチ社製)を加え、70℃で一晩攪拌した。溶媒をデカンテーションにて除き、アセトンを加えて攪拌したのちろ過した。得られた固体を純水(2 ml)に溶解し、30%酢酸ナトリウム水溶液(1.5 ml)を加えて2時間室温で攪拌した。反応液にエタノール(12 ml)を加えたのち、析出物をろ過した。得られた固体を純水(5 ml)に溶解してSpectra/Por MWCO6,000-8,000を用いて一晩透析し、凍結乾燥して白色固体(425 mg)を得た。
合成例2~4 キサンタンガムSO 3 Na(キサンタンガム硫酸Na)、アルギン酸SO 3 Na及びイヌリンSO 3 Naの合成
 以下の化合物もセルロースSO3Naと同様の条件で硫酸化ナトリウム化を行った。
Figure JPOXMLDOC01-appb-T000021
合成例5 α-シクロデキストリンSO 3 Na(α-CD・SO 3 Na)の合成
 α-シクロデキストリン(α-CD)(200 mg、純正化学社製)を脱水ジメチルホルムアミド(6 ml)中に溶解したのち、三酸化硫黄トリメチルアミン錯体(600 mg)を加え、70℃で一晩攪拌した。溶媒をデカンテーションにて除き、アセトンを加えて攪拌したのちろ過した。得られた固体を純水(2 ml)に溶解し、30%酢酸ナトリウム水溶液(1.5 ml)を加えて2時間室温で攪拌した。反応液にエタノール(12 ml)を加えたのち、析出物をろ過した。得られた固体を純水(5 ml)に溶解してSpectra/Por MWCO1,000を用いて一晩透析し、凍結乾燥して白色固体(598 mg)を得た。
合成例6~8 マルトヘプタオースSO 3 Na、スタキオースSO 3 Na、マルトトリオースSO 3 Naの合成
 以下の化合物もα-シクロデキストリンSO3Naと同様の条件で硫酸化ナトリウム化を行った。合成例6~8については、透析の際Spectra/Por MWCO100-500を用いた。
Figure JPOXMLDOC01-appb-T000022
合成例9 マルチトールSO 3 Naの合成
 マルチトール(300 mg、東京化成社製)を脱水ジメチルホルムアミド(6 ml)中に溶解したのち、三酸化硫黄トリメチルアミン錯体(1.6g)を加え、70℃で一晩攪拌した。反応液を濃縮し、エタノールを加えて攪拌し濾過した。得られた固体を水に溶解し、炭酸水素ナトリウムを加えてpHを7にして攪拌後した。濃縮を3回行った後凍結乾燥して白色固体(1.17g)を得た。
合成例11 マンニトールSO 3 Naの合成
 マンニトール(200 mg、関東化学社製)を脱水ジメチルホルムアミド(6 ml)中に溶解したのち、三酸化硫黄トリメチルアミン錯体(600 mg)を加え、70℃で一晩攪拌した。反応液に2規定水酸化ナトリウム水溶液を加え、pHを9にしたのち濃縮した。ゲルろ過カラム(バイオゲルp-2、バイオラッド社製)に担持させ、0.1 M炭酸水素アンモニウム水溶液を用いて溶出した。溶出液を凍結乾燥して白色固体(43 mg)を得た。
合成例10、12~14 グルコースSO 3 Na、キシリトールSO 3 Na、エリスリトールSO 3 Na、グリセリンSO 3 Naの合成
 以下の化合物もマンニトールSO3Naと同様の条件で硫酸化ナトリウム化を行った。
Figure JPOXMLDOC01-appb-T000023
合成例15 マルトトリオース-ヘキサメチレンジイソシアナート-SO 3 Naの合成
 マルトトリオース(200 mg、東京化成社製)とトリエチルアミン(28μl、純正化学社製)を脱水ジメチルホルムアミド(6 ml)に加え70℃で攪拌したのち、ヘキサメチレンジイソシアネート(96μl、東京化成社製)を加え、一晩攪拌した。反応液を濃縮し、水を加えて濃縮、凍結乾燥して白色固体(102 mg)を得た。
 得られた白色固体(102 mg)を脱水ジメチルホルムアミド(3 ml)と三酸化硫黄トリメチルアミン錯体(460 mg)を用いて合成例1と同じ条件で、硫酸ナトリウム化を行い、白色固体(332 mg)を得た。
合成例16 デキストラン-ヘキサメチレンジイソシアナート-SO 3 Naの合成
 デキストラン(200 mg、和光純薬社製)とトリエチルアミン(8.4μl、純正化学社製)を脱水ジメチルホルムアミド(200 ml)に加え70℃で攪拌したのち、ヘキサメチレンジイソシアネート(9.6μl、東京化成社製)を加え、一晩攪拌した。反応液を濃縮し、水を加えて濃縮、凍結乾燥して白色固体(193 mg)を得た。
 得られた白色固体(100 mg)を脱水ジメチルホルムアミド(20 ml)と三酸化硫黄トリメチルアミン錯体(1 g)を用いて合成例1と同じ条件で、硫酸ナトリウム化を行い、白色固体(194 mg)を得た。
合成例17 グルコノラクトン-SO 3 Naの合成
 δ-グルコノラクトン(300 mg、純正化学社製)を脱水ジメチルホルムアミド(6 ml)に溶解したのち、三酸化硫黄トリメチルアミン錯体(1.14 g)を加え、70℃で一晩攪拌した。溶媒を濃縮後アセトンとエタノールでスラリー洗浄したのち、残渣に炭酸水素ナトリウム水溶液を加えて攪拌した。反応液を濃縮し、イオン交換樹脂IRA96SBAGに担持させ0.2規定の水酸化ナトリウム(100 ml)で溶出したのちFPC3500に担持させ水(100 ml)で溶出し、濃縮、乾燥し黄褐色固体(140 mg)を得た。
合成例18 酒石酸-SO 3 Naの合成
 酒石酸(300 mg、和光純薬社製)を脱水ジメチルホルムアミドに溶解したのち、三酸化硫黄トリメチルアミン錯体(835 mg)を加え、70℃で一晩攪拌した。溶媒を濃縮し、イオン交換樹脂IRA96SBに担持させ、1%トリエチルアミン水溶液(200 ml)で溶出した。イオン交換樹脂FPC3500に担持させ水(100 ml)で溶出し、濃縮、乾燥して白色固体(430 mg)を得た。
実施例I-1 培地中のbFGF安定化評価
1.Lonza無血清培地中のbFGF安定化評価
(1)bFGF安定化評価サンプルの調製
 Lonza専用完全合成培地キット(00190632、タカラバイオ社)を使用してプロトコールに従い調製した培地(Lonza無血清培地)中のbFGFの安定化について、表4に記載の被験化合物の添加による影響を評価した。被験化合物をリン酸緩衝生理食塩水に溶解し、これを無血清培地で10倍希釈して表4に記載の濃度に調整した(被験サンプル)。被験サンプルを密閉したファルコンチューブ中で37℃に7日間(表5~8-2)または3日間(表8-3)静置したのち、ELISA測定にてbFGF濃度を定量した。尚、被験化合物を含まないリン酸緩衝生理食塩水を無血清培地で10倍希釈し、37℃又は4℃に7日間または3日間静置したものをコントロールとした。
Figure JPOXMLDOC01-appb-T000024
(2)培地中のbFGFの定量(ELISA測定)
 培地中のbFGFの定量には、市販の測定キット(ヒトbFGF ELISAキット、ELH-bFGF-001、Ray Biotech)を用いた。測定手順は、キットに添付されたプロトコールに従った。検量線用標品液の吸光度から作成した検量線(換算式)より、無血清培地中のbFGF濃度を算出した。尚、表5~8中の評価基準は以下の通りである。
+++:bFGF濃度が4℃コントロールのそれに対して70%以上
++:bFGF濃度が4℃コントロールのそれに対して50%以上70%未満
+:bFGF濃度が4℃コントロールのそれに対して30%以上50%未満
-:bFGF濃度が4℃コントロールのそれに対して10%以上30%未満
×:bFGF濃度が4℃コントロールのそれに対して10%未満
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 表5~8に示すように、硫酸化糖類を含まない評価サンプル(デキストリン、デキストラン15000、キサンタンガム、イヌリン、マルトトリオース、マルチトール、スクロース、α-シクロデキストリン(α-CD)、マンニトール、キシリトール)では、7日間37℃でインキュベートすることにより、いずれの濃度で添加した場合にも、培地中のbFGF濃度が4℃コントロールの10%未満に低下した。また37℃コントロールでも、培地中のbFGF濃度が4℃コントロールの10%未満に低下した。それに対し、硫酸化糖類を含む評価サンプルでは、培地中のbFGF濃度の低下を抑制する効果が認められた。各化合物について当該効果が認められた濃度は以下の通りである:デキストラン硫酸(5000)、250 pg/ml以上;デキストラン硫酸(25000)、2.5 ng/ml以上;デキストラン硫酸(50万)、2.5 ng/ml以上;カラギーナン、2.5μg/ml以上;セルロースSO3Na、2.5 ng/ml以上;キサンタンガムSO3Na、25 ng/ml以上;フコイダン、2.5 ng/ml以上;アルギン酸SO3Na、2.5 ng/ml以上;イヌリンSO3Na、2.5 ng/ml以上;マルトヘプタオースSO3Na、25 ng/ml及び2.5μg/ml以上;スタキオースSO3Na、250 ng/ml以上;マルトトリオースSO3Na、2.5 μg/ml以上;マルチトールSO3Na、250 ng/ml以上;スクロース8SO3K、25μg/ml以上;グルコースSO3Na、250μg/ml以上;myo-イノシトール6SO3K、25μg/ml以上;α-CD SO3Na、250 ng/ml以上;マンニトールSO3Na、25 ng/ml以上;キシリトールSO3Na、250 μg/ml以上;エリスリトールSO3Na、250 μg/ml以上;グリセリンSO3Na、2.5 mg/ml以上。
 また表8-2に示すように、マルトトリオース-ヘキサメチレンジイソシアナート-SO3Na、デキストラン-ヘキサメチレンジイソシアナート-SO3Na、グルコノラクトン-SO3Na又は酒石酸-SO3Naを含む評価サンプルでは、培地中のbFGF濃度の低下を抑制する効果が認められた。各化合物について当該効果が認められた濃度は以下の通りである:
マルトトリオース-ヘキサメチレンジイソシアナート-SO3Na、2.5 ng/ml、250 ng/ml~2.5 mg/ml;
デキストラン-ヘキサメチレンジイソシアナート-SO3Na、25 ng/ml~2.5 mg/ml;
グルコノラクトン-SO3Na、25μg/ml、2.5 mg/ml;
酒石酸-SO3Na、250 ng/ml、2.5 mg/ml。
 また表8-3に示すように、meso-エリスリトールSO3Na、スクロース8SO3K及びマルトヘプタオースSO3Naでは、培地中のbFGF濃度の低下を抑制する効果は、37℃で3日間インキュベートした場合、7日間インキュベートした場合よりも低濃度で認められた。各化合物について当該効果が認められた濃度は以下の通りである:
meso-エリスリトールSO3Na、25μg/ml以上;
スクロース8SO3K、250 ng/ml以上;
マルトヘプタオースSO3Na、25 ng/ml以上。
2.Essential 8培地又はReproFF2培地中のbFGF安定化評価
 Essential 8専用培地キット(A14666SA、インビトロジェン社)を使用してプロトコールに従い調製した培地(Essential 8培地)または同様に調製したリプロセル社のReproFF2培地中のbFGFの安定化について、各種被験化合物を250 pg/ml~2.5 mg/mlの濃度で添加した影響を評価した。被験化合物をリン酸緩衝生理食塩水に溶解し、これを無血清培地で10倍希釈して表4に記載の濃度に調整した(被験サンプル)。被験サンプルを密閉したファルコンチューブ中で37℃に7日間静置したのち、ELISA測定にてbFGF濃度を定量した。尚、被験化合物を含まないリン酸緩衝生理食塩水をEssential 8培地またはReproFF2培地で10倍希釈し、37℃または4℃に7日間静置したものをコントロールとした。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 Essential 8培地を用いた場合の結果を表8-4及び8-5に示す。硫酸化物を含まない評価サンプル(デキストラン15000及びマルトトリオース)では、7日間37℃でインキュベートすることにより、被験化合物を250μg/ml以下の濃度で添加した場合、培地中のbFGF濃度が4℃コントロールの10%未満に低下した。また37℃コントロールでも、培地中のbFGF濃度が4℃コントロールの10%未満に低下した。それに対し、硫酸化糖類、マルトトリオース-ヘキサメチレンジイソシアナート-SO3Na、デキストラン-ヘキサメチレンジイソシアナート-SO3Na、グルコノラクトン-SO3Na又は酒石酸-SO3Naを含む評価サンプルでは、培地中のbFGF濃度の低下を抑制する効果が認められた。各化合物について当該効果が認められた濃度は以下の通りである:
デキストラン硫酸Na(5000)、25 ng/ml以上;
デキストラン硫酸Na(25000)、2.5 ng/ml、250 ng/ml以上;
デキストラン硫酸Na(50万)、250 pg/ml、25 ng/ml以上;
デキストラン-ヘキサメチレンジイソシアナート-SO3Na、250 ng/ml以上;
カラギーナン、250 ng/ml以上;
セルロースSO3Na、25 ng/ml以上;
キサンタンガムSO3Na、250 ng/ml~250μg/ml;
フコイダン、25 ng/ml以上;
アルギン酸SO3Na、250 ng/ml以上;
コンドロイチン硫酸Na、250μg/ml以上;
ペクチンSO3Na、250 ng/ml以上;
キトサンSO3Na、250μg/ml以上;
マルトヘプタオースSO3Na、250 ng/ml以上;
α-CD・SO3Na、2.5μg/ml以上;
スタキオースSO3Na、250μg/ml以上;
マルトトリオースSO3Na、250 ng/ml以上;
マルトトリオース-ヘキサメチレンジイソシアナート-SO3Na、250 ng/ml以上;
マルチトールSO3Na、2.5μg/ml以上;
スクロース8SO3K、2.5μg/ml以上;
グルコースSO3Na、2.5μg/ml以上;
マンニトールSO3Na、2.5μg/ml以上;
エリスリトールSO3Na、25μg/ml以上;
myo-イノシトール6SO3K、25μg/ml以上;
グルコノラクトンSO3Na、25μg/ml以上;
酒石酸SO3Na、250μg/ml以上。
 ReproFF2培地を用いた場合の結果を表8-6に示す。デキストラン硫酸Na(5000)又はデキストラン硫酸Na(25000)を含む評価サンプルでは、培地中のbFGF濃度の低下を抑制する効果が認められた。各化合物について当該効果が認められた濃度は以下の通りである:
デキストラン硫酸Na(5000)、250 pg/ml以上;
デキストラン硫酸Na(25000)、250 pg/ml以上;
デキストラン硫酸Na(50万)、2.5 ng/ml以上;
カラギーナン、2.5 ng/ml以上;
コンドロイチン硫酸Na、250 pg/ml~2.5 ng/ml、250 ng/ml、25μg/ml以上;
スクロースSO3K、250 pg/ml以上;
ポリエチレンスルホン酸Na、2.5 ng/ml、250 ng/ml以上。
実施例I-2 細胞増殖系での評価
1.間葉系幹細胞増殖系での評価
(1)細胞増殖
 間葉系幹細胞専用培地(Lonza社、MSCGM)、又は、非働化したウシ胎児血清(Invitrogen社、GIBCO FBS)及びペニシリン-ストレプトマイシン(Sigma-Aldrich社)を含んだダルベッコ変法イーグル培地(Invitrogen社、GIBCO D-MEM)中で培養したヒト骨髄由来間葉系幹細胞(Lonza社、Human Mesenchymal Stem Cell)を、Lonza無血清培地に切り替えて培養した。このようにして無血清培養に馴化させた間葉系幹細胞を、Lonza無血清培地に懸濁させて、24ウェル培養プレート(日本ベクトンディッキンソン社、Falcon培養プレート)に20,000 cells/ウェルずつ、もしくは、6ウェル培養プレート(日本ベクトンディッキンソン社、Falcon培養プレート)に50,000 cells/ウェルずつ播種し、次にフィルター滅菌し所定の濃度に調整した被験化合物溶液を添加して、5%CO2/37℃の条件でインキュベーター(Thermo Scientific社、フォーマインキュベーター)内で7~8日間培養した。培地交換を行う場合は、播種した2~3日後に行った。この際、被験化合物溶液も播種の時と同様に再度添加した。この際、各種化合物溶液も播種の時と同様に再度添加した。7~8日間培養後、培地を取り除き、DNA定量を行った。尚、コントロールとして、被験化合物を含まないリン酸緩衝生理食塩水を添加した培地で同様に培養を行なった。
(2)DNAの定量による細胞数の算出
 塩化ナトリウム(18.0g)ならびにクエン酸三ナトリウム水和物(8.83g)を純水(100ml)に溶かし、これをさらに純水で20倍に希釈した(塩化ナトリウム-クエン酸ナトリウム緩衝液)。ラウリル硫酸ナトリウム(50.4mg)を塩化ナトリウム-クエン酸ナトリウム緩衝液(252ml)に溶かしてラウリル硫酸ナトリウム溶液とした。
 24ウェル培養プレート中の培地を除き、リン酸緩衝生理食塩水で洗浄した後、ラウリル硫酸ナトリウム溶液(500μl/ウェル)を添加し、37℃に4時間置いた。細胞数既知の細胞ペレットにもラウリル硫酸ナトリウム溶液(1.0ml)を添加し、37℃に4時間置いた。24ウェル培養プレート中の細胞について、この溶解液の一部(50μl)を96ウェル黒色マイクロプレートに移した。細胞ペレットを処理した溶液は、ラウリル硫酸ナトリウム溶液で順次希釈して検量線作成用溶液とした。これら検量線作成用溶液の一部(50μl)も、それぞれ96ウェル黒色マイクロプレートに移した。これら試料に、ビスベンズイミドH33258(04907-91、ナカライテスク)を塩化ナトリウム-クエン酸ナトリウム緩衝液で1,000倍希釈したDNA発色溶液を100μl/ウェルずつ添加した。添加して5分以内にマイクロプレートリーダーを用いて蛍光測定を行った(励起波長:355nm、測定波長:460nm)。作成した検量線(換算式)より24ウェルセルカルチャープレート中の細胞数を算出した。評価基準は以下の通りである。
◎:細胞数がコントロールのそれに対して120%以上
○:細胞数がコントロールのそれに対して100%以上120%未満
-:細胞数がコントロールのそれに対して50%以上100%未満
×:細胞数がコントロールのそれに対して50%未満
Figure JPOXMLDOC01-appb-T000034
 表9に示すように、硫酸化糖類を添加した培地ではコントロールに比べて細胞増殖が促進された(表9中、◎及び○)。各化合物について当該効果が認められた濃度は以下の通りである:デキストラン硫酸(5000)、25 pg/ml~2.5μg/ml;デキストラン硫酸(25000)、25 pg/ml~250 ng/ml;デキストラン硫酸(50万)、25 pg/ml~250 ng/ml;スクロース8SO3K、25 pg/ml~2.5μg/ml;フコイダン、25 ng/ml~250 ng/ml;アルギン酸SO3Na(1万-60万)、250 ng/ml~2.5μg/ml;マンニトールSO3Na、100 ng/ml、2.5μg/ml~25μg/ml;セルロースSO3Na、250 pg/ml~2.5μg/ml;キサンタンガムSO3Na、25 pg/ml、25 ng/ml;マルトヘプタオースSO3Na、25 pg/ml~2.5 ng/ml、250 ng/ml;キシリトールSO3Na、25 pg/ml~2.5μg/ml;meso-エリスリトールSO3Na、25 pg/ml~250 pg/ml、25 ng/ml~250 ng/ml;
マルトトリオースSO3Na、25 pg/ml~2.5μg/ml;マルチトールSO3Na、25 ng/ml、2.5μg/ml。
 またマルトトリオース-ヘキサメチレンジイソシアナート-SO3Na、デキストラン-ヘキサメチレンジイソシアナート-SO3Na、グルコノラクトン-SO3Na又は酒石酸-SO3Naを添加した培地でも、コントロールに比べて細胞増殖が促進された。各化合物について当該効果が認められた濃度は以下の通りである:
デキストラン-ヘキサメチレンジイソシアナート-SO3Na、25 pg/ml~250 pg/ml、25 ng/ml;
マルトトリオース-ヘキサメチレンジイソシアナート-SO3Na、25 pg/ml~250 pg/ml、250 ng/ml;
グルコノラクトン-SO3Na、25 pg/ml~250 pg/ml;
酒石酸-SO3Na、2.5 ng/ml。
2.iPS細胞増殖系での評価
 各種被験化合物による細胞増殖効果を人工多能性幹細胞(iPS細胞)を用いて評価した。iPSアカデミアジャパン社より購入した201B7株を、基底膜マトリックス(日本ベクトンディッキンソン社製のマトリゲル、又は大阪大学より購入したラミニン511の活性ドメインを含む断片)をコートした培養容器(日本ベクトンディッキンソン社、Falcon培養シャーレ又はFalcon培養プレート)内にて、ヒトES/iPS細胞用フィーダレス培地(リプロセル社、ReproFF2)中で増殖させた。
 この培地にコロニー状態のiPS細胞を懸濁させて、元の培養の2.5~3.5倍希釈となる量を、基底膜マトリックスをコートした6ウェル培養プレート(日本ベクトンディッキンソン社、Falcon培養プレート)に播種し、次に、フィルター滅菌し所定の濃度に調整した被験化合物溶液を添加して、5%CO2/37℃の条件でインキュベーター(Thermo Scientific社、フォーマインキュベーター)内で6~12日間培養した。培地交換を行う場合は、2~3日毎に行った。この際、被験化合物溶液も播種の時と同様に再度添加した。6~12日間培養後、培地を取り除き、トリプシン-EDTA(シグマアルドリッチ社)又はTrypLE Select(インビトロジェン社)処理により培養プレートから細胞を剥離し、細胞数を測定した。細胞数の測定は、「改訂細胞培養入門ノート, 77~83頁, 2010年, 羊土社」に記載の方法により行った。尚、コントロールとして、被験化合物を含まないリン酸緩衝生理食塩水を添加した培地で同様に培養を行った。
 また、細胞同士が解離した状態(シングルセル状態)で播種する場合には、フィルター滅菌した被験化合物溶液を、Y-27632(ナカライテスク社)を含んだ培地に所定の濃度となるように添加し、6ウェル培養プレートに分注した。これにY-27632を含んだ培地に懸濁させたiPS細胞を、100,000 cells/ウェルずつ播種し、6~8日間培養した。播種した翌日に、被験化合物のみ添加した培地(Y-27632不含)に切り替えた。培地交換を行う場合は、2~3日毎に行った。この際、被験化合物溶液も播種の時と同様に再度添加した。6~8日間培養後、前記と同様の方法で細胞数を測定した。
 また、別のiPS細胞用フィーダレス培地であるEssential 8培地(インビトロジェン社)中で評価を行う場合は、Essential 8培地にヒト血清アルブミン(シグマアルドリッチ社)を加えた培地で培養したiPS細胞を用いた。
 評価基準は以下の通りである。
◎:細胞数がコントロールのそれに対して120%以上
○:細胞数がコントロールのそれに対して100%以上120%未満
-:細胞数がコントロールのそれに対して50%以上100%未満
×:細胞数がコントロールのそれに対して50%未満
(空欄:未評価)
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
 表10-1に示すように、デキストラン硫酸Na(5000)を添加した培地では、コントロールに比べて細胞増殖が促進された(表10-1中、◎及び○)。マトリゲルを使用してReproFF2培地中で培養した場合、10 ng/ml~50 ng/mlの濃度で細胞増殖が促進された。マトリゲルを使用してEssential 8培地中で培養した場合、5 ng/ml~250 ng/mlの濃度で細胞増殖が促進された。ラミニン511の活性ドメインを含む断片を使用してEssential 8培地中で培養した場合、50 ng/mlの濃度で細胞増殖が促進された。また、表10-2に示すように他の硫酸化糖類を培地に添加した場合でも良好なiPS細胞の増殖促進活性が確認された。
 従って、硫酸化糖類を培地に添加することにより、使用する培地及び基底膜マトリックスの種類によらず、iPS細胞の増殖を促進することができることが示された。
実施例I-3 被験化合物中の硫黄の含有度の測定
 被験化合物中の硫黄の含有度(硫黄含量)と細胞増殖促進効果との関連を調べた。硫黄含量は、島津製作所社製のICPS-8100を用いて測定し、ICPS-8000 series Ver1.03を用いて解析した。硫黄の標品は、Accu Standard社製のICP-MS用スタンダードを用いた。0、1、10、30、50 ppmの硫黄標品溶液を作製し、検量線法により、0.01重量%で被験化合物を含む評価サンプルの硫黄含量を測定した。
Figure JPOXMLDOC01-appb-T000037
 結果を表11に示す。細胞増殖促進効果を示す被験化合物の硫黄含量は、いずれも5重量%以上であることが示された。
 以上の結果から、ごく微量の硫酸化糖類をbFGFを含有する培地に添加することで、幹細胞の増殖が促進されることが示された。
<II.硫酸化ポリマーの評価>
合成例1 ポリビニルアルコールSO 3 Naの合成
 ポリビニルアルコール(200 mg、アクロス社製)を脱水ジメチルホルムアミド(6 ml、関東化学社製)中に溶解したのち、三酸化硫黄トリメチルアミン錯体(600 mg、アルドリッチ社製)を加え、70℃で一晩攪拌した。溶媒をデカンテーションにて除き、アセトンを加えて攪拌したのちろ過した。得られた固体を純水(2 ml)に溶解し、30%酢酸ナトリウム水溶液(1.5 ml)を加えて2時間室温で攪拌した。反応液にエタノール(12 ml)を加えたのち、析出物をろ過した。得られた固体を純水(5 ml)に溶解してSpectra/Por MWCO6,000-8,000を用いて一晩透析し、凍結乾燥して白色固体(425 mg)を得た。
合成例2 ポリビニルアミンSO 3 Naの合成
 ポリビニルアミン塩酸塩(300 mg、ポリサイエンス社製)を純水(25 ml)に溶解し、2規定水酸化ナトリウムを加えながらpHを9.13に調整したのち、三酸化硫黄トリメチルアミン錯体(2.1 g)を加えて一晩攪拌した。得られた反応液の溶媒をデカンテーションで除いたのち、30%酢酸ナトリウム(20 ml)中で30分攪拌した。反応液を純水(20 ml)に溶かしてSpectra/Por MWCO6,000-8,000を用いて一晩透析し、凍結乾燥して白色固体(450 mg)を得た。
合成例3 ポリアリルアミンSO 3 Naの合成
 ポリアリルアミンL(1.5 g、20%水溶液、ナカライ社製)を純水(25 ml)に溶解し、2規定水酸化ナトリウム(5.26ml)を加えたのち、三酸化硫黄トリメチルアミン錯体(2.9 g)を加えて一晩攪拌した。得られた反応液を濃縮したのち、30%酢酸ナトリウム(10 ml)中で2時間攪拌した。反応液を純水(20 ml)に溶かしてSpectra/Por MWCO1,000を用いて一晩透析し、凍結乾燥して白色固体(670 mg)を得た。
合成例4 ポリエチレンイミンSO 3 Naの合成
 ポリエチレンイミン(1.07 g, 和光純薬社製)を脱水ジメチルホルムアミド(18 ml)に溶解し、三酸化硫黄トリメチルアミン錯体(4.2 g)を加えて一晩攪拌した。得られた反応液の溶媒をデカンテーションで除いたのち、アセトンでスラリー洗浄し、濾過したのち30%酢酸ナトリウム(20 ml)中で30分攪拌した。反応液を純水(20 ml)に溶かしてSpectra/Por MWCO1,000を用いて一晩透析し、凍結乾燥して白色固体(400 mg)を得た。
合成例5 分岐型ポリグリセリン SO 3 Naの合成
 アルゴン気流下でトリメチロイルプロパン(127mg、東京化成社製)にカリウムメトキシド(23.8mg、関東化学社製)の脱水メタノール(0.095ml、関東化学社製)溶液を加え、15分攪拌した。過剰な溶媒を減圧下で除去し、グリシドール(5.5ml、関東化学社製)を95℃にて6時間かけて滴下した。反応液を一晩攪拌したのち、メタノール(40ml)に溶かして30分攪拌した。ダウエックスモノスフィア650Cを通したのち、Spectra/Por MWCO1,000を用いて3晩透析し、濃縮乾燥して油状物(1.54 g)を得た。得られた油状物(300 mg) を脱水ジメチルホルムアミド(6 ml)に溶解し、三酸化硫黄トリメチルアミン錯体(1.0 g)を加えて一晩攪拌した。得られた反応液の溶媒をデカンテーションで除いたのち、アセトンでスラリー洗浄したのち30%酢酸ナトリウム(20 ml)中で30分攪拌した。反応液を純水(20 ml)に溶かしてSpectra/Por MWCO1,000を用いて一晩透析し、凍結乾燥して白色固体(284 mg)を得た。
合成例6 α-L-ポリリジンSO 3 Naの合成
 L-Lys(Z)-NCA(1g、中国・蘇州天馬社に製造委託)を脱水クロロホルム(20ml、関東化学社製)中で攪拌し、0℃でトリエチルアミン(0.047ml、関東化学社製)の脱水クロロホルム(1ml)溶液を加え、3日間攪拌した。反応液をトリフルオロ酢酸(10 ml、純正化学社製)に溶解し、臭化水素酸/酢酸溶液(2 ml、30%、東京化成社製)を加えて一晩攪拌した。脱水エーテル(40 ml、関東化学社製)を加えて析出する固体を濾過し、濃縮乾燥して白色固体(269 mg)を得た。得られた固体を純水(25 ml)に溶解し、1規定水酸化ナトリウム(1.29ml)を加えたのち、三酸化硫黄トリメチルアミン錯体(360 mg)を加えて一晩攪拌した。得られた反応液を濃縮したのち、酢酸ナトリウム(212 mg)を加えて2時間攪拌した。反応液を純水(20 ml)に溶かしてSpectra/Por MWCO100-500を用いて一晩透析し、凍結乾燥して白色固体(82 mg)を得た。
合成例7 α-L-ポリグルタミン酸メチル/α-L-5-ヒドロキシノルバリン(5-SO 3 Na)(2/8)共重合体)[本明細書中、ポリGlu/α-5-OH-ノルバリンSO 3 Naと略記する場合もある]の合成
 γ-L-メチル-Glu-NCA(10g、中央化成社製)をアルゴン気流下で脱水ジクロロエタン(50 ml、関東化学社製)に溶解し、0℃でN,N-ジメチル-1,3-プロパンジアミン(0.007ml、関東化学社製)のジクロロエタン(0.07 ml)溶液を加え、3日間攪拌し、γ-L-メチル-ポリグルタミン酸のジクロロエタン溶液を得た。得られた反応液の一部(3 g)に脱水ジクロロエタン(9 ml)を加えアルゴン雰囲気下で水素化ホウ素リチウムテトラヒドロフラン溶液(0.7 ml、3 mol/L、関東化学社製)を滴下し一晩攪拌した。反応液に飽和塩化アンモニウム水溶液を加えしばらく攪拌した後、1規定塩酸により反応液のpHを1にした。反応液を濃縮し、メタノール/エーテル(25 ml/25 ml)中でスラリー洗浄した後濾過し、純水、メタノールで洗浄して白色固体(232 mg)を得た。得られた固体(200 mg)を脱水ジメチルホルムアミド(10 ml)に溶解し、三酸化硫黄トリメチルアミン錯体(700 mg)を加えて70℃で一晩攪拌した。得られた反応液に30%酢酸ナトリウム(5 ml)加えて30分攪拌した。反応液を純水(20 ml)に溶かしてSpectra/Por MWCO1,000を用いて一晩透析し、凍結乾燥して白色固体(130 mg)を得た。
合成例8 α-L-ポリグルタミン酸-γ-タウリンの合成
 合成例7で合成したγ-メチル-ポリグルタミン酸(250 mg)を脱水ジメチルホルムアミド(10 ml)中に溶解したのち、O-(7-アザ-1H-ベンゾトリアゾール-1-イル)-N',N',N',N'-テトラメチルウロニウムヘキサフルオロリン酸塩(690 mg、渡辺化学社製)、1-ヒドロキシ-7-アザベンゾトリアゾール(247mg、渡辺化学社製)、ジイソプロピルエチルアミン(317μl、東京化成社製)、タウリン(227mg、和光純薬社製)を加え、室温で一晩攪拌した。反応終了後、純水(4.5ml)に溶解して、Spectra/Por MWCO1,000を用いて透析した。得られた溶液をさらに酸性樹脂(オルガノ社製)を用いて中和し、凍結乾燥して白色固体(90mg)を得た。
合成例9 L-トリセリンSO 3 Naの合成
 L-H-Ser-Ser-Ser-OH(300 mg、バッケム社製)を脱水ジメチルホルムアミド(10 ml)に溶解し、三酸化硫黄トリメチルアミン錯体(897 mg)を加えて70℃で一晩攪拌した。反応液を濃縮したのち、2規定水酸化ナトリウム溶液でpHを9に調整し、濃縮した。得られた固体をゲルろ過カラム(バイオゲルp-2、バイオラッド社製)に担持させ、0.1 M炭酸水素アンモニウム水溶液を用いて溶出した。溶出液を凍結乾燥して白色固体(400mg)を得た。
合成例10 分岐型ポリグリセリン-モノメチルテトラエチレングリコール-SO 3 Naの合成
 アルゴン気流下でテトラエチレングリコールモノメチルエーテル(15g、東京化成社製)を脱水テトラヒドロフラン(45ml、関東化学社製)に溶解し、水素化ナトリウム(1.88g、関東化学社製)を少量ずつ加え、3時間攪拌した。エピクロロヒドリン(31g、東京化成社製)をゆっくり滴下し、二晩攪拌した。反応液をセライトろ過、塩化メチレン(200ml)で洗浄し、濾液を水(200ml)で2回洗浄し、硫酸マグネシウムで乾燥し、ろ過、濃縮した。酢酸エチルでシリカゲルカラム精製を行い、濃縮、乾燥して無色油状物(4.5g)を得た。
 アルゴン気流下でトリメチロイルプロパン(127mg)にカリウムメトキシド(23.8mg)の脱水メタノール(0.095ml)溶液を加え、15分攪拌した。過剰な溶媒を減圧下で除去し、グリシドール(5.5ml)を95℃にて6時間かけて滴下した。反応液を一晩攪拌した後、合成したグリシジルモノメチルテトラエチレングリコール(4.5ml)を95℃にて6時間かけて滴下し、反応液をさらに一晩攪拌した。メタノール(40ml)に溶かして30分攪拌し、ダウエックスモノスフィア650Cに通したのち、Spectra/Por MWCO 1,000を用いて一晩透析し、濃縮乾燥して無色透明な油状物(4.68g)を得た。得られた油状物(300mg)を脱水ジメチルホルムアミド(6ml)に溶解し、三酸化硫黄トリメチルアミン錯体(1g)を加えて70℃で一晩攪拌した。得られた反応液の溶媒をデカンテーションで除いたのち、アセトンでスラリー洗浄し、30%酢酸ナトリウム(6ml)と水(50ml)を加えて30分攪拌した。反応液を濃縮し、エタノールで洗い、Spectra/Por MWCO 1,000を用いて一晩透析し、凍結乾燥して白色固体(280mg)を得た。
合成例11 分岐型ポリグリセリン-2-フルフリル-SO 3 Naの合成
 アルゴン気流下でトリメチロイルプロパン(127mg)にカリウムメトキシド(23.8mg)の脱水メタノール(0.095ml)溶液を加え、15分攪拌した。過剰な溶媒を減圧下で除去し、グリシドール(5.5ml)を95℃にて6時間かけて滴下した。反応液を一晩攪拌した後、グリシジルイソプロピルエーテル(4.55ml、東京化成社製)を95℃にて6時間かけて滴下し、反応液をさらに一晩攪拌した。メタノール(40ml)に溶かして30分攪拌し、ダウエックスモノスフィア650Cに通したのち、Spectra/Por MWCO 1,000を用いて一晩透析し、濃縮乾燥して黄色透明な油状物(4.58g)を得た。得られた油状物(300mg)を脱水ジメチルホルムアミド(6ml)に溶解し、三酸化硫黄トリメチルアミン錯体(1g)を加えて70℃で一晩攪拌した。得られた反応液の溶媒をデカンテーションで除いたのち、アセトンでスラリー洗浄し、30%酢酸ナトリウム(6ml)と水(50ml)を加えて30分攪拌した。反応液を濃縮し、エタノールで洗い、Spectra/Por MWCO1,000を用いて一晩透析し、凍結乾燥して白色固体(266mg)を得た。
合成例12 分岐型ポリグリセリン-イソプロピルオキシ-SO 3 Naの合成
 アルゴン気流下でトリメチロイルプロパン(127mg)にカリウムメトキシド(23.8mg)の脱水メタノール(0.095ml)溶液を加え、15分攪拌した。過剰な溶媒を減圧下で除去し、グリシドール(5.5ml)を95℃にて6時間かけて滴下した。反応液を一晩攪拌した後、グリシジルフルフリルエーテル(5.46ml、アルドリッチ製)を95℃にて6時間かけて滴下し、反応液をさらに一晩攪拌した。メタノール(40ml)に溶かして30分攪拌し、ダウエックスモノスフィア650Cに通したのち、Spectra/Por MWCO 1,000を用いて一晩透析し、濃縮乾燥して黄色透明な油状物(931mg)を得た。得られた油状物(300mg)を脱水ジメチルホルムアミド(6ml)に溶解し、三酸化硫黄トリメチルアミン錯体(1g)を加えて70℃で一晩攪拌した。得られた反応液の溶媒をデカンテーションで除いたのち、アセトンでスラリー洗浄し、30%酢酸ナトリウム(6ml)と水(50ml)を加えて30分攪拌した。反応液を濃縮し、エタノールで洗い、Spectra/Por MWCO 1,000を用いて一晩透析し、凍結乾燥して黒褐色固体(272mg)を得た。
実施例II-1 培地中のbFGF安定化評価
(1)bFGF安定化評価サンプルの調製
 Lonza専用完全合成培地キット(00190632、タカラバイオ社)を使用してプロトコールに従い調製した培地(Lonza無血清培地)中のbFGFの安定化について、表12に記載の被験化合物の添加による影響を評価した。被験化合物をリン酸緩衝生理食塩水に溶解し、これを無血清培地で10倍希釈して表13に記載の濃度に調整した(被験サンプル)。被験サンプルを密閉したファルコンチューブ中で37℃に7日間静置したのち、ELISA測定にてbFGF濃度を定量した。尚、被験化合物を含まないリン酸緩衝生理食塩水を無血清培地で10倍希釈し、37℃又は4℃に7日間静置したものをコントロールとした。
Figure JPOXMLDOC01-appb-T000038
(2)培地中のbFGFの定量(ELISA測定)
 培地中のbFGFの定量には、市販の測定キット(ヒトbFGF ELISAキット、ELH-bFGF-001、Ray Biotech)を用いた。測定手順は、キットに添付されたプロトコールに従った。検量線用標品液の吸光度から作成した検量線(換算式)より、無血清培地中のbFGF濃度を算出した。尚、表13中の評価基準は以下の通りである。
+++:bFGF濃度が4℃コントロールのそれに対して70%以上
++:bFGF濃度が4℃コントロールのそれに対して50%以上70%未満
+:bFGF濃度が4℃コントロールのそれに対して30%以上50%未満
-:bFGF濃度が4℃コントロールのそれに対して10%以上30%未満
×:bFGF濃度が4℃コントロールのそれに対して10%未満
Figure JPOXMLDOC01-appb-T000039
 表13に示すように、硫酸化ポリマーを含まない評価サンプル(ポリビニルアルコール)では、7日間37℃でインキュベートすることにより、いずれの濃度で添加した場合にも、培地中のbFGF濃度が4℃コントロールの10%未満に低下した。また37℃コントロールでも、培地中のbFGF濃度が4℃コントロールの10%未満に低下した。それに対し、硫酸化ポリマーを含む評価サンプルでは、培地中のbFGF濃度の低下を抑制する効果が認められた。各化合物について当該効果が認められた濃度は以下の通りである:ポリビニルアルコールSO3Na、25 pg/ml以上;ポリビニルアミンSO3Na、25 ng/ml以上;ポリアリルアミンSO3Na、250 ng/ml以上;ポリエチレンイミンSO3Na、250 pg/ml及び 2.5 mg/ml以上;ポリエチレンスルホン酸Na、25 ng/ml以上;分岐型ポリグリセリンSO3Na、25 ng/ml以上;ポリリジンSO3Na、2.5μg/ml以上;α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(5-SO3Na)(2/8)共重合体、250μg/ml以上;α-ポリグルタミン酸-γ-タウリン、25μg/ml以上;トリセリンSO3Na、25μg/ml以上;セリンSO3Na、25μg/ml以上。
2.Essential 8培地又はReproFF2培地中のbFGF安定化評価
 Essential 8専用培地キット(A14666SA、インビトロジェン社)を使用してプロトコールに従い調製した培地(Essential 8培地)または同様に調製したリプロセル社のReproFF2培地中のbFGFの安定化について、各種被験化合物を250 pg/ml~2.5 mg/mlの濃度で添加した影響を評価した。被験化合物をリン酸緩衝生理食塩水に溶解し、これを無血清培地で10倍希釈して表12に記載の濃度に調整した(被験サンプル)。被験サンプルを密閉したファルコンチューブ中で37℃に7日間静置したのち、ELISA測定にてbFGF濃度を定量した。尚、被験化合物を含まないリン酸緩衝生理食塩水をEssential 8培地またはReproFF2培地で10倍希釈し、37℃または4℃に7日間静置したものをコントロールとした。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
 Essential 8培地を用いた場合の結果を表14-1に示す。培地中のbFGF濃度の低下を抑制する効果が認められた各化合物の濃度は以下の通りである。
ポリビニルアルコールSO3Na、25 ng/ml以上;
ポリビニルアミンSO3Na、250 ng/ml以上;
ポリアリルアミンSO3Na、250 ng/ml以上;
ポリエチレンイミンSO3Na、2.5 mg/ml以上;
ポリエチレンスルホン酸Na、250 ng/ml以上;
分岐型ポリグリセリンSO3Na、250 ng/ml以上;
分岐型ポリグリセリン-2-フルフリル-SO3Na、25 ng/ml以上;
分岐型ポリグリセリン-メトキシテトラエチレングリコール-SO3Na、250 ng/ml以上;
ポリリジンSO3Na、25 μg/ml以上;
α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(5-SO3Na、)(2/8)共重合体、25 μg/ml以上;
トリセリンSO3Na、25 μg/ml以上。
 ReproFF2培地を用いた場合の結果を表14-2に示す。
 ポリエチレンスルホン酸Naは、2.5 μg/ml以上の添加により培地中のbFGF濃度の低下を抑制する効果が認められた。
実施例II-2 細胞増殖系での評価
1.間葉系幹細胞増殖系での評価
 上記実施例I-1の1.と同様にして行なった。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000042
 表15に示すように、硫酸化ポリマーを添加した培地ではコントロールに比べて細胞増殖が促進された(表15中、◎及び○)。各化合物について当該効果が認められた濃度は以下の通りである:ポリビニルアルコールSO3Na、250 pg/ml~100 ng/ml;ポリビニルアミンSO3Na、25 ng/ml~250 ng/ml;ポリアリルアミンSO3Na、25 pg/ml~250 pg/ml、25 ng/ml;ポリエチレンスルホン酸Na、25 ng/ml~250 ng/ml;α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(5-SONa)(2/8)共重合体)、25 pg/ml~250 pg/ml、25 ng/ml~2.5μg/ml;α-グルタミン酸-γ-タウリン、25 pg/ml、25 ng/ml~2.5μg/ml;トリセリンSO3Na、250 pg/ml~2.5 ng/ml;分岐型ポリグリセリンSO3Na、25 pg/ml~25 ng/ml、250 ng/ml;分岐型ポリグリセリン-モノメチルテトラエチレングリコール-SO3Na、25 pg/ml~2.5 ng/ml;分岐型ポリグリセリン-イソプロピルオキシ-SO3Na、25 pg/ml~25 ng/ml。
2.iPS細胞増殖系での評価
 上記I-2の2.と同様にして行なった。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000043
 表16に示すように、各種硫酸化ポリマーを添加した培地では、コントロールに比べて細胞増殖が促進された(表16中、◎及び○)。
 以上の結果から、ごく微量の硫酸化ポリマーをbFGFを含有する培地に添加することで、幹細胞の増殖が促進されることが示された。
実施例II-3 被験化合物中の硫黄の含有度の測定
 上記I-3と同様にして行なった。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000044
 本発明によれば、FGFを含む培地を用いた幹細胞の培養において、従来用いられてきた培地よりも効率よく幹細胞を増殖させることができる。本発明によれば培養中の培地交換の頻度を下げることができることから、幹細胞の培養コストを削減することが可能となり、医療・研究開発等における幹細胞のさらなる利用促進に寄与する。
 本出願は、日本で出願された特願2012-082205(出願日:2012年3月30日)、特願2012-082609(出願日:2012年3月30日)及び特願2013-016505(出願日:2013年1月31日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (48)

  1.  線維芽細胞成長因子(FGF)を含む幹細胞増殖用培地であって、FGF存在下で幹細胞の増殖促進に働く濃度で硫酸化化合物又はその薬学的に許容可能な塩を含むことを特徴とする、培地(但し、硫酸化化合物が硫酸化多糖である場合における硫酸化化合物の含有量は250ng/ml以下)。
  2.  硫酸化化合物が、硫酸化糖類である、請求項1に記載の培地(但し、硫酸化糖類が硫酸化多糖である場合における硫酸化糖類の含有量は250ng/ml以下)。
  3.  前記硫酸化糖類が、
    (I)1又は2以上の下記一般式(a)
    Figure JPOXMLDOC01-appb-C000001
    (式中、
    naは1、2又は3であり、
    1a及びR3aは、同一又は異なってそれぞれ、置換基を有していてもよい官能基であり、
    na個のR2aは、独立してそれぞれ、置換基を有していてもよい官能基である)
    で表される化合物から誘導される構成単位を含み、1又は2以上の硫酸基を含む化合物、
    (II)下記一般式(b)
    Figure JPOXMLDOC01-appb-C000002
    (式中、
    nbは3~100の整数であり、
    nb個のR1bは、独立してそれぞれ、置換基を有していてもよい官能基であり、
    1又は2以上の硫酸基を含む)
    で表される化合物、及び
    (III)下記一般式(c)
    Figure JPOXMLDOC01-appb-C000003
    (式中、
    ncは1、2又は3であり、
    1c~R4cは、同一又は異なってそれぞれ、置換基を有していてもよい官能基であり、
    nc個のR5cは、独立してそれぞれ、置換基を有していてもよい官能基であり、
    1又は2以上の硫酸基を含む)
    で表される化合物からなる群から選択される少なくとも1つである、請求項2に記載の培地。
  4.  硫酸化糖類が、硫酸化単糖、硫酸化二糖、硫酸化多糖、硫酸化糖アルコール及び硫酸化シクリトールからなる群から選択される少なくとも1つである、請求項2又は3に記載の培地。
  5.  硫酸化糖類における硫黄の含有度が、5重量%以上である、請求項2~4のいずれか一項に記載の培地。
  6.  前記硫酸化糖類又はその薬学的に許容可能な塩が、デキストラン硫酸Na、セルロースSONa、キサンタンガムSONa、ペクチンSONa、フコイダン、アルギン酸SONa、イヌリンSONa、マルトヘプタオースSONa、スタキオースSONa、マルトトリオースSONa、マルチトールSONa、スクロース8SOK、グルコースSONa、myo-6イノシトールSOK、α-シクロデキストリンSONa、マンニトールSO3Na、キシリトールSONa及びエリスリトールSO3Naからなる群から選択される少なくとも1つである、請求項2~5のいずれか一項に記載の培地。
  7.  前記硫酸化糖類又はその薬学的に許容可能な塩が、デキストラン硫酸Na、フコイダン、キサンタンガムSONa、ペクチンSONa、マルトヘプタオースSONa、マルトトリオースSONa、マルチトールSONa及びスクロース8SOKからなる群から選択される少なくとも1つである、請求項6に記載の培地。
  8.  前記硫酸化糖類又はその薬学的に許容可能な塩が、平均分子量2,500~7,500のデキストラン硫酸Naである、請求項2~7のいずれか一項に記載の培地。
  9.  前記硫酸化糖類又はその薬学的に許容可能な塩が、スクロース8SOKである、請求項2~7のいずれか一項に記載の培地。
  10.  前記スクロース8SOKの含有量が、25pg/ml~10μg/mlである、請求項9に記載の培地。
  11.  硫酸化化合物が、硫酸化ポリマー(但し、硫酸化糖類は除く)である、請求項1に記載の培地。
  12.  前記硫酸化ポリマーが、下記一般式(I)
    Figure JPOXMLDOC01-appb-C000004
    (式中、
    Aは、ポリマー構成単位であり、
    nは1~1500の整数であり、
    は、置換基を有していてもよい官能基である)
    で表され、且つ1又は2以上のスルホ基を含む化合物である、請求項11に記載の培地。
  13.  硫酸化ポリマーにおける硫黄の含有度が、5重量%以上である、請求項11又は12に記載の培地。
  14.  硫酸化ポリマーが、スルホ基含有ポリビニルアルコール、スルホ基含有ポリビニルアミン、スルホ基含有ポリアリルアミン、スルホ基含有ポリエチレンイミン、スルホ基含有α-ポリリジン、スルホ基含有α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(2/8)共重合体、α-ポリグルタミン酸-γ-タウリン、スルホ基含有トリセリン、スルホ基含有セリン、スルホ基含有分岐型ポリグリセリン及びその誘導体、並びにポリエチレンスルホン酸からなる群から選択される少なくとも1つである、請求項11~13のいずれか一項に記載の培地。
  15.  スルホ基含有分岐型ポリグリセリンの誘導体又はその薬学的に許容可能な塩が、分岐型ポリグリセリン-モノメチルテトラエチレングリコール-SONa、分岐型ポリグリセリン-2-フルフリル-SONa又は分岐型ポリグリセリン-イソプロピルオキシ-SONaである、請求項14記載の培地。
  16.  硫酸化化合物が、ジイソシアネート化合物による糖類の架橋重合体の硫酸化物である、請求項1に記載の培地。
  17.  ジイソシアネート化合物による糖類の架橋重合体の硫酸化物又はその薬学的に許容可能な塩が、マルトトリオース-ヘキサメチレンジイソシアナート-SONa又はデキストラン-ヘキサメチレンジイソシアナート-SONaである、請求項16に記載の培地。
  18.  硫酸化化合物が、糖ラクトンの硫酸化物である、請求項1に記載の培地。
  19.  糖ラクトンの硫酸化物又はその薬学的に許容可能な塩が、グルコノラクトン-SONaである、請求項18に記載の培地。
  20.  硫酸化化合物が、有機酸の硫酸化物である、請求項1に記載の培地。
  21.  有機酸の硫酸化物又はその薬学的に許容可能な塩が、酒石酸-SONaである、請求項20に記載の培地。
  22.  線維芽細胞成長因子が塩基性線維芽細胞成長因子である、請求項1~21のいずれか一項に記載の培地。
  23.  前記幹細胞が、間葉系幹細胞、胚性幹細胞又は人工多能性幹細胞である、請求項1~22のいずれか一項に記載の培地。
  24.  FGFを含む幹細胞増殖用培地を用いた幹細胞の培養方法であって、FGF存在下で幹細胞の増殖促進に働く濃度で硫酸化化合物又はその薬学的に許容可能な塩を培地に添加することを特徴とする、方法(但し、硫酸化化合物が硫酸化多糖である場合における硫酸化化合物の含有量は250ng/ml以下)。
  25.  硫酸化化合物が、硫酸化糖類である、請求項24に記載の方法(但し、硫酸化糖類が硫酸化多糖である場合における硫酸化糖類の含有量は250ng/ml以下)。
  26.  前記硫酸化糖類が、
    (I)1又は2以上の下記一般式(a)
    Figure JPOXMLDOC01-appb-C000005
    (式中、
    naは1、2又は3であり、
    1a及びR3aは、同一又は異なってそれぞれ、置換基を有していてもよい官能基であり、
    na個のR2aは、独立してそれぞれ、置換基を有していてもよい官能基である)
    で表される化合物から誘導される構成単位を含み、1又は2以上の硫酸基を含む化合物、
    (II)下記一般式(b)
    Figure JPOXMLDOC01-appb-C000006
    (式中、
    nbは3~100の整数であり、
    nb個のR1bは、独立してそれぞれ、置換基を有していてもよい官能基であり、
    1又は2以上の硫酸基を含む)
    で表される化合物、及び
    (III)下記一般式(c)
    Figure JPOXMLDOC01-appb-C000007
    (式中、
    ncは1、2又は3であり、
    1c~R4cは、同一又は異なってそれぞれ、置換基を有していてもよい官能基であり、
    nc個のR5cは、独立してそれぞれ、置換基を有していてもよい官能基であり、
    1又は2以上の硫酸基を含む)
    で表される化合物からなる群から選択される少なくとも1つである、請求項25に記載の方法。
  27.  硫酸化糖類が、硫酸化単糖、硫酸化二糖、硫酸化多糖、硫酸化糖アルコール及び硫酸化シクリトールからなる群から選択される少なくとも1つである、請求項25又は26に記載の方法。
  28.  硫酸化糖類における硫黄の含有度が、5重量%以上である、請求項25~27のいずれか一項に記載の方法。
  29.  前記硫酸化糖類又はその薬学的に許容可能な塩が、デキストラン硫酸Na、セルロースSONa、キサンタンガムSONa、ペクチンSONa、フコイダン、アルギン酸SONa、イヌリンSONa、マルトヘプタオースSONa、スタキオースSONa、マルトトリオースSONa、マルチトールSONa、スクロース8SOK、グルコースSONa、myo-6イノシトールSOK、α-シクロデキストリンSONa、マンニトールSO3Na、キシリトールSONa及びエリスリトールSO3Naからなる群から選択される少なくとも1つである、請求項25~28のいずれか一項に記載の方法。
  30.  前記硫酸化糖類又はその薬学的に許容可能な塩が、デキストラン硫酸Na、フコイダン、キサンタンガムSONa、ペクチンSONa、マルトヘプタオースSONa、マルトトリオースSONa、マルチトールSONa及びスクロース8SOKからなる群から選択される少なくとも1つである、請求項29に記載の方法。
  31.  前記硫酸化糖類又はその薬学的に許容可能な塩が、平均分子量2,500~7,500のデキストラン硫酸Naである、請求項25~30のいずれか一項に記載の方法。
  32.  前記硫酸化糖類又はその薬学的に許容可能な塩が、スクロース8SOKである、請求項25~30のいずれか一項に記載の方法。
  33.  前記スクロース8SOKの含有量が、25pg/ml~10μg/mlである、請求項32に記載の方法。
  34.  硫酸化化合物が、硫酸化ポリマー(但し、硫酸化糖類は除く)である、請求項24に記載の方法。
  35.  前記硫酸化ポリマーが、下記一般式(I)
    Figure JPOXMLDOC01-appb-C000008
    (式中、
    Aは、ポリマー構成単位であり、
    nは1~1500の整数であり、
    は、置換基を有していてもよい官能基である)
    で表され、且つ1又は2以上のスルホ基を含む化合物である、請求項34に記載の方法。
  36.  硫酸化ポリマーにおける硫黄の含有度が、5重量%以上である、請求項34又は35に記載の方法。
  37.  硫酸化ポリマーが、スルホ基含有ポリビニルアルコール、スルホ基含有ポリビニルアミン、スルホ基含有ポリアリルアミン、スルホ基含有ポリエチレンイミン、スルホ基含有α-ポリリジン、スルホ基含有α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(2/8)共重合体、α-ポリグルタミン酸-γ-タウリン、スルホ基含有トリセリン、スルホ基含有セリン、スルホ基含有分岐型ポリグリセリン及びその誘導体、並びにポリエチレンスルホン酸からなる群から選択される少なくとも1つである、請求項34~36のいずれか一項に記載の方法。
  38.  スルホ基含有分岐型ポリグリセリンの誘導体又はその薬学的に許容可能な塩が、分岐型ポリグリセリン-モノメチルテトラエチレングリコール-SONa、分岐型ポリグリセリン-2-フルフリル-SONa又は分岐型ポリグリセリン-イソプロピルオキシ-SONaである、請求項37記載の方法。
  39.  硫酸化化合物が、ジイソシアネート化合物による糖類の架橋重合体の硫酸化物である、請求項24に記載の方法。
  40.  ジイソシアネート化合物による糖類の架橋重合体の硫酸化物又はその薬学的に許容可能な塩が、マルトトリオース-ヘキサメチレンジイソシアナート-SONa又はデキストラン-ヘキサメチレンジイソシアナート-SONaである、請求項39に記載の方法。
  41.  硫酸化化合物が、糖ラクトンの硫酸化物である、請求項24に記載の方法。
  42.  糖ラクトンの硫酸化物又はその薬学的に許容可能な塩が、グルコノラクトン-SONaである、請求項41に記載の方法。
  43.  硫酸化化合物が、有機酸の硫酸化物である、請求項24に記載の方法。
  44.  有機酸の硫酸化物又はその薬学的に許容可能な塩が、酒石酸-SONaである、請求項43に記載の方法。
  45.  線維芽細胞成長因子が塩基性線維芽細胞成長因子である、請求項24~44のいずれか一項に記載の方法。
  46.  前記幹細胞が、間葉系幹細胞、胚性幹細胞又は人工多能性幹細胞である、請求項24~45のいずれか一項に記載の方法。
  47.  キシリトールSONa、マルトトリオース-ヘキサメチレンジイソシアナート-SONa及びグルコノラクトン-SONaからなる群より選択される硫酸化化合物又はその薬学的に許容可能な塩。
  48.  α-ポリグルタミン酸メチル/α-5-ヒドロキシノルバリン(5-SONa)(2/8)共重合体、トリセリン-SONa及び分岐型ポリグリセリン-イソプロピルオキシ-SONaからなる群より選択される硫酸化化合物又はその薬学的に許容可能な塩。
PCT/JP2013/059745 2012-03-30 2013-03-29 硫酸化化合物を含む幹細胞増殖用培地 WO2013147264A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201380025206.3A CN104334714A (zh) 2012-03-30 2013-03-29 含硫酸化化合物的干细胞增殖用培养基
EP13768772.9A EP2832848B1 (en) 2012-03-30 2013-03-29 Culture medium for proliferating stem cell, which contains sulfated compound
KR20147030483A KR20150003233A (ko) 2012-03-30 2013-03-29 황산화 화합물을 포함하는 줄기 세포 증식용 배지
CA2868718A CA2868718C (en) 2012-03-30 2013-03-29 Culture medium for proliferating stem cell, which contains sulfated compound
AU2013240972A AU2013240972A1 (en) 2012-03-30 2013-03-29 Culture medium for proliferating stem cell, which contains sulfated compound
JP2014508234A JP6070693B2 (ja) 2012-03-30 2013-03-29 硫酸化化合物を含む幹細胞増殖用培地
SG11201406115VA SG11201406115VA (en) 2012-03-30 2013-03-29 Culture medium for proliferating stem cell, which contains sulfated compound
US14/497,926 US9890359B2 (en) 2012-03-30 2014-09-26 Culture medium for proliferating stem cell, which contains sulfated compound
US15/847,246 US10689622B2 (en) 2012-03-30 2017-12-19 Culture medium for proliferating stem cell, which contains sulfated compound

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-082609 2012-03-30
JP2012082205 2012-03-30
JP2012082609 2012-03-30
JP2012-082205 2012-03-30
JP2013-016505 2013-01-31
JP2013016505 2013-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/497,926 Continuation US9890359B2 (en) 2012-03-30 2014-09-26 Culture medium for proliferating stem cell, which contains sulfated compound

Publications (1)

Publication Number Publication Date
WO2013147264A1 true WO2013147264A1 (ja) 2013-10-03

Family

ID=49260503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059745 WO2013147264A1 (ja) 2012-03-30 2013-03-29 硫酸化化合物を含む幹細胞増殖用培地

Country Status (9)

Country Link
US (2) US9890359B2 (ja)
EP (1) EP2832848B1 (ja)
JP (2) JP6070693B2 (ja)
KR (1) KR20150003233A (ja)
CN (1) CN104334714A (ja)
AU (1) AU2013240972A1 (ja)
CA (1) CA2868718C (ja)
SG (2) SG10201706813WA (ja)
WO (1) WO2013147264A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181342A1 (ja) * 2017-03-28 2018-10-04 味の素株式会社 未分化維持培地添加剤
WO2019163948A1 (ja) * 2018-02-23 2019-08-29 学校法人創価大学 細胞培養用基材及び培養方法
WO2020004571A1 (ja) * 2018-06-27 2020-01-02 味の素株式会社 幹細胞の培養用添加物および培養用培地、ならびに培養方法
WO2021145319A1 (ja) 2020-01-14 2021-07-22 味の素株式会社 細胞培養用培地組成物
WO2021172579A1 (ja) * 2020-02-28 2021-09-02 株式会社彩 細胞処理剤
KR20220088523A (ko) * 2014-01-23 2022-06-27 닛산 가가쿠 가부시키가이샤 배양 배지 조성물

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781224A1 (en) * 2013-03-18 2014-09-24 Khorionyx Implantable preparations comrpsing globin insoluble at physiological pH and serum for regeneration of tissues and treatment of wounds.
CA2955406A1 (en) 2014-07-29 2016-02-04 Uniwersytet Jagiellonski Anionically modified polyallylamine derivative, use of anionically modified polyallylamine derivative as medicine, particularly for propylaxis and treatment of infections of respiratory tract caused by human metapneumovirus (hmpv), human rhinoviruses (hrv), and infection by influenza virus type a (iav) and pharmaceutical composition comprising the...
WO2016114562A1 (ko) * 2015-01-12 2016-07-21 엘지전자 주식회사 무선 통신 시스템에서 단말의 하향링크 제어 정보 수신 방법 및 장치
EP3283549B1 (en) 2015-04-15 2019-07-17 Freie Universität Berlin Polyglycerol derivative and a method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138223A (ja) 1988-06-06 1990-05-28 Takeda Chem Ind Ltd 線維芽細胞成長因子もしくはそのムテインの安定化された組成物およびその製造法
WO1992013526A1 (en) 1991-01-31 1992-08-20 Farmitalia Carlo Erba S.R.L. Stabilisation of fibroblast growth factor using a polysaccharide
JPH1017498A (ja) * 1996-07-01 1998-01-20 Yakult Honsha Co Ltd 線維芽細胞増殖因子複合体
WO2009070842A1 (en) 2007-12-04 2009-06-11 Proteobioactives Pty Ltd Protection of progenitor cells and regulation of their differentiation
JP2011078370A (ja) 2009-10-08 2011-04-21 Osaka Univ ヒト多能性幹細胞用培養基材およびその利用
WO2011108993A1 (en) 2010-03-02 2011-09-09 National University Of Singapore Culture additives to boost stem cell proliferation and differentiation response

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1129133A (en) 1964-11-04 1968-10-02 Sterling Winthrop Group Ltd Nicotinate esters, processes for preparing them and compositions containing them
FR2613936B1 (fr) 1987-04-17 1990-03-30 Centre Nat Rech Scient Application des resines constituees par des polymeres fonctionnels comme phase stationnaire en chromatographie d'affinite pour la purification des facteurs de croissance et procede de purification correspondant
CA2020654A1 (en) * 1989-07-07 1991-01-08 Yohko Akiyama Stabilized fgf composition and production thereof
NO921495L (no) * 1991-04-16 1992-10-19 Seikagaku Kogyo Co Ltd Oligosakkarid og fremgangsmaate for dets fremstilling
JPH07107970A (ja) * 1993-03-01 1995-04-25 Doujin Kagaku Kenkyusho:Kk 動物細胞の培養方法
AU700451B2 (en) 1993-10-07 1999-01-07 Glycomed Incorporated Highly sulfated maltooligosaccharides with heparin-like properties
JP2000001468A (ja) 1998-06-11 2000-01-07 Lion Corp グリセリルエーテル化多価アルコール硫酸化合物、陰イオン界面活性剤及びそれを含む洗浄剤組成物
US8287853B2 (en) 2005-02-11 2012-10-16 Agency For Science, Technology And Research Methods of culturing mesenchymal stem cells
US20110262965A1 (en) * 2010-04-23 2011-10-27 Life Technologies Corporation Cell culture medium comprising small peptides

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138223A (ja) 1988-06-06 1990-05-28 Takeda Chem Ind Ltd 線維芽細胞成長因子もしくはそのムテインの安定化された組成物およびその製造法
WO1992013526A1 (en) 1991-01-31 1992-08-20 Farmitalia Carlo Erba S.R.L. Stabilisation of fibroblast growth factor using a polysaccharide
JPH1017498A (ja) * 1996-07-01 1998-01-20 Yakult Honsha Co Ltd 線維芽細胞増殖因子複合体
WO2009070842A1 (en) 2007-12-04 2009-06-11 Proteobioactives Pty Ltd Protection of progenitor cells and regulation of their differentiation
JP2011078370A (ja) 2009-10-08 2011-04-21 Osaka Univ ヒト多能性幹細胞用培養基材およびその利用
WO2011108993A1 (en) 2010-03-02 2011-09-09 National University Of Singapore Culture additives to boost stem cell proliferation and differentiation response

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Kaitei Saibou baiyou Nyuumon Note", 2010, YODOSHA CO., LTD, pages: 77 - 83
BIOCHEM. BIOPHYS. RES. COMMUN., vol. 157, 1988, pages 256 - 263
CALARCO,A. ET AL.: "Controlled Delivery of the Heparan Sulfate/FGF-2 Complex by a Polyelectrolyte Scaffold Promotes Maximal hMSC Proliferation and Differentiation.", J.CELL. BIOCHEM., vol. 110, 2010, pages 903 - 909, XP055075550 *
DEV. BIOL., vol. 138, 1990, pages 454 - 463
ENDOCRINE REV., vol. 8, 1987, pages 95
IDA,M. ET AL.: "Identification and Functions of Chondroitin Sulfate in the Milieu of Neural Stem Cells.", J.BIOL.CHEM., vol. 281, no. 9, 2006, pages 5982 - 5991, XP055170375 *
J. CELL. PHYSIOL., vol. 128, 1986, pages 475 - 484
NATURE BIOTECHNOLOGY, vol. 17, 1999, pages 456
NATURE GENETICS, vol. 22, 1999, pages 127
NATURE GENETICS, vol. 24, 2000, pages 109
NATURE METHODS, vol. 8, 2011, pages 424 - 429
NATURE, vol. 385, 1997, pages 810
NATURE, vol. 394, 1998, pages 369
PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6963
PROC. NATL. ACAD. SCI., vol. 96, 1999, pages 14984
SCIENCE, vol. 280, 1998, pages 1256

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220088523A (ko) * 2014-01-23 2022-06-27 닛산 가가쿠 가부시키가이샤 배양 배지 조성물
KR102539240B1 (ko) 2014-01-23 2023-06-01 닛산 가가쿠 가부시키가이샤 배양 배지 조성물
JP7181534B2 (ja) 2017-03-28 2022-12-01 味の素株式会社 未分化維持培地添加剤
JPWO2018181342A1 (ja) * 2017-03-28 2020-02-20 味の素株式会社 未分化維持培地添加剤
WO2018181342A1 (ja) * 2017-03-28 2018-10-04 味の素株式会社 未分化維持培地添加剤
JP2023011911A (ja) * 2017-03-28 2023-01-24 味の素株式会社 未分化維持培地添加剤
JP7445268B2 (ja) 2017-03-28 2024-03-07 味の素株式会社 未分化維持培地添加剤
JPWO2019163948A1 (ja) * 2018-02-23 2021-02-04 学校法人 創価大学 細胞培養用基材及び培養方法
WO2019163948A1 (ja) * 2018-02-23 2019-08-29 学校法人創価大学 細胞培養用基材及び培養方法
JP7373100B2 (ja) 2018-02-23 2023-11-02 学校法人 創価大学 細胞培養用基材及び培養方法
JPWO2020004571A1 (ja) * 2018-06-27 2021-07-08 味の素株式会社 幹細胞の培養用添加物および培養用培地、ならびに培養方法
WO2020004571A1 (ja) * 2018-06-27 2020-01-02 味の素株式会社 幹細胞の培養用添加物および培養用培地、ならびに培養方法
JP7456381B2 (ja) 2018-06-27 2024-03-27 味の素株式会社 幹細胞の培養用添加物および培養用培地、ならびに培養方法
WO2021145319A1 (ja) 2020-01-14 2021-07-22 味の素株式会社 細胞培養用培地組成物
WO2021172579A1 (ja) * 2020-02-28 2021-09-02 株式会社彩 細胞処理剤

Also Published As

Publication number Publication date
US9890359B2 (en) 2018-02-13
EP2832848A1 (en) 2015-02-04
JP6070693B2 (ja) 2017-02-01
EP2832848B1 (en) 2019-02-13
EP2832848A4 (en) 2015-11-04
JPWO2013147264A1 (ja) 2015-12-14
AU2013240972A1 (en) 2014-10-30
JP2017018147A (ja) 2017-01-26
SG10201706813WA (en) 2017-10-30
KR20150003233A (ko) 2015-01-08
SG11201406115VA (en) 2014-11-27
US20180105798A1 (en) 2018-04-19
US10689622B2 (en) 2020-06-23
CN104334714A (zh) 2015-02-04
CA2868718A1 (en) 2013-10-03
CA2868718C (en) 2021-08-10
US20150011003A1 (en) 2015-01-08

Similar Documents

Publication Publication Date Title
JP6070693B2 (ja) 硫酸化化合物を含む幹細胞増殖用培地
US10662411B2 (en) Culture method for stable proliferation of pluripotent stem cell while maintaining undifferentiated state
US9180166B2 (en) Cartilage repair systems and applications utilizing a glycosaminoglycan mimic
WO2015111734A1 (ja) 未分化性維持培養材料
EP2686435B1 (en) Chondrogenic differentiation media and methods for inducing chondrogenic differentiation of cells
CN113692282A (zh) 一种生物活性物质组合物、包含所述组合物的无血清培养基及其用途
Loebel et al. Fabrication of cell-compatible hyaluronan hydrogels with a wide range of biophysical properties through high tyramine functionalization
TWI419970B (zh) 使成體幹細胞產生為一球體細胞群體的方法
EP4144830A1 (en) Stem cell medium and stem cell culturing method
KR101656761B1 (ko) 다능성 줄기 세포 및 심근 세포 이외의 분화성 세포에 대해 세포사멸을 유도하는 방법
US20220290106A1 (en) Method for Promoting Cell Proliferation, and Method for Preparing Cell Cluster
dos Santos Isolation and ex-vivo expansion of mesenchymal stem cells for supplementation during hematopoietic stem cell transplantation
TW200925278A (en) Method for preserving proliferation and differentiation potential of undifferentiated cells
JP2005073606A (ja) 培養基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13768772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508234

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2868718

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2013768772

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147030483

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013240972

Country of ref document: AU

Date of ref document: 20130329

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE