WO2013146819A1 - 二次電池 - Google Patents
二次電池 Download PDFInfo
- Publication number
- WO2013146819A1 WO2013146819A1 PCT/JP2013/058865 JP2013058865W WO2013146819A1 WO 2013146819 A1 WO2013146819 A1 WO 2013146819A1 JP 2013058865 W JP2013058865 W JP 2013058865W WO 2013146819 A1 WO2013146819 A1 WO 2013146819A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- secondary battery
- acid ester
- negative electrode
- lithium secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrolytic solution for a secondary battery and a secondary battery using the same.
- Examples of means for obtaining a high energy density secondary battery include a method using a negative electrode material having a large capacity, a method using a non-aqueous electrolyte having excellent stability, and the like.
- a carbonate-based solvent such as ethylene carbonate (EC) is preferably used.
- EC ethylene carbonate
- the electrolytic solution is decomposed at the negative electrode and the battery characteristics are deteriorated.
- Patent Documents 1 and 2 disclose an electrolytic solution containing a disulfonic acid ester derivative as an additive in order to improve battery cycle characteristics, electric capacity, and the like.
- the present invention relates to an electrolytic solution for a lithium secondary battery including a sulfonic acid ester compound and a compound having two or more unsaturated bonds at the terminal, and a secondary battery using the same.
- a lithium secondary battery with improved cycle characteristics can be obtained.
- FIG. 1 is an example of a schematic configuration diagram of a secondary battery using the nonaqueous electrolytic solution of the present invention.
- the battery according to the present invention has a structure as shown in FIG.
- the positive electrode is formed by forming a layer 1 containing a positive electrode active material on a positive electrode current collector 3.
- the negative electrode is formed by forming a layer 2 containing a negative electrode active material on a negative electrode current collector 4. These positive electrode and negative electrode are arranged to face each other with a porous separator 5 interposed therebetween.
- the porous separator 5 is disposed substantially parallel to the layer 2 containing the negative electrode active material.
- the electrode element in which the positive electrode and the negative electrode are arranged to face each other, and the electrolytic solution are included in the exterior bodies 6 and 7.
- the shape of the non-aqueous electrolyte secondary battery according to the present embodiment is not particularly limited, and examples thereof include a laminate exterior type, a cylindrical type, a square type, and a coin type.
- the electrolyte solution in this embodiment contains a sulfonic acid ester compound and a compound having two or more unsaturated bonds at the ends as additives in the non-aqueous electrolyte solution.
- the non-aqueous electrolyte is not particularly limited, and for example, a solution in which a lithium salt is dissolved in a non-aqueous solvent can be used.
- lithium salt examples include LiPF 6 , lithium imide salt, LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6, and the like.
- At least one solvent selected from the group consisting of cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones, cyclic ethers and chain ethers can be used.
- the cyclic carbonate include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and derivatives thereof (including fluorinated products).
- the chain carbonate include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof (including fluorinated products).
- Examples of the aliphatic carboxylic acid ester include methyl formate, methyl acetate, ethyl propionate, and derivatives thereof (including fluorinated products).
- Examples of ⁇ -lactone include ⁇ -butyrolactone and its derivatives (including fluorinated products).
- Examples of the cyclic ether include tetrahydrofuran, 2-methyltetrahydrofuran and derivatives thereof (including fluorinated products).
- Examples of the chain ether include 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), ethyl ether, diethyl ether, and derivatives thereof (including fluorinated compounds).
- non-aqueous solvents include dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphate triester, trimethoxymethane, Dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, 1,3-propane sultone, anisole, N-methylpyrrolidone, and derivatives thereof (fluorinated compounds) Can also be used. These may use only 1 type and may use 2 or more types together.
- the concentration of the lithium salt in the nonaqueous electrolytic solution is preferably 0.7 mol / L or more and 1.5 mol / L or less.
- concentration of the lithium salt By setting the concentration of the lithium salt to 0.7 mol / L or more, sufficient ionic conductivity can be obtained.
- concentration of lithium salt 1.5 mol / L or less a viscosity can be made low and the movement of lithium ion is not prevented.
- a sulfonic acid ester compound (hereinafter sometimes referred to as “compound A”) as an additive in the non-aqueous electrolyte and a compound having two or more unsaturated bonds at the terminals ( Hereinafter, it may be described as “compound B”).
- compound A a sulfonic acid ester compound
- compound B a compound having two or more unsaturated bonds at the terminal is not included unless otherwise specified.
- the sulfonate compound (compound A) in the present embodiment has at least one —SO 2 —O— structure, and in one —SO 2 —O— structure, the S atom includes three O atoms, a carbon atom, And one O atom is bonded to an S atom and a carbon atom.
- the sulfonic acid ester compound preferably includes one or more —SO 2 —O— structures and one or more alkyl groups and / or alkylene chains, and —SO 2 —O— structure, It is more preferable that the alkyl group and / or the carbon of the alkylene chain are directly bonded, and it is further more preferable that the —SO 2 —O— structure consists only of the alkyl group and / or the alkylene chain.
- the alkyl group is present as a terminal group when the sulfonate compound is in a chain form.
- the alkylene chain is present as a linking group between the sulfonate compound when it contains two or more —SO 2 —O— structures or when it is a cyclic structure.
- the sulfonic acid ester compound may have a chain structure or a cyclic structure, but is preferably a cyclic structure because the reactivity on the negative electrode surface is improved.
- the sulfonic acid ester compound may have one or more —SO 2 —O— structures, but having two or more is preferable because reactivity on the negative electrode surface is improved.
- —SO 2 —O— A disulfonic acid ester compound having two structures is more preferable.
- a cyclic disulfonic acid ester compound represented by the following formula (1) is preferable, and a compound in which R1 and R2 are methylene groups in the formula (1) is more preferable.
- compound A may be used alone or in combination of two or more.
- R 1 and R 2 are each independently an alkylene chain having 1 to 5 carbon atoms.
- the compound (compound B) having two or more unsaturated bonds at the terminals in this embodiment includes two or more unsaturated bonds that are double bonds or triple bonds at the terminals of the molecule.
- the unsaturated bond is preferably a carbon-carbon unsaturated bond.
- a sulfonic acid ester compound having two or more unsaturated bonds at the terminal is preferable.
- the sulfonic acid ester compound having two or more unsaturated bonds at the terminal in the present embodiment has two or more unsaturated bonds at the terminal, has at least one —SO 2 —O— structure, and one —SO 2 —.
- S atoms are bonded to three O atoms and carbon atoms, and one O atom is bonded to S atoms and carbon atoms.
- compound B preferably contains two or more unsaturated bonds, one or more —SO 2 —O— structures, and one or more alkyl groups and / or alkylene chains, More preferably, the 2 —O— structure and the alkyl group and / or carbon of the alkylene chain are directly bonded, and two or more unsaturated bonds, the —SO 2 —O— structure, the alkyl group and / or Or it is more preferable that it consists only of an alkylene chain.
- the alkyl group is present as an end group when the compound B is a chain.
- the sulfonic acid ester compound having two or more unsaturated bonds at the terminal may have one or more —SO 2 —O— structures, but preferably has two or more.
- a disulfonic acid ester compound having two double bonds represented by the following formula (2) is preferable, and a bisallylmethanesulfonic acid ester in which R3 is a methylene group in the following formula is more preferable.
- R3 is an alkylene chain having 1 to 5 carbon atoms.
- Examples of compounds having two or more unsaturated bonds at the terminals other than the above include, for example, 1,3,5-triethynylbenzene represented by the following formula (3-1), represented by the formula (3-2) Tripropargylamine, triallyl isocyanurate (TAIC) represented by formula (3-3), triallyl cyanurate (TAC) represented by formula (3-4), and formula (3-5) And tetraallylpentaerythrulphonic acid ester, and trialkynylphosphonic acid ester represented by the formula (3-6).
- Compound B may be used alone or in combination of two or more.
- the electrolyte includes the sulfonic acid ester compound (Compound A) and the compound having two or more unsaturated bonds (Compound B) as additives.
- compound A and compound B are used in combination, compound B can form a cross-linked structure by having two or more unsaturated bonds in the molecule, thereby further stabilizing the film that prevents the reduction reaction of the electrolyte formed by compound A.
- the compound A and the compound B each preferably have a —SO 2 —O— structure, although not particularly limited.
- the affinity between Compound A and Compound B is improved, so that adsorption to the negative electrode surface can be induced.
- the crosslinked structure of the compound B and the film of the compound A form a uniform composite film, so that lithium ions can permeate the film uniformly, Smooth insertion and removal from the active material. This reduces the internal resistance and reduces the damage to the active material, thereby improving the battery life.
- a disulfonic acid ester compound as the compound A and a sulfonic acid ester compound having two double bonds as the compound B, and the cyclic disulfonic acid ester represented by the above formula (1) It is more preferable to use the compound and a disulfonic acid ester compound having two double bonds at the terminal represented by the formula (2) in combination.
- the total content of Compound A and Compound B is not particularly limited, but is preferably 0.01 mol / L or more and 0.2 mol / L or less, more preferably 0.03 mol / L or more and 0.2 mol / L or less in the electrolytic solution. Preferably, 0.1 mol / L is particularly preferable.
- the mixing ratio of compound A and compound B is not particularly limited, but is preferably 1: 9 to 9: 1.
- the electrolyte solution may contain other additives other than the compound A and the compound B as necessary.
- additives include an overcharge inhibitor, a surfactant, and a gelling agent.
- the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
- the negative electrode active material used for the layer 2 containing the negative electrode active material is selected from the group consisting of, for example, lithium metal, a lithium alloy, and a material capable of inserting and extracting lithium.
- a material for inserting and extracting lithium ions a carbon material or an oxide can be used.
- the carbon material graphite that absorbs lithium, amorphous carbon, diamond-like carbon, carbon nanotubes, or a composite oxide thereof can be used.
- graphite material or amorphous carbon is particularly preferable.
- the graphite material has high electron conductivity, excellent adhesion to a current collector made of a metal such as copper, and voltage flatness, and is formed at a high processing temperature, so it contains few impurities and has negative electrode performance. It is advantageous for improvement and is preferable.
- the oxide any of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, phosphorus oxide (phosphoric acid), boric oxide (boric acid), or a composite thereof may be used.
- the structure is preferably in an amorphous state. This is because silicon oxide is stable and does not cause a reaction with other compounds, and the amorphous structure does not lead to deterioration due to nonuniformity such as crystal grain boundaries and defects.
- the lithium alloy is composed of lithium and a metal capable of forming an alloy with lithium.
- a metal capable of forming an alloy with lithium is composed of a binary or ternary alloy of a metal such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and lithium.
- a binary or ternary alloy of a metal such as Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, La, and lithium.
- an amorphous one is particularly preferable. This is because the amorphous structure hardly causes deterioration due to non-uniformity such as crystal grain boundaries and defects.
- Lithium metal or lithium alloy is formed by an appropriate method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method, a sol-gel method, etc. Can do.
- binder for the negative electrode examples include polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, polytetrafluoroethylene, polypropylene, polyethylene, Polyimide, polyamideimide, or the like can be used.
- the amount of the binder for the negative electrode used is 0.5 to 25 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of “sufficient binding force” and “high energy” which are in a trade-off relationship. Is preferred.
- the negative electrode current collector aluminum, nickel, copper, silver, and alloys thereof are preferable in view of electrochemical stability.
- Examples of the shape include foil, flat plate, and mesh.
- the negative electrode can be produced by forming a negative electrode active material layer containing a negative electrode active material and a negative electrode binder on a negative electrode current collector.
- Examples of the method for forming the negative electrode active material layer include a doctor blade method, a die coater method, a CVD method, and a sputtering method.
- a thin film of aluminum, nickel, copper, silver, or an alloy thereof may be formed by a method such as vapor deposition or sputtering to form a negative electrode current collector.
- a complex composed of a transition metal cation and an imide anion may be present at the interface with the non-aqueous electrolyte.
- the negative electrode is preferable because it is excellent in flexibility with respect to volume change of the metal and alloy phases, uniformity of ion distribution, and physical and chemical stability. As a result, dendrite formation and lithium atomization can be effectively prevented, and cycle efficiency and life are improved. Further, when a carbon material or an oxide material is used as the negative electrode, dangling bonds existing on the surface have high chemical activity, and the solvent is easily decomposed.
- lithium fluoride which is a reaction product of lithium on the negative electrode surface and imide anion adsorbed on the negative electrode surface, has a function of repairing the film. Even after the film is destroyed, it has the effect of leading to the formation of a stable surface compound.
- examples of the positive electrode active material used for the layer 1 containing the positive electrode active material include lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
- the transition metal portion of these lithium-containing composite oxides may be replaced with another element.
- a lithium-containing composite oxide having a plateau at 4.2 V or higher at the metal lithium counter electrode potential can be used.
- examples of the lithium-containing composite oxide include spinel-type lithium manganese composite oxide, olivine-type lithium-containing composite oxide, and reverse spinel-type lithium-containing composite oxide.
- the lithium-containing composite oxide can be, for example, a compound represented by the following formula (4).
- Li a (M x Mn 2-x ) O 4 (4) (In Formula (4), 0 ⁇ x ⁇ 2 and 0 ⁇ a ⁇ 1.2.
- M is at least selected from the group consisting of Ni, Co, Fe, Cr, and Cu) It is a kind.
- these active materials are dispersed and kneaded in a solvent such as N-methyl-2-pyrrolidone (NMP) together with a conductive material such as carbon black and a binder such as polyvinylidene fluoride (PVDF).
- NMP N-methyl-2-pyrrolidone
- PVDF polyvinylidene fluoride
- the non-aqueous electrolyte secondary battery of FIG. 1 has a negative electrode and a positive electrode laminated via a porous separator 5 in a dry air or inert gas atmosphere. It accommodates in exterior bodies, such as a flexible film which consists of a laminated body of resin and metal foil, and is impregnated with the nonaqueous electrolyte solution containing the said compound A and compound B as an additive. And after sealing or sealing an exterior body, a favorable membrane
- porous films such as polyolefin, such as a polypropylene and polyethylene, a fluororesin
- the exterior body can be appropriately selected as long as it is stable to the electrolytic solution and has a sufficient water vapor barrier property.
- a laminated laminate type secondary battery a laminate film made of aluminum, silica-coated polypropylene, polyethylene, or the like can be used as the outer package.
- an aluminum laminate film from the viewpoint of suppressing volume expansion.
- Example 1 (Production of battery) The production of the battery of this example will be described.
- An aluminum foil having a thickness of 20 ⁇ m was used as the positive electrode current collector, and LiMn 2 O 4 was used as the positive electrode active material.
- a 10 ⁇ m thick copper foil was used as the negative electrode current collector, and graphite was used as the negative electrode active material on the copper foil.
- the negative electrode and the positive electrode were laminated
- sulfonic acid ester compound 0.025 mol / L of a cyclic disulfonic acid ester (hereinafter referred to as “compound A1”) represented by the formula (1) and each of R1 and R2 is a methylene group, and two or more at the terminal 0.075 mol / L of a bisallylmethanesulfonic acid ester (hereinafter referred to as “compound B1”) represented by the formula (2) and having R3 as a methylene group is added as a compound having an unsaturated bond of It was set to 0.1 mol / L.
- a non-aqueous secondary battery was produced using the non-aqueous electrolyte to which these additives were added, and a charge / discharge cycle test was performed 500 cycles.
- the temperature of the thermostatic chamber is set to 55 ° C., and the charge / discharge conditions are CCCV charge rate 1.0C, CC discharge rate 1.0C, charge end voltage 4.2V, and discharge end voltage 3.0V.
- Discharge 500 cycles were performed.
- the ratio of the discharge capacity after 500 cycles to the initial discharge capacity was calculated as the capacity retention rate (%).
- Table 1 shows the results of the discharge capacity after 500 cycles and the capacity retention rate.
- Example 2 As additives used in the non-aqueous electrolyte, 0.05 mol / L of compound A1, 0.05 mol / L of compound B1 were added, and the total mixed concentration was changed to 0.1 mol / L. A secondary battery was prepared and a charge / discharge cycle test was performed 500 cycles. The results are shown in Table 1.
- Example 3 As additives used in the non-aqueous electrolyte, 0.075 mol / L of compound A1 and 0.025 mol / L of compound B1 were added, and the total mixed concentration was changed to 0.1 mol / L. A secondary battery was prepared and a charge / discharge cycle test was performed 500 cycles. The results are shown in Table 1.
- Example 4 As additives used in the nonaqueous electrolyte, 0.025 mol / L of compound A1, 0.025 mol / L of compound B1 were added, and the total mixed concentration was 0.05 mol / L. A secondary battery was prepared and a charge / discharge cycle test was performed 500 cycles. The results are shown in Table 1.
- Example 5 As additives used in the non-aqueous electrolyte, 0.1 mol / L of compound A1, 0.1 mol / L of compound B1 were added, and the total mixed concentration was changed to 0.2 mol / L. A secondary battery was prepared and a charge / discharge cycle test was performed 500 cycles. The results are shown in Table 1.
- Example 1 A secondary battery was prepared in the same manner as in Example 1 except that Compound A1 was not added and Compound B1 was added in an amount of 0.025 mol / L as an additive used in the non-aqueous electrolyte, and the charge / discharge cycle test was performed 500 cycles. It was. The results are shown in Table 1.
- Example 2 A secondary battery was prepared in the same manner as in Example 1 except that Compound A1 was not added and Compound B1 was added in an amount of 0.05 mol / L as an additive used in the non-aqueous electrolyte, and the charge / discharge cycle test was performed 500 cycles. It was. The results are shown in Table 1.
- Example 3 A secondary battery was prepared in the same manner as in Example 1 except that Compound A1 was not added and Compound B1 was added in an amount of 0.1 mol / L as an additive used in the non-aqueous electrolyte, and the charge / discharge cycle test was performed 500 cycles. It was. The results are shown in Table 1.
- Example 4 A secondary battery was prepared in the same manner as in Example 1 except that Compound A1 was not added and Compound B1 was added in an amount of 0.15 mol / L as an additive used in the non-aqueous electrolyte, and the charge / discharge cycle test was performed 500 cycles. It was. The results are shown in Table 1.
- Example 5 A secondary battery was prepared in the same manner as in Example 1 except that Compound A1 was not added and Compound B1 was added in an amount of 0.2 mol / L as an additive used in the non-aqueous electrolyte, and the charge / discharge cycle test was performed 500 cycles. It was. The results are shown in Table 1. In this comparative example, the electrolyte solution viscosity was increased by containing Compound B1 at a high concentration, and the amount of gas generation increased, making measurement impossible.
- Example 6 A secondary battery was prepared in the same manner as in Example 1 except that Compound A1 was added at 0.025 mol / L and Compound B1 was not added as an additive used in the non-aqueous electrolyte, and the charge / discharge cycle test was performed 500 cycles. It was. The results are shown in Table 1.
- Example 7 A secondary battery was prepared in the same manner as in Example 1 except that 0.05 mol / L of compound A1 was added and no compound B1 was added as an additive used in the non-aqueous electrolyte, and the charge / discharge cycle test was performed 500 cycles. It was. The results are shown in Table 1.
- Example 10 A secondary battery was prepared in the same manner as in Example 1 except that Compound A1 and Compound B1 were not added as additives used in the nonaqueous electrolytic solution, and a charge / discharge cycle test was performed 500 cycles. The results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
本発明は、スルホン酸エステル化合物と、末端に不飽和結合を2つ以上有する化合物とを含む、リチウム二次電池用電解液、およびこれを用いたリチウム二次電池に関する。
Description
本発明は、二次電池用電解液、およびこれを用いた二次電池に関する。
ノート型パソコン、携帯電話、電気自動車などの急速な市場拡大に伴い、高エネルギー密度の二次電池が求められている。高エネルギー密度の二次電池を得る手段として、容量の大きな負極材料を用いる方法や、安定性に優れた非水電解液を使用する方法などが挙げられる。
リチウム二次電池においては、エチレンカーボネート(EC)等のカーボネート系の溶媒が好適に用いられている。しかし、例えば負極に黒鉛等の炭素材料が用いられた場合、電解液が負極で分解し、電池特性が低下するという問題があった。
特許文献1および2には、電池のサイクル特性および電気容量等を向上させるために、ジスルホン酸エステル誘導体を添加剤として含有する電解液が開示されている。
しかしながら、特許文献1および2に記載の電解液を用いた二次電池では、サイクルを多く重ねた場合の容量維持率、放電容量がともに不十分であった。なお、特許文献1および特許文献2の実施例においては、電解液中に1種類の添加剤を用いた場合のみが示されている。
本発明は、スルホン酸エステル化合物と、末端に不飽和結合を2つ以上有する化合物とを含むリチウム二次電池用電解液およびこれを用いた二次電池に関する。
本発明によれば、サイクル特性が向上したリチウム二次電池を得ることができる。
本発明の非水電解液を用いた二次電池の構成について図面を参照しながら説明する。図1は、本発明の非水電解液を用いた二次電池の概略構成図の一例である。本発明に係る電池は、たとえば図1のような構造を有する。正極は、正極活物質を含有する層1が正極集電体3上に成膜して成る。負極は、負極活物質を含有する層2が負極集電体4上に成膜して成る。これらの正極と負極は、多孔質セパレータ5を介して対向配置されている。多孔質セパレータ5は、負極活物質を含有する層2に対して略平行に配置されている。本発明の二次電池は、これら正極および負極が対向配置された電極素子と、電解液とが外装体6および7に内包されている。本実施の形態に係る非水電解液二次電池の形状としては、特に制限はないが、例えば、ラミネート外装型、円筒型、角型、コイン型などがあげられる。
<電解液>
本実施形態における電解液は、非水電解液中に、添加剤として、スルホン酸エステル化合物と、末端に不飽和結合を2つ以上有する化合物とを含有する。
本実施形態における電解液は、非水電解液中に、添加剤として、スルホン酸エステル化合物と、末端に不飽和結合を2つ以上有する化合物とを含有する。
非水電解液としては特に限定されないが、例えばリチウム塩を非水溶媒に溶解した溶液を用いることができる。
リチウム塩としては、LiPF6、リチウムイミド塩、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6等が挙げられる。リチウムイミド塩としては、LiN(CkF2k+1SO2)(CmF2m+1SO2)(kおよびmは、それぞれ独立して1または2である)が挙げられる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
非水溶媒としては、環状カーボネート、鎖状カーボネート、脂肪族カルボン酸エステル、γ-ラクトン、環状エーテルおよび鎖状エーテルからなる群から選択される少なくとも1種の溶媒を用いることができる。環状カーボネートとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、およびこれらの誘導体(フッ素化物を含む)が挙げられる。鎖状カーボネートとしては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、およびこれらの誘導体(フッ素化物を含む)が挙げられる。脂肪族カルボン酸エステルとしては、ギ酸メチル、酢酸メチル、プロピオン酸エチル、およびこれらの誘導体(フッ素化物を含む)が挙げられる。γ-ラクトンとしては、γ-ブチロラクトンおよびその誘導体(フッ素化物を含む)が挙げられる。環状エーテルとしては、テトラヒドロフラン、2-メチルテトラヒドロフランおよびその誘導体(フッ素化物を含む)が挙げられる。鎖状エーテルとしては、1,2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)、エチルエーテル、ジエチルエーテル、およびこれらの誘導体(フッ素化物を含む)が挙げられる。非水溶媒としては、これら以外にも、ジメチルスルホキシド、1,3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルオニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、1,3-プロパンスルトン、アニソール、N-メチルピロリドン、およびこれらの誘導体(フッ素化物を含む)を用いることもできる。これらは一種のみを用いてもよく、二種以上を併用してもよい。
非水電解液中のリチウム塩の濃度としては、0.7mol/L以上、1.5mol/L以下であることが好ましい。リチウム塩の濃度を0.7mol/L以上とすることにより、十分なイオン導電性が得られる。また、リチウム塩の濃度を1.5mol/L以下とすることにより、粘度を低くすることができ、リチウムイオンの移動が妨げられない。
本実施形態においては、非水電解液中に、添加剤として、スルホン酸エステル化合物(以下、「化合物A」と記載することもある。)と、末端に不飽和結合を2つ以上有する化合物(以下、「化合物B」と記載することもある。)とを含有する。なお、本明細書において、単に「スルホン酸エステル化合物」または「化合物A」と記載したときは、特に明示がない限り、末端に不飽和結合を2つ以上有する化合物は含まないものとする。
(化合物A)
本実施形態におけるスルホン酸エステル化合物(化合物A)は、少なくとも1つの-SO2-O-構造を有し、1つの-SO2-O-構造において、S原子は3つのO原子と炭素原子とに結合し、1つのO原子はS原子と炭素原子とに結合している。これらのうち、スルホン酸エステル化合物は、1つ以上の-SO2-O-構造と、1つ以上のアルキル基および/またはアルキレン鎖とを含むことが好ましく、-SO2-O-構造と、アルキル基および/またはアルキレン鎖の炭素とが直接結合していることがより好ましく、-SO2-O-構造と、アルキル基および/またはアルキレン鎖のみから成ることがさらに好ましい。アルキル基は、スルホン酸エステル化合物が鎖状である場合にその末端基として存在する。アルキレン鎖は、スルホン酸エステル化合物が、2つ以上の-SO2-O-構造を含む場合にそれらの間の連結基として、または、環状構造の場合に存在する。電解液中に化合物Aを含有することにより、電解液の還元反応を防ぐ皮膜を負極表面に形成することができる。
本実施形態におけるスルホン酸エステル化合物(化合物A)は、少なくとも1つの-SO2-O-構造を有し、1つの-SO2-O-構造において、S原子は3つのO原子と炭素原子とに結合し、1つのO原子はS原子と炭素原子とに結合している。これらのうち、スルホン酸エステル化合物は、1つ以上の-SO2-O-構造と、1つ以上のアルキル基および/またはアルキレン鎖とを含むことが好ましく、-SO2-O-構造と、アルキル基および/またはアルキレン鎖の炭素とが直接結合していることがより好ましく、-SO2-O-構造と、アルキル基および/またはアルキレン鎖のみから成ることがさらに好ましい。アルキル基は、スルホン酸エステル化合物が鎖状である場合にその末端基として存在する。アルキレン鎖は、スルホン酸エステル化合物が、2つ以上の-SO2-O-構造を含む場合にそれらの間の連結基として、または、環状構造の場合に存在する。電解液中に化合物Aを含有することにより、電解液の還元反応を防ぐ皮膜を負極表面に形成することができる。
本実施形態において、スルホン酸エステル化合物は、鎖状構造であっても環状構造であってもよいが、負極表面での反応性が向上するため環状構造であることが好ましい。また、スルホン酸エステル化合物は、-SO2-O-構造を1つ以上有すればよいが、2つ以上有すると負極表面での反応性が向上するため好ましく、例えば、-SO2-O-構造を2つ有するジスルホン酸エステル化合物であることがより好ましい。本実施形態においては、例えば、下記式(1)で表される環状ジスルホン酸エステル化合物であることが好ましく、式(1)中、R1およびR2がそれぞれメチレン基である化合物がより好ましい。なお、電解液中、化合物Aは、1種類のみ用いてもよく、2種類以上を併用してもよい。
(化合物B)
本実施形態における末端に不飽和結合を2つ以上有する化合物(化合物B)は、分子の末端に二重結合または三重結合である不飽和結合を2つ以上含む。不飽和結合は、好ましくは炭素-炭素不飽和結合である。分子内に不飽和結合を有することにより、負極が炭素を含む場合、炭素負極への親和性が向上し、吸着しやすくなる。また、化合物Bが負極上で重合するため、充放電に伴う活物質の膨張収縮が生じても、活物質表面から剥離しにくくなるため、安定な皮膜を形成できる。
本実施形態における末端に不飽和結合を2つ以上有する化合物(化合物B)は、分子の末端に二重結合または三重結合である不飽和結合を2つ以上含む。不飽和結合は、好ましくは炭素-炭素不飽和結合である。分子内に不飽和結合を有することにより、負極が炭素を含む場合、炭素負極への親和性が向上し、吸着しやすくなる。また、化合物Bが負極上で重合するため、充放電に伴う活物質の膨張収縮が生じても、活物質表面から剥離しにくくなるため、安定な皮膜を形成できる。
化合物Bとしては、例えば、末端に不飽和結合を2つ以上有するスルホン酸エステル化合物が好ましい。本実施形態における末端に不飽和結合を2以上有するスルホン酸エステル化合物は、末端に不飽和結合を2以上有するとともに、少なくとも1つの-SO2-O-構造を有し、1つの-SO2-O-構造において、S原子は3つのO原子と炭素原子とに結合し、1つのO原子はS原子と炭素原子とに結合している。これらのうち、化合物Bは、2つ以上の不飽和結合と、1つ以上の-SO2-O-構造と、1つ以上のアルキル基および/またはアルキレン鎖とを含むことが好ましく、-SO2-O-構造と、アルキル基および/またはアルキレン鎖の炭素とが直接結合していることがより好ましく、2つ以上の不飽和結合と、-SO2-O-構造と、アルキル基および/またはアルキレン鎖のみから成ることがさらに好ましい。アルキル基は、化合物Bが鎖状である場合にその末端基として存在する。
末端に不飽和結合を2つ以上有するスルホン酸エステル化合物は、-SO2-O-構造を1つ以上有すればよいが、2つ以上有することが好ましい。本実施形態においては、例えば、下記式(2)で表される二重結合を2つ有するジスルホン酸エステル化合物が好ましく、下記式においてR3がメチレン基であるビスアリルメタンスルホン酸エステルがより好ましい。
上記以外の末端に不飽和結合を2つ以上有する化合物(化合物B)として、例えば下記式(3-1)で表される1,3,5-トリエチニルベンゼン、式(3-2)で表されるトリプロパルギルアミン、式(3-3)で表されるトリアリルイソシアヌレート(TAIC)、式(3-4)で表されるトリアリルシアヌレート(TAC)、式(3-5)で表されるテトラアリルペンタエリスリスルホン酸エステル、および式(3-6)で表されるトリアルキニルホスホン酸エステル等が挙げられる。電解液中、化合物Bは1種を単独で用いてもよいし、2種以上を併用してもよい。
上述のとおり、本実施形態においては、電解液中に、スルホン酸エステル化合物(化合物A)と、末端に不飽和結合を2つ以上有する化合物(化合物B)とを添加剤として含む。化合物Aと化合物Bとを併用すると、化合物Bは分子内に不飽和結合を2つ以上有することにより架橋構造を形成できるため、化合物Aにより形成された電解液の還元反応を防ぐ皮膜をさらに安定化できる。
また、本実施形態においては、特に限定はされないが、化合物Aと化合物Bはそれぞれ-SO2-O-構造を有することが好ましい。化合物Aと化合物Bとが同じ-SO2-O-構造を有すると、化合物Aと化合物Bとの親和性が向上するため、負極表面への吸着を誘導することが出来る。そして、この化合物Aと化合物Bとの親和性の向上により、化合物Bによる架橋構造と化合物Aによる皮膜とが均一な複合膜を形成するため、リチウムイオンが均一に皮膜を透過することが出来、活物質への挿入脱離がスムーズになる。これにより、内部抵抗の低減と活物質のダメージが小さくなるため、電池の寿命が向上する。本実施形態においては、例えば、化合物Aとしてジスルホン酸エステル化合物、化合物Bとして二重結合を2つ有するスルホン酸エステル化合物を併用することが好ましく、上記式(1)で表される環状ジスルホン酸エステル化合物と式(2)で表される末端に二重結合を2つ有するジスルホン酸エステル化合物とを併用することがより好ましい。
化合物Aと化合物Bの合計含有量は、特に限定はされないが、電解液中、0.01mol/L以上0.2mol/L以下が好ましく、0.03mol/L以上0.2mol/L以下がより好ましく、0.1mol/Lが特に好ましい。また、化合物Aと化合物Bとの混合比率は、特に限定はされないが、1:9~9:1が好ましい。
また、本実施形態において、電解液には、必要に応じて、上記化合物Aおよび化合物B以外のその他の添加剤も含めることができる。その他の添加剤としては、例えば、過充電防止剤、界面活性剤、ゲル化剤等が挙げられる。
<負極>
負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。図1の非水電解液二次電池において、負極活物質を含有する層2に用いる負極活物質には、たとえばリチウム金属、リチウム合金、およびリチウムを吸蔵、放出できる材料、からなる群から選択される一または二以上の物質を用いることができる。リチウムイオンを吸蔵、放出する材料としては、炭素材料または酸化物を用いることができる。
負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。図1の非水電解液二次電池において、負極活物質を含有する層2に用いる負極活物質には、たとえばリチウム金属、リチウム合金、およびリチウムを吸蔵、放出できる材料、からなる群から選択される一または二以上の物質を用いることができる。リチウムイオンを吸蔵、放出する材料としては、炭素材料または酸化物を用いることができる。
炭素材料としては、リチウムを吸蔵する黒鉛、非晶質炭素、ダイヤモンド状炭素、カーボンナノチューブなど、あるいはこれらの複合酸化物を用いることができる。このうち、特に黒鉛材料または非晶質炭素であることが好ましい。特に、黒鉛材料は、電子伝導性が高く、銅などの金属からなる集電体との接着性と電圧平坦性が優れており、高い処理温度によって形成されるため含有不純物が少なく、負極性能の向上に有利であり、好ましい。また、酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛、酸化リチウム、酸化リン(リン酸)、酸化ホウ酸(ホウ酸)のいずれか、あるいはこれらの複合物を用いてもよく、特に酸化シリコンを含むことが好ましい。構造としてはアモルファス状態であることが好ましい。これは、酸化シリコンが安定で他の化合物との反応を引き起こさないため、またアモルファス構造が結晶粒界、欠陥といった不均一性に起因する劣化を導かないためである。
リチウム合金は、リチウムおよびリチウムと合金形成可能な金属により構成される。例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元または3元以上の合金により構成される。リチウム金属やリチウム合金としては、特にアモルファス状のものが好ましい。これは、アモルファス構造により結晶粒界、欠陥といった不均一性に起因する劣化が起きにくいためである。リチウム金属またはリチウム合金は、融液冷却方式、液体急冷方式、アトマイズ方式、真空蒸着方式、スパッタリング方式、プラズマCVD方式、光CVD方式、熱CVD方式、ゾルーゲル方式、などの適宜な方式で形成することができる。
負極用結着剤としては、ポリフッ化ビニリデン、ビニリデンフルオライド-ヘキサフルオロプロピレン共重合体、ビニリデンフルオライド-テトラフルオロエチレン共重合体、スチレン-ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミドイミド等を用いることができる。使用する負極用結着剤の量は、トレードオフの関係にある「十分な結着力」と「高エネルギー化」の観点から、負極活物質100質量部に対して、0.5~25質量部が好ましい。
負極集電体としては、電気化学的な安定性から、アルミニウム、ニッケル、銅、銀、およびそれらの合金が好ましい。その形状としては、箔、平板状、メッシュ状が挙げられる。
負極は、負極集電体上に、負極活物質と負極用結着剤を含む負極活物質層を形成することで作製することができる。負極活物質層の形成方法としては、ドクターブレード法、ダイコーター法、CVD法、スパッタリング法などが挙げられる。予め負極活物質層を形成した後に、蒸着、スパッタ等の方法でアルミニウム、ニッケル、銅、銀、またはそれらの合金の薄膜を形成して、負極集電体としてもよい。
図1の二次電池の負極において、遷移金属カチオンとイミドアニオンからなる錯体を非水電解液との界面に存在させてもよい。負極は、金属、合金相の体積変化に対する柔軟性、イオン分布の均一性、物理的・化学的安定性に優れたものとなるので好ましい。その結果、デンドライト生成やリチウムの微粉化を効果的に防止することができ、サイクル効率と寿命が向上する。また、負極として炭素材料や酸化物材料を用いたときにその表面に存在するダングリングボンドは化学的活性が高く、容易に溶媒を分解させることになる。この表面に、遷移金属カチオンとイミドアニオンからなる錯体を吸着させることによって、溶媒の分解が抑制され、不可逆容量が大きく減少するため、充放電効率を高く維持することができる。さらに、皮膜が機械的に壊れた際には、その壊れた箇所において、負極表面のリチウムと負極表面に吸着したイミドアニオンとの反応生成物であるフッ化リチウムが、皮膜を修復する機能を有しており、皮膜が破壊された後においても、安定な表面化合物の生成を導く効果を有している。
<正極>
図1の二次電池において、正極活物質を含有する層1に用いる正極活物質としては、例えば、LiCoO2、LiNiO2、LiMn2O4などのリチウム含有複合酸化物があげられる。また、これらのリチウム含有複合酸化物の遷移金属部分を他元素で置き換えたものでもよい。また、金属リチウム対極電位で4.2V以上にプラトーを有するリチウム含有複合酸化物を用いることもできる。リチウム含有複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が例示される。リチウム含有複合酸化物は、例えば下記の式(4)で表される化合物とすることができる。
Lia(MxMn2-x)O4 (4)
(ただし、式(4)において、0<x<2であり、また、0<a<1.2である。また、Mは、Ni、Co、Fe、CrおよびCuよりなる群から選ばれる少なくとも一種である。)
図1の二次電池において、正極活物質を含有する層1に用いる正極活物質としては、例えば、LiCoO2、LiNiO2、LiMn2O4などのリチウム含有複合酸化物があげられる。また、これらのリチウム含有複合酸化物の遷移金属部分を他元素で置き換えたものでもよい。また、金属リチウム対極電位で4.2V以上にプラトーを有するリチウム含有複合酸化物を用いることもできる。リチウム含有複合酸化物としては、スピネル型リチウムマンガン複合酸化物、オリビン型リチウム含有複合酸化物、逆スピネル型リチウム含有複合酸化物等が例示される。リチウム含有複合酸化物は、例えば下記の式(4)で表される化合物とすることができる。
Lia(MxMn2-x)O4 (4)
(ただし、式(4)において、0<x<2であり、また、0<a<1.2である。また、Mは、Ni、Co、Fe、CrおよびCuよりなる群から選ばれる少なくとも一種である。)
正極は、これらの活物質を、カーボンブラック等の導電性物質、ポリビニリデンフルオライド(PVDF)等の結着剤とともにN-メチル-2-ピロリドン(NMP)等の溶剤中に分散混練し、これをアルミニウム箔等の正極集電体上に塗布することにより得ることができる。
二次電池の製造方法として、図1の二次電池の製造方法を一例として説明する。図1の非水電解液二次電池は、乾燥空気または不活性ガス雰囲気において、負極および正極を、多孔質セパレータ5を介して積層、あるいは積層したものを捲回した後に、電池缶や、合成樹脂と金属箔との積層体からなる可とう性フィルム等の外装体に収容し、添加剤として上記化合物Aおよび化合物Bを含む非水電解液を含浸させる。そして、外装体を封止または封止後に、非水電解液二次電池の充電を行うことにより、負極上に良好な皮膜を形成させることができる。なお、多孔質セパレータ5としては、ポリプロピレン、ポリエチレン等のポリオレフィン、フッ素樹脂等の多孔性フィルムが用いられる。外装体としては、電解液に安定で、かつ十分な水蒸気バリア性を持つものであれば、適宜選択することができる。例えば、積層ラミネート型の二次電池の場合、外装体としては、アルミニウム、シリカをコーティングしたポリプロピレン、ポリエチレン等のラミネートフィルムを用いることができる。特に、体積膨張を抑制する観点から、アルミニウムラミネートフィルムを用いることが好ましい。
以下、本実施形態を実施例により具体的に説明する。
<実施例1>
(電池の作製)
本実施例の電池の作製について説明する。正極集電体として厚み20μmのアルミニウム箔を用い、正極活物質としてLiMn2O4を用いた。また、負極集電体として厚み10μmの銅箔を用い、この銅箔上に負極活物質として黒鉛を用いた。そして、負極と正極とをポリエチレンからなるセパレータを介して積層し、二次電池を作製した。
(電池の作製)
本実施例の電池の作製について説明する。正極集電体として厚み20μmのアルミニウム箔を用い、正極活物質としてLiMn2O4を用いた。また、負極集電体として厚み10μmの銅箔を用い、この銅箔上に負極活物質として黒鉛を用いた。そして、負極と正極とをポリエチレンからなるセパレータを介して積層し、二次電池を作製した。
(非水電解液の作製)
非水電解液の溶媒としてECとDECの混合溶媒(体積比:30/70)を用い、支持電解質としてLiPF6を1mol/Lとなるように溶解した。
非水電解液の溶媒としてECとDECの混合溶媒(体積比:30/70)を用い、支持電解質としてLiPF6を1mol/Lとなるように溶解した。
スルホン酸エステル化合物として、式(1)で表され、R1およびR2がそれぞれメチレン基である環状ジスルホン酸エステル(以下、「化合物A1」とする)を0.025mol/Lと、末端に2つ以上の不飽和結合を有する化合物として式(2)で表され、R3がメチレン基であるビスアリルメタンスルホン酸エステル(以下、「化合物B1」とする)を0.075mol/L加え、合計混合濃度を0.1mol/Lとした。これら添加剤が加えられた非水電解液を用いて非水二次電池を作製し、充放電サイクル試験を500サイクル行った。
充放電サイクル試験は、恒温槽の温度を55℃に設定し、充放電条件をCCCV充電レート1.0C、CC放電レート1.0C、充電終止電圧4.2V、放電終止電圧3.0Vとして充放電500サイクルを行った。初回放電容量に対する500サイクル後の放電容量の比率を容量維持率(%)として算出した。500サイクル後の放電容量と、容量維持率の結果を表1に示す。
<実施例2>
非水電解液に用いる添加剤として、化合物A1を0.05mol/L、化合物B1を0.05mol/L加え、合計混合濃度を0.1mol/Lとした以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1を0.05mol/L、化合物B1を0.05mol/L加え、合計混合濃度を0.1mol/Lとした以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<実施例3>
非水電解液に用いる添加剤として、化合物A1を0.075mol/L、化合物B1を0.025mol/L加え、合計混合濃度を0.1mol/Lとした以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1を0.075mol/L、化合物B1を0.025mol/L加え、合計混合濃度を0.1mol/Lとした以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<実施例4>
非水電解液に用いる添加剤として、化合物A1を0.025mol/L、化合物B1を0.025mol/L加え、合計混合濃度を0.05mol/Lとした以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1を0.025mol/L、化合物B1を0.025mol/L加え、合計混合濃度を0.05mol/Lとした以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<実施例5>
非水電解液に用いる添加剤として、化合物A1を0.1mol/L、化合物B1を0.1mol/L加え、合計混合濃度を0.2mol/Lとした以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1を0.1mol/L、化合物B1を0.1mol/L加え、合計混合濃度を0.2mol/Lとした以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<比較例1>
非水電解液に用いる添加剤として、化合物A1は加えず、化合物B1を0.025mol/L加えた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1は加えず、化合物B1を0.025mol/L加えた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<比較例2>
非水電解液に用いる添加剤として、化合物A1は加えず、化合物B1を0.05mol/L加えた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1は加えず、化合物B1を0.05mol/L加えた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<比較例3>
非水電解液に用いる添加剤として、化合物A1は加えず、化合物B1を0.1mol/L加えた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1は加えず、化合物B1を0.1mol/L加えた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<比較例4>
非水電解液に用いる添加剤として、化合物A1は加えず、化合物B1を0.15mol/L加えた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1は加えず、化合物B1を0.15mol/L加えた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<比較例5>
非水電解液に用いる添加剤として、化合物A1は加えず、化合物B1を0.2mol/L加えた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。本比較例においては、化合物B1を高濃度に含むことにより電解液粘度が高くなり、ガス発生量が増大して測定が不能となった。
非水電解液に用いる添加剤として、化合物A1は加えず、化合物B1を0.2mol/L加えた以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。本比較例においては、化合物B1を高濃度に含むことにより電解液粘度が高くなり、ガス発生量が増大して測定が不能となった。
<比較例6>
非水電解液に用いる添加剤として、化合物A1を0.025mol/L加え、化合物B1を加えなかった以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1を0.025mol/L加え、化合物B1を加えなかった以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<比較例7>
非水電解液に用いる添加剤として、化合物A1を0.05mol/L加え、化合物B1を加えなかった以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1を0.05mol/L加え、化合物B1を加えなかった以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<比較例8>
非水電解液に用いる添加剤として、化合物A1を0.1mol/L加え、化合物B1を加えなかった以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1を0.1mol/L加え、化合物B1を加えなかった以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<比較例9>
非水電解液に用いる添加剤として、化合物A1を0.15mol/L加え、化合物B1を加えなかった以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として、化合物A1を0.15mol/L加え、化合物B1を加えなかった以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
<比較例10>
非水電解液に用いる添加剤として化合物A1および化合物B1を加えなかった以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
非水電解液に用いる添加剤として化合物A1および化合物B1を加えなかった以外は、実施例1と同様に二次電池を作製し、充放電サイクル試験を500サイクル行った。結果を表1に示す。
(サイクル試験の評価結果)
上述のとおり、充放電サイクル寿命の向上を目的として、非水電解液の溶媒としてECとDECの混合溶媒(体積比:30/70)中に、支持電解質としてLiPF6を1mol/Lを加え、さらに、添加剤として化合物A1と化合物B1の混合比率を割り付けて加えたもの(実施例1~5)を用いてサイクル試験を行った。比較対象として化合物A1のみ混合した場合(比較例6~9)、化合物B1のみ混合した場合(比較例1~5)、または化合物A1も化合物B1も混合しない場合(比較例10)についても、同時にサイクル試験を行った。
上述のとおり、充放電サイクル寿命の向上を目的として、非水電解液の溶媒としてECとDECの混合溶媒(体積比:30/70)中に、支持電解質としてLiPF6を1mol/Lを加え、さらに、添加剤として化合物A1と化合物B1の混合比率を割り付けて加えたもの(実施例1~5)を用いてサイクル試験を行った。比較対象として化合物A1のみ混合した場合(比較例6~9)、化合物B1のみ混合した場合(比較例1~5)、または化合物A1も化合物B1も混合しない場合(比較例10)についても、同時にサイクル試験を行った。
実施例1~5と比較例1~10とを比較すると、放電容量及び容量維持率共に実施例1~5の方が上回っている。一方、比較例1~9と比較例10とを比較すると、化合物A1のみ、または化合物B1のみを単独で用いた場合であっても、添加剤を用いない場合よりはサイクル寿命を向上させる効果はある。しかし、実施例1~5で示すように、化合物A1と化合物B1とを併用した場合にサイクル寿命を向上させる効果が顕著であることがわかった。また、電解液1L中、化合物A1を0.05mol/L、化合物B1を0.05mol/L加え、合計を0.1mol/Lとした場合、サイクル寿命の向上に特に効果があることが示された。
1 正極活物質層
2 負極活物質層
3 正極集電体
4 負極集電体
5 多孔質セパレータ
6 ラミネート外装体
7 ラミネート外装体
8 負極タブ
9 正極タブ
2 負極活物質層
3 正極集電体
4 負極集電体
5 多孔質セパレータ
6 ラミネート外装体
7 ラミネート外装体
8 負極タブ
9 正極タブ
Claims (10)
- スルホン酸エステル化合物と、末端に不飽和結合を2つ以上有する化合物とを含む、リチウム二次電池用電解液。
- 前記スルホン酸エステル化合物がジスルホン酸エステル化合物である、請求項1に記載のリチウム二次電池用電解液。
- 前記スルホン酸エステル化合物が環状ジスルホン酸エステル化合物である、請求項1または2に記載のリチウム二次電池用電解液。
- 前記末端に不飽和結合を2つ以上有する化合物が、末端に不飽和結合を2つ以上有するスルホン酸エステル化合物である、請求項1~3のいずれか1項に記載のリチウム二次電池用電解液。
- 前記末端に不飽和結合を2つ以上有する化合物が、末端に不飽和結合を2つ以上有するジスルホン酸エステル化合物である、請求項1~4のいずれか1項に記載のリチウム二次電池用電解液。
- 前記スルホン酸エステル化合物と前記末端に不飽和結合を2つ以上有する化合物との合計が、0.03~0.2mol/Lである、請求項1~5のいずれか1項に記載のリチウム二次電池用電解液。
- 前記スルホン酸エステル化合物と前記末端に不飽和結合を2つ以上有する化合物との比が1:9~9:1である、請求項1~6のいずれか1項に記載のリチウム二次電池用電解液。
- さらに支持塩として1MのLiPF6を含む、請求項1~8のいずれか1項に記載のリチウム二次電池用電解液。
- 請求項1~9のいずれか1項に記載のリチウム二次電池用電解液を含む、リチウム二次電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014507931A JP6086116B2 (ja) | 2012-03-29 | 2013-03-26 | リチウム二次電池用電解液およびこれを含むリチウム二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-078143 | 2012-03-29 | ||
JP2012078143 | 2012-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013146819A1 true WO2013146819A1 (ja) | 2013-10-03 |
Family
ID=49260070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/058865 WO2013146819A1 (ja) | 2012-03-29 | 2013-03-26 | 二次電池 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6086116B2 (ja) |
WO (1) | WO2013146819A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019189670A1 (ja) | 2018-03-29 | 2019-10-03 | 三菱ケミカル株式会社 | 非水系電解液及び非水系電解液電池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007328992A (ja) * | 2006-06-07 | 2007-12-20 | Nec Tokin Corp | 非水電解液およびそれを用いた非水電解液二次電池 |
JP2010501982A (ja) * | 2006-08-25 | 2010-01-21 | エルジー・ケム・リミテッド | 非水電解液及びこれを用いた二次電池 |
WO2011096572A1 (ja) * | 2010-02-08 | 2011-08-11 | Necエナジーデバイス株式会社 | 非水電解液二次電池 |
WO2012017999A1 (ja) * | 2010-08-05 | 2012-02-09 | 和光純薬工業株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
-
2013
- 2013-03-26 WO PCT/JP2013/058865 patent/WO2013146819A1/ja active Application Filing
- 2013-03-26 JP JP2014507931A patent/JP6086116B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007328992A (ja) * | 2006-06-07 | 2007-12-20 | Nec Tokin Corp | 非水電解液およびそれを用いた非水電解液二次電池 |
JP2010501982A (ja) * | 2006-08-25 | 2010-01-21 | エルジー・ケム・リミテッド | 非水電解液及びこれを用いた二次電池 |
WO2011096572A1 (ja) * | 2010-02-08 | 2011-08-11 | Necエナジーデバイス株式会社 | 非水電解液二次電池 |
WO2012017999A1 (ja) * | 2010-08-05 | 2012-02-09 | 和光純薬工業株式会社 | 非水系電解液及びそれを用いた非水系電解液電池 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019189670A1 (ja) | 2018-03-29 | 2019-10-03 | 三菱ケミカル株式会社 | 非水系電解液及び非水系電解液電池 |
KR20200133785A (ko) | 2018-03-29 | 2020-11-30 | 미쯔비시 케미컬 주식회사 | 비수계 전해액 및 비수계 전해액 전지 |
JPWO2019189670A1 (ja) * | 2018-03-29 | 2021-04-01 | 三菱ケミカル株式会社 | 非水系電解液及び非水系電解液電池 |
JP7231615B2 (ja) | 2018-03-29 | 2023-03-01 | 三菱ケミカル株式会社 | 非水系電解液及び非水系電解液電池 |
Also Published As
Publication number | Publication date |
---|---|
JP6086116B2 (ja) | 2017-03-01 |
JPWO2013146819A1 (ja) | 2015-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6398985B2 (ja) | リチウムイオン二次電池 | |
US20180108935A1 (en) | Electrolyte solution for secondary batteries, and secondary battery | |
JP6380376B2 (ja) | 非水電解液二次電池 | |
WO2018221346A1 (ja) | リチウムイオン二次電池 | |
KR20080025002A (ko) | 비수전해질 이차 전지 및 그의 제조 방법 | |
JP6380377B2 (ja) | リチウムイオン二次電池 | |
WO2017154788A1 (ja) | 二次電池用電解液及び二次電池 | |
JP4909649B2 (ja) | 非水電解液およびそれを用いた非水電解液二次電池 | |
WO2014003077A1 (ja) | 非水電解液二次電池 | |
WO2015037367A1 (ja) | 非水電解液二次電池 | |
JP6341195B2 (ja) | 二次電池用電解液およびそれを用いた二次電池 | |
JP4304570B2 (ja) | 非水電解液およびそれを用いた二次電池 | |
WO2014133171A1 (ja) | ゲル電解質およびそれを用いたポリマー二次電池 | |
JP6319092B2 (ja) | 二次電池 | |
JPWO2014171518A1 (ja) | リチウムイオン二次電池 | |
JP6992362B2 (ja) | リチウムイオン二次電池 | |
WO2019065288A1 (ja) | リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池 | |
JP6086116B2 (ja) | リチウム二次電池用電解液およびこれを含むリチウム二次電池 | |
JP4710230B2 (ja) | 二次電池用電解液及び二次電池 | |
JP4525018B2 (ja) | リチウム二次電池用電解液およびそれを用いたリチウム二次電池 | |
JP5201166B2 (ja) | 二次電池 | |
WO2014133161A1 (ja) | 非水電解液二次電池 | |
KR20090106993A (ko) | 비수 전해액 및 이를 이용한 비수 전해액 2차 전지 | |
JP2023525314A (ja) | リチウム二次電池用非水電解液及びこれを含むリチウム二次電池 | |
WO2016084556A1 (ja) | 非水系電解液を用いた蓄電デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13768142 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014507931 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13768142 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |