WO2013147112A1 - 冷却水系の処理方法 - Google Patents

冷却水系の処理方法 Download PDF

Info

Publication number
WO2013147112A1
WO2013147112A1 PCT/JP2013/059451 JP2013059451W WO2013147112A1 WO 2013147112 A1 WO2013147112 A1 WO 2013147112A1 JP 2013059451 W JP2013059451 W JP 2013059451W WO 2013147112 A1 WO2013147112 A1 WO 2013147112A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acid
acrylic acid
polymerization
salt
Prior art date
Application number
PCT/JP2013/059451
Other languages
English (en)
French (fr)
Inventor
西田 育子
藤田 和久
靖 村野
真人 中野
友紀 佐野
Original Assignee
栗田工業株式会社
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社, 株式会社日本触媒 filed Critical 栗田工業株式会社
Priority to CN201380017931.6A priority Critical patent/CN104203842A/zh
Publication of WO2013147112A1 publication Critical patent/WO2013147112A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/173Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F14/00Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes
    • C23F14/02Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes by chemical means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1466Monomers containing sulfur
    • C08F216/1475Monomers containing sulfur and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F2025/005Liquid collection; Liquid treatment; Liquid recirculation; Addition of make-up liquid

Definitions

  • the present invention relates to a cooling water treatment method, and more particularly, in a cooling water system with high calcium hardness, heat transfer failure, flow rate reduction, metal caused by calcium-based scale adhering or depositing on heat transfer surfaces of pipes and heat exchangers.
  • the present invention relates to a cooling water treatment method for preventing corrosion.
  • scale species to be generated examples include calcium carbonate, calcium sulfate, calcium sulfite, calcium phosphate, calcium silicate, magnesium silicate, magnesium hydroxide, zinc phosphate, zinc hydroxide, and basic zinc carbonate.
  • a scale inhibitor is used.
  • This scale inhibitor includes inorganic polyphosphoric acids such as sodium hexametaphosphate and sodium tripolyphosphate, phosphonic acids such as hydroxyethylidene diphosphonic acid and phosphonobutanetricarboxylic acid, and carboxyl group-containing materials such as maleic acid, acrylic acid and itaconic acid.
  • Copolymers that combine vinyl monomers with sulfonic acid groups such as vinyl sulfonic acid, allyl sulfonic acid, 2-methacrylamide-2-methylpropane sulfonic acid, and nonionic vinyl monomers such as acrylamide are generally used as necessary. Is used.
  • metal members provided in the open circulation cooling water system such as carbon steel, copper, or copper alloy heat exchangers, reaction kettles, and pipes are generally corroded by contact with cooling water.
  • Anti-corrosion treatment is performed by adding chemicals.
  • phosphorus compounds such as orthophosphate, hexametaphosphate, hydroxyethylidenephosphonate, phosphonobutanetricarboxylate and the like are added to the cooling water.
  • a heavy metal salt such as zinc salt or dichromate may be added alone or in combination.
  • cooling water using recovered water (reprocessed water) as make-up water has been increasing in response to the trend of worldwide environmental load reduction and effective use of resources.
  • the recovered water is characterized by high calcium hardness, phosphorus concentration, chloride ion, and sulfate ion concentration. Since the recovered water has a high calcium hardness, a problem in using the recovered water as makeup water is that the generation of scale cannot be prevented even when the scale inhibitor is added. For this reason, in order to reduce the salt concentration of cooling water, it is necessary to increase the amount of blow water, and it is difficult to save water.
  • Another problem is acceleration of metal corrosion in the cooling water system due to high chloride ion and sulfate ion concentrations. Therefore, the problem in using the recovered water as the replenishing water for the cooling water is to make both scale prevention and anticorrosion compatible in the water quality having high scale component concentration and corrosive ion concentration. From the viewpoint of scale prevention, there is a method of lowering the pH of the cooling water by injecting an acid such as sulfuric acid, but this method further increases the concentration of chloride ions or sulfate ions which are corrosive ions by adding acid. Actual application is difficult because it will increase.
  • Patent Document 1 A method (Patent Document 1) is disclosed in which the calcium hardness in the makeup water is removed by a water softener and the total alkalinity and pH are adjusted. However, it is necessary to regenerate the water softener frequently, and actual application is difficult. is there. In addition, as a reason why the effect of the scale inhibitor is not exhibited in an aqueous system having a high calcium hardness, Patent Document 2 mentions a gelation reaction between a polymer and calcium, and the polymer loses solubility and precipitates to prevent scale. Explains that it will not be possible.
  • An object of the present invention is to provide a cooling water treatment method that prevents the adhesion of scales to prevent failures such as heat transfer failure and flow rate reduction, and prevents corrosion of metals such as pipes and heat exchangers.
  • the structural unit (a) derived from a specific (meth) acrylic acid monomer and a specific (meth) allyl ether type single unit A treating agent comprising a structural unit (b) derived from a monomer in a specific ratio and containing a (meth) acrylic acid copolymer in which at least one of the ends of the main chain is a sulfonic acid group or a salt thereof.
  • a cooling water system having a high calcium hardness and a high concentration of chloride ions and sulfate ions, and the present invention was completed.
  • the present invention contains a (meth) acrylic acid copolymer in a cooling water system having a calcium hardness of 300 mg / L or more as CaCO 3 and a chloride ion and / or sulfate ion concentration of 1000 mg / L or more.
  • the content of the structural unit (a) is 80 to 90 mol%
  • the content of the structural unit (b) is 10 to 20 mol%
  • the (meth) acrylic acid copolymer is , At least one of the ends of the main chain is a sulfonic acid group or its In it, to provide a processing method of a cooling water system.
  • R 1 represents a hydrogen atom or a methyl group
  • X represents a hydrogen atom, a metal atom, an ammonium group, or an organic amine group.
  • R 2 represents a hydrogen atom or a methyl group
  • Y and Z are each independently a hydroxyl group, a sulfonic acid group, or a salt thereof, and at least one of Y and Z is a sulfone group. Represents an acid group or a salt thereof.
  • heat transfer is prevented by preventing adhesion of calcium-based scales to the piping and heat exchanger. It is possible to provide a cooling water treatment method that prevents failures such as failures and flow rate reductions and prevents corrosion of metals such as pipes and heat exchangers.
  • the cooling water system treatment method of the present invention is a cooling water system having a water quality in which the calcium hardness is 300 mg / L or more as CaCO 3 and the chloride ion and / or sulfate ion concentration is 1000 mg / L or more.
  • a treatment agent containing a (meth) acrylic acid-based copolymer having a structure is added to prevent scale failure in the cooling water system and to suppress corrosion of the metal.
  • the (meth) acrylic acid-based copolymer contained in the treating agent used in the cooling water-based processing method of the present invention is derived from the (meth) acrylic acid-based monomer (A) represented by the following general formula (1).
  • R 1 represents a hydrogen atom or a methyl group
  • X represents a hydrogen atom, a metal atom, an ammonium group, or an organic amine group.
  • R 2 represents a hydrogen atom or a methyl group
  • Y and Z are each independently a hydroxyl group, a sulfonic acid group, or a salt thereof, and at least one of Y and Z is a sulfone group. Represents an acid group or a salt thereof.
  • the structural unit (a) and the structural unit (b) are specifically structural units represented by the following general formulas (3) and (4), respectively.
  • the (meth) acrylic acid monomer (A) is represented by the general formula (1), and specific examples of the metal atom X in the general formula (1) include, for example, Examples of the organic amine group include monoethanolamine, diethanolamine, and triethanolamine. Specific examples of the (meth) acrylic acid monomer (A) include acrylic acid, methacrylic acid, and salts thereof (for example, sodium salt, potassium salt, ammonium salt, etc.). Of these, acrylic acid, sodium acrylate, and methacrylic acid are particularly preferable. These can be used individually by 1 type or in combination of 2 or more types.
  • the “(meth) acrylic acid type” refers to both acrylic acid type and methacrylic acid type. The same applies to other similar terms.
  • the (meth) allyl ether monomer (B) is represented by the general formula (2), and in the general formula (2), among the sulfonic acid groups or salts thereof represented by Y and Z Specific examples of metal salts include sodium, potassium, lithium and the like, and specific examples of organic amine group salts include, for example, monoethanolamine, diethanolamine, and triethanolamine.
  • (meth) allyl ether monomer (B) examples include, for example, 3- (meth) allyloxy-2-hydroxy-1-propanesulfonic acid and salts thereof, 3- (meth) allyloxy-1- Examples thereof include hydroxy-2-propanesulfonic acid and salts thereof, among which sodium 3- (meth) allyloxy-2-hydroxy-1-propanesulfonate is preferable. These can be used individually by 1 type or in combination of 2 or more types.
  • the “(meth) allyl ether type” refers to both allyl ether type and methallyl ether type. The same applies to other similar terms.
  • the (meth) acrylic acid copolymer includes a structural unit (a) derived from the (meth) acrylic acid monomer (A) and a structure derived from the (meth) allyl ether monomer (B).
  • the ratio is 10 to 20 mol%.
  • the content of the structural unit (a) exceeds 90 mol%, the affinity with calcium becomes too strong, and when applied to an aqueous system having a high calcium hardness, the polymer is easily gelled and precipitated, thereby exhibiting performance. If it is less than 80 mol%, the proportion of carboxyl groups that contribute to corrosion protection is small, so that the corrosion resistance is reduced.
  • the (meth) acrylic acid copolymer preferably has a weight average molecular weight of about 1000 to 40000. When the weight average molecular weight of the (meth) acrylic acid copolymer exceeds 40,000, the gel resistance is lowered, and when it is less than 1,000, the scale preventing ability is lowered.
  • the weight average molecular weight of the (meth) acrylic acid copolymer is more preferably 5000-38000.
  • the said weight average molecular weight is the value of standard polyacrylic acid conversion by a gel permeation chromatography method (GPC method).
  • the (meth) acrylic acid-based copolymer may have at least the structural unit (a) and the structural unit (b) in the above proportion, but in addition to these, the (meth) acrylic acid-based copolymer
  • the structural unit (c) derived from another monomer (C) copolymerizable with the monomer (A) or the (meth) allyl ether monomer (B) may be included.
  • the ratio of the structural unit (c) is preferably 10 mol% or less, and more preferably 5 mol% or less with respect to 100 mol% of the structural units derived from all monomers.
  • Examples of the other monomer (C) include sulfonic acid groups such as 2-acrylamido-2-methylpropanesulfonic acid, (meth) allylsulfonic acid, vinylsulfonic acid, styrenesulfonic acid, and 2-sulfoethyl methacrylate.
  • sulfonic acid groups such as 2-acrylamido-2-methylpropanesulfonic acid, (meth) allylsulfonic acid, vinylsulfonic acid, styrenesulfonic acid, and 2-sulfoethyl methacrylate.
  • Unsaturated monomers and their salts N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, N-vinyl-N-methylformamide, N-vinyl-methylacetamide, N-vinyloxazolidone, etc.
  • ⁇ Polymerization initiator> A well-known thing can be used as a polymerization initiator.
  • the amount of the polymerization initiator used is not particularly limited as long as it is an amount capable of initiating copolymerization of the monomer mixture, but is preferably 15 g with respect to 1 mol of the monomer mixture, unless otherwise specified below. In the following, it is more desirable that the weight is 1 to 12 g.
  • a chain transfer agent may be used as a molecular weight regulator of the polymer within a range that does not adversely affect the polymerization, if necessary.
  • chain transfer agent examples include mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, 2- Thiol chain transfer agents such as mercaptoethanesulfonic acid, n-dodecyl mercaptan, octyl mercaptan, butylthioglycolate; halides such as carbon tetrachloride, methylene chloride, bromoform, bromotrichloroethane; Secondary alcohol; phosphorous acid, hypophosphorous acid, and salts thereof (sodium hypophosphite, potassium hypophosphite, etc.), sulfurous acid, bisulfite, dithionite, metabisulfite, and salts thereof ( Hereinafter also referred to as “bisulfite (
  • Sodium bisulfite, potassium bisulfite, sodium dithionite, potassium dithionite, sodium metabisulfite, metabisulfite potassium, etc. include lower oxides and salts thereof.
  • the said chain transfer agent can be used individually by 1 type or in combination of 2 or more types.
  • this chain transfer agent When this chain transfer agent is used, it is possible to suppress the production of a copolymer having a higher molecular weight than necessary, and it is possible to efficiently produce a low molecular weight copolymer.
  • bisulfite (salts) in the copolymerization reaction according to the present invention. Thereby, it is possible to efficiently introduce a sulfonic acid group to the end of the main chain of the copolymer to be obtained, and to improve the gel resistance. Further, it is preferable to use bisulfurous acid (salt) as the chain transfer agent because the color tone of the copolymer (composition) can be improved.
  • the addition amount of the chain transfer agent is not limited as long as the monomer mixture is polymerized satisfactorily, but is preferably 1 to 1 mol per 1 mol of the monomer mixture, unless otherwise specified below. 20 g, more preferably 2 to 15 g.
  • ⁇ Initiator system In the method for producing the (meth) acrylic acid copolymer, one or more persulfates and bisulfites (salts) are combined as an initiator system (a combination of a polymerization initiator and a chain transfer agent). It is preferable to use it. As a result, a sulfonic acid group is efficiently introduced into the polymer main chain terminal, and a low molecular weight water-soluble polymer having excellent gel resistance in addition to dispersibility and chelating ability is obtained, and the effect of the present invention is effectively obtained. Can be expressed.
  • the initiator system By adding bisulfite (salts) to the initiator system in addition to the persulfate, it is possible to suppress the resulting polymer from becoming too high in molecular weight and to efficiently produce a low molecular weight polymer. Can do.
  • Specific examples of the persulfate include sodium persulfate, potassium persulfate, and ammonium persulfate.
  • the bisulfite (salt) is as described above, and among them, sodium bisulfite, potassium bisulfite, and ammonium bisulfite are preferable.
  • the addition ratio of bisulfurous acid (salt) is preferably 0.1 to 5 parts by mass, more preferably 1 part by mass of persulfate. Is in the range of 0.2 to 3 parts by weight, more preferably 0.2 to 2 parts by weight.
  • the amount of bisulfurous acid (salt) is less than 0.1 part by mass with respect to 1 part by mass of persulfate, the effect of bisulfurous acid (salt) tends to decrease. Therefore, the introduction amount of the sulfonic acid group at the terminal of the polymer is lowered, and the gel resistance of the copolymer tends to be lowered.
  • the weight average molecular weight of the (meth) acrylic acid copolymer tends to be high.
  • the amount of bisulfurous acid (salt) exceeds 5 parts by mass with respect to 1 part by mass of the persulfate, the effect of the bisulfurous acid (salt) will not be obtained as much as the addition ratio increases. Sulfurous acid (salt) tends to be supplied excessively (consumed wastefully). For this reason, excess bisulfite (salt) is decomposed in the polymerization reaction system, and a large amount of sulfurous acid gas (SO 2 gas) is generated.
  • SO 2 gas sulfurous acid gas
  • many impurities in the (meth) acrylic acid copolymer are generated, and the performance of the resulting (meth) acrylic copolymer tends to be lowered. In addition, impurities tend to precipitate during holding at a low temperature.
  • the total amount of the persulfate and the bisulfite (salt) is preferably 2 to 20 g with respect to 1 mol of the monomer mixture. More preferably 2 to 15 g, still more preferably 3 to 10 g, and still more preferably 4 to 9 g.
  • the addition amount of the persulfate and bisulfite (salt) is less than 2 g, the molecular weight of the resulting polymer tends to increase.
  • the sulfonic acid group introduced into the terminal of the resulting (meth) acrylic acid copolymer tends to decrease.
  • the persulfate may be added in the form of a persulfate solution (preferably an aqueous solution) dissolved in a solvent described later, preferably water.
  • concentration when used as the persulfate solution is preferably 1 to 35% by mass, more preferably 5 to 35% by mass, and still more preferably 10 to 30% by mass.
  • concentration of the persulfate solution is less than 1% by mass, the concentration of the product decreases, and transportation and storage become complicated.
  • concentration of the persulfate solution exceeds 35% by mass, handling becomes difficult.
  • the bisulfurous acid (salt) may be added in the form of a solution (preferably an aqueous solution) of bisulfurous acid (salt) dissolved in a solvent described later, preferably water.
  • concentration when used as the bisulfite (salt) solution is preferably 10 to 42% by mass, more preferably 20 to 42% by mass, and still more preferably 32 to 42% by mass.
  • concentration of the bisulfurous acid (salt) solution is less than 10% by mass, the concentration of the product decreases, and transportation and storage become complicated.
  • concentration of the bisulfite (salt) solution exceeds 42% by mass, handling becomes difficult.
  • the heavy metal concentration adjusting agent is not particularly limited, and for example, a polyvalent metal compound or a simple substance can be used. Specifically, vanadium oxytrichloride, vanadium trichloride, vanadyl oxalate, vanadyl sulfate, vanadic anhydride, ammonium metavanadate, ammonium sulfate hypovanadas [(NH 4 ) 2 SO 4 ⁇ VSO 4 ⁇ 6H 2 O], Ammonium sulfate vanadas [(NH 4 ) V (SO 4 ) 2 ⁇ 12H 2 O], copper acetate (II), copper (II), copper bromide (II), copper (II) acetyl acetate, cupric ammonium chloride , Copper chloride ammonium, Copper carbonate, Copper chloride (II), Copper citrate (II), Copper formate (II), Copper hydroxide (II), Copper nitrate, Copper naphthenate, Copper o
  • the monomer mixture is usually polymerized in a solvent.
  • the solvent used in the polymerization reaction system is water, alcohol, glycol.
  • An aqueous solvent such as glycerin or polyethylene glycol is preferable, and water is particularly preferable. These can be used alone or in combination of two or more.
  • an organic solvent may be appropriately added within a range that does not adversely affect the polymerization of each monomer.
  • the organic solvent include lower alcohols such as methanol and ethanol; amides such as dimethylformaldehyde; ethers such as diethyl ether and dioxane; be able to.
  • the amount of the solvent used is preferably in the range of 40 to 200% by mass, more preferably 45 to 180% by mass, and still more preferably 50 to 150% by mass with respect to the total amount of the monomer mixture.
  • the amount of the solvent used is less than 40% by mass, the molecular weight becomes high.
  • concentration of the manufactured (meth) acrylic-acid type copolymer will become low, and solvent removal will be needed depending on the case.
  • the solvent may be charged into the reaction vessel at the initial stage of polymerization.
  • a part of the solvent may be appropriately added (dropped) into the reaction system alone during the polymerization.
  • the monomer mixture component, the initiator component, and other additives may be appropriately added (dropped) into the reaction system during the polymerization together with these components in the form of being previously dissolved in a solvent.
  • the polymerization temperature of the monomer mixture is not particularly limited. From the viewpoint of efficiently producing a polymer, the polymerization temperature is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, or preferably 99 ° C. or lower, more preferably 95 ° C. or lower. When the polymerization temperature is less than 50 ° C., the molecular weight increases, impurities increase, and the polymerization time takes too long, so the productivity decreases. On the other hand, when the polymerization temperature is set to 99 ° C.
  • the polymerization temperature here refers to the temperature of the reaction solution in the reaction system.
  • room temperature starting method for example, in the case of performing polymerization in 180 minutes per batch (180 minute formulation), within 70 minutes, preferably 0 to 50
  • the temperature is set to reach the set temperature (may be within the above-mentioned polymerization temperature range, preferably 70 to 90 ° C., more preferably about 80 to 90 ° C.) in a minute, more preferably 0 to 30 minutes. Thereafter, it is desirable to maintain the set temperature until the polymerization is completed.
  • the resulting (meth) acrylic acid copolymer may have a high molecular weight.
  • the temperature increase time is set so that the ratio of the temperature increase time to the polymerization time is the same. Is desirable.
  • the pressure in the reaction system is not particularly limited, and may be any of normal pressure (atmospheric pressure), reduced pressure, and increased pressure.
  • normal pressure atmospheric pressure
  • reduced pressure reduced pressure
  • increased pressure atmospheric pressure
  • the inside of the reaction system is sealed under normal pressure or under pressure. It is better to do it.
  • polymerization is performed under normal pressure (atmospheric pressure)
  • the atmosphere in the reaction system may be an air atmosphere, but is preferably an inert atmosphere.
  • an inert gas such as nitrogen before the start of polymerization.
  • the polymerization reaction of the monomer mixture is preferably performed under acidic conditions.
  • the increase in the viscosity of the aqueous solution of the polymerization reaction system can be suppressed, and a low molecular weight (meth) acrylic acid copolymer can be produced satisfactorily.
  • the polymerization reaction can proceed under a higher concentration condition than before, the production efficiency can be significantly increased.
  • the degree of neutralization during polymerization to 0 to 25 mol%
  • the effect of reducing the initiator amount can be synergistically increased, and the effect of reducing impurities can be significantly improved.
  • the pH of the reaction solution during polymerization at 25 ° C. is preferably 1 to 6, more preferably 1 to 5, and still more preferably 1 to 4.
  • the pH is less than 1, for example, when bisulfurous acid (salt) is used as an initiator system, sulfurous acid gas may be generated and the apparatus may be corroded.
  • the pH exceeds 6, when bisulfurous acid (salt) is used as an initiator system, the efficiency of bisulfurous acid (salt) is lowered and the molecular weight is increased.
  • pH adjusters for adjusting the pH of the reaction solution include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, and ammonia. And organic amine salts such as monoethanolamine and triethanolamine. These can be used alone or in combination of two or more. Among these, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are preferable, and sodium hydroxide is particularly preferable. In the present specification, these may be simply referred to as “pH adjusting agent” or “neutralizing agent”.
  • the degree of neutralization during the polymerization is preferably in the range of 0 to 25 mol%, more preferably 1 to 15 mol%, still more preferably 2 to 10 mol%. If the degree of neutralization during the polymerization is within such a range, it is possible to perform the copolymerization best, to reduce impurities, and to produce a polymer having good gel resistance. Moreover, the viscosity of the aqueous solution of the polymerization reaction system does not increase, and a low molecular weight polymer can be produced satisfactorily. In addition, since the polymerization reaction can proceed under a higher concentration condition than before, the production efficiency can be significantly increased.
  • the degree of neutralization during polymerization exceeds 25 mol%, the chain transfer efficiency of bisulfurous acid (salt) may decrease and the molecular weight may increase.
  • the viscosity of the aqueous solution in the polymerization reaction system increases significantly.
  • the molecular weight of the resulting polymer increases more than necessary, and a low molecular weight polymer cannot be obtained.
  • the effect of reducing the degree of neutralization cannot be sufficiently exhibited, and it may be difficult to significantly reduce impurities.
  • the neutralization method here is not particularly limited.
  • a salt of (meth) acrylic acid such as sodium (meth) acrylate may be used as a part of the raw material, and an alkali metal hydroxide such as sodium hydroxide is used as a neutralizing agent. You may neutralize during superposition
  • the addition form of the neutralizing agent at the time of neutralization may be solid, or may be an aqueous solution dissolved in an appropriate solvent, preferably water.
  • the concentration of the aqueous solution is preferably 10 to 60% by mass, more preferably 20 to 55% by mass, and still more preferably 30 to 50% by mass.
  • concentration of the aqueous solution is less than 10% by mass, the concentration of the product decreases, and transportation and storage become complicated.
  • the concentration exceeds 60% by mass precipitation may occur and the viscosity increases, so It becomes complicated.
  • the monomer mixture, initiator, chain transfer agent and other additives are previously dissolved in an appropriate solvent (preferably the same solvent as the solvent for the liquid to be dropped) to form a monomer mixture.
  • an initiator solution, a chain transfer agent solution, and other additive solutions each of them is added dropwise to a (aqueous) solvent (adjusted to a predetermined temperature if necessary) charged in a reaction vessel.
  • Polymerization is preferably performed while continuously dropping over time. Further, a part of the aqueous solvent may be added dropwise later, separately from the initially charged solvent prepared in advance in a container in the reaction system. However, it is not limited to such a manufacturing method.
  • the dropping method may be dropped continuously or may be dropped in several portions intermittently.
  • One or two or more monomers may be initially charged in part or in whole.
  • the dropping rate (dropping amount) of one or more monomers may be always dropped as a constant (constant amount) from the start to the end of dropping, or may be dropped over time depending on the polymerization temperature or the like.
  • the dropping speed (dropping amount) may be changed.
  • the molecular weight at the initial stage of polymerization greatly affects the final molecular weight. Therefore, in order to reduce the initial molecular weight, 5 to 20% by mass of bisulfite (salt) or a solution thereof is preferably within 60 minutes, more preferably within 30 minutes, and even more preferably within 10 minutes from the start of polymerization. It is desirable to add (drop). In particular, as described later, this is effective when the polymerization is started from room temperature.
  • the completion of the dropping is preferably advanced from 1 to 30 minutes, more preferably from 1 to 20 minutes, and even more preferably from 1 to 15 minutes after the completion of the dropping of B).
  • polymerization can be reduced, and generation
  • the dropping end time of the bisulfurous acid (salt) (solution) can be shortened by less than one minute than the dropping end time of the monomers (A) and (B), the polymerization is completed after the completion of the polymerization. Sulfurous acid (salt) may remain.
  • the end of dropping of the bisulfite (salt) or its solution and the end of dropping of the monomers (A) and (B) are simultaneous, or the bisulfite (salt) (solution) of The case where the end of dropping is later than the end of dropping of monomers (A) and (B) is included.
  • the dripping end time of the persulfate (solution) is the monomer (A) or (B). It is desirable to delay the dropping end time by 1 to 30 minutes, more preferably 1 to 25 minutes, and still more preferably 1 to 20 minutes. Thereby, the amount of monomer components remaining after the completion of polymerization can be reduced, and impurities caused by the remaining monomers can be significantly reduced.
  • the dropping end time of the persulfate (solution) can be delayed by less than 1 minute from the dropping end time of the monomers (A) and (B)
  • the monomer component after the completion of the polymerization May remain.
  • the end of dropping of the persulfate (solution) and the end of dropping of the monomers (A) and (B) are simultaneous, or the end of dropping of the persulfate (solution) is simpler.
  • the case where it is earlier than the end of dropping of the monomers (A) and (B) is included. In such a case, it tends to be difficult to effectively and effectively suppress the formation of impurities.
  • the persulfate or the decomposition product thereof is It may remain and form impurities.
  • the total dropping time during the polymerization is preferably 150 to 600 minutes, more preferably 160 to 450 minutes, and further preferably 180 to 300 minutes.
  • the total dropping time is less than 150 minutes, the effect of the persulfate solution and the bisulfite (salt) solution added as the initiator system tends to be reduced, and thus the obtained (meth) acrylic acid copolymer
  • the amount of sulfur-containing groups such as sulfonic acid groups introduced at the ends of the main chain tends to decrease.
  • the weight average molecular weight of the polymer tends to increase.
  • bisulfite (salt) exists excessively by being dripped in the reaction system in a short time.
  • sulfurous acid gas which may be released out of the system or may form impurities.
  • it can be improved by carrying out the polymerization temperature and the initiator amount in a specific range that is low.
  • the total dropping time exceeds 600 minutes, the generation of sulfurous acid gas is suppressed, so that the performance of the obtained polymer is good, but the productivity is lowered, and the use application may be limited.
  • the total dropping time here means the time from the start of dropping the first dropping component (not necessarily one component) to the completion of dropping the last dropping component (not necessarily one component).
  • the solid content concentration in the aqueous solution (that is, the polymerization solid content concentration of the monomer) at the time when the dropping of the total amount of the monomer, the polymerization initiator, and the chain transfer agent is completed is preferably 35% by mass or more.
  • the amount is preferably 40 to 70% by mass, more preferably 45 to 65% by mass. If the solid content concentration at the end of the polymerization reaction is 35% by mass or more, the polymerization can be carried out in a single step with a high concentration, so that a low molecular weight (meth) acrylic acid copolymer can be obtained efficiently, For example, the concentration step can be omitted.
  • the manufacturing efficiency and productivity can be significantly increased, and the manufacturing cost can be suppressed.
  • the viscosity of the reaction solution is significantly increased with the progress of the polymerization reaction, and the weight average molecular weight of the obtained polymer tends to be significantly increased.
  • the polymerization reaction is carried out on the acidic side (pH at 25 ° C. is 1 to 6 and the neutralization degree of the carboxylic acid is in the range of 0 to 25 mol%), the viscosity of the reaction solution accompanying the progress of the polymerization reaction is increased. Can be suppressed. Therefore, a polymer having a low molecular weight can be obtained even when the polymerization reaction is carried out under a high concentration condition, and the production efficiency of the polymer can be greatly increased.
  • an aging step may be provided for the purpose of increasing the polymerization rate of the monomer after the addition of all the raw materials used is completed.
  • the aging time is usually 1 to 120 minutes, preferably 5 to 90 minutes, more preferably 10 to 60 minutes.
  • the monomer component may remain due to insufficient aging, which may cause impurities due to the residual monomer, resulting in performance degradation.
  • the aging time exceeds 120 minutes, the polymer solution may be colored.
  • the preferable temperature of the polymer solution in the aging step is in the same range as the polymerization temperature. Therefore, the temperature here may also be maintained at a constant temperature (preferably the temperature at the end of dropping), or the temperature may be changed over time during aging.
  • the polymerization is preferably performed under acidic conditions as described above. Therefore, the neutralization degree (carboxylic acid final neutralization degree) of the carboxylic acid of the (meth) acrylic acid copolymer to be obtained is determined by appropriately adding an appropriate alkaline component as a post-treatment as needed after the polymerization is completed. It may be set within a predetermined range by adding.
  • the alkaline component include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide; ammonia, monoethanolamine, diethanolamine, and triethanol.
  • the final neutralization degree is not particularly limited because it varies depending on the intended use.
  • the final neutralization degree of carboxylic acid when used as an acidic polymer, is preferably 0 to 75 mol%, more preferably 0 to 70 mol%.
  • the final neutralization degree of the carboxylic acid is preferably 75 to 100 mol%, more preferably 85 to 99 mol%.
  • the final neutralization degree when using as a neutral or alkaline polymer exceeds 99 mol%, there exists a possibility that polymer aqueous solution may color.
  • the manufacturing method of the said (meth) acrylic-acid type copolymer may be a batch type, and may be a continuous type.
  • the (meth) acrylic acid copolymer thus obtained has the effect of preventing the scale failure of the cooling water system and suppressing the corrosion of the metal.
  • the carboxyl group of the structural unit (a) derived from the (meth) acrylic acid monomer (A) has a strong affinity for calcium ions, which are scale components. It is thought that growth is inhibited by adsorbing to the growth point.
  • the raw material containing a carboxyl group has anticorrosion performance, and by making the structural unit (a) a mol% above a certain level, it is possible to achieve both scale prevention and anticorrosion effects.
  • the structural unit (b) derived from the (meth) allyl ether monomer (B) having a small interaction with calcium ions and a high solubility is set to a certain number of moles or more.
  • the treatment agent containing the (meth) acrylic acid copolymer is added to the cooling water system having the following water quality to prevent the scale failure of the cooling water system, Inhibits metal corrosion.
  • the (meth) acrylic acid copolymer is as described above, and particularly preferably, one or more kinds selected from acrylic acid (AA), methacrylic acid (MAA), and sodium acrylate (SA).
  • a copolymer comprising a structural unit (a) derived from a (meth) acrylic acid monomer (A) and a structural unit (b) derived from sodium 3-allyloxy-2-hydroxy-1-propanesulfonate (HAPS) It is a polymer. More specifically, it is a copolymer such as AA / HAPS, MAA / HAPS, AA / SA / HAPS, AA / MAA / HAPS.
  • AA / HAPS derived from a (meth) acrylic acid monomer (A)
  • AA / HAPS AA / HAPS
  • MAA / HAPS AA / SA / HAPS
  • AA / MAA / HAPS AA / MAA / HAPS.
  • the cooling water system treatment method of the present invention is applied to a cooling water system having water quality in which calcium hardness is 300 mg / L or more as CaCO 3 and chloride ion and / or sulfate ion concentration is 1000 mg / L or more.
  • Method for adding scale inhibitor / anticorrosive agent comprising the above-mentioned (meth) acrylic acid copolymer, which is added to such a cooling water system
  • the addition amount is not particularly limited and may be appropriately selected according to the quality of the cooling water system to be added.
  • the concentration of the copolymer scale inhibitor / anticorrosive agent is usually 0.01 to 100 mg / L. It is desirable to add 2 to 50 mg / L.
  • the copolymer scale inhibitor / anticorrosive can be used in combination with other scale inhibitors, anticorrosives, and slime control agents as necessary.
  • Anticorrosive that can be used in combination examples include phosphonic acids such as hydroxyethylidene diphosphonic acid, phosphonobutane tricarboxylic acid, ethylenediaminetetramethylenephosphonic acid, nitrilotrimethylphosphonic acid, orthophosphate, polymerized phosphate, phosphate ester, and zinc salt. , Nickel salts, molybdenum salts, tungsten salts, oxycarboxylates, triazoles, amines and the like.
  • Scale inhibitor that can be used in combination
  • examples of scale inhibitors that can be used in combination include phosphonic acids such as hydroxyethylidenediphosphonic acid, phosphonobutanetricarboxylic acid, ethylenediaminetetramethylenephosphonic acid, nitrilotrimethylphosphonic acid, orthophosphate, polymerized phosphate, polymaleic acid, and polyacrylic acid.
  • Acid maleic acid copolymer, maleic acid / acrylic acid, maleic acid / isobutylene, maleic acid / sulfonic acid, acrylic acid / sulfonic acid, copolymer of acrylic acid / nonionic group-containing monomers, acrylic acid / sulfonic acid / nonionic group-containing A monomer terpolymer can be exemplified.
  • sulfonic acid in the scale inhibitor examples include vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, isoprene sulfonic acid, 3-allyloxy-2-hydroxypropane sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, 2 -Methacrylamido-2-methylpropanesulfonic acid, 4-sulfobutyl methacrylate, allyloxybenzenesulfonic acid, methallyloxybenzenesulfonic acid, and metal salts thereof.
  • nonionic group-containing monomer in the scale inhibitor examples include, for example, alkylamide (C1 to C5 alkylamide), hydroxyethyl methacrylate, and (poly) ethylene / propylene oxide mono (meth) acrylate having an addition mole number of 1 to 30. And monovinyl ether ethylene / propylene oxide having an addition mole number of 1 to 30.
  • Slime control agent that can be used in combination
  • examples of slime control agents that can be used in combination include quaternary ammonium salts such as alkyldimethylbenzylammonium chloride, chloromethyltrithiazoline, chloromethylisothiazoline, methylisothiazoline, or ethylaminoisopropylaminomethylthiatriazine, hypochlorous acid, and hypobromine. It may contain an acid, a mixture of hypochlorous acid and sulfophamic acid, an enzyme, a bactericide, a coloring agent, a fragrance, a water-soluble organic solvent, an antifoaming agent, and the like.
  • Each of the scale inhibitor, anticorrosive, and slime control agent can be used alone or in combination of two or more.
  • test water After adding a calcium chloride aqueous solution, a sodium sulfate aqueous solution, and a zinc sulfate aqueous solution, the pH was adjusted with a small amount of sodium hydroxide aqueous solution and sulfuric acid aqueous solution to obtain test water.
  • About 1000 ml of test water was transferred to a 1000 ml beaker and set in a constant temperature bath of a corrosion test apparatus maintained at 40 ° C., the test piece was screwed on a rotating shaft and immersed, and rotated at 170 rpm. The remaining test water was continuously injected into a 1000 ml beaker at 0.8 ml / min with a roller pump.
  • the corrosion rate (mdd) was calculated from the mass change of the test piece according to the following formula, and the anticorrosion performance was evaluated.
  • Corrosion rate (mdd) ⁇ mass before test (mg) ⁇ mass after test (mg) ⁇ / ⁇ surface area of test piece (dm 2 ) ⁇ test days (days) ⁇ Corrosion rates of less than 10 mdd were evaluated as ⁇ , 10 mdd or more but less than 20 mdd as ⁇ , 20 mdd or more but less than 30 mdd as ⁇ , and 30 mdd or more as x. Table 1 shows the water quality conditions.
  • Phosphoric acid detection rate (%) (phosphoric acid concentration after test / phosphoric acid concentration before test) ⁇ 100 A phosphoric acid detection rate of 90% or more was evaluated as ⁇ , 80% or more and less than 90% as ⁇ , 50% or more and less than 80% as ⁇ , and less than 50% as ⁇ . Table 1 shows the water quality conditions.
  • Examples 1 to 8 and Comparative Examples 1 to 9 The polymers in the polymer solutions used in Examples 1 to 8 and Comparative Examples 1 to 9 are copolymers obtained by polymerizing monomers in the ratios shown in Table 2 and Table 3, respectively, and have a weight average molecular weight and The presence or absence of terminal sulfonic acid groups is as shown in Table 2 and Table 3, respectively. Moreover, using this copolymer, the corrosion rate (mdd) as a result of performing the anticorrosive ability evaluation test and the phosphoric acid detection rate (%) as a result of performing the calcium phosphate scale inhibition test are shown in Tables 2 and 3, respectively. It is shown.
  • Comparative Example 4 Based on Table 2 and Table 3, in the calcium phosphate suppression test in water quality assuming recovery water supply, when comparing phosphate detection rate, Comparative Example 4, 5 ⁇ Comparative Example 1-3, Comparative Example 6, 7 ⁇ Example, The order was Comparative Examples 8 and 9. From these results, Examples having a structural unit derived from acrylic acid (AA) and sodium 3-allyloxy-2-hydroxy-1-propanesulfonate (HAPS) and having a sulfonic acid group at the end of the main chain, Comparative Example 8 , 9 shows an excellent scale prevention effect in severe water quality assuming that the recovered water is makeup water. This is probably because gelation with Ca ions is less likely to occur due to the introduction of the main chain terminal sulfonic acid group.
  • AA acrylic acid
  • HAPS sodium 3-allyloxy-2-hydroxy-1-propanesulfonate
  • Comparative Examples 1 to 5 do not have a sulfonic acid group and thus have a poor calcium phosphate scale preventing effect.
  • Comparative Examples 6 and 7 have a structural unit derived from HAPS, but have no sulfonic acid group at the end of the main chain, and therefore the scale prevention effect is worse in water quality assuming recovered water as make-up water. I understand. Thus, since Comparative Examples 1 to 7 did not have a sulfonic acid group at the end of the main chain, gelation with Ca ions occurred, and the scale prevention effect was inferior to that of Examples and Comparative Examples 8 and 9. Conceivable.
  • the cooling water treatment method of the present invention prevents the calcium scale from adhering to piping and heat exchangers in the water quality with high scale components and corrosive ions using recovered water (reprocessed water) as makeup water.
  • recovered water reprocessed water
  • failures such as heat transfer failure and flow rate decrease, and corrosion of metals such as pipes and heat exchangers can be prevented.

Abstract

カルシウム硬度が、CaCOとして300mg/L以上、塩化物イオン及び/又は硫酸イオン濃度が1000mg/L以上の冷却水系において、(メタ)アクリル酸系共重合体を含有してなる処理剤を添加する冷却水系の処理方法であって、前記(メタ)アクリル酸系共重合体が、(メタ)アクリル酸系単量体(A)に由来する構造単位(a)と、特定の(メタ)アリルエーテル系単量体(B)に由来する構造単位(b)とを有し、全単量体由来の構造単位100モル%中、構造単位(a)の含有量が80~90モル%、構造単位(b)の含有量が10~20モル%であり、前記(メタ)アクリル酸系共重合体は、主鎖末端の少なくとも一方がスルホン酸基又はその塩である冷却水系の処理方法である。

Description

冷却水系の処理方法
 本発明は、冷却水系の処理方法に関し、詳しくはカルシウム硬度の高い冷却水系において、配管や熱交換器の伝熱面にカルシウム系スケールが付着ないしは沈積することによって生じる伝熱障害、流量低下、金属腐食を防止する冷却水系の処理方法に関する。
 開放循環冷却水系において、水と接触する伝熱面、配管ではスケール障害が発生する。また、省資源、省エネルギーの立場から、高濃縮運転をした場合、溶解する塩類が濃縮され難溶性の塩となってスケール化する。熱交換部に生成したスケールは伝熱阻害を引き起こし、配管に付着したスケールは流量低下を引き起こす。また生成したスケールが剥離し、系内を循環することにより、ポンプ、配管、熱交換部が閉塞するとともに、閉塞に伴う配管、熱交換部でのスケール化の促進を引き起こす等が知られている。
 生成するスケール種としては、炭酸カルシウム、硫酸カルシウム、亜硫酸カルシウム、リン酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、水酸化マグネシウム、リン酸亜鉛、水酸化亜鉛、塩基性炭酸亜鉛等がある。
 このようなスケールの発生を防止するために、スケール防止剤が用いられる。このスケール防止剤としては、ヘキサメタリン酸ソーダやトリポリリン酸ソーダ等の無機ポリリン酸類、ヒドロキシエチリデンジホスホン酸やホスホノブタントリカルボン酸等のホスホン酸類、マレイン酸、アクリル酸、イタコン酸等のカルボキシル基含有素材、必要に応じてそれとビニルスルホン酸、アリルスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基を有するビニルモノマーや、アクリルアミド等のノニオン性ビニルモノマーを組み合わせたコポリマーが一般的に使用されている。
 また、開放循環冷却水系に設けられた金属部材、例えば、炭素鋼、銅、又は銅合金製の熱交換器や反応釜、配管は、冷却水と接触することにより腐食を受けることから、一般に、薬剤添加による防食処理が施されている。
 該薬剤としては、一般にオルトリン酸塩、ヘキサメタリン酸塩、ヒドロキシエチレデンホスホン酸塩、ホスホノブタントリカルボン酸塩等のリン化合物が冷却水に添加されている。亜鉛塩や重クロム酸塩のような重金属塩を単独又は併用して添加する場合もある。
 ところで近年、世界的な環境負荷低減と資源有効利用の流れを受け、回収水(再処理水)を補給水に用いる冷却水が増加している。回収水は、カルシウム硬度、リン濃度、塩化物イオン、硫酸イオン濃度が高い特徴を有する。該回収水はカルシウム硬度が高いことから、該回収水を補給水に用いる際の課題としては、上記のスケール防止剤を添加してもスケールの発生を防止することができないことが挙げられる。このため、冷却水の塩類濃縮を低下させるためにブロー水量を増大させる必要があり、用水の節減が難しい。
 もう一つの課題は、塩化物イオン、硫酸イオン濃度が高いことによる冷却水系の金属腐食の加速である。したがって、回収水を冷却水の補給水とする際の課題は、スケール成分濃度及び腐食性イオン濃度が高い水質において、スケール防止と防食とを両立させることにある。
 スケール防止の観点からは、硫酸等の酸を注入して冷却水のpHを低下させる方法があるが、この方法は酸の添加により、腐食性イオンである塩化物イオン又は硫酸イオンの濃度を更に高めることになるため、実際の適用は困難である。
 軟水器により補給水中のカルシウム硬度を除去し、総アルカリ度とpHを調整する方法(特許文献1)が開示されているが、頻繁に軟水器を再生する必要があり、実際の適用は困難である。
 また、カルシウム硬度が高い水系においてスケール防止剤の効果が発揮されない理由として、特許文献2においては、ポリマーとカルシウムのゲル化反応を挙げており、ポリマーが溶存性を失って沈殿することによってスケール防止ができなくなると説明している。この対策として、主鎖末端にスルホン酸基を有する(メタ)アクリル酸系ポリマーが提案されており、これにより耐ゲル性能を高め、高カルシウム濃度の水系においても優れたスケール防止効果を発揮すると述べられている。
 この技術によれば、カルシウム硬度が高い水質においてもスケール防止は可能となるが、一般に使用される防食処理を併用しても、腐食性イオンの濃度が高い回収水を補給水とした冷却水系において、必ずしも十分な防食効果を得ることはできない。また、防食性能を高めようとして防食剤の濃度を高くしても、それ自身がリン酸塩や水酸化亜鉛等としてスケール化してしまうために効果が得られないのが実情である。
特許第3928182号公報 特許第3650724号公報
 本発明は、このような状況下になされたもので、回収水(再処理水)を補給水に用いた、スケール成分及び腐食性イオン濃度が高い水質において、配管や熱交換器へのカルシウム系スケールの付着を防止して伝熱障害、流量低下等の障害を防止すると共に、配管や熱交換器等の金属の腐食を防止する冷却水系の処理方法を提供することを目的とする。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の(メタ)アクリル酸系単量体に由来する構造単位(a)と、特定の(メタ)アリルエーテル系単量体に由来する構造単位(b)とを特定の割合で含むと共に、主鎖末端の少なくとも一方がスルホン酸基又はその塩である(メタ)アクリル酸系共重合体を含有してなる処理剤を、カルシウム硬度、及び塩化物イオンや硫酸イオンの濃度が高い冷却水系に添加することにより、前記目的を達成し得ることを見出し、本発明を完成した。
 すなわち、本発明は、カルシウム硬度が、CaCO3として300mg/L以上、塩化物イオン及び/又は硫酸イオン濃度が1000mg/L以上の冷却水系において、(メタ)アクリル酸系共重合体を含有してなる処理剤を添加する冷却水系の処理方法であって、前記(メタ)アクリル酸系共重合体が、下記一般式(1)で表される(メタ)アクリル酸系単量体(A)に由来する構造単位(a)と、下記一般式(2)で表される(メタ)アリルエーテル系単量体(B)に由来する構造単位(b)とを有し、全単量体由来の構造単位100モル%中、構造単位(a)の含有量が80~90モル%、構造単位(b)の含有量が10~20モル%であり、前記(メタ)アクリル酸系共重合体は、主鎖末端の少なくとも一方がスルホン酸基又はその塩である、冷却水系の処理方法を提供する。
Figure JPOXMLDOC01-appb-C000003
(式中、R1は、水素原子又はメチル基を示し、Xは、水素原子、金属原子、アンモニウム基、又は有機アミン基を示す。)
Figure JPOXMLDOC01-appb-C000004
(式中、R2は、水素原子又はメチル基を示し、Y及びZは、それぞれ独立して、水酸基、スルホン酸基、又はその塩であって、Y及びZのうちの少なくとも一方は、スルホン酸基又はその塩を示す。)
 本発明によれば、回収水(再処理水)を補給水に用いた、スケール成分及び腐食性イオン濃度が高い水質において、配管や熱交換器へのカルシウム系スケールの付着を防止して伝熱障害、流量低下等の障害を防止すると共に、配管や熱交換器等の金属の腐食を防止する冷却水系の処理方法を提供することができる。
 本発明の冷却水系の処理方法は、カルシウム硬度が、CaCO3として300mg/L以上であり、塩化物イオン及び/又は硫酸イオン濃度が、1000mg/L以上である水質を有する冷却水系において、特定の構造を有する(メタ)アクリル酸系共重合体を含有する処理剤を添加し、冷却水系のスケール障害を防止すると共に、金属の腐食を抑制することを特徴とする。
[(メタ)アクリル酸系共重合体]
 本発明の冷却水系の処理方法において用いる処理剤に含有する(メタ)アクリル酸系共重合体は、下記一般式(1)で表される(メタ)アクリル酸系単量体(A)に由来する構造単位(a)と、下記一般式(2)で表される(メタ)アリルエーテル系単量体(B)に由来する構造単位(b)を含む共重合体である。
(式中、R1は、水素原子又はメチル基を示し、Xは、水素原子、金属原子、アンモニウム基、又は有機アミン基を示す。)
Figure JPOXMLDOC01-appb-C000006
(式中、R2は、水素原子又はメチル基を示し、Y及びZは、それぞれ独立して、水酸基、スルホン酸基、又はその塩であって、Y及びZのうちの少なくとも一方は、スルホン酸基又はその塩を示す。)
 上記構造単位(a)、構造単位(b)とは、具体的にはそれぞれ下記一般式(3)、(4)で表される構造単位を言う。
Figure JPOXMLDOC01-appb-C000007
(式中、R1及びXは、前記一般式(1)と同じである。)
Figure JPOXMLDOC01-appb-C000008
(式中、R2、Y及びZは、前記一般式(2)と同じである。)
((メタ)アクリル酸系単量体(A))
 当該(メタ)アクリル酸系単量体(A)は、前記一般式(1)で表されるものであるが、一般式(1)中のXである金属原子の具体例としては、例えば、リチウム、ナトリウム、カリウム等が挙げられ、有機アミン基の具体例としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。
 当該(メタ)アクリル酸系単量体(A)の具体例としては、例えば、アクリル酸、メタクリル酸、及びこれらの塩(例えば、ナトリウム塩、カリウム塩、アンモニウム塩等)が挙げられ、これらの中でも特に、アクリル酸、アクリル酸ナトリウム、メタクリル酸が好ましい。これらは、1種単独で又は2種以上を組み合わせて用いることができる。
 なお、前記「(メタ)アクリル酸系」は、アクリル酸系及びメタクリル酸系の両方を指す。他の類似用語も同様である。
((メタ)アリルエーテル系単量体(B))
 当該(メタ)アリルエーテル系単量体(B)は、前記一般式(2)で表されるものであるが、一般式(2)中、Y及びZであるスルホン酸基又はその塩のうち、金属塩の具体例としては、例えば、ナトリウム、カリウム、リチウム等の塩が挙げられ、有機アミン基の塩の具体例としては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。
 前記(メタ)アリルエーテル系単量体(B)の具体例としては、例えば、3-(メタ)アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸及びその塩、3-(メタ)アリルオキシ-1-ヒドロキシ-2-プロパンスルホン酸及びその塩が挙げられ、これらの中でも特に、3-(メタ)アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸ナトリウムが好ましい。これらは、1種単独で又は2種以上を組み合わせて用いることができる。
 なお、前記「(メタ)アリルエーテル系」は、アリルエーテル系及びメタリルエーテル系の両方を指す。他の類似用語も同様である。
<モル比>
 当該(メタ)アクリル酸系共重合体は、(メタ)アクリル酸系単量体(A)に由来する構造単位(a)と、(メタ)アリルエーテル系単量体(B)に由来する構造単位(b)とを含む共重合体であり、全単量体由来の構造単位100モル%中、構造単位(a)の含有量が80~90モル%、構造単位(b)の含有量が10~20モル%の割合である。構造単位(a)の含有量が90モル%を超えると、カルシウムとの親和性が強くなりすぎ、カルシウム硬度が高い水系に適用した場合に、ポリマーがゲル化して沈殿しやすくなり、性能を発揮できないことになり、80モル%未満では、防食に寄与するカルボキシル基の割合が小さいため、防食性能が低下する。
<分子量>
 当該(メタ)アクリル酸系共重合体の重量平均分子量は1000~40000程度であることが好ましい。当該(メタ)アクリル酸系共重合体の重量平均分子量が40000を超えると耐ゲル性能が低下し、1000未満ではスケール防止能が低下する。なお、当該(メタ)アクリル酸系共重合体の重量平均分子量は、5000~38000であることがより好ましい。
 なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC法)による標準ポリアクリル酸換算の値である。
(その他単量体(C))
 当該(メタ)アクリル酸系共重合体は、少なくとも前記構造単位(a)と前記構造単位(b)とを前記の割合で有していればよいが、これらの他に(メタ)アクリル酸系単量体(A)又は(メタ)アリルエーテル系単量体(B)と共重合可能な他の単量体(C)に由来する構造単位(c)を含んでいてもよい。この場合、構造単位(c)の比率は、全単量体由来の構造単位100モル%に対して10モル%以下であることが好ましく、5モル%以下であることがより好ましい。
 他の単量体(C)としては、例えば、2-アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アリルスルホン酸、ビニルスルホン酸、スチレンスルホン酸、2-スルホエチルメタクリレート等のスルホン酸基含有不飽和単量体、及びそれらの塩;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-N-メチルホルムアミド、N-ビニル-メチルアセトアミド、N-ビニルオキサゾリドン等のN-ビニル単量体;(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド等の窒素含有ノニオン性不飽和単量体;3-(メタ)アリルオキシ-1,2-ジヒドロキシプロパン、(メタ)アリルアルコール、イソプレノール等の水酸基含有不飽和単量体;3-(メタ)アリルオキシ-1,2-ジヒドロキシプロパンにエチレンオキサイドを1~200モル程度付加させた化合物(3-(メタ)アリルオキシ-1,2-ジ(ポリ)オキシエチレンエーテルプロパン)、(メタ)アリルアルコールにエチレンオキサイドを1~100モル程度付加させた化合物等のポリオキシエチレン基含有不飽和単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヒドロキシエチル等の(メタ)アクリル酸エステル;イタコン酸等の不飽和ジカルボン酸単量体;スチレン等の芳香族不飽和単量体等が挙げられる。
 これらの単量体(C)は、1種単独で又は2種以上を組み合わせて用いることができる。
(製造方法)
 当該(メタ)アクリル酸系共重合体の製造方法としては、前記単量体(A)、(B)及び必要に応じて用いられる(C)を含む単量体混合物(以下、単に「単量体混合物」ともいう)を、重合開始剤の存在下で重合させる方法が挙げられる。
<重合開始剤>
 重合開始剤としては、公知のものを使用することができる。例えば、過酸化水素;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩;ジメチル2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソ酪酸)ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]n水和物、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ系化合物;過酸化ベンゾイル、過酸化ラウロイル、過酢酸、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド等の有機過酸化物等が好適である。これらの重合開始剤のうち、得られる重合体の耐ゲル性を向上させる観点から、後述する過硫酸塩を使用することが好ましい。
 この重合開始剤の使用量は、単量体混合物の共重合を開始できる量であれば特に制限されないが、以下に特に記載する場合を除き、単量体混合物1モルに対して、好ましくは15g以下、より好ましくは1~12gであることが望ましい。
<連鎖移動剤>
 当該(メタ)アクリル酸系共重合体の製造方法においては、必要に応じ、重合に悪影響を及ぼさない範囲内で、重合体の分子量調整剤として連鎖移動剤を用いてもよい。
 連鎖移動剤としては、具体的には、メルカプトエタノール、チオグリセロール、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオリンゴ酸、チオグリコール酸オクチル、3-メルカプトプロピオン酸オクチル、2-メルカプトエタンスルホン酸、n-ドデシルメルカプタン、オクチルメルカプタン、ブチルチオグリコレート等の、チオール系連鎖移動剤;四塩化炭素、塩化メチレン、ブロモホルム、ブロモトリクロロエタン等の、ハロゲン化物;イソプロパノール、グリセリン等の、第2級アルコール;亜リン酸、次亜リン酸、及びその塩(次亜リン酸ナトリウム、次亜リン酸カリウム等)や、亜硫酸、重亜硫酸、亜二チオン酸、メタ重亜硫酸、及びその塩(以下、「重亜硫酸(塩)類」ともいう。例えば重亜硫酸ナトリウム、重亜硫酸カリウム、亜二チオン酸ナトリウム、亜二チオン酸カリウム、メタ重亜硫酸ナトリウム、メタ重亜硫酸カリウム等)等の、低級酸化物及びその塩等が挙げられる。上記連鎖移動剤は、1種単独で又は2種以上を組み合わせて用いることができる。
 この連鎖移動剤を使用すると、製造される共重合体が必要以上に高分子量化することを抑制でき、低分子量の共重合体を効率よく製造することができる。これらのうち、本発明に係る共重合反応においては、重亜硫酸(塩)類を用いることが好適である。これにより、得られる共重合体の主鎖末端に効率良くスルホン酸基を導入することができると共に、耐ゲル性を向上することが可能となる。また、連鎖移動剤として、重亜硫酸(塩)類を用いることにより、共重合体(組成物)の色調を改善することができるので好ましい。
 連鎖移動剤の添加量は、単量体混合物が良好に重合する量であれば制限されないが、以下に特に記載する場合を除き、好ましくは単量体混合物1モルに対して、好ましくは1~20g、より好ましくは2~15gである。
<開始剤系>
 当該(メタ)アクリル酸系共重合体の製造方法においては、開始剤系(重合開始剤と連鎖移動剤との組み合わせ)として、過硫酸塩及び重亜硫酸(塩)類をそれぞれ1種類以上組み合わせて用いることが好ましい。これにより、重合体主鎖末端にスルホン酸基を効率良く導入し、分散能やキレート能に加えて耐ゲル性にも優れた低分子量の水溶性重合体を得、本発明の作用効果を有効に発現させることができる。過硫酸塩に加えて、重亜硫酸(塩)類を開始剤系に加えることで、得られる重合体が必要以上に高分子量化することが抑制され、低分子量の重合体を効率よく製造することができる。
 上記過硫酸塩としては、具体的には、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等を挙げることができる。
 また、本発明において重亜硫酸(塩)類とは、上記のとおりであるが、中でも重亜硫酸ナトリウム、重亜硫酸カリウム、重亜硫酸アンモニウムが好ましい。
 前記過硫酸塩及び重亜硫酸(塩)類を併用する場合の添加比率は、過硫酸塩1質量部に対して、重亜硫酸(塩)類は、好ましくは0.1~5質量部、より好ましくは0.2~3質量部、更に好ましくは0.2~2質量部の範囲内である。過硫酸塩1質量部に対して重亜硫酸(塩)類が0.1質量部未満であると、重亜硫酸(塩)による効果が少なくなる傾向にある。そのため、重合体の末端のスルホン酸基の導入量が低下し、共重合体の耐ゲル性が低下する傾向にある。また、(メタ)アクリル酸系共重合体の重量平均分子量も高くなる傾向にある。一方、過硫酸塩1質量部に対して重亜硫酸(塩)類が5質量部を超えると、重亜硫酸(塩)類による効果が添加比率に伴うほど得られない状態で、重合反応系において重亜硫酸(塩)類が過剰に供給され(無駄に消費され)る傾向にある。このため、過剰な重亜硫酸(塩)類が重合反応系で分解され、亜硫酸ガス(SO2ガス)が多量に発生する。そのほか、(メタ)アクリル酸系共重合体中の不純物が多く生成し、得られる(メタ)アクリル系共重合体の性能が低下する傾向にある。また、低温保持時の不純物が析出しやすくなる傾向にある。
 前記過硫酸塩及び重亜硫酸(塩)類を使用する場合の添加量は、単量体混合物1モルに対して、過硫酸塩及び重亜硫酸(塩)類の合計量が、好ましくは2~20g、より好ましくは2~15g、更に好ましくは3~10g、より更に好ましくは4~9gである。前記過硫酸塩及び重亜硫酸(塩)類の添加量が2g未満の場合には、得られる重合体の分子量が増加する傾向にある。そのほか、得られる(メタ)アクリル酸系共重合体の末端に導入されるスルホン酸基が低下する傾向にある。一方、添加量が20gを超える場合には、過硫酸塩及び重亜硫酸(塩)類の効果が添加量に伴うほど得られなくなり、逆に、得られる(メタ)アクリル酸系共重合体の純度が低下する傾向にある。
 前記過硫酸塩は、後述する溶媒、好ましくは水に溶解して過硫酸塩の溶液(好ましくは水溶液)の形態で添加されてもよい。該過硫酸塩溶液(好ましくは水溶液)として用いる場合の濃度としては、好ましくは1~35質量%、より好ましくは5~35質量%、更に好ましくは10~30質量%である。ここで、過硫酸塩溶液の濃度が1質量%未満の場合には、製品の濃度が低下してしまい、輸送及び保管が繁雑となる。一方、過硫酸塩溶液の濃度が35質量%を超える場合には、取り扱いが難しくなる。
 前記重亜硫酸(塩)類は、後述する溶媒、好ましくは水に溶解して重亜硫酸(塩)類の溶液(好ましくは水溶液)の形態で添加されてもよい。該重亜硫酸(塩)類溶液(好ましくは水溶液)として用いる場合の濃度としては、好ましくは10~42質量%、より好ましくは20~42質量%、更に好ましくは32~42質量%である。ここで、重亜硫酸(塩)類溶液の濃度が10質量%未満の場合には、製品の濃度が低下してしまい、輸送及び保管が繁雑となる。一方、重亜硫酸(塩)類溶液の濃度が42質量%を超える場合には、取り扱いが難しくなる。
<その他の添加剤>
 当該(メタ)アクリル酸系共重合体の製造方法において、前記単量体混合物を水溶液中で重合する際に重合反応系に用いることのできる開始剤や連鎖移動剤以外の他の添加剤としては、本発明の作用効果に影響を与えない範囲で適当な添加剤、例えば、重金属濃度調整剤、pH調整剤等を適量加えることができる。
 前記重金属濃度調整剤は、特に制限はなく、例えば多価金属化合物又は単体が利用できる。具体的には、オキシ三塩化バナジウム、三塩化バナジウム、シュウ酸バナジル、硫酸バナジル、無水バナジン酸、メタバナジン酸アンモニウム、硫酸アンモニウムハイポバナダス[(NH42SO4・VSO4・6H2O]、硫酸アンモニウムバナダス[(NH4)V(SO42・12H2O]、酢酸銅(II)、銅(II)、臭化銅(II)、銅(II)アセチルアセテート、塩化第二銅アンモニウム、塩化銅アンモニウム、炭酸銅、塩化銅(II)、クエン酸銅(II)、ギ酸銅(II)、水酸化銅(II)、硝酸銅、ナフテン酸銅、オレイン酸銅(II)、マレイン酸銅、リン酸銅、硫酸銅(II)、塩化第一銅、シアン化銅(I)、ヨウ化銅、酸化銅(I)、チオシアン酸銅、鉄アセチルアセナート、クエン酸鉄アンモニウム、シュウ酸第二鉄アンモニウム、硫酸鉄アンモニウム、硫酸第二鉄アンモニウム、クエン酸鉄、フマル酸鉄、マレイン酸鉄、乳酸第一鉄、硝酸第二鉄、鉄ペンタカルボニル、リン酸第二鉄、ピロリン酸第二鉄等の水溶性多価金属塩;五酸化バナジウム、酸化銅(II)、酸化第一鉄、酸化第二鉄等の多価金属酸化物;硫化鉄(III)、硫化鉄(II)、硫化銅等の多価金属硫化物;銅粉末、鉄粉末等を挙げることができる。
 当該(メタ)アクリル酸系共重合体の製造方法においては、得られる(メタ)アクリル酸系共重合体の重金属イオン濃度が0.05~10ppmであることが好ましいことから、前記重金属濃度調整剤を必要に応じて適量添加するのが望ましい。
(重合溶媒)
 当該(メタ)アクリル酸系共重合体の製造においては、通常は前記単量体混合物を溶媒中で重合することになるが、その際に重合反応系に用いられる溶媒は、水、アルコール、グリコール、グリセリン、ポリエチレングリコール類等の水性の溶媒であることが好ましく、特に好ましくは水である。これらは1種単独で又は2種以上を組み合わせて用いることができる。また、前記単量体混合物の溶媒への溶解性を向上させるために、各単量体の重合に悪影響を及ぼさない範囲で有機溶媒を適宜加えてもよい。
 前記有機溶媒としては、具体的には、メタノール、エタノール等の低級アルコール;ジメチルホルムアルデヒド等のアミド類;ジエチルエーテル、ジオキサン等のエーテル類;等から、1種類又は2種類以上を適宜選択して用いることができる。
 前記溶媒の使用量は、単量体混合物全量に対して、好ましくは40~200質量%、より好ましくは45~180質量%、更に好ましくは50~150質量%の範囲である。該溶媒の使用量が40質量%未満の場合には、分子量が高くなってしまう。一方、該溶媒の使用量が200質量%を超える場合には、製造された(メタ)アクリル酸系共重合体の濃度が低くなり、場合によっては溶媒除去が必要となる。なお、該溶媒の多く又は全量は、重合初期に反応容器内に仕込んでおけばよいが、例えば溶媒の一部を、単独で重合中に反応系内に適当に添加(滴下)されてもよく、単量体混合物成分や開始剤成分やその他の添加剤を予め溶媒に溶解させた形で、これらの成分と共に重合中において、反応系内に適当に添加(滴下)されてもよい。
(重合温度)
 前記単量体混合物の重合温度は、特に限定はされない。効率よく重合体を製造する観点から、重合温度は50℃以上が好ましく、70℃以上がより好ましく、または99℃以下が好ましく、95℃以下がより好ましい。重合温度が50℃未満の場合には、分子量の上昇、不純物が増加するほか、重合時間が長くかかりすぎるため、生産性が低下する。一方、重合温度を99℃以下にする場合には、開始剤系として重亜硫酸(塩)を使用する場合に重亜硫酸(塩)が分解して亜硫酸ガスが多量に発生することを抑制できることから好ましい。ここでの重合温度とは、反応系内の反応溶液温度をいう。
 特に、室温から重合を開始する方法(室温開始法)の場合には、例えば、1バッチ当たり180分で重合を行う場合(180分処方)であれば、70分以内に、好ましくは0~50分間、より好ましくは0~30分間で設定温度(上記重合温度の範囲内であればよいが、好ましくは70~90℃、より好ましくは80~90℃程度)に達するようにする。その後、重合終了までかかる設定温度を維持することが望ましい。昇温時間が上記範囲を外れる場合には、得られる(メタ)アクリル酸系共重合体が高分子量化するおそれがある。なお、重合時間が180分の例を示したが、重合時間の処方が異なる場合には当該例を参照に、重合時間に対する昇温時間の割合が同様になるように昇温時間を設定するのが望ましい。
(反応系の圧力、反応雰囲気)
 前記単量体混合物の重合に際して、反応系内の圧力は、特に限定されず、常圧(大気圧)下、減圧下、加圧下の何れの圧力下であってもよい。好ましくは、開始剤系として重亜硫酸(塩)を使用する場合に、重合中、亜硫酸ガスの放出を防ぎ、低分子量化を可能にするため、常圧又は、反応系内を密閉し、加圧下で行うのがよい。また、常圧(大気圧)下で重合を行うと、加圧装置や減圧装置を併設する必要がなく、また耐圧製の反応容器や配管を用いる必要がない。このため、製造コストの観点からは、常圧(大気圧)が好ましい。すなわち、得られる(メタ)アクリル酸系共重合体の使用目的によって、適宜最適な圧力条件を設定すればよい。
 反応系内の雰囲気は、空気雰囲気のままでもよいが、不活性雰囲気とするのがよい。例えば、重合開始前に系内を窒素等の不活性ガスで置換することが望ましい。これにより、反応系内の雰囲気ガス(例えば、酸素ガス等)が液相内に溶解し、重合禁止剤として作用することが防止できる。その結果、開始剤(過硫酸塩等)が失活して低減するのが防止され、より低分子量化が可能となる。
(重合中の中和度)
 当該(メタ)アクリル酸系共重合体の製造方法においては、前記単量体混合物の重合反応は、酸性条件下で行うのが望ましい。酸性条件下で行うことによって、重合反応系の水溶液の粘度の上昇を抑制し、低分子量の(メタ)アクリル酸系共重合体を良好に製造することができる。しかも、従来よりも高濃度の条件下で重合反応を進行させることができるため、製造効率を大幅に上昇させることができる。特に、重合中の中和度を0~25モル%と低くすることで、前記開始剤量低減による効果を相乗的に高めることができ、不純物の低減効果を格段に向上させることができる。更に、重合中の反応溶液の25℃でのpHが1~6となるように調整するのが望ましい。このような酸性条件下で重合反応を行うことにより、高濃度かつ一段で重合を行うことができるため、濃縮工程を省略することもできる。それゆえ、生産性が大幅に向上し、製造コストの上昇も抑制しうる。
 上記酸性条件のうち、重合中の反応溶液の25℃でのpHは、好ましくは1~6、より好ましくは1~5、更に好ましくは1~4である。該pHが1未満の場合には、例えば開始剤系として重亜硫酸(塩)を使用する場合に、亜硫酸ガスの発生、装置の腐食が生じるおそれがある。一方、pHが6を超える場合には、開始剤系として重亜硫酸(塩)類を使用する場合に、重亜硫酸(塩)類の効率が低下し、分子量が増大する。
 反応溶液のpHを調整するためのpH調整剤としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属の水酸化物、アンモニア、モノエタノールアミン、トリエタノールアミン等の有機アミン塩等が挙げられる。これらは1種単独で又は2種以上を組み合わせて用いることができる。これらの中では、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物が好ましく、水酸化ナトリウムが特に好ましい。本明細書では、これらのものを単に「pH調整剤」又は「中和剤」と言う場合がある。
 重合中の中和度は、好ましくは0~25モル%、より好ましくは1~15モル%、更に好ましくは2~10モル%の範囲内である。重合中の中和度がかかる範囲内であれば、最も良好に共重合することが可能であり、不純物を低減し、耐ゲル性の良好な重合体を製造することが可能になる。また、重合反応系の水溶液の粘度が上昇することがなく、低分子量の重合体を良好に製造することができる。しかも、従来よりも高濃度の条件下で重合反応を進行させることができるため、製造効率を大幅に上昇させることができる。
 一方、重合中の中和度が25モル%を超える場合には、重亜硫酸(塩)類の連鎖移動効率が低下し、分子量が上昇する場合がある。そのほか、重合が進行するに伴い重合反応系の水溶液の粘度の上昇が顕著となる。その結果、得られる重合体の分子量が必要以上に増大して低分子量の重合体が得られなくなる。更に、上記中和度低減による効果を十分に発揮できず、不純物を大幅に低減するのが困難になる場合がある。
 ここでの中和方法は、特に制限されない。例えば、(メタ)アクリル酸ナトリウム等の(メタ)アクリル酸の塩を原料の一部として使用してもよいし、中和剤として、水酸化ナトリウム等のアルカリ金属の水酸化物等を用いて重合中に中和してもよいし、これらを併用してもよい。また、中和の際の中和剤の添加形態は、固体であってもよいし、適当な溶媒、好ましくは水に溶解した水溶液であってもよい。
 水溶液を用いる場合の水溶液濃度は、好ましくは10~60質量%、より好ましくは20~55質量%、更に好ましくは30~50質量%である。該水溶液濃度が10質量%未満の場合には、製品の濃度が低下し、輸送及び保管が繁雑となり、60質量%を超える場合には、析出のおそれがあり、粘度も高くなるので送液が繁雑となる。
(原料の添加条件)
 重合に際しては、前記単量体混合物、開始剤、連鎖移動剤その他の添加剤は、これらを予め適当な溶媒(好ましくは被滴下液用の溶媒と同種の溶媒)に溶解し、単量体混合物溶液、開始剤溶液及び連鎖移動剤溶液その他の添加剤溶液として、それぞれを反応容器内に仕込んだ(水性の)溶媒(必要があれば所定の温度に調節したもの)に対して、所定の滴下時間に渡って連続的に滴下しながら重合することが好ましい。更に水性の溶媒の一部についても、反応系内の容器に予め仕込んでなる初期仕込みの溶媒とは別に、後から滴下してもよい。ただし、かかる製造方法に制限されるものではない。
 例えば、滴下方法に関しては、連続的に滴下しても、断続的に何度かに小分けして滴下してもよい。単量体の1種又は2種以上を、一部又は全量を初期仕込みしてもよい。また、単量体の1種又は2種以上の滴下速度(滴下量)も、滴下の開始から終了まで常に一定(一定量)として滴下してもよいし、又は重合温度等に応じて経時的に滴下速度(滴下量)を変化させてもよい。また、すべての滴下成分を同じように滴下せずとも、滴下成分ごとに開始時や終了時をずらせたり、滴下時間を短縮させたり延長させてもよい。
 開始剤系として重亜硫酸(塩)類を使用する場合、重合初期の分子量は最終分子量に大きく影響する。このため、初期分子量を低下させるために、重合開始より、好ましくは60分以内、より好ましくは30分以内、更に好ましくは10分以内に重亜硫酸(塩)類又はその溶液を5~20質量%添加(滴下)するのが望ましい。特に、後述するように、室温から重合を開始する場合には有効である。
 また、重合の際の滴下成分のうち、開始剤系として重亜硫酸(塩)類を使用する場合における、重亜硫酸(塩)類又はその溶液の滴下時間については、単量体(A)、(B)の滴下終了よりも、好ましくは1~30分、より好ましくは1~20分、更に好ましくは1~15分滴下終了を早めることが好ましい。これにより、重合終了後の重亜硫酸(塩)類量を低減でき、該重亜硫酸(塩)類による亜硫酸ガスの発生や不純物の形成を有効かつ効果的に抑制することができる。そのため重合終了後、気相部の亜硫酸ガスが液相に溶解してできる不純物を格段に低減することができる。重合終了後に重亜硫酸(塩)類が残存する場合には、不純物を生成し重合体の性能低下や低温保持時の不純物析出等を招くことにつながる。したがって、重合の終わりには重亜硫酸(塩)類を含む開始剤系が消費され残存していないことが望ましい。
 ここで、重亜硫酸(塩)類(溶液)の滴下終了時間を、単量体(A)、(B)の滴下終了時間よりも1分未満しか早めることができない場合には、重合終了後に重亜硫酸(塩)類が残存する場合がある。かような場合としては、重亜硫酸(塩)類又はその溶液の滴下終了と単量体(A)、(B)の滴下終了が同時である場合や、重亜硫酸(塩)類(溶液)の滴下終了の方が単量体(A)、(B)の滴下終了よりも遅い場合が含まれる。こうした場合には亜硫酸ガスの発生や不純物の形成を有効かつ効果的に抑制しにくくなる傾向にあり、残存する開始剤が得られる重合体の熱的安定性に悪影響を及ぼす場合がある。一方、重亜硫酸(塩)類又はその溶液の滴下終了時間が単量体(A)、(B)の滴下終了時間よりも30分を超えて早い場合には、重合終了までに重亜硫酸(塩)類が消費されてしまっている。このため、分子量が増大する傾向にある。そのほか、重合中に重亜硫酸(塩)類の滴下速度が単量体(A)、(B)の滴下速度に比して速く、短時間で多く滴下されるために、この滴下期間中に不純物や亜硫酸ガスが多く発生する傾向にある。
 また、重合の際の滴下成分のうち、開始剤系として重亜硫酸(塩)類を使用する場合における、過硫酸塩(溶液)の滴下終了時間は、単量体(A)、(B)の滴下終了時間よりも、好ましくは1~30分、より好ましくは1~25分、更に好ましくは1~20分遅らせることが望ましい。これにより、重合終了後に残存する単量体成分量を低減できる等、残存モノマーに起因する不純物を格段に低減することができる。
 ここで、過硫酸塩(溶液)の滴下終了時間が単量体(A)、(B)の滴下終了時間よりも1分未満しか遅くすることができない場合には、重合終了後に単量体成分が残存する場合がある。かような場合としては、過硫酸塩(溶液)の滴下終了と単量体(A)、(B)の滴下終了が同時である場合や、過硫酸塩(溶液)の滴下終了の方が単量体(A)、(B)の滴下終了よりも早い場合が含まれる。こうした場合には、不純物の形成を有効かつ効果的に抑制するのが困難となる傾向にある。一方、過硫酸塩(溶液)の滴下終了時間が単量体(A)、(B)の滴下終了時間よりも30分を超えて遅い場合には、重合終了後に過硫酸塩又はその分解物が残存し、不純物を形成するおそれがある。
(重合時間)
 重合に際しては、重合温度を低くして開始剤系として重亜硫酸(塩)を使用する場合においても、亜硫酸ガスの発生を抑え、不純物の形成を防止することがより重要である。このため、重合の際の総滴下時間は、好ましくは150~600分、より好ましくは160~450分、更に好ましくは180~300分と長くすることが望ましい。
 総滴下時間が150分未満の場合には、開始剤系として添加する過硫酸塩溶液及び重亜硫酸(塩)溶液による効果が低下する傾向にあるため、得られる(メタ)アクリル酸系共重合体に対して、主鎖末端に導入されるスルホン酸基等の硫黄含有基の量が低下する傾向にある。その結果、該重合体の重量平均分子量が高くなる傾向にある。
 また、反応系内に短期間に滴下されることで過剰に重亜硫酸(塩)が存在することが起こり得る。このため、こうした過剰な重亜硫酸(塩)が分解して亜硫酸ガスが発生し、系外に放出されたり、不純物を形成したりすることがある。ただし、重合温度及び開始剤量を低い特定の範囲で実施することにより改善することができる。
 一方、総滴下時間が600分を越える場合には、亜硫酸ガスの発生が抑えられるため、得られる重合体の性能は良好であるが、生産性が低下し、使用用途が制限される場合がある。ここでいう総滴下時間とは、最初の滴下成分(1成分とは限らない)の滴下開始時から最後の滴下成分(1成分とは限らない)を滴下完了するまでの時間をいう。
(単量体の重合固形分濃度)
 前記単量体、重合開始剤、及び連鎖移動剤の全量の滴下が終了した時点での水溶液中の固形分濃度(すなわち単量体の重合固形分濃度)は、好ましくは35質量%以上、より好ましくは40~70質量%、更に好ましくは45~65質量%である。重合反応終了時の固形分濃度が35質量%以上であれば、高濃度かつ一段で重合を行うことができるため、効率よく低分子量の(メタ)アクリル酸系共重合体を得ることができ、例えば、濃縮工程を省略することができる。それゆえ、その製造効率、生産性を大幅に上昇させることができ、製造コストを抑制することができる。
 ここで、重合反応系において固形分濃度を高くすると、重合反応の進行に伴う反応溶液の粘度の上昇が顕著となり、得られる重合体の重量平均分子量も大幅に高くなる傾向にある。しかしながら、重合反応を酸性側(25℃でのpHが1~6であり、カルボン酸の中和度が0~25モル%の範囲)で行うことにより、重合反応の進行に伴う反応溶液の粘度の上昇を抑制することができる。それゆえ、重合反応を高濃度の条件下で行っても低分子量の重合体を得ることができ、重合体の製造効率を大幅に上昇させることができる。
(熟成工程)
 当該(メタ)アクリル酸系共重合体の製造方法においては、全ての使用原料の添加が終了した以後に、単量体の重合率を上げること等を目的として熟成工程を設けてもよい。熟成時間は、通常1~120分間、好ましくは5~90分間、より好ましくは10~60分間である。熟成時間が1分間未満の場合には、熟成不十分につき単量体成分が残ることがあり、残存単量体に起因する不純物を形成し性能低下等を招くおそれがある。一方、熟成時間が120分間を超える場合には、重合体溶液の着色のおそれがある。
 熟成工程における好ましい重合体溶液の温度は、上記重合温度と同様の範囲である。したがって、ここでの温度も一定温度(好ましくは滴下終了時点での温度)で保持してもよいし、熟成中に経時的に温度を変化させてもよい。
(重合後の工程)
 当該(メタ)アクリル酸系共重合体の製造方法においては、重合は、上記のとおり酸性条件下で行われることが好ましい。そのため、得られる(メタ)アクリル酸系共重合体のカルボン酸の中和度(カルボン酸最終中和度)は、重合が終了した後に、必要に応じて、後処理として適当なアルカリ成分を適宜添加することによって所定の範囲に設定されてもよい。前記アルカリ成分としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物;水酸化カルシウム、水酸化マグネシウム等のアルカリ土類金属の水酸化物;アンモニア、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の有機アミン類等が挙げられる。
 最終中和度は、その使用用途によって異なるため特に制限されない。
 特に酸性の重合体として使用する場合のカルボン酸最終中和度は、好ましくは0~75モル%、より好ましくは0~70モル%である。中性又はアルカリ性の重合体として使用する場合のカルボン酸最終中和度は、好ましくは75~100モル%、より好ましくは85~99モル%である。また、中性又はアルカリ性の重合体として使用する場合の最終中和度が99モル%を超える場合には重合体水溶液が着色するおそれがある。
 また、中和せずに酸性のまま使用するような場合には、反応系内が酸性のため、反応系内及びその雰囲気中に毒性のある亜硫酸ガスが残存している場合がある。こうした場合には、過酸化水素等の過酸化物を入れて分解するか、又は空気や窒素ガスを導入(ブロー)して追い出しておくのが望ましい。
 なお、当該(メタ)アクリル酸系共重合体の製造方法は、バッチ式であってもよいし、連続式であってもよい。
 このようにして得られた(メタ)アクリル酸系共重合体は、冷却水系のスケール障害を防止すると共に、金属の腐食を抑制する効果を奏する。その機構については必ずしも明確ではないが、(メタ)アクリル酸系単量体(A)に由来する構造単位(a)のカルボキシル基は、スケール成分であるカルシウムイオンとの親和性が強く、結晶の成長点に吸着することで成長を阻害すると考えられる。また、カルボキシル基を含む素材が防食性能を有することも知られており、構造単位(a)を一定以上のモル%とすることで、スケール防止・防食効果を両立させることが可能になる。
 ただし、ゲル化を防ぐためには、カルシウムイオンとの相互作用が小さく、溶解性の高い(メタ)アリルエーテル系単量体(B)に由来する構造単位(b)を一定以上のモル数とする必要があり、併せて、主鎖末端をスルホン酸基として耐ゲル性能を向上させる必要がある。
 次に、本発明の冷却水系の処理方法について説明する。
[冷却水系の処理方法]
 本発明の冷却水系の処理方法においては、前記の(メタ)アクリル酸系共重合体を含有する処理剤を、下記の水質を有する冷却水系に添加し、冷却水系のスケール障害を防止すると共に、金属の腐食を抑制する。
 (メタ)アクリル酸系共重合体は前記のとおりであるが、特に好ましくは、アクリル酸(AA)、メタクリル酸(MAA)、及びアクリル酸ナトリウム(SA)から選ばれる1種又は2種以上の(メタ)アクリル酸系単量体(A)に由来する構造単位(a)と、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸ナトリウム(HAPS)由来の構造単位(b)とからなる共重合体である。より具体的には、AA/HAPS、MAA/HAPS、AA/SA/HAPS、AA/MAA/HAPS等の共重合体である。
 なお、本発明の処理方法を適用する場合の運転条件には特に制限はない。
(冷却水系の水質)
 本発明の冷却水系の処理方法は、カルシウム硬度が、CaCO3として300mg/L以上であり、塩化物イオン及び/又は硫酸イオン濃度が、1000mg/L以上である水質を有する冷却水系に適用される。
 このような冷却水系に添加される、前述した当該(メタ)アクリル酸系共重合体からなるスケール防止剤・防食剤(以下、「共重合体系スケール防止剤・防食剤」ともいう)の添加方法に特に制限はなく、腐食、スケールを防止したい場所や、その直前等に添加すればよい。
 また、その添加量に特に制限はなく、添加する冷却水系の水質に応じて適宜選択することができるが、該共重合体系スケール防止剤・防食剤の濃度が、通常0.01~100mg/L、好ましくは2~50mg/Lになるように添加することが望ましい。
 当該共重合体系スケール防止剤・防食剤は、必要に応じて、他のスケール防止剤や防食剤、スライムコントロール剤と併用することができる。
(併用できる防食剤)
 併用できる防食剤としては、例えば、ヒドロキシエチリデンジホスホン酸やホスホノブタントリカルボン酸、エチレンジアミンテトラメチレンホスホン酸 ニトリロトリメチルホスホン酸等のホスホン酸、正リン酸塩、重合リン酸塩、リン酸エステル、亜鉛塩、ニッケル塩、モリブデン塩、タングステン塩、オキシカルボン酸塩、トリアゾール類、アミン類等を挙げることができる。
(併用できるスケール防止剤)
 併用できるスケール防止剤としては、例えばヒドロキシエチリデンジホスホン酸やホスホノブタントリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、ニトリロトリメチルホスホン酸等のホスホン酸、正リン酸塩、重合リン酸塩、ポリマレイン酸、ポリアクリル酸、マレイン酸共重合物、マレイン酸/アクリル酸、マレイン酸/イソブチレン、マレイン酸/スルホン酸、アクリル酸/スルホン酸、アクリル酸/ノニオン基含有モノマーのコポリマー、アクリル酸/スルホン酸/ノニオン基含有モノマーのターポリマー等を挙げることができる。
 前記スケール防止剤におけるスルホン酸としては、例えばビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸、イソプレンスルホン酸、3-アリロキシー2-ヒドロキシプロパンスルホン酸、2-アクリルアミド-2―メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、メタクリル酸4-スルホブチル、アリルオキシベンゼンスルホン酸、メタリルオキシベンゼンスルホン酸及びそれらの金属塩等が挙げられる。
 また、前記スケール防止剤におけるノニオン基含有モノマーとしては、例えば、アルキルアミド(C1~C5アルキルアミド)、ヒドロキシエチルメタクリレート、付加モル数1~30の(ポリ)エチレン/プロピレンオキサイドのモノ(メタ)アクリレート、付加モル数1~30のモノビニルエーテルエチレン/プロピレンオキサイド等が挙げられる。
(併用できるスライムコントロール剤)
 併用できるスライムコントロール剤としては、例えばアルキルジメチルベンジルアンモニウムクロライド等の四級アンモニウム塩、クロルメチルトリチアゾリン、クロルメチルイソチアゾリン、メチルイソチアゾリン、又はエチルアミノイソプロピルアミノメチルチアトリアジン、次亜塩素酸、次亜臭素酸、次亜塩素酸とスルホファミン酸の混合物等、酵素、殺菌剤、着色剤、香料、水溶性有機溶媒、及び消泡剤等を含むものであってもよい。
 前記のスケール防止剤、防食剤、スライムコントロール剤は、それぞれ1種単独で又は2種以上を組み合わせて用いることができる。
 以下、本発明を実施例により、更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 なお、防食性試験、リン酸カルシウムスケール析出抑制試験を下記の方法で行うと共に、分子量の測定及び末端スルホン基の有無の確認を下記の方法により行った。
(1)防食性試験
 寸法が50mm×30mm×1mm、表面積が0.31dm2の低炭素鋼(JIS G3141SPSS-SB)を#400研磨し、トルエン脱脂した試験片を試料とし、質量を測定して該質量を試験前質量とした。
 5000mlポリ容器に野木町水を脱塩素した水を5000mlから各試薬添加量を差引いた量を入れ、炭酸水素ナトリウム水溶液、ケイ酸ナトリウム水溶液、ポリマー溶液、硫酸マグネシウム水溶液、塩化ナトリウム水溶液、リン酸溶液、塩化カルシウム水溶液、硫酸ナトリウム水溶液、硫酸亜鉛水溶液を添加後、少量の水酸化ナトリウム水溶液と硫酸水溶液でpHを調整し試験水とした。試験水約1000mlを1000mlビーカーに移し40℃に保たれた腐食試験装置の恒温槽中にセットし、前記試験片を回転軸にネジ止めして浸漬し、170rpmで回転した。試験水の残液はローラーポンプで1000mlビーカーへ0.8ml/minで連続注入した。
 試験片を浸漬してから3日後に試験片を取り出し、試験片表面を酸で洗浄して付着した腐食生成物を除去して乾燥した後の質量を測定し、該当量を試験後質量とした。その後、試験片の質量変化から次式により、腐食速度(mdd)を計算し、防食性能を評価した。
  腐食速度(mdd)={試験前質量(mg)-試験後質量(mg)}/{試験片の表面積(dm2)×試験日数(日)}
 腐食速度が10mdd未満を◎、10mdd以上20mdd未満を○、20mdd以上30mdd未満を△、30mdd以上を×とした。水質条件を表1に示す。
(2)リン酸カルシウムスケール析出抑制試験
 500mlコニカルビーカーに、超純水を500mlから各試薬添加量を差し引いた量を入れ、炭酸水素ナトリウム水溶液、ケイ酸ナトリウム水溶液、ポリマー溶液、硫酸マグネシウム水溶液、塩化ナトリウム水溶液、リン酸溶液、塩化カルシウム水溶液、硫酸ナトリウム水溶液を添加後、少量の水酸化ナトリウム水溶液と硫酸水溶液でpHを調整して、密栓後、60℃の恒温槽中で、20時間静置した。その後、0.1μmのろ紙を用いてろ液のリン酸濃度を測定し、リン酸の検出率を下記式に基づき算出した。
  リン酸検出率(%)=(試験後のリン酸濃度/試験前のリン酸濃度)×100
 リン酸の検出率が90%以上を◎、80%以上90%未満を○、50%以上80%未満を△、50%未満を×とした。水質条件を表1に示す。
Figure JPOXMLDOC01-appb-T000009
(3)分子量
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(東ソー株式会社製「HLC-8320GPC」)を用い、以下の条件で測定した。
 検出器  :RI
 カラム  :昭和電工株式会社製 Shodex Asahipak GF-310-HQ, GF-710-HQ, GF-1G
 溶離液  :0.1N酢酸ナトリウム水溶液
 流速   :0.5ml/分
 カラム温度:40℃
 検量線  :POLYACRYLIC ACID STANDARD(創和科学株式会社製)
(4)末端スルホン酸基
 pHを1に調整した共重合体(水溶液)を室温で減圧乾燥して水を留去した後、重水を溶媒に用いて1HNMR測定を行い、ポリマー主鎖末端にスルホン酸基が導入されたことに由来する2.7ppmのピークの有無により確認した。
実施例1~8及び比較例1~9
 実施例1~8及び比較例1~9で用いたポリマー溶液中のポリマーは、それぞれ表2及び表3に示す割合のモノマーを重合させて得られた共重合体であって、重量平均分子量及び末端スルホン酸基の有無はそれぞれ表2及び表3に示すとおりである。
 また、この共重合体を用いて、防食能評価試験を行った結果の腐食速度(mdd)及びリン酸カルシウムスケール抑制試験を行った結果のリン酸検出率(%)は、それぞれ表2及び表3に示すとおりである。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表2及び表3に基づき、回収水補給を想定した水質におけるリン酸カルシウム抑制試験において、リン酸検出率を比較すると、比較例4、5<比較例1-3、比較例6、7<実施例、比較例8、9の順であった。この結果から、アクリル酸(AA)及び3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸ナトリウム(HAPS)由来の構造単位を有するポリマーで主鎖末端にスルホン酸基を有する実施例、比較例8、9は、回収水を補給水と想定した厳しい水質において、優れたスケール防止効果を示すことが分かる。この原因は、主鎖末端スルホン酸基の導入により、Caイオンとのゲル化が起こりにくくなったためと考えられる。
 比較例1~5はスルホン酸基を有していないためリン酸カルシウムスケール防止効果が悪いことが分かる。比較例6、7はHAPS由来の構造単位を有しているが、主鎖末端にスルホン酸基を有していないため回収水を補給水と想定した水質においては、スケール防止効果が悪くなることが分かる。このように、比較例1~7は、主鎖末端にスルホン酸基を有していないため、Caイオンとのゲル化が起こり、スケール防止効果が実施例、比較例8、9よりも劣ったと考えられる。
 防食能評価試験において、腐食速度を比較すると、比較例8、9>比較例6、7>比較例1-5>実施例の順であった。この結果から、カルボキシル基の多い実施例、比較例1-5の防食効果が高いことが分かる。この原因は、カルボキシル基が多いと、腐食面に吸着しやすいため、腐食の進行を抑えることが可能であるためと考えられる。
 比較例8、9は、実施例と同様に優れたスケール防止効果を示すが、防食能が実施例より劣ることが分かる。この結果から、スルホン酸の割合が20モル%を超えると、防食効果が低下し、回収水を想定した水質において腐食を抑制することができず、スケール防止効果と防食効果を両立できないことが分かる。
 以上の結果より、AA、HAPSを有するポリマーで主鎖末端にスルホン酸基を有し、かつHAPSの割合が10~20モル%のポリマーは、回収水を補給水と想定した水質において、優れたスケール防止効果と防食効果を示すことが分かる。
 本発明の冷却水系の処理方法は、回収水(再処理水)を補給水に用いた、スケール成分及び腐食性イオンが高い水質において、配管や熱交換器へのカルシウム系スケールの付着を防止して伝熱障害、流量低下等の障害を防止すると共に、配管や熱交換器等の金属の腐食を防止することができる。

Claims (2)

  1.  カルシウム硬度が、CaCO3として300mg/L以上、塩化物イオン及び/又は硫酸イオン濃度が1000mg/L以上の冷却水系において、(メタ)アクリル酸系共重合体を含有してなる処理剤を添加する冷却水系の処理方法であって、前記(メタ)アクリル酸系共重合体が、下記一般式(1)で表される(メタ)アクリル酸系単量体(A)に由来する構造単位(a)と、下記一般式(2)で表される(メタ)アリルエーテル系単量体(B)に由来する構造単位(b)とを有し、全単量体由来の構造単位100モル%中、構造単位(a)の含有量が80~90モル%、構造単位(b)の含有量が10~20モル%であり、前記(メタ)アクリル酸系共重合体は、主鎖末端の少なくとも一方がスルホン酸基又はその塩である、冷却水系の処理方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、水素原子又はメチル基を示し、Xは、水素原子、金属原子、アンモニウム基、又は有機アミン基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R2は、水素原子又はメチル基を示し、Y及びZは、それぞれ独立して、水酸基、スルホン酸基、又はその塩であって、Y及びZのうちの少なくとも一方は、スルホン酸基又はその塩を示す。)
  2.  (メタ)アクリル酸系共重合体が、アクリル酸、メタクリル酸、及びアクリル酸ナトリウムから選ばれる1種又は2種以上の(メタ)アクリル酸系単量体(A)に由来する構造単位(a)と、3-(メタ)アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸ナトリウムに由来する構造単位(b)とからなるものである、請求項1に記載の冷却水系の処理方法。
PCT/JP2013/059451 2012-03-30 2013-03-29 冷却水系の処理方法 WO2013147112A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380017931.6A CN104203842A (zh) 2012-03-30 2013-03-29 冷却水系的处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012082713A JP5856894B2 (ja) 2012-03-30 2012-03-30 冷却水系の処理方法
JP2012-082713 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013147112A1 true WO2013147112A1 (ja) 2013-10-03

Family

ID=49260354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059451 WO2013147112A1 (ja) 2012-03-30 2013-03-29 冷却水系の処理方法

Country Status (4)

Country Link
JP (1) JP5856894B2 (ja)
CN (1) CN104203842A (ja)
TW (1) TWI562965B (ja)
WO (1) WO2013147112A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013004900T5 (de) * 2012-10-03 2015-07-02 Nippon Shokubai Co., Ltd. (Meth) Acrylat-Copolymer und Verfahren zu dessen Herstellung
JP6060097B2 (ja) * 2014-01-21 2017-01-11 深江商事株式会社 洗浄キット、及び、洗浄方法
US20210009739A1 (en) * 2018-03-08 2021-01-14 Nippon Shokubai Co., Ltd. (meth)acrylic acid copolymer-containing composition and method for producing (meth)acrylic acid copolymer
JP2022047852A (ja) * 2020-09-14 2022-03-25 栗田工業株式会社 スケール防止剤およびスケール防止方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190487A (ja) * 1997-09-24 1999-04-06 Kurita Water Ind Ltd スケール防止剤
JP2002003535A (ja) * 2000-06-16 2002-01-09 Nippon Shokubai Co Ltd (メタ)アクリル酸系共重合体およびその製造方法
JP2003053389A (ja) * 2001-08-22 2003-02-25 Kurita Water Ind Ltd スケールの防止方法
JP2004217899A (ja) * 2002-12-25 2004-08-05 Nippon Shokubai Co Ltd (メタ)アクリル酸系共重合体及び製造方法
JP2010058079A (ja) * 2008-09-05 2010-03-18 Kurita Water Ind Ltd 水処理剤及び水処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6641754B2 (en) * 2001-03-15 2003-11-04 Betzdearborn Inc. Method for controlling scale formation and deposition in aqueous systems
US6998453B2 (en) * 2001-10-03 2006-02-14 Nippon Shokubai Co., Ltd. (Meth)acrylic acid type polymer and unsaturated polyalkylene glycol type copolymer, and methods for production thereof
US6835790B2 (en) * 2002-12-25 2004-12-28 Nippon Shokubai Co., Ltd. (Meth) acrylic copolymer and its production process

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190487A (ja) * 1997-09-24 1999-04-06 Kurita Water Ind Ltd スケール防止剤
JP2002003535A (ja) * 2000-06-16 2002-01-09 Nippon Shokubai Co Ltd (メタ)アクリル酸系共重合体およびその製造方法
JP2003053389A (ja) * 2001-08-22 2003-02-25 Kurita Water Ind Ltd スケールの防止方法
JP2004217899A (ja) * 2002-12-25 2004-08-05 Nippon Shokubai Co Ltd (メタ)アクリル酸系共重合体及び製造方法
JP2010058079A (ja) * 2008-09-05 2010-03-18 Kurita Water Ind Ltd 水処理剤及び水処理方法

Also Published As

Publication number Publication date
TW201348150A (zh) 2013-12-01
CN104203842A (zh) 2014-12-10
JP5856894B2 (ja) 2016-02-10
TWI562965B (en) 2016-12-21
JP2013212435A (ja) 2013-10-17

Similar Documents

Publication Publication Date Title
JP6113992B2 (ja) 冷却水系の処理方法
WO2012132892A1 (ja) 逆浸透膜用スケール防止剤及びスケール防止方法
JP5884730B2 (ja) 逆浸透膜用スケール防止剤及びスケール防止方法
JP6255690B2 (ja) スケール防止方法及び逆浸透膜用水酸化マグネシウムスケール防止剤
JP5856894B2 (ja) 冷却水系の処理方法
JP5680289B2 (ja) 水処理剤および水処理方法
JP6340173B2 (ja) 冷却水系の処理方法
JP2012224680A (ja) (メタ)アクリル酸系共重合体、およびその製造方法、およびその用途
WO2022054313A1 (ja) スケール防止剤およびスケール防止方法
JP2014180649A (ja) 冷却水系のスケール防止方法及びスケール防止剤
JP6504177B2 (ja) アクリル酸系共重合体の製造方法
CA2840781C (en) Preparing maleic acid-isoprenol copolymers
WO2021171660A1 (ja) 水系のカルシウム系スケール防止剤及びスケール防止方法
CA2844514C (en) Copolymers of isoprenol, monoethylenically unsaturated monocarboxylic acids and sulphonic acids, methods for production thereof and use thereof as deposit inhibitors in water-bearing systems
JP2009028618A (ja) スケール防止剤および(メタ)アクリル酸系重合体
JP6340767B2 (ja) 冷却水系の金属防食処理方法
US20130180926A1 (en) Preparing maleic acid-isoprenol copolymers
JP2011241350A (ja) (メタ)アクリル酸系共重合体およびその製造方法
JP2013180277A (ja) 逆浸透膜処理用スケール防止剤および逆浸透膜処理におけるスケール生成防止方法
JP2015085268A (ja) 水系のスケール防止剤及びスケール防止方法
JP2007038120A (ja) 亜鉛水酸化物スケール防止剤及び亜鉛水酸化物のスケール防止方法
CN105073654A (zh) 冷却水系统的水处理方法及水处理剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014023951

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 13767679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014023951

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140926